1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6#include <linux/module.h> 7#include <linux/compiler.h> 8#include <linux/fs.h> 9#include <linux/iomap.h> 10#include <linux/pagemap.h> 11#include <linux/uio.h> 12#include <linux/buffer_head.h> 13#include <linux/dax.h> 14#include <linux/writeback.h> 15#include <linux/list_sort.h> 16#include <linux/swap.h> 17#include <linux/bio.h> 18#include <linux/sched/signal.h> 19#include <linux/migrate.h> 20#include "trace.h" 21 22#include "../internal.h" 23 24/* 25 * Structure allocated for each page or THP when block size < page size 26 * to track sub-page uptodate status and I/O completions. 27 */ 28struct iomap_page { 29 atomic_t read_bytes_pending; 30 atomic_t write_bytes_pending; 31 spinlock_t uptodate_lock; 32 unsigned long uptodate[]; 33}; 34 35static inline struct iomap_page *to_iomap_page(struct page *page) 36{ 37 /* 38 * per-block data is stored in the head page. Callers should 39 * not be dealing with tail pages (and if they are, they can 40 * call thp_head() first. 41 */ 42 VM_BUG_ON_PGFLAGS(PageTail(page), page); 43 44 if (page_has_private(page)) 45 return (struct iomap_page *)page_private(page); 46 return NULL; 47} 48 49static struct bio_set iomap_ioend_bioset; 50 51static struct iomap_page * 52iomap_page_create(struct inode *inode, struct page *page) 53{ 54 struct iomap_page *iop = to_iomap_page(page); 55 unsigned int nr_blocks = i_blocks_per_page(inode, page); 56 57 if (iop || nr_blocks <= 1) 58 return iop; 59 60 iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)), 61 GFP_NOFS | __GFP_NOFAIL); 62 spin_lock_init(&iop->uptodate_lock); 63 if (PageUptodate(page)) 64 bitmap_fill(iop->uptodate, nr_blocks); 65 attach_page_private(page, iop); 66 return iop; 67} 68 69static void 70iomap_page_release(struct page *page) 71{ 72 struct iomap_page *iop = detach_page_private(page); 73 unsigned int nr_blocks = i_blocks_per_page(page->mapping->host, page); 74 75 if (!iop) 76 return; 77 WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending)); 78 WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending)); 79 WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) != 80 PageUptodate(page)); 81 kfree(iop); 82} 83 84/* 85 * Calculate the range inside the page that we actually need to read. 86 */ 87static void 88iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop, 89 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp) 90{ 91 loff_t orig_pos = *pos; 92 loff_t isize = i_size_read(inode); 93 unsigned block_bits = inode->i_blkbits; 94 unsigned block_size = (1 << block_bits); 95 unsigned poff = offset_in_page(*pos); 96 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length); 97 unsigned first = poff >> block_bits; 98 unsigned last = (poff + plen - 1) >> block_bits; 99 100 /* 101 * If the block size is smaller than the page size we need to check the 102 * per-block uptodate status and adjust the offset and length if needed 103 * to avoid reading in already uptodate ranges. 104 */ 105 if (iop) { 106 unsigned int i; 107 108 /* move forward for each leading block marked uptodate */ 109 for (i = first; i <= last; i++) { 110 if (!test_bit(i, iop->uptodate)) 111 break; 112 *pos += block_size; 113 poff += block_size; 114 plen -= block_size; 115 first++; 116 } 117 118 /* truncate len if we find any trailing uptodate block(s) */ 119 for ( ; i <= last; i++) { 120 if (test_bit(i, iop->uptodate)) { 121 plen -= (last - i + 1) * block_size; 122 last = i - 1; 123 break; 124 } 125 } 126 } 127 128 /* 129 * If the extent spans the block that contains the i_size we need to 130 * handle both halves separately so that we properly zero data in the 131 * page cache for blocks that are entirely outside of i_size. 132 */ 133 if (orig_pos <= isize && orig_pos + length > isize) { 134 unsigned end = offset_in_page(isize - 1) >> block_bits; 135 136 if (first <= end && last > end) 137 plen -= (last - end) * block_size; 138 } 139 140 *offp = poff; 141 *lenp = plen; 142} 143 144static void 145iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len) 146{ 147 struct iomap_page *iop = to_iomap_page(page); 148 struct inode *inode = page->mapping->host; 149 unsigned first = off >> inode->i_blkbits; 150 unsigned last = (off + len - 1) >> inode->i_blkbits; 151 unsigned long flags; 152 153 spin_lock_irqsave(&iop->uptodate_lock, flags); 154 bitmap_set(iop->uptodate, first, last - first + 1); 155 if (bitmap_full(iop->uptodate, i_blocks_per_page(inode, page))) 156 SetPageUptodate(page); 157 spin_unlock_irqrestore(&iop->uptodate_lock, flags); 158} 159 160static void 161iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len) 162{ 163 if (PageError(page)) 164 return; 165 166 if (page_has_private(page)) 167 iomap_iop_set_range_uptodate(page, off, len); 168 else 169 SetPageUptodate(page); 170} 171 172static void 173iomap_read_page_end_io(struct bio_vec *bvec, int error) 174{ 175 struct page *page = bvec->bv_page; 176 struct iomap_page *iop = to_iomap_page(page); 177 178 if (unlikely(error)) { 179 ClearPageUptodate(page); 180 SetPageError(page); 181 } else { 182 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len); 183 } 184 185 if (!iop || atomic_sub_and_test(bvec->bv_len, &iop->read_bytes_pending)) 186 unlock_page(page); 187} 188 189static void 190iomap_read_end_io(struct bio *bio) 191{ 192 int error = blk_status_to_errno(bio->bi_status); 193 struct bio_vec *bvec; 194 struct bvec_iter_all iter_all; 195 196 bio_for_each_segment_all(bvec, bio, iter_all) 197 iomap_read_page_end_io(bvec, error); 198 bio_put(bio); 199} 200 201struct iomap_readpage_ctx { 202 struct page *cur_page; 203 bool cur_page_in_bio; 204 struct bio *bio; 205 struct readahead_control *rac; 206}; 207 208static void 209iomap_read_inline_data(struct inode *inode, struct page *page, 210 struct iomap *iomap) 211{ 212 size_t