1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 */ 6 7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9#include <linux/slab.h> 10#include <linux/spinlock.h> 11#include <linux/completion.h> 12#include <linux/buffer_head.h> 13#include <linux/fs.h> 14#include <linux/gfs2_ondisk.h> 15#include <linux/prefetch.h> 16#include <linux/blkdev.h> 17#include <linux/rbtree.h> 18#include <linux/random.h> 19 20#include "gfs2.h" 21#include "incore.h" 22#include "glock.h" 23#include "glops.h" 24#include "lops.h" 25#include "meta_io.h" 26#include "quota.h" 27#include "rgrp.h" 28#include "super.h" 29#include "trans.h" 30#include "util.h" 31#include "log.h" 32#include "inode.h" 33#include "trace_gfs2.h" 34#include "dir.h" 35 36#define BFITNOENT ((u32)~0) 37#define NO_BLOCK ((u64)~0) 38 39/* 40 * These routines are used by the resource group routines (rgrp.c) 41 * to keep track of block allocation. Each block is represented by two 42 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 43 * 44 * 0 = Free 45 * 1 = Used (not metadata) 46 * 2 = Unlinked (still in use) inode 47 * 3 = Used (metadata) 48 */ 49 50struct gfs2_extent { 51 struct gfs2_rbm rbm; 52 u32 len; 53}; 54 55static const char valid_change[16] = { 56 /* current */ 57 /* n */ 0, 1, 1, 1, 58 /* e */ 1, 0, 0, 0, 59 /* w */ 0, 0, 0, 1, 60 1, 0, 0, 0 61}; 62 63static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 64 const struct gfs2_inode *ip, bool nowrap); 65 66 67/** 68 * gfs2_setbit - Set a bit in the bitmaps 69 * @rbm: The position of the bit to set 70 * @do_clone: Also set the clone bitmap, if it exists 71 * @new_state: the new state of the block 72 * 73 */ 74 75static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 76 unsigned char new_state) 77{ 78 unsigned char *byte1, *byte2, *end, cur_state; 79 struct gfs2_bitmap *bi = rbm_bi(rbm); 80 unsigned int buflen = bi->bi_bytes; 81 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 82 83 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 84 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 85 86 BUG_ON(byte1 >= end); 87 88 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 89 90 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 91 struct gfs2_sbd *sdp = rbm->rgd->rd_sbd; 92 93 fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n", 94 rbm->offset, cur_state, new_state); 95 fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n", 96 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start, 97 (unsigned long long)bi->bi_bh->b_blocknr); 98 fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n", 99 bi->bi_offset, bi->bi_bytes, 100 (unsigned long long)gfs2_rbm_to_block(rbm)); 101 dump_stack(); 102 gfs2_consist_rgrpd(rbm->rgd); 103 return; 104 } 105 *byte1 ^= (cur_state ^ new_state) << bit; 106 107 if (do_clone && bi->bi_clone) { 108 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 109 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 110 *byte2 ^= (cur_state ^ new_state) << bit; 111 } 112} 113 114/** 115 * gfs2_testbit - test a bit in the bitmaps 116 * @rbm: The bit to test 117 * @use_clone: If true, test the clone bitmap, not the official bitmap. 118 * 119 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps, 120 * not the "real" bitmaps, to avoid allocating recently freed blocks. 121 * 122 * Returns: The two bit block state of the requested bit 123 */ 124 125static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone) 126{ 127 struct gfs2_bitmap *bi = rbm_bi(rbm); 128 const u8 *buffer; 129 const u8 *byte; 130 unsigned int bit; 131 132 if (use_clone && bi->bi_clone) 133 buffer = bi->bi_clone; 134 else 135 buffer = bi->bi_bh->b_data; 136 buffer += bi->bi_offset; 137 byte = buffer + (rbm->offset / GFS2_NBBY); 138 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 139 140 return (*byte >> bit) & GFS2_BIT_MASK; 141} 142 143/** 144 * gfs2_bit_search 145 * @ptr: Pointer to bitmap data 146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 147 * @state: The state we are searching for 148 * 149 * We xor the bitmap data with a patter which is the bitwise opposite 150 * of what we are looking for, this gives rise to a pattern of ones 151 * wherever there is a match. Since we have two bits per entry, we 152 * take this pattern, shift it down by one place and then and it with 153 * the original. All the even bit positions (0,2,4, etc) then represent 154 * successful matches, so we mask with 0x55555..... to remove the unwanted 155 * odd bit positions. 156 * 157 * This allows searching of a whole u64 at once (32 blocks) with a 158 * single test (on 64 bit arches). 159 */ 160 161static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 162{ 163 u64 tmp; 164 static const u64 search[] = { 165 [0] = 0xffffffffffffffffULL, 166 [1] = 0xaaaaaaaaaaaaaaaaULL, 167 [2] = 0x5555555555555555ULL, 168 [3] = 0x0000000000000000ULL, 169 }; 170 tmp = le64_to_cpu(*ptr) ^ search[state]; 171 tmp &= (tmp >> 1); 172 tmp &= mask; 173 return tmp; 174} 175 176/** 177 * rs_cmp - multi-block reservation range compare 178 * @blk: absolute file system block number of the new reservation 179 * @len: number of blocks in the new reservation 180 * @rs: existing reservation to compare against 181 * 182 * returns: 1 if the block range is beyond the reach of the reservation 183 * -1 if the block range is before the start of the reservation 184 * 0 if the block range overlaps with the reservation 185 */ 186static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 187{ 188 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 189 190 if (blk >= startblk + rs->rs_free) 191 return 1; 192 if (blk + len - 1 < startblk) 193 return -1; 194 return 0; 195} 196 197/** 198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 199 * a block in a given allocation state. 200 * @buf: the buffer that holds the bitmaps 201 * @len: the length (in bytes) of the buffer 202 * @goal: start search at this block's bit-pair (within @buffer) 203 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 204 * 205 * Scope of @goal and returned block number is only within this bitmap buffer, 206 * not entire rgrp or filesystem. @buffer will be offset from the actual 207 * beginning of a bitmap block buffer, skipping any header structures, but 208 * headers are always a multiple of 64 bits long so that the buffer is 209 * always aligned to a 64 bit boundary. 210 * 211 * The size of the buffer is in bytes, but is it assumed that it is 212 * always ok to read a complete multiple of 64 bits at the end 213 * of the block in case the end is no aligned to a natural boundary. 214 * 215 * Return: the block number (bitmap buffer scope) that was found 216 */ 217 218static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 219 u32 goal, u8 state) 220{ 221 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 222 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 223 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 224 u64 tmp; 225 u64 mask = 0x5555555555555555ULL; 226 u32 bit; 227 228 /* Mask off bits we don't care about at the start of the search */ 229 mask <<= spoint; 230 tmp = gfs2_bit_search(ptr, mask, state); 231 ptr++; 232 while(tmp == 0 && ptr < end) { 233 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 234 ptr++; 235 } 236 /* Mask off any bits which are more than len bytes from the start */ 237 if (ptr == end && (len & (sizeof(u64) - 1))) 238 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 239 /* Didn't find anything, so return */ 240 if (tmp == 0) 241 return BFITNOENT; 242 ptr--; 243 bit = __ffs64(tmp); 244 bit /= 2; /* two bits per entry in the bitmap */ 245 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 246} 247 248/** 249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 250 * @rbm: The rbm with rgd already set correctly 251 * @block: The block number (filesystem relative) 252 * 253 * This sets the bi and offset members of an rbm based on a 254 * resource group and a filesystem relative block number. The 255 * resource group must be set in the rbm on entry, the bi and 256 * offset members will be set by this function. 257 * 258 * Returns: 0 on success, or an error code 259 */ 260 261static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 262{ 263 if (!rgrp_contains_block(rbm->rgd, block)) 264 return -E2BIG; 265 rbm->bii = 0; 266 rbm->offset = block - rbm->rgd->rd_data0; 267 /* Check if the block is within the first block */ 268 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 269 return 0; 270 271 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 272 rbm->offset += (sizeof(struct gfs2_rgrp) - 273 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 274 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 275 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 276 return 0; 277} 278 279/** 280 * gfs2_rbm_incr - increment an rbm structure 281 * @rbm: The rbm with rgd already set correctly 282 * 283 * This function takes an existing rbm structure and increments it to the next 284 * viable block offset. 285 * 286 * Returns: If incrementing the offset would cause the rbm to go past the 287 * end of the rgrp, true is returned, otherwise false. 