xref: /kernel/linux/linux-5.10/fs/jbd2/journal.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * linux/fs/jbd2/journal.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates.  This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
15 *
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
20 */
21
22#include <linux/module.h>
23#include <linux/time.h>
24#include <linux/fs.h>
25#include <linux/jbd2.h>
26#include <linux/errno.h>
27#include <linux/slab.h>
28#include <linux/init.h>
29#include <linux/mm.h>
30#include <linux/freezer.h>
31#include <linux/pagemap.h>
32#include <linux/kthread.h>
33#include <linux/poison.h>
34#include <linux/proc_fs.h>
35#include <linux/seq_file.h>
36#include <linux/math64.h>
37#include <linux/hash.h>
38#include <linux/log2.h>
39#include <linux/vmalloc.h>
40#include <linux/backing-dev.h>
41#include <linux/bitops.h>
42#include <linux/ratelimit.h>
43#include <linux/sched/mm.h>
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/jbd2.h>
47
48#include <linux/uaccess.h>
49#include <asm/page.h>
50
51#ifdef CONFIG_JBD2_DEBUG
52ushort jbd2_journal_enable_debug __read_mostly;
53EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57#endif
58
59EXPORT_SYMBOL(jbd2_journal_extend);
60EXPORT_SYMBOL(jbd2_journal_stop);
61EXPORT_SYMBOL(jbd2_journal_lock_updates);
62EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63EXPORT_SYMBOL(jbd2_journal_get_write_access);
64EXPORT_SYMBOL(jbd2_journal_get_create_access);
65EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66EXPORT_SYMBOL(jbd2_journal_set_triggers);
67EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68EXPORT_SYMBOL(jbd2_journal_forget);
69EXPORT_SYMBOL(jbd2_journal_flush);
70EXPORT_SYMBOL(jbd2_journal_revoke);
71
72EXPORT_SYMBOL(jbd2_journal_init_dev);
73EXPORT_SYMBOL(jbd2_journal_init_inode);
74EXPORT_SYMBOL(jbd2_journal_check_used_features);
75EXPORT_SYMBOL(jbd2_journal_check_available_features);
76EXPORT_SYMBOL(jbd2_journal_set_features);
77EXPORT_SYMBOL(jbd2_journal_load);
78EXPORT_SYMBOL(jbd2_journal_destroy);
79EXPORT_SYMBOL(jbd2_journal_abort);
80EXPORT_SYMBOL(jbd2_journal_errno);
81EXPORT_SYMBOL(jbd2_journal_ack_err);
82EXPORT_SYMBOL(jbd2_journal_clear_err);
83EXPORT_SYMBOL(jbd2_log_wait_commit);
84EXPORT_SYMBOL(jbd2_log_start_commit);
85EXPORT_SYMBOL(jbd2_journal_start_commit);
86EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87EXPORT_SYMBOL(jbd2_journal_wipe);
88EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91EXPORT_SYMBOL(jbd2_journal_force_commit);
92EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers);
95EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
96EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
97EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
98EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
99EXPORT_SYMBOL(jbd2_inode_cache);
100
101static int jbd2_journal_create_slab(size_t slab_size);
102
103#ifdef CONFIG_JBD2_DEBUG
104void __jbd2_debug(int level, const char *file, const char *func,
105		  unsigned int line, const char *fmt, ...)
106{
107	struct va_format vaf;
108	va_list args;
109
110	if (level > jbd2_journal_enable_debug)
111		return;
112	va_start(args, fmt);
113	vaf.fmt = fmt;
114	vaf.va = &args;
115	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
116	va_end(args);
117}
118EXPORT_SYMBOL(__jbd2_debug);
119#endif
120
121/* Checksumming functions */
122static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
123{
124	if (!jbd2_journal_has_csum_v2or3_feature(j))
125		return 1;
126
127	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
128}
129
130static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
131{
132	__u32 csum;
133	__be32 old_csum;
134
135	old_csum = sb->s_checksum;
136	sb->s_checksum = 0;
137	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
138	sb->s_checksum = old_csum;
139
140	return cpu_to_be32(csum);
141}
142
143/*
144 * Helper function used to manage commit timeouts
145 */
146
147static void commit_timeout(struct timer_list *t)
148{
149	journal_t *journal = from_timer(journal, t, j_commit_timer);
150
151	wake_up_process(journal->j_task);
152}
153
154/*
155 * kjournald2: The main thread function used to manage a logging device
156 * journal.
157 *
158 * This kernel thread is responsible for two things:
159 *
160 * 1) COMMIT:  Every so often we need to commit the current state of the
161 *    filesystem to disk.  The journal thread is responsible for writing
162 *    all of the metadata buffers to disk. If a fast commit is ongoing
163 *    journal thread waits until it's done and then continues from
164 *    there on.
165 *
166 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167 *    of the data in that part of the log has been rewritten elsewhere on
168 *    the disk.  Flushing these old buffers to reclaim space in the log is
169 *    known as checkpointing, and this thread is responsible for that job.
170 */
171
172static int kjournald2(void *arg)
173{
174	journal_t *journal = arg;
175	transaction_t *transaction;
176
177	/*
178	 * Set up an interval timer which can be used to trigger a commit wakeup
179	 * after the commit interval expires
180	 */
181	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
182
183	set_freezable();
184
185	/* Record that the journal thread is running */
186	journal->j_task = current;
187	wake_up(&journal->j_wait_done_commit);
188
189	/*
190	 * Make sure that no allocations from this kernel thread will ever
191	 * recurse to the fs layer because we are responsible for the
192	 * transaction commit and any fs involvement might get stuck waiting for
193	 * the trasn. commit.
194	 */
195	memalloc_nofs_save();
196
197	/*
198	 * And now, wait forever for commit wakeup events.
199	 */
200	write_lock(&journal->j_state_lock);
201
202loop:
203	if (journal->j_flags & JBD2_UNMOUNT)
204		goto end_loop;
205
206	jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
207		journal->j_commit_sequence, journal->j_commit_request);
208
209	if (journal->j_commit_sequence != journal->j_commit_request) {
210		jbd_debug(1, "OK, requests differ\n");
211		write_unlock(&journal->j_state_lock);
212		del_timer_sync(&journal->j_commit_timer);
213		jbd2_journal_commit_transaction(journal);
214		write_lock(&journal->j_state_lock);
215		goto loop;
216	}
217
218	wake_up(&journal->j_wait_done_commit);
219	if (freezing(current)) {
220		/*
221		 * The simpler the better. Flushing journal isn't a
222		 * good idea, because that depends on threads that may
223		 * be already stopped.
224		 */
225		jbd_debug(1, "Now suspending kjournald2\n");
226		write_unlock(&journal->j_state_lock);
227		try_to_freeze();
228		write_lock(&journal->j_state_lock);
229	} else {
230		/*
231		 * We assume on resume that commits are already there,
232		 * so we don't sleep
233		 */
234		DEFINE_WAIT(wait);
235		int should_sleep = 1;
236
237		prepare_to_wait(&journal->j_wait_commit, &wait,
238				TASK_INTERRUPTIBLE);
239		if (journal->j_commit_sequence != journal->j_commit_request)
240			should_sleep = 0;
241		transaction = journal->j_running_transaction;
242		if (transaction && time_after_eq(jiffies,
243						transaction->t_expires))
244			should_sleep = 0;
245		if (journal->j_flags & JBD2_UNMOUNT)
246			should_sleep = 0;
247		if (should_sleep) {
248			write_unlock(&journal->j_state_lock);
249			schedule();
250			write_lock(&journal->j_state_lock);
251		}
252		finish_wait(&journal->j_wait_commit, &wait);
253	}
254
255	jbd_debug(1, "kjournald2 wakes\n");
256
257	/*
258	 * Were we woken up by a commit wakeup event?
259	 */
260	transaction = journal->j_running_transaction;
261	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262		journal->j_commit_request = transaction->t_tid;
263		jbd_debug(1, "woke because of timeout\n");
264	}
265	goto loop;
266
267end_loop:
268	del_timer_sync(&journal->j_commit_timer);
269	journal->j_task = NULL;
270	wake_up(&journal->j_wait_done_commit);
271	jbd_debug(1, "Journal thread exiting.\n");
272	write_unlock(&journal->j_state_lock);
273	return 0;
274}
275
276static int jbd2_journal_start_thread(journal_t *journal)
277{
278	struct task_struct *t;
279
280	t = kthread_run(kjournald2, journal, "jbd2/%s",
281			journal->j_devname);
282	if (IS_ERR(t))
283		return PTR_ERR(t);
284
285	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286	return 0;
287}
288
289static void journal_kill_thread(journal_t *journal)
290{
291	write_lock(&journal->j_state_lock);
292	journal->j_flags |= JBD2_UNMOUNT;
293
294	while (journal->j_task) {
295		write_unlock(&journal->j_state_lock);
296		wake_up(&journal->j_wait_commit);
297		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298		write_lock(&journal->j_state_lock);
299	}
300	write_unlock(&journal->j_state_lock);
301}
302
303/*
304 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
305 *
306 * Writes a metadata buffer to a given disk block.  The actual IO is not
307 * performed but a new buffer_head is constructed which labels the data
308 * to be written with the correct destination disk block.
309 *
310 * Any magic-number escaping which needs to be done will cause a
311 * copy-out here.  If the buffer happens to start with the
312 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313 * magic number is only written to the log for descripter blocks.  In
314 * this case, we copy the data and replace the first word with 0, and we
315 * return a result code which indicates that this buffer needs to be
316 * marked as an escaped buffer in the corresponding log descriptor
317 * block.  The missing word can then be restored when the block is read
318 * during recovery.
319 *
320 * If the source buffer has already been modified by a new transaction
321 * since we took the last commit snapshot, we use the frozen copy of
322 * that data for IO. If we end up using the existing buffer_head's data
323 * for the write, then we have to make sure nobody modifies it while the
324 * IO is in progress. do_get_write_access() handles this.
325 *
326 * The function returns a pointer to the buffer_head to be used for IO.
327 *
328 *
329 * Return value:
330 *  <0: Error
331 * >=0: Finished OK
332 *
333 * On success:
334 * Bit 0 set == escape performed on the data
335 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
336 */
337
338int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339				  struct journal_head  *jh_in,
340				  struct buffer_head **bh_out,
341				  sector_t blocknr)
342{
343	int need_copy_out = 0;
344	int done_copy_out = 0;
345	int do_escape = 0;
346	char *mapped_data;
347	struct buffer_head *new_bh;
348	struct page *new_page;
349	unsigned int new_offset;
350	struct buffer_head *bh_in = jh2bh(jh_in);
351	journal_t *journal = transaction->t_journal;
352
353	/*
354	 * The buffer really shouldn't be locked: only the current committing
355	 * transaction is allowed to write it, so nobody else is allowed
356	 * to do any IO.
357	 *
358	 * akpm: except if we're journalling data, and write() output is
359	 * also part of a shared mapping, and another thread has
360	 * decided to launch a writepage() against this buffer.
361	 */
362	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
363
364	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
365
366	/* keep subsequent assertions sane */
367	atomic_set(&new_bh->b_count, 1);
368
369	spin_lock(&jh_in->b_state_lock);
370repeat:
371	/*
372	 * If a new transaction has already done a buffer copy-out, then
373	 * we use that version of the data for the commit.
374	 */
375	if (jh_in->b_frozen_data) {
376		done_copy_out = 1;
377		new_page = virt_to_page(jh_in->b_frozen_data);
378		new_offset = offset_in_page(jh_in->b_frozen_data);
379	} else {
380		new_page = jh2bh(jh_in)->b_page;
381		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382	}
383
384	mapped_data = kmap_atomic(new_page);
385	/*
386	 * Fire data frozen trigger if data already wasn't frozen.  Do this
387	 * before checking for escaping, as the trigger may modify the magic
388	 * offset.  If a copy-out happens afterwards, it will have the correct
389	 * data in the buffer.
