1// SPDX-License-Identifier: GPL-2.0+ 2/* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22#include <linux/module.h> 23#include <linux/time.h> 24#include <linux/fs.h> 25#include <linux/jbd2.h> 26#include <linux/errno.h> 27#include <linux/slab.h> 28#include <linux/init.h> 29#include <linux/mm.h> 30#include <linux/freezer.h> 31#include <linux/pagemap.h> 32#include <linux/kthread.h> 33#include <linux/poison.h> 34#include <linux/proc_fs.h> 35#include <linux/seq_file.h> 36#include <linux/math64.h> 37#include <linux/hash.h> 38#include <linux/log2.h> 39#include <linux/vmalloc.h> 40#include <linux/backing-dev.h> 41#include <linux/bitops.h> 42#include <linux/ratelimit.h> 43#include <linux/sched/mm.h> 44 45#define CREATE_TRACE_POINTS 46#include <trace/events/jbd2.h> 47 48#include <linux/uaccess.h> 49#include <asm/page.h> 50 51#ifdef CONFIG_JBD2_DEBUG 52ushort jbd2_journal_enable_debug __read_mostly; 53EXPORT_SYMBOL(jbd2_journal_enable_debug); 54 55module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 56MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 57#endif 58 59EXPORT_SYMBOL(jbd2_journal_extend); 60EXPORT_SYMBOL(jbd2_journal_stop); 61EXPORT_SYMBOL(jbd2_journal_lock_updates); 62EXPORT_SYMBOL(jbd2_journal_unlock_updates); 63EXPORT_SYMBOL(jbd2_journal_get_write_access); 64EXPORT_SYMBOL(jbd2_journal_get_create_access); 65EXPORT_SYMBOL(jbd2_journal_get_undo_access); 66EXPORT_SYMBOL(jbd2_journal_set_triggers); 67EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 68EXPORT_SYMBOL(jbd2_journal_forget); 69EXPORT_SYMBOL(jbd2_journal_flush); 70EXPORT_SYMBOL(jbd2_journal_revoke); 71 72EXPORT_SYMBOL(jbd2_journal_init_dev); 73EXPORT_SYMBOL(jbd2_journal_init_inode); 74EXPORT_SYMBOL(jbd2_journal_check_used_features); 75EXPORT_SYMBOL(jbd2_journal_check_available_features); 76EXPORT_SYMBOL(jbd2_journal_set_features); 77EXPORT_SYMBOL(jbd2_journal_load); 78EXPORT_SYMBOL(jbd2_journal_destroy); 79EXPORT_SYMBOL(jbd2_journal_abort); 80EXPORT_SYMBOL(jbd2_journal_errno); 81EXPORT_SYMBOL(jbd2_journal_ack_err); 82EXPORT_SYMBOL(jbd2_journal_clear_err); 83EXPORT_SYMBOL(jbd2_log_wait_commit); 84EXPORT_SYMBOL(jbd2_log_start_commit); 85EXPORT_SYMBOL(jbd2_journal_start_commit); 86EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 87EXPORT_SYMBOL(jbd2_journal_wipe); 88EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 89EXPORT_SYMBOL(jbd2_journal_invalidatepage); 90EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 91EXPORT_SYMBOL(jbd2_journal_force_commit); 92EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 93EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 94EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers); 95EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers); 96EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 97EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 98EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 99EXPORT_SYMBOL(jbd2_inode_cache); 100 101static int jbd2_journal_create_slab(size_t slab_size); 102 103#ifdef CONFIG_JBD2_DEBUG 104void __jbd2_debug(int level, const char *file, const char *func, 105 unsigned int line, const char *fmt, ...) 106{ 107 struct va_format vaf; 108 va_list args; 109 110 if (level > jbd2_journal_enable_debug) 111 return; 112 va_start(args, fmt); 113 vaf.fmt = fmt; 114 vaf.va = &args; 115 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 116 va_end(args); 117} 118EXPORT_SYMBOL(__jbd2_debug); 119#endif 120 121/* Checksumming functions */ 122static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 123{ 124 if (!jbd2_journal_has_csum_v2or3_feature(j)) 125 return 1; 126 127 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 128} 129 130static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 131{ 132 __u32 csum; 133 __be32 old_csum; 134 135 old_csum = sb->s_checksum; 136 sb->s_checksum = 0; 137 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 138 sb->s_checksum = old_csum; 139 140 return cpu_to_be32(csum); 141} 142 143/* 144 * Helper function used to manage commit timeouts 145 */ 146 147static void commit_timeout(struct timer_list *t) 148{ 149 journal_t *journal = from_timer(journal, t, j_commit_timer); 150 151 wake_up_process(journal->j_task); 152} 153 154/* 155 * kjournald2: The main thread function used to manage a logging device 156 * journal. 157 * 158 * This kernel thread is responsible for two things: 159 * 160 * 1) COMMIT: Every so often we need to commit the current state of the 161 * filesystem to disk. The journal thread is responsible for writing 162 * all of the metadata buffers to disk. If a fast commit is ongoing 163 * journal thread waits until it's done and then continues from 164 * there on. 165 * 166 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 167 * of the data in that part of the log has been rewritten elsewhere on 168 * the disk. Flushing these old buffers to reclaim space in the log is 169 * known as checkpointing, and this thread is responsible for that job. 170 */ 171 172static int kjournald2(void *arg) 173{ 174 journal_t *journal = arg; 175 transaction_t *transaction; 176 177 /* 178 * Set up an interval timer which can be used to trigger a commit wakeup 179 * after the commit interval expires 180 */ 181 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 182 183 set_freezable(); 184 185 /* Record that the journal thread is running */ 186 journal->j_task = current; 187 wake_up(&journal->j_wait_done_commit); 188 189 /* 190 * Make sure that no allocations from this kernel thread will ever 191 * recurse to the fs layer because we are responsible for the 192 * transaction commit and any fs involvement might get stuck waiting for 193 * the trasn. commit. 194 */ 195 memalloc_nofs_save(); 196 197 /* 198 * And now, wait forever for commit wakeup events. 199 */ 200 write_lock(&journal->j_state_lock); 201 202loop: 203 if (journal->j_flags & JBD2_UNMOUNT) 204 goto end_loop; 205 206 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n", 207 journal->j_commit_sequence, journal->j_commit_request); 208 209 if (journal->j_commit_sequence != journal->j_commit_request) { 210 jbd_debug(1, "OK, requests differ\n"); 211 write_unlock(&journal->j_state_lock); 212 del_timer_sync(&journal->j_commit_timer); 213 jbd2_journal_commit_transaction(journal); 214 write_lock(&journal->j_state_lock); 215 goto loop; 216 } 217 218 wake_up(&journal->j_wait_done_commit); 219 if (freezing(current)) { 220 /* 221 * The simpler the better. Flushing journal isn't a 222 * good idea, because that depends on threads that may 223 * be already stopped. 224 */ 225 jbd_debug(1, "Now suspending kjournald2\n"); 226 write_unlock(&journal->j_state_lock); 227 try_to_freeze(); 228 write_lock(&journal->j_state_lock); 229 } else { 230 /* 231 * We assume on resume that commits are already there, 232 * so we don't sleep 233 */ 234 DEFINE_WAIT(wait); 235 int should_sleep = 1; 236 237 prepare_to_wait(&journal->j_wait_commit, &wait, 238 TASK_INTERRUPTIBLE); 239 if (journal->j_commit_sequence != journal->j_commit_request) 240 should_sleep = 0; 241 transaction = journal->j_running_transaction; 242 if (transaction && time_after_eq(jiffies, 243 transaction->t_expires)) 244 should_sleep = 0; 245 if (journal->j_flags & JBD2_UNMOUNT) 246 should_sleep = 0; 247 if (should_sleep) { 248 write_unlock(&journal->j_state_lock); 249 schedule(); 250 write_lock(&journal->j_state_lock); 251 } 252 finish_wait(&journal->j_wait_commit, &wait); 253 } 254 255 jbd_debug(1, "kjournald2 wakes\n"); 256 257 /* 258 * Were we woken up by a commit wakeup event? 259 */ 260 transaction = journal->j_running_transaction; 261 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 262 journal->j_commit_request = transaction->t_tid; 263 jbd_debug(1, "woke because of timeout\n"); 264 } 265 goto loop; 266 267end_loop: 268 del_timer_sync(&journal->j_commit_timer); 269 journal->j_task = NULL; 270 wake_up(&journal->j_wait_done_commit); 271 jbd_debug(1, "Journal thread exiting.\n"); 272 write_unlock(&journal->j_state_lock); 273 return 0; 274} 275 276static int jbd2_journal_start_thread(journal_t *journal) 277{ 278 struct task_struct *t; 279 280 t = kthread_run(kjournald2, journal, "jbd2/%s", 281 journal->j_devname); 282 if (IS_ERR(t)) 283 return PTR_ERR(t); 284 285 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 286 return 0; 287} 288 289static void journal_kill_thread(journal_t *journal) 290{ 291 write_lock(&journal->j_state_lock); 292 journal->j_flags |= JBD2_UNMOUNT; 293 294 while (journal->j_task) { 295 write_unlock(&journal->j_state_lock); 296 wake_up(&journal->j_wait_commit); 297 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 298 write_lock(&journal->j_state_lock); 299 } 300 write_unlock(&journal->j_state_lock); 301} 302 303/* 304 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 305 * 306 * Writes a metadata buffer to a given disk block. The actual IO is not 307 * performed but a new buffer_head is constructed which labels the data 308 * to be written with the correct destination disk block. 309 * 310 * Any magic-number escaping which needs to be done will cause a 311 * copy-out here. If the buffer happens to start with the 312 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 313 * magic number is only written to the log for descripter blocks. In 314 * this case, we copy the data and replace the first word with 0, and we 315 * return a result code which indicates that this buffer needs to be 316 * marked as an escaped buffer in the corresponding log descriptor 317 * block. The missing word can then be restored when the block is read 318 * during recovery. 319 * 320 * If the source buffer has already been modified by a new transaction 321 * since we took the last commit snapshot, we use the frozen copy of 322 * that data for IO. If we end up using the existing buffer_head's data 323 * for the write, then we have to make sure nobody modifies it while the 324 * IO is in progress. do_get_write_access() handles this. 325 * 326 * The function returns a pointer to the buffer_head to be used for IO. 327 * 328 * 329 * Return value: 330 * <0: Error 331 * >=0: Finished OK 332 * 333 * On success: 334 * Bit 0 set == escape performed on the data 335 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 336 */ 337 338int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 339 struct journal_head *jh_in, 340 struct buffer_head **bh_out, 341 sector_t blocknr) 342{ 343 int need_copy_out = 0; 344 int done_copy_out = 0; 345 int do_escape = 0; 346 char *mapped_data; 347 struct buffer_head *new_bh; 348 struct page *new_page; 349 unsigned int new_offset; 350 struct buffer_head *bh_in = jh2bh(jh_in); 351 journal_t *journal = transaction->t_journal; 352 353 /* 354 * The buffer really shouldn't be locked: only the current committing 355 * transaction is allowed to write it, so nobody else is allowed 356 * to do any IO. 357 * 358 * akpm: except if we're journalling data, and write() output is 359 * also part of a shared mapping, and another thread has 360 * decided to launch a writepage() against this buffer. 361 */ 362 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 363 364 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 365 366 /* keep subsequent assertions sane */ 367 atomic_set(&new_bh->b_count, 1); 368 369 spin_lock(&jh_in->b_state_lock); 370repeat: 371 /* 372 * If a new transaction has already done a buffer copy-out, then 373 * we use that version of the data for the commit. 374 */ 375 if (jh_in->b_frozen_data) { 376 done_copy_out = 1; 377 new_page = virt_to_page(jh_in->b_frozen_data); 378 new_offset = offset_in_page(jh_in->b_frozen_data); 379 } else { 380 new_page = jh2bh(jh_in)->b_page; 381 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 382 } 383 384 mapped_data = kmap_atomic(new_page); 385 /* 386 * Fire data frozen trigger if data already wasn't frozen. Do this 387 * before checking for escaping, as the trigger may modify the magic 388 * offset. If a copy-out happens afterwards, it will have the correct 389 * data in the buffer. 