xref: /kernel/linux/linux-5.10/fs/iomap/buffered-io.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (C) 2016-2019 Christoph Hellwig.
5 */
6#include <linux/module.h>
7#include <linux/compiler.h>
8#include <linux/fs.h>
9#include <linux/iomap.h>
10#include <linux/pagemap.h>
11#include <linux/uio.h>
12#include <linux/buffer_head.h>
13#include <linux/dax.h>
14#include <linux/writeback.h>
15#include <linux/list_sort.h>
16#include <linux/swap.h>
17#include <linux/bio.h>
18#include <linux/sched/signal.h>
19#include <linux/migrate.h>
20#include "trace.h"
21
22#include "../internal.h"
23
24/*
25 * Structure allocated for each page or THP when block size < page size
26 * to track sub-page uptodate status and I/O completions.
27 */
28struct iomap_page {
29	atomic_t		read_bytes_pending;
30	atomic_t		write_bytes_pending;
31	spinlock_t		uptodate_lock;
32	unsigned long		uptodate[];
33};
34
35static inline struct iomap_page *to_iomap_page(struct page *page)
36{
37	/*
38	 * per-block data is stored in the head page.  Callers should
39	 * not be dealing with tail pages (and if they are, they can
40	 * call thp_head() first.
41	 */
42	VM_BUG_ON_PGFLAGS(PageTail(page), page);
43
44	if (page_has_private(page))
45		return (struct iomap_page *)page_private(page);
46	return NULL;
47}
48
49static struct bio_set iomap_ioend_bioset;
50
51static struct iomap_page *
52iomap_page_create(struct inode *inode, struct page *page)
53{
54	struct iomap_page *iop = to_iomap_page(page);
55	unsigned int nr_blocks = i_blocks_per_page(inode, page);
56
57	if (iop || nr_blocks <= 1)
58		return iop;
59
60	iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
61			GFP_NOFS | __GFP_NOFAIL);
62	spin_lock_init(&iop->uptodate_lock);
63	if (PageUptodate(page))
64		bitmap_fill(iop->uptodate, nr_blocks);
65	attach_page_private(page, iop);
66	return iop;
67}
68
69static void
70iomap_page_release(struct page *page)
71{
72	struct iomap_page *iop = detach_page_private(page);
73	unsigned int nr_blocks = i_blocks_per_page(page->mapping->host, page);
74
75	if (!iop)
76		return;
77	WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
78	WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
79	WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
80			PageUptodate(page));
81	kfree(iop);
82}
83
84/*
85 * Calculate the range inside the page that we actually need to read.
86 */
87static void
88iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
89		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
90{
91	loff_t orig_pos = *pos;
92	loff_t isize = i_size_read(inode);
93	unsigned block_bits = inode->i_blkbits;
94	unsigned block_size = (1 << block_bits);
95	unsigned poff = offset_in_page(*pos);
96	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
97	unsigned first = poff >> block_bits;
98	unsigned last = (poff + plen - 1) >> block_bits;
99
100	/*
101	 * If the block size is smaller than the page size we need to check the
102	 * per-block uptodate status and adjust the offset and length if needed
103	 * to avoid reading in already uptodate ranges.
104	 */
105	if (iop) {
106		unsigned int i;
107
108		/* move forward for each leading block marked uptodate */
109		for (i = first; i <= last; i++) {
110			if (!test_bit(i, iop->uptodate))
111				break;
112			*pos += block_size;
113			poff += block_size;
114			plen -= block_size;
115			first++;
116		}
117
118		/* truncate len if we find any trailing uptodate block(s) */
119		for ( ; i <= last; i++) {
120			if (test_bit(i, iop->uptodate)) {
121				plen -= (last - i + 1) * block_size;
122				last = i - 1;
123				break;
124			}
125		}
126	}
127
128	/*
129	 * If the extent spans the block that contains the i_size we need to
130	 * handle both halves separately so that we properly zero data in the
131	 * page cache for blocks that are entirely outside of i_size.
132	 */
133	if (orig_pos <= isize && orig_pos + length > isize) {
134		unsigned end = offset_in_page(isize - 1) >> block_bits;
135
136		if (first <= end && last > end)
137			plen -= (last - end) * block_size;
138	}
139
140	*offp = poff;
141	*lenp = plen;
142}
143
144static void
145iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
146{
147	struct iomap_page *iop = to_iomap_page(page);
148	struct inode *inode = page->mapping->host;
149	unsigned first = off >> inode->i_blkbits;
150	unsigned last = (off + len - 1) >> inode->i_blkbits;
151	unsigned long flags;
152
153	spin_lock_irqsave(&iop->uptodate_lock, flags);
154	bitmap_set(iop->uptodate, first, last - first + 1);
155	if (bitmap_full(iop->uptodate, i_blocks_per_page(inode, page)))
156		SetPageUptodate(page);
157	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
158}
159
160static void
161iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
162{
163	if (PageError(page))
164		return;
165
166	if (page_has_private(page))
167		iomap_iop_set_range_uptodate(page, off, len);
168	else
169		SetPageUptodate(page);
170}
171
172static void
173iomap_read_page_end_io(struct bio_vec *bvec, int error)
174{
175	struct page *page = bvec->bv_page;
176	struct iomap_page *iop = to_iomap_page(page);
177
178	if (unlikely(error)) {
179		ClearPageUptodate(page);
180		SetPageError(page);
181	} else {
182		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
183	}
184
185	if (!iop || atomic_sub_and_test(bvec->bv_len, &iop->read_bytes_pending))
186		unlock_page(page);
187}
188
189static void
190iomap_read_end_io(struct bio *bio)
191{