size = i_size_read(inode); 213 void *addr; 214 215 if (PageUptodate(page)) 216 return; 217 218 BUG_ON(page->index); 219 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data)); 220 221 addr = kmap_atomic(page); 222 memcpy(addr, iomap->inline_data, size); 223 memset(addr + size, 0, PAGE_SIZE - size); 224 kunmap_atomic(addr); 225 SetPageUptodate(page); 226} 227 228static inline bool iomap_block_needs_zeroing(struct inode *inode, 229 struct iomap *iomap, loff_t pos) 230{ 231 return iomap->type != IOMAP_MAPPED || 232 (iomap->flags & IOMAP_F_NEW) || 233 pos >= i_size_read(inode); 234} 235 236static loff_t 237iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 238 struct iomap *iomap, struct iomap *srcmap) 239{ 240 struct iomap_readpage_ctx *ctx = data; 241 struct page *page = ctx->cur_page; 242 struct iomap_page *iop = iomap_page_create(inode, page); 243 bool same_page = false, is_contig = false; 244 loff_t orig_pos = pos; 245 unsigned poff, plen; 246 sector_t sector; 247 248 if (iomap->type == IOMAP_INLINE) { 249 WARN_ON_ONCE(pos); 250 iomap_read_inline_data(inode, page, iomap); 251 return PAGE_SIZE; 252 } 253 254 /* zero post-eof blocks as the page may be mapped */ 255 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen); 256 if (plen == 0) 257 goto done; 258 259 if (iomap_block_needs_zeroing(inode, iomap, pos)) { 260 zero_user(page, poff, plen); 261 iomap_set_range_uptodate(page, poff, plen); 262 goto done; 263 } 264 265 ctx->cur_page_in_bio = true; 266 if (iop) 267 atomic_add(plen, &iop->read_bytes_pending); 268 269 /* Try to merge into a previous segment if we can */ 270 sector = iomap_sector(iomap, pos); 271 if (ctx->bio && bio_end_sector(ctx->bio) == sector) { 272 if (__bio_try_merge_page(ctx->bio, page, plen, poff, 273 &same_page)) 274 goto done; 275 is_contig = true; 276 } 277 278 if (!is_contig || bio_full(ctx->bio, plen)) { 279 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); 280 gfp_t orig_gfp = gfp; 281 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT; 282 283 if (ctx->bio) 284 submit_bio(ctx->bio); 285 286 if (ctx->rac) /* same as readahead_gfp_mask */ 287 gfp |= __GFP_NORETRY | __GFP_NOWARN; 288 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs)); 289 /* 290 * If the bio_alloc fails, try it again for a single page to 291 * avoid having to deal with partial page reads. This emulates 292 * what do_mpage_readpage does. 293 */ 294 if (!ctx->bio) 295 ctx->bio = bio_alloc(orig_gfp, 1); 296 ctx->bio->bi_opf = REQ_OP_READ; 297 if (ctx->rac) 298 ctx->bio->bi_opf |= REQ_RAHEAD; 299 ctx->bio->bi_iter.bi_sector = sector; 300 bio_set_dev(ctx->bio, iomap->bdev); 301 ctx->bio->bi_end_io = iomap_read_end_io; 302 } 303 304 bio_add_page(ctx->bio, page, plen, poff); 305done: 306 /* 307 * Move the caller beyond our range so that it keeps making progress. 308 * For that we have to include any leading non-uptodate ranges, but 309 * we can skip trailing ones as they will be handled in the next 310 * iteration. 311 */ 312 return pos - orig_pos + plen; 313} 314 315int 316iomap_readpage(struct page *page, const struct iomap_ops *ops) 317{ 318 struct iomap_readpage_ctx ctx = { .cur_page = page }; 319 struct inode *inode = page->mapping->host; 320 unsigned poff; 321 loff_t ret; 322 323 trace_iomap_readpage(page->mapping->host, 1); 324 325 for (poff = 0; poff < PAGE_SIZE; poff += ret) { 326 ret = iomap_apply(inode, page_offset(page) + poff, 327 PAGE_SIZE - poff, 0, ops, &ctx, 328 iomap_readpage_actor); 329 if (ret <= 0) { 330 WARN_ON_ONCE(ret == 0); 331 SetPageError(page); 332 break; 333 } 334 } 335 336 if (ctx.bio) { 337 submit_bio(ctx.bio); 338 WARN_ON_ONCE(!ctx.cur_page_in_bio); 339 } else { 340 WARN_ON_ONCE(ctx.cur_page_in_bio); 341 unlock_page(page); 342 } 343 344 /* 345 * Just like mpage_readahead and block_read_full_page we always 346 * return 0 and just mark the page as PageError on errors. This 347 * should be cleaned up all through the stack eventually. 348 */ 349 return 0; 350} 351EXPORT_SYMBOL_GPL(iomap_readpage); 352 353static loff_t 354iomap_readahead_actor(struct inode *inode, loff_t pos, loff_t length, 355 void *data, struct iomap *iomap, struct iomap *srcmap) 356{ 357 struct iomap_readpage_ctx *ctx = data; 358 loff_t done, ret; 359 360 for (done = 0; done < length; done += ret) { 361 if (ctx->cur_page && offset_in_page(pos + done) == 0) { 362 if (!ctx->cur_page_in_bio) 363 unlock_page(ctx->cur_page); 364 put_page(ctx->cur_page); 365 ctx->cur_page = NULL; 366 } 367 if (!ctx->cur_page) { 368 ctx->cur_page = readahead_page(ctx->rac); 369 ctx->cur_page_in_bio = false; 370 } 371 ret = iomap_readpage_actor(inode, pos + done, length - done, 372 ctx, iomap, srcmap); 373 } 374 375 return done; 376} 377 378/** 379 * iomap_readahead - Attempt to read pages from a file. 380 * @rac: Describes the pages to be read. 381 * @ops: The operations vector for the filesystem. 382 * 383 * This function is for filesystems to call to implement their readahead 384 * address_space operation. 385 * 386 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 387 * blocks from disc), and may wait for it. The caller may be trying to 388 * access a different page, and so sleeping excessively should be avoided. 389 * It may allocate memory, but should avoid costly allocations. This 390 * function is called with memalloc_nofs set, so allocations will not cause 391 * the filesystem to be reentered. 