390 */ 391 if (!done_copy_out) 392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 393 jh_in->b_triggers); 394 395 /* 396 * Check for escaping 397 */ 398 if (*((__be32 *)(mapped_data + new_offset)) == 399 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 400 need_copy_out = 1; 401 do_escape = 1; 402 } 403 kunmap_atomic(mapped_data); 404 405 /* 406 * Do we need to do a data copy? 407 */ 408 if (need_copy_out && !done_copy_out) { 409 char *tmp; 410 411 spin_unlock(&jh_in->b_state_lock); 412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 413 if (!tmp) { 414 brelse(new_bh); 415 return -ENOMEM; 416 } 417 spin_lock(&jh_in->b_state_lock); 418 if (jh_in->b_frozen_data) { 419 jbd2_free(tmp, bh_in->b_size); 420 goto repeat; 421 } 422 423 jh_in->b_frozen_data = tmp; 424 mapped_data = kmap_atomic(new_page); 425 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 426 kunmap_atomic(mapped_data); 427 428 new_page = virt_to_page(tmp); 429 new_offset = offset_in_page(tmp); 430 done_copy_out = 1; 431 432 /* 433 * This isn't strictly necessary, as we're using frozen 434 * data for the escaping, but it keeps consistency with 435 * b_frozen_data usage. 436 */ 437 jh_in->b_frozen_triggers = jh_in->b_triggers; 438 } 439 440 /* 441 * Did we need to do an escaping? Now we've done all the 442 * copying, we can finally do so. 443 */ 444 if (do_escape) { 445 mapped_data = kmap_atomic(new_page); 446 *((unsigned int *)(mapped_data + new_offset)) = 0; 447 kunmap_atomic(mapped_data); 448 } 449 450 set_bh_page(new_bh, new_page, new_offset); 451 new_bh->b_size = bh_in->b_size; 452 new_bh->b_bdev = journal->j_dev; 453 new_bh->b_blocknr = blocknr; 454 new_bh->b_private = bh_in; 455 set_buffer_mapped(new_bh); 456 set_buffer_dirty(new_bh); 457 458 *bh_out = new_bh; 459 460 /* 461 * The to-be-written buffer needs to get moved to the io queue, 462 * and the original buffer whose contents we are shadowing or 463 * copying is moved to the transaction's shadow queue. 464 */ 465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 466 spin_lock(&journal->j_list_lock); 467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 468 spin_unlock(&journal->j_list_lock); 469 set_buffer_shadow(bh_in); 470 spin_unlock(&jh_in->b_state_lock); 471 472 return do_escape | (done_copy_out << 1); 473} 474 475/* 476 * Allocation code for the journal file. Manage the space left in the 477 * journal, so that we can begin checkpointing when appropriate. 478 */ 479 480/* 481 * Called with j_state_lock locked for writing. 482 * Returns true if a transaction commit was started. 483 */ 484int __jbd2_log_start_commit(journal_t *journal, tid_t target) 485{ 486 /* Return if the txn has already requested to be committed */ 487 if (journal->j_commit_request == target) 488 return 0; 489 490 /* 491 * The only transaction we can possibly wait upon is the 492 * currently running transaction (if it exists). Otherwise, 493 * the target tid must be an old one. 494 */ 495 if (journal->j_running_transaction && 496 journal->j_running_transaction->t_tid == target) { 497 /* 498 * We want a new commit: OK, mark the request and wakeup the 499 * commit thread. We do _not_ do the commit ourselves. 500 */ 501 502 journal->j_commit_request = target; 503 jbd_debug(1, "JBD2: requesting commit %u/%u\n", 504 journal->j_commit_request, 505 journal->j_commit_sequence); 506 journal->j_running_transaction->t_requested = jiffies; 507 wake_up(&journal->j_wait_commit); 508 return 1; 509 } else if (!tid_geq(journal->j_commit_request, target)) 510 /* This should never happen, but if it does, preserve 511 the evidence before kjournald goes into a loop and 512 increments j_commit_sequence beyond all recognition. */ 513 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 514 journal->j_commit_request, 515 journal->j_commit_sequence, 516 target, journal->j_running_transaction ? 517 journal->j_running_transaction->t_tid : 0); 518 return 0; 519} 520 521int jbd2_log_start_commit(journal_t *journal, tid_t tid) 522{ 523 int ret; 524 525 write_lock(&journal->j_state_lock); 526 ret = __jbd2_log_start_commit(journal, tid); 527 write_unlock(&journal->j_state_lock); 528 return ret; 529} 530 531/* 532 * Force and wait any uncommitted transactions. We can only force the running 533 * transaction if we don't have an active handle, otherwise, we will deadlock. 534 * Returns: <0 in case of error, 535 * 0 if nothing to commit, 536 * 1 if transaction was successfully committed. 537 */ 538static int __jbd2_journal_force_commit(journal_t *journal) 539{ 540 transaction_t *transaction = NULL; 541 tid_t tid; 542 int need_to_start = 0, ret = 0; 543 544 read_lock(&journal->j_state_lock); 545 if (journal->j_running_transaction && !current->journal_info) { 546 transaction = journal->j_running_transaction; 547 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 548 need_to_start = 1; 549 } else if (journal->j_committing_transaction) 550 transaction = journal->j_committing_transaction; 551 552 if (!transaction) { 553 /* Nothing to commit */ 554 read_unlock(&journal->j_state_lock); 555 return 0; 556 } 557 tid = transaction->t_tid; 558 read_unlock(&journal->j_state_lock); 559 if (need_to_start) 560 jbd2_log_start_commit(journal, tid); 561 ret = jbd2_log_wait_commit(journal, tid); 562 if (!ret) 563 ret = 1; 564 565 return ret; 566} 567 568/** 569 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the 570 * calling process is not within transaction. 571 * 572 * @journal: journal to force 573 * Returns true if progress was made. 574 * 575 * This is used for forcing out undo-protected data which contains 576 * bitmaps, when the fs is running out of space. 577 */ 578int jbd2_journal_force_commit_nested(journal_t *journal) 579{ 580 int ret; 581 582 ret = __jbd2_journal_force_commit(journal); 583 return ret > 0; 584} 585 586/** 587 * jbd2_journal_force_commit() - force any uncommitted transactions 588 * @journal: journal to force 589 * 590 * Caller want unconditional commit. We can only force the running transaction 591 * if we don't have an active handle, otherwise, we will deadlock. 592 */ 593int jbd2_journal_force_commit(journal_t *journal) 594{ 595 int ret; 596 597 J_ASSERT(!current->journal_info); 598 ret = __jbd2_journal_force_commit(journal); 599 if (ret > 0) 600 ret = 0; 601 return ret; 602} 603 604/* 605 * Start a commit of the current running transaction (if any). Returns true 606 * if a transaction is going to be committed (or is currently already 607 * committing), and fills its tid in at *ptid 608 */ 609int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 610{ 611 int ret = 0; 612 613 write_lock(&journal->j_state_lock); 614 if (journal->j_running_transaction) { 615 tid_t tid = journal->j_running_transaction->t_tid; 616 617 __jbd2_log_start_commit(journal, tid); 618 /* There's a running transaction and we've just made sure 619 * it's commit has been scheduled. */ 620 if (ptid) 621 *ptid = tid; 622 ret = 1; 623 } else if (journal->j_committing_transaction) { 624 /* 625 * If commit has been started, then we have to wait for 626 * completion of that transaction. 627 */ 628 if (ptid) 629 *ptid = journal->j_committing_transaction->t_tid; 630 ret = 1; 631 } 632 write_unlock(&journal->j_state_lock); 633 return ret; 634} 635 636/* 637 * Return 1 if a given transaction has not yet sent barrier request 638 * connected with a transaction commit. If 0 is returned, transaction 639 * may or may not have sent the barrier. Used to avoid sending barrier 640 * twice in common cases. 641 */ 642int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 643{ 644 int ret = 0; 645 transaction_t *commit_trans; 646 647 if (!(journal->j_flags & JBD2_BARRIER)) 648 return 0; 649 read_lock(&journal->j_state_lock); 650 /* Transaction already committed? */ 651 if (tid_geq(journal->j_commit_sequence, tid)) 652 goto out; 653 commit_trans = journal->j_committing_transaction; 654 if (!commit_trans || commit_trans->t_tid != tid) { 655 ret = 1; 656 goto out; 657 } 658 /* 659 * Transaction is being committed and we already proceeded to 660 * submitting a flush to fs partition? 661 */ 662 if (journal->j_fs_dev != journal->j_dev) { 663 if (!commit_trans->t_need_data_flush || 664 commit_trans->t_state >= T_COMMIT_DFLUSH) 665 goto out; 666 } else { 667 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 668 goto out; 669 } 670 ret = 1; 671out: 672 read_unlock(&journal->j_state_lock); 673 return ret; 674} 675EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 676 677/* 678 * Wait for a specified commit to complete. 679 * The caller may not hold the journal lock. 680 */ 681int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 682{ 683 int err = 0; 684 685 read_lock(&journal->j_state_lock); 686#ifdef CONFIG_PROVE_LOCKING 687 /* 688 * Some callers make sure transaction is already committing and in that 689 * case we cannot block on open handles anymore. So don't warn in that 690 * case. 691 */ 692 if (tid_gt(tid, journal->j_commit_sequence) && 693 (!journal->j_committing_transaction || 694 journal->j_committing_transaction->t_tid != tid)) { 695 read_unlock(&journal->j_state_lock); 696 jbd2_might_wait_for_commit(journal); 697 read_lock(&journal->j_state_lock); 698 } 699#endif 700#ifdef CONFIG_JBD2_DEBUG 701 if (!tid_geq(journal->j_commit_request, tid)) { 702 printk(KERN_ERR 703 "%s: error: j_commit_request=%u, tid=%u\n", 704 __func__, journal->j_commit_request, tid); 705 } 706#endif 707 while (tid_gt(tid, journal->j_commit_sequence)) { 708 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 709 tid, journal->j_commit_sequence); 710 read_unlock(&journal->j_state_lock); 711 wake_up(&journal->j_wait_commit); 712 wait_event(journal->j_wait_done_commit, 713 !tid_gt(tid, journal->j_commit_sequence)); 714 read_lock(&journal->j_state_lock); 715 } 716 read_unlock(&journal->j_state_lock); 717 718 if (unlikely(is_journal_aborted(journal))) 719 err = -EIO; 720 return err; 721} 722 723/* 724 * Start a fast commit. If there's an ongoing fast or full commit wait for 725 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY 726 * if a fast commit is not needed, either because there's an already a commit 727 * going on or this tid has already been committed. Returns -EINVAL if no jbd2 728 * commit has yet been performed. 729 */ 730int jbd2_fc_begin_commit(journal_t *journal, tid_t tid) 731{ 732 if (unlikely(is_journal_aborted(journal))) 733 return -EIO; 734 /* 735 * Fast commits only allowed if at least one full commit has 736 * been processed. 737 */ 738 if (!journal->j_stats.ts_tid) 739 return -EINVAL; 740 741 write_lock(&journal->j_state_lock); 742 if (tid <= journal->j_commit_sequence) { 743 write_unlock(&journal->j_state_lock); 744 return -EALREADY; 745 } 746 747 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 748 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) { 749 DEFINE_WAIT(wait); 750 751 prepare_to_wait(&journal->j_fc_wait, &wait, 752 TASK_UNINTERRUPTIBLE); 753 write_unlock(&journal->j_state_lock); 754 schedule(); 755 finish_wait(&journal->j_fc_wait, &wait); 756 return -EALREADY; 757 } 758 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING; 759 write_unlock(&journal->j_state_lock); 760 jbd2_journal_lock_updates(journal); 761 762 return 0; 763} 764EXPORT_SYMBOL(jbd2_fc_begin_commit); 765 766/* 767 * Stop a fast commit. If fallback is set, this function starts commit of 768 * TID tid before any other fast commit can start. 769 */ 770static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback) 771{ 772 jbd2_journal_unlock_updates(journal); 773 if (journal->j_fc_cleanup_callback) 774 journal->j_fc_cleanup_callback(journal, 0); 775 write_lock(&journal->j_state_lock); 776 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING; 777 if (fallback) 778 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING; 779 write_unlock(&journal->j_state_lock); 780 wake_up(&journal->j_fc_wait); 781 if (fallback) 782 return jbd2_complete_transaction(journal, tid); 783 return 0; 784} 785 786int jbd2_fc_end_commit(journal_t *journal) 787{ 788 return __jbd2_fc_end_commit(journal, 0, false); 789} 790EXPORT_SYMBOL(jbd2_fc_end_commit); 791 792int jbd2_fc_end_commit_fallback(journal_t *journal) 793{ 794 tid_t tid; 795 796 read_lock(&journal->j_state_lock); 797 tid = journal->j_running_transaction ? 