192	int error = blk_status_to_errno(bio->bi_status);
193	struct bio_vec *bvec;
194	struct bvec_iter_all iter_all;
195
196	bio_for_each_segment_all(bvec, bio, iter_all)
197		iomap_read_page_end_io(bvec, error);
198	bio_put(bio);
199}
200
201struct iomap_readpage_ctx {
202	struct page		*cur_page;
203	bool			cur_page_in_bio;
204	struct bio		*bio;
205	struct readahead_control *rac;
206};
207
208static void
209iomap_read_inline_data(struct inode *inode, struct page *page,
210		struct iomap *iomap)
211{
212	size_t size = i_size_read(inode);
213	void *addr;
214
215	if (PageUptodate(page))
216		return;
217
218	BUG_ON(page->index);
219	BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
220
221	addr = kmap_atomic(page);
222	memcpy(addr, iomap->inline_data, size);
223	memset(addr + size, 0, PAGE_SIZE - size);
224	kunmap_atomic(addr);
225	SetPageUptodate(page);
226}
227
228static inline bool iomap_block_needs_zeroing(struct inode *inode,
229		struct iomap *iomap, loff_t pos)
230{
231	return iomap->type != IOMAP_MAPPED ||
232		(iomap->flags & IOMAP_F_NEW) ||
233		pos >= i_size_read(inode);
234}
235
236static loff_t
237iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
238		struct iomap *iomap, struct iomap *srcmap)
239{
240	struct iomap_readpage_ctx *ctx = data;
241	struct page *page = ctx->cur_page;
242	struct iomap_page *iop = iomap_page_create(inode, page);
243	bool same_page = false, is_contig = false;
244	loff_t orig_pos = pos;
245	unsigned poff, plen;
246	sector_t sector;
247
248	if (iomap->type == IOMAP_INLINE) {
249		WARN_ON_ONCE(pos);
250		iomap_read_inline_data(inode, page, iomap);
251		return PAGE_SIZE;
252	}
253
254	/* zero post-eof blocks as the page may be mapped */
255	iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
256	if (plen == 0)
257		goto done;
258
259	if (iomap_block_needs_zeroing(inode, iomap, pos)) {
260		zero_user(page, poff, plen);
261		iomap_set_range_uptodate(page, poff, plen);
262		goto done;
263	}
264
265	ctx->cur_page_in_bio = true;
266	if (iop)
267		atomic_add(plen, &iop->read_bytes_pending);
268
269	/* Try to merge into a previous segment if we can */
270	sector = iomap_sector(iomap, pos);
271	if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
272		if (__bio_try_merge_page(ctx->bio, page, plen, poff,
273				&same_page))
274			goto done;
275		is_contig = true;
276	}
277
278	if (!is_contig || bio_full(ctx->bio, plen)) {
279		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
280		gfp_t orig_gfp = gfp;
281		int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
282
283		if (ctx->bio)
284			submit_bio(ctx->bio);
285
286		if (ctx->rac) /* same as readahead_gfp_mask */
287			gfp |= __GFP_NORETRY | __GFP_NOWARN;
288		ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
289		/*
290		 * If the bio_alloc fails, try it again for a single page to
291		 * avoid having to deal with partial page reads.  This emulates
292		 * what do_mpage_readpage does.
293		 */
294		if (!ctx->bio)
295			ctx->bio = bio_alloc(orig_gfp, 1);
296		ctx->bio->bi_opf = REQ_OP_READ;
297		if (ctx->rac)
298			ctx->bio->bi_opf |= REQ_RAHEAD;
299		ctx->bio->bi_iter.bi_sector = sector;
300		bio_set_dev(ctx->bio, iomap->bdev);
301		ctx->bio->bi_end_io = iomap_read_end_io;
302	}
303
304	bio_add_page(ctx->bio, page, plen, poff);
305done:
306	/*
307	 * Move the caller beyond our range so that it keeps making progress.
308	 * For that we have to include any leading non-uptodate ranges, but
309	 * we can skip trailing ones as they will be handled in the next
310	 * iteration.
311	 */
312	return pos - orig_pos + plen;
313}
314
315int
316iomap_readpage(struct page *page, const struct iomap_ops *ops)
317{
318	struct iomap_readpage_ctx ctx = { .cur_page = page };
319	struct inode *inode = page->mapping->host;
320	unsigned poff;
321	loff_t ret;
322
323	trace_iomap_readpage(page->mapping->host, 1);
324
325	for (poff = 0; poff < PAGE_SIZE; poff += ret) {
326		ret = iomap_apply(inode, page_offset(page) + poff,
327				PAGE_SIZE - poff, 0, ops, &ctx,
328				iomap_readpage_actor);
329		if (ret <= 0) {
330			WARN_ON_ONCE(ret == 0);
331			SetPageError(page);
332			break;
333		}
334	}
335
336	if (ctx.bio) {
337		submit_bio(ctx.bio);
338		WARN_ON_ONCE(!ctx.cur_page_in_bio);
339	} else {
340		WARN_ON_ONCE(ctx.cur_page_in_bio);
341		unlock_page(page);
342	}
343
344	/*
345	 * Just like mpage_readahead and block_read_full_page we always
346	 * return 0 and just mark the page as PageError on errors.  This
347	 * should be cleaned up all through the stack eventually.
348	 */
349	return 0;
350}
351EXPORT_SYMBOL_GPL(iomap_readpage);
352
353static loff_t
354iomap_readahead_actor(struct inode *inode, loff_t pos, loff_t length,
355		void *data, struct iomap *iomap, struct iomap *srcmap)
356{
357	struct iomap_readpage_ctx *ctx = data;
358	loff_t done, ret;
359
360	for (done = 0; done < length; done += ret) {
361		if (ctx->cur_page && offset_in_page(pos + done) == 0) {
362			if (!ctx->cur_page_in_bio)
363				unlock_page(ctx->cur_page);
364			put_page(ctx->cur_page);
365			ctx->cur_page = NULL;
366		}
367		if (!ctx->cur_page) {
368			ctx->cur_page = readahead_page(ctx->rac);
369			ctx->cur_page_in_bio = false;
370		}
371		ret = iomap_readpage_actor(inode, pos + done, length - done,
372				ctx, iomap, srcmap);
373	}
374
375	return done;
376}
377
378/**
379 * iomap_readahead - Attempt to read pages from a file.
380 * @rac: Describes the pages to be read.