288 * 289 */ 290 291static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) 292{ 293 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ 294 rbm->offset++; 295 return false; 296 } 297 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ 298 return true; 299 300 rbm->offset = 0; 301 rbm->bii++; 302 return false; 303} 304 305/** 306 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 307 * @rbm: Position to search (value/result) 308 * @n_unaligned: Number of unaligned blocks to check 309 * @len: Decremented for each block found (terminate on zero) 310 * 311 * Returns: true if a non-free block is encountered 312 */ 313 314static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 315{ 316 u32 n; 317 u8 res; 318 319 for (n = 0; n < n_unaligned; n++) { 320 res = gfs2_testbit(rbm, true); 321 if (res != GFS2_BLKST_FREE) 322 return true; 323 (*len)--; 324 if (*len == 0) 325 return true; 326 if (gfs2_rbm_incr(rbm)) 327 return true; 328 } 329 330 return false; 331} 332 333/** 334 * gfs2_free_extlen - Return extent length of free blocks 335 * @rrbm: Starting position 336 * @len: Max length to check 337 * 338 * Starting at the block specified by the rbm, see how many free blocks 339 * there are, not reading more than len blocks ahead. This can be done 340 * using memchr_inv when the blocks are byte aligned, but has to be done 341 * on a block by block basis in case of unaligned blocks. Also this 342 * function can cope with bitmap boundaries (although it must stop on 343 * a resource group boundary) 344 * 345 * Returns: Number of free blocks in the extent 346 */ 347 348static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 349{ 350 struct gfs2_rbm rbm = *rrbm; 351 u32 n_unaligned = rbm.offset & 3; 352 u32 size = len; 353 u32 bytes; 354 u32 chunk_size; 355 u8 *ptr, *start, *end; 356 u64 block; 357 struct gfs2_bitmap *bi; 358 359 if (n_unaligned && 360 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 361 goto out; 362 363 n_unaligned = len & 3; 364 /* Start is now byte aligned */ 365 while (len > 3) { 366 bi = rbm_bi(&rbm); 367 start = bi->bi_bh->b_data; 368 if (bi->bi_clone) 369 start = bi->bi_clone; 370 start += bi->bi_offset; 371 end = start + bi->bi_bytes; 372 BUG_ON(rbm.offset & 3); 373 start += (rbm.offset / GFS2_NBBY); 374 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 375 ptr = memchr_inv(start, 0, bytes); 376 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 377 chunk_size *= GFS2_NBBY; 378 BUG_ON(len < chunk_size); 379 len -= chunk_size; 380 block = gfs2_rbm_to_block(&rbm); 381 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 382 n_unaligned = 0; 383 break; 384 } 385 if (ptr) { 386 n_unaligned = 3; 387 break; 388 } 389 n_unaligned = len & 3; 390 } 391 392 /* Deal with any bits left over at the end */ 393 if (n_unaligned) 394 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 395out: 396 return size - len; 397} 398 399/** 400 * gfs2_bitcount - count the number of bits in a certain state 401 * @rgd: the resource group descriptor 402 * @buffer: the buffer that holds the bitmaps 403 * @buflen: the length (in bytes) of the buffer 404 * @state: the state of the block we're looking for 405 * 406 * Returns: The number of bits 407 */ 408 409static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 410 unsigned int buflen, u8 state) 411{ 412 const u8 *byte = buffer; 413 const u8 *end = buffer + buflen; 414 const u8 state1 = state << 2; 415 const u8 state2 = state << 4; 416 const u8 state3 = state << 6; 417 u32 count = 0; 418 419 for (; byte < end; byte++) { 420 if (((*byte) & 0x03) == state) 421 count++; 422 if (((*byte) & 0x0C) == state1) 423 count++; 424 if (((*byte) & 0x30) == state2) 425 count++; 426 if (((*byte) & 0xC0) == state3) 427 count++; 428 } 429 430 return count; 431} 432 433/** 434 * gfs2_rgrp_verify - Verify that a resource group is consistent 435 * @rgd: the rgrp 436 * 437 */ 438 439void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 440{ 441 struct gfs2_sbd *sdp = rgd->rd_sbd; 442 struct gfs2_bitmap *bi = NULL; 443 u32 length = rgd->rd_length; 444 u32 count[4], tmp; 445 int buf, x; 446 447 memset(count, 0, 4 * sizeof(u32)); 448 449 /* Count # blocks in each of 4 possible allocation states */ 450 for (buf = 0; buf < length; buf++) { 451 bi = rgd->rd_bits + buf; 452 for (x = 0; x < 4; x++) 453 count[x] += gfs2_bitcount(rgd, 454 bi->bi_bh->b_data + 455 bi->bi_offset, 456 bi->bi_bytes, x); 457 } 458 459 if (count[0] != rgd->rd_free) { 460 gfs2_lm(sdp, "free data mismatch: %u != %u\n", 461 count[0], rgd->rd_free); 462 gfs2_consist_rgrpd(rgd); 463 return; 464 } 465 466 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 467 if (count[1] != tmp) { 468 gfs2_lm(sdp, "used data mismatch: %u != %u\n", 469 count[1], tmp); 470 gfs2_consist_rgrpd(rgd); 471 return; 472 } 473 474 if (count[2] + count[3] != rgd->rd_dinodes) { 475 gfs2_lm(sdp, "used metadata mismatch: %u != %u\n", 476 count[2] + count[3], rgd->rd_dinodes); 477 gfs2_consist_rgrpd(rgd); 478 return; 479 } 480} 481 482/** 483 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 484 * @sdp: The GFS2 superblock 485 * @blk: The data block number 486 * @exact: True if this needs to be an exact match 487 * 488 * The @exact argument should be set to true by most callers. The exception 489 * is when we need to match blocks which are not represented by the rgrp 490 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are 491 * there for alignment purposes. Another way of looking at it is that @exact 492 * matches only valid data/metadata blocks, but with @exact false, it will 493 * match any block within the extent of the rgrp. 494 * 495 * Returns: The resource group, or NULL if not found 496 */ 497 498struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 499{ 500 struct rb_node *n, *next; 501 struct gfs2_rgrpd *cur; 502 503 spin_lock(&sdp->sd_rindex_spin); 504 n = sdp->sd_rindex_tree.rb_node; 505 while (n) { 506 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 507 next = NULL; 508 if (blk < cur->rd_addr) 509 next = n->rb_left; 510 else if (blk >= cur->rd_data0 + cur->rd_data) 511 next = n->rb_right; 512 if (next == NULL) { 513 spin_unlock(&sdp->sd_rindex_spin); 514 if (exact) { 515 if (blk < cur->rd_addr) 516 return NULL; 517 if (blk >= cur->rd_data0 + cur->rd_data) 518 return NULL; 519 } 520 return cur; 521 } 522 n = next; 523 } 524 spin_unlock(&sdp->sd_rindex_spin); 525 526 return NULL; 527} 528 529/** 530 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 531 * @sdp: The GFS2 superblock 532 * 533 * Returns: The first rgrp in the filesystem 534 */ 535 536struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 537{ 538 const struct rb_node *n; 539 struct gfs2_rgrpd *rgd; 540 541 spin_lock(&sdp->sd_rindex_spin); 542 n = rb_first(&sdp->sd_rindex_tree); 543 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 544 spin_unlock(&sdp->sd_rindex_spin); 545 546 return rgd; 547} 548 549/** 550 * gfs2_rgrpd_get_next - get the next RG 551 * @rgd: the resource group descriptor 552 * 553 * Returns: The next rgrp 554 */ 555 556struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 557{ 558 struct gfs2_sbd *sdp = rgd->rd_sbd; 559 const struct rb_node *n; 560 561 spin_lock(&sdp->sd_rindex_spin); 562 n = rb_next(&rgd->rd_node); 563 if (n == NULL) 564 n = rb_first(&sdp->sd_rindex_tree); 565 566 if (unlikely(&rgd->rd_node == n)) { 567 spin_unlock(&sdp->sd_rindex_spin); 568 return NULL; 569 } 570 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 571 spin_unlock(&sdp->sd_rindex_spin); 572 return rgd; 573} 574 575void check_and_update_goal(struct gfs2_inode *ip) 576{ 577 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 578 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 579 ip->i_goal = ip->i_no_addr; 580} 581 582void gfs2_free_clones(struct gfs2_rgrpd *rgd) 583{ 584 int x; 585 586 for (x = 0; x < rgd->rd_length; x++) { 587 struct gfs2_bitmap *bi = rgd->rd_bits + x; 588 kfree(bi->bi_clone); 589 bi->bi_clone = NULL; 590 } 591} 592 593static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs, 594 const char *fs_id_buf) 595{ 596 struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res); 597 598 gfs2_print_dbg(seq, "%s B: n:%llu s:%llu b:%u f:%u\n", fs_id_buf, 599 (unsigned long long)ip->i_no_addr, 600 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 601 rs->rs_rbm.offset, rs->rs_free); 602} 603 604/** 605 * __rs_deltree - remove a multi-block reservation from the rgd tree 606 * @rs: The reservation to remove 607 * 608 */ 609static void __rs_deltree(struct gfs2_blkreserv *rs) 610{ 611 struct gfs2_rgrpd *rgd; 612 613 if (!gfs2_rs_active(rs)) 614 return; 615 616 rgd = rs->rs_rbm.rgd; 617 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 618 rb_erase(&rs->rs_node, &rgd->rd_rstree); 619 RB_CLEAR_NODE(&rs->rs_node); 620 621 if (rs->rs_free) { 622 u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) + 623 rs->rs_free - 1; 624 struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, }; 625 struct gfs2_bitmap *start, *last; 626 627 /* return reserved blocks to the rgrp */ 628 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 629 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 630 /* The rgrp extent failure point is likely not to increase; 631 it will only do so if the freed blocks are somehow 632 contiguous with a span of free blocks that follows. Still, 633 it will force the number to be recalculated later. */ 634 rgd->rd_extfail_pt += rs->rs_free; 635 rs->rs_free = 0; 636 if (gfs2_rbm_from_block(&last_rbm, last_block)) 637 return; 638 start = rbm_bi(&rs->rs_rbm); 639 last = rbm_bi(&last_rbm); 640 do 641 clear_bit(GBF_FULL, &start->bi_flags); 642 while (start++ != last); 643 } 644} 645 646/** 647 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 648 * @rs: The reservation to remove 649 * 650 */ 651void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 652{ 653 struct gfs2_rgrpd *rgd; 654 655 rgd = rs->rs_rbm.rgd; 656 if (rgd) { 657 spin_lock(&rgd->rd_rsspin); 658 __rs_deltree(rs); 659 BUG_ON(rs->rs_free); 660 spin_unlock(&rgd->rd_rsspin); 661 } 662} 663 664/** 665 * gfs2_rs_delete - delete a multi-block reservation 666 * @ip: The inode for this reservation 667 * 668 */ 669void gfs2_rs_delete(struct gfs2_inode *ip) 670{ 671 struct inode *inode = &ip->i_inode; 672 673 down_write(&ip->i_rw_mutex); 674 if (atomic_read(&inode->i_writecount) <= 1) 675 gfs2_rs_deltree(&ip->i_res); 676 up_write(&ip->i_rw_mutex); 677} 678 679/** 680 * return_all_reservations - return all reserved blocks back to the rgrp. 681 * @rgd: the rgrp that needs its space back 682 * 683 * We previously reserved a bunch of blocks for allocation. Now we need to 684 * give them back. This leave the reservation structures in tact, but removes 685 * all of their corresponding "no-fly zones". 