1// SPDX-License-Identifier: GPL-2.0+ 2/* 3 * linux/fs/jbd2/commit.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Journal commit routines for the generic filesystem journaling code; 10 * part of the ext2fs journaling system. 11 */ 12 13#include <linux/time.h> 14#include <linux/fs.h> 15#include <linux/jbd2.h> 16#include <linux/errno.h> 17#include <linux/slab.h> 18#include <linux/mm.h> 19#include <linux/pagemap.h> 20#include <linux/jiffies.h> 21#include <linux/crc32.h> 22#include <linux/writeback.h> 23#include <linux/backing-dev.h> 24#include <linux/bio.h> 25#include <linux/blkdev.h> 26#include <linux/bitops.h> 27#include <trace/events/jbd2.h> 28 29/* 30 * IO end handler for temporary buffer_heads handling writes to the journal. 31 */ 32static void journal_end_buffer_io_sync(struct buffer_head *bh, int uptodate) 33{ 34 struct buffer_head *orig_bh = bh->b_private; 35 36 BUFFER_TRACE(bh, ""); 37 if (uptodate) 38 set_buffer_uptodate(bh); 39 else 40 clear_buffer_uptodate(bh); 41 if (orig_bh) { 42 clear_bit_unlock(BH_Shadow, &orig_bh->b_state); 43 smp_mb__after_atomic(); 44 wake_up_bit(&orig_bh->b_state, BH_Shadow); 45 } 46 unlock_buffer(bh); 47} 48 49/* 50 * When an ext4 file is truncated, it is possible that some pages are not 51 * successfully freed, because they are attached to a committing transaction. 52 * After the transaction commits, these pages are left on the LRU, with no 53 * ->mapping, and with attached buffers. These pages are trivially reclaimable 54 * by the VM, but their apparent absence upsets the VM accounting, and it makes 55 * the numbers in /proc/meminfo look odd. 56 * 57 * So here, we have a buffer which has just come off the forget list. Look to 58 * see if we can strip all buffers from the backing page. 59 * 60 * Called under lock_journal(), and possibly under journal_datalist_lock. The 61 * caller provided us with a ref against the buffer, and we drop that here. 62 */ 63static void release_buffer_page(struct buffer_head *bh) 64{ 65 struct page *page; 66 67 if (buffer_dirty(bh)) 68 goto nope; 69 if (atomic_read(&bh->b_count) != 1) 70 goto nope; 71 page = bh->b_page; 72 if (!page) 73 goto nope; 74 if (page->mapping) 75 goto nope; 76 77 /* OK, it's a truncated page */ 78 if (!trylock_page(page)) 79 goto nope; 80 81 get_page(page); 82 __brelse(bh); 83 try_to_free_buffers(page); 84 unlock_page(page); 85 put_page(page); 86 return; 87 88nope: 89 __brelse(bh); 90} 91 92static void jbd2_commit_block_csum_set(journal_t *j, struct buffer_head *bh) 93{ 94 struct commit_header *h; 95 __u32 csum; 96 97 if (!jbd2_journal_has_csum_v2or3(j)) 98 return; 99 100 h = (struct commit_header *)(bh->b_data); 101 h->h_chksum_type = 0; 102 h->h_chksum_size = 0; 103 h->h_chksum[0] = 0; 104 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 105 h->h_chksum[0] = cpu_to_be32(csum); 106} 107 108/* 109 * Done it all: now submit the commit record. We should have 110 * cleaned up our previous buffers by now, so if we are in abort 111 * mode we can now just skip the rest of the journal write 112 * entirely. 113 * 114 * Returns 1 if the journal needs to be aborted or 0 on success 115 */ 116static int journal_submit_commit_record(journal_t *journal, 117 transaction_t *commit_transaction, 118 struct buffer_head **cbh, 119 __u32 crc32_sum) 120{ 121 struct commit_header *tmp; 122 struct buffer_head *bh; 123 int ret; 124 struct timespec64 now; 125 126 *cbh = NULL; 127 128 if (is_journal_aborted(journal)) 129 return 0; 130 131 bh = jbd2_journal_get_descriptor_buffer(commit_transaction, 132 JBD2_COMMIT_BLOCK); 133 if (!bh) 134 return 1; 135 136 tmp = (struct commit_header *)bh->b_data; 137 ktime_get_coarse_real_ts64(&now); 138 tmp->h_commit_sec = cpu_to_be64(now.tv_sec); 139 tmp->h_commit_nsec = cpu_to_be32(now.tv_nsec); 140 141 if (jbd2_has_feature_checksum(journal)) { 142 tmp->h_chksum_type = JBD2_CRC32_CHKSUM; 143 tmp->h_chksum_size = JBD2_CRC32_CHKSUM_SIZE; 144 tmp->h_chksum[0] = cpu_to_be32(crc32_sum); 145 } 146 jbd2_commit_block_csum_set(journal, bh); 147 148 BUFFER_TRACE(bh, "submit commit block"); 149 lock_buffer(bh); 150 clear_buffer_dirty(bh); 151 set_buffer_uptodate(bh); 152 bh->b_end_io = journal_end_buffer_io_sync; 153 154 if (journal->j_flags & JBD2_BARRIER && 155 !jbd2_has_feature_async_commit(journal)) 156 ret = submit_bh(REQ_OP_WRITE, 157 REQ_SYNC | REQ_PREFLUSH | REQ_FUA, bh); 158 else 159 ret = submit_bh(REQ_OP_WRITE, REQ_SYNC, bh); 160 161 *cbh = bh; 162 return ret; 163} 164 165/* 166 * This function along with journal_submit_commit_record 167 * allows to write the commit record asynchronously. 168 */ 169static int journal_wait_on_commit_record(journal_t *journal, 170 struct buffer_head *bh) 171{ 172 int ret = 0; 173 174 clear_buffer_dirty(bh); 175 wait_on_buffer(bh); 176 177 if (unlikely(!buffer_uptodate(bh))) 178 ret = -EIO; 179 put_bh(bh); /* One for getblk() */ 180 181 return ret; 182} 183 184/* 185 * write the filemap data using writepage() address_space_operations. 