390	 */
391	if (!done_copy_out)
392		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393					   jh_in->b_triggers);
394
395	/*
396	 * Check for escaping
397	 */
398	if (*((__be32 *)(mapped_data + new_offset)) ==
399				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400		need_copy_out = 1;
401		do_escape = 1;
402	}
403	kunmap_atomic(mapped_data);
404
405	/*
406	 * Do we need to do a data copy?
407	 */
408	if (need_copy_out && !done_copy_out) {
409		char *tmp;
410
411		spin_unlock(&jh_in->b_state_lock);
412		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413		if (!tmp) {
414			brelse(new_bh);
415			return -ENOMEM;
416		}
417		spin_lock(&jh_in->b_state_lock);
418		if (jh_in->b_frozen_data) {
419			jbd2_free(tmp, bh_in->b_size);
420			goto repeat;
421		}
422
423		jh_in->b_frozen_data = tmp;
424		mapped_data = kmap_atomic(new_page);
425		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426		kunmap_atomic(mapped_data);
427
428		new_page = virt_to_page(tmp);
429		new_offset = offset_in_page(tmp);
430		done_copy_out = 1;
431
432		/*
433		 * This isn't strictly necessary, as we're using frozen
434		 * data for the escaping, but it keeps consistency with
435		 * b_frozen_data usage.
436		 */
437		jh_in->b_frozen_triggers = jh_in->b_triggers;
438	}
439
440	/*
441	 * Did we need to do an escaping?  Now we've done all the
442	 * copying, we can finally do so.
443	 */
444	if (do_escape) {
445		mapped_data = kmap_atomic(new_page);
446		*((unsigned int *)(mapped_data + new_offset)) = 0;
447		kunmap_atomic(mapped_data);
448	}
449
450	set_bh_page(new_bh, new_page, new_offset);
451	new_bh->b_size = bh_in->b_size;
452	new_bh->b_bdev = journal->j_dev;
453	new_bh->b_blocknr = blocknr;
454	new_bh->b_private = bh_in;
455	set_buffer_mapped(new_bh);
456	set_buffer_dirty(new_bh);
457
458	*bh_out = new_bh;
459
460	/*
461	 * The to-be-written buffer needs to get moved to the io queue,
462	 * and the original buffer whose contents we are shadowing or
463	 * copying is moved to the transaction's shadow queue.
464	 */
465	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466	spin_lock(&journal->j_list_lock);
467	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468	spin_unlock(&journal->j_list_lock);
469	set_buffer_shadow(bh_in);
470	spin_unlock(&jh_in->b_state_lock);
471
472	return do_escape | (done_copy_out << 1);
473}
474
475/*
476 * Allocation code for the journal file.  Manage the space left in the
477 * journal, so that we can begin checkpointing when appropriate.
478 */
479
480/*
481 * Called with j_state_lock locked for writing.
482 * Returns true if a transaction commit was started.
483 */
484int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485{
486	/* Return if the txn has already requested to be committed */
487	if (journal->j_commit_request == target)
488		return 0;
489
490	/*
491	 * The only transaction we can possibly wait upon is the
492	 * currently running transaction (if it exists).  Otherwise,
493	 * the target tid must be an old one.
494	 */
495	if (journal->j_running_transaction &&
496	    journal->j_running_transaction->t_tid == target) {
497		/*
498		 * We want a new commit: OK, mark the request and wakeup the
499		 * commit thread.  We do _not_ do the commit ourselves.
500		 */
501
502		journal->j_commit_request = target;
503		jbd_debug(1, "JBD2: requesting commit %u/%u\n",
504			  journal->j_commit_request,
505			  journal->j_commit_sequence);
506		journal->j_running_transaction->t_requested = jiffies;
507		wake_up(&journal->j_wait_commit);
508		return 1;
509	} else if (!tid_geq(journal->j_commit_request, target))
510		/* This should never happen, but if it does, preserve
511		   the evidence before kjournald goes into a loop and
512		   increments j_commit_sequence beyond all recognition. */
513		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514			  journal->j_commit_request,
515			  journal->j_commit_sequence,
516			  target, journal->j_running_transaction ?
517			  journal->j_running_transaction->t_tid : 0);
518	return 0;
519}
520
521int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522{
523	int ret;
524
525	write_lock(&journal->j_state_lock);
526	ret = __jbd2_log_start_commit(journal, tid);
527	write_unlock(&journal->j_state_lock);
528	return ret;
529}
530
531/*
532 * Force and wait any uncommitted transactions.  We can only force the running
533 * transaction if we don't have an active handle, otherwise, we will deadlock.
534 * Returns: <0 in case of error,
535 *           0 if nothing to commit,
536 *           1 if transaction was successfully committed.
537 */
538static int __jbd2_journal_force_commit(journal_t *journal)
539{
540	transaction_t *transaction = NULL;
541	tid_t tid;
542	int need_to_start = 0, ret = 0;
543
544	read_lock(&journal->j_state_lock);
545	if (journal->j_running_transaction && !current->journal_info) {
546		transaction = journal->j_running_transaction;
547		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548			need_to_start = 1;
549	} else if (journal->j_committing_transaction)
550		transaction = journal->j_committing_transaction;
551
552	if (!transaction) {
553		/* Nothing to commit */
554		read_unlock(&journal->j_state_lock);
555		return 0;
556	}
557	tid = transaction->t_tid;
558	read_unlock(&journal->j_state_lock);
559	if (need_to_start)
560		jbd2_log_start_commit(journal, tid);
561	ret = jbd2_log_wait_commit(journal, tid);
562	if (!ret)
563		ret = 1;
564
565	return ret;
566}
567
568/**
569 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
570 * calling process is not within transaction.
571 *
572 * @journal: journal to force
573 * Returns true if progress was made.
574 *
575 * This is used for forcing out undo-protected data which contains
576 * bitmaps, when the fs is running out of space.
577 */
578int jbd2_journal_force_commit_nested(journal_t *journal)
579{
580	int ret;
581
582	ret = __jbd2_journal_force_commit(journal);
583	return ret > 0;
584}
585
586/**
587 * jbd2_journal_force_commit() - force any uncommitted transactions
588 * @journal: journal to force
589 *
590 * Caller want unconditional commit. We can only force the running transaction
591 * if we don't have an active handle, otherwise, we will deadlock.
592 */
593int jbd2_journal_force_commit(journal_t *journal)
594{
595	int ret;
596
597	J_ASSERT(!current->journal_info);
598	ret = __jbd2_journal_force_commit(journal);
599	if (ret > 0)
600		ret = 0;
601	return ret;
602}
603
604/*
605 * Start a commit of the current running transaction (if any).  Returns true
606 * if a transaction is going to be committed (or is currently already
607 * committing), and fills its tid in at *ptid
608 */
609int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
610{
611	int ret = 0;
612
613	write_lock(&journal->j_state_lock);
614	if (journal->j_running_transaction) {
615		tid_t tid = journal->j_running_transaction->t_tid;
616
617		__jbd2_log_start_commit(journal, tid);
618		/* There's a running transaction and we've just made sure
619		 * it's commit has been scheduled. */
620		if (ptid)
621			*ptid = tid;
622		ret = 1;
623	} else if (journal->j_committing_transaction) {
624		/*
625		 * If commit has been started, then we have to wait for
626		 * completion of that transaction.
627		 */
628		if (ptid)
629			*ptid = journal->j_committing_transaction->t_tid;
630		ret = 1;
631	}
632	write_unlock(&journal->j_state_lock);
633	return ret;
634}
635
636/*
637 * Return 1 if a given transaction has not yet sent barrier request
638 * connected with a transaction commit. If 0 is returned, transaction
639 * may or may not have sent the barrier. Used to avoid sending barrier
640 * twice in common cases.
641 */
642int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
643{
644	int ret = 0;
645	transaction_t *commit_trans;
646
647	if (!(journal->j_flags & JBD2_BARRIER))
648		return 0;
649	read_lock(&journal->j_state_lock);
650	/* Transaction already committed? */
651	if (tid_geq(journal->j_commit_sequence, tid))
652		goto out;
653	commit_trans = journal->j_committing_transaction;
654	if (!commit_trans || commit_trans->t_tid != tid) {
655		ret = 1;
656		goto out;
657	}
658	/*
659	 * Transaction is being committed and we already proceeded to
660	 * submitting a flush to fs partition?
661	 */
662	if (journal->j_fs_dev != journal->j_dev) {
663		if (!commit_trans->t_need_data_flush ||
664		    commit_trans->t_state >= T_COMMIT_DFLUSH)
665			goto out;
666	} else {
667		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
668			goto out;
669	}
670	ret = 1;
671out:
672	read_unlock(&journal->j_state_lock);
673	return ret;
674}
675EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
676
677/*
678 * Wait for a specified commit to complete.
679 * The caller may not hold the journal lock.
680 */
681int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
682{
683	int err = 0;
684
685	read_lock(&journal->j_state_lock);
686#ifdef CONFIG_PROVE_LOCKING
687	/*
688	 * Some callers make sure transaction is already committing and in that
689	 * case we cannot block on open handles anymore. So don't warn in that
690	 * case.
691	 */
692	if (tid_gt(tid, journal->j_commit_sequence) &&
693	    (!journal->j_committing_transaction ||
694	     journal->j_committing_transaction->t_tid != tid)) {
695		read_unlock(&journal->j_state_lock);
696		jbd2_might_wait_for_commit(journal);
697		read_lock(&journal->j_state_lock);
698	}
699#endif
700#ifdef CONFIG_JBD2_DEBUG
701	if (!tid_geq(journal->j_commit_request, tid)) {
702		printk(KERN_ERR
703		       "%s: error: j_commit_request=%u, tid=%u\n",
704		       __func__, journal->j_commit_request, tid);
705	}
706#endif
707	while (tid_gt(tid, journal->j_commit_sequence)) {
708		jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
709				  tid, journal->j_commit_sequence);
710		read_unlock(&journal->j_state_lock);
711		wake_up(&journal->j_wait_commit);
712		wait_event(journal->j_wait_done_commit,
713				!tid_gt(tid, journal->j_commit_sequence));
714		read_lock(&journal->j_state_lock);
715	}
716	read_unlock(&journal->j_state_lock);
717
718	if (unlikely(is_journal_aborted(journal)))
719		err = -EIO;
720	return err;
721}
722
723/*
724 * Start a fast commit. If there's an ongoing fast or full commit wait for
725 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
726 * if a fast commit is not needed, either because there's an already a commit
727 * going on or this tid has already been committed. Returns -EINVAL if no jbd2
728 * commit has yet been performed.
729 */
730int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
731{
732	if (unlikely(is_journal_aborted(journal)))
733		return -EIO;
734	/*
735	 * Fast commits only allowed if at least one full commit has
736	 * been processed.
737	 */
738	if (!journal->j_stats.ts_tid)
739		return -EINVAL;
740
741	write_lock(&journal->j_state_lock);
742	if (tid <= journal->j_commit_sequence) {
743		write_unlock(&journal->j_state_lock);
744		return -EALREADY;
745	}
746
747	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
748	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
749		DEFINE_WAIT(wait);
750
751		prepare_to_wait(&journal->j_fc_wait, &wait,
752				TASK_UNINTERRUPTIBLE);
753		write_unlock(&journal->j_state_lock);
754		schedule();
755		finish_wait(&journal->j_fc_wait, &wait);
756		return -EALREADY;
757	}
758	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
759	write_unlock(&journal->j_state_lock);
760	jbd2_journal_lock_updates(journal);
761
762	return 0;
763}
764EXPORT_SYMBOL(jbd2_fc_begin_commit);
765
766/*
767 * Stop a fast commit. If fallback is set, this function starts commit of
768 * TID tid before any other fast commit can start.
769 */
770static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
771{
772	jbd2_journal_unlock_updates(journal);
773	if (journal->j_fc_cleanup_callback)
774		journal->j_fc_cleanup_callback(journal, 0);
775	write_lock(&journal->j_state_lock);
776	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
777	if (fallback)
778		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
779	write_unlock(&journal->j_state_lock);
780	wake_up(&journal->j_fc_wait);
781	if (fallback)
782		return jbd2_complete_transaction(journal, tid);
783	return 0;
784}
785
786int jbd2_fc_end_commit(journal_t *journal)
787{
788	return __jbd2_fc_end_commit(journal, 0, false);
789}
790EXPORT_SYMBOL(jbd2_fc_end_commit);
791
792int jbd2_fc_end_commit_fallback(journal_t *journal)
793{
794	tid_t tid;
795
796	read_lock(&journal->j_state_lock);
797	tid = journal->j_running_transaction ?