686 */ 687static void return_all_reservations(struct gfs2_rgrpd *rgd) 688{ 689 struct rb_node *n; 690 struct gfs2_blkreserv *rs; 691 692 spin_lock(&rgd->rd_rsspin); 693 while ((n = rb_first(&rgd->rd_rstree))) { 694 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 695 __rs_deltree(rs); 696 } 697 spin_unlock(&rgd->rd_rsspin); 698} 699 700void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 701{ 702 struct rb_node *n; 703 struct gfs2_rgrpd *rgd; 704 struct gfs2_glock *gl; 705 706 while ((n = rb_first(&sdp->sd_rindex_tree))) { 707 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 708 gl = rgd->rd_gl; 709 710 rb_erase(n, &sdp->sd_rindex_tree); 711 712 if (gl) { 713 if (gl->gl_state != LM_ST_UNLOCKED) { 714 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 715 flush_delayed_work(&gl->gl_work); 716 } 717 gfs2_rgrp_brelse(rgd); 718 glock_clear_object(gl, rgd); 719 gfs2_glock_put(gl); 720 } 721 722 gfs2_free_clones(rgd); 723 return_all_reservations(rgd); 724 kfree(rgd->rd_bits); 725 rgd->rd_bits = NULL; 726 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 727 } 728} 729 730/** 731 * gfs2_compute_bitstructs - Compute the bitmap sizes 732 * @rgd: The resource group descriptor 733 * 734 * Calculates bitmap descriptors, one for each block that contains bitmap data 735 * 736 * Returns: errno 737 */ 738 739static int compute_bitstructs(struct gfs2_rgrpd *rgd) 740{ 741 struct gfs2_sbd *sdp = rgd->rd_sbd; 742 struct gfs2_bitmap *bi; 743 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 744 u32 bytes_left, bytes; 745 int x; 746 747 if (!length) 748 return -EINVAL; 749 750 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 751 if (!rgd->rd_bits) 752 return -ENOMEM; 753 754 bytes_left = rgd->rd_bitbytes; 755 756 for (x = 0; x < length; x++) { 757 bi = rgd->rd_bits + x; 758 759 bi->bi_flags = 0; 760 /* small rgrp; bitmap stored completely in header block */ 761 if (length == 1) { 762 bytes = bytes_left; 763 bi->bi_offset = sizeof(struct gfs2_rgrp); 764 bi->bi_start = 0; 765 bi->bi_bytes = bytes; 766 bi->bi_blocks = bytes * GFS2_NBBY; 767 /* header block */ 768 } else if (x == 0) { 769 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 770 bi->bi_offset = sizeof(struct gfs2_rgrp); 771 bi->bi_start = 0; 772 bi->bi_bytes = bytes; 773 bi->bi_blocks = bytes * GFS2_NBBY; 774 /* last block */ 775 } else if (x + 1 == length) { 776 bytes = bytes_left; 777 bi->bi_offset = sizeof(struct gfs2_meta_header); 778 bi->bi_start = rgd->rd_bitbytes - bytes_left; 779 bi->bi_bytes = bytes; 780 bi->bi_blocks = bytes * GFS2_NBBY; 781 /* other blocks */ 782 } else { 783 bytes = sdp->sd_sb.sb_bsize - 784 sizeof(struct gfs2_meta_header); 785 bi->bi_offset = sizeof(struct gfs2_meta_header); 786 bi->bi_start = rgd->rd_bitbytes - bytes_left; 787 bi->bi_bytes = bytes; 788 bi->bi_blocks = bytes * GFS2_NBBY; 789 } 790 791 bytes_left -= bytes; 792 } 793 794 if (bytes_left) { 795 gfs2_consist_rgrpd(rgd); 796 return -EIO; 797 } 798 bi = rgd->rd_bits + (length - 1); 799 if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) { 800 gfs2_lm(sdp, 801 "ri_addr = %llu\n" 802 "ri_length = %u\n" 803 "ri_data0 = %llu\n" 804 "ri_data = %u\n" 805 "ri_bitbytes = %u\n" 806 "start=%u len=%u offset=%u\n", 807 (unsigned long long)rgd->rd_addr, 808 rgd->rd_length, 809 (unsigned long long)rgd->rd_data0, 810 rgd->rd_data, 811 rgd->rd_bitbytes, 812 bi->bi_start, bi->bi_bytes, bi->bi_offset); 813 gfs2_consist_rgrpd(rgd); 814 return -EIO; 815 } 816 817 return 0; 818} 819 820/** 821 * gfs2_ri_total - Total up the file system space, according to the rindex. 822 * @sdp: the filesystem 823 * 824 */ 825u64 gfs2_ri_total(struct gfs2_sbd *sdp) 826{ 827 u64 total_data = 0; 828 struct inode *inode = sdp->sd_rindex; 829 struct gfs2_inode *ip = GFS2_I(inode); 830 char buf[sizeof(struct gfs2_rindex)]; 831 int error, rgrps; 832 833 for (rgrps = 0;; rgrps++) { 834 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 835 836 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 837 break; 838 error = gfs2_internal_read(ip, buf, &pos, 839 sizeof(struct gfs2_rindex)); 840 if (error != sizeof(struct gfs2_rindex)) 841 break; 842 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 843 } 844 return total_data; 845} 846 847static int rgd_insert(struct gfs2_rgrpd *rgd) 848{ 849 struct gfs2_sbd *sdp = rgd->rd_sbd; 850 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 851 852 /* Figure out where to put new node */ 853 while (*newn) { 854 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 855 rd_node); 856 857 parent = *newn; 858 if (rgd->rd_addr < cur->rd_addr) 859 newn = &((*newn)->rb_left); 860 else if (rgd->rd_addr > cur->rd_addr) 861 newn = &((*newn)->rb_right); 862 else 863 return -EEXIST; 864 } 865 866 rb_link_node(&rgd->rd_node, parent, newn); 867 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 868 sdp->sd_rgrps++; 869 return 0; 870} 871 872/** 873 * read_rindex_entry - Pull in a new resource index entry from the disk 874 * @ip: Pointer to the rindex inode 875 * 876 * Returns: 0 on success, > 0 on EOF, error code otherwise 877 */ 878 879static int read_rindex_entry(struct gfs2_inode *ip) 880{ 881 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 882 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 883 struct gfs2_rindex buf; 884 int error; 885 struct gfs2_rgrpd *rgd; 886 887 if (pos >= i_size_read(&ip->i_inode)) 888 return 1; 889 890 error = gfs2_internal_read(ip, (char *)&buf, &pos, 891 sizeof(struct gfs2_rindex)); 892 893 if (error != sizeof(struct gfs2_rindex)) 894 return (error == 0) ? 1 : error; 895 896 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 897 error = -ENOMEM; 898 if (!rgd) 899 return error; 900 901 rgd->rd_sbd = sdp; 902 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 903 rgd->rd_length = be32_to_cpu(buf.ri_length); 904 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 905 rgd->rd_data = be32_to_cpu(buf.ri_data); 906 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 907 spin_lock_init(&rgd->rd_rsspin); 908 909 error = gfs2_glock_get(sdp, rgd->rd_addr, 910 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 911 if (error) 912 goto fail; 913 914 error = compute_bitstructs(rgd); 915 if (error) 916 goto fail_glock; 917 918 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 919 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED); 920 if (rgd->rd_data > sdp->sd_max_rg_data) 921 sdp->sd_max_rg_data = rgd->rd_data; 922 spin_lock(&sdp->sd_rindex_spin); 923 error = rgd_insert(rgd); 924 spin_unlock(&sdp->sd_rindex_spin); 925 if (!error) { 926 glock_set_object(rgd->rd_gl, rgd); 927 return 0; 928 } 929 930 error = 0; /* someone else read in the rgrp; free it and ignore it */ 931fail_glock: 932 gfs2_glock_put(rgd->rd_gl); 933 934fail: 935 kfree(rgd->rd_bits); 936 rgd->rd_bits = NULL; 937 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 938 return error; 939} 940 941/** 942 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use 943 * @sdp: the GFS2 superblock 944 * 945 * The purpose of this function is to select a subset of the resource groups 946 * and mark them as PREFERRED. We do it in such a way that each node prefers 947 * to use a unique set of rgrps to minimize glock contention. 948 */ 949static void set_rgrp_preferences(struct gfs2_sbd *sdp) 950{ 951 struct gfs2_rgrpd *rgd, *first; 952 int i; 953 954 /* Skip an initial number of rgrps, based on this node's journal ID. 955 That should start each node out on its own set. */ 956 rgd = gfs2_rgrpd_get_first(sdp); 957 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) 958 rgd = gfs2_rgrpd_get_next(rgd); 959 first = rgd; 960 961 do { 962 rgd->rd_flags |= GFS2_RDF_PREFERRED; 963 for (i = 0; i < sdp->sd_journals; i++) { 964 rgd = gfs2_rgrpd_get_next(rgd); 965 if (!rgd || rgd == first) 966 break; 967 } 968 } while (rgd && rgd != first); 969} 970 971/** 972 * gfs2_ri_update - Pull in a new resource index from the disk 973 * @ip: pointer to the rindex inode 974 * 975 * Returns: 0 on successful update, error code otherwise 976 */ 977 978static int gfs2_ri_update(struct gfs2_inode *ip) 979{ 980 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 981 int error; 982 983 do { 984 error = read_rindex_entry(ip); 985 } while (error == 0); 986 987 if (error < 0) 988 return error; 989 990 if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) { 991 fs_err(sdp, "no resource groups found in the file system.\n"); 992 return -ENOENT; 993 } 994 set_rgrp_preferences(sdp); 995 996 sdp->sd_rindex_uptodate = 1; 997 return 0; 998} 999 1000/** 1001 * gfs2_rindex_update - Update the rindex if required 1002 * @sdp: The GFS2 superblock 1003 * 1004 * We grab a lock on the rindex inode to make sure that it doesn't 1005 * change whilst we are performing an operation. We keep this lock 1006 * for quite long periods of time compared to other locks. This 1007 * doesn't matter, since it is shared and it is very, very rarely 1008 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 1009 * 1010 * This makes sure that we're using the latest copy of the resource index 1011 * special file, which might have been updated if someone expanded the 1012 * filesystem (via gfs2_grow utility), which adds new resource groups. 