186 * We don't do block allocation here even for delalloc. We don't 187 * use writepages() because with delayed allocation we may be doing 188 * block allocation in writepages(). 189 */ 190int jbd2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 191{ 192 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 193 struct writeback_control wbc = { 194 .sync_mode = WB_SYNC_ALL, 195 .nr_to_write = mapping->nrpages * 2, 196 .range_start = jinode->i_dirty_start, 197 .range_end = jinode->i_dirty_end, 198 }; 199 200 /* 201 * submit the inode data buffers. We use writepage 202 * instead of writepages. Because writepages can do 203 * block allocation with delalloc. We need to write 204 * only allocated blocks here. 205 */ 206 return generic_writepages(mapping, &wbc); 207} 208 209/* Send all the data buffers related to an inode */ 210int jbd2_submit_inode_data(struct jbd2_inode *jinode) 211{ 212 213 if (!jinode || !(jinode->i_flags & JI_WRITE_DATA)) 214 return 0; 215 216 trace_jbd2_submit_inode_data(jinode->i_vfs_inode); 217 return jbd2_journal_submit_inode_data_buffers(jinode); 218 219} 220EXPORT_SYMBOL(jbd2_submit_inode_data); 221 222int jbd2_wait_inode_data(journal_t *journal, struct jbd2_inode *jinode) 223{ 224 if (!jinode || !(jinode->i_flags & JI_WAIT_DATA) || 225 !jinode->i_vfs_inode || !jinode->i_vfs_inode->i_mapping) 226 return 0; 227 return filemap_fdatawait_range_keep_errors( 228 jinode->i_vfs_inode->i_mapping, jinode->i_dirty_start, 229 jinode->i_dirty_end); 230} 231EXPORT_SYMBOL(jbd2_wait_inode_data); 232 233/* 234 * Submit all the data buffers of inode associated with the transaction to 235 * disk. 236 * 237 * We are in a committing transaction. Therefore no new inode can be added to 238 * our inode list. We use JI_COMMIT_RUNNING flag to protect inode we currently 239 * operate on from being released while we write out pages. 240 */ 241static int journal_submit_data_buffers(journal_t *journal, 242 transaction_t *commit_transaction) 243{ 244 struct jbd2_inode *jinode; 245 int err, ret = 0; 246 247 spin_lock(&journal->j_list_lock); 248 list_for_each_entry(jinode, &commit_transaction->t_inode_list, i_list) { 249 if (!(jinode->i_flags & JI_WRITE_DATA)) 250 continue; 251 jinode->i_flags |= JI_COMMIT_RUNNING; 252 spin_unlock(&journal->j_list_lock); 253 /* submit the inode data buffers. */ 254 trace_jbd2_submit_inode_data(jinode->i_vfs_inode); 255 if (journal->j_submit_inode_data_buffers) { 256 err = journal->j_submit_inode_data_buffers(jinode); 257 if (!ret) 258 ret = err; 259 } 260 spin_lock(&journal->j_list_lock); 261 J_ASSERT(jinode->i_transaction == commit_transaction); 262 jinode->i_flags &= ~JI_COMMIT_RUNNING; 263 smp_mb(); 264 wake_up_bit(&jinode->i_flags, __JI_COMMIT_RUNNING); 265 } 266 spin_unlock(&journal->j_list_lock); 267 return ret; 268} 269 270int jbd2_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 271{ 272 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 273 274 return filemap_fdatawait_range_keep_errors(mapping, 275 jinode->i_dirty_start, 276 jinode->i_dirty_end); 277} 278 279/* 280 * Wait for data submitted for writeout, refile inodes to proper 281 * transaction if needed. 282 * 283 */ 284static int journal_finish_inode_data_buffers(journal_t *journal, 285 transaction_t *commit_transaction) 286{ 287 struct jbd2_inode *jinode, *next_i; 288 int err, ret = 0; 289 290 /* For locking, see the comment in journal_submit_data_buffers() */ 291 spin_lock(&journal->j_list_lock); 292 list_for_each_entry(jinode, &commit_transaction->t_inode_list, i_list) { 293 if (!(jinode->i_flags & JI_WAIT_DATA)) 294 continue; 295 jinode->i_flags |= JI_COMMIT_RUNNING; 296 spin_unlock(&journal->j_list_lock); 297 /* wait for the inode data buffers writeout. */ 298 if (journal->j_finish_inode_data_buffers) { 299 err = journal->j_finish_inode_data_buffers(jinode); 300 if (!ret) 301 ret = err; 302 } 303 cond_resched(); 304 spin_lock(&journal->j_list_lock); 305 jinode->i_flags &= ~JI_COMMIT_RUNNING; 306 smp_mb(); 307 wake_up_bit(&jinode->i_flags, __JI_COMMIT_RUNNING); 308 } 309 310 /* Now refile inode to proper lists */ 311 list_for_each_entry_safe(jinode, next_i, 312 &commit_transaction->t_inode_list, i_list) { 313 list_del(&jinode->i_list); 314 if (jinode->i_next_transaction) { 315 jinode->i_transaction = jinode->i_next_transaction; 316 jinode->i_next_transaction = NULL; 317 list_add(&jinode->i_list, 318 &jinode->i_transaction->t_inode_list); 319 } else { 320 jinode->i_transaction = NULL; 321 jinode->i_dirty_start = 0; 322 jinode->i_dirty_end = 0; 323 } 324 } 325 spin_unlock(&journal->j_list_lock); 326 327 return ret; 328} 329 330static __u32 jbd2_checksum_data(__u32 crc32_sum, struct buffer_head *bh) 331{ 332 struct page *page = bh->b_page; 333 char *addr; 334 __u32 checksum; 335 336 addr = kmap_atomic(page); 337 checksum = crc32_be(crc32_sum, 338 (void *)(addr + offset_in_page(bh->b_data)), bh->b_size); 339 kunmap_atomic(addr); 340 341 return checksum; 