381 * @ops: The operations vector for the filesystem.
382 *
383 * This function is for filesystems to call to implement their readahead
384 * address_space operation.
385 *
386 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
387 * blocks from disc), and may wait for it.  The caller may be trying to
388 * access a different page, and so sleeping excessively should be avoided.
389 * It may allocate memory, but should avoid costly allocations.  This
390 * function is called with memalloc_nofs set, so allocations will not cause
391 * the filesystem to be reentered.
392 */
393void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
394{
395	struct inode *inode = rac->mapping->host;
396	loff_t pos = readahead_pos(rac);
397	loff_t length = readahead_length(rac);
398	struct iomap_readpage_ctx ctx = {
399		.rac	= rac,
400	};
401
402	trace_iomap_readahead(inode, readahead_count(rac));
403
404	while (length > 0) {
405		loff_t ret = iomap_apply(inode, pos, length, 0, ops,
406				&ctx, iomap_readahead_actor);
407		if (ret <= 0) {
408			WARN_ON_ONCE(ret == 0);
409			break;
410		}
411		pos += ret;
412		length -= ret;
413	}
414
415	if (ctx.bio)
416		submit_bio(ctx.bio);
417	if (ctx.cur_page) {
418		if (!ctx.cur_page_in_bio)
419			unlock_page(ctx.cur_page);
420		put_page(ctx.cur_page);
421	}
422}
423EXPORT_SYMBOL_GPL(iomap_readahead);
424
425/*
426 * iomap_is_partially_uptodate checks whether blocks within a page are
427 * uptodate or not.
428 *
429 * Returns true if all blocks which correspond to a file portion
430 * we want to read within the page are uptodate.
431 */
432int
433iomap_is_partially_uptodate(struct page *page, unsigned long from,
434		unsigned long count)
435{
436	struct iomap_page *iop = to_iomap_page(page);
437	struct inode *inode = page->mapping->host;
438	unsigned len, first, last;
439	unsigned i;
440
441	/* Limit range to one page */
442	len = min_t(unsigned, PAGE_SIZE - from, count);
443
444	/* First and last blocks in range within page */
445	first = from >> inode->i_blkbits;
446	last = (from + len - 1) >> inode->i_blkbits;
447
448	if (iop) {
449		for (i = first; i <= last; i++)
450			if (!test_bit(i, iop->uptodate))
451				return 0;
452		return 1;
453	}
454
455	return 0;
456}
457EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
458
459int
460iomap_releasepage(struct page *page, gfp_t gfp_mask)
461{
462	trace_iomap_releasepage(page->mapping->host, page_offset(page),
463			PAGE_SIZE);
464
465	/*
466	 * mm accommodates an old ext3 case where clean pages might not have had
467	 * the dirty bit cleared. Thus, it can send actual dirty pages to
468	 * ->releasepage() via shrink_active_list(), skip those here.
469	 */
470	if (PageDirty(page) || PageWriteback(page))
471		return 0;
472	iomap_page_release(page);
473	return 1;
474}
475EXPORT_SYMBOL_GPL(iomap_releasepage);
476
477void
478iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
479{
480	trace_iomap_invalidatepage(page->mapping->host, offset, len);
481
482	/*
483	 * If we are invalidating the entire page, clear the dirty state from it
484	 * and release it to avoid unnecessary buildup of the LRU.
485	 */
486	if (offset == 0 && len == PAGE_SIZE) {
487		WARN_ON_ONCE(PageWriteback(page));
488		cancel_dirty_page(page);
489		iomap_page_release(page);
490	}
491}
492EXPORT_SYMBOL_GPL(iomap_invalidatepage);
493
494#ifdef CONFIG_MIGRATION
495int
496iomap_migrate_page(struct address_space *mapping, struct page *newpage,
497		struct page *page, enum migrate_mode mode)
498{
499	int ret;
500
501	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
502	if (ret != MIGRATEPAGE_SUCCESS)
503		return ret;
504
505	if (page_has_private(page))
506		attach_page_private(newpage, detach_page_private(page));
507
508	if (mode != MIGRATE_SYNC_NO_COPY)
509		migrate_page_copy(newpage, page);
510	else
511		migrate_page_states(newpage, page);
512	return MIGRATEPAGE_SUCCESS;
513}
514EXPORT_SYMBOL_GPL(iomap_migrate_page);
515#endif /* CONFIG_MIGRATION */
516
517enum {
518	IOMAP_WRITE_F_UNSHARE		= (1 << 0),
519};
520
521static void
522iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
523{
524	loff_t i_size = i_size_read(inode);
525
526	/*
527	 * Only truncate newly allocated pages beyoned EOF, even if the
528	 * write started inside the existing inode size.