1013 * 1014 * Returns: 0 on succeess, error code otherwise 1015 */ 1016 1017int gfs2_rindex_update(struct gfs2_sbd *sdp) 1018{ 1019 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1020 struct gfs2_glock *gl = ip->i_gl; 1021 struct gfs2_holder ri_gh; 1022 int error = 0; 1023 int unlock_required = 0; 1024 1025 /* Read new copy from disk if we don't have the latest */ 1026 if (!sdp->sd_rindex_uptodate) { 1027 if (!gfs2_glock_is_locked_by_me(gl)) { 1028 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1029 if (error) 1030 return error; 1031 unlock_required = 1; 1032 } 1033 if (!sdp->sd_rindex_uptodate) 1034 error = gfs2_ri_update(ip); 1035 if (unlock_required) 1036 gfs2_glock_dq_uninit(&ri_gh); 1037 } 1038 1039 return error; 1040} 1041 1042static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1043{ 1044 const struct gfs2_rgrp *str = buf; 1045 u32 rg_flags; 1046 1047 rg_flags = be32_to_cpu(str->rg_flags); 1048 rg_flags &= ~GFS2_RDF_MASK; 1049 rgd->rd_flags &= GFS2_RDF_MASK; 1050 rgd->rd_flags |= rg_flags; 1051 rgd->rd_free = be32_to_cpu(str->rg_free); 1052 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1053 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1054 /* rd_data0, rd_data and rd_bitbytes already set from rindex */ 1055} 1056 1057static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1058{ 1059 const struct gfs2_rgrp *str = buf; 1060 1061 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1062 rgl->rl_flags = str->rg_flags; 1063 rgl->rl_free = str->rg_free; 1064 rgl->rl_dinodes = str->rg_dinodes; 1065 rgl->rl_igeneration = str->rg_igeneration; 1066 rgl->__pad = 0UL; 1067} 1068 1069static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1070{ 1071 struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd); 1072 struct gfs2_rgrp *str = buf; 1073 u32 crc; 1074 1075 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1076 str->rg_free = cpu_to_be32(rgd->rd_free); 1077 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1078 if (next == NULL) 1079 str->rg_skip = 0; 1080 else if (next->rd_addr > rgd->rd_addr) 1081 str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr); 1082 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1083 str->rg_data0 = cpu_to_be64(rgd->rd_data0); 1084 str->rg_data = cpu_to_be32(rgd->rd_data); 1085 str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes); 1086 str->rg_crc = 0; 1087 crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp)); 1088 str->rg_crc = cpu_to_be32(crc); 1089 1090 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1091 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf); 1092} 1093 1094static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1095{ 1096 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1097 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1098 struct gfs2_sbd *sdp = rgd->rd_sbd; 1099 int valid = 1; 1100 1101 if (rgl->rl_flags != str->rg_flags) { 1102 fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u", 1103 (unsigned long long)rgd->rd_addr, 1104 be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags)); 1105 valid = 0; 1106 } 1107 if (rgl->rl_free != str->rg_free) { 1108 fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u", 1109 (unsigned long long)rgd->rd_addr, 1110 be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free)); 1111 valid = 0; 1112 } 1113 if (rgl->rl_dinodes != str->rg_dinodes) { 1114 fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u", 1115 (unsigned long long)rgd->rd_addr, 1116 be32_to_cpu(rgl->rl_dinodes), 1117 be32_to_cpu(str->rg_dinodes)); 1118 valid = 0; 1119 } 1120 if (rgl->rl_igeneration != str->rg_igeneration) { 1121 fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu", 1122 (unsigned long long)rgd->rd_addr, 1123 (unsigned long long)be64_to_cpu(rgl->rl_igeneration), 1124 (unsigned long long)be64_to_cpu(str->rg_igeneration)); 1125 valid = 0; 1126 } 1127 return valid; 1128} 1129 1130static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1131{ 1132 struct gfs2_bitmap *bi; 1133 const u32 length = rgd->rd_length; 1134 const u8 *buffer = NULL; 1135 u32 i, goal, count = 0; 1136 1137 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1138 goal = 0; 1139 buffer = bi->bi_bh->b_data + bi->bi_offset; 1140 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1141 while (goal < bi->bi_blocks) { 1142 goal = gfs2_bitfit(buffer, bi->bi_bytes, goal, 1143 GFS2_BLKST_UNLINKED); 1144 if (goal == BFITNOENT) 1145 break; 1146 count++; 1147 goal++; 1148 } 1149 } 1150 1151 return count; 1152} 1153 1154 1155/** 1156 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1157 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1158 * 1159 * Read in all of a Resource Group's header and bitmap blocks. 1160 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps. 1161 * 1162 * Returns: errno 1163 */ 1164 1165static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1166{ 1167 struct gfs2_sbd *sdp = rgd->rd_sbd; 1168 struct gfs2_glock *gl = rgd->rd_gl; 1169 unsigned int length = rgd->rd_length; 1170 struct gfs2_bitmap *bi; 1171 unsigned int x, y; 1172 int error; 1173 1174 if (rgd->rd_bits[0].bi_bh != NULL) 1175 return 0; 1176 1177 for (x = 0; x < length; x++) { 1178 bi = rgd->rd_bits + x; 1179 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh); 1180 if (error) 1181 goto fail; 1182 } 1183 1184 for (y = length; y--;) { 1185 bi = rgd->rd_bits + y; 1186 error = gfs2_meta_wait(sdp, bi->bi_bh); 1187 if (error) 1188 goto fail; 1189 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1190 GFS2_METATYPE_RG)) { 1191 error = -EIO; 1192 goto fail; 1193 } 1194 } 1195 1196 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1197 for (x = 0; x < length; x++) 1198 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1199 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1200 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1201 rgd->rd_free_clone = rgd->rd_free; 1202 /* max out the rgrp allocation failure point */ 1203 rgd->rd_extfail_pt = rgd->rd_free; 1204 } 1205 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1206 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1207 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1208 rgd->rd_bits[0].bi_bh->b_data); 1209 } 1210 else if (sdp->sd_args.ar_rgrplvb) { 1211 if (!gfs2_rgrp_lvb_valid(rgd)){ 1212 gfs2_consist_rgrpd(rgd); 1213 error = -EIO; 1214 goto fail; 1215 } 1216 if (rgd->rd_rgl->rl_unlinked == 0) 1217 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1218 } 1219 return 0; 1220 1221fail: 1222 while (x--) { 1223 bi = rgd->rd_bits + x; 1224 brelse(bi->bi_bh); 1225 bi->bi_bh = NULL; 1226 gfs2_assert_warn(sdp, !bi->bi_clone); 1227 } 1228 1229 return error; 1230} 1231 1232static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1233{ 1234 u32 rl_flags; 1235 1236 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1237 return 0; 1238 1239 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1240 return gfs2_rgrp_bh_get(rgd); 1241 1242 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1243 rl_flags &= ~GFS2_RDF_MASK; 1244 rgd->rd_flags &= GFS2_RDF_MASK; 1245 rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK); 1246 if (rgd->rd_rgl->rl_unlinked == 0) 1247 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1248 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1249 rgd->rd_free_clone = rgd->rd_free; 1250 /* max out the rgrp allocation failure point */ 1251 rgd->rd_extfail_pt = rgd->rd_free; 1252 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1253 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1254 return 0; 1255} 1256 1257int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1258{ 1259 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1260 struct gfs2_sbd *sdp = rgd->rd_sbd; 1261 1262 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1263 return 0; 1264 return gfs2_rgrp_bh_get(rgd); 1265} 1266 1267/** 1268 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1269 * @rgd: The resource group 1270 * 1271 */ 1272 1273void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) 1274{ 1275 int x, length = rgd->rd_length; 1276 1277 for (x = 0; x < length; x++) { 1278 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1279 if (bi->bi_bh) { 1280 brelse(bi->bi_bh); 1281 bi->bi_bh = NULL; 1282 } 1283 } 1284} 1285 1286int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1287 struct buffer_head *bh, 1288 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1289{ 1290 struct super_block *sb = sdp->sd_vfs; 1291 u64 blk; 1292 sector_t start = 0; 1293 sector_t nr_blks = 0; 1294 int rv; 1295 unsigned int x; 1296 u32 trimmed = 0; 1297 u8 diff; 1298 1299 for (x = 0; x < bi->bi_bytes; x++) { 1300 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1301 clone += bi->bi_offset; 1302 clone += x; 1303 if (bh) { 1304 const u8 *orig = bh->b_data + bi->bi_offset + x; 1305 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1306 } else { 1307 diff = ~(*clone | (*clone >> 1)); 1308 } 1309 diff &= 0x55; 1310 if (diff == 0) 1311 continue; 1312 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1313 while(diff) { 1314 if (diff & 1) { 1315 if (nr_blks == 0) 1316 goto start_new_extent; 1317 if ((start + nr_blks) != blk) { 1318 if (nr_blks >= minlen) { 1319 rv = sb_issue_discard(sb, 1320 start, nr_blks, 1321 GFP_NOFS, 0); 1322 if (rv) 1323 goto fail; 1324 trimmed += nr_blks; 1325 } 1326 nr_blks = 0; 1327start_new_extent: 1328 start = blk; 1329 } 1330 nr_blks++; 1331 } 1332 diff >>= 2; 1333 blk++; 1334 } 1335 } 1336 if (nr_blks >= minlen) { 1337 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1338 if (rv) 1339 goto fail; 1340 trimmed += nr_blks; 1341 } 1342 if (ptrimmed) 1343 *ptrimmed = trimmed; 1344 return 0; 1345 1346fail: 1347 if (sdp->sd_args.ar_discard) 1348 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv); 1349 sdp->sd_args.ar_discard = 0; 1350 return -EIO; 1351} 1352 1353/** 1354 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1355 * @filp: Any file on the filesystem 1356 * @argp: Pointer to the arguments (also used to pass result) 1357 * 1358 * Returns: 0 on success, otherwise error code 1359 */ 1360 1361int gfs2_fitrim(struct file *filp, void __user *argp) 1362{ 1363 struct inode *inode = file_inode(filp); 1364 struct gfs2_sbd *sdp = GFS2_SB(inode); 1365 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1366 