342} 343 344static void write_tag_block(journal_t *j, journal_block_tag_t *tag, 345 unsigned long long block) 346{ 347 tag->t_blocknr = cpu_to_be32(block & (u32)~0); 348 if (jbd2_has_feature_64bit(j)) 349 tag->t_blocknr_high = cpu_to_be32((block >> 31) >> 1); 350} 351 352static void jbd2_block_tag_csum_set(journal_t *j, journal_block_tag_t *tag, 353 struct buffer_head *bh, __u32 sequence) 354{ 355 journal_block_tag3_t *tag3 = (journal_block_tag3_t *)tag; 356 struct page *page = bh->b_page; 357 __u8 *addr; 358 __u32 csum32; 359 __be32 seq; 360 361 if (!jbd2_journal_has_csum_v2or3(j)) 362 return; 363 364 seq = cpu_to_be32(sequence); 365 addr = kmap_atomic(page); 366 csum32 = jbd2_chksum(j, j->j_csum_seed, (__u8 *)&seq, sizeof(seq)); 367 csum32 = jbd2_chksum(j, csum32, addr + offset_in_page(bh->b_data), 368 bh->b_size); 369 kunmap_atomic(addr); 370 371 if (jbd2_has_feature_csum3(j)) 372 tag3->t_checksum = cpu_to_be32(csum32); 373 else 374 tag->t_checksum = cpu_to_be16(csum32); 375} 376/* 377 * jbd2_journal_commit_transaction 378 * 379 * The primary function for committing a transaction to the log. This 380 * function is called by the journal thread to begin a complete commit. 381 */ 382void jbd2_journal_commit_transaction(journal_t *journal) 383{ 384 struct transaction_stats_s stats; 385 transaction_t *commit_transaction; 386 struct journal_head *jh; 387 struct buffer_head *descriptor; 388 struct buffer_head **wbuf = journal->j_wbuf; 389 int bufs; 390 int flags; 391 int err; 392 unsigned long long blocknr; 393 ktime_t start_time; 394 u64 commit_time; 395 char *tagp = NULL; 396 journal_block_tag_t *tag = NULL; 397 int space_left = 0; 398 int first_tag = 0; 399 int tag_flag; 400 int i; 401 int tag_bytes = journal_tag_bytes(journal); 402 struct buffer_head *cbh = NULL; /* For transactional checksums */ 403 __u32 crc32_sum = ~0; 404 struct blk_plug plug; 405 /* Tail of the journal */ 406 unsigned long first_block; 407 tid_t first_tid; 408 int update_tail; 409 int csum_size = 0; 410 LIST_HEAD(io_bufs); 411 LIST_HEAD(log_bufs); 412 413 if (jbd2_journal_has_csum_v2or3(journal)) 414 csum_size = sizeof(struct jbd2_journal_block_tail); 415 416 /* 417 * First job: lock down the current transaction and wait for 418 * all outstanding updates to complete. 419 */ 420 421 /* Do we need to erase the effects of a prior jbd2_journal_flush? */ 422 if (journal->j_flags & JBD2_FLUSHED) { 423 jbd_debug(3, "super block updated\n"); 424 mutex_lock_io(&journal->j_checkpoint_mutex); 425 /* 426 * We hold j_checkpoint_mutex so tail cannot change under us. 427 * We don't need any special data guarantees for writing sb 428 * since journal is empty and it is ok for write to be 429 * flushed only with transaction commit. 430 */ 431 jbd2_journal_update_sb_log_tail(journal, 432 journal->j_tail_sequence, 433 journal->j_tail, 434 REQ_SYNC); 435 mutex_unlock(&journal->j_checkpoint_mutex); 436 } else { 437 jbd_debug(3, "superblock not updated\n"); 438 } 439 440 J_ASSERT(journal->j_running_transaction != NULL); 441 J_ASSERT(journal->j_committing_transaction == NULL); 442 443 write_lock(&journal->j_state_lock); 444 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING; 445 while (journal->j_flags & JBD2_FAST_COMMIT_ONGOING) { 446 DEFINE_WAIT(wait); 447 448 prepare_to_wait(&journal->j_fc_wait, &wait, 449 TASK_UNINTERRUPTIBLE); 450 write_unlock(&journal->j_state_lock); 451 schedule(); 452 write_lock(&journal->j_state_lock); 453 finish_wait(&journal->j_fc_wait, &wait); 454 /* 455 * TODO: by blocking fast commits here, we are increasing 456 * fsync() latency slightly. Strictly speaking, we don't need 457 * to block fast commits until the transaction enters T_FLUSH 458 * state. So an optimization is possible where we block new fast 459 * commits here and wait for existing ones to complete 460 * just before we enter T_FLUSH. That way, the existing fast 461 * commits and this full commit can proceed parallely. 462 */ 463 } 464 write_unlock(&journal->j_state_lock); 465 466 commit_transaction = journal->j_running_transaction; 467 468 trace_jbd2_start_commit(journal, commit_transaction); 469 jbd_debug(1, "JBD2: starting commit of transaction %d\n", 470 commit_transaction->t_tid); 471 472 write_lock(&journal->j_state_lock); 473 journal->j_fc_off = 0; 474 J_ASSERT(commit_transaction->t_state == T_RUNNING); 475 commit_transaction->t_state = T_LOCKED; 476 477 trace_jbd2_commit_locking(journal, commit_transaction); 478 stats.run.rs_wait = commit_transaction->t_max_wait; 479 stats.run.rs_request_delay = 0; 480 stats.run.rs_locked = jiffies; 481 if (commit_transaction->t_requested) 482 stats.run.rs_request_delay = 483 jbd2_time_diff(commit_transaction->t_requested, 484 stats.run.rs_locked); 485 stats.run.rs_running = jbd2_time_diff(commit_transaction->t_start, 486 stats.run.rs_locked); 487 488 spin_lock(&commit_transaction->t_handle_lock); 489 while (atomic_read(&commit_transaction->t_updates)) { 490 DEFINE_WAIT(wait); 