798		journal->j_running_transaction->t_tid : 0;
799	read_unlock(&journal->j_state_lock);
800	return __jbd2_fc_end_commit(journal, tid, true);
801}
802EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
803
804/* Return 1 when transaction with given tid has already committed. */
805int jbd2_transaction_committed(journal_t *journal, tid_t tid)
806{
807	int ret = 1;
808
809	read_lock(&journal->j_state_lock);
810	if (journal->j_running_transaction &&
811	    journal->j_running_transaction->t_tid == tid)
812		ret = 0;
813	if (journal->j_committing_transaction &&
814	    journal->j_committing_transaction->t_tid == tid)
815		ret = 0;
816	read_unlock(&journal->j_state_lock);
817	return ret;
818}
819EXPORT_SYMBOL(jbd2_transaction_committed);
820
821/*
822 * When this function returns the transaction corresponding to tid
823 * will be completed.  If the transaction has currently running, start
824 * committing that transaction before waiting for it to complete.  If
825 * the transaction id is stale, it is by definition already completed,
826 * so just return SUCCESS.
827 */
828int jbd2_complete_transaction(journal_t *journal, tid_t tid)
829{
830	int	need_to_wait = 1;
831
832	read_lock(&journal->j_state_lock);
833	if (journal->j_running_transaction &&
834	    journal->j_running_transaction->t_tid == tid) {
835		if (journal->j_commit_request != tid) {
836			/* transaction not yet started, so request it */
837			read_unlock(&journal->j_state_lock);
838			jbd2_log_start_commit(journal, tid);
839			goto wait_commit;
840		}
841	} else if (!(journal->j_committing_transaction &&
842		     journal->j_committing_transaction->t_tid == tid))
843		need_to_wait = 0;
844	read_unlock(&journal->j_state_lock);
845	if (!need_to_wait)
846		return 0;
847wait_commit:
848	return jbd2_log_wait_commit(journal, tid);
849}
850EXPORT_SYMBOL(jbd2_complete_transaction);
851
852/*
853 * Log buffer allocation routines:
854 */
855
856int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
857{
858	unsigned long blocknr;
859
860	write_lock(&journal->j_state_lock);
861	J_ASSERT(journal->j_free > 1);
862
863	blocknr = journal->j_head;
864	journal->j_head++;
865	journal->j_free--;
866	if (journal->j_head == journal->j_last)
867		journal->j_head = journal->j_first;
868	write_unlock(&journal->j_state_lock);
869	return jbd2_journal_bmap(journal, blocknr, retp);
870}
871
872/* Map one fast commit buffer for use by the file system */
873int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
874{
875	unsigned long long pblock;
876	unsigned long blocknr;
877	int ret = 0;
878	struct buffer_head *bh;
879	int fc_off;
880
881	*bh_out = NULL;
882
883	if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
884		fc_off = journal->j_fc_off;
885		blocknr = journal->j_fc_first + fc_off;
886		journal->j_fc_off++;
887	} else {
888		ret = -EINVAL;
889	}
890
891	if (ret)
892		return ret;
893
894	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
895	if (ret)
896		return ret;
897
898	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
899	if (!bh)
900		return -ENOMEM;
901
902
903	journal->j_fc_wbuf[fc_off] = bh;
904
905	*bh_out = bh;
906
907	return 0;
908}
909EXPORT_SYMBOL(jbd2_fc_get_buf);
910
911/*
912 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
913 * for completion.
914 */
915int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
916{
917	struct buffer_head *bh;
918	int i, j_fc_off;
919
920	j_fc_off = journal->j_fc_off;
921
922	/*
923	 * Wait in reverse order to minimize chances of us being woken up before
924	 * all IOs have completed
925	 */
926	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
927		bh = journal->j_fc_wbuf[i];
928		wait_on_buffer(bh);
929		/*
930		 * Update j_fc_off so jbd2_fc_release_bufs can release remain
931		 * buffer head.
932		 */
933		if (unlikely(!buffer_uptodate(bh))) {
934			journal->j_fc_off = i + 1;
935			return -EIO;
936		}
937		put_bh(bh);
938		journal->j_fc_wbuf[i] = NULL;
939	}
940
941	return 0;
942}
943EXPORT_SYMBOL(jbd2_fc_wait_bufs);
944
945/*
946 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
947 * for completion.
948 */
949int jbd2_fc_release_bufs(journal_t *journal)
950{
951	struct buffer_head *bh;
952	int i, j_fc_off;
953
954	j_fc_off = journal->j_fc_off;
955
956	/*
957	 * Wait in reverse order to minimize chances of us being woken up before
958	 * all IOs have completed
959	 */
960	for (i = j_fc_off - 1; i >= 0; i--) {
961		bh = journal->j_fc_wbuf[i];
962		if (!bh)
963			break;
964		put_bh(bh);
965		journal->j_fc_wbuf[i] = NULL;
966	}
967
968	return 0;
969}
970EXPORT_SYMBOL(jbd2_fc_release_bufs);
971
972/*
973 * Conversion of logical to physical block numbers for the journal
974 *
975 * On external journals the journal blocks are identity-mapped, so
976 * this is a no-op.  If needed, we can use j_blk_offset - everything is
977 * ready.
978 */
979int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
980		 unsigned long long *retp)
981{
982	int err = 0;
983	unsigned long long ret;
984	sector_t block = 0;
985
986	if (journal->j_inode) {
987		block = blocknr;
988		ret = bmap(journal->j_inode, &block);
989
990		if (ret || !block) {
991			printk(KERN_ALERT "%s: journal block not found "
992					"at offset %lu on %s\n",
993			       __func__, blocknr, journal->j_devname);
994			err = -EIO;
995			jbd2_journal_abort(journal, err);
996		} else {
997			*retp = block;
998		}
999
1000	} else {
1001		*retp = blocknr; /* +journal->j_blk_offset */
1002	}
1003	return err;
1004}
1005
1006/*
1007 * We play buffer_head aliasing tricks to write data/metadata blocks to
1008 * the journal without copying their contents, but for journal
1009 * descriptor blocks we do need to generate bona fide buffers.
1010 *
1011 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
1012 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
1013 * But we don't bother doing that, so there will be coherency problems with
1014 * mmaps of blockdevs which hold live JBD-controlled filesystems.
1015 */
1016struct buffer_head *
1017jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
1018{
1019	journal_t *journal = transaction->t_journal;
1020	struct buffer_head *bh;
1021	unsigned long long blocknr;
1022	journal_header_t *header;
1023	int err;
1024
1025	err = jbd2_journal_next_log_block(journal, &blocknr);
1026
1027	if (err)
1028		return NULL;
1029
1030	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1031	if (!bh)
1032		return NULL;
1033	atomic_dec(&transaction->t_outstanding_credits);
1034	lock_buffer(bh);
1035	memset(bh->b_data, 0, journal->j_blocksize);
1036	header = (journal_header_t *)bh->b_data;
1037	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1038	header->h_blocktype = cpu_to_be32(type);
1039	header->h_sequence = cpu_to_be32(transaction->t_tid);
1040	set_buffer_uptodate(bh);
1041	unlock_buffer(bh);
1042	BUFFER_TRACE(bh, "return this buffer");
1043	return bh;
1044}
1045
1046void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1047{
1048	struct jbd2_journal_block_tail *tail;
1049	__u32 csum;
1050
1051	if (!jbd2_journal_has_csum_v2or3(j))
1052		return;
1053
1054	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1055			sizeof(struct jbd2_journal_block_tail));
1056	tail->t_checksum = 0;
1057	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1058	tail->t_checksum = cpu_to_be32(csum);
1059}
1060
1061/*
1062 * Return tid of the oldest transaction in the journal and block in the journal
1063 * where the transaction starts.
1064 *
1065 * If the journal is now empty, return which will be the next transaction ID
1066 * we will write and where will that transaction start.
1067 *
1068 * The return value is 0 if journal tail cannot be pushed any further, 1 if
1069 * it can.
1070 */
1071int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1072			      unsigned long *block)
1073{
1074	transaction_t *transaction;
1075	int ret;
1076
1077	read_lock(&journal->j_state_lock);
1078	spin_lock(&journal->j_list_lock);
1079	transaction = journal->j_checkpoint_transactions;
1080	if (transaction) {
1081		*tid = transaction->t_tid;
1082		*block = transaction->t_log_start;
1083	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1084		*tid = transaction->t_tid;
1085		*block = transaction->t_log_start;
1086	} else if ((transaction = journal->j_running_transaction) != NULL) {
1087		*tid = transaction->t_tid;
1088		*block = journal->j_head;
1089	} else {
1090		*tid = journal->j_transaction_sequence;
1091		*block = journal->j_head;
1092	}
1093	ret = tid_gt(*tid, journal->j_tail_sequence);
1094	spin_unlock(&journal->j_list_lock);
1095	read_unlock(&journal->j_state_lock);
1096
1097	return ret;
1098}
1099
1100/*
1101 * Update information in journal structure and in on disk journal superblock
1102 * about log tail. This function does not check whether information passed in
1103 * really pushes log tail further. It's responsibility of the caller to make
1104 * sure provided log tail information is valid (e.g. by holding
1105 * j_checkpoint_mutex all the time between computing log tail and calling this
1106 * function as is the case with jbd2_cleanup_journal_tail()).
1107 *
1108 * Requires j_checkpoint_mutex
1109 */
1110int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1111{
1112	unsigned long freed;
1113	int ret;
1114
1115	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1116
1117	/*
1118	 * We cannot afford for write to remain in drive's caches since as
1119	 * soon as we update j_tail, next transaction can start reusing journal
1120	 * space and if we lose sb update during power failure we'd replay
1121	 * old transaction with possibly newly overwritten data.
1122	 */
1123	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1124					      REQ_SYNC | REQ_FUA);
1125	if (ret)
1126		goto out;
1127
1128	write_lock(&journal->j_state_lock);
1129	freed = block - journal->j_tail;
1130	if (block < journal->j_tail)
1131		freed += journal->j_last - journal->j_first;
1132
1133	trace_jbd2_update_log_tail(journal, tid, block, freed);
1134	jbd_debug(1,
1135		  "Cleaning journal tail from %u to %u (offset %lu), "
1136		  "freeing %lu\n",
1137		  journal->j_tail_sequence, tid, block, freed);
1138
1139	journal->j_free += freed;
1140	journal->j_tail_sequence = tid;
1141	journal->j_tail = block;
1142	write_unlock(&journal->j_state_lock);
1143
1144out:
1145	return ret;
1146}
1147
1148/*
1149 * This is a variation of __jbd2_update_log_tail which checks for validity of
1150 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1151 * with other threads updating log tail.