struct buffer_head *bh; 1367 struct gfs2_rgrpd *rgd; 1368 struct gfs2_rgrpd *rgd_end; 1369 struct gfs2_holder gh; 1370 struct fstrim_range r; 1371 int ret = 0; 1372 u64 amt; 1373 u64 trimmed = 0; 1374 u64 start, end, minlen; 1375 unsigned int x; 1376 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1377 1378 if (!capable(CAP_SYS_ADMIN)) 1379 return -EPERM; 1380 1381 if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags)) 1382 return -EROFS; 1383 1384 if (!blk_queue_discard(q)) 1385 return -EOPNOTSUPP; 1386 1387 if (copy_from_user(&r, argp, sizeof(r))) 1388 return -EFAULT; 1389 1390 ret = gfs2_rindex_update(sdp); 1391 if (ret) 1392 return ret; 1393 1394 start = r.start >> bs_shift; 1395 end = start + (r.len >> bs_shift); 1396 minlen = max_t(u64, r.minlen, sdp->sd_sb.sb_bsize); 1397 minlen = max_t(u64, minlen, 1398 q->limits.discard_granularity) >> bs_shift; 1399 1400 if (end <= start || minlen > sdp->sd_max_rg_data) 1401 return -EINVAL; 1402 1403 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1404 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1405 1406 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1407 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1408 return -EINVAL; /* start is beyond the end of the fs */ 1409 1410 while (1) { 1411 1412 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1413 if (ret) 1414 goto out; 1415 1416 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1417 /* Trim each bitmap in the rgrp */ 1418 for (x = 0; x < rgd->rd_length; x++) { 1419 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1420 ret = gfs2_rgrp_send_discards(sdp, 1421 rgd->rd_data0, NULL, bi, minlen, 1422 &amt); 1423 if (ret) { 1424 gfs2_glock_dq_uninit(&gh); 1425 goto out; 1426 } 1427 trimmed += amt; 1428 } 1429 1430 /* Mark rgrp as having been trimmed */ 1431 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1432 if (ret == 0) { 1433 bh = rgd->rd_bits[0].bi_bh; 1434 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1435 gfs2_trans_add_meta(rgd->rd_gl, bh); 1436 gfs2_rgrp_out(rgd, bh->b_data); 1437 gfs2_trans_end(sdp); 1438 } 1439 } 1440 gfs2_glock_dq_uninit(&gh); 1441 1442 if (rgd == rgd_end) 1443 break; 1444 1445 rgd = gfs2_rgrpd_get_next(rgd); 1446 } 1447 1448out: 1449 r.len = trimmed << bs_shift; 1450 if (copy_to_user(argp, &r, sizeof(r))) 1451 return -EFAULT; 1452 1453 return ret; 1454} 1455 1456/** 1457 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1458 * @ip: the inode structure 1459 * 1460 */ 1461static void rs_insert(struct gfs2_inode *ip) 1462{ 1463 struct rb_node **newn, *parent = NULL; 1464 int rc; 1465 struct gfs2_blkreserv *rs = &ip->i_res; 1466 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1467 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1468 1469 BUG_ON(gfs2_rs_active(rs)); 1470 1471 spin_lock(&rgd->rd_rsspin); 1472 newn = &rgd->rd_rstree.rb_node; 1473 while (*newn) { 1474 struct gfs2_blkreserv *cur = 1475 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1476 1477 parent = *newn; 1478 rc = rs_cmp(fsblock, rs->rs_free, cur); 1479 if (rc > 0) 1480 newn = &((*newn)->rb_right); 1481 else if (rc < 0) 1482 newn = &((*newn)->rb_left); 1483 else { 1484 spin_unlock(&rgd->rd_rsspin); 1485 WARN_ON(1); 1486 return; 1487 } 1488 } 1489 1490 rb_link_node(&rs->rs_node, parent, newn); 1491 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1492 1493 /* Do our rgrp accounting for the reservation */ 1494 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1495 spin_unlock(&rgd->rd_rsspin); 1496 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1497} 1498 1499/** 1500 * rgd_free - return the number of free blocks we can allocate. 1501 * @rgd: the resource group 1502 * 1503 * This function returns the number of free blocks for an rgrp. 1504 * That's the clone-free blocks (blocks that are free, not including those 1505 * still being used for unlinked files that haven't been deleted.) 1506 * 1507 * It also subtracts any blocks reserved by someone else, but does not 1508 * include free blocks that are still part of our current reservation, 1509 * because obviously we can (and will) allocate them. 1510 */ 1511static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs) 1512{ 1513 u32 tot_reserved, tot_free; 1514 1515 if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free)) 1516 return 0; 1517 tot_reserved = rgd->rd_reserved - rs->rs_free; 1518 1519 if (rgd->rd_free_clone < tot_reserved) 1520 tot_reserved = 0; 1521 1522 tot_free = rgd->rd_free_clone - tot_reserved; 1523 1524 return tot_free; 1525} 1526 1527/** 1528 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1529 * @rgd: the resource group descriptor 1530 * @ip: pointer to the inode for which we're reserving blocks 1531 * @ap: the allocation parameters 1532 * 1533 */ 1534 1535static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1536 const struct gfs2_alloc_parms *ap) 1537{ 1538 struct gfs2_rbm rbm = { .rgd = rgd, }; 1539 u64 goal; 1540 struct gfs2_blkreserv *rs = &ip->i_res; 1541 u32 extlen; 1542 u32 free_blocks = rgd_free(rgd, rs); 1543 int ret; 1544 struct inode *inode = &ip->i_inode; 1545 1546 if (S_ISDIR(inode->i_mode)) 1547 extlen = 1; 1548 else { 1549 extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target); 1550 extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks); 1551 } 1552 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1553 return; 1554 1555 /* Find bitmap block that contains bits for goal block */ 1556 if (rgrp_contains_block(rgd, ip->i_goal)) 1557 goal = ip->i_goal; 1558 else 1559 goal = rgd->rd_last_alloc + rgd->rd_data0; 1560 1561 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1562 return; 1563 1564 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true); 1565 if (ret == 0) { 1566 rs->rs_rbm = rbm; 1567 rs->rs_free = extlen; 1568 rs_insert(ip); 1569 } else { 1570 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1571 rgd->rd_last_alloc = 0; 1572 } 1573} 1574 1575/** 1576 * gfs2_next_unreserved_block - Return next block that is not reserved 1577 * @rgd: The resource group 1578 * @block: The starting block 1579 * @length: The required length 1580 * @ip: Ignore any reservations for this inode 1581 * 1582 * If the block does not appear in any reservation, then return the 1583 * block number unchanged. If it does appear in the reservation, then 1584 * keep looking through the tree of reservations in order to find the 1585 * first block number which is not reserved. 1586 */ 1587 1588static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1589 u32 length, 1590 const struct gfs2_inode *ip) 1591{ 1592 struct gfs2_blkreserv *rs; 1593 struct rb_node *n; 1594 int rc; 1595 1596 spin_lock(&rgd->rd_rsspin); 1597 n = rgd->rd_rstree.rb_node; 1598 while (n) { 1599 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1600 rc = rs_cmp(block, length, rs); 1601 if (rc < 0) 1602 n = n->rb_left; 1603 else if (rc > 0) 1604 n = n->rb_right; 1605 else 1606 break; 1607 } 1608 1609 if (n) { 1610 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) { 1611 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1612 n = n->rb_right; 1613 if (n == NULL) 1614 break; 1615 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1616 } 1617 } 1618 1619 spin_unlock(&rgd->rd_rsspin); 1620 return block; 1621} 1622 1623/** 1624 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1625 * @rbm: The current position in the resource group 1626 * @ip: The inode for which we are searching for blocks 1627 * @minext: The minimum extent length 1628 * @maxext: A pointer to the maximum extent structure 1629 * 1630 * This checks the current position in the rgrp to see whether there is 1631 * a reservation covering this block. If not then this function is a 1632 * no-op. If there is, then the position is moved to the end of the 1633 * contiguous reservation(s) so that we are pointing at the first 1634 * non-reserved block. 1635 * 1636 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1637 */ 1638 1639static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1640 const struct gfs2_inode *ip, 1641 u32 minext, 1642 struct gfs2_extent *maxext) 1643{ 1644 u64 block = gfs2_rbm_to_block(rbm); 1645 u32 extlen = 1; 1646 u64 nblock; 1647 int ret; 1648 1649 /* 1650 * If we have a minimum extent length, then skip over any extent 1651 * which is less than the min extent length in size. 1652 */ 1653 if (minext > 1) { 1654 extlen = gfs2_free_extlen(rbm, minext); 1655 if (extlen <= maxext->len) 1656 goto fail; 1657 } 1658 1659 /* 1660 * Check the extent which has been found against the reservations 1661 * and skip if parts of it are already reserved 1662 */ 1663 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1664 if (nblock == block) { 1665 if (!minext || extlen >= minext) 1666 return 0; 1667 1668 if (extlen > maxext->len) { 1669 maxext->len = extlen; 1670 maxext->rbm = *rbm; 1671 } 1672fail: 1673 nblock = block + extlen; 1674 } 1675 ret = gfs2_rbm_from_block(rbm, nblock); 1676 if (ret < 0) 1677 return ret; 1678 return 1; 1679} 1680 1681/** 1682 * gfs2_rbm_find - Look for blocks of a particular state 1683 * @rbm: Value/result starting position and final position 1684 * @state: The state which we want to find 1685 * @minext: Pointer to the requested extent length 1686 * This is updated to be the actual reservation size. 1687 * @ip: If set, check for reservations 1688 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1689 * around until we've reached the starting point. 1690 * 1691 * Side effects: 1692 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1693 * has no free blocks in it. 1694 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1695 * has come up short on a free block search. 