798 journal->j_running_transaction->t_tid : 0; 799 read_unlock(&journal->j_state_lock); 800 return __jbd2_fc_end_commit(journal, tid, true); 801} 802EXPORT_SYMBOL(jbd2_fc_end_commit_fallback); 803 804/* Return 1 when transaction with given tid has already committed. */ 805int jbd2_transaction_committed(journal_t *journal, tid_t tid) 806{ 807 int ret = 1; 808 809 read_lock(&journal->j_state_lock); 810 if (journal->j_running_transaction && 811 journal->j_running_transaction->t_tid == tid) 812 ret = 0; 813 if (journal->j_committing_transaction && 814 journal->j_committing_transaction->t_tid == tid) 815 ret = 0; 816 read_unlock(&journal->j_state_lock); 817 return ret; 818} 819EXPORT_SYMBOL(jbd2_transaction_committed); 820 821/* 822 * When this function returns the transaction corresponding to tid 823 * will be completed. If the transaction has currently running, start 824 * committing that transaction before waiting for it to complete. If 825 * the transaction id is stale, it is by definition already completed, 826 * so just return SUCCESS. 827 */ 828int jbd2_complete_transaction(journal_t *journal, tid_t tid) 829{ 830 int need_to_wait = 1; 831 832 read_lock(&journal->j_state_lock); 833 if (journal->j_running_transaction && 834 journal->j_running_transaction->t_tid == tid) { 835 if (journal->j_commit_request != tid) { 836 /* transaction not yet started, so request it */ 837 read_unlock(&journal->j_state_lock); 838 jbd2_log_start_commit(journal, tid); 839 goto wait_commit; 840 } 841 } else if (!(journal->j_committing_transaction && 842 journal->j_committing_transaction->t_tid == tid)) 843 need_to_wait = 0; 844 read_unlock(&journal->j_state_lock); 845 if (!need_to_wait) 846 return 0; 847wait_commit: 848 return jbd2_log_wait_commit(journal, tid); 849} 850EXPORT_SYMBOL(jbd2_complete_transaction); 851 852/* 853 * Log buffer allocation routines: 854 */ 855 856int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 857{ 858 unsigned long blocknr; 859 860 write_lock(&journal->j_state_lock); 861 J_ASSERT(journal->j_free > 1); 862 863 blocknr = journal->j_head; 864 journal->j_head++; 865 journal->j_free--; 866 if (journal->j_head == journal->j_last) 867 journal->j_head = journal->j_first; 868 write_unlock(&journal->j_state_lock); 869 return jbd2_journal_bmap(journal, blocknr, retp); 870} 871 872/* Map one fast commit buffer for use by the file system */ 873int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out) 874{ 875 unsigned long long pblock; 876 unsigned long blocknr; 877 int ret = 0; 878 struct buffer_head *bh; 879 int fc_off; 880 881 *bh_out = NULL; 882 883 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) { 884 fc_off = journal->j_fc_off; 885 blocknr = journal->j_fc_first + fc_off; 886 journal->j_fc_off++; 887 } else { 888 ret = -EINVAL; 889 } 890 891 if (ret) 892 return ret; 893 894 ret = jbd2_journal_bmap(journal, blocknr, &pblock); 895 if (ret) 896 return ret; 897 898 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize); 899 if (!bh) 900 return -ENOMEM; 901 902 903 journal->j_fc_wbuf[fc_off] = bh; 904 905 *bh_out = bh; 906 907 return 0; 908} 909EXPORT_SYMBOL(jbd2_fc_get_buf); 910 911/* 912 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 913 * for completion. 914 */ 915int jbd2_fc_wait_bufs(journal_t *journal, int num_blks) 916{ 917 struct buffer_head *bh; 918 int i, j_fc_off; 919 920 j_fc_off = journal->j_fc_off; 921 922 /* 923 * Wait in reverse order to minimize chances of us being woken up before 924 * all IOs have completed 925 */ 926 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) { 927 bh = journal->j_fc_wbuf[i]; 928 wait_on_buffer(bh); 929 /* 930 * Update j_fc_off so jbd2_fc_release_bufs can release remain 931 * buffer head. 932 */ 933 if (unlikely(!buffer_uptodate(bh))) { 934 journal->j_fc_off = i + 1; 935 return -EIO; 936 } 937 put_bh(bh); 938 journal->j_fc_wbuf[i] = NULL; 939 } 940 941 return 0; 942} 943EXPORT_SYMBOL(jbd2_fc_wait_bufs); 944 945/* 946 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 947 * for completion. 948 */ 949int jbd2_fc_release_bufs(journal_t *journal) 950{ 951 struct buffer_head *bh; 952 int i, j_fc_off; 953 954 j_fc_off = journal->j_fc_off; 955 956 /* 957 * Wait in reverse order to minimize chances of us being woken up before 958 * all IOs have completed 959 */ 960 for (i = j_fc_off - 1; i >= 0; i--) { 961 bh = journal->j_fc_wbuf[i]; 962 if (!bh) 963 break; 964 put_bh(bh); 965 journal->j_fc_wbuf[i] = NULL; 966 } 967 968 return 0; 969} 970EXPORT_SYMBOL(jbd2_fc_release_bufs); 971 972/* 973 * Conversion of logical to physical block numbers for the journal 974 * 975 * On external journals the journal blocks are identity-mapped, so 976 * this is a no-op. If needed, we can use j_blk_offset - everything is 977 * ready. 978 */ 979int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 980 unsigned long long *retp) 981{ 982 int err = 0; 983 unsigned long long ret; 984 sector_t block = 0; 985 986 if (journal->j_inode) { 987 block = blocknr; 988 ret = bmap(journal->j_inode, &block); 989 990 if (ret || !block) { 991 printk(KERN_ALERT "%s: journal block not found " 992 "at offset %lu on %s\n", 993 __func__, blocknr, journal->j_devname); 994 err = -EIO; 995 jbd2_journal_abort(journal, err); 996 } else { 997 *retp = block; 998 } 999 1000 } else { 1001 *retp = blocknr; /* +journal->j_blk_offset */ 1002 } 1003 return err; 1004} 1005 1006/* 1007 * We play buffer_head aliasing tricks to write data/metadata blocks to 1008 * the journal without copying their contents, but for journal 1009 * descriptor blocks we do need to generate bona fide buffers. 1010 * 1011 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 1012 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 1013 * But we don't bother doing that, so there will be coherency problems with 1014 * mmaps of blockdevs which hold live JBD-controlled filesystems. 1015 */ 1016struct buffer_head * 1017jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 1018{ 1019 journal_t *journal = transaction->t_journal; 1020 struct buffer_head *bh; 1021 unsigned long long blocknr; 1022 journal_header_t *header; 1023 int err; 1024 1025 err = jbd2_journal_next_log_block(journal, &blocknr); 1026 1027 if (err) 1028 return NULL; 1029 1030 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1031 if (!bh) 1032 return NULL; 1033 atomic_dec(&transaction->t_outstanding_credits); 1034 lock_buffer(bh); 1035 memset(bh->b_data, 0, journal->j_blocksize); 1036 header = (journal_header_t *)bh->b_data; 1037 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 1038 header->h_blocktype = cpu_to_be32(type); 1039 header->h_sequence = cpu_to_be32(transaction->t_tid); 1040 set_buffer_uptodate(bh); 1041 unlock_buffer(bh); 1042 BUFFER_TRACE(bh, "return this buffer"); 1043 return bh; 1044} 1045 1046void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 1047{ 1048 struct jbd2_journal_block_tail *tail; 1049 __u32 csum; 1050 1051 if (!jbd2_journal_has_csum_v2or3(j)) 1052 return; 1053 1054 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 1055 sizeof(struct jbd2_journal_block_tail)); 1056 tail->t_checksum = 0; 1057 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 1058 tail->t_checksum = cpu_to_be32(csum); 1059} 1060 1061/* 1062 * Return tid of the oldest transaction in the journal and block in the journal 1063 * where the transaction starts. 1064 * 1065 * If the journal is now empty, return which will be the next transaction ID 1066 * we will write and where will that transaction start. 1067 * 1068 * The return value is 0 if journal tail cannot be pushed any further, 1 if 1069 * it can. 1070 */ 1071int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 1072 unsigned long *block) 1073{ 1074 transaction_t *transaction; 1075 int ret; 1076 1077 read_lock(&journal->j_state_lock); 1078 spin_lock(&journal->j_list_lock); 1079 transaction = journal->j_checkpoint_transactions; 1080 if (transaction) { 1081 *tid = transaction->t_tid; 1082 *block = transaction->t_log_start; 1083 } else if ((transaction = journal->j_committing_transaction) != NULL) { 1084 *tid = transaction->t_tid; 1085 *block = transaction->t_log_start; 1086 } else if ((transaction = journal->j_running_transaction) != NULL) { 1087 *tid = transaction->t_tid; 1088 *block = journal->j_head; 1089 } else { 1090 *tid = journal->j_transaction_sequence; 1091 *block = journal->j_head; 1092 } 1093 ret = tid_gt(*tid, journal->j_tail_sequence); 1094 spin_unlock(&journal->j_list_lock); 1095 read_unlock(&journal->j_state_lock); 1096 1097 return ret; 1098} 1099 1100/* 1101 * Update information in journal structure and in on disk journal superblock 1102 * about log tail. This function does not check whether information passed in 1103 * really pushes log tail further. It's responsibility of the caller to make 1104 * sure provided log tail information is valid (e.g. by holding 1105 * j_checkpoint_mutex all the time between computing log tail and calling this 1106 * function as is the case with jbd2_cleanup_journal_tail()). 1107 * 1108 * Requires j_checkpoint_mutex 1109 */ 1110int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1111{ 1112 unsigned long freed; 1113 int ret; 1114 1115 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1116 1117 /* 1118 * We cannot afford for write to remain in drive's caches since as 1119 * soon as we update j_tail, next transaction can start reusing journal 1120 * space and if we lose sb update during power failure we'd replay 1121 * old transaction with possibly newly overwritten data. 1122 */ 1123 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, 1124 REQ_SYNC | REQ_FUA); 1125 if (ret) 1126 goto out; 1127 1128 write_lock(&journal->j_state_lock); 1129 freed = block - journal->j_tail; 1130 if (block < journal->j_tail) 1131 freed += journal->j_last - journal->j_first; 1132 1133 trace_jbd2_update_log_tail(journal, tid, block, freed); 1134 jbd_debug(1, 1135 "Cleaning journal tail from %u to %u (offset %lu), " 1136 "freeing %lu\n", 1137 journal->j_tail_sequence, tid, block, freed); 1138 1139 journal->j_free += freed; 1140 journal->j_tail_sequence = tid; 1141 journal->j_tail = block; 1142 write_unlock(&journal->j_state_lock); 1143 1144out: 1145 return ret; 1146} 1147 1148/* 1149 * This is a variation of __jbd2_update_log_tail which checks for validity of 1150 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 1151 * with other threads updating log tail. 1152 */ 1153void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1154{ 1155 mutex_lock_io(&journal->j_checkpoint_mutex); 1156 if (tid_gt(tid, journal->j_tail_sequence)) 1157 __jbd2_update_log_tail(journal, tid, block); 1158 mutex_unlock(&journal->j_checkpoint_mutex); 1159} 1160 1161struct jbd2_stats_proc_session { 1162 journal_t *journal; 1163 struct transaction_stats_s *stats; 1164 int start; 1165 int max; 1166}; 1167 1168static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 1169{ 1170 return *pos ? NULL : SEQ_START_TOKEN; 1171} 1172 1173static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 1174{ 1175 (*pos)++; 1176 return NULL; 1177} 1178 1179static int jbd2_seq_info_show(struct seq_file *seq, void *v) 1180{ 1181 struct jbd2_stats_proc_session *s = seq->private; 1182 1183 if (v != SEQ_START_TOKEN) 1184 return 0; 1185 seq_printf(seq, "%lu transactions (%lu requested), " 1186 "each up to %u blocks\n", 1187 s->stats->ts_tid, s->stats->ts_requested, 1188 s->journal->j_max_transaction_buffers); 1189 if (s->stats->ts_tid == 0) 1190 return 0; 1191 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1192 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1193 seq_printf(seq, " %ums request delay\n", 1194 (s->stats->ts_requested == 0) ? 