491 492 prepare_to_wait(&journal->j_wait_updates, &wait, 493 TASK_UNINTERRUPTIBLE); 494 if (atomic_read(&commit_transaction->t_updates)) { 495 spin_unlock(&commit_transaction->t_handle_lock); 496 write_unlock(&journal->j_state_lock); 497 schedule(); 498 write_lock(&journal->j_state_lock); 499 spin_lock(&commit_transaction->t_handle_lock); 500 } 501 finish_wait(&journal->j_wait_updates, &wait); 502 } 503 spin_unlock(&commit_transaction->t_handle_lock); 504 commit_transaction->t_state = T_SWITCH; 505 506 J_ASSERT (atomic_read(&commit_transaction->t_outstanding_credits) <= 507 journal->j_max_transaction_buffers); 508 509 /* 510 * First thing we are allowed to do is to discard any remaining 511 * BJ_Reserved buffers. Note, it is _not_ permissible to assume 512 * that there are no such buffers: if a large filesystem 513 * operation like a truncate needs to split itself over multiple 514 * transactions, then it may try to do a jbd2_journal_restart() while 515 * there are still BJ_Reserved buffers outstanding. These must 516 * be released cleanly from the current transaction. 517 * 518 * In this case, the filesystem must still reserve write access 519 * again before modifying the buffer in the new transaction, but 520 * we do not require it to remember exactly which old buffers it 521 * has reserved. This is consistent with the existing behaviour 522 * that multiple jbd2_journal_get_write_access() calls to the same 523 * buffer are perfectly permissible. 524 * We use journal->j_state_lock here to serialize processing of 525 * t_reserved_list with eviction of buffers from journal_unmap_buffer(). 526 */ 527 while (commit_transaction->t_reserved_list) { 528 jh = commit_transaction->t_reserved_list; 529 JBUFFER_TRACE(jh, "reserved, unused: refile"); 530 /* 531 * A jbd2_journal_get_undo_access()+jbd2_journal_release_buffer() may 532 * leave undo-committed data. 533 */ 534 if (jh->b_committed_data) { 535 struct buffer_head *bh = jh2bh(jh); 536 537 spin_lock(&jh->b_state_lock); 538 jbd2_free(jh->b_committed_data, bh->b_size); 539 jh->b_committed_data = NULL; 540 spin_unlock(&jh->b_state_lock); 541 } 542 jbd2_journal_refile_buffer(journal, jh); 543 } 544 545 write_unlock(&journal->j_state_lock); 546 /* 547 * Now try to drop any written-back buffers from the journal's 548 * checkpoint lists. We do this *before* commit because it potentially 549 * frees some memory 550 */ 551 spin_lock(&journal->j_list_lock); 552 __jbd2_journal_clean_checkpoint_list(journal, false); 553 spin_unlock(&journal->j_list_lock); 554 555 jbd_debug(3, "JBD2: commit phase 1\n"); 556 557 /* 558 * Clear revoked flag to reflect there is no revoked buffers 559 * in the next transaction which is going to be started. 560 */ 561 jbd2_clear_buffer_revoked_flags(journal); 562 563 /* 564 * Switch to a new revoke table. 565 */ 566 jbd2_journal_switch_revoke_table(journal); 567 568 write_lock(&journal->j_state_lock); 569 /* 570 * Reserved credits cannot be claimed anymore, free them 571 */ 572 atomic_sub(atomic_read(&journal->j_reserved_credits), 573 &commit_transaction->t_outstanding_credits); 574 575 trace_jbd2_commit_flushing(journal, commit_transaction); 576 stats.run.rs_flushing = jiffies; 577 stats.run.rs_locked = jbd2_time_diff(stats.run.rs_locked, 578 stats.run.rs_flushing); 579 580 commit_transaction->t_state = T_FLUSH; 581 journal->j_committing_transaction = commit_transaction; 582 journal->j_running_transaction = NULL; 583 start_time = ktime_get(); 584 commit_transaction->t_log_start = journal->j_head; 585 wake_up_all(&journal->j_wait_transaction_locked); 586 write_unlock(&journal->j_state_lock); 587 588 jbd_debug(3, "JBD2: commit phase 2a\n"); 589 590 /* 591 * Now start flushing things to disk, in the order they appear 592 * on the transaction lists. Data blocks go first. 593 */ 594 err = journal_submit_data_buffers(journal, commit_transaction); 595 if (err) 596 jbd2_journal_abort(journal, err); 597 598 blk_start_plug(&plug); 599 jbd2_journal_write_revoke_records(commit_transaction, &log_bufs); 600 601 jbd_debug(3, "JBD2: commit phase 2b\n"); 602 603 /* 604 * Way to go: we have now written out all of the data for a 605 * transaction! Now comes the tricky part: we need to write out 606 * metadata. Loop over the transaction's entire buffer list: 607 */ 608 write_lock(&journal->j_state_lock); 609 commit_transaction->t_state = T_COMMIT; 610 write_unlock(&journal->j_state_lock); 611 612 trace_jbd2_commit_logging(journal, commit_transaction); 613 stats.run.rs_logging = jiffies; 614 stats.run.rs_flushing = jbd2_time_diff(stats.run.rs_flushing, 615 stats.run.rs_logging); 616 stats.run.rs_blocks = commit_transaction->t_nr_buffers; 617 stats.run.rs_blocks_logged = 0; 618 619 J_ASSERT(commit_transaction->t_nr_buffers <= 620 atomic_read(&commit_transaction->t_outstanding_credits)); 621 622 err = 0; 623 bufs = 0; 624 descriptor = NULL; 625 while (commit_transaction->t_buffers) { 626 627 /* Find the next buffer to be journaled... */ 628 629 jh = commit_transaction->t_buffers; 630 631 /* If we're in abort mode, we just un-journal the buffer and 632 release it. */ 633 634 if (is_journal_aborted(journal)) { 635 clear_buffer_jbddirty(jh2bh(jh)); 636 JBUFFER_TRACE(jh, "journal is aborting: refile"); 637 jbd2_buffer_abort_trigger(jh, 638 jh->b_frozen_data ? 