529	 */
530	if (pos + len > i_size)
531		truncate_pagecache_range(inode, max(pos, i_size),
532					 pos + len - 1);
533}
534
535static int
536iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
537		unsigned plen, struct iomap *iomap)
538{
539	struct bio_vec bvec;
540	struct bio bio;
541
542	bio_init(&bio, &bvec, 1);
543	bio.bi_opf = REQ_OP_READ;
544	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
545	bio_set_dev(&bio, iomap->bdev);
546	__bio_add_page(&bio, page, plen, poff);
547	return submit_bio_wait(&bio);
548}
549
550static int
551__iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
552		struct page *page, struct iomap *srcmap)
553{
554	struct iomap_page *iop = iomap_page_create(inode, page);
555	loff_t block_size = i_blocksize(inode);
556	loff_t block_start = round_down(pos, block_size);
557	loff_t block_end = round_up(pos + len, block_size);
558	unsigned from = offset_in_page(pos), to = from + len, poff, plen;
559
560	if (PageUptodate(page))
561		return 0;
562	ClearPageError(page);
563
564	do {
565		iomap_adjust_read_range(inode, iop, &block_start,
566				block_end - block_start, &poff, &plen);
567		if (plen == 0)
568			break;
569
570		if (!(flags & IOMAP_WRITE_F_UNSHARE) &&
571		    (from <= poff || from >= poff + plen) &&
572		    (to <= poff || to >= poff + plen))
573			continue;
574
575		if (iomap_block_needs_zeroing(inode, srcmap, block_start)) {
576			if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE))
577				return -EIO;
578			zero_user_segments(page, poff, from, to, poff + plen);
579		} else {
580			int status = iomap_read_page_sync(block_start, page,
581					poff, plen, srcmap);
582			if (status)
583				return status;
584		}
585		iomap_set_range_uptodate(page, poff, plen);
586	} while ((block_start += plen) < block_end);
587
588	return 0;
589}
590
591static int
592iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
593		struct page **pagep, struct iomap *iomap, struct iomap *srcmap)
594{
595	const struct iomap_page_ops *page_ops = iomap->page_ops;
596	struct page *page;
597	int status = 0;
598
599	BUG_ON(pos + len > iomap->offset + iomap->length);
600	if (srcmap != iomap)
601		BUG_ON(pos + len > srcmap->offset + srcmap->length);
602
603	if (fatal_signal_pending(current))
604		return -EINTR;
605
606	if (page_ops && page_ops->page_prepare) {
607		status = page_ops->page_prepare(inode, pos, len, iomap);
608		if (status)
609			return status;
610	}
611
612	page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT,
613			AOP_FLAG_NOFS);
614	if (!page) {
615		status = -ENOMEM;
616		goto out_no_page;
617	}
618
619	if (srcmap->type == IOMAP_INLINE)
620		iomap_read_inline_data(inode, page, srcmap);
621	else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
622		status = __block_write_begin_int(page, pos, len, NULL, srcmap);
623	else
624		status = __iomap_write_begin(inode, pos, len, flags, page,
625				srcmap);
626
627	if (unlikely(status))
628		goto out_unlock;
629
630	*pagep = page;
631	return 0;
632
633out_unlock:
634	unlock_page(page);
635	put_page(page);
636	iomap_write_failed(inode, pos, len);
637
638out_no_page:
639	if (page_ops && page_ops->page_done)
640		page_ops->page_done(inode, pos, 0, NULL, iomap);
641	return status;
642}
643
644int
645iomap_set_page_dirty(struct page *page)
646{
647	struct address_space *mapping = page_mapping(page);
648	int newly_dirty;
649
650	if (unlikely(!mapping))
651		return !TestSetPageDirty(page);
652
653	/*
654	 * Lock out page->mem_cgroup migration to keep PageDirty
655	 * synchronized with per-memcg dirty page counters.
656	 */
657	lock_page_memcg(page);
658	newly_dirty = !TestSetPageDirty(page);
659	if (newly_dirty)
660		__set_page_dirty(page, mapping, 0);
661	unlock_page_memcg(page);
662
663	if (newly_dirty)
664		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
665	return newly_dirty;
666}
667EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
668
669static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
670		size_t copied, struct page *page)
671{
672	flush_dcache_page(page);
673
674	/*
675	 * The blocks that were entirely written will now be uptodate, so we
676	 * don't have to worry about a readpage reading them and overwriting a
677	 * partial write.  However if we have encountered a short write and only
678	 * partially written into a block, it will not be marked uptodate, so a
679	 * readpage might come in and destroy our partial write.
680	 *
681	 * Do the simplest thing, and just treat any short write to a non
682	 * uptodate page as a zero-length write, and force the caller to redo
683	 * the whole thing.
684	 */
685	if (unlikely(copied < len && !PageUptodate(page)))
686		return 0;
687	iomap_set_range_uptodate(page, offset_in_page(pos), len);
688	iomap_set_page_dirty(page);
689	return copied;
690}
691
692static size_t iomap_write_end_inline(struct inode *inode, struct page *page,
693		struct iomap *iomap, loff_t pos, size_t copied)
694{
695	void *addr;
696
697	WARN_ON_ONCE(!PageUptodate(page));
698	BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
699
700	flush_dcache_page(page);
701	addr = kmap_atomic(page);
702	memcpy(iomap->inline_data + pos, addr + pos, copied);
703	kunmap_atomic(addr);
704
705	mark_inode_dirty(inode);
706	return copied;
707}
708
709/* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
710static size_t iomap_write_end(struct inode *inode, loff_t pos, size_t len,
711		size_t copied, struct page *page, struct iomap *iomap,
712		struct iomap *srcmap)
713{
714	const struct iomap_page_ops *page_ops = iomap->page_ops;
715	loff_t old_size = inode->i_size;
716	size_t ret;
717
718	if (srcmap->type == IOMAP_INLINE) {
719		ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
720	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
721		ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
722				page, NULL);
723	} else {
724		ret = __iomap_write_end(inode, pos, len, copied, page);
725	}
726
727	/*
728	 * Update the in-memory inode size after copying the data into the page
729	 * cache.  It's up to the file system to write the updated size to disk,
730	 * preferably after I/O completion so that no stale data is exposed.
731	 */
732	if (pos + ret > old_size) {
733		i_size_write(inode, pos + ret);
734		iomap->flags |= IOMAP_F_SIZE_CHANGED;
735	}
736	unlock_page(page);
737
738	if (old_size < pos)
739		pagecache_isize_extended(inode, old_size, pos);
740	if (page_ops && page_ops->page_done)
741		page_ops->page_done(inode, pos, ret, page, iomap);
742	put_page(page);
743
744	if (ret < len)
745		iomap_write_failed(inode, pos, len);
746	return ret;
747}
748
749static loff_t
750iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
751		struct iomap *iomap, struct iomap *srcmap)
752{
753	struct iov_iter *i = data;
754	long status = 0;
755	ssize_t written = 0;
756
757	do {
758		struct page *page;
759		unsigned long offset;	/* Offset into pagecache page */
760		unsigned long bytes;	/* Bytes to write to page */
761		size_t copied;		/* Bytes copied from user */
762
763		offset = offset_in_page(pos);
764		bytes = min_t(unsigned long, PAGE_SIZE - offset,
765						iov_iter_count(i));
766again:
767		if (bytes > length)
768			bytes = length;
769
770		/*
771		 * Bring in the user page that we will copy from _first_.