0 : 1195 jiffies_to_msecs(s->stats->run.rs_request_delay / 1196 s->stats->ts_requested)); 1197 seq_printf(seq, " %ums running transaction\n", 1198 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1199 seq_printf(seq, " %ums transaction was being locked\n", 1200 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1201 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1202 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1203 seq_printf(seq, " %ums logging transaction\n", 1204 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1205 seq_printf(seq, " %lluus average transaction commit time\n", 1206 div_u64(s->journal->j_average_commit_time, 1000)); 1207 seq_printf(seq, " %lu handles per transaction\n", 1208 s->stats->run.rs_handle_count / s->stats->ts_tid); 1209 seq_printf(seq, " %lu blocks per transaction\n", 1210 s->stats->run.rs_blocks / s->stats->ts_tid); 1211 seq_printf(seq, " %lu logged blocks per transaction\n", 1212 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1213 return 0; 1214} 1215 1216static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1217{ 1218} 1219 1220static const struct seq_operations jbd2_seq_info_ops = { 1221 .start = jbd2_seq_info_start, 1222 .next = jbd2_seq_info_next, 1223 .stop = jbd2_seq_info_stop, 1224 .show = jbd2_seq_info_show, 1225}; 1226 1227static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1228{ 1229 journal_t *journal = PDE_DATA(inode); 1230 struct jbd2_stats_proc_session *s; 1231 int rc, size; 1232 1233 s = kmalloc(sizeof(*s), GFP_KERNEL); 1234 if (s == NULL) 1235 return -ENOMEM; 1236 size = sizeof(struct transaction_stats_s); 1237 s->stats = kmalloc(size, GFP_KERNEL); 1238 if (s->stats == NULL) { 1239 kfree(s); 1240 return -ENOMEM; 1241 } 1242 spin_lock(&journal->j_history_lock); 1243 memcpy(s->stats, &journal->j_stats, size); 1244 s->journal = journal; 1245 spin_unlock(&journal->j_history_lock); 1246 1247 rc = seq_open(file, &jbd2_seq_info_ops); 1248 if (rc == 0) { 1249 struct seq_file *m = file->private_data; 1250 m->private = s; 1251 } else { 1252 kfree(s->stats); 1253 kfree(s); 1254 } 1255 return rc; 1256 1257} 1258 1259static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1260{ 1261 struct seq_file *seq = file->private_data; 1262 struct jbd2_stats_proc_session *s = seq->private; 1263 kfree(s->stats); 1264 kfree(s); 1265 return seq_release(inode, file); 1266} 1267 1268static const struct proc_ops jbd2_info_proc_ops = { 1269 .proc_open = jbd2_seq_info_open, 1270 .proc_read = seq_read, 1271 .proc_lseek = seq_lseek, 1272 .proc_release = jbd2_seq_info_release, 1273}; 1274 1275static struct proc_dir_entry *proc_jbd2_stats; 1276 1277static void jbd2_stats_proc_init(journal_t *journal) 1278{ 1279 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1280 if (journal->j_proc_entry) { 1281 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1282 &jbd2_info_proc_ops, journal); 1283 } 1284} 1285 1286static void jbd2_stats_proc_exit(journal_t *journal) 1287{ 1288 remove_proc_entry("info", journal->j_proc_entry); 1289 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1290} 1291 1292/* Minimum size of descriptor tag */ 1293static int jbd2_min_tag_size(void) 1294{ 1295 /* 1296 * Tag with 32-bit block numbers does not use last four bytes of the 1297 * structure 1298 */ 1299 return sizeof(journal_block_tag_t) - 4; 1300} 1301 1302/** 1303 * jbd2_journal_shrink_scan() 1304 * 1305 * Scan the checkpointed buffer on the checkpoint list and release the 1306 * journal_head. 1307 */ 1308static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink, 1309 struct shrink_control *sc) 1310{ 1311 journal_t *journal = container_of(shrink, journal_t, j_shrinker); 1312 unsigned long nr_to_scan = sc->nr_to_scan; 1313 unsigned long nr_shrunk; 1314 unsigned long count; 1315 1316 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1317 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count); 1318 1319 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan); 1320 1321 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1322 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count); 1323 1324 return nr_shrunk; 1325} 1326 1327/** 1328 * jbd2_journal_shrink_count() 1329 * 1330 * Count the number of checkpoint buffers on the checkpoint list. 1331 */ 1332static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink, 1333 struct shrink_control *sc) 1334{ 1335 journal_t *journal = container_of(shrink, journal_t, j_shrinker); 1336 unsigned long count; 1337 1338 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1339 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count); 1340 1341 return count; 1342} 1343 1344/* 1345 * Management for journal control blocks: functions to create and 1346 * destroy journal_t structures, and to initialise and read existing 1347 * journal blocks from disk. */ 1348 1349/* First: create and setup a journal_t object in memory. We initialise 1350 * very few fields yet: that has to wait until we have created the 1351 * journal structures from from scratch, or loaded them from disk. */ 1352 1353static journal_t *journal_init_common(struct block_device *bdev, 1354 struct block_device *fs_dev, 1355 unsigned long long start, int len, int blocksize) 1356{ 1357 static struct lock_class_key jbd2_trans_commit_key; 1358 journal_t *journal; 1359 int err; 1360 struct buffer_head *bh; 1361 int n; 1362 1363 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1364 if (!journal) 1365 return NULL; 1366 1367 init_waitqueue_head(&journal->j_wait_transaction_locked); 1368 init_waitqueue_head(&journal->j_wait_done_commit); 1369 init_waitqueue_head(&journal->j_wait_commit); 1370 init_waitqueue_head(&journal->j_wait_updates); 1371 init_waitqueue_head(&journal->j_wait_reserved); 1372 init_waitqueue_head(&journal->j_fc_wait); 1373 mutex_init(&journal->j_abort_mutex); 1374 mutex_init(&journal->j_barrier); 1375 mutex_init(&journal->j_checkpoint_mutex); 1376 spin_lock_init(&journal->j_revoke_lock); 1377 spin_lock_init(&journal->j_list_lock); 1378 rwlock_init(&journal->j_state_lock); 1379 1380 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1381 journal->j_min_batch_time = 0; 1382 journal->j_max_batch_time = 15000; /* 15ms */ 1383 atomic_set(&journal->j_reserved_credits, 0); 1384 1385 /* The journal is marked for error until we succeed with recovery! */ 1386 journal->j_flags = JBD2_ABORT; 1387 1388 /* Set up a default-sized revoke table for the new mount. */ 1389 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1390 if (err) 1391 goto err_cleanup; 1392 1393 spin_lock_init(&journal->j_history_lock); 1394 1395 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1396 &jbd2_trans_commit_key, 0); 1397 1398 /* journal descriptor can store up to n blocks -bzzz */ 1399 journal->j_blocksize = blocksize; 1400 journal->j_dev = bdev; 1401 journal->j_fs_dev = fs_dev; 1402 journal->j_blk_offset = start; 1403 journal->j_total_len = len; 1404 /* We need enough buffers to write out full descriptor block. */ 1405 n = journal->j_blocksize / jbd2_min_tag_size(); 1406 journal->j_wbufsize = n; 1407 journal->j_fc_wbuf = NULL; 1408 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1409 GFP_KERNEL); 1410 if (!journal->j_wbuf) 1411 goto err_cleanup; 1412 1413 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1414 if (!bh) { 1415 pr_err("%s: Cannot get buffer for journal superblock\n", 1416 __func__); 1417 goto err_cleanup; 1418 } 1419 journal->j_sb_buffer = bh; 1420 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1421 1422 journal->j_shrink_transaction = NULL; 1423 journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan; 1424 journal->j_shrinker.count_objects = jbd2_journal_shrink_count; 1425 journal->j_shrinker.seeks = DEFAULT_SEEKS; 1426 journal->j_shrinker.batch = journal->j_max_transaction_buffers; 1427 1428 if (percpu_counter_init(&journal->j_checkpoint_jh_count, 0, GFP_KERNEL)) 1429 goto err_cleanup; 1430 1431 if (register_shrinker(&journal->j_shrinker)) { 1432 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 1433 goto err_cleanup; 1434 } 1435 return journal; 1436 1437err_cleanup: 1438 brelse(journal->j_sb_buffer); 1439 kfree(journal->j_wbuf); 1440 jbd2_journal_destroy_revoke(journal); 1441 kfree(journal); 1442 return NULL; 1443} 1444 1445/* jbd2_journal_init_dev and jbd2_journal_init_inode: 1446 * 1447 * Create a journal structure assigned some fixed set of disk blocks to 1448 * the journal. We don't actually touch those disk blocks yet, but we 1449 * need to set up all of the mapping information to tell the journaling 1450 * system where the journal blocks are. 1451 * 1452 */ 1453 1454/** 1455 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1456 * @bdev: Block device on which to create the journal 1457 * @fs_dev: Device which hold journalled filesystem for this journal. 1458 * @start: Block nr Start of journal. 1459 * @len: Length of the journal in blocks. 1460 * @blocksize: blocksize of journalling device 1461 * 1462 * Returns: a newly created journal_t * 1463 * 1464 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1465 * range of blocks on an arbitrary block device. 1466 * 1467 */ 1468journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1469 struct block_device *fs_dev, 1470 unsigned long long start, int len, int blocksize) 1471{ 1472 journal_t *journal; 1473 1474 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1475 if (!journal) 1476 return NULL; 1477 1478 bdevname(journal->j_dev, journal->j_devname); 1479 strreplace(journal->j_devname, '/', '!'); 1480 jbd2_stats_proc_init(journal); 1481 1482 return journal; 1483} 1484 1485/** 1486 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1487 * @inode: An inode to create the journal in 1488 * 1489 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1490 * the journal. The inode must exist already, must support bmap() and 1491 * must have all data blocks preallocated. 1492 */ 1493journal_t *jbd2_journal_init_inode(struct inode *inode) 1494{ 1495 journal_t *journal; 1496 sector_t blocknr; 1497 char *p; 1498 int err = 0; 1499 1500 blocknr = 0; 1501 err = bmap(inode, &blocknr); 1502 1503 if (err || !blocknr) { 1504 pr_err("%s: Cannot locate journal superblock\n", 1505 __func__); 1506 return NULL; 1507 } 1508 1509 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1510 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1511 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1512 1513 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1514 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1515 inode->i_sb->s_blocksize); 1516 if (!journal) 1517 return NULL; 1518 1519 journal->j_inode = inode; 1520 bdevname(journal->j_dev, journal->j_devname); 1521 p = strreplace(journal->j_devname, '/', '!'); 1522 sprintf(p, "-%lu", journal->j_inode->i_ino); 1523 jbd2_stats_proc_init(journal); 1524 1525 return journal; 1526} 1527 1528/* 1529 * If the journal init or create aborts, we need to mark the journal 1530 * superblock as being NULL to prevent the journal destroy from writing 1531 * back a bogus superblock. 1532 */ 1533static void journal_fail_superblock(journal_t *journal) 1534{ 1535 struct buffer_head *bh = journal->j_sb_buffer; 1536 brelse(bh); 1537 journal->j_sb_buffer = NULL; 1538} 1539 1540/* 1541 * Given a journal_t structure, initialise the various fields for 1542 * startup of a new journaling session. We use this both when creating 1543 * a journal, and after recovering an old journal to reset it for 1544 * subsequent use. 1545 */ 1546 1547static int journal_reset(journal_t *journal) 1548{ 1549 journal_superblock_t *sb = journal->j_superblock; 1550 unsigned long long first, last; 1551 1552 first = be32_to_cpu(sb->s_first); 1553 last = be32_to_cpu(sb->s_maxlen); 1554 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1555 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1556 first, last); 1557 journal_fail_superblock(journal); 1558 return -EINVAL; 1559 } 1560 1561 journal->j_first = first; 1562 journal->j_last = last; 1563 1564 journal->j_head = journal->j_first; 1565 journal->j_tail = journal->j_first; 1566 journal->j_free = journal->j_last - journal->j_first; 1567 1568 journal->j_tail_sequence = journal->j_transaction_sequence; 1569 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1570 journal->j_commit_request = journal->j_commit_sequence; 1571 1572 journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal); 1573 1574 /* 1575 * Now that journal recovery is done, turn fast commits off here. This 1576 * way, if fast commit was enabled before the crash but if now FS has 1577 * disabled it, we don't enable fast commits. 