392 */ 393void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 394{ 395 struct inode *inode = rac->mapping->host; 396 loff_t pos = readahead_pos(rac); 397 loff_t length = readahead_length(rac); 398 struct iomap_readpage_ctx ctx = { 399 .rac = rac, 400 }; 401 402 trace_iomap_readahead(inode, readahead_count(rac)); 403 404 while (length > 0) { 405 loff_t ret = iomap_apply(inode, pos, length, 0, ops, 406 &ctx, iomap_readahead_actor); 407 if (ret <= 0) { 408 WARN_ON_ONCE(ret == 0); 409 break; 410 } 411 pos += ret; 412 length -= ret; 413 } 414 415 if (ctx.bio) 416 submit_bio(ctx.bio); 417 if (ctx.cur_page) { 418 if (!ctx.cur_page_in_bio) 419 unlock_page(ctx.cur_page); 420 put_page(ctx.cur_page); 421 } 422} 423EXPORT_SYMBOL_GPL(iomap_readahead); 424 425/* 426 * iomap_is_partially_uptodate checks whether blocks within a page are 427 * uptodate or not. 428 * 429 * Returns true if all blocks which correspond to a file portion 430 * we want to read within the page are uptodate. 431 */ 432int 433iomap_is_partially_uptodate(struct page *page, unsigned long from, 434 unsigned long count) 435{ 436 struct iomap_page *iop = to_iomap_page(page); 437 struct inode *inode = page->mapping->host; 438 unsigned len, first, last; 439 unsigned i; 440 441 /* Limit range to one page */ 442 len = min_t(unsigned, PAGE_SIZE - from, count); 443 444 /* First and last blocks in range within page */ 445 first = from >> inode->i_blkbits; 446 last = (from + len - 1) >> inode->i_blkbits; 447 448 if (iop) { 449 for (i = first; i <= last; i++) 450 if (!test_bit(i, iop->uptodate)) 451 return 0; 452 return 1; 453 } 454 455 return 0; 456} 457EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 458 459int 460iomap_releasepage(struct page *page, gfp_t gfp_mask) 461{ 462 trace_iomap_releasepage(page->mapping->host, page_offset(page), 463 PAGE_SIZE); 464 465 /* 466 * mm accommodates an old ext3 case where clean pages might not have had 467 * the dirty bit cleared. Thus, it can send actual dirty pages to 468 * ->releasepage() via shrink_active_list(), skip those here. 469 */ 470 if (PageDirty(page) || PageWriteback(page)) 471 return 0; 472 iomap_page_release(page); 473 return 1; 474} 475EXPORT_SYMBOL_GPL(iomap_releasepage); 476 477void 478iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len) 479{ 480 trace_iomap_invalidatepage(page->mapping->host, offset, len); 481 482 /* 483 * If we are invalidating the entire page, clear the dirty state from it 484 * and release it to avoid unnecessary buildup of the LRU. 485 */ 486 if (offset == 0 && len == PAGE_SIZE) { 487 WARN_ON_ONCE(PageWriteback(page)); 488 cancel_dirty_page(page); 489 iomap_page_release(page); 490 } 491} 492EXPORT_SYMBOL_GPL(iomap_invalidatepage); 493 494#ifdef CONFIG_MIGRATION 495int 496iomap_migrate_page(struct address_space *mapping, struct page *newpage, 497 struct page *page, enum migrate_mode mode) 498{ 499 int ret; 500 501 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 502 if (ret != MIGRATEPAGE_SUCCESS) 503 return ret; 504 505 if (page_has_private(page)) 506 attach_page_private(newpage, detach_page_private(page)); 507 508 if (mode != MIGRATE_SYNC_NO_COPY) 509 migrate_page_copy(newpage, page); 510 else 511 migrate_page_states(newpage, page); 512 return MIGRATEPAGE_SUCCESS; 513} 514EXPORT_SYMBOL_GPL(iomap_migrate_page); 515#endif /* CONFIG_MIGRATION */ 516 517enum { 518 IOMAP_WRITE_F_UNSHARE = (1 << 0), 519}; 520 521static void 522iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 523{ 524 loff_t i_size = i_size_read(inode); 525 526 /* 527 * Only truncate newly allocated pages beyoned EOF, even if the 528 * write started inside the existing inode size. 529 */ 530 if (pos + len > i_size) 531 truncate_pagecache_range(inode, max(pos, i_size), 532 pos + len - 1); 533} 534 535static int 536iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff, 537 unsigned plen, struct iomap *iomap) 538{ 539 struct bio_vec bvec; 540 struct bio bio; 541 542 bio_init(&bio, &bvec, 1); 543 bio.bi_opf = REQ_OP_READ; 544 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 545 bio_set_dev(&bio, iomap->bdev); 546 __bio_add_page(&bio, page, plen, poff); 547 return submit_bio_wait(&bio); 548} 549 550static int 551__iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags, 552 struct page *page, struct iomap *srcmap) 553{ 554 struct iomap_page *iop = iomap_page_create(inode, page); 555 loff_t block_size = i_blocksize(inode); 556 loff_t block_start = round_down(pos, block_size); 557 loff_t block_end = round_up(pos + len, block_size); 558 unsigned from = offset_in_page(pos), to = from + len, poff, plen; 559 560 if (PageUptodate(page)) 561 return 0; 562 ClearPageError(page); 563 564 do { 565 iomap_adjust_read_range(inode, iop, &block_start, 566 block_end - block_start, &poff, &plen); 567 if (plen == 0) 568 break; 569 570 if (!(flags & IOMAP_WRITE_F_UNSHARE) && 571 (from <= poff || from >= poff + plen) && 572 (to <= poff || to >= poff + plen)) 573 continue; 574 575 if (iomap_block_needs_zeroing(inode, srcmap, block_start)) { 576 if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE)) 577 return -EIO; 578 zero_user_segments(page, poff, from, to, poff + plen); 579 } else { 580 int status = iomap_read_page_sync(block_start, page, 581 poff, plen, srcmap); 582 if (status) 583 return status; 584 } 585 iomap_set_range_uptodate(page, poff, plen); 586 } while ((block_start += plen) < block_end); 587 588 return 0; 589} 590 591static int 592iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags, 593 struct page **pagep, struct iomap *iomap, struct iomap *srcmap) 594{ 595 const struct iomap_page_ops *page_ops = iomap->page_ops; 596 struct page *page; 597 int status = 0; 598 599 BUG_ON(pos + len > iomap->offset + iomap->length); 600 if (srcmap != iomap) 601 BUG_ON(pos + len > srcmap->offset + srcmap->length); 602 603 if (fatal_signal_pending(current)) 604 return -EINTR; 605 606 if (page_ops && page_ops->page_prepare) { 607 status = page_ops->page_prepare(inode, pos, len, iomap); 608 if (status) 609 return status; 610 } 611 612 page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT, 613 AOP_FLAG_NOFS); 614 if (!page) { 615 status = -ENOMEM; 616 goto out_no_page; 617 } 618 619 if (srcmap->type == IOMAP_INLINE) 620 