772		 * Otherwise there's a nasty deadlock on copying from the
773		 * same page as we're writing to, without it being marked
774		 * up-to-date.
775		 *
776		 * Not only is this an optimisation, but it is also required
777		 * to check that the address is actually valid, when atomic
778		 * usercopies are used, below.
779		 */
780		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
781			status = -EFAULT;
782			break;
783		}
784
785		status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap,
786				srcmap);
787		if (unlikely(status))
788			break;
789
790		if (mapping_writably_mapped(inode->i_mapping))
791			flush_dcache_page(page);
792
793		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
794
795		copied = iomap_write_end(inode, pos, bytes, copied, page, iomap,
796				srcmap);
797
798		cond_resched();
799
800		iov_iter_advance(i, copied);
801		if (unlikely(copied == 0)) {
802			/*
803			 * If we were unable to copy any data at all, we must
804			 * fall back to a single segment length write.
805			 *
806			 * If we didn't fallback here, we could livelock
807			 * because not all segments in the iov can be copied at
808			 * once without a pagefault.
809			 */
810			bytes = min_t(unsigned long, PAGE_SIZE - offset,
811						iov_iter_single_seg_count(i));
812			goto again;
813		}
814		pos += copied;
815		written += copied;
816		length -= copied;
817
818		balance_dirty_pages_ratelimited(inode->i_mapping);
819	} while (iov_iter_count(i) && length);
820
821	return written ? written : status;
822}
823
824ssize_t
825iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
826		const struct iomap_ops *ops)
827{
828	struct inode *inode = iocb->ki_filp->f_mapping->host;
829	loff_t pos = iocb->ki_pos, ret = 0, written = 0;
830
831	while (iov_iter_count(iter)) {
832		ret = iomap_apply(inode, pos, iov_iter_count(iter),
833				IOMAP_WRITE, ops, iter, iomap_write_actor);
834		if (ret <= 0)
835			break;
836		pos += ret;
837		written += ret;
838	}
839
840	return written ? written : ret;
841}
842EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
843
844static loff_t
845iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
846		struct iomap *iomap, struct iomap *srcmap)
847{
848	long status = 0;
849	loff_t written = 0;
850
851	/* don't bother with blocks that are not shared to start with */
852	if (!(iomap->flags & IOMAP_F_SHARED))
853		return length;
854	/* don't bother with holes or unwritten extents */
855	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
856		return length;
857
858	do {
859		unsigned long offset = offset_in_page(pos);
860		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
861		struct page *page;
862
863		status = iomap_write_begin(inode, pos, bytes,
864				IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap);
865		if (unlikely(status))
866			return status;
867
868		status = iomap_write_end(inode, pos, bytes, bytes, page, iomap,
869				srcmap);
870		if (WARN_ON_ONCE(status == 0))
871			return -EIO;
872
873		cond_resched();
874
875		pos += status;
876		written += status;
877		length -= status;
878
879		balance_dirty_pages_ratelimited(inode->i_mapping);
880	} while (length);
881
882	return written;
883}
884
885int
886iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
887		const struct iomap_ops *ops)
888{
889	loff_t ret;
890
891	while (len) {
892		ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
893				iomap_unshare_actor);
894		if (ret <= 0)
895			return ret;
896		pos += ret;
897		len -= ret;
898	}
899
900	return 0;
901}
902EXPORT_SYMBOL_GPL(iomap_file_unshare);
903
904static s64 iomap_zero(struct inode *inode, loff_t pos, u64 length,
905		struct iomap *iomap, struct iomap *srcmap)
906{
907	struct page *page;
908	int status;
909	unsigned offset = offset_in_page(pos);
910	unsigned bytes = min_t(u64, PAGE_SIZE - offset, length);
911
912	status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap);
913	if (status)
914		return status;
915
916	zero_user(page, offset, bytes);
917	mark_page_accessed(page);
918
919	return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap);
920}
921
922static loff_t iomap_zero_range_actor(struct inode *inode, loff_t pos,
923		loff_t length, void *data, struct iomap *iomap,
924		struct iomap *srcmap)
925{
926	bool *did_zero = data;
927	loff_t written = 0;
928
929	/* already zeroed?  we're done. */
930	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
931		return length;
932
933	do {
934		s64 bytes;
935
936		if (IS_DAX(inode))
937			bytes = dax_iomap_zero(pos, length, iomap);
938		else
939			bytes = iomap_zero(inode, pos, length, iomap, srcmap);
940		if (bytes < 0)
941			return bytes;
942
943		pos += bytes;
944		length -= bytes;
945		written += bytes;
946		if (did_zero)
947			*did_zero = true;
948	} while (length > 0);
949
950	return written;
951}
952
953int
954iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
955		const struct iomap_ops *ops)
956{
957	loff_t ret;
958
959	while (len > 0) {
960		ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
961				ops, did_zero, iomap_zero_range_actor);
962		if (ret <= 0)
963			return ret;
964
965		pos += ret;
966		len -= ret;
967	}
968
969	return 0;
970}
971EXPORT_SYMBOL_GPL(iomap_zero_range);
972
973int
974iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
975		const struct iomap_ops *ops)
976{
977	unsigned int blocksize = i_blocksize(inode);
978	unsigned int off = pos & (blocksize - 1);
979
980	/* Block boundary? Nothing to do */
981	if (!off)
982		return 0;
983	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
984}
985EXPORT_SYMBOL_GPL(iomap_truncate_page);
986
987static loff_t
988iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
989		void *data, struct iomap *iomap, struct iomap *srcmap)
990{
991	struct page *page = data;
992	int ret;
993
994	if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
995		ret = __block_write_begin_int(page, pos, length, NULL, iomap);
996		if (ret)
997			return ret;
998		block_commit_write(page, 0, length);
999	} else {
1000		WARN_ON_ONCE(!PageUptodate(page));
1001		iomap_page_create(inode, page);
1002		set_page_dirty(page);
1003	}
1004
1005	return length;
1006}
1007
1008vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1009{
1010	struct page *page = vmf->page;
1011	struct inode *inode = file_inode(vmf->vma->vm_file);
1012	unsigned long length;
1013	loff_t offset;
1014	ssize_t ret;
1015
1016	lock_page(page);
1017	ret = page_mkwrite_check_truncate(page, inode);
1018	if (ret < 0)
1019		goto out_unlock;
1020	length = ret;
1021
1022	offset = page_offset(page);
1023	while (length > 0) {
1024		ret = iomap_apply(inode, offset, length,
1025				IOMAP_WRITE | IOMAP_FAULT, ops, page,
1026				iomap_page_mkwrite_actor);
1027		if (unlikely(ret <= 0))
1028			goto out_unlock;
1029		offset += ret;
1030		length -= ret;
1031	}
1032
1033	wait_for_stable_page(page);
1034	return VM_FAULT_LOCKED;
1035out_unlock:
1036	unlock_page(page);
1037	return block_page_mkwrite_return(ret);
1038}
1039EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1040
1041static void
1042iomap_finish_page_writeback(struct inode *inode, struct page *page,
1043		int error, unsigned int len)
1044{
1045	struct iomap_page *iop = to_iomap_page(page);
1046
1047	if (error) {
1048		SetPageError(page);
1049		mapping_set_error(inode->i_mapping, error);
1050	}
1051
1052	WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
1053	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1054
1055	if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1056		end_page_writeback(page);
1057}
1058
1059/*
1060 * We're now finished for good with this ioend structure.  Update the page
1061 * state, release holds on bios, and finally free up memory.  Do not use the
1062 * ioend after this.