1578 */ 1579 jbd2_clear_feature_fast_commit(journal); 1580 1581 /* 1582 * As a special case, if the on-disk copy is already marked as needing 1583 * no recovery (s_start == 0), then we can safely defer the superblock 1584 * update until the next commit by setting JBD2_FLUSHED. This avoids 1585 * attempting a write to a potential-readonly device. 1586 */ 1587 if (sb->s_start == 0) { 1588 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1589 "(start %ld, seq %u, errno %d)\n", 1590 journal->j_tail, journal->j_tail_sequence, 1591 journal->j_errno); 1592 journal->j_flags |= JBD2_FLUSHED; 1593 } else { 1594 /* Lock here to make assertions happy... */ 1595 mutex_lock_io(&journal->j_checkpoint_mutex); 1596 /* 1597 * Update log tail information. We use REQ_FUA since new 1598 * transaction will start reusing journal space and so we 1599 * must make sure information about current log tail is on 1600 * disk before that. 1601 */ 1602 jbd2_journal_update_sb_log_tail(journal, 1603 journal->j_tail_sequence, 1604 journal->j_tail, 1605 REQ_SYNC | REQ_FUA); 1606 mutex_unlock(&journal->j_checkpoint_mutex); 1607 } 1608 return jbd2_journal_start_thread(journal); 1609} 1610 1611/* 1612 * This function expects that the caller will have locked the journal 1613 * buffer head, and will return with it unlocked 1614 */ 1615static int jbd2_write_superblock(journal_t *journal, int write_flags) 1616{ 1617 struct buffer_head *bh = journal->j_sb_buffer; 1618 journal_superblock_t *sb = journal->j_superblock; 1619 int ret; 1620 1621 /* Buffer got discarded which means block device got invalidated */ 1622 if (!buffer_mapped(bh)) { 1623 unlock_buffer(bh); 1624 return -EIO; 1625 } 1626 1627 if (!(journal->j_flags & JBD2_BARRIER)) 1628 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1629 1630 trace_jbd2_write_superblock(journal, write_flags); 1631 1632 if (buffer_write_io_error(bh)) { 1633 /* 1634 * Oh, dear. A previous attempt to write the journal 1635 * superblock failed. This could happen because the 1636 * USB device was yanked out. Or it could happen to 1637 * be a transient write error and maybe the block will 1638 * be remapped. Nothing we can do but to retry the 1639 * write and hope for the best. 1640 */ 1641 printk(KERN_ERR "JBD2: previous I/O error detected " 1642 "for journal superblock update for %s.\n", 1643 journal->j_devname); 1644 clear_buffer_write_io_error(bh); 1645 set_buffer_uptodate(bh); 1646 } 1647 if (jbd2_journal_has_csum_v2or3(journal)) 1648 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1649 get_bh(bh); 1650 bh->b_end_io = end_buffer_write_sync; 1651 ret = submit_bh(REQ_OP_WRITE, write_flags, bh); 1652 wait_on_buffer(bh); 1653 if (buffer_write_io_error(bh)) { 1654 clear_buffer_write_io_error(bh); 1655 set_buffer_uptodate(bh); 1656 ret = -EIO; 1657 } 1658 if (ret) { 1659 printk(KERN_ERR "JBD2: Error %d detected when updating " 1660 "journal superblock for %s.\n", ret, 1661 journal->j_devname); 1662 if (!is_journal_aborted(journal)) 1663 jbd2_journal_abort(journal, ret); 1664 } 1665 1666 return ret; 1667} 1668 1669/** 1670 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1671 * @journal: The journal to update. 1672 * @tail_tid: TID of the new transaction at the tail of the log 1673 * @tail_block: The first block of the transaction at the tail of the log 1674 * @write_op: With which operation should we write the journal sb 1675 * 1676 * Update a journal's superblock information about log tail and write it to 1677 * disk, waiting for the IO to complete. 1678 */ 1679int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1680 unsigned long tail_block, int write_op) 1681{ 1682 journal_superblock_t *sb = journal->j_superblock; 1683 int ret; 1684 1685 if (is_journal_aborted(journal)) 1686 return -EIO; 1687 if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) { 1688 jbd2_journal_abort(journal, -EIO); 1689 return -EIO; 1690 } 1691 1692 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1693 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1694 tail_block, tail_tid); 1695 1696 lock_buffer(journal->j_sb_buffer); 1697 sb->s_sequence = cpu_to_be32(tail_tid); 1698 sb->s_start = cpu_to_be32(tail_block); 1699 1700 ret = jbd2_write_superblock(journal, write_op); 1701 if (ret) 1702 goto out; 1703 1704 /* Log is no longer empty */ 1705 write_lock(&journal->j_state_lock); 1706 WARN_ON(!sb->s_sequence); 1707 journal->j_flags &= ~JBD2_FLUSHED; 1708 write_unlock(&journal->j_state_lock); 1709 1710out: 1711 return ret; 1712} 1713 1714/** 1715 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1716 * @journal: The journal to update. 1717 * @write_op: With which operation should we write the journal sb 1718 * 1719 * Update a journal's dynamic superblock fields to show that journal is empty. 1720 * Write updated superblock to disk waiting for IO to complete. 1721 */ 1722static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1723{ 1724 journal_superblock_t *sb = journal->j_superblock; 1725 bool had_fast_commit = false; 1726 1727 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1728 lock_buffer(journal->j_sb_buffer); 1729 if (sb->s_start == 0) { /* Is it already empty? */ 1730 unlock_buffer(journal->j_sb_buffer); 1731 return; 1732 } 1733 1734 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1735 journal->j_tail_sequence); 1736 1737 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1738 sb->s_start = cpu_to_be32(0); 1739 if (jbd2_has_feature_fast_commit(journal)) { 1740 /* 1741 * When journal is clean, no need to commit fast commit flag and 1742 * make file system incompatible with older kernels. 1743 */ 1744 jbd2_clear_feature_fast_commit(journal); 1745 had_fast_commit = true; 1746 } 1747 1748 jbd2_write_superblock(journal, write_op); 1749 1750 if (had_fast_commit) 1751 jbd2_set_feature_fast_commit(journal); 1752 1753 /* Log is no longer empty */ 1754 write_lock(&journal->j_state_lock); 1755 journal->j_flags |= JBD2_FLUSHED; 1756 write_unlock(&journal->j_state_lock); 1757} 1758 1759 1760/** 1761 * jbd2_journal_update_sb_errno() - Update error in the journal. 1762 * @journal: The journal to update. 1763 * 1764 * Update a journal's errno. Write updated superblock to disk waiting for IO 1765 * to complete. 1766 */ 1767void jbd2_journal_update_sb_errno(journal_t *journal) 1768{ 1769 journal_superblock_t *sb = journal->j_superblock; 1770 int errcode; 1771 1772 lock_buffer(journal->j_sb_buffer); 1773 errcode = journal->j_errno; 1774 if (errcode == -ESHUTDOWN) 1775 errcode = 0; 1776 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 1777 sb->s_errno = cpu_to_be32(errcode); 1778 1779 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA); 1780} 1781EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1782 1783static int journal_revoke_records_per_block(journal_t *journal) 1784{ 1785 int record_size; 1786 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t); 1787 1788 if (jbd2_has_feature_64bit(journal)) 1789 record_size = 8; 1790 else 1791 record_size = 4; 1792 1793 if (jbd2_journal_has_csum_v2or3(journal)) 1794 space -= sizeof(struct jbd2_journal_block_tail); 1795 return space / record_size; 1796} 1797 1798/* 1799 * Read the superblock for a given journal, performing initial 1800 * validation of the format. 1801 */ 1802static int journal_get_superblock(journal_t *journal) 1803{ 1804 struct buffer_head *bh; 1805 journal_superblock_t *sb; 1806 int err = -EIO; 1807 1808 bh = journal->j_sb_buffer; 1809 1810 J_ASSERT(bh != NULL); 1811 if (!buffer_uptodate(bh)) { 1812 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1813 wait_on_buffer(bh); 1814 if (!buffer_uptodate(bh)) { 1815 printk(KERN_ERR 1816 "JBD2: IO error reading journal superblock\n"); 1817 goto out; 1818 } 1819 } 1820 1821 if (buffer_verified(bh)) 1822 return 0; 1823 1824 sb = journal->j_superblock; 1825 1826 err = -EINVAL; 1827 1828 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1829 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1830 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1831 goto out; 1832 } 1833 1834 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1835 case JBD2_SUPERBLOCK_V1: 1836 journal->j_format_version = 1; 1837 break; 1838 case JBD2_SUPERBLOCK_V2: 1839 journal->j_format_version = 2; 1840 break; 1841 default: 1842 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1843 goto out; 1844 } 1845 1846 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len) 1847 journal->j_total_len = be32_to_cpu(sb->s_maxlen); 1848 else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) { 1849 printk(KERN_WARNING "JBD2: journal file too short\n"); 1850 goto out; 1851 } 1852 1853 if (be32_to_cpu(sb->s_first) == 0 || 1854 be32_to_cpu(sb->s_first) >= journal->j_total_len) { 1855 printk(KERN_WARNING 1856 "JBD2: Invalid start block of journal: %u\n", 1857 be32_to_cpu(sb->s_first)); 1858 goto out; 1859 } 1860 1861 if (jbd2_has_feature_csum2(journal) && 1862 jbd2_has_feature_csum3(journal)) { 1863 /* Can't have checksum v2 and v3 at the same time! */ 1864 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1865 "at the same time!\n"); 1866 goto out; 1867 } 1868 1869 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1870 jbd2_has_feature_checksum(journal)) { 1871 /* Can't have checksum v1 and v2 on at the same time! */ 1872 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1873 "at the same time!\n"); 1874 goto out; 1875 } 1876 1877 if (!jbd2_verify_csum_type(journal, sb)) { 1878 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1879 goto out; 1880 } 1881 1882 /* Load the checksum driver */ 1883 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1884 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1885 if (IS_ERR(journal->j_chksum_driver)) { 1886 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1887 err = PTR_ERR(journal->j_chksum_driver); 1888 journal->j_chksum_driver = NULL; 1889 goto out; 1890 } 1891 } 1892 1893 if (jbd2_journal_has_csum_v2or3(journal)) { 1894 /* Check superblock checksum */ 1895 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1896 printk(KERN_ERR "JBD2: journal checksum error\n"); 1897 err = -EFSBADCRC; 1898 goto out; 1899 } 1900 1901 /* Precompute checksum seed for all metadata */ 1902 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1903 sizeof(sb->s_uuid)); 1904 } 1905 1906 journal->j_revoke_records_per_block = 1907 journal_revoke_records_per_block(journal); 1908 set_buffer_verified(bh); 1909 1910 return 0; 1911 1912out: 1913 journal_fail_superblock(journal); 1914 return err; 1915} 1916 1917/* 1918 * Load the on-disk journal superblock and read the key fields into the 1919 * journal_t. 1920 */ 1921 1922static int load_superblock(journal_t *journal) 1923{ 1924 int err; 1925 journal_superblock_t *sb; 1926 int num_fc_blocks; 1927 1928 err = journal_get_superblock(journal); 1929 if (err) 1930 return err; 1931 1932 sb = journal->j_superblock; 1933 1934 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1935 journal->j_tail = be32_to_cpu(sb->s_start); 1936 journal->j_first = be32_to_cpu(sb->s_first); 1937 journal->j_errno = be32_to_cpu(sb->s_errno); 1938 journal->j_last = be32_to_cpu(sb->s_maxlen); 1939 1940 if (jbd2_has_feature_fast_commit(journal)) { 1941 journal->j_fc_last = be32_to_cpu(sb->s_maxlen); 1942 num_fc_blocks = be32_to_cpu(sb->s_num_fc_blks); 1943 if (!num_fc_blocks) 1944 num_fc_blocks = JBD2_MIN_FC_BLOCKS; 1945 if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS) 1946 journal->j_last = journal->j_fc_last - num_fc_blocks; 1947 journal->j_fc_first = journal->j_last + 1; 1948 journal->j_fc_off = 0; 1949 } 1950 1951 return 0; 1952} 1953 1954 1955/** 1956 * jbd2_journal_load() - Read journal from disk. 1957 * @journal: Journal to act on. 1958 * 1959 * Given a journal_t structure which tells us which disk blocks contain 1960 * a journal, read the journal from disk to initialise the in-memory 1961 * structures. 