639 jh->b_frozen_triggers : 640 jh->b_triggers); 641 jbd2_journal_refile_buffer(journal, jh); 642 /* If that was the last one, we need to clean up 643 * any descriptor buffers which may have been 644 * already allocated, even if we are now 645 * aborting. */ 646 if (!commit_transaction->t_buffers) 647 goto start_journal_io; 648 continue; 649 } 650 651 /* Make sure we have a descriptor block in which to 652 record the metadata buffer. */ 653 654 if (!descriptor) { 655 J_ASSERT (bufs == 0); 656 657 jbd_debug(4, "JBD2: get descriptor\n"); 658 659 descriptor = jbd2_journal_get_descriptor_buffer( 660 commit_transaction, 661 JBD2_DESCRIPTOR_BLOCK); 662 if (!descriptor) { 663 jbd2_journal_abort(journal, -EIO); 664 continue; 665 } 666 667 jbd_debug(4, "JBD2: got buffer %llu (%p)\n", 668 (unsigned long long)descriptor->b_blocknr, 669 descriptor->b_data); 670 tagp = &descriptor->b_data[sizeof(journal_header_t)]; 671 space_left = descriptor->b_size - 672 sizeof(journal_header_t); 673 first_tag = 1; 674 set_buffer_jwrite(descriptor); 675 set_buffer_dirty(descriptor); 676 wbuf[bufs++] = descriptor; 677 678 /* Record it so that we can wait for IO 679 completion later */ 680 BUFFER_TRACE(descriptor, "ph3: file as descriptor"); 681 jbd2_file_log_bh(&log_bufs, descriptor); 682 } 683 684 /* Where is the buffer to be written? */ 685 686 err = jbd2_journal_next_log_block(journal, &blocknr); 687 /* If the block mapping failed, just abandon the buffer 688 and repeat this loop: we'll fall into the 689 refile-on-abort condition above. */ 690 if (err) { 691 jbd2_journal_abort(journal, err); 692 continue; 693 } 694 695 /* 696 * start_this_handle() uses t_outstanding_credits to determine 697 * the free space in the log. 698 */ 699 atomic_dec(&commit_transaction->t_outstanding_credits); 700 701 /* Bump b_count to prevent truncate from stumbling over 702 the shadowed buffer! @@@ This can go if we ever get 703 rid of the shadow pairing of buffers. */ 704 atomic_inc(&jh2bh(jh)->b_count); 705 706 /* 707 * Make a temporary IO buffer with which to write it out 708 * (this will requeue the metadata buffer to BJ_Shadow). 709 */ 710 set_bit(BH_JWrite, &jh2bh(jh)->b_state); 711 JBUFFER_TRACE(jh, "ph3: write metadata"); 712 flags = jbd2_journal_write_metadata_buffer(commit_transaction, 713 jh, &wbuf[bufs], blocknr); 714 if (flags < 0) { 715 jbd2_journal_abort(journal, flags); 716 continue; 717 } 718 jbd2_file_log_bh(&io_bufs, wbuf[bufs]); 719 720 /* Record the new block's tag in the current descriptor 721 buffer */ 722 723 tag_flag = 0; 724 if (flags & 1) 725 tag_flag |= JBD2_FLAG_ESCAPE; 726 if (!first_tag) 727 tag_flag |= JBD2_FLAG_SAME_UUID; 728 729 tag = (journal_block_tag_t *) tagp; 730 write_tag_block(journal, tag, jh2bh(jh)->b_blocknr); 731 tag->t_flags = cpu_to_be16(tag_flag); 732 jbd2_block_tag_csum_set(journal, tag, wbuf[bufs], 733 commit_transaction->t_tid); 734 tagp += tag_bytes; 735 space_left -= tag_bytes; 736 bufs++; 737 738 if (first_tag) { 739 memcpy (tagp, journal->j_uuid, 16); 740 tagp += 16; 741 space_left -= 16; 742 first_tag = 0; 743 } 744 745 /* If there's no more to do, or if the descriptor is full, 746 let the IO rip! */ 747 748 if (bufs == journal->j_wbufsize || 749 commit_transaction->t_buffers == NULL || 750 space_left < tag_bytes + 16 + csum_size) { 751 752 jbd_debug(4, "JBD2: Submit %d IOs\n", bufs); 753 754 /* Write an end-of-descriptor marker before 755 submitting the IOs. "tag" still points to 756 the last tag we set up. */ 757 758 tag->t_flags |= cpu_to_be16(JBD2_FLAG_LAST_TAG); 759start_journal_io: 760 if (descriptor) 761 jbd2_descriptor_block_csum_set(journal, 762 descriptor); 763 764 for (i = 0; i < bufs; i++) { 765 struct buffer_head *bh = wbuf[i]; 766 /* 767 * Compute checksum. 768 */ 769 if (jbd2_has_feature_checksum(journal)) { 770 crc32_sum = 771 jbd2_checksum_data(crc32_sum, bh); 772 } 773 774 lock_buffer(bh); 775 clear_buffer_dirty(bh); 776 set_buffer_uptodate(bh); 777 bh->b_end_io = journal_end_buffer_io_sync; 778 submit_bh(REQ_OP_WRITE, REQ_SYNC, bh); 779 } 780 cond_resched(); 781 782 /* Force a new descriptor to be generated next 783 time round the loop. */ 784 descriptor = NULL; 785 bufs = 0; 786 } 787 } 788 789 err = journal_finish_inode_data_buffers(journal, commit_transaction); 790 if (err) { 791 printk(KERN_WARNING 792 "JBD2: Detected IO errors while flushing file data " 793 "on %s\n", journal->j_devname); 794 if (journal->j_flags & JBD2_ABORT_ON_SYNCDATA_ERR) 795 jbd2_journal_abort(journal, err); 796 err = 0; 797 } 798 799 /* 800 * Get current oldest transaction in the log before we issue flush 801 * to the filesystem