1063 */
1064static void
1065iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1066{
1067	struct inode *inode = ioend->io_inode;
1068	struct bio *bio = &ioend->io_inline_bio;
1069	struct bio *last = ioend->io_bio, *next;
1070	u64 start = bio->bi_iter.bi_sector;
1071	loff_t offset = ioend->io_offset;
1072	bool quiet = bio_flagged(bio, BIO_QUIET);
1073
1074	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1075		struct bio_vec *bv;
1076		struct bvec_iter_all iter_all;
1077
1078		/*
1079		 * For the last bio, bi_private points to the ioend, so we
1080		 * need to explicitly end the iteration here.
1081		 */
1082		if (bio == last)
1083			next = NULL;
1084		else
1085			next = bio->bi_private;
1086
1087		/* walk each page on bio, ending page IO on them */
1088		bio_for_each_segment_all(bv, bio, iter_all)
1089			iomap_finish_page_writeback(inode, bv->bv_page, error,
1090					bv->bv_len);
1091		bio_put(bio);
1092	}
1093	/* The ioend has been freed by bio_put() */
1094
1095	if (unlikely(error && !quiet)) {
1096		printk_ratelimited(KERN_ERR
1097"%s: writeback error on inode %lu, offset %lld, sector %llu",
1098			inode->i_sb->s_id, inode->i_ino, offset, start);
1099	}
1100}
1101
1102void
1103iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1104{
1105	struct list_head tmp;
1106
1107	list_replace_init(&ioend->io_list, &tmp);
1108	iomap_finish_ioend(ioend, error);
1109
1110	while (!list_empty(&tmp)) {
1111		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1112		list_del_init(&ioend->io_list);
1113		iomap_finish_ioend(ioend, error);
1114	}
1115}
1116EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1117
1118/*
1119 * We can merge two adjacent ioends if they have the same set of work to do.
1120 */
1121static bool
1122iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1123{
1124	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1125		return false;
1126	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1127	    (next->io_flags & IOMAP_F_SHARED))
1128		return false;
1129	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1130	    (next->io_type == IOMAP_UNWRITTEN))
1131		return false;
1132	if (ioend->io_offset + ioend->io_size != next->io_offset)
1133		return false;
1134	return true;
1135}
1136
1137void
1138iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends,
1139		void (*merge_private)(struct iomap_ioend *ioend,
1140				struct iomap_ioend *next))
1141{
1142	struct iomap_ioend *next;
1143
1144	INIT_LIST_HEAD(&ioend->io_list);
1145
1146	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1147			io_list))) {
1148		if (!iomap_ioend_can_merge(ioend, next))
1149			break;
1150		list_move_tail(&next->io_list, &ioend->io_list);
1151		ioend->io_size += next->io_size;
1152		if (next->io_private && merge_private)
1153			merge_private(ioend, next);
1154	}
1155}
1156EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1157
1158static int
1159iomap_ioend_compare(void *priv, const struct list_head *a,
1160		const struct list_head *b)
1161{
1162	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1163	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1164
1165	if (ia->io_offset < ib->io_offset)
1166		return -1;
1167	if (ia->io_offset > ib->io_offset)
1168		return 1;
1169	return 0;
1170}
1171
1172void
1173iomap_sort_ioends(struct list_head *ioend_list)
1174{
1175	list_sort(NULL, ioend_list, iomap_ioend_compare);
1176}
1177EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1178
1179static void iomap_writepage_end_bio(struct bio *bio)
1180{
1181	struct iomap_ioend *ioend = bio->bi_private;
1182
1183	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1184}
1185
1186/*
1187 * Submit the final bio for an ioend.
1188 *
1189 * If @error is non-zero, it means that we have a situation where some part of
1190 * the submission process has failed after we have marked paged for writeback
1191 * and unlocked them.  In this situation, we need to fail the bio instead of
1192 * submitting it.  This typically only happens on a filesystem shutdown.
1193 */
1194static int
1195iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1196		int error)
1197{
1198	ioend->io_bio->bi_private = ioend;
1199	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1200
1201	if (wpc->ops->prepare_ioend)
1202		error = wpc->ops->prepare_ioend(ioend, error);
1203	if (error) {
1204		/*
1205		 * If we are failing the IO now, just mark the ioend with an
1206		 * error and finish it.  This will run IO completion immediately
1207		 * as there is only one reference to the ioend at this point in
1208		 * time.