1152 */
1153void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1154{
1155	mutex_lock_io(&journal->j_checkpoint_mutex);
1156	if (tid_gt(tid, journal->j_tail_sequence))
1157		__jbd2_update_log_tail(journal, tid, block);
1158	mutex_unlock(&journal->j_checkpoint_mutex);
1159}
1160
1161struct jbd2_stats_proc_session {
1162	journal_t *journal;
1163	struct transaction_stats_s *stats;
1164	int start;
1165	int max;
1166};
1167
1168static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1169{
1170	return *pos ? NULL : SEQ_START_TOKEN;
1171}
1172
1173static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1174{
1175	(*pos)++;
1176	return NULL;
1177}
1178
1179static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1180{
1181	struct jbd2_stats_proc_session *s = seq->private;
1182
1183	if (v != SEQ_START_TOKEN)
1184		return 0;
1185	seq_printf(seq, "%lu transactions (%lu requested), "
1186		   "each up to %u blocks\n",
1187		   s->stats->ts_tid, s->stats->ts_requested,
1188		   s->journal->j_max_transaction_buffers);
1189	if (s->stats->ts_tid == 0)
1190		return 0;
1191	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1192	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1193	seq_printf(seq, "  %ums request delay\n",
1194	    (s->stats->ts_requested == 0) ? 0 :
1195	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1196			     s->stats->ts_requested));
1197	seq_printf(seq, "  %ums running transaction\n",
1198	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1199	seq_printf(seq, "  %ums transaction was being locked\n",
1200	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1201	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1202	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1203	seq_printf(seq, "  %ums logging transaction\n",
1204	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1205	seq_printf(seq, "  %lluus average transaction commit time\n",
1206		   div_u64(s->journal->j_average_commit_time, 1000));
1207	seq_printf(seq, "  %lu handles per transaction\n",
1208	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1209	seq_printf(seq, "  %lu blocks per transaction\n",
1210	    s->stats->run.rs_blocks / s->stats->ts_tid);
1211	seq_printf(seq, "  %lu logged blocks per transaction\n",
1212	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1213	return 0;
1214}
1215
1216static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1217{
1218}
1219
1220static const struct seq_operations jbd2_seq_info_ops = {
1221	.start  = jbd2_seq_info_start,
1222	.next   = jbd2_seq_info_next,
1223	.stop   = jbd2_seq_info_stop,
1224	.show   = jbd2_seq_info_show,
1225};
1226
1227static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1228{
1229	journal_t *journal = PDE_DATA(inode);
1230	struct jbd2_stats_proc_session *s;
1231	int rc, size;
1232
1233	s = kmalloc(sizeof(*s), GFP_KERNEL);
1234	if (s == NULL)
1235		return -ENOMEM;
1236	size = sizeof(struct transaction_stats_s);
1237	s->stats = kmalloc(size, GFP_KERNEL);
1238	if (s->stats == NULL) {
1239		kfree(s);
1240		return -ENOMEM;
1241	}
1242	spin_lock(&journal->j_history_lock);
1243	memcpy(s->stats, &journal->j_stats, size);
1244	s->journal = journal;
1245	spin_unlock(&journal->j_history_lock);
1246
1247	rc = seq_open(file, &jbd2_seq_info_ops);
1248	if (rc == 0) {
1249		struct seq_file *m = file->private_data;
1250		m->private = s;
1251	} else {
1252		kfree(s->stats);
1253		kfree(s);
1254	}
1255	return rc;
1256
1257}
1258
1259static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1260{
1261	struct seq_file *seq = file->private_data;
1262	struct jbd2_stats_proc_session *s = seq->private;
1263	kfree(s->stats);
1264	kfree(s);
1265	return seq_release(inode, file);
1266}
1267
1268static const struct proc_ops jbd2_info_proc_ops = {
1269	.proc_open	= jbd2_seq_info_open,
1270	.proc_read	= seq_read,
1271	.proc_lseek	= seq_lseek,
1272	.proc_release	= jbd2_seq_info_release,
1273};
1274
1275static struct proc_dir_entry *proc_jbd2_stats;
1276
1277static void jbd2_stats_proc_init(journal_t *journal)
1278{
1279	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1280	if (journal->j_proc_entry) {
1281		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1282				 &jbd2_info_proc_ops, journal);
1283	}
1284}
1285
1286static void jbd2_stats_proc_exit(journal_t *journal)
1287{
1288	remove_proc_entry("info", journal->j_proc_entry);
1289	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1290}
1291
1292/* Minimum size of descriptor tag */
1293static int jbd2_min_tag_size(void)
1294{
1295	/*
1296	 * Tag with 32-bit block numbers does not use last four bytes of the
1297	 * structure
1298	 */
1299	return sizeof(journal_block_tag_t) - 4;
1300}
1301
1302/**
1303 * jbd2_journal_shrink_scan()
1304 *
1305 * Scan the checkpointed buffer on the checkpoint list and release the
1306 * journal_head.
1307 */
1308static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1309					      struct shrink_control *sc)
1310{
1311	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1312	unsigned long nr_to_scan = sc->nr_to_scan;
1313	unsigned long nr_shrunk;
1314	unsigned long count;
1315
1316	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1317	trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1318
1319	nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1320
1321	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1322	trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1323
1324	return nr_shrunk;
1325}
1326
1327/**
1328 * jbd2_journal_shrink_count()
1329 *
1330 * Count the number of checkpoint buffers on the checkpoint list.
1331 */
1332static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1333					       struct shrink_control *sc)
1334{
1335	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1336	unsigned long count;
1337
1338	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1339	trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1340
1341	return count;
1342}
1343
1344/*
1345 * Management for journal control blocks: functions to create and
1346 * destroy journal_t structures, and to initialise and read existing
1347 * journal blocks from disk.  */
1348
1349/* First: create and setup a journal_t object in memory.  We initialise
1350 * very few fields yet: that has to wait until we have created the
1351 * journal structures from from scratch, or loaded them from disk. */
1352
1353static journal_t *journal_init_common(struct block_device *bdev,
1354			struct block_device *fs_dev,
1355			unsigned long long start, int len, int blocksize)
1356{
1357	static struct lock_class_key jbd2_trans_commit_key;
1358	journal_t *journal;
1359	int err;
1360	struct buffer_head *bh;
1361	int n;
1362
1363	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1364	if (!journal)
1365		return NULL;
1366
1367	init_waitqueue_head(&journal->j_wait_transaction_locked);
1368	init_waitqueue_head(&journal->j_wait_done_commit);
1369	init_waitqueue_head(&journal->j_wait_commit);
1370	init_waitqueue_head(&journal->j_wait_updates);
1371	init_waitqueue_head(&journal->j_wait_reserved);
1372	init_waitqueue_head(&journal->j_fc_wait);
1373	mutex_init(&journal->j_abort_mutex);
1374	mutex_init(&journal->j_barrier);
1375	mutex_init(&journal->j_checkpoint_mutex);
1376	spin_lock_init(&journal->j_revoke_lock);
1377	spin_lock_init(&journal->j_list_lock);
1378	rwlock_init(&journal->j_state_lock);
1379
1380	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1381	journal->j_min_batch_time = 0;
1382	journal->j_max_batch_time = 15000; /* 15ms */
1383	atomic_set(&journal->j_reserved_credits, 0);
1384
1385	/* The journal is marked for error until we succeed with recovery! */
1386	journal->j_flags = JBD2_ABORT;
1387
1388	/* Set up a default-sized revoke table for the new mount. */
1389	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1390	if (err)
1391		goto err_cleanup;
1392
1393	spin_lock_init(&journal->j_history_lock);
1394
1395	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1396			 &jbd2_trans_commit_key, 0);
1397
1398	/* journal descriptor can store up to n blocks -bzzz */
1399	journal->j_blocksize = blocksize;
1400	journal->j_dev = bdev;
1401	journal->j_fs_dev = fs_dev;
1402	journal->j_blk_offset = start;
1403	journal->j_total_len = len;
1404	/* We need enough buffers to write out full descriptor block. */
1405	n = journal->j_blocksize / jbd2_min_tag_size();
1406	journal->j_wbufsize = n;
1407	journal->j_fc_wbuf = NULL;
1408	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1409					GFP_KERNEL);
1410	if (!journal->j_wbuf)
1411		goto err_cleanup;
1412
1413	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1414	if (!bh) {
1415		pr_err("%s: Cannot get buffer for journal superblock\n",
1416			__func__);
1417		goto err_cleanup;
1418	}
1419	journal->j_sb_buffer = bh;
1420	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1421
1422	journal->j_shrink_transaction = NULL;
1423	journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan;
1424	journal->j_shrinker.count_objects = jbd2_journal_shrink_count;
1425	journal->j_shrinker.seeks = DEFAULT_SEEKS;
1426	journal->j_shrinker.batch = journal->j_max_transaction_buffers;
1427
1428	if (percpu_counter_init(&journal->j_checkpoint_jh_count, 0, GFP_KERNEL))
1429		goto err_cleanup;
1430
1431	if (register_shrinker(&journal->j_shrinker)) {
1432		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1433		goto err_cleanup;
1434	}
1435	return journal;
1436
1437err_cleanup:
1438	brelse(journal->j_sb_buffer);
1439	kfree(journal->j_wbuf);
1440	jbd2_journal_destroy_revoke(journal);
1441	kfree(journal);
1442	return NULL;
1443}
1444
1445/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1446 *
1447 * Create a journal structure assigned some fixed set of disk blocks to
1448 * the journal.  We don't actually touch those disk blocks yet, but we
1449 * need to set up all of the mapping information to tell the journaling
1450 * system where the journal blocks are.
1451 *
1452 */
1453
1454/**
1455 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1456 *  @bdev: Block device on which to create the journal
1457 *  @fs_dev: Device which hold journalled filesystem for this journal.
1458 *  @start: Block nr Start of journal.
1459 *  @len:  Length of the journal in blocks.
1460 *  @blocksize: blocksize of journalling device
1461 *
1462 *  Returns: a newly created journal_t *
1463 *
1464 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1465 *  range of blocks on an arbitrary block device.
1466 *
1467 */
1468journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1469			struct block_device *fs_dev,
1470			unsigned long long start, int len, int blocksize)
1471{
1472	journal_t *journal;
1473
1474	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1475	if (!journal)
1476		return NULL;
1477
1478	bdevname(journal->j_dev, journal->j_devname);
1479	strreplace(journal->j_devname, '/', '!');
1480	jbd2_stats_proc_init(journal);
1481
1482	return journal;
1483}
1484
1485/**
1486 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1487 *  @inode: An inode to create the journal in
1488 *
1489 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1490 * the journal.  The inode must exist already, must support bmap() and
1491 * must have all data blocks preallocated.
1492 */
1493journal_t *jbd2_journal_init_inode(struct inode *inode)
1494{
1495	journal_t *journal;
1496	sector_t blocknr;
1497	char *p;
1498	int err = 0;
1499
1500	blocknr = 0;
1501	err = bmap(inode, &blocknr);
1502
1503	if (err || !blocknr) {
1504		pr_err("%s: Cannot locate journal superblock\n",
1505			__func__);
1506		return NULL;
1507	}
1508
1509	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1510		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1511		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1512
1513	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1514			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1515			inode->i_sb->s_blocksize);
1516	if (!journal)
1517		return NULL;
1518
1519	journal->j_inode = inode;
1520	bdevname(journal->j_dev, journal->j_devname);
1521	p = strreplace(journal->j_devname, '/', '!');
1522	sprintf(p, "-%lu", journal->j_inode->i_ino);
1523	jbd2_stats_proc_init(journal);
1524
1525	return journal;
1526}
1527
1528/*
1529 * If the journal init or create aborts, we need to mark the journal
1530 * superblock as being NULL to prevent the journal destroy from writing
1531 * back a bogus superblock.
1532 */
1533static void journal_fail_superblock(journal_t *journal)
1534{
1535	struct buffer_head *bh = journal->j_sb_buffer;
1536	brelse(bh);
1537	journal->j_sb_buffer = NULL;
1538}
1539
1540/*
1541 * Given a journal_t structure, initialise the various fields for
1542 * startup of a new journaling session.  We use this both when creating
1543 * a journal, and after recovering an old journal to reset it for
1544 * subsequent use.
1545 */
1546
1547static int journal_reset(journal_t *journal)
1548{
1549	journal_superblock_t *sb = journal->j_superblock;
1550	unsigned long long first, last;
1551
1552	first = be32_to_cpu(sb->s_first);
1553	last = be32_to_cpu(sb->s_maxlen);
1554	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1555		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1556		       first, last);
1557		journal_fail_superblock(journal);
1558		return -EINVAL;
1559	}
1560
1561	journal->j_first = first;
1562	journal->j_last = last;
1563
1564	journal->j_head = journal->j_first;
1565	journal->j_tail = journal->j_first;
1566	journal->j_free = journal->j_last - journal->j_first;
1567
1568	journal->j_tail_sequence = journal->j_transaction_sequence;
1569	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1570	journal->j_commit_request = journal->j_commit_sequence;
1571
1572	journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1573
1574	/*
1575	 * Now that journal recovery is done, turn fast commits off here. This
1576	 * way, if fast commit was enabled before the crash but if now FS has
1577	 * disabled it, we don't enable fast commits.