1696 * 1697 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1698 */ 1699 1700static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1701 const struct gfs2_inode *ip, bool nowrap) 1702{ 1703 bool scan_from_start = rbm->bii == 0 && rbm->offset == 0; 1704 struct buffer_head *bh; 1705 int last_bii; 1706 u32 offset; 1707 u8 *buffer; 1708 bool wrapped = false; 1709 int ret; 1710 struct gfs2_bitmap *bi; 1711 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1712 1713 /* 1714 * Determine the last bitmap to search. If we're not starting at the 1715 * beginning of a bitmap, we need to search that bitmap twice to scan 1716 * the entire resource group. 1717 */ 1718 last_bii = rbm->bii - (rbm->offset == 0); 1719 1720 while(1) { 1721 bi = rbm_bi(rbm); 1722 if (test_bit(GBF_FULL, &bi->bi_flags) && 1723 (state == GFS2_BLKST_FREE)) 1724 goto next_bitmap; 1725 1726 bh = bi->bi_bh; 1727 buffer = bh->b_data + bi->bi_offset; 1728 WARN_ON(!buffer_uptodate(bh)); 1729 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1730 buffer = bi->bi_clone + bi->bi_offset; 1731 offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state); 1732 if (offset == BFITNOENT) { 1733 if (state == GFS2_BLKST_FREE && rbm->offset == 0) 1734 set_bit(GBF_FULL, &bi->bi_flags); 1735 goto next_bitmap; 1736 } 1737 rbm->offset = offset; 1738 if (ip == NULL) 1739 return 0; 1740 1741 ret = gfs2_reservation_check_and_update(rbm, ip, *minext, 1742 &maxext); 1743 if (ret == 0) 1744 return 0; 1745 if (ret > 0) 1746 goto next_iter; 1747 if (ret == -E2BIG) { 1748 rbm->bii = 0; 1749 rbm->offset = 0; 1750 goto res_covered_end_of_rgrp; 1751 } 1752 return ret; 1753 1754next_bitmap: /* Find next bitmap in the rgrp */ 1755 rbm->offset = 0; 1756 rbm->bii++; 1757 if (rbm->bii == rbm->rgd->rd_length) 1758 rbm->bii = 0; 1759res_covered_end_of_rgrp: 1760 if (rbm->bii == 0) { 1761 if (wrapped) 1762 break; 1763 wrapped = true; 1764 if (nowrap) 1765 break; 1766 } 1767next_iter: 1768 /* Have we scanned the entire resource group? */ 1769 if (wrapped && rbm->bii > last_bii) 1770 break; 1771 } 1772 1773 if (state != GFS2_BLKST_FREE) 1774 return -ENOSPC; 1775 1776 /* If the extent was too small, and it's smaller than the smallest 1777 to have failed before, remember for future reference that it's 1778 useless to search this rgrp again for this amount or more. */ 1779 if (wrapped && (scan_from_start || rbm->bii > last_bii) && 1780 *minext < rbm->rgd->rd_extfail_pt) 1781 rbm->rgd->rd_extfail_pt = *minext - 1; 1782 1783 /* If the maximum extent we found is big enough to fulfill the 1784 minimum requirements, use it anyway. */ 1785 if (maxext.len) { 1786 *rbm = maxext.rbm; 1787 *minext = maxext.len; 1788 return 0; 1789 } 1790 1791 return -ENOSPC; 1792} 1793 1794/** 1795 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1796 * @rgd: The rgrp 1797 * @last_unlinked: block address of the last dinode we unlinked 1798 * @skip: block address we should explicitly not unlink 1799 * 1800 * Returns: 0 if no error 1801 * The inode, if one has been found, in inode. 1802 */ 1803 1804static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1805{ 1806 u64 block; 1807 struct gfs2_sbd *sdp = rgd->rd_sbd; 1808 struct gfs2_glock *gl; 1809 struct gfs2_inode *ip; 1810 int error; 1811 int found = 0; 1812 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1813 1814 while (1) { 1815 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1816 true); 1817 if (error == -ENOSPC) 1818 break; 1819 if (WARN_ON_ONCE(error)) 1820 break; 1821 1822 block = gfs2_rbm_to_block(&rbm); 1823 if (gfs2_rbm_from_block(&rbm, block + 1)) 1824 break; 1825 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1826 continue; 1827 if (block == skip) 1828 continue; 1829 *last_unlinked = block; 1830 1831 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl); 1832 if (error) 1833 continue; 1834 1835 /* If the inode is already in cache, we can ignore it here 1836 * because the existing inode disposal code will deal with 1837 * it when all refs have gone away. Accessing gl_object like 1838 * this is not safe in general. Here it is ok because we do 1839 * not dereference the pointer, and we only need an approx 1840 * answer to whether it is NULL or not. 1841 */ 1842 ip = gl->gl_object; 1843 1844 if (ip || !gfs2_queue_delete_work(gl, 0)) 1845 gfs2_glock_put(gl); 1846 else 1847 found++; 1848 1849 /* Limit reclaim to sensible number of tasks */ 1850 if (found > NR_CPUS) 1851 return; 1852 } 1853 1854 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1855 return; 1856} 1857 1858/** 1859 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1860 * @rgd: The rgrp in question 1861 * @loops: An indication of how picky we can be (0=very, 1=less so) 1862 * 1863 * This function uses the recently added glock statistics in order to 1864 * figure out whether a parciular resource group is suffering from 1865 * contention from multiple nodes. This is done purely on the basis 1866 * of timings, since this is the only data we have to work with and 1867 * our aim here is to reject a resource group which is highly contended 1868 * but (very important) not to do this too often in order to ensure that 1869 * we do not land up introducing fragmentation by changing resource 1870 * groups when not actually required. 1871 * 1872 * The calculation is fairly simple, we want to know whether the SRTTB 1873 * (i.e. smoothed round trip time for blocking operations) to acquire 1874 * the lock for this rgrp's glock is significantly greater than the 1875 * time taken for resource groups on average. We introduce a margin in 1876 * the form of the variable @var which is computed as the sum of the two 1877 * respective variences, and multiplied by a factor depending on @loops 1878 * and whether we have a lot of data to base the decision on. This is 1879 * then tested against the square difference of the means in order to 1880 * decide whether the result is statistically significant or not. 1881 * 1882 * Returns: A boolean verdict on the congestion status 1883 */ 1884 1885static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1886{ 1887 const struct gfs2_glock *gl = rgd->rd_gl; 1888 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1889 struct gfs2_lkstats *st; 1890 u64 r_dcount, l_dcount; 1891 u64 l_srttb, a_srttb = 0; 1892 s64 srttb_diff; 1893 u64 sqr_diff; 1894 u64 var; 1895 int cpu, nonzero = 0; 1896 1897 preempt_disable(); 1898 for_each_present_cpu(cpu) { 1899 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; 1900 if (st->stats[GFS2_LKS_SRTTB]) { 1901 a_srttb += st->stats[GFS2_LKS_SRTTB]; 1902 nonzero++; 1903 } 1904 } 1905 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1906 if (nonzero) 1907 do_div(a_srttb, nonzero); 1908 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1909 var = st->stats[GFS2_LKS_SRTTVARB] + 1910 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1911 preempt_enable(); 1912 1913 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1914 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1915 1916 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) 1917 return false; 1918 1919 srttb_diff = a_srttb - l_srttb; 1920 sqr_diff = srttb_diff * srttb_diff; 1921 1922 var *= 2; 1923 if (l_dcount < 8 || r_dcount < 8) 1924 var *= 2; 1925 if (loops == 1) 1926 var *= 2; 1927 1928 return ((srttb_diff < 0) && (sqr_diff > var)); 1929} 1930 1931/** 1932 * gfs2_rgrp_used_recently 1933 * @rs: The block reservation with the rgrp to test 1934 * @msecs: The time limit in milliseconds 1935 * 1936 * Returns: True if the rgrp glock has been used within the time limit 1937 */ 1938static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1939 u64 msecs) 1940{ 1941 u64 tdiff; 1942 1943 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1944 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1945 1946 return tdiff > (msecs * 1000 * 1000); 1947} 1948 1949static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1950{ 1951 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1952 u32 skip; 1953 1954 get_random_bytes(&skip, sizeof(skip)); 1955 return skip % sdp->sd_rgrps; 1956} 1957 1958static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1959{ 1960 struct gfs2_rgrpd *rgd = *pos; 1961 struct gfs2_sbd *sdp = rgd->rd_sbd; 1962 1963 rgd = gfs2_rgrpd_get_next(rgd); 1964 if (rgd == NULL) 1965 rgd = gfs2_rgrpd_get_first(sdp); 1966 *pos = rgd; 1967 if (rgd != begin) /* If we didn't wrap */ 1968 return true; 1969 return false; 1970} 1971 1972/** 1973 * fast_to_acquire - determine if a resource group will be fast to acquire 1974 * 1975 * If this is one of our preferred rgrps, it should be quicker to acquire, 1976 * because we tried to set ourselves up as dlm lock master. 