1962 */ 1963int jbd2_journal_load(journal_t *journal) 1964{ 1965 int err; 1966 journal_superblock_t *sb; 1967 1968 err = load_superblock(journal); 1969 if (err) 1970 return err; 1971 1972 sb = journal->j_superblock; 1973 /* If this is a V2 superblock, then we have to check the 1974 * features flags on it. */ 1975 1976 if (journal->j_format_version >= 2) { 1977 if ((sb->s_feature_ro_compat & 1978 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1979 (sb->s_feature_incompat & 1980 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1981 printk(KERN_WARNING 1982 "JBD2: Unrecognised features on journal\n"); 1983 return -EINVAL; 1984 } 1985 } 1986 1987 /* 1988 * Create a slab for this blocksize 1989 */ 1990 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1991 if (err) 1992 return err; 1993 1994 /* Let the recovery code check whether it needs to recover any 1995 * data from the journal. */ 1996 if (jbd2_journal_recover(journal)) 1997 goto recovery_error; 1998 1999 if (journal->j_failed_commit) { 2000 printk(KERN_ERR "JBD2: journal transaction %u on %s " 2001 "is corrupt.\n", journal->j_failed_commit, 2002 journal->j_devname); 2003 return -EFSCORRUPTED; 2004 } 2005 /* 2006 * clear JBD2_ABORT flag initialized in journal_init_common 2007 * here to update log tail information with the newest seq. 2008 */ 2009 journal->j_flags &= ~JBD2_ABORT; 2010 2011 /* OK, we've finished with the dynamic journal bits: 2012 * reinitialise the dynamic contents of the superblock in memory 2013 * and reset them on disk. */ 2014 if (journal_reset(journal)) 2015 goto recovery_error; 2016 2017 journal->j_flags |= JBD2_LOADED; 2018 return 0; 2019 2020recovery_error: 2021 printk(KERN_WARNING "JBD2: recovery failed\n"); 2022 return -EIO; 2023} 2024 2025/** 2026 * jbd2_journal_destroy() - Release a journal_t structure. 2027 * @journal: Journal to act on. 2028 * 2029 * Release a journal_t structure once it is no longer in use by the 2030 * journaled object. 2031 * Return <0 if we couldn't clean up the journal. 2032 */ 2033int jbd2_journal_destroy(journal_t *journal) 2034{ 2035 int err = 0; 2036 2037 /* Wait for the commit thread to wake up and die. */ 2038 journal_kill_thread(journal); 2039 2040 /* Force a final log commit */ 2041 if (journal->j_running_transaction) 2042 jbd2_journal_commit_transaction(journal); 2043 2044 /* Force any old transactions to disk */ 2045 2046 /* Totally anal locking here... */ 2047 spin_lock(&journal->j_list_lock); 2048 while (journal->j_checkpoint_transactions != NULL) { 2049 spin_unlock(&journal->j_list_lock); 2050 mutex_lock_io(&journal->j_checkpoint_mutex); 2051 err = jbd2_log_do_checkpoint(journal); 2052 mutex_unlock(&journal->j_checkpoint_mutex); 2053 /* 2054 * If checkpointing failed, just free the buffers to avoid 2055 * looping forever 2056 */ 2057 if (err) { 2058 jbd2_journal_destroy_checkpoint(journal); 2059 spin_lock(&journal->j_list_lock); 2060 break; 2061 } 2062 spin_lock(&journal->j_list_lock); 2063 } 2064 2065 J_ASSERT(journal->j_running_transaction == NULL); 2066 J_ASSERT(journal->j_committing_transaction == NULL); 2067 J_ASSERT(journal->j_checkpoint_transactions == NULL); 2068 spin_unlock(&journal->j_list_lock); 2069 2070 /* 2071 * OK, all checkpoint transactions have been checked, now check the 2072 * write out io error flag and abort the journal if some buffer failed 2073 * to write back to the original location, otherwise the filesystem 2074 * may become inconsistent. 2075 */ 2076 if (!is_journal_aborted(journal) && 2077 test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) 2078 jbd2_journal_abort(journal, -EIO); 2079 2080 if (journal->j_sb_buffer) { 2081 if (!is_journal_aborted(journal)) { 2082 mutex_lock_io(&journal->j_checkpoint_mutex); 2083 2084 write_lock(&journal->j_state_lock); 2085 journal->j_tail_sequence = 2086 ++journal->j_transaction_sequence; 2087 write_unlock(&journal->j_state_lock); 2088 2089 jbd2_mark_journal_empty(journal, 2090 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2091 mutex_unlock(&journal->j_checkpoint_mutex); 2092 } else 2093 err = -EIO; 2094 brelse(journal->j_sb_buffer); 2095 } 2096 2097 if (journal->j_shrinker.flags & SHRINKER_REGISTERED) { 2098 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 2099 unregister_shrinker(&journal->j_shrinker); 2100 } 2101 if (journal->j_proc_entry) 2102 jbd2_stats_proc_exit(journal); 2103 iput(journal->j_inode); 2104 if (journal->j_revoke) 2105 jbd2_journal_destroy_revoke(journal); 2106 if (journal->j_chksum_driver) 2107 crypto_free_shash(journal->j_chksum_driver); 2108 kfree(journal->j_fc_wbuf); 2109 kfree(journal->j_wbuf); 2110 kfree(journal); 2111 2112 return err; 2113} 2114 2115 2116/** 2117 * jbd2_journal_check_used_features() - Check if features specified are used. 2118 * @journal: Journal to check. 2119 * @compat: bitmask of compatible features 2120 * @ro: bitmask of features that force read-only mount 2121 * @incompat: bitmask of incompatible features 2122 * 2123 * Check whether the journal uses all of a given set of 2124 * features. Return true (non-zero) if it does. 2125 **/ 2126 2127int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat, 2128 unsigned long ro, unsigned long incompat) 2129{ 2130 journal_superblock_t *sb; 2131 2132 if (!compat && !ro && !incompat) 2133 return 1; 2134 /* Load journal superblock if it is not loaded yet. */ 2135 if (journal->j_format_version == 0 && 2136 journal_get_superblock(journal) != 0) 2137 return 0; 2138 if (journal->j_format_version == 1) 2139 return 0; 2140 2141 sb = journal->j_superblock; 2142 2143 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 2144 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 2145 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 2146 return 1; 2147 2148 return 0; 2149} 2150 2151/** 2152 * jbd2_journal_check_available_features() - Check feature set in journalling layer 2153 * @journal: Journal to check. 2154 * @compat: bitmask of compatible features 2155 * @ro: bitmask of features that force read-only mount 2156 * @incompat: bitmask of incompatible features 2157 * 2158 * Check whether the journaling code supports the use of 2159 * all of a given set of features on this journal. Return true 2160 * (non-zero) if it can. */ 2161 2162int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat, 2163 unsigned long ro, unsigned long incompat) 2164{ 2165 if (!compat && !ro && !incompat) 2166 return 1; 2167 2168 /* We can support any known requested features iff the 2169 * superblock is in version 2. Otherwise we fail to support any 2170 * extended sb features. */ 2171 2172 if (journal->j_format_version != 2) 2173 return 0; 2174 2175 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 2176 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 2177 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 2178 return 1; 2179 2180 return 0; 2181} 2182 2183static int 2184jbd2_journal_initialize_fast_commit(journal_t *journal) 2185{ 2186 journal_superblock_t *sb = journal->j_superblock; 2187 unsigned long long num_fc_blks; 2188 2189 num_fc_blks = be32_to_cpu(sb->s_num_fc_blks); 2190 if (num_fc_blks == 0) 2191 num_fc_blks = JBD2_MIN_FC_BLOCKS; 2192 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS) 2193 return -ENOSPC; 2194 2195 /* Are we called twice? */ 2196 WARN_ON(journal->j_fc_wbuf != NULL); 2197 journal->j_fc_wbuf = kmalloc_array(num_fc_blks, 2198 sizeof(struct buffer_head *), GFP_KERNEL); 2199 if (!journal->j_fc_wbuf) 2200 return -ENOMEM; 2201 2202 journal->j_fc_wbufsize = num_fc_blks; 2203 journal->j_fc_last = journal->j_last; 2204 journal->j_last = journal->j_fc_last - num_fc_blks; 2205 journal->j_fc_first = journal->j_last + 1; 2206 journal->j_fc_off = 0; 2207 journal->j_free = journal->j_last - journal->j_first; 2208 journal->j_max_transaction_buffers = 2209 jbd2_journal_get_max_txn_bufs(journal); 2210 2211 return 0; 2212} 2213 2214/** 2215 * jbd2_journal_set_features() - Mark a given journal feature in the superblock 2216 * @journal: Journal to act on. 2217 * @compat: bitmask of compatible features 2218 * @ro: bitmask of features that force read-only mount 2219 * @incompat: bitmask of incompatible features 2220 * 2221 * Mark a given journal feature as present on the 2222 * superblock. Returns true if the requested features could be set. 2223 * 2224 */ 2225 2226int jbd2_journal_set_features(journal_t *journal, unsigned long compat, 2227 unsigned long ro, unsigned long incompat) 2228{ 2229#define INCOMPAT_FEATURE_ON(f) \ 2230 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 2231#define COMPAT_FEATURE_ON(f) \ 2232 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 2233 journal_superblock_t *sb; 2234 2235 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 2236 return 1; 2237 2238 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 2239 return 0; 2240 2241 /* If enabling v2 checksums, turn on v3 instead */ 2242 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 2243 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 2244 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 2245 } 2246 2247 /* Asking for checksumming v3 and v1? Only give them v3. */ 2248 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 2249 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 2250 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 2251 2252 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 2253 compat, ro, incompat); 2254 2255 sb = journal->j_superblock; 2256 2257 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) { 2258 if (jbd2_journal_initialize_fast_commit(journal)) { 2259 pr_err("JBD2: Cannot enable fast commits.\n"); 2260 return 0; 2261 } 2262 } 2263 2264 /* Load the checksum driver if necessary */ 2265 if ((journal->j_chksum_driver == NULL) && 2266 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2267 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 2268 if (IS_ERR(journal->j_chksum_driver)) { 2269 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 2270 journal->j_chksum_driver = NULL; 2271 return 0; 2272 } 2273 /* Precompute checksum seed for all metadata */ 2274 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 2275 sizeof(sb->s_uuid)); 2276 } 2277 2278 lock_buffer(journal->j_sb_buffer); 2279 2280 /* If enabling v3 checksums, update superblock */ 2281 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2282 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 2283 sb->s_feature_compat &= 2284 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 2285 } 2286 2287 /* If enabling v1 checksums, downgrade superblock */ 2288 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 2289 sb->s_feature_incompat &= 2290 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 2291 JBD2_FEATURE_INCOMPAT_CSUM_V3); 2292 2293 sb->s_feature_compat |= cpu_to_be32(compat); 2294 sb->s_feature_ro_compat |= cpu_to_be32(ro); 2295 sb->s_feature_incompat |= cpu_to_be32(incompat); 2296 unlock_buffer(journal->j_sb_buffer); 2297 journal->j_revoke_records_per_block = 2298 journal_revoke_records_per_block(journal); 2299 2300 return 1; 2301#undef COMPAT_FEATURE_ON 2302#undef INCOMPAT_FEATURE_ON 2303} 2304 2305/* 2306 * jbd2_journal_clear_features() - Clear a given journal feature in the 2307 * superblock 2308 * @journal: Journal to act on. 2309 * @compat: bitmask of compatible features 2310 * @ro: bitmask of features that force read-only mount 2311 * @incompat: bitmask of incompatible features 2312 * 2313 * Clear a given journal feature as present on the 2314 * superblock. 