1578	 */
1579	jbd2_clear_feature_fast_commit(journal);
1580
1581	/*
1582	 * As a special case, if the on-disk copy is already marked as needing
1583	 * no recovery (s_start == 0), then we can safely defer the superblock
1584	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1585	 * attempting a write to a potential-readonly device.
1586	 */
1587	if (sb->s_start == 0) {
1588		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1589			"(start %ld, seq %u, errno %d)\n",
1590			journal->j_tail, journal->j_tail_sequence,
1591			journal->j_errno);
1592		journal->j_flags |= JBD2_FLUSHED;
1593	} else {
1594		/* Lock here to make assertions happy... */
1595		mutex_lock_io(&journal->j_checkpoint_mutex);
1596		/*
1597		 * Update log tail information. We use REQ_FUA since new
1598		 * transaction will start reusing journal space and so we
1599		 * must make sure information about current log tail is on
1600		 * disk before that.
1601		 */
1602		jbd2_journal_update_sb_log_tail(journal,
1603						journal->j_tail_sequence,
1604						journal->j_tail,
1605						REQ_SYNC | REQ_FUA);
1606		mutex_unlock(&journal->j_checkpoint_mutex);
1607	}
1608	return jbd2_journal_start_thread(journal);
1609}
1610
1611/*
1612 * This function expects that the caller will have locked the journal
1613 * buffer head, and will return with it unlocked
1614 */
1615static int jbd2_write_superblock(journal_t *journal, int write_flags)
1616{
1617	struct buffer_head *bh = journal->j_sb_buffer;
1618	journal_superblock_t *sb = journal->j_superblock;
1619	int ret;
1620
1621	/* Buffer got discarded which means block device got invalidated */
1622	if (!buffer_mapped(bh)) {
1623		unlock_buffer(bh);
1624		return -EIO;
1625	}
1626
1627	if (!(journal->j_flags & JBD2_BARRIER))
1628		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1629
1630	trace_jbd2_write_superblock(journal, write_flags);
1631
1632	if (buffer_write_io_error(bh)) {
1633		/*
1634		 * Oh, dear.  A previous attempt to write the journal
1635		 * superblock failed.  This could happen because the
1636		 * USB device was yanked out.  Or it could happen to
1637		 * be a transient write error and maybe the block will
1638		 * be remapped.  Nothing we can do but to retry the
1639		 * write and hope for the best.
1640		 */
1641		printk(KERN_ERR "JBD2: previous I/O error detected "
1642		       "for journal superblock update for %s.\n",
1643		       journal->j_devname);
1644		clear_buffer_write_io_error(bh);
1645		set_buffer_uptodate(bh);
1646	}
1647	if (jbd2_journal_has_csum_v2or3(journal))
1648		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1649	get_bh(bh);
1650	bh->b_end_io = end_buffer_write_sync;
1651	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1652	wait_on_buffer(bh);
1653	if (buffer_write_io_error(bh)) {
1654		clear_buffer_write_io_error(bh);
1655		set_buffer_uptodate(bh);
1656		ret = -EIO;
1657	}
1658	if (ret) {
1659		printk(KERN_ERR "JBD2: Error %d detected when updating "
1660		       "journal superblock for %s.\n", ret,
1661		       journal->j_devname);
1662		if (!is_journal_aborted(journal))
1663			jbd2_journal_abort(journal, ret);
1664	}
1665
1666	return ret;
1667}
1668
1669/**
1670 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1671 * @journal: The journal to update.
1672 * @tail_tid: TID of the new transaction at the tail of the log
1673 * @tail_block: The first block of the transaction at the tail of the log
1674 * @write_op: With which operation should we write the journal sb
1675 *
1676 * Update a journal's superblock information about log tail and write it to
1677 * disk, waiting for the IO to complete.
1678 */
1679int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1680				     unsigned long tail_block, int write_op)
1681{
1682	journal_superblock_t *sb = journal->j_superblock;
1683	int ret;
1684
1685	if (is_journal_aborted(journal))
1686		return -EIO;
1687	if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1688		jbd2_journal_abort(journal, -EIO);
1689		return -EIO;
1690	}
1691
1692	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1693	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1694		  tail_block, tail_tid);
1695
1696	lock_buffer(journal->j_sb_buffer);
1697	sb->s_sequence = cpu_to_be32(tail_tid);
1698	sb->s_start    = cpu_to_be32(tail_block);
1699
1700	ret = jbd2_write_superblock(journal, write_op);
1701	if (ret)
1702		goto out;
1703
1704	/* Log is no longer empty */
1705	write_lock(&journal->j_state_lock);
1706	WARN_ON(!sb->s_sequence);
1707	journal->j_flags &= ~JBD2_FLUSHED;
1708	write_unlock(&journal->j_state_lock);
1709
1710out:
1711	return ret;
1712}
1713
1714/**
1715 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1716 * @journal: The journal to update.
1717 * @write_op: With which operation should we write the journal sb
1718 *
1719 * Update a journal's dynamic superblock fields to show that journal is empty.
1720 * Write updated superblock to disk waiting for IO to complete.
1721 */
1722static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1723{
1724	journal_superblock_t *sb = journal->j_superblock;
1725	bool had_fast_commit = false;
1726
1727	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1728	lock_buffer(journal->j_sb_buffer);
1729	if (sb->s_start == 0) {		/* Is it already empty? */
1730		unlock_buffer(journal->j_sb_buffer);
1731		return;
1732	}
1733
1734	jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1735		  journal->j_tail_sequence);
1736
1737	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1738	sb->s_start    = cpu_to_be32(0);
1739	if (jbd2_has_feature_fast_commit(journal)) {
1740		/*
1741		 * When journal is clean, no need to commit fast commit flag and
1742		 * make file system incompatible with older kernels.
1743		 */
1744		jbd2_clear_feature_fast_commit(journal);
1745		had_fast_commit = true;
1746	}
1747
1748	jbd2_write_superblock(journal, write_op);
1749
1750	if (had_fast_commit)
1751		jbd2_set_feature_fast_commit(journal);
1752
1753	/* Log is no longer empty */
1754	write_lock(&journal->j_state_lock);
1755	journal->j_flags |= JBD2_FLUSHED;
1756	write_unlock(&journal->j_state_lock);
1757}
1758
1759
1760/**
1761 * jbd2_journal_update_sb_errno() - Update error in the journal.
1762 * @journal: The journal to update.
1763 *
1764 * Update a journal's errno.  Write updated superblock to disk waiting for IO
1765 * to complete.
1766 */
1767void jbd2_journal_update_sb_errno(journal_t *journal)
1768{
1769	journal_superblock_t *sb = journal->j_superblock;
1770	int errcode;
1771
1772	lock_buffer(journal->j_sb_buffer);
1773	errcode = journal->j_errno;
1774	if (errcode == -ESHUTDOWN)
1775		errcode = 0;
1776	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1777	sb->s_errno    = cpu_to_be32(errcode);
1778
1779	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1780}
1781EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1782
1783static int journal_revoke_records_per_block(journal_t *journal)
1784{
1785	int record_size;
1786	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1787
1788	if (jbd2_has_feature_64bit(journal))
1789		record_size = 8;
1790	else
1791		record_size = 4;
1792
1793	if (jbd2_journal_has_csum_v2or3(journal))
1794		space -= sizeof(struct jbd2_journal_block_tail);
1795	return space / record_size;
1796}
1797
1798/*
1799 * Read the superblock for a given journal, performing initial
1800 * validation of the format.
1801 */
1802static int journal_get_superblock(journal_t *journal)
1803{
1804	struct buffer_head *bh;
1805	journal_superblock_t *sb;
1806	int err = -EIO;
1807
1808	bh = journal->j_sb_buffer;
1809
1810	J_ASSERT(bh != NULL);
1811	if (!buffer_uptodate(bh)) {
1812		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1813		wait_on_buffer(bh);
1814		if (!buffer_uptodate(bh)) {
1815			printk(KERN_ERR
1816				"JBD2: IO error reading journal superblock\n");
1817			goto out;
1818		}
1819	}
1820
1821	if (buffer_verified(bh))
1822		return 0;
1823
1824	sb = journal->j_superblock;
1825
1826	err = -EINVAL;
1827
1828	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1829	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1830		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1831		goto out;
1832	}
1833
1834	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1835	case JBD2_SUPERBLOCK_V1:
1836		journal->j_format_version = 1;
1837		break;
1838	case JBD2_SUPERBLOCK_V2:
1839		journal->j_format_version = 2;
1840		break;
1841	default:
1842		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1843		goto out;
1844	}
1845
1846	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1847		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1848	else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1849		printk(KERN_WARNING "JBD2: journal file too short\n");
1850		goto out;
1851	}
1852
1853	if (be32_to_cpu(sb->s_first) == 0 ||
1854	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1855		printk(KERN_WARNING
1856			"JBD2: Invalid start block of journal: %u\n",
1857			be32_to_cpu(sb->s_first));
1858		goto out;
1859	}
1860
1861	if (jbd2_has_feature_csum2(journal) &&
1862	    jbd2_has_feature_csum3(journal)) {
1863		/* Can't have checksum v2 and v3 at the same time! */
1864		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1865		       "at the same time!\n");
1866		goto out;
1867	}
1868
1869	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1870	    jbd2_has_feature_checksum(journal)) {
1871		/* Can't have checksum v1 and v2 on at the same time! */
1872		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1873		       "at the same time!\n");
1874		goto out;
1875	}
1876
1877	if (!jbd2_verify_csum_type(journal, sb)) {
1878		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1879		goto out;
1880	}
1881
1882	/* Load the checksum driver */
1883	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1884		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1885		if (IS_ERR(journal->j_chksum_driver)) {
1886			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1887			err = PTR_ERR(journal->j_chksum_driver);
1888			journal->j_chksum_driver = NULL;
1889			goto out;
1890		}
1891	}
1892
1893	if (jbd2_journal_has_csum_v2or3(journal)) {
1894		/* Check superblock checksum */
1895		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1896			printk(KERN_ERR "JBD2: journal checksum error\n");
1897			err = -EFSBADCRC;
1898			goto out;
1899		}
1900
1901		/* Precompute checksum seed for all metadata */
1902		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1903						   sizeof(sb->s_uuid));
1904	}
1905
1906	journal->j_revoke_records_per_block =
1907				journal_revoke_records_per_block(journal);
1908	set_buffer_verified(bh);
1909
1910	return 0;
1911
1912out:
1913	journal_fail_superblock(journal);
1914	return err;
1915}
1916
1917/*
1918 * Load the on-disk journal superblock and read the key fields into the
1919 * journal_t.
1920 */
1921
1922static int load_superblock(journal_t *journal)
1923{
1924	int err;
1925	journal_superblock_t *sb;
1926	int num_fc_blocks;
1927
1928	err = journal_get_superblock(journal);
1929	if (err)
1930		return err;
1931
1932	sb = journal->j_superblock;
1933
1934	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1935	journal->j_tail = be32_to_cpu(sb->s_start);
1936	journal->j_first = be32_to_cpu(sb->s_first);
1937	journal->j_errno = be32_to_cpu(sb->s_errno);
1938	journal->j_last = be32_to_cpu(sb->s_maxlen);
1939
1940	if (jbd2_has_feature_fast_commit(journal)) {
1941		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1942		num_fc_blocks = be32_to_cpu(sb->s_num_fc_blks);
1943		if (!num_fc_blocks)
1944			num_fc_blocks = JBD2_MIN_FC_BLOCKS;
1945		if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS)
1946			journal->j_last = journal->j_fc_last - num_fc_blocks;
1947		journal->j_fc_first = journal->j_last + 1;
1948		journal->j_fc_off = 0;
1949	}
1950
1951	return 0;
1952}
1953
1954
1955/**
1956 * jbd2_journal_load() - Read journal from disk.
1957 * @journal: Journal to act on.