device. After the flush we can be sure that 802 * blocks of all older transactions are checkpointed to persistent 803 * storage and we will be safe to update journal start in the 804 * superblock with the numbers we get here. 805 */ 806 update_tail = 807 jbd2_journal_get_log_tail(journal, &first_tid, &first_block); 808 809 write_lock(&journal->j_state_lock); 810 if (update_tail) { 811 long freed = first_block - journal->j_tail; 812 813 if (first_block < journal->j_tail) 814 freed += journal->j_last - journal->j_first; 815 /* Update tail only if we free significant amount of space */ 816 if (freed < jbd2_journal_get_max_txn_bufs(journal)) 817 update_tail = 0; 818 } 819 J_ASSERT(commit_transaction->t_state == T_COMMIT); 820 commit_transaction->t_state = T_COMMIT_DFLUSH; 821 write_unlock(&journal->j_state_lock); 822 823 /* 824 * If the journal is not located on the file system device, 825 * then we must flush the file system device before we issue 826 * the commit record 827 */ 828 if (commit_transaction->t_need_data_flush && 829 (journal->j_fs_dev != journal->j_dev) && 830 (journal->j_flags & JBD2_BARRIER)) 831 blkdev_issue_flush(journal->j_fs_dev, GFP_NOFS); 832 833 /* Done it all: now write the commit record asynchronously. */ 834 if (jbd2_has_feature_async_commit(journal)) { 835 err = journal_submit_commit_record(journal, commit_transaction, 836 &cbh, crc32_sum); 837 if (err) 838 jbd2_journal_abort(journal, err); 839 } 840 841 blk_finish_plug(&plug); 842 843 /* Lo and behold: we have just managed to send a transaction to 844 the log. Before we can commit it, wait for the IO so far to 845 complete. Control buffers being written are on the 846 transaction's t_log_list queue, and metadata buffers are on 847 the io_bufs list. 848 849 Wait for the buffers in reverse order. That way we are 850 less likely to be woken up until all IOs have completed, and 851 so we incur less scheduling load. 852 */ 853 854 jbd_debug(3, "JBD2: commit phase 3\n"); 855 856 while (!list_empty(&io_bufs)) { 857 struct buffer_head *bh = list_entry(io_bufs.prev, 858 struct buffer_head, 859 b_assoc_buffers); 860 861 wait_on_buffer(bh); 862 cond_resched(); 863 864 if (unlikely(!buffer_uptodate(bh))) 865 err = -EIO; 866 jbd2_unfile_log_bh(bh); 867 stats.run.rs_blocks_logged++; 868 869 /* 870 * The list contains temporary buffer heads created by 871 * jbd2_journal_write_metadata_buffer(). 872 */ 873 BUFFER_TRACE(bh, "dumping temporary bh"); 874 __brelse(bh); 875 J_ASSERT_BH(bh, atomic_read(&bh->b_count) == 0); 876 free_buffer_head(bh); 877 878 /* We also have to refile the corresponding shadowed buffer */ 879 jh = commit_transaction->t_shadow_list->b_tprev; 880 bh = jh2bh(jh); 881 clear_buffer_jwrite(bh); 882 J_ASSERT_BH(bh, buffer_jbddirty(bh)); 883 J_ASSERT_BH(bh, !buffer_shadow(bh)); 884 885 /* The metadata is now released for reuse, but we need 886 to remember it against this transaction so that when 887 we finally commit, we can do any checkpointing 888 required. */ 889 JBUFFER_TRACE(jh, "file as BJ_Forget"); 890 jbd2_journal_file_buffer(jh, commit_transaction, BJ_Forget); 891 JBUFFER_TRACE(jh, "brelse shadowed buffer"); 892 __brelse(bh); 893 } 894 895 J_ASSERT (commit_transaction->t_shadow_list == NULL); 896 897 jbd_debug(3, "JBD2: commit phase 4\n"); 898 899 /* Here we wait for the revoke record and descriptor record buffers */ 900 while (!list_empty(&log_bufs)) { 901 struct buffer_head *bh; 902 903 bh = list_entry(log_bufs.prev, struct buffer_head, b_assoc_buffers); 904 wait_on_buffer(bh); 905 cond_resched(); 906 907 if (unlikely(!buffer_uptodate(bh))) 908 err = -EIO; 909 910 BUFFER_TRACE(bh, "ph5: control buffer writeout done: unfile"); 911 clear_buffer_jwrite(bh); 912 jbd2_unfile_log_bh(bh); 913 stats.run.rs_blocks_logged++; 914 __brelse(bh); /* One for getblk */ 915 /* AKPM: bforget here */ 916 } 917 918 if (err) 919 jbd2_journal_abort(journal, err); 920 921 jbd_debug(3, "JBD2: commit phase 5\n"); 922 write_lock(&journal->j_state_lock); 923 J_ASSERT(commit_transaction->t_state == T_COMMIT_DFLUSH); 924 commit_transaction->t_state = T_COMMIT_JFLUSH; 925 write_unlock(&journal->j_state_lock); 926 927 if (!jbd2_has_feature_async_commit(journal)) { 928 err = journal_submit_commit_record(journal, commit_transaction, 929 &cbh, crc32_sum); 930 if (err) 931 jbd2_journal_abort(journal, err); 932 } 933 if (cbh) 934 err = journal_wait_on_commit_record(journal, cbh); 935 stats.run.rs_blocks_logged++; 936 if (jbd2_has_feature_async_commit(journal) && 937 journal->j_flags & JBD2_BARRIER) { 938 blkdev_issue_flush(journal->j_dev, GFP_NOFS); 939 } 940 941 if (err) 942 jbd2_journal_abort(journal, err); 943 944 WARN_ON_ONCE( 945 atomic_read(&commit_transaction->t_outstanding_credits) < 0); 946 947 /* 948 * Now disk caches for filesystem device are flushed so we are safe to 949 * erase checkpointed transactions from the log by updating journal 950 * superblock. 