2315 */ 2316void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 2317 unsigned long ro, unsigned long incompat) 2318{ 2319 journal_superblock_t *sb; 2320 2321 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 2322 compat, ro, incompat); 2323 2324 sb = journal->j_superblock; 2325 2326 sb->s_feature_compat &= ~cpu_to_be32(compat); 2327 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 2328 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 2329 journal->j_revoke_records_per_block = 2330 journal_revoke_records_per_block(journal); 2331} 2332EXPORT_SYMBOL(jbd2_journal_clear_features); 2333 2334/** 2335 * jbd2_journal_flush() - Flush journal 2336 * @journal: Journal to act on. 2337 * 2338 * Flush all data for a given journal to disk and empty the journal. 2339 * Filesystems can use this when remounting readonly to ensure that 2340 * recovery does not need to happen on remount. 2341 */ 2342 2343int jbd2_journal_flush(journal_t *journal) 2344{ 2345 int err = 0; 2346 transaction_t *transaction = NULL; 2347 2348 write_lock(&journal->j_state_lock); 2349 2350 /* Force everything buffered to the log... */ 2351 if (journal->j_running_transaction) { 2352 transaction = journal->j_running_transaction; 2353 __jbd2_log_start_commit(journal, transaction->t_tid); 2354 } else if (journal->j_committing_transaction) 2355 transaction = journal->j_committing_transaction; 2356 2357 /* Wait for the log commit to complete... */ 2358 if (transaction) { 2359 tid_t tid = transaction->t_tid; 2360 2361 write_unlock(&journal->j_state_lock); 2362 jbd2_log_wait_commit(journal, tid); 2363 } else { 2364 write_unlock(&journal->j_state_lock); 2365 } 2366 2367 /* ...and flush everything in the log out to disk. */ 2368 spin_lock(&journal->j_list_lock); 2369 while (!err && journal->j_checkpoint_transactions != NULL) { 2370 spin_unlock(&journal->j_list_lock); 2371 mutex_lock_io(&journal->j_checkpoint_mutex); 2372 err = jbd2_log_do_checkpoint(journal); 2373 mutex_unlock(&journal->j_checkpoint_mutex); 2374 spin_lock(&journal->j_list_lock); 2375 } 2376 spin_unlock(&journal->j_list_lock); 2377 2378 if (is_journal_aborted(journal)) 2379 return -EIO; 2380 2381 mutex_lock_io(&journal->j_checkpoint_mutex); 2382 if (!err) { 2383 err = jbd2_cleanup_journal_tail(journal); 2384 if (err < 0) { 2385 mutex_unlock(&journal->j_checkpoint_mutex); 2386 goto out; 2387 } 2388 err = 0; 2389 } 2390 2391 /* Finally, mark the journal as really needing no recovery. 2392 * This sets s_start==0 in the underlying superblock, which is 2393 * the magic code for a fully-recovered superblock. Any future 2394 * commits of data to the journal will restore the current 2395 * s_start value. */ 2396 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2397 mutex_unlock(&journal->j_checkpoint_mutex); 2398 write_lock(&journal->j_state_lock); 2399 J_ASSERT(!journal->j_running_transaction); 2400 J_ASSERT(!journal->j_committing_transaction); 2401 J_ASSERT(!journal->j_checkpoint_transactions); 2402 J_ASSERT(journal->j_head == journal->j_tail); 2403 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2404 write_unlock(&journal->j_state_lock); 2405out: 2406 return err; 2407} 2408 2409/** 2410 * jbd2_journal_wipe() - Wipe journal contents 2411 * @journal: Journal to act on. 2412 * @write: flag (see below) 2413 * 2414 * Wipe out all of the contents of a journal, safely. This will produce 2415 * a warning if the journal contains any valid recovery information. 2416 * Must be called between journal_init_*() and jbd2_journal_load(). 2417 * 2418 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2419 * we merely suppress recovery. 2420 */ 2421 2422int jbd2_journal_wipe(journal_t *journal, int write) 2423{ 2424 int err = 0; 2425 2426 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2427 2428 err = load_superblock(journal); 2429 if (err) 2430 return err; 2431 2432 if (!journal->j_tail) 2433 goto no_recovery; 2434 2435 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2436 write ? "Clearing" : "Ignoring"); 2437 2438 err = jbd2_journal_skip_recovery(journal); 2439 if (write) { 2440 /* Lock to make assertions happy... */ 2441 mutex_lock_io(&journal->j_checkpoint_mutex); 2442 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2443 mutex_unlock(&journal->j_checkpoint_mutex); 2444 } 2445 2446 no_recovery: 2447 return err; 2448} 2449 2450/** 2451 * jbd2_journal_abort () - Shutdown the journal immediately. 2452 * @journal: the journal to shutdown. 2453 * @errno: an error number to record in the journal indicating 2454 * the reason for the shutdown. 2455 * 2456 * Perform a complete, immediate shutdown of the ENTIRE 2457 * journal (not of a single transaction). This operation cannot be 2458 * undone without closing and reopening the journal. 2459 * 2460 * The jbd2_journal_abort function is intended to support higher level error 2461 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2462 * mode. 2463 * 2464 * Journal abort has very specific semantics. Any existing dirty, 2465 * unjournaled buffers in the main filesystem will still be written to 2466 * disk by bdflush, but the journaling mechanism will be suspended 2467 * immediately and no further transaction commits will be honoured. 2468 * 2469 * Any dirty, journaled buffers will be written back to disk without 2470 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2471 * filesystem, but we _do_ attempt to leave as much data as possible 2472 * behind for fsck to use for cleanup. 2473 * 2474 * Any attempt to get a new transaction handle on a journal which is in 2475 * ABORT state will just result in an -EROFS error return. A 2476 * jbd2_journal_stop on an existing handle will return -EIO if we have 2477 * entered abort state during the update. 2478 * 2479 * Recursive transactions are not disturbed by journal abort until the 2480 * final jbd2_journal_stop, which will receive the -EIO error. 2481 * 2482 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2483 * which will be recorded (if possible) in the journal superblock. This 2484 * allows a client to record failure conditions in the middle of a 2485 * transaction without having to complete the transaction to record the 2486 * failure to disk. ext3_error, for example, now uses this 2487 * functionality. 2488 * 2489 */ 2490 2491void jbd2_journal_abort(journal_t *journal, int errno) 2492{ 2493 transaction_t *transaction; 2494 2495 /* 2496 * Lock the aborting procedure until everything is done, this avoid 2497 * races between filesystem's error handling flow (e.g. ext4_abort()), 2498 * ensure panic after the error info is written into journal's 2499 * superblock. 2500 */ 2501 mutex_lock(&journal->j_abort_mutex); 2502 /* 2503 * ESHUTDOWN always takes precedence because a file system check 2504 * caused by any other journal abort error is not required after 2505 * a shutdown triggered. 2506 */ 2507 write_lock(&journal->j_state_lock); 2508 if (journal->j_flags & JBD2_ABORT) { 2509 int old_errno = journal->j_errno; 2510 2511 write_unlock(&journal->j_state_lock); 2512 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) { 2513 journal->j_errno = errno; 2514 jbd2_journal_update_sb_errno(journal); 2515 } 2516 mutex_unlock(&journal->j_abort_mutex); 2517 return; 2518 } 2519 2520 /* 2521 * Mark the abort as occurred and start current running transaction 2522 * to release all journaled buffer. 2523 */ 2524 pr_err("Aborting journal on device %s.\n", journal->j_devname); 2525 2526 journal->j_flags |= JBD2_ABORT; 2527 journal->j_errno = errno; 2528 transaction = journal->j_running_transaction; 2529 if (transaction) 2530 __jbd2_log_start_commit(journal, transaction->t_tid); 2531 write_unlock(&journal->j_state_lock); 2532 2533 /* 2534 * Record errno to the journal super block, so that fsck and jbd2 2535 * layer could realise that a filesystem check is needed. 2536 */ 2537 jbd2_journal_update_sb_errno(journal); 2538 mutex_unlock(&journal->j_abort_mutex); 2539} 2540 2541/** 2542 * jbd2_journal_errno() - returns the journal's error state. 2543 * @journal: journal to examine. 2544 * 2545 * This is the errno number set with jbd2_journal_abort(), the last 2546 * time the journal was mounted - if the journal was stopped 2547 * without calling abort this will be 0. 2548 * 2549 * If the journal has been aborted on this mount time -EROFS will 2550 * be returned. 2551 */ 2552int jbd2_journal_errno(journal_t *journal) 2553{ 2554 int err; 2555 2556 read_lock(&journal->j_state_lock); 2557 if (journal->j_flags & JBD2_ABORT) 2558 err = -EROFS; 2559 else 2560 err = journal->j_errno; 2561 read_unlock(&journal->j_state_lock); 2562 return err; 2563} 2564 2565/** 2566 * jbd2_journal_clear_err() - clears the journal's error state 2567 * @journal: journal to act on. 2568 * 2569 * An error must be cleared or acked to take a FS out of readonly 2570 * mode. 2571 */ 2572int jbd2_journal_clear_err(journal_t *journal) 2573{ 2574 int err = 0; 2575 2576 write_lock(&journal->j_state_lock); 2577 if (journal->j_flags & JBD2_ABORT) 2578 err = -EROFS; 2579 else 2580 journal->j_errno = 0; 2581 write_unlock(&journal->j_state_lock); 2582 return err; 2583} 2584 2585/** 2586 * jbd2_journal_ack_err() - Ack journal err. 2587 * @journal: journal to act on. 2588 * 2589 * An error must be cleared or acked to take a FS out of readonly 2590 * mode. 2591 */ 2592void jbd2_journal_ack_err(journal_t *journal) 2593{ 2594 write_lock(&journal->j_state_lock); 2595 if (journal->j_errno) 2596 journal->j_flags |= JBD2_ACK_ERR; 2597 write_unlock(&journal->j_state_lock); 2598} 2599 2600int jbd2_journal_blocks_per_page(struct inode *inode) 2601{ 2602 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2603} 2604 2605/* 2606 * helper functions to deal with 32 or 64bit block numbers. 2607 */ 2608size_t journal_tag_bytes(journal_t *journal) 2609{ 2610 size_t sz; 2611 2612 if (jbd2_has_feature_csum3(journal)) 2613 return sizeof(journal_block_tag3_t); 2614 2615 sz = sizeof(journal_block_tag_t); 2616 2617 if (jbd2_has_feature_csum2(journal)) 2618 sz += sizeof(__u16); 2619 2620 if (jbd2_has_feature_64bit(journal)) 2621 return sz; 2622 else 2623 return sz - sizeof(__u32); 2624} 2625 2626/* 2627 * JBD memory management 2628 * 2629 * These functions are used to allocate block-sized chunks of memory 2630 * used for making copies of buffer_head data. Very often it will be 2631 * page-sized chunks of data, but sometimes it will be in 2632 * sub-page-size chunks. (For example, 16k pages on Power systems 2633 * with a 4k block file system.) For blocks smaller than a page, we 2634 * use a SLAB allocator. There are slab caches for each block size, 2635 * which are allocated at mount time, if necessary, and we only free 2636 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2637 * this reason we don't need to a mutex to protect access to 2638 * jbd2_slab[] allocating or releasing memory; only in 2639 * jbd2_journal_create_slab(). 