1958 *
1959 * Given a journal_t structure which tells us which disk blocks contain
1960 * a journal, read the journal from disk to initialise the in-memory
1961 * structures.
1962 */
1963int jbd2_journal_load(journal_t *journal)
1964{
1965	int err;
1966	journal_superblock_t *sb;
1967
1968	err = load_superblock(journal);
1969	if (err)
1970		return err;
1971
1972	sb = journal->j_superblock;
1973	/* If this is a V2 superblock, then we have to check the
1974	 * features flags on it. */
1975
1976	if (journal->j_format_version >= 2) {
1977		if ((sb->s_feature_ro_compat &
1978		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1979		    (sb->s_feature_incompat &
1980		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1981			printk(KERN_WARNING
1982				"JBD2: Unrecognised features on journal\n");
1983			return -EINVAL;
1984		}
1985	}
1986
1987	/*
1988	 * Create a slab for this blocksize
1989	 */
1990	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1991	if (err)
1992		return err;
1993
1994	/* Let the recovery code check whether it needs to recover any
1995	 * data from the journal. */
1996	if (jbd2_journal_recover(journal))
1997		goto recovery_error;
1998
1999	if (journal->j_failed_commit) {
2000		printk(KERN_ERR "JBD2: journal transaction %u on %s "
2001		       "is corrupt.\n", journal->j_failed_commit,
2002		       journal->j_devname);
2003		return -EFSCORRUPTED;
2004	}
2005	/*
2006	 * clear JBD2_ABORT flag initialized in journal_init_common
2007	 * here to update log tail information with the newest seq.
2008	 */
2009	journal->j_flags &= ~JBD2_ABORT;
2010
2011	/* OK, we've finished with the dynamic journal bits:
2012	 * reinitialise the dynamic contents of the superblock in memory
2013	 * and reset them on disk. */
2014	if (journal_reset(journal))
2015		goto recovery_error;
2016
2017	journal->j_flags |= JBD2_LOADED;
2018	return 0;
2019
2020recovery_error:
2021	printk(KERN_WARNING "JBD2: recovery failed\n");
2022	return -EIO;
2023}
2024
2025/**
2026 * jbd2_journal_destroy() - Release a journal_t structure.
2027 * @journal: Journal to act on.
2028 *
2029 * Release a journal_t structure once it is no longer in use by the
2030 * journaled object.
2031 * Return <0 if we couldn't clean up the journal.
2032 */
2033int jbd2_journal_destroy(journal_t *journal)
2034{
2035	int err = 0;
2036
2037	/* Wait for the commit thread to wake up and die. */
2038	journal_kill_thread(journal);
2039
2040	/* Force a final log commit */
2041	if (journal->j_running_transaction)
2042		jbd2_journal_commit_transaction(journal);
2043
2044	/* Force any old transactions to disk */
2045
2046	/* Totally anal locking here... */
2047	spin_lock(&journal->j_list_lock);
2048	while (journal->j_checkpoint_transactions != NULL) {
2049		spin_unlock(&journal->j_list_lock);
2050		mutex_lock_io(&journal->j_checkpoint_mutex);
2051		err = jbd2_log_do_checkpoint(journal);
2052		mutex_unlock(&journal->j_checkpoint_mutex);
2053		/*
2054		 * If checkpointing failed, just free the buffers to avoid
2055		 * looping forever
2056		 */
2057		if (err) {
2058			jbd2_journal_destroy_checkpoint(journal);
2059			spin_lock(&journal->j_list_lock);
2060			break;
2061		}
2062		spin_lock(&journal->j_list_lock);
2063	}
2064
2065	J_ASSERT(journal->j_running_transaction == NULL);
2066	J_ASSERT(journal->j_committing_transaction == NULL);
2067	J_ASSERT(journal->j_checkpoint_transactions == NULL);
2068	spin_unlock(&journal->j_list_lock);
2069
2070	/*
2071	 * OK, all checkpoint transactions have been checked, now check the
2072	 * write out io error flag and abort the journal if some buffer failed
2073	 * to write back to the original location, otherwise the filesystem
2074	 * may become inconsistent.
2075	 */
2076	if (!is_journal_aborted(journal) &&
2077	    test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2078		jbd2_journal_abort(journal, -EIO);
2079
2080	if (journal->j_sb_buffer) {
2081		if (!is_journal_aborted(journal)) {
2082			mutex_lock_io(&journal->j_checkpoint_mutex);
2083
2084			write_lock(&journal->j_state_lock);
2085			journal->j_tail_sequence =
2086				++journal->j_transaction_sequence;
2087			write_unlock(&journal->j_state_lock);
2088
2089			jbd2_mark_journal_empty(journal,
2090					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2091			mutex_unlock(&journal->j_checkpoint_mutex);
2092		} else
2093			err = -EIO;
2094		brelse(journal->j_sb_buffer);
2095	}
2096
2097	if (journal->j_shrinker.flags & SHRINKER_REGISTERED) {
2098		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2099		unregister_shrinker(&journal->j_shrinker);
2100	}
2101	if (journal->j_proc_entry)
2102		jbd2_stats_proc_exit(journal);
2103	iput(journal->j_inode);
2104	if (journal->j_revoke)
2105		jbd2_journal_destroy_revoke(journal);
2106	if (journal->j_chksum_driver)
2107		crypto_free_shash(journal->j_chksum_driver);
2108	kfree(journal->j_fc_wbuf);
2109	kfree(journal->j_wbuf);
2110	kfree(journal);
2111
2112	return err;
2113}
2114
2115
2116/**
2117 * jbd2_journal_check_used_features() - Check if features specified are used.
2118 * @journal: Journal to check.
2119 * @compat: bitmask of compatible features
2120 * @ro: bitmask of features that force read-only mount
2121 * @incompat: bitmask of incompatible features
2122 *
2123 * Check whether the journal uses all of a given set of
2124 * features.  Return true (non-zero) if it does.
2125 **/
2126
2127int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2128				 unsigned long ro, unsigned long incompat)
2129{
2130	journal_superblock_t *sb;
2131
2132	if (!compat && !ro && !incompat)
2133		return 1;
2134	/* Load journal superblock if it is not loaded yet. */
2135	if (journal->j_format_version == 0 &&
2136	    journal_get_superblock(journal) != 0)
2137		return 0;
2138	if (journal->j_format_version == 1)
2139		return 0;
2140
2141	sb = journal->j_superblock;
2142
2143	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2144	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2145	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2146		return 1;
2147
2148	return 0;
2149}
2150
2151/**
2152 * jbd2_journal_check_available_features() - Check feature set in journalling layer
2153 * @journal: Journal to check.
2154 * @compat: bitmask of compatible features
2155 * @ro: bitmask of features that force read-only mount
2156 * @incompat: bitmask of incompatible features
2157 *
2158 * Check whether the journaling code supports the use of
2159 * all of a given set of features on this journal.  Return true
2160 * (non-zero) if it can. */
2161
2162int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2163				      unsigned long ro, unsigned long incompat)
2164{
2165	if (!compat && !ro && !incompat)
2166		return 1;
2167
2168	/* We can support any known requested features iff the
2169	 * superblock is in version 2.  Otherwise we fail to support any
2170	 * extended sb features. */
2171
2172	if (journal->j_format_version != 2)
2173		return 0;
2174
2175	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2176	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2177	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2178		return 1;
2179
2180	return 0;
2181}
2182
2183static int
2184jbd2_journal_initialize_fast_commit(journal_t *journal)
2185{
2186	journal_superblock_t *sb = journal->j_superblock;
2187	unsigned long long num_fc_blks;
2188
2189	num_fc_blks = be32_to_cpu(sb->s_num_fc_blks);
2190	if (num_fc_blks == 0)
2191		num_fc_blks = JBD2_MIN_FC_BLOCKS;
2192	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2193		return -ENOSPC;
2194
2195	/* Are we called twice? */
2196	WARN_ON(journal->j_fc_wbuf != NULL);
2197	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2198				sizeof(struct buffer_head *), GFP_KERNEL);
2199	if (!journal->j_fc_wbuf)
2200		return -ENOMEM;
2201
2202	journal->j_fc_wbufsize = num_fc_blks;
2203	journal->j_fc_last = journal->j_last;
2204	journal->j_last = journal->j_fc_last - num_fc_blks;
2205	journal->j_fc_first = journal->j_last + 1;
2206	journal->j_fc_off = 0;
2207	journal->j_free = journal->j_last - journal->j_first;
2208	journal->j_max_transaction_buffers =
2209		jbd2_journal_get_max_txn_bufs(journal);
2210
2211	return 0;
2212}
2213
2214/**
2215 * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2216 * @journal: Journal to act on.
2217 * @compat: bitmask of compatible features
2218 * @ro: bitmask of features that force read-only mount
2219 * @incompat: bitmask of incompatible features
2220 *
2221 * Mark a given journal feature as present on the
2222 * superblock.  Returns true if the requested features could be set.
2223 *
2224 */
2225
2226int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2227			  unsigned long ro, unsigned long incompat)
2228{
2229#define INCOMPAT_FEATURE_ON(f) \
2230		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2231#define COMPAT_FEATURE_ON(f) \
2232		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2233	journal_superblock_t *sb;
2234
2235	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2236		return 1;
2237
2238	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2239		return 0;
2240
2241	/* If enabling v2 checksums, turn on v3 instead */
2242	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2243		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2244		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2245	}
2246
2247	/* Asking for checksumming v3 and v1?  Only give them v3. */
2248	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2249	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2250		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2251
2252	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2253		  compat, ro, incompat);
2254
2255	sb = journal->j_superblock;
2256
2257	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2258		if (jbd2_journal_initialize_fast_commit(journal)) {
2259			pr_err("JBD2: Cannot enable fast commits.\n");
2260			return 0;
2261		}
2262	}
2263
2264	/* Load the checksum driver if necessary */
2265	if ((journal->j_chksum_driver == NULL) &&
2266	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2267		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2268		if (IS_ERR(journal->j_chksum_driver)) {
2269			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2270			journal->j_chksum_driver = NULL;
2271			return 0;
2272		}
2273		/* Precompute checksum seed for all metadata */
2274		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2275						   sizeof(sb->s_uuid));
2276	}
2277
2278	lock_buffer(journal->j_sb_buffer);
2279
2280	/* If enabling v3 checksums, update superblock */
2281	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2282		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2283		sb->s_feature_compat &=
2284			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2285	}
2286
2287	/* If enabling v1 checksums, downgrade superblock */
2288	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2289		sb->s_feature_incompat &=
2290			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2291				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2292
2293	sb->s_feature_compat    |= cpu_to_be32(compat);
2294	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2295	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2296	unlock_buffer(journal->j_sb_buffer);
2297	journal->j_revoke_records_per_block =
2298				journal_revoke_records_per_block(journal);
2299
2300	return 1;
2301#undef COMPAT_FEATURE_ON
2302#undef INCOMPAT_FEATURE_ON
2303}
2304
2305/*
2306 * jbd2_journal_clear_features() - Clear a given journal feature in the
2307 * 				    superblock
2308 * @journal: Journal to act on.
2309 * @compat: bitmask of compatible features
2310 * @ro: bitmask of features that force read-only mount
2311 * @incompat: bitmask of incompatible features
2312 *
2313 * Clear a given journal feature as present on the
2314 * superblock.
2315 */
2316void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2317				unsigned long ro, unsigned long incompat)
2318{
2319	journal_superblock_t *sb;
2320
2321	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2322		  compat, ro, incompat);
2323
2324	sb = journal->j_superblock;
2325
2326	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2327	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2328	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2329	journal->j_revoke_records_per_block =
2330				journal_revoke_records_per_block(journal);
2331}
2332EXPORT_SYMBOL(jbd2_journal_clear_features);
2333
2334/**
2335 * jbd2_journal_flush() - Flush journal
2336 * @journal: Journal to act on.
2337 *
2338 * Flush all data for a given journal to disk and empty the journal.
2339 * Filesystems can use this when remounting readonly to ensure that
2340 * recovery does not need to happen on remount.