iomap_read_inline_data(inode, page, srcmap); 621 else if (iomap->flags & IOMAP_F_BUFFER_HEAD) 622 status = __block_write_begin_int(page, pos, len, NULL, srcmap); 623 else 624 status = __iomap_write_begin(inode, pos, len, flags, page, 625 srcmap); 626 627 if (unlikely(status)) 628 goto out_unlock; 629 630 *pagep = page; 631 return 0; 632 633out_unlock: 634 unlock_page(page); 635 put_page(page); 636 iomap_write_failed(inode, pos, len); 637 638out_no_page: 639 if (page_ops && page_ops->page_done) 640 page_ops->page_done(inode, pos, 0, NULL, iomap); 641 return status; 642} 643 644int 645iomap_set_page_dirty(struct page *page) 646{ 647 struct address_space *mapping = page_mapping(page); 648 int newly_dirty; 649 650 if (unlikely(!mapping)) 651 return !TestSetPageDirty(page); 652 653 /* 654 * Lock out page->mem_cgroup migration to keep PageDirty 655 * synchronized with per-memcg dirty page counters. 656 */ 657 lock_page_memcg(page); 658 newly_dirty = !TestSetPageDirty(page); 659 if (newly_dirty) 660 __set_page_dirty(page, mapping, 0); 661 unlock_page_memcg(page); 662 663 if (newly_dirty) 664 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 665 return newly_dirty; 666} 667EXPORT_SYMBOL_GPL(iomap_set_page_dirty); 668 669static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 670 size_t copied, struct page *page) 671{ 672 flush_dcache_page(page); 673 674 /* 675 * The blocks that were entirely written will now be uptodate, so we 676 * don't have to worry about a readpage reading them and overwriting a 677 * partial write. However if we have encountered a short write and only 678 * partially written into a block, it will not be marked uptodate, so a 679 * readpage might come in and destroy our partial write. 680 * 681 * Do the simplest thing, and just treat any short write to a non 682 * uptodate page as a zero-length write, and force the caller to redo 683 * the whole thing. 684 */ 685 if (unlikely(copied < len && !PageUptodate(page))) 686 return 0; 687 iomap_set_range_uptodate(page, offset_in_page(pos), len); 688 iomap_set_page_dirty(page); 689 return copied; 690} 691 692static size_t iomap_write_end_inline(struct inode *inode, struct page *page, 693 struct iomap *iomap, loff_t pos, size_t copied) 694{ 695 void *addr; 696 697 WARN_ON_ONCE(!PageUptodate(page)); 698 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data)); 699 700 flush_dcache_page(page); 701 addr = kmap_atomic(page); 702 memcpy(iomap->inline_data + pos, addr + pos, copied); 703 kunmap_atomic(addr); 704 705 mark_inode_dirty(inode); 706 return copied; 707} 708 709/* Returns the number of bytes copied. May be 0. Cannot be an errno. */ 710static size_t iomap_write_end(struct inode *inode, loff_t pos, size_t len, 711 size_t copied, struct page *page, struct iomap *iomap, 712 struct iomap *srcmap) 713{ 714 const struct iomap_page_ops *page_ops = iomap->page_ops; 715 loff_t old_size = inode->i_size; 716 size_t ret; 717 718 if (srcmap->type == IOMAP_INLINE) { 719 ret = iomap_write_end_inline(inode, page, iomap, pos, copied); 720 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 721 ret = block_write_end(NULL, inode->i_mapping, pos, len, copied, 722 page, NULL); 723 } else { 724 ret = __iomap_write_end(inode, pos, len, copied, page); 725 } 726 727 /* 728 * Update the in-memory inode size after copying the data into the page 729 * cache. It's up to the file system to write the updated size to disk, 730 * preferably after I/O completion so that no stale data is exposed. 731 */ 732 if (pos + ret > old_size) { 733 i_size_write(inode, pos + ret); 734 iomap->flags |= IOMAP_F_SIZE_CHANGED; 735 } 736 unlock_page(page); 737 738 if (old_size < pos) 739 pagecache_isize_extended(inode, old_size, pos); 740 if (page_ops && page_ops->page_done) 741 page_ops->page_done(inode, pos, ret, page, iomap); 742 put_page(page); 743 744 if (ret < len) 745 iomap_write_failed(inode, pos, len); 746 return ret; 747} 748 749static loff_t 750iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 751 struct iomap *iomap, struct iomap *srcmap) 752{ 753 struct iov_iter *i = data; 754 long status = 0; 755 ssize_t written = 0; 756 757 do { 758 struct page *page; 759 unsigned long offset; /* Offset into pagecache page */ 760 unsigned long bytes; /* Bytes to write to page */ 761 size_t copied; /* Bytes copied from user */ 762 763 offset = offset_in_page(pos); 764 bytes = min_t(unsigned long, PAGE_SIZE - offset, 765 iov_iter_count(i)); 766again: 767 if (bytes > length) 768 bytes = length; 769 770 /* 771 * Bring in the user page that we will copy from _first_. 772 * Otherwise there's a nasty deadlock on copying from the 773 * same page as we're writing to, without it being marked 774 * up-to-date. 775 * 776 * Not only is this an optimisation, but it is also required 777 * to check that the address is actually valid, when atomic 778 * usercopies are used, below. 779 */ 780 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 781 status = -EFAULT; 782 break; 783 } 784 785 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, 786 srcmap); 787 if (unlikely(status)) 788 break; 789 790 if (mapping_writably_mapped(inode->i_mapping)) 791 flush_dcache_page(page); 792 793 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 794 795 copied = iomap_write_end(inode, pos, bytes, copied, page, iomap, 796 srcmap); 797 798 cond_resched(); 799 800 iov_iter_advance(i, copied); 801 if (unlikely(copied == 0)) { 802 /* 803 * If we were unable to copy any data at all, we must 804 * fall back to a single segment length write. 805 * 806 * If we didn't fallback here, we could livelock 807 * because not all segments in the iov can be copied at 808 * once without a pagefault. 