1209		 */
1210		ioend->io_bio->bi_status = errno_to_blk_status(error);
1211		bio_endio(ioend->io_bio);
1212		return error;
1213	}
1214
1215	submit_bio(ioend->io_bio);
1216	return 0;
1217}
1218
1219static struct iomap_ioend *
1220iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1221		loff_t offset, sector_t sector, struct writeback_control *wbc)
1222{
1223	struct iomap_ioend *ioend;
1224	struct bio *bio;
1225
1226	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset);
1227	bio_set_dev(bio, wpc->iomap.bdev);
1228	bio->bi_iter.bi_sector = sector;
1229	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1230	bio->bi_write_hint = inode->i_write_hint;
1231	wbc_init_bio(wbc, bio);
1232
1233	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1234	INIT_LIST_HEAD(&ioend->io_list);
1235	ioend->io_type = wpc->iomap.type;
1236	ioend->io_flags = wpc->iomap.flags;
1237	ioend->io_inode = inode;
1238	ioend->io_size = 0;
1239	ioend->io_offset = offset;
1240	ioend->io_private = NULL;
1241	ioend->io_bio = bio;
1242	return ioend;
1243}
1244
1245/*
1246 * Allocate a new bio, and chain the old bio to the new one.
1247 *
1248 * Note that we have to do perform the chaining in this unintuitive order
1249 * so that the bi_private linkage is set up in the right direction for the
1250 * traversal in iomap_finish_ioend().
1251 */
1252static struct bio *
1253iomap_chain_bio(struct bio *prev)
1254{
1255	struct bio *new;
1256
1257	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
1258	bio_copy_dev(new, prev);/* also copies over blkcg information */
1259	new->bi_iter.bi_sector = bio_end_sector(prev);
1260	new->bi_opf = prev->bi_opf;
1261	new->bi_write_hint = prev->bi_write_hint;
1262
1263	bio_chain(prev, new);
1264	bio_get(prev);		/* for iomap_finish_ioend */
1265	submit_bio(prev);
1266	return new;
1267}
1268
1269static bool
1270iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1271		sector_t sector)
1272{
1273	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1274	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1275		return false;
1276	if (wpc->iomap.type != wpc->ioend->io_type)
1277		return false;
1278	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1279		return false;
1280	if (sector != bio_end_sector(wpc->ioend->io_bio))
1281		return false;
1282	return true;
1283}
1284
1285/*
1286 * Test to see if we have an existing ioend structure that we could append to
1287 * first, otherwise finish off the current ioend and start another.
1288 */
1289static void
1290iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1291		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1292		struct writeback_control *wbc, struct list_head *iolist)
1293{
1294	sector_t sector = iomap_sector(&wpc->iomap, offset);
1295	unsigned len = i_blocksize(inode);
1296	unsigned poff = offset & (PAGE_SIZE - 1);
1297	bool merged, same_page = false;
1298
1299	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1300		if (wpc->ioend)
1301			list_add(&wpc->ioend->io_list, iolist);
1302		wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1303	}
1304
1305	merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
1306			&same_page);
1307	if (iop)
1308		atomic_add(len, &iop->write_bytes_pending);
1309
1310	if (!merged) {
1311		if (bio_full(wpc->ioend->io_bio, len)) {
1312			wpc->ioend->io_bio =
1313				iomap_chain_bio(wpc->ioend->io_bio);
1314		}
1315		bio_add_page(wpc->ioend->io_bio, page, len, poff);
1316	}
1317
1318	wpc->ioend->io_size += len;
1319	wbc_account_cgroup_owner(wbc, page, len);
1320}
1321
1322/*
1323 * We implement an immediate ioend submission policy here to avoid needing to
1324 * chain multiple ioends and hence nest mempool allocations which can violate
1325 * forward progress guarantees we need to provide. The current ioend we are
1326 * adding blocks to is cached on the writepage context, and if the new block
1327 * does not append to the cached ioend it will create a new ioend and cache that
1328 * instead.
1329 *
1330 * If a new ioend is created and cached, the old ioend is returned and queued
1331 * locally for submission once the entire page is processed or an error has been
1332 * detected.  While ioends are submitted immediately after they are completed,
1333 * batching optimisations are provided by higher level block plugging.
1334 *
1335 * At the end of a writeback pass, there will be a cached ioend remaining on the
1336 * writepage context that the caller will need to submit.
1337 */
1338static int
1339iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1340		struct writeback_control *wbc, struct inode *inode,
1341		struct page *page, u64 end_offset)
1342{
1343	struct iomap_page *iop = to_iomap_page(page);
1344	struct iomap_ioend *ioend, *next;
1345	unsigned len = i_blocksize(inode);
1346	u64 file_offset; /* file offset of page */
1347	int error = 0, count = 0, i;
1348	LIST_HEAD(submit_list);
1349
1350	WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
1351	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1352
1353	/*
1354	 * Walk through the page to find areas to write back. If we run off the
1355	 * end of the current map or find the current map invalid, grab a new
1356	 * one.
1357	 */
1358	for (i = 0, file_offset = page_offset(page);
1359	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1360	     i++, file_offset += len) {
1361		if (iop && !test_bit(i, iop->uptodate))
1362			continue;
1363
1364		error = wpc->ops->map_blocks(wpc, inode, file_offset);
1365		if (error)
1366			break;
1367		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1368			continue;
1369		if (wpc->iomap.type == IOMAP_HOLE)
1370			continue;
1371		iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1372				 &submit_list);
1373		count++;
1374	}
1375
1376	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1377	WARN_ON_ONCE(!PageLocked(page));
1378	WARN_ON_ONCE(PageWriteback(page));
1379	WARN_ON_ONCE(PageDirty(page));
1380
1381	/*
1382	 * We cannot cancel the ioend directly here on error.  We may have
1383	 * already set other pages under writeback and hence we have to run I/O
1384	 * completion to mark the error state of the pages under writeback
1385	 * appropriately.