2640 */ 2641#define JBD2_MAX_SLABS 8 2642static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2643 2644static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2645 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2646 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2647}; 2648 2649 2650static void jbd2_journal_destroy_slabs(void) 2651{ 2652 int i; 2653 2654 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2655 kmem_cache_destroy(jbd2_slab[i]); 2656 jbd2_slab[i] = NULL; 2657 } 2658} 2659 2660static int jbd2_journal_create_slab(size_t size) 2661{ 2662 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2663 int i = order_base_2(size) - 10; 2664 size_t slab_size; 2665 2666 if (size == PAGE_SIZE) 2667 return 0; 2668 2669 if (i >= JBD2_MAX_SLABS) 2670 return -EINVAL; 2671 2672 if (unlikely(i < 0)) 2673 i = 0; 2674 mutex_lock(&jbd2_slab_create_mutex); 2675 if (jbd2_slab[i]) { 2676 mutex_unlock(&jbd2_slab_create_mutex); 2677 return 0; /* Already created */ 2678 } 2679 2680 slab_size = 1 << (i+10); 2681 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2682 slab_size, 0, NULL); 2683 mutex_unlock(&jbd2_slab_create_mutex); 2684 if (!jbd2_slab[i]) { 2685 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2686 return -ENOMEM; 2687 } 2688 return 0; 2689} 2690 2691static struct kmem_cache *get_slab(size_t size) 2692{ 2693 int i = order_base_2(size) - 10; 2694 2695 BUG_ON(i >= JBD2_MAX_SLABS); 2696 if (unlikely(i < 0)) 2697 i = 0; 2698 BUG_ON(jbd2_slab[i] == NULL); 2699 return jbd2_slab[i]; 2700} 2701 2702void *jbd2_alloc(size_t size, gfp_t flags) 2703{ 2704 void *ptr; 2705 2706 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2707 2708 if (size < PAGE_SIZE) 2709 ptr = kmem_cache_alloc(get_slab(size), flags); 2710 else 2711 ptr = (void *)__get_free_pages(flags, get_order(size)); 2712 2713 /* Check alignment; SLUB has gotten this wrong in the past, 2714 * and this can lead to user data corruption! */ 2715 BUG_ON(((unsigned long) ptr) & (size-1)); 2716 2717 return ptr; 2718} 2719 2720void jbd2_free(void *ptr, size_t size) 2721{ 2722 if (size < PAGE_SIZE) 2723 kmem_cache_free(get_slab(size), ptr); 2724 else 2725 free_pages((unsigned long)ptr, get_order(size)); 2726}; 2727 2728/* 2729 * Journal_head storage management 2730 */ 2731static struct kmem_cache *jbd2_journal_head_cache; 2732#ifdef CONFIG_JBD2_DEBUG 2733static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2734#endif 2735 2736static int __init jbd2_journal_init_journal_head_cache(void) 2737{ 2738 J_ASSERT(!jbd2_journal_head_cache); 2739 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2740 sizeof(struct journal_head), 2741 0, /* offset */ 2742 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2743 NULL); /* ctor */ 2744 if (!jbd2_journal_head_cache) { 2745 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2746 return -ENOMEM; 2747 } 2748 return 0; 2749} 2750 2751static void jbd2_journal_destroy_journal_head_cache(void) 2752{ 2753 kmem_cache_destroy(jbd2_journal_head_cache); 2754 jbd2_journal_head_cache = NULL; 2755} 2756 2757/* 2758 * journal_head splicing and dicing 2759 */ 2760static struct journal_head *journal_alloc_journal_head(void) 2761{ 2762 struct journal_head *ret; 2763 2764#ifdef CONFIG_JBD2_DEBUG 2765 atomic_inc(&nr_journal_heads); 2766#endif 2767 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2768 if (!ret) { 2769 jbd_debug(1, "out of memory for journal_head\n"); 2770 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2771 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2772 GFP_NOFS | __GFP_NOFAIL); 2773 } 2774 if (ret) 2775 spin_lock_init(&ret->b_state_lock); 2776 return ret; 2777} 2778 2779static void journal_free_journal_head(struct journal_head *jh) 2780{ 2781#ifdef CONFIG_JBD2_DEBUG 2782 atomic_dec(&nr_journal_heads); 2783 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2784#endif 2785 kmem_cache_free(jbd2_journal_head_cache, jh); 2786} 2787 2788/* 2789 * A journal_head is attached to a buffer_head whenever JBD has an 2790 * interest in the buffer. 2791 * 2792 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2793 * is set. This bit is tested in core kernel code where we need to take 2794 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2795 * there. 2796 * 2797 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2798 * 2799 * When a buffer has its BH_JBD bit set it is immune from being released by 2800 * core kernel code, mainly via ->b_count. 2801 * 2802 * A journal_head is detached from its buffer_head when the journal_head's 2803 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2804 * transaction (b_cp_transaction) hold their references to b_jcount. 2805 * 2806 * Various places in the kernel want to attach a journal_head to a buffer_head 2807 * _before_ attaching the journal_head to a transaction. To protect the 2808 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2809 * journal_head's b_jcount refcount by one. The caller must call 2810 * jbd2_journal_put_journal_head() to undo this. 2811 * 2812 * So the typical usage would be: 2813 * 2814 * (Attach a journal_head if needed. Increments b_jcount) 2815 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2816 * ... 2817 * (Get another reference for transaction) 2818 * jbd2_journal_grab_journal_head(bh); 2819 * jh->b_transaction = xxx; 2820 * (Put original reference) 2821 * jbd2_journal_put_journal_head(jh); 2822 */ 2823 2824/* 2825 * Give a buffer_head a journal_head. 2826 * 2827 * May sleep. 2828 */ 2829struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2830{ 2831 struct journal_head *jh; 2832 struct journal_head *new_jh = NULL; 2833 2834repeat: 2835 if (!buffer_jbd(bh)) 2836 new_jh = journal_alloc_journal_head(); 2837 2838 jbd_lock_bh_journal_head(bh); 2839 if (buffer_jbd(bh)) { 2840 jh = bh2jh(bh); 2841 } else { 2842 J_ASSERT_BH(bh, 2843 (atomic_read(&bh->b_count) > 0) || 2844 (bh->b_page && bh->b_page->mapping)); 2845 2846 if (!new_jh) { 2847 jbd_unlock_bh_journal_head(bh); 2848 goto repeat; 2849 } 2850 2851 jh = new_jh; 2852 new_jh = NULL; /* We consumed it */ 2853 set_buffer_jbd(bh); 2854 bh->b_private = jh; 2855 jh->b_bh = bh; 2856 get_bh(bh); 2857 BUFFER_TRACE(bh, "added journal_head"); 2858 } 2859 jh->b_jcount++; 2860 jbd_unlock_bh_journal_head(bh); 2861 if (new_jh) 2862 journal_free_journal_head(new_jh); 2863 return bh->b_private; 2864} 2865 2866/* 2867 * Grab a ref against this buffer_head's journal_head. If it ended up not 2868 * having a journal_head, return NULL 2869 */ 2870struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2871{ 2872 struct journal_head *jh = NULL; 2873 2874 jbd_lock_bh_journal_head(bh); 2875 if (buffer_jbd(bh)) { 2876 jh = bh2jh(bh); 2877 jh->b_jcount++; 2878 } 2879 jbd_unlock_bh_journal_head(bh); 2880 return jh; 2881} 2882EXPORT_SYMBOL(jbd2_journal_grab_journal_head); 2883 2884static void __journal_remove_journal_head(struct buffer_head *bh) 2885{ 2886 struct journal_head *jh = bh2jh(bh); 2887 2888 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2889 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2890 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2891 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2892 J_ASSERT_BH(bh, buffer_jbd(bh)); 2893 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2894 BUFFER_TRACE(bh, "remove journal_head"); 2895 2896 /* Unlink before dropping the lock */ 2897 bh->b_private = NULL; 2898 jh->b_bh = NULL; /* debug, really */ 2899 clear_buffer_jbd(bh); 2900} 2901 2902static void journal_release_journal_head(struct journal_head *jh, size_t b_size) 2903{ 2904 if (jh->b_frozen_data) { 2905 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2906 jbd2_free(jh->b_frozen_data, b_size); 2907 } 2908 if (jh->b_committed_data) { 2909 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2910 jbd2_free(jh->b_committed_data, b_size); 2911 } 2912 journal_free_journal_head(jh); 2913} 2914 2915/* 2916 * Drop a reference on the passed journal_head. If it fell to zero then 2917 * release the journal_head from the buffer_head. 2918 */ 2919void jbd2_journal_put_journal_head(struct journal_head *jh) 2920{ 2921 struct buffer_head *bh = jh2bh(jh); 2922 2923 jbd_lock_bh_journal_head(bh); 2924 J_ASSERT_JH(jh, jh->b_jcount > 0); 2925 --jh->b_jcount; 2926 if (!jh->b_jcount) { 2927 __journal_remove_journal_head(bh); 2928 jbd_unlock_bh_journal_head(bh); 2929 journal_release_journal_head(jh, bh->b_size); 2930 __brelse(bh); 2931 } else { 2932 jbd_unlock_bh_journal_head(bh); 2933 } 2934} 2935EXPORT_SYMBOL(jbd2_journal_put_journal_head); 2936 2937/* 2938 * Initialize jbd inode head 2939 */ 2940void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2941{ 2942 jinode->i_transaction = NULL; 2943 jinode->i_next_transaction = NULL; 2944 jinode->i_vfs_inode = inode; 2945 jinode->i_flags = 0; 2946 jinode->i_dirty_start = 0; 2947 jinode->i_dirty_end = 0; 2948 INIT_LIST_HEAD(&jinode->i_list); 2949} 2950 2951/* 2952 * Function to be called before we start removing inode from memory (i.e., 2953 * clear_inode() is a fine place to be called from). It removes inode from 2954 * transaction's lists. 2955 */ 2956void jbd2_journal_release_jbd_inode(journal_t *journal, 2957 struct jbd2_inode *jinode) 2958{ 2959 if (!journal) 2960 return; 2961restart: 2962 spin_lock(&journal->j_list_lock); 2963 /* Is commit writing out inode - we have to wait */ 2964 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2965 wait_queue_head_t *wq; 2966 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2967 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2968 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2969 spin_unlock(&journal->j_list_lock); 2970 schedule(); 2971 finish_wait(wq, &wait.wq_entry); 2972 goto restart; 2973 } 2974 2975 if (jinode->i_transaction) { 2976 list_del(&jinode->i_list); 2977 jinode->i_transaction = NULL; 2978 } 2979 spin_unlock(&journal->j_list_lock); 2980} 2981 2982 2983#ifdef CONFIG_PROC_FS 2984 2985#define JBD2_STATS_PROC_NAME "fs/jbd2" 2986 2987static void __init jbd2_create_jbd_stats_proc_entry(void) 2988{ 2989 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2990} 2991 2992static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2993{ 2994 if (proc_jbd2_stats) 2995 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2996} 2997 2998#else 2999 3000#define jbd2_create_jbd_stats_proc_entry() do {} while (0) 3001#define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 3002 3003#endif 3004 3005struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 3006 3007static int __init jbd2_journal_init_inode_cache(void) 3008{ 3009 J_ASSERT(!jbd2_inode_cache); 3010 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 3011 if (!jbd2_inode_cache) { 3012 pr_emerg("JBD2: failed to create inode cache\n"); 3013 return -ENOMEM; 3014 } 3015 return 0; 3016} 3017 3018static int __init jbd2_journal_init_handle_cache(void) 3019{ 3020 J_ASSERT(!jbd2_handle_cache); 3021 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 3022 if (!jbd2_handle_cache) { 3023 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 3024 return -ENOMEM; 3025 } 3026 return 0; 3027} 3028 3029static void jbd2_journal_destroy_inode_cache(void) 3030{ 3031 kmem_cache_destroy(jbd2_inode_cache); 3032 jbd2_inode_cache = NULL; 3033} 3034 3035static void jbd2_journal_destroy_handle_cache(void) 3036{ 3037 kmem_cache_destroy(jbd2_handle_cache); 3038 jbd2_handle_cache = NULL; 3039} 3040 3041/* 3042 * Module startup and shutdown 3043 */ 3044 3045static int __init journal_init_caches(void) 3046{ 3047 int ret; 3048 3049 ret = jbd2_journal_init_revoke_record_cache(); 3050 if (ret == 0) 3051 ret = jbd2_journal_init_revoke_table_cache(); 3052 if (ret == 0) 3053 ret = jbd2_journal_init_journal_head_cache(); 3054 if (ret == 0) 3055 ret = jbd2_journal_init_handle_cache(); 3056 if (ret == 0) 3057 ret = jbd2_journal_init_inode_cache(); 3058 if (ret == 0) 3059 ret = jbd2_journal_init_transaction_cache(); 3060 return ret; 3061} 3062 3063static void jbd2_journal_destroy_caches(void) 3064{ 3065 jbd2_journal_destroy_revoke_record_cache(); 3066 jbd2_journal_destroy_revoke_table_cache(); 3067 jbd2_journal_destroy_journal_head_cache(); 3068 jbd2_journal_destroy_handle_cache(); 3069 jbd2_journal_destroy_inode_cache(); 3070 jbd2_journal_destroy_transaction_cache(); 3071 jbd2_journal_destroy_slabs(); 3072} 3073 3074static int __init journal_init(void) 3075{ 3076 int ret; 3077 3078 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 3079 3080 ret = journal_init_caches(); 3081 if (ret == 0) { 3082 jbd2_create_jbd_stats_proc_entry(); 3083 } else { 3084 jbd2_journal_destroy_caches(); 3085 } 3086 return ret; 3087} 3088 3089static void __exit journal_exit(void) 3090{ 3091#ifdef CONFIG_JBD2_DEBUG 3092 int n = atomic_read(&nr_journal_heads); 3093 if (n) 3094 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 3095#endif 3096 jbd2_remove_jbd_stats_proc_entry(); 3097 jbd2_journal_destroy_caches(); 3098} 3099 3100MODULE_LICENSE("GPL"); 3101module_init(journal_init); 3102module_exit(journal_exit); 3103 3104