809 */ 810 bytes = min_t(unsigned long, PAGE_SIZE - offset, 811 iov_iter_single_seg_count(i)); 812 goto again; 813 } 814 pos += copied; 815 written += copied; 816 length -= copied; 817 818 balance_dirty_pages_ratelimited(inode->i_mapping); 819 } while (iov_iter_count(i) && length); 820 821 return written ? written : status; 822} 823 824ssize_t 825iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter, 826 const struct iomap_ops *ops) 827{ 828 struct inode *inode = iocb->ki_filp->f_mapping->host; 829 loff_t pos = iocb->ki_pos, ret = 0, written = 0; 830 831 while (iov_iter_count(iter)) { 832 ret = iomap_apply(inode, pos, iov_iter_count(iter), 833 IOMAP_WRITE, ops, iter, iomap_write_actor); 834 if (ret <= 0) 835 break; 836 pos += ret; 837 written += ret; 838 } 839 840 return written ? written : ret; 841} 842EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 843 844static loff_t 845iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 846 struct iomap *iomap, struct iomap *srcmap) 847{ 848 long status = 0; 849 loff_t written = 0; 850 851 /* don't bother with blocks that are not shared to start with */ 852 if (!(iomap->flags & IOMAP_F_SHARED)) 853 return length; 854 /* don't bother with holes or unwritten extents */ 855 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 856 return length; 857 858 do { 859 unsigned long offset = offset_in_page(pos); 860 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length); 861 struct page *page; 862 863 status = iomap_write_begin(inode, pos, bytes, 864 IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap); 865 if (unlikely(status)) 866 return status; 867 868 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap, 869 srcmap); 870 if (WARN_ON_ONCE(status == 0)) 871 return -EIO; 872 873 cond_resched(); 874 875 pos += status; 876 written += status; 877 length -= status; 878 879 balance_dirty_pages_ratelimited(inode->i_mapping); 880 } while (length); 881 882 return written; 883} 884 885int 886iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 887 const struct iomap_ops *ops) 888{ 889 loff_t ret; 890 891 while (len) { 892 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL, 893 iomap_unshare_actor); 894 if (ret <= 0) 895 return ret; 896 pos += ret; 897 len -= ret; 898 } 899 900 return 0; 901} 902EXPORT_SYMBOL_GPL(iomap_file_unshare); 903 904static s64 iomap_zero(struct inode *inode, loff_t pos, u64 length, 905 struct iomap *iomap, struct iomap *srcmap) 906{ 907 struct page *page; 908 int status; 909 unsigned offset = offset_in_page(pos); 910 unsigned bytes = min_t(u64, PAGE_SIZE - offset, length); 911 912 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap); 913 if (status) 914 return status; 915 916 zero_user(page, offset, bytes); 917 mark_page_accessed(page); 918 919 return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap); 920} 921 922static loff_t iomap_zero_range_actor(struct inode *inode, loff_t pos, 923 loff_t length, void *data, struct iomap *iomap, 924 struct iomap *srcmap) 925{ 926 bool *did_zero = data; 927 loff_t written = 0; 928 929 /* already zeroed? we're done. */ 930 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 931 return length; 932 933 do { 934 s64 bytes; 935 936 if (IS_DAX(inode)) 937 bytes = dax_iomap_zero(pos, length, iomap); 938 else 939 bytes = iomap_zero(inode, pos, length, iomap, srcmap); 940 if (bytes < 0) 941 return bytes; 942 943 pos += bytes; 944 length -= bytes; 945 written += bytes; 946 if (did_zero) 947 *did_zero = true; 948 } while (length > 0); 949 950 return written; 951} 952 953int 954iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 955 const struct iomap_ops *ops) 956{ 957 loff_t ret; 958 959 while (len > 0) { 960 ret = iomap_apply(inode, pos, len, IOMAP_ZERO, 961 ops, did_zero, iomap_zero_range_actor); 962 if (ret <= 0) 963 return ret; 964 965 pos += ret; 966 len -= ret; 967 } 968 969 return 0; 970} 971EXPORT_SYMBOL_GPL(iomap_zero_range); 972 973int 974iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 975 const struct iomap_ops *ops) 976{ 977 unsigned int blocksize = i_blocksize(inode); 978 unsigned int off = pos & (blocksize - 1); 979 980 /* Block boundary? Nothing to do */ 981 if (!off) 982 return 0; 983 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 984} 985EXPORT_SYMBOL_GPL(iomap_truncate_page); 986 987static loff_t 988iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length, 989 void *data, struct iomap *iomap, struct iomap *srcmap) 990{ 991 struct page *page = data; 992 int ret; 993 994 if (iomap->flags & IOMAP_F_BUFFER_HEAD) { 995 ret = __block_write_begin_int(page, pos, length, NULL, iomap); 996 if (ret) 997 return ret; 998 block_commit_write(page, 0, length); 999 } else { 1000 WARN_ON_ONCE(!PageUptodate(page)); 1001 iomap_page_create(inode, page); 1002 set_page_dirty(page); 1003 } 1004 1005 return length; 1006} 1007 1008vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 1009{ 1010 struct page *page = vmf->page; 1011 struct inode *inode = file_inode(vmf->vma->vm_file); 1012 unsigned long length; 1013 loff_t offset; 1014 ssize_t ret; 1015 1016 lock_page(page); 1017 ret = page_mkwrite_check_truncate(page, inode); 1018 if (ret < 0) 1019 goto out_unlock; 1020 length = ret; 1021 1022 offset = page_offset(page); 1023 while (length > 0) { 1024 ret = iomap_apply(inode, offset, length, 1025 IOMAP_WRITE | IOMAP_FAULT, ops, page, 1026 iomap_page_mkwrite_actor); 1027 if (unlikely(ret <= 0)) 1028 goto out_unlock; 1029 offset += ret; 1030 length -= ret; 1031 } 1032 1033 wait_for_stable_page(page); 1034 return VM_FAULT_LOCKED; 1035out_unlock: 1036 unlock_page(page); 1037 return block_page_mkwrite_return(ret); 1038} 1039EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1040 1041static void 1042iomap_finish_page_writeback(struct inode *inode, struct page *page, 1043 int error, unsigned int len) 1044{ 1045 struct iomap_page *iop = to_iomap_page(page); 1046 1047 if (error) { 1048 SetPageError(page); 1049 