1977 */ 1978static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) 1979{ 1980 struct gfs2_glock *gl = rgd->rd_gl; 1981 1982 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && 1983 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 1984 !test_bit(GLF_DEMOTE, &gl->gl_flags)) 1985 return 1; 1986 if (rgd->rd_flags & GFS2_RDF_PREFERRED) 1987 return 1; 1988 return 0; 1989} 1990 1991/** 1992 * gfs2_inplace_reserve - Reserve space in the filesystem 1993 * @ip: the inode to reserve space for 1994 * @ap: the allocation parameters 1995 * 1996 * We try our best to find an rgrp that has at least ap->target blocks 1997 * available. After a couple of passes (loops == 2), the prospects of finding 1998 * such an rgrp diminish. At this stage, we return the first rgrp that has 1999 * at least ap->min_target blocks available. Either way, we set ap->allowed to 2000 * the number of blocks available in the chosen rgrp. 2001 * 2002 * Returns: 0 on success, 2003 * -ENOMEM if a suitable rgrp can't be found 2004 * errno otherwise 2005 */ 2006 2007int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) 2008{ 2009 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2010 struct gfs2_rgrpd *begin = NULL; 2011 struct gfs2_blkreserv *rs = &ip->i_res; 2012 int error = 0, rg_locked, flags = 0; 2013 u64 last_unlinked = NO_BLOCK; 2014 int loops = 0; 2015 u32 free_blocks, skip = 0; 2016 2017 if (sdp->sd_args.ar_rgrplvb) 2018 flags |= GL_SKIP; 2019 if (gfs2_assert_warn(sdp, ap->target)) 2020 return -EINVAL; 2021 if (gfs2_rs_active(rs)) { 2022 begin = rs->rs_rbm.rgd; 2023 } else if (rs->rs_rbm.rgd && 2024 rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) { 2025 begin = rs->rs_rbm.rgd; 2026 } else { 2027 check_and_update_goal(ip); 2028 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 2029 } 2030 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 2031 skip = gfs2_orlov_skip(ip); 2032 if (rs->rs_rbm.rgd == NULL) 2033 return -EBADSLT; 2034 2035 while (loops < 3) { 2036 rg_locked = 1; 2037 2038 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 2039 rg_locked = 0; 2040 if (skip && skip--) 2041 goto next_rgrp; 2042 if (!gfs2_rs_active(rs)) { 2043 if (loops == 0 && 2044 !fast_to_acquire(rs->rs_rbm.rgd)) 2045 goto next_rgrp; 2046 if ((loops < 2) && 2047 gfs2_rgrp_used_recently(rs, 1000) && 2048 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2049 goto next_rgrp; 2050 } 2051 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 2052 LM_ST_EXCLUSIVE, flags, 2053 &ip->i_rgd_gh); 2054 if (unlikely(error)) 2055 return error; 2056 if (!gfs2_rs_active(rs) && (loops < 2) && 2057 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2058 goto skip_rgrp; 2059 if (sdp->sd_args.ar_rgrplvb) { 2060 error = update_rgrp_lvb(rs->rs_rbm.rgd); 2061 if (unlikely(error)) { 2062 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2063 return error; 2064 } 2065 } 2066 } 2067 2068 /* Skip unusable resource groups */ 2069 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | 2070 GFS2_RDF_ERROR)) || 2071 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) 2072 goto skip_rgrp; 2073 2074 if (sdp->sd_args.ar_rgrplvb) 2075 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 2076 2077 /* Get a reservation if we don't already have one */ 2078 if (!gfs2_rs_active(rs)) 2079 rg_mblk_search(rs->rs_rbm.rgd, ip, ap); 2080 2081 /* Skip rgrps when we can't get a reservation on first pass */ 2082 if (!gfs2_rs_active(rs) && (loops < 1)) 2083 goto check_rgrp; 2084 2085 /* If rgrp has enough free space, use it */ 2086 free_blocks = rgd_free(rs->rs_rbm.rgd, rs); 2087 if (free_blocks >= ap->target || 2088 (loops == 2 && ap->min_target && 2089 free_blocks >= ap->min_target)) { 2090 ap->allowed = free_blocks; 2091 return 0; 2092 } 2093check_rgrp: 2094 /* Check for unlinked inodes which can be reclaimed */ 2095 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 2096 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 2097 ip->i_no_addr); 2098skip_rgrp: 2099 /* Drop reservation, if we couldn't use reserved rgrp */ 2100 if (gfs2_rs_active(rs)) 2101 gfs2_rs_deltree(rs); 2102 2103 /* Unlock rgrp if required */ 2104 if (!rg_locked) 2105 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2106next_rgrp: 2107 /* Find the next rgrp, and continue looking */ 2108 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 2109 continue; 2110 if (skip) 2111 continue; 2112 2113 /* If we've scanned all the rgrps, but found no free blocks 2114 * then this checks for some less likely conditions before 2115 * trying again. 2116 */ 2117 loops++; 2118 /* Check that fs hasn't grown if writing to rindex */ 2119 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2120 error = gfs2_ri_update(ip); 2121 if (error) 2122 return error; 2123 } 2124 /* Flushing the log may release space */ 2125 if (loops == 2) 2126 gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL | 2127 GFS2_LFC_INPLACE_RESERVE); 2128 } 2129 2130 return -ENOSPC; 2131} 2132 2133/** 2134 * gfs2_inplace_release - release an inplace reservation 2135 * @ip: the inode the reservation was taken out on 2136 * 2137 * Release a reservation made by gfs2_inplace_reserve(). 2138 */ 2139 2140void gfs2_inplace_release(struct gfs2_inode *ip) 2141{ 2142 if (gfs2_holder_initialized(&ip->i_rgd_gh)) 2143 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2144} 2145 2146/** 2147 * gfs2_alloc_extent - allocate an extent from a given bitmap 2148 * @rbm: the resource group information 2149 * @dinode: TRUE if the first block we allocate is for a dinode 2150 * @n: The extent length (value/result) 2151 * 2152 * Add the bitmap buffer to the transaction. 2153 * Set the found bits to @new_state to change block's allocation state. 2154 */ 2155static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2156 unsigned int *n) 2157{ 2158 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2159 const unsigned int elen = *n; 2160 u64 block; 2161 int ret; 2162 2163 *n = 1; 2164 block = gfs2_rbm_to_block(rbm); 2165 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2166 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2167 block++; 2168 while (*n < elen) { 2169 ret = gfs2_rbm_from_block(&pos, block); 2170 if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE) 2171 break; 2172 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2173 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2174 (*n)++; 2175 block++; 2176 } 2177} 2178 2179/** 2180 * rgblk_free - Change alloc state of given block(s) 2181 * @sdp: the filesystem 2182 * @rgd: the resource group the blocks are in 2183 * @bstart: the start of a run of blocks to free 2184 * @blen: the length of the block run (all must lie within ONE RG!) 2185 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2186 */ 2187 2188static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd, 2189 u64 bstart, u32 blen, unsigned char new_state) 2190{ 2191 struct gfs2_rbm rbm; 2192 struct gfs2_bitmap *bi, *bi_prev = NULL; 2193 2194 rbm.rgd = rgd; 2195 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart))) 2196 return; 2197 while (blen--) { 2198 bi = rbm_bi(&rbm); 2199 if (bi != bi_prev) { 2200 if (!bi->bi_clone) { 2201 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2202 GFP_NOFS | __GFP_NOFAIL); 2203 memcpy(bi->bi_clone + bi->bi_offset, 2204 bi->bi_bh->b_data + bi->bi_offset, 2205 bi->bi_bytes); 2206 } 2207 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2208 bi_prev = bi; 2209 } 2210 gfs2_setbit(&rbm, false, new_state); 2211 gfs2_rbm_incr(&rbm); 2212 } 2213} 2214 2215/** 2216 * gfs2_rgrp_dump - print out an rgrp 2217 * @seq: The iterator 2218 * @rgd: The rgrp in question 2219 * @fs_id_buf: pointer to file system id (if requested) 2220 * 2221 */ 2222 2223void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd, 2224 const char *fs_id_buf) 2225{ 2226 struct gfs2_blkreserv *trs; 2227 const struct rb_node *n; 2228 2229 gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", 2230 fs_id_buf, 2231 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2232 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2233 rgd->rd_reserved, rgd->rd_extfail_pt); 2234 if (rgd->rd_sbd->sd_args.ar_rgrplvb && rgd->rd_rgl) { 2235 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 2236 2237 gfs2_print_dbg(seq, "%s L: f:%02x b:%u i:%u\n", fs_id_buf, 2238 be32_to_cpu(rgl->rl_flags), 2239 be32_to_cpu(rgl->rl_free), 2240 be32_to_cpu(rgl->rl_dinodes)); 2241 } 2242 spin_lock(&rgd->rd_rsspin); 2243 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2244 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2245 dump_rs(seq, trs, fs_id_buf); 2246 } 2247 spin_unlock(&rgd->rd_rsspin); 2248} 2249 2250static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2251{ 2252 struct gfs2_sbd *sdp = rgd->rd_sbd; 2253 char fs_id_buf[sizeof(sdp->sd_fsname) + 7]; 2254 2255 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2256 (unsigned long long)rgd->rd_addr); 2257 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2258 sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname); 2259 gfs2_rgrp_dump(NULL, rgd, fs_id_buf); 2260 rgd->rd_flags |= GFS2_RDF_ERROR; 2261} 2262 2263/** 2264 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2265 * @ip: The inode we have just allocated blocks for 2266 * @rbm: The start of the allocated blocks 2267 * @len: The extent length 2268 * 2269 * Adjusts a reservation after an allocation has taken place. If the 2270 * reservation does not match the allocation, or if it is now empty 2271 * then it is removed. 2272 */ 2273 2274static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2275 const struct gfs2_rbm *rbm, unsigned len) 2276{ 2277 struct gfs2_blkreserv *rs = &ip->i_res; 2278 struct gfs2_rgrpd *rgd = rbm->rgd; 2279 unsigned rlen; 2280 u64 block; 2281 int ret; 2282 2283 spin_lock(&rgd->rd_rsspin); 2284 if (gfs2_rs_active(rs)) { 2285 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2286 block = gfs2_rbm_to_block(rbm); 2287 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2288 rlen = min(rs->rs_free, len); 2289 rs->rs_free -= rlen; 2290 rgd->rd_reserved -= rlen; 2291 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2292 if (rs->rs_free && !ret) 2293 goto out; 2294 /* We used up our block reservation, so we should 2295 reserve more blocks next time. */ 2296 atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint); 2297 } 2298 __rs_deltree(rs); 2299 } 2300out: 2301 spin_unlock(&rgd->rd_rsspin); 2302} 2303 2304/** 2305 * gfs2_set_alloc_start - Set starting point for block allocation 2306 * @rbm: The rbm which will be set to the required location 2307 * @ip: The gfs2 inode 2308 * @dinode: Flag to say if allocation includes a new inode 2309 * 2310 * This sets the starting point from the reservation if one is active 2311 * otherwise it falls back to guessing a start point based on the 2312 * inode's goal block or the last allocation point in the rgrp. 2313 */ 2314 2315static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2316 const struct gfs2_inode *ip, bool dinode) 2317{ 2318 u64 goal; 2319 2320 if (gfs2_rs_active(&ip->i_res)) { 2321 *rbm = ip->i_res.rs_rbm; 2322 return; 2323 } 2324 2325 