1386	 */
1387	if (unlikely(error)) {
1388		/*
1389		 * Let the filesystem know what portion of the current page
1390		 * failed to map. If the page wasn't been added to ioend, it
1391		 * won't be affected by I/O completion and we must unlock it
1392		 * now.
1393		 */
1394		if (wpc->ops->discard_page)
1395			wpc->ops->discard_page(page, file_offset);
1396		if (!count) {
1397			ClearPageUptodate(page);
1398			unlock_page(page);
1399			goto done;
1400		}
1401	}
1402
1403	set_page_writeback(page);
1404	unlock_page(page);
1405
1406	/*
1407	 * Preserve the original error if there was one, otherwise catch
1408	 * submission errors here and propagate into subsequent ioend
1409	 * submissions.
1410	 */
1411	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1412		int error2;
1413
1414		list_del_init(&ioend->io_list);
1415		error2 = iomap_submit_ioend(wpc, ioend, error);
1416		if (error2 && !error)
1417			error = error2;
1418	}
1419
1420	/*
1421	 * We can end up here with no error and nothing to write only if we race
1422	 * with a partial page truncate on a sub-page block sized filesystem.
1423	 */
1424	if (!count)
1425		end_page_writeback(page);
1426done:
1427	mapping_set_error(page->mapping, error);
1428	return error;
1429}
1430
1431/*
1432 * Write out a dirty page.
1433 *
1434 * For delalloc space on the page we need to allocate space and flush it.
1435 * For unwritten space on the page we need to start the conversion to
1436 * regular allocated space.
1437 */
1438static int
1439iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1440{
1441	struct iomap_writepage_ctx *wpc = data;
1442	struct inode *inode = page->mapping->host;
1443	pgoff_t end_index;
1444	u64 end_offset;
1445	loff_t offset;
1446
1447	trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE);
1448
1449	/*
1450	 * Refuse to write the page out if we are called from reclaim context.
1451	 *
1452	 * This avoids stack overflows when called from deeply used stacks in
1453	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1454	 * allow reclaim from kswapd as the stack usage there is relatively low.
1455	 *
1456	 * This should never happen except in the case of a VM regression so
1457	 * warn about it.
1458	 */
1459	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1460			PF_MEMALLOC))
1461		goto redirty;
1462
1463	/*
1464	 * Is this page beyond the end of the file?
1465	 *
1466	 * The page index is less than the end_index, adjust the end_offset
1467	 * to the highest offset that this page should represent.
1468	 * -----------------------------------------------------
1469	 * |			file mapping	       | <EOF> |
1470	 * -----------------------------------------------------
1471	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1472	 * ^--------------------------------^----------|--------
1473	 * |     desired writeback range    |      see else    |
1474	 * ---------------------------------^------------------|
1475	 */
1476	offset = i_size_read(inode);
1477	end_index = offset >> PAGE_SHIFT;
1478	if (page->index < end_index)
1479		end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1480	else {
1481		/*
1482		 * Check whether the page to write out is beyond or straddles
1483		 * i_size or not.
1484		 * -------------------------------------------------------
1485		 * |		file mapping		        | <EOF>  |
1486		 * -------------------------------------------------------
1487		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1488		 * ^--------------------------------^-----------|---------
1489		 * |				    |      Straddles     |
1490		 * ---------------------------------^-----------|--------|
1491		 */
1492		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1493
1494		/*
1495		 * Skip the page if it is fully outside i_size, e.g. due to a
1496		 * truncate operation that is in progress. We must redirty the
1497		 * page so that reclaim stops reclaiming it. Otherwise
1498		 * iomap_vm_releasepage() is called on it and gets confused.
1499		 *
1500		 * Note that the end_index is unsigned long, it would overflow
1501		 * if the given offset is greater than 16TB on 32-bit system
1502		 * and if we do check the page is fully outside i_size or not
1503		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1504		 * will be evaluated to 0.  Hence this page will be redirtied
1505		 * and be written out repeatedly which would result in an
1506		 * infinite loop, the user program that perform this operation
1507		 * will hang.  Instead, we can verify this situation by checking
1508		 * if the page to write is totally beyond the i_size or if it's
1509		 * offset is just equal to the EOF.
1510		 */
1511		if (page->index > end_index ||
1512		    (page->index == end_index && offset_into_page == 0))
1513			goto redirty;
1514
1515		/*
1516		 * The page straddles i_size.  It must be zeroed out on each
1517		 * and every writepage invocation because it may be mmapped.
1518		 * "A file is mapped in multiples of the page size.  For a file
1519		 * that is not a multiple of the page size, the remaining
1520		 * memory is zeroed when mapped, and writes to that region are
1521		 * not written out to the file."
1522		 */
1523		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1524
1525		/* Adjust the end_offset to the end of file */
1526		end_offset = offset;
1527	}
1528
1529	return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1530
1531redirty:
1532	redirty_page_for_writepage(wbc, page);
1533	unlock_page(page);
1534	return 0;
1535}
1536
1537int
1538iomap_writepage(struct page *page, struct writeback_control *wbc,
1539		struct iomap_writepage_ctx *wpc,
1540		const struct iomap_writeback_ops *ops)
1541{
1542	int ret;
1543
1544	wpc->ops = ops;
1545	ret = iomap_do_writepage(page, wbc, wpc);
1546	if (!wpc->ioend)
1547		return ret;
1548	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1549}
1550EXPORT_SYMBOL_GPL(iomap_writepage);
1551
1552int
1553iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1554		struct iomap_writepage_ctx *wpc,
1555		const struct iomap_writeback_ops *ops)
1556{
1557	int			ret;
1558
1559	wpc->ops = ops;
1560	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1561	if (!wpc->ioend)
1562		return ret;
1563	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1564}
1565EXPORT_SYMBOL_GPL(iomap_writepages);
1566
1567static int __init iomap_init(void)
1568{
1569	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1570			   offsetof(struct iomap_ioend, io_inline_bio),
1571			   BIOSET_NEED_BVECS);
1572}
1573fs_initcall(iomap_init);
1574