mapping_set_error(inode->i_mapping, error); 1050 } 1051 1052 WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop); 1053 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0); 1054 1055 if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending)) 1056 end_page_writeback(page); 1057} 1058 1059/* 1060 * We're now finished for good with this ioend structure. Update the page 1061 * state, release holds on bios, and finally free up memory. Do not use the 1062 * ioend after this. 1063 */ 1064static void 1065iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1066{ 1067 struct inode *inode = ioend->io_inode; 1068 struct bio *bio = &ioend->io_inline_bio; 1069 struct bio *last = ioend->io_bio, *next; 1070 u64 start = bio->bi_iter.bi_sector; 1071 loff_t offset = ioend->io_offset; 1072 bool quiet = bio_flagged(bio, BIO_QUIET); 1073 1074 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1075 struct bio_vec *bv; 1076 struct bvec_iter_all iter_all; 1077 1078 /* 1079 * For the last bio, bi_private points to the ioend, so we 1080 * need to explicitly end the iteration here. 1081 */ 1082 if (bio == last) 1083 next = NULL; 1084 else 1085 next = bio->bi_private; 1086 1087 /* walk each page on bio, ending page IO on them */ 1088 bio_for_each_segment_all(bv, bio, iter_all) 1089 iomap_finish_page_writeback(inode, bv->bv_page, error, 1090 bv->bv_len); 1091 bio_put(bio); 1092 } 1093 /* The ioend has been freed by bio_put() */ 1094 1095 if (unlikely(error && !quiet)) { 1096 printk_ratelimited(KERN_ERR 1097"%s: writeback error on inode %lu, offset %lld, sector %llu", 1098 inode->i_sb->s_id, inode->i_ino, offset, start); 1099 } 1100} 1101 1102void 1103iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1104{ 1105 struct list_head tmp; 1106 1107 list_replace_init(&ioend->io_list, &tmp); 1108 iomap_finish_ioend(ioend, error); 1109 1110 while (!list_empty(&tmp)) { 1111 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1112 list_del_init(&ioend->io_list); 1113 iomap_finish_ioend(ioend, error); 1114 } 1115} 1116EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1117 1118/* 1119 * We can merge two adjacent ioends if they have the same set of work to do. 1120 */ 1121static bool 1122iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1123{ 1124 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1125 return false; 1126 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1127 (next->io_flags & IOMAP_F_SHARED)) 1128 return false; 1129 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1130 (next->io_type == IOMAP_UNWRITTEN)) 1131 return false; 1132 if (ioend->io_offset + ioend->io_size != next->io_offset) 1133 return false; 1134 return true; 1135} 1136 1137void 1138iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends, 1139 void (*merge_private)(struct iomap_ioend *ioend, 1140 struct iomap_ioend *next)) 1141{ 1142 struct iomap_ioend *next; 1143 1144 INIT_LIST_HEAD(&ioend->io_list); 1145 1146 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1147 io_list))) { 1148 if (!iomap_ioend_can_merge(ioend, next)) 1149 break; 1150 list_move_tail(&next->io_list, &ioend->io_list); 1151 ioend->io_size += next->io_size; 1152 if (next->io_private && merge_private) 1153 merge_private(ioend, next); 1154 } 1155} 1156EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1157 1158static int 1159iomap_ioend_compare(void *priv, const struct list_head *a, 1160 const struct list_head *b) 1161{ 1162 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1163 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1164 1165 if (ia->io_offset < ib->io_offset) 1166 return -1; 1167 if (ia->io_offset > ib->io_offset) 1168 return 1; 1169 return 0; 1170} 1171 1172void 1173iomap_sort_ioends(struct list_head *ioend_list) 1174{ 1175 list_sort(NULL, ioend_list, iomap_ioend_compare); 1176} 1177EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1178 1179static void iomap_writepage_end_bio(struct bio *bio) 1180{ 1181 struct iomap_ioend *ioend = bio->bi_private; 1182 1183 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1184} 1185 1186/* 1187 * Submit the final bio for an ioend. 1188 * 1189 * If @error is non-zero, it means that we have a situation where some part of 1190 * the submission process has failed after we have marked paged for writeback 1191 * and unlocked them. In this situation, we need to fail the bio instead of 1192 * submitting it. This typically only happens on a filesystem shutdown. 1193 */ 1194static int 1195iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1196 int error) 1197{ 1198 ioend->io_bio->bi_private = ioend; 1199 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1200 1201 if (wpc->ops->prepare_ioend) 1202 error = wpc->ops->prepare_ioend(ioend, error); 1203 if (error) { 1204 /* 1205 * If we are failing the IO now, just mark the ioend with an 1206 * error and finish it. This will run IO completion immediately 1207 * as there is only one reference to the ioend at this point in 1208 * time. 1209 */ 1210 ioend->io_bio->bi_status = errno_to_blk_status(error); 1211 bio_endio(ioend->io_bio); 1212 return error; 1213 } 1214 1215 submit_bio(ioend->io_bio); 1216 return 0; 1217} 1218 1219static struct iomap_ioend * 1220iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1221 loff_t offset, sector_t sector, struct writeback_control *wbc) 1222{ 1223 struct iomap_ioend *ioend; 1224 struct bio *bio; 1225 1226 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset); 1227 bio_set_dev(bio, wpc->iomap.bdev); 1228 bio->bi_iter.bi_sector = sector; 1229 bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 1230 bio->bi_write_hint = inode->i_write_hint; 1231 wbc_init_bio(wbc, bio); 1232 1233 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1234 INIT_LIST_HEAD(&ioend->io_list); 1235 ioend->io_type = wpc->iomap.type; 1236 ioend->io_flags = wpc->iomap.flags; 1237 ioend->io_inode = inode; 1238 ioend->io_size = 0; 1239 ioend->io_offset = offset; 1240 ioend->io_private = NULL; 1241 ioend->io_bio = bio; 1242 return ioend; 1243} 1244 1245/* 1246 * Allocate a new bio, and chain the old bio to the new one. 1247 * 1248 * Note that we have to do perform the chaining in this unintuitive order 1249 * so that the bi_private linkage is set up in the right direction for the 1250 * traversal in iomap_finish_ioend(). 