951 */ 952 if (update_tail) 953 jbd2_update_log_tail(journal, first_tid, first_block); 954 955 /* End of a transaction! Finally, we can do checkpoint 956 processing: any buffers committed as a result of this 957 transaction can be removed from any checkpoint list it was on 958 before. */ 959 960 jbd_debug(3, "JBD2: commit phase 6\n"); 961 962 J_ASSERT(list_empty(&commit_transaction->t_inode_list)); 963 J_ASSERT(commit_transaction->t_buffers == NULL); 964 J_ASSERT(commit_transaction->t_checkpoint_list == NULL); 965 J_ASSERT(commit_transaction->t_shadow_list == NULL); 966 967restart_loop: 968 /* 969 * As there are other places (journal_unmap_buffer()) adding buffers 970 * to this list we have to be careful and hold the j_list_lock. 971 */ 972 spin_lock(&journal->j_list_lock); 973 while (commit_transaction->t_forget) { 974 transaction_t *cp_transaction; 975 struct buffer_head *bh; 976 int try_to_free = 0; 977 bool drop_ref; 978 979 jh = commit_transaction->t_forget; 980 spin_unlock(&journal->j_list_lock); 981 bh = jh2bh(jh); 982 /* 983 * Get a reference so that bh cannot be freed before we are 984 * done with it. 985 */ 986 get_bh(bh); 987 spin_lock(&jh->b_state_lock); 988 J_ASSERT_JH(jh, jh->b_transaction == commit_transaction); 989 990 /* 991 * If there is undo-protected committed data against 992 * this buffer, then we can remove it now. If it is a 993 * buffer needing such protection, the old frozen_data 994 * field now points to a committed version of the 995 * buffer, so rotate that field to the new committed 996 * data. 997 * 998 * Otherwise, we can just throw away the frozen data now. 999 * 1000 * We also know that the frozen data has already fired 1001 * its triggers if they exist, so we can clear that too. 1002 */ 1003 if (jh->b_committed_data) { 1004 jbd2_free(jh->b_committed_data, bh->b_size); 1005 jh->b_committed_data = NULL; 1006 if (jh->b_frozen_data) { 1007 jh->b_committed_data = jh->b_frozen_data; 1008 jh->b_frozen_data = NULL; 1009 jh->b_frozen_triggers = NULL; 1010 } 1011 } else if (jh->b_frozen_data) { 1012 jbd2_free(jh->b_frozen_data, bh->b_size); 1013 jh->b_frozen_data = NULL; 1014 jh->b_frozen_triggers = NULL; 1015 } 1016 1017 spin_lock(&journal->j_list_lock); 1018 cp_transaction = jh->b_cp_transaction; 1019 if (cp_transaction) { 1020 JBUFFER_TRACE(jh, "remove from old cp transaction"); 1021 cp_transaction->t_chp_stats.cs_dropped++; 1022 __jbd2_journal_remove_checkpoint(jh); 1023 } 1024 1025 /* Only re-checkpoint the buffer_head if it is marked 1026 * dirty. If the buffer was added to the BJ_Forget list 1027 * by jbd2_journal_forget, it may no longer be dirty and 1028 * there's no point in keeping a checkpoint record for 1029 * it. */ 1030 1031 /* 1032 * A buffer which has been freed while still being journaled 1033 * by a previous transaction, refile the buffer to BJ_Forget of 1034 * the running transaction. If the just committed transaction 1035 * contains "add to orphan" operation, we can completely 1036 * invalidate the buffer now. We are rather through in that 1037 * since the buffer may be still accessible when blocksize < 1038 * pagesize and it is attached to the last partial page. 1039 */ 1040 if (buffer_freed(bh) && !jh->b_next_transaction) { 1041 struct address_space *mapping; 1042 1043 clear_buffer_freed(bh); 1044 clear_buffer_jbddirty(bh); 1045 1046 /* 1047 * Block device buffers need to stay mapped all the 1048 * time, so it is enough to clear buffer_jbddirty and 1049 * buffer_freed bits. For the file mapping buffers (i.e. 1050 * journalled data) we need to unmap buffer and clear 1051 * more bits. We also need to be careful about the check 1052 * because the data page mapping can get cleared under 1053 * our hands. Note that if mapping == NULL, we don't 1054 * need to make buffer unmapped because the page is 1055 * already detached from the mapping and buffers cannot 1056 * get reused. 1057 */ 1058 mapping = READ_ONCE(bh->b_page->mapping); 1059 if (mapping && !sb_is_blkdev_sb(mapping->host->i_sb)) { 1060 clear_buffer_mapped(bh); 1061 clear_buffer_new(bh); 1062 clear_buffer_req(bh); 1063 bh->b_bdev = NULL; 1064 } 1065 } 1066 1067 if (buffer_jbddirty(bh)) { 1068 JBUFFER_TRACE(jh, "add to new checkpointing trans"); 1069 __jbd2_journal_insert_checkpoint(jh, commit_transaction); 1070 if (is_journal_aborted(journal)) 1071 clear_buffer_jbddirty(bh); 1072 } else { 1073 J_ASSERT_BH(bh, !buffer_dirty(bh)); 1074 /* 1075 * The buffer on BJ_Forget list and not jbddirty means 1076 * it has been freed by this transaction and hence it 1077 * could not have been reallocated until this 1078 * transaction has committed. *BUT* it could be 1079 * reallocated once we have written all the data to 1080 * disk and before we process the buffer on BJ_Forget 1081 * list. 1082 */ 1083 if (!jh->b_next_transaction) 1084 try_to_free = 1; 1085 } 1086 JBUFFER_TRACE(jh, "refile or unfile buffer"); 1087 drop_ref = __jbd2_journal_refile_buffer(jh); 1088 spin_unlock(&jh->b_state_lock); 1089 if (drop_ref) 1090 jbd2_journal_put_journal_head(jh); 1091 if (try_to_free) 1092 release_buffer_page(bh); /* Drops bh reference */ 1093 else 1094 __brelse(bh); 1095 cond_resched_lock(&journal->j_list_lock); 1096 } 1097 spin_unlock(&journal->j_list_lock); 1098 /* 1099 * This is a bit sleazy. We use j_list_lock to protect transition 1100 * of a transaction into T_FINISHED state and calling 1101 * __jbd2_journal_drop_transaction(). Otherwise we could race with 1102 * other checkpointing code processing the transaction... 