2341 */
2342
2343int jbd2_journal_flush(journal_t *journal)
2344{
2345	int err = 0;
2346	transaction_t *transaction = NULL;
2347
2348	write_lock(&journal->j_state_lock);
2349
2350	/* Force everything buffered to the log... */
2351	if (journal->j_running_transaction) {
2352		transaction = journal->j_running_transaction;
2353		__jbd2_log_start_commit(journal, transaction->t_tid);
2354	} else if (journal->j_committing_transaction)
2355		transaction = journal->j_committing_transaction;
2356
2357	/* Wait for the log commit to complete... */
2358	if (transaction) {
2359		tid_t tid = transaction->t_tid;
2360
2361		write_unlock(&journal->j_state_lock);
2362		jbd2_log_wait_commit(journal, tid);
2363	} else {
2364		write_unlock(&journal->j_state_lock);
2365	}
2366
2367	/* ...and flush everything in the log out to disk. */
2368	spin_lock(&journal->j_list_lock);
2369	while (!err && journal->j_checkpoint_transactions != NULL) {
2370		spin_unlock(&journal->j_list_lock);
2371		mutex_lock_io(&journal->j_checkpoint_mutex);
2372		err = jbd2_log_do_checkpoint(journal);
2373		mutex_unlock(&journal->j_checkpoint_mutex);
2374		spin_lock(&journal->j_list_lock);
2375	}
2376	spin_unlock(&journal->j_list_lock);
2377
2378	if (is_journal_aborted(journal))
2379		return -EIO;
2380
2381	mutex_lock_io(&journal->j_checkpoint_mutex);
2382	if (!err) {
2383		err = jbd2_cleanup_journal_tail(journal);
2384		if (err < 0) {
2385			mutex_unlock(&journal->j_checkpoint_mutex);
2386			goto out;
2387		}
2388		err = 0;
2389	}
2390
2391	/* Finally, mark the journal as really needing no recovery.
2392	 * This sets s_start==0 in the underlying superblock, which is
2393	 * the magic code for a fully-recovered superblock.  Any future
2394	 * commits of data to the journal will restore the current
2395	 * s_start value. */
2396	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2397	mutex_unlock(&journal->j_checkpoint_mutex);
2398	write_lock(&journal->j_state_lock);
2399	J_ASSERT(!journal->j_running_transaction);
2400	J_ASSERT(!journal->j_committing_transaction);
2401	J_ASSERT(!journal->j_checkpoint_transactions);
2402	J_ASSERT(journal->j_head == journal->j_tail);
2403	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2404	write_unlock(&journal->j_state_lock);
2405out:
2406	return err;
2407}
2408
2409/**
2410 * jbd2_journal_wipe() - Wipe journal contents
2411 * @journal: Journal to act on.
2412 * @write: flag (see below)
2413 *
2414 * Wipe out all of the contents of a journal, safely.  This will produce
2415 * a warning if the journal contains any valid recovery information.
2416 * Must be called between journal_init_*() and jbd2_journal_load().
2417 *
2418 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2419 * we merely suppress recovery.
2420 */
2421
2422int jbd2_journal_wipe(journal_t *journal, int write)
2423{
2424	int err = 0;
2425
2426	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2427
2428	err = load_superblock(journal);
2429	if (err)
2430		return err;
2431
2432	if (!journal->j_tail)
2433		goto no_recovery;
2434
2435	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2436		write ? "Clearing" : "Ignoring");
2437
2438	err = jbd2_journal_skip_recovery(journal);
2439	if (write) {
2440		/* Lock to make assertions happy... */
2441		mutex_lock_io(&journal->j_checkpoint_mutex);
2442		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2443		mutex_unlock(&journal->j_checkpoint_mutex);
2444	}
2445
2446 no_recovery:
2447	return err;
2448}
2449
2450/**
2451 * jbd2_journal_abort () - Shutdown the journal immediately.
2452 * @journal: the journal to shutdown.
2453 * @errno:   an error number to record in the journal indicating
2454 *           the reason for the shutdown.
2455 *
2456 * Perform a complete, immediate shutdown of the ENTIRE
2457 * journal (not of a single transaction).  This operation cannot be
2458 * undone without closing and reopening the journal.
2459 *
2460 * The jbd2_journal_abort function is intended to support higher level error
2461 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2462 * mode.
2463 *
2464 * Journal abort has very specific semantics.  Any existing dirty,
2465 * unjournaled buffers in the main filesystem will still be written to
2466 * disk by bdflush, but the journaling mechanism will be suspended
2467 * immediately and no further transaction commits will be honoured.
2468 *
2469 * Any dirty, journaled buffers will be written back to disk without
2470 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2471 * filesystem, but we _do_ attempt to leave as much data as possible
2472 * behind for fsck to use for cleanup.
2473 *
2474 * Any attempt to get a new transaction handle on a journal which is in
2475 * ABORT state will just result in an -EROFS error return.  A
2476 * jbd2_journal_stop on an existing handle will return -EIO if we have
2477 * entered abort state during the update.
2478 *
2479 * Recursive transactions are not disturbed by journal abort until the
2480 * final jbd2_journal_stop, which will receive the -EIO error.
2481 *
2482 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2483 * which will be recorded (if possible) in the journal superblock.  This
2484 * allows a client to record failure conditions in the middle of a
2485 * transaction without having to complete the transaction to record the
2486 * failure to disk.  ext3_error, for example, now uses this
2487 * functionality.
2488 *
2489 */
2490
2491void jbd2_journal_abort(journal_t *journal, int errno)
2492{
2493	transaction_t *transaction;
2494
2495	/*
2496	 * Lock the aborting procedure until everything is done, this avoid
2497	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2498	 * ensure panic after the error info is written into journal's
2499	 * superblock.
2500	 */
2501	mutex_lock(&journal->j_abort_mutex);
2502	/*
2503	 * ESHUTDOWN always takes precedence because a file system check
2504	 * caused by any other journal abort error is not required after
2505	 * a shutdown triggered.
2506	 */
2507	write_lock(&journal->j_state_lock);
2508	if (journal->j_flags & JBD2_ABORT) {
2509		int old_errno = journal->j_errno;
2510
2511		write_unlock(&journal->j_state_lock);
2512		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2513			journal->j_errno = errno;
2514			jbd2_journal_update_sb_errno(journal);
2515		}
2516		mutex_unlock(&journal->j_abort_mutex);
2517		return;
2518	}
2519
2520	/*
2521	 * Mark the abort as occurred and start current running transaction
2522	 * to release all journaled buffer.
2523	 */
2524	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2525
2526	journal->j_flags |= JBD2_ABORT;
2527	journal->j_errno = errno;
2528	transaction = journal->j_running_transaction;
2529	if (transaction)
2530		__jbd2_log_start_commit(journal, transaction->t_tid);
2531	write_unlock(&journal->j_state_lock);
2532
2533	/*
2534	 * Record errno to the journal super block, so that fsck and jbd2
2535	 * layer could realise that a filesystem check is needed.
2536	 */
2537	jbd2_journal_update_sb_errno(journal);
2538	mutex_unlock(&journal->j_abort_mutex);
2539}
2540
2541/**
2542 * jbd2_journal_errno() - returns the journal's error state.
2543 * @journal: journal to examine.
2544 *
2545 * This is the errno number set with jbd2_journal_abort(), the last
2546 * time the journal was mounted - if the journal was stopped
2547 * without calling abort this will be 0.
2548 *
2549 * If the journal has been aborted on this mount time -EROFS will
2550 * be returned.
2551 */
2552int jbd2_journal_errno(journal_t *journal)
2553{
2554	int err;
2555
2556	read_lock(&journal->j_state_lock);
2557	if (journal->j_flags & JBD2_ABORT)
2558		err = -EROFS;
2559	else
2560		err = journal->j_errno;
2561	read_unlock(&journal->j_state_lock);
2562	return err;
2563}
2564
2565/**
2566 * jbd2_journal_clear_err() - clears the journal's error state
2567 * @journal: journal to act on.
2568 *
2569 * An error must be cleared or acked to take a FS out of readonly
2570 * mode.
2571 */
2572int jbd2_journal_clear_err(journal_t *journal)
2573{
2574	int err = 0;
2575
2576	write_lock(&journal->j_state_lock);
2577	if (journal->j_flags & JBD2_ABORT)
2578		err = -EROFS;
2579	else
2580		journal->j_errno = 0;
2581	write_unlock(&journal->j_state_lock);
2582	return err;
2583}
2584
2585/**
2586 * jbd2_journal_ack_err() - Ack journal err.
2587 * @journal: journal to act on.
2588 *
2589 * An error must be cleared or acked to take a FS out of readonly
2590 * mode.
2591 */
2592void jbd2_journal_ack_err(journal_t *journal)
2593{
2594	write_lock(&journal->j_state_lock);
2595	if (journal->j_errno)
2596		journal->j_flags |= JBD2_ACK_ERR;
2597	write_unlock(&journal->j_state_lock);
2598}
2599
2600int jbd2_journal_blocks_per_page(struct inode *inode)
2601{
2602	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2603}
2604
2605/*
2606 * helper functions to deal with 32 or 64bit block numbers.
2607 */
2608size_t journal_tag_bytes(journal_t *journal)
2609{
2610	size_t sz;
2611
2612	if (jbd2_has_feature_csum3(journal))
2613		return sizeof(journal_block_tag3_t);
2614
2615	sz = sizeof(journal_block_tag_t);
2616
2617	if (jbd2_has_feature_csum2(journal))
2618		sz += sizeof(__u16);
2619
2620	if (jbd2_has_feature_64bit(journal))
2621		return sz;
2622	else
2623		return sz - sizeof(__u32);
2624}
2625
2626/*
2627 * JBD memory management
2628 *
2629 * These functions are used to allocate block-sized chunks of memory
2630 * used for making copies of buffer_head data.  Very often it will be
2631 * page-sized chunks of data, but sometimes it will be in
2632 * sub-page-size chunks.  (For example, 16k pages on Power systems
2633 * with a 4k block file system.)  For blocks smaller than a page, we
2634 * use a SLAB allocator.  There are slab caches for each block size,
2635 * which are allocated at mount time, if necessary, and we only free
2636 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2637 * this reason we don't need to a mutex to protect access to
2638 * jbd2_slab[] allocating or releasing memory; only in
2639 * jbd2_journal_create_slab().