1251 */ 1252static struct bio * 1253iomap_chain_bio(struct bio *prev) 1254{ 1255 struct bio *new; 1256 1257 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 1258 bio_copy_dev(new, prev);/* also copies over blkcg information */ 1259 new->bi_iter.bi_sector = bio_end_sector(prev); 1260 new->bi_opf = prev->bi_opf; 1261 new->bi_write_hint = prev->bi_write_hint; 1262 1263 bio_chain(prev, new); 1264 bio_get(prev); /* for iomap_finish_ioend */ 1265 submit_bio(prev); 1266 return new; 1267} 1268 1269static bool 1270iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1271 sector_t sector) 1272{ 1273 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1274 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1275 return false; 1276 if (wpc->iomap.type != wpc->ioend->io_type) 1277 return false; 1278 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1279 return false; 1280 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1281 return false; 1282 return true; 1283} 1284 1285/* 1286 * Test to see if we have an existing ioend structure that we could append to 1287 * first, otherwise finish off the current ioend and start another. 1288 */ 1289static void 1290iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page, 1291 struct iomap_page *iop, struct iomap_writepage_ctx *wpc, 1292 struct writeback_control *wbc, struct list_head *iolist) 1293{ 1294 sector_t sector = iomap_sector(&wpc->iomap, offset); 1295 unsigned len = i_blocksize(inode); 1296 unsigned poff = offset & (PAGE_SIZE - 1); 1297 bool merged, same_page = false; 1298 1299 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) { 1300 if (wpc->ioend) 1301 list_add(&wpc->ioend->io_list, iolist); 1302 wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc); 1303 } 1304 1305 merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff, 1306 &same_page); 1307 if (iop) 1308 atomic_add(len, &iop->write_bytes_pending); 1309 1310 if (!merged) { 1311 if (bio_full(wpc->ioend->io_bio, len)) { 1312 wpc->ioend->io_bio = 1313 iomap_chain_bio(wpc->ioend->io_bio); 1314 } 1315 bio_add_page(wpc->ioend->io_bio, page, len, poff); 1316 } 1317 1318 wpc->ioend->io_size += len; 1319 wbc_account_cgroup_owner(wbc, page, len); 1320} 1321 1322/* 1323 * We implement an immediate ioend submission policy here to avoid needing to 1324 * chain multiple ioends and hence nest mempool allocations which can violate 1325 * forward progress guarantees we need to provide. The current ioend we are 1326 * adding blocks to is cached on the writepage context, and if the new block 1327 * does not append to the cached ioend it will create a new ioend and cache that 1328 * instead. 1329 * 1330 * If a new ioend is created and cached, the old ioend is returned and queued 1331 * locally for submission once the entire page is processed or an error has been 1332 * detected. While ioends are submitted immediately after they are completed, 1333 * batching optimisations are provided by higher level block plugging. 1334 * 1335 * At the end of a writeback pass, there will be a cached ioend remaining on the 1336 * writepage context that the caller will need to submit. 1337 */ 1338static int 1339iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1340 struct writeback_control *wbc, struct inode *inode, 1341 struct page *page, u64 end_offset) 1342{ 1343 struct iomap_page *iop = to_iomap_page(page); 1344 struct iomap_ioend *ioend, *next; 1345 unsigned len = i_blocksize(inode); 1346 u64 file_offset; /* file offset of page */ 1347 int error = 0, count = 0, i; 1348 LIST_HEAD(submit_list); 1349 1350 WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop); 1351 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0); 1352 1353 /* 1354 * Walk through the page to find areas to write back. If we run off the 1355 * end of the current map or find the current map invalid, grab a new 1356 * one. 1357 */ 1358 for (i = 0, file_offset = page_offset(page); 1359 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset; 1360 i++, file_offset += len) { 1361 if (iop && !test_bit(i, iop->uptodate)) 1362 continue; 1363 1364 error = wpc->ops->map_blocks(wpc, inode, file_offset); 1365 if (error) 1366 break; 1367 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1368 continue; 1369 if (wpc->iomap.type == IOMAP_HOLE) 1370 continue; 1371 iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc, 1372 &submit_list); 1373 count++; 1374 } 1375 1376 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1377 WARN_ON_ONCE(!PageLocked(page)); 1378 WARN_ON_ONCE(PageWriteback(page)); 1379 WARN_ON_ONCE(PageDirty(page)); 1380 1381 /* 1382 * We cannot cancel the ioend directly here on error. We may have 1383 * already set other pages under writeback and hence we have to run I/O 1384 * completion to mark the error state of the pages under writeback 1385 * appropriately. 1386 */ 1387 if (unlikely(error)) { 1388 /* 1389 * Let the filesystem know what portion of the current page 1390 * failed to map. If the page wasn't been added to ioend, it 1391 * won't be affected by I/O completion and we must unlock it 1392 * now. 1393 */ 1394 if (wpc->ops->discard_page) 1395 wpc->ops->discard_page(page, file_offset); 1396 if (!count) { 1397 ClearPageUptodate(page); 1398 unlock_page(page); 1399 goto done; 1400 } 1401 } 1402 1403 set_page_writeback(page); 1404 unlock_page(page); 1405 1406 /* 1407 * Preserve the original error if there was one, otherwise catch 1408 * submission errors here and propagate into subsequent ioend 1409 * submissions. 