1103 */ 1104 write_lock(&journal->j_state_lock); 1105 spin_lock(&journal->j_list_lock); 1106 /* 1107 * Now recheck if some buffers did not get attached to the transaction 1108 * while the lock was dropped... 1109 */ 1110 if (commit_transaction->t_forget) { 1111 spin_unlock(&journal->j_list_lock); 1112 write_unlock(&journal->j_state_lock); 1113 goto restart_loop; 1114 } 1115 1116 /* Add the transaction to the checkpoint list 1117 * __journal_remove_checkpoint() can not destroy transaction 1118 * under us because it is not marked as T_FINISHED yet */ 1119 if (journal->j_checkpoint_transactions == NULL) { 1120 journal->j_checkpoint_transactions = commit_transaction; 1121 commit_transaction->t_cpnext = commit_transaction; 1122 commit_transaction->t_cpprev = commit_transaction; 1123 } else { 1124 commit_transaction->t_cpnext = 1125 journal->j_checkpoint_transactions; 1126 commit_transaction->t_cpprev = 1127 commit_transaction->t_cpnext->t_cpprev; 1128 commit_transaction->t_cpnext->t_cpprev = 1129 commit_transaction; 1130 commit_transaction->t_cpprev->t_cpnext = 1131 commit_transaction; 1132 } 1133 spin_unlock(&journal->j_list_lock); 1134 1135 /* Done with this transaction! */ 1136 1137 jbd_debug(3, "JBD2: commit phase 7\n"); 1138 1139 J_ASSERT(commit_transaction->t_state == T_COMMIT_JFLUSH); 1140 1141 commit_transaction->t_start = jiffies; 1142 stats.run.rs_logging = jbd2_time_diff(stats.run.rs_logging, 1143 commit_transaction->t_start); 1144 1145 /* 1146 * File the transaction statistics 1147 */ 1148 stats.ts_tid = commit_transaction->t_tid; 1149 stats.run.rs_handle_count = 1150 atomic_read(&commit_transaction->t_handle_count); 1151 trace_jbd2_run_stats(journal->j_fs_dev->bd_dev, 1152 commit_transaction->t_tid, &stats.run); 1153 stats.ts_requested = (commit_transaction->t_requested) ? 1 : 0; 1154 1155 commit_transaction->t_state = T_COMMIT_CALLBACK; 1156 J_ASSERT(commit_transaction == journal->j_committing_transaction); 1157 journal->j_commit_sequence = commit_transaction->t_tid; 1158 journal->j_committing_transaction = NULL; 1159 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); 1160 1161 /* 1162 * weight the commit time higher than the average time so we don't 1163 * react too strongly to vast changes in the commit time 1164 */ 1165 if (likely(journal->j_average_commit_time)) 1166 journal->j_average_commit_time = (commit_time + 1167 journal->j_average_commit_time*3) / 4; 1168 else 1169 journal->j_average_commit_time = commit_time; 1170 1171 write_unlock(&journal->j_state_lock); 1172 1173 if (journal->j_commit_callback) 1174 journal->j_commit_callback(journal, commit_transaction); 1175 if (journal->j_fc_cleanup_callback) 1176 journal->j_fc_cleanup_callback(journal, 1); 1177 1178 trace_jbd2_end_commit(journal, commit_transaction); 1179 jbd_debug(1, "JBD2: commit %d complete, head %d\n", 1180 journal->j_commit_sequence, journal->j_tail_sequence); 1181 1182 write_lock(&journal->j_state_lock); 1183 journal->j_flags &= ~JBD2_FULL_COMMIT_ONGOING; 1184 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING; 1185 spin_lock(&journal->j_list_lock); 1186 commit_transaction->t_state = T_FINISHED; 1187 /* Check if the transaction can be dropped now that we are finished */ 1188 if (commit_transaction->t_checkpoint_list == NULL && 1189 commit_transaction->t_checkpoint_io_list == NULL) { 1190 __jbd2_journal_drop_transaction(journal, commit_transaction); 1191 jbd2_journal_free_transaction(commit_transaction); 1192 } 1193 spin_unlock(&journal->j_list_lock); 1194 write_unlock(&journal->j_state_lock); 1195 wake_up(&journal->j_wait_done_commit); 1196 wake_up(&journal->j_fc_wait); 1197 1198 /* 1199 * Calculate overall stats 1200 */ 1201 spin_lock(&journal->j_history_lock); 1202 journal->j_stats.ts_tid++; 1203 journal->j_stats.ts_requested += stats.ts_requested; 1204 journal->j_stats.run.rs_wait += stats.run.rs_wait; 1205 journal->j_stats.run.rs_request_delay += stats.run.rs_request_delay; 1206 journal->j_stats.run.rs_running += stats.run.rs_running; 1207 journal->j_stats.run.rs_locked += stats.run.rs_locked; 1208 journal->j_stats.run.rs_flushing += stats.run.rs_flushing; 1209 journal->j_stats.run.rs_logging += stats.run.rs_logging; 1210 journal->j_stats.run.rs_handle_count += stats.run.rs_handle_count; 1211 journal->j_stats.run.rs_blocks += stats.run.rs_blocks; 1212 journal->j_stats.run.rs_blocks_logged += stats.run.rs_blocks_logged; 1213 spin_unlock(&journal->j_history_lock); 1214} 1215