2640 */
2641#define JBD2_MAX_SLABS 8
2642static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2643
2644static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2645	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2646	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2647};
2648
2649
2650static void jbd2_journal_destroy_slabs(void)
2651{
2652	int i;
2653
2654	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2655		kmem_cache_destroy(jbd2_slab[i]);
2656		jbd2_slab[i] = NULL;
2657	}
2658}
2659
2660static int jbd2_journal_create_slab(size_t size)
2661{
2662	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2663	int i = order_base_2(size) - 10;
2664	size_t slab_size;
2665
2666	if (size == PAGE_SIZE)
2667		return 0;
2668
2669	if (i >= JBD2_MAX_SLABS)
2670		return -EINVAL;
2671
2672	if (unlikely(i < 0))
2673		i = 0;
2674	mutex_lock(&jbd2_slab_create_mutex);
2675	if (jbd2_slab[i]) {
2676		mutex_unlock(&jbd2_slab_create_mutex);
2677		return 0;	/* Already created */
2678	}
2679
2680	slab_size = 1 << (i+10);
2681	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2682					 slab_size, 0, NULL);
2683	mutex_unlock(&jbd2_slab_create_mutex);
2684	if (!jbd2_slab[i]) {
2685		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2686		return -ENOMEM;
2687	}
2688	return 0;
2689}
2690
2691static struct kmem_cache *get_slab(size_t size)
2692{
2693	int i = order_base_2(size) - 10;
2694
2695	BUG_ON(i >= JBD2_MAX_SLABS);
2696	if (unlikely(i < 0))
2697		i = 0;
2698	BUG_ON(jbd2_slab[i] == NULL);
2699	return jbd2_slab[i];
2700}
2701
2702void *jbd2_alloc(size_t size, gfp_t flags)
2703{
2704	void *ptr;
2705
2706	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2707
2708	if (size < PAGE_SIZE)
2709		ptr = kmem_cache_alloc(get_slab(size), flags);
2710	else
2711		ptr = (void *)__get_free_pages(flags, get_order(size));
2712
2713	/* Check alignment; SLUB has gotten this wrong in the past,
2714	 * and this can lead to user data corruption! */
2715	BUG_ON(((unsigned long) ptr) & (size-1));
2716
2717	return ptr;
2718}
2719
2720void jbd2_free(void *ptr, size_t size)
2721{
2722	if (size < PAGE_SIZE)
2723		kmem_cache_free(get_slab(size), ptr);
2724	else
2725		free_pages((unsigned long)ptr, get_order(size));
2726};
2727
2728/*
2729 * Journal_head storage management
2730 */
2731static struct kmem_cache *jbd2_journal_head_cache;
2732#ifdef CONFIG_JBD2_DEBUG
2733static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2734#endif
2735
2736static int __init jbd2_journal_init_journal_head_cache(void)
2737{
2738	J_ASSERT(!jbd2_journal_head_cache);
2739	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2740				sizeof(struct journal_head),
2741				0,		/* offset */
2742				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2743				NULL);		/* ctor */
2744	if (!jbd2_journal_head_cache) {
2745		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2746		return -ENOMEM;
2747	}
2748	return 0;
2749}
2750
2751static void jbd2_journal_destroy_journal_head_cache(void)
2752{
2753	kmem_cache_destroy(jbd2_journal_head_cache);
2754	jbd2_journal_head_cache = NULL;
2755}
2756
2757/*
2758 * journal_head splicing and dicing
2759 */
2760static struct journal_head *journal_alloc_journal_head(void)
2761{
2762	struct journal_head *ret;
2763
2764#ifdef CONFIG_JBD2_DEBUG
2765	atomic_inc(&nr_journal_heads);
2766#endif
2767	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2768	if (!ret) {
2769		jbd_debug(1, "out of memory for journal_head\n");
2770		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2771		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2772				GFP_NOFS | __GFP_NOFAIL);
2773	}
2774	if (ret)
2775		spin_lock_init(&ret->b_state_lock);
2776	return ret;
2777}
2778
2779static void journal_free_journal_head(struct journal_head *jh)
2780{
2781#ifdef CONFIG_JBD2_DEBUG
2782	atomic_dec(&nr_journal_heads);
2783	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2784#endif
2785	kmem_cache_free(jbd2_journal_head_cache, jh);
2786}
2787
2788/*
2789 * A journal_head is attached to a buffer_head whenever JBD has an
2790 * interest in the buffer.
2791 *
2792 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2793 * is set.  This bit is tested in core kernel code where we need to take
2794 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2795 * there.
2796 *
2797 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2798 *
2799 * When a buffer has its BH_JBD bit set it is immune from being released by
2800 * core kernel code, mainly via ->b_count.
2801 *
2802 * A journal_head is detached from its buffer_head when the journal_head's
2803 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2804 * transaction (b_cp_transaction) hold their references to b_jcount.
2805 *
2806 * Various places in the kernel want to attach a journal_head to a buffer_head
2807 * _before_ attaching the journal_head to a transaction.  To protect the
2808 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2809 * journal_head's b_jcount refcount by one.  The caller must call
2810 * jbd2_journal_put_journal_head() to undo this.
2811 *
2812 * So the typical usage would be:
2813 *
2814 *	(Attach a journal_head if needed.  Increments b_jcount)
2815 *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2816 *	...
2817 *      (Get another reference for transaction)
2818 *	jbd2_journal_grab_journal_head(bh);
2819 *	jh->b_transaction = xxx;
2820 *	(Put original reference)
2821 *	jbd2_journal_put_journal_head(jh);
2822 */
2823
2824/*
2825 * Give a buffer_head a journal_head.
2826 *
2827 * May sleep.
2828 */
2829struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2830{
2831	struct journal_head *jh;
2832	struct journal_head *new_jh = NULL;
2833
2834repeat:
2835	if (!buffer_jbd(bh))
2836		new_jh = journal_alloc_journal_head();
2837
2838	jbd_lock_bh_journal_head(bh);
2839	if (buffer_jbd(bh)) {
2840		jh = bh2jh(bh);
2841	} else {
2842		J_ASSERT_BH(bh,
2843			(atomic_read(&bh->b_count) > 0) ||
2844			(bh->b_page && bh->b_page->mapping));
2845
2846		if (!new_jh) {
2847			jbd_unlock_bh_journal_head(bh);
2848			goto repeat;
2849		}
2850
2851		jh = new_jh;
2852		new_jh = NULL;		/* We consumed it */
2853		set_buffer_jbd(bh);
2854		bh->b_private = jh;
2855		jh->b_bh = bh;
2856		get_bh(bh);
2857		BUFFER_TRACE(bh, "added journal_head");
2858	}
2859	jh->b_jcount++;
2860	jbd_unlock_bh_journal_head(bh);
2861	if (new_jh)
2862		journal_free_journal_head(new_jh);
2863	return bh->b_private;
2864}
2865
2866/*
2867 * Grab a ref against this buffer_head's journal_head.  If it ended up not
2868 * having a journal_head, return NULL
2869 */
2870struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2871{
2872	struct journal_head *jh = NULL;
2873
2874	jbd_lock_bh_journal_head(bh);
2875	if (buffer_jbd(bh)) {
2876		jh = bh2jh(bh);
2877		jh->b_jcount++;
2878	}
2879	jbd_unlock_bh_journal_head(bh);
2880	return jh;
2881}
2882EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2883
2884static void __journal_remove_journal_head(struct buffer_head *bh)
2885{
2886	struct journal_head *jh = bh2jh(bh);
2887
2888	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2889	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2890	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2891	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2892	J_ASSERT_BH(bh, buffer_jbd(bh));
2893	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2894	BUFFER_TRACE(bh, "remove journal_head");
2895
2896	/* Unlink before dropping the lock */
2897	bh->b_private = NULL;
2898	jh->b_bh = NULL;	/* debug, really */
2899	clear_buffer_jbd(bh);
2900}
2901
2902static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2903{
2904	if (jh->b_frozen_data) {
2905		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2906		jbd2_free(jh->b_frozen_data, b_size);
2907	}
2908	if (jh->b_committed_data) {
2909		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2910		jbd2_free(jh->b_committed_data, b_size);
2911	}
2912	journal_free_journal_head(jh);
2913}
2914
2915/*
2916 * Drop a reference on the passed journal_head.  If it fell to zero then
2917 * release the journal_head from the buffer_head.
2918 */
2919void jbd2_journal_put_journal_head(struct journal_head *jh)
2920{
2921	struct buffer_head *bh = jh2bh(jh);
2922
2923	jbd_lock_bh_journal_head(bh);
2924	J_ASSERT_JH(jh, jh->b_jcount > 0);
2925	--jh->b_jcount;
2926	if (!jh->b_jcount) {
2927		__journal_remove_journal_head(bh);
2928		jbd_unlock_bh_journal_head(bh);
2929		journal_release_journal_head(jh, bh->b_size);
2930		__brelse(bh);
2931	} else {
2932		jbd_unlock_bh_journal_head(bh);
2933	}
2934}
2935EXPORT_SYMBOL(jbd2_journal_put_journal_head);
2936
2937/*
2938 * Initialize jbd inode head
2939 */
2940void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2941{
2942	jinode->i_transaction = NULL;
2943	jinode->i_next_transaction = NULL;
2944	jinode->i_vfs_inode = inode;
2945	jinode->i_flags = 0;
2946	jinode->i_dirty_start = 0;
2947	jinode->i_dirty_end = 0;
2948	INIT_LIST_HEAD(&jinode->i_list);
2949}
2950
2951/*
2952 * Function to be called before we start removing inode from memory (i.e.,
2953 * clear_inode() is a fine place to be called from). It removes inode from
2954 * transaction's lists.
2955 */
2956void jbd2_journal_release_jbd_inode(journal_t *journal,
2957				    struct jbd2_inode *jinode)
2958{
2959	if (!journal)
2960		return;
2961restart:
2962	spin_lock(&journal->j_list_lock);
2963	/* Is commit writing out inode - we have to wait */
2964	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2965		wait_queue_head_t *wq;
2966		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2967		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2968		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2969		spin_unlock(&journal->j_list_lock);
2970		schedule();
2971		finish_wait(wq, &wait.wq_entry);
2972		goto restart;
2973	}
2974
2975	if (jinode->i_transaction) {
2976		list_del(&jinode->i_list);
2977		jinode->i_transaction = NULL;
2978	}
2979	spin_unlock(&journal->j_list_lock);
2980}
2981
2982
2983#ifdef CONFIG_PROC_FS
2984
2985#define JBD2_STATS_PROC_NAME "fs/jbd2"
2986
2987static void __init jbd2_create_jbd_stats_proc_entry(void)
2988{
2989	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2990}
2991
2992static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2993{
2994	if (proc_jbd2_stats)
2995		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2996}
2997
2998#else
2999
3000#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3001#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3002
3003#endif
3004
3005struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3006
3007static int __init jbd2_journal_init_inode_cache(void)
3008{
3009	J_ASSERT(!jbd2_inode_cache);
3010	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3011	if (!jbd2_inode_cache) {
3012		pr_emerg("JBD2: failed to create inode cache\n");
3013		return -ENOMEM;
3014	}
3015	return 0;
3016}
3017
3018static int __init jbd2_journal_init_handle_cache(void)
3019{
3020	J_ASSERT(!jbd2_handle_cache);
3021	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3022	if (!jbd2_handle_cache) {
3023		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3024		return -ENOMEM;
3025	}
3026	return 0;
3027}
3028
3029static void jbd2_journal_destroy_inode_cache(void)
3030{
3031	kmem_cache_destroy(jbd2_inode_cache);
3032	jbd2_inode_cache = NULL;
3033}
3034
3035static void jbd2_journal_destroy_handle_cache(void)
3036{
3037	kmem_cache_destroy(jbd2_handle_cache);
3038	jbd2_handle_cache = NULL;
3039}
3040
3041/*
3042 * Module startup and shutdown
3043 */
3044
3045static int __init journal_init_caches(void)
3046{
3047	int ret;
3048
3049	ret = jbd2_journal_init_revoke_record_cache();
3050	if (ret == 0)
3051		ret = jbd2_journal_init_revoke_table_cache();
3052	if (ret == 0)
3053		ret = jbd2_journal_init_journal_head_cache();
3054	if (ret == 0)
3055		ret = jbd2_journal_init_handle_cache();
3056	if (ret == 0)
3057		ret = jbd2_journal_init_inode_cache();
3058	if (ret == 0)
3059		ret = jbd2_journal_init_transaction_cache();
3060	return ret;
3061}
3062
3063static void jbd2_journal_destroy_caches(void)
3064{
3065	jbd2_journal_destroy_revoke_record_cache();
3066	jbd2_journal_destroy_revoke_table_cache();
3067	jbd2_journal_destroy_journal_head_cache();
3068	jbd2_journal_destroy_handle_cache();
3069	jbd2_journal_destroy_inode_cache();
3070	jbd2_journal_destroy_transaction_cache();
3071	jbd2_journal_destroy_slabs();
3072}
3073
3074static int __init journal_init(void)
3075{
3076	int ret;
3077
3078	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3079
3080	ret = journal_init_caches();
3081	if (ret == 0) {
3082		jbd2_create_jbd_stats_proc_entry();
3083	} else {
3084		jbd2_journal_destroy_caches();
3085	}
3086	return ret;
3087}
3088
3089static void __exit journal_exit(void)
3090{
3091#ifdef CONFIG_JBD2_DEBUG
3092	int n = atomic_read(&nr_journal_heads);
3093	if (n)
3094		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3095#endif
3096	jbd2_remove_jbd_stats_proc_entry();
3097	jbd2_journal_destroy_caches();
3098}
3099
3100MODULE_LICENSE("GPL");
3101module_init(journal_init);
3102module_exit(journal_exit);
3103
3104