1410 */ 1411 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1412 int error2; 1413 1414 list_del_init(&ioend->io_list); 1415 error2 = iomap_submit_ioend(wpc, ioend, error); 1416 if (error2 && !error) 1417 error = error2; 1418 } 1419 1420 /* 1421 * We can end up here with no error and nothing to write only if we race 1422 * with a partial page truncate on a sub-page block sized filesystem. 1423 */ 1424 if (!count) 1425 end_page_writeback(page); 1426done: 1427 mapping_set_error(page->mapping, error); 1428 return error; 1429} 1430 1431/* 1432 * Write out a dirty page. 1433 * 1434 * For delalloc space on the page we need to allocate space and flush it. 1435 * For unwritten space on the page we need to start the conversion to 1436 * regular allocated space. 1437 */ 1438static int 1439iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data) 1440{ 1441 struct iomap_writepage_ctx *wpc = data; 1442 struct inode *inode = page->mapping->host; 1443 pgoff_t end_index; 1444 u64 end_offset; 1445 loff_t offset; 1446 1447 trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE); 1448 1449 /* 1450 * Refuse to write the page out if we are called from reclaim context. 1451 * 1452 * This avoids stack overflows when called from deeply used stacks in 1453 * random callers for direct reclaim or memcg reclaim. We explicitly 1454 * allow reclaim from kswapd as the stack usage there is relatively low. 1455 * 1456 * This should never happen except in the case of a VM regression so 1457 * warn about it. 1458 */ 1459 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1460 PF_MEMALLOC)) 1461 goto redirty; 1462 1463 /* 1464 * Is this page beyond the end of the file? 1465 * 1466 * The page index is less than the end_index, adjust the end_offset 1467 * to the highest offset that this page should represent. 1468 * ----------------------------------------------------- 1469 * | file mapping | <EOF> | 1470 * ----------------------------------------------------- 1471 * | Page ... | Page N-2 | Page N-1 | Page N | | 1472 * ^--------------------------------^----------|-------- 1473 * | desired writeback range | see else | 1474 * ---------------------------------^------------------| 1475 */ 1476 offset = i_size_read(inode); 1477 end_index = offset >> PAGE_SHIFT; 1478 if (page->index < end_index) 1479 end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT; 1480 else { 1481 /* 1482 * Check whether the page to write out is beyond or straddles 1483 * i_size or not. 1484 * ------------------------------------------------------- 1485 * | file mapping | <EOF> | 1486 * ------------------------------------------------------- 1487 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1488 * ^--------------------------------^-----------|--------- 1489 * | | Straddles | 1490 * ---------------------------------^-----------|--------| 1491 */ 1492 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 1493 1494 /* 1495 * Skip the page if it is fully outside i_size, e.g. due to a 1496 * truncate operation that is in progress. We must redirty the 1497 * page so that reclaim stops reclaiming it. Otherwise 1498 * iomap_vm_releasepage() is called on it and gets confused. 1499 * 1500 * Note that the end_index is unsigned long, it would overflow 1501 * if the given offset is greater than 16TB on 32-bit system 1502 * and if we do check the page is fully outside i_size or not 1503 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1504 * will be evaluated to 0. Hence this page will be redirtied 1505 * and be written out repeatedly which would result in an 1506 * infinite loop, the user program that perform this operation 1507 * will hang. Instead, we can verify this situation by checking 1508 * if the page to write is totally beyond the i_size or if it's 1509 * offset is just equal to the EOF. 1510 */ 1511 if (page->index > end_index || 1512 (page->index == end_index && offset_into_page == 0)) 1513 goto redirty; 1514 1515 /* 1516 * The page straddles i_size. It must be zeroed out on each 1517 * and every writepage invocation because it may be mmapped. 1518 * "A file is mapped in multiples of the page size. For a file 1519 * that is not a multiple of the page size, the remaining 1520 * memory is zeroed when mapped, and writes to that region are 1521 * not written out to the file." 1522 */ 1523 zero_user_segment(page, offset_into_page, PAGE_SIZE); 1524 1525 /* Adjust the end_offset to the end of file */ 1526 end_offset = offset; 1527 } 1528 1529 return iomap_writepage_map(wpc, wbc, inode, page, end_offset); 1530 1531redirty: 1532 redirty_page_for_writepage(wbc, page); 1533 unlock_page(page); 1534 return 0; 1535} 1536 1537int 1538iomap_writepage(struct page *page, struct writeback_control *wbc, 1539 struct iomap_writepage_ctx *wpc, 1540 const struct iomap_writeback_ops *ops) 1541{ 1542 int ret; 1543 1544 wpc->ops = ops; 1545 ret = iomap_do_writepage(page, wbc, wpc); 1546 if (!wpc->ioend) 1547 return ret; 1548 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1549} 1550EXPORT_SYMBOL_GPL(iomap_writepage); 1551 1552int 1553iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1554 struct iomap_writepage_ctx *wpc, 1555 const struct iomap_writeback_ops *ops) 1556{ 1557 int ret; 1558 1559 wpc->ops = ops; 1560 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1561 if (!wpc->ioend) 1562 return ret; 1563 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1564} 1565EXPORT_SYMBOL_GPL(iomap_writepages); 1566 1567static int __init iomap_init(void) 1568{ 1569 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1570 offsetof(struct iomap_ioend, io_inline_bio), 1571 BIOSET_NEED_BVECS); 1572} 1573fs_initcall(iomap_init); 1574