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2326 goal = ip->i_goal; 2327 else 2328 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2329 2330 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) { 2331 rbm->bii = 0; 2332 rbm->offset = 0; 2333 } 2334} 2335 2336/** 2337 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2338 * @ip: the inode to allocate the block for 2339 * @bn: Used to return the starting block number 2340 * @nblocks: requested number of blocks/extent length (value/result) 2341 * @dinode: 1 if we're allocating a dinode block, else 0 2342 * @generation: the generation number of the inode 2343 * 2344 * Returns: 0 or error 2345 */ 2346 2347int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2348 bool dinode, u64 *generation) 2349{ 2350 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2351 struct buffer_head *dibh; 2352 struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, }; 2353 unsigned int ndata; 2354 u64 block; /* block, within the file system scope */ 2355 u32 minext = 1; 2356 int error; 2357 2358 gfs2_set_alloc_start(&rbm, ip, dinode); 2359 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, ip, false); 2360 2361 if (error == -ENOSPC) { 2362 gfs2_set_alloc_start(&rbm, ip, dinode); 2363 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, NULL, false); 2364 } 2365 2366 /* Since all blocks are reserved in advance, this shouldn't happen */ 2367 if (error) { 2368 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2369 (unsigned long long)ip->i_no_addr, error, *nblocks, 2370 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2371 rbm.rgd->rd_extfail_pt); 2372 goto rgrp_error; 2373 } 2374 2375 gfs2_alloc_extent(&rbm, dinode, nblocks); 2376 block = gfs2_rbm_to_block(&rbm); 2377 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2378 if (gfs2_rs_active(&ip->i_res)) 2379 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2380 ndata = *nblocks; 2381 if (dinode) 2382 ndata--; 2383 2384 if (!dinode) { 2385 ip->i_goal = block + ndata - 1; 2386 error = gfs2_meta_inode_buffer(ip, &dibh); 2387 if (error == 0) { 2388 struct gfs2_dinode *di = 2389 (struct gfs2_dinode *)dibh->b_data; 2390 gfs2_trans_add_meta(ip->i_gl, dibh); 2391 di->di_goal_meta = di->di_goal_data = 2392 cpu_to_be64(ip->i_goal); 2393 brelse(dibh); 2394 } 2395 } 2396 if (rbm.rgd->rd_free < *nblocks) { 2397 fs_warn(sdp, "nblocks=%u\n", *nblocks); 2398 goto rgrp_error; 2399 } 2400 2401 rbm.rgd->rd_free -= *nblocks; 2402 if (dinode) { 2403 rbm.rgd->rd_dinodes++; 2404 *generation = rbm.rgd->rd_igeneration++; 2405 if (*generation == 0) 2406 *generation = rbm.rgd->rd_igeneration++; 2407 } 2408 2409 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2410 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2411 2412 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2413 if (dinode) 2414 gfs2_trans_remove_revoke(sdp, block, *nblocks); 2415 2416 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2417 2418 rbm.rgd->rd_free_clone -= *nblocks; 2419 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2420 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2421 *bn = block; 2422 return 0; 2423 2424rgrp_error: 2425 gfs2_rgrp_error(rbm.rgd); 2426 return -EIO; 2427} 2428 2429/** 2430 * __gfs2_free_blocks - free a contiguous run of block(s) 2431 * @ip: the inode these blocks are being freed from 2432 * @rgd: the resource group the blocks are in 2433 * @bstart: first block of a run of contiguous blocks 2434 * @blen: the length of the block run 2435 * @meta: 1 if the blocks represent metadata 2436 * 2437 */ 2438 2439void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2440 u64 bstart, u32 blen, int meta) 2441{ 2442 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2443 2444 rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE); 2445 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2446 rgd->rd_free += blen; 2447 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2448 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2449 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2450 2451 /* Directories keep their data in the metadata address space */ 2452 if (meta || ip->i_depth || gfs2_is_jdata(ip)) 2453 gfs2_journal_wipe(ip, bstart, blen); 2454} 2455 2456/** 2457 * gfs2_free_meta - free a contiguous run of data block(s) 2458 * @ip: the inode these blocks are being freed from 2459 * @rgd: the resource group the blocks are in 2460 * @bstart: first block of a run of contiguous blocks 2461 * @blen: the length of the block run 2462 * 2463 */ 2464 2465void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2466 u64 bstart, u32 blen) 2467{ 2468 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2469 2470 __gfs2_free_blocks(ip, rgd, bstart, blen, 1); 2471 gfs2_statfs_change(sdp, 0, +blen, 0); 2472 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2473} 2474 2475void gfs2_unlink_di(struct inode *inode) 2476{ 2477 struct gfs2_inode *ip = GFS2_I(inode); 2478 struct gfs2_sbd *sdp = GFS2_SB(inode); 2479 struct gfs2_rgrpd *rgd; 2480 u64 blkno = ip->i_no_addr; 2481 2482 rgd = gfs2_blk2rgrpd(sdp, blkno, true); 2483 if (!rgd) 2484 return; 2485 rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2486 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2487 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2488 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2489 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1); 2490} 2491 2492void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2493{ 2494 struct gfs2_sbd *sdp = rgd->rd_sbd; 2495 2496 rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2497 if (!rgd->rd_dinodes) 2498 gfs2_consist_rgrpd(rgd); 2499 rgd->rd_dinodes--; 2500 rgd->rd_free++; 2501 2502 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2503 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2504 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1); 2505 2506 gfs2_statfs_change(sdp, 0, +1, -1); 2507 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2508 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2509 gfs2_journal_wipe(ip, ip->i_no_addr, 1); 2510} 2511 2512/** 2513 * gfs2_check_blk_type - Check the type of a block 2514 * @sdp: The superblock 2515 * @no_addr: The block number to check 2516 * @type: The block type we are looking for 2517 * 2518 * Returns: 0 if the block type matches the expected type 2519 * -ESTALE if it doesn't match 2520 * or -ve errno if something went wrong while checking 2521 */ 2522 2523int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2524{ 2525 struct gfs2_rgrpd *rgd; 2526 struct gfs2_holder rgd_gh; 2527 struct gfs2_rbm rbm; 2528 int error = -EINVAL; 2529 2530 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2531 if (!rgd) 2532 goto fail; 2533 2534 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2535 if (error) 2536 goto fail; 2537 2538 rbm.rgd = rgd; 2539 error = gfs2_rbm_from_block(&rbm, no_addr); 2540 if (!WARN_ON_ONCE(error)) { 2541 if (gfs2_testbit(&rbm, false) != type) 2542 error = -ESTALE; 2543 } 2544 2545 gfs2_glock_dq_uninit(&rgd_gh); 2546 2547fail: 2548 return error; 2549} 2550 2551/** 2552 * gfs2_rlist_add - add a RG to a list of RGs 2553 * @ip: the inode 2554 * @rlist: the list of resource groups 2555 * @block: the block 2556 * 2557 * Figure out what RG a block belongs to and add that RG to the list 2558 * 2559 * FIXME: Don't use NOFAIL 2560 * 2561 */ 2562 2563void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2564 u64 block) 2565{ 2566 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2567 struct gfs2_rgrpd *rgd; 2568 struct gfs2_rgrpd **tmp; 2569 unsigned int new_space; 2570 unsigned int x; 2571 2572 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2573 return; 2574 2575 /* 2576 * The resource group last accessed is kept in the last position. 2577 */ 2578 2579 if (rlist->rl_rgrps) { 2580 rgd = rlist->rl_rgd[rlist->rl_rgrps - 1]; 2581 if (rgrp_contains_block(rgd, block)) 2582 return; 2583 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2584 } else { 2585 rgd = ip->i_res.rs_rbm.rgd; 2586 if (!rgd || !rgrp_contains_block(rgd, block)) 2587 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2588 } 2589 2590 if (!rgd) { 2591 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", 2592 (unsigned long long)block); 2593 return; 2594 } 2595 2596 for (x = 0; x < rlist->rl_rgrps; x++) { 2597 if (rlist->rl_rgd[x] == rgd) { 2598 swap(rlist->rl_rgd[x], 2599 rlist->rl_rgd[rlist->rl_rgrps - 1]); 2600 return; 2601 } 2602 } 2603 2604 if (rlist->rl_rgrps == rlist->rl_space) { 2605 new_space = rlist->rl_space + 10; 2606 2607 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2608 GFP_NOFS | __GFP_NOFAIL); 2609 2610 if (rlist->rl_rgd) { 2611 memcpy(tmp, rlist->rl_rgd, 2612 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2613 kfree(rlist->rl_rgd); 2614 } 2615 2616 rlist->rl_space = new_space; 2617 rlist->rl_rgd = tmp; 2618 } 2619 2620 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2621} 2622 2623/** 2624 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2625 * and initialize an array of glock holders for them 2626 * @rlist: the list of resource groups 2627 * 2628 * FIXME: Don't use NOFAIL 2629 * 2630 */ 2631 2632void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist) 2633{ 2634 unsigned int x; 2635 2636 rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps, 2637 sizeof(struct gfs2_holder), 2638 GFP_NOFS | __GFP_NOFAIL); 2639 for (x = 0; x < rlist->rl_rgrps; x++) 2640 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2641 LM_ST_EXCLUSIVE, 0, 2642 &rlist->rl_ghs[x]); 2643} 2644 2645/** 2646 * gfs2_rlist_free - free a resource group list 2647 * @rlist: the list of resource groups 2648 * 2649 */ 2650 2651void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2652{ 2653 unsigned int x; 2654 2655 kfree(rlist->rl_rgd); 2656 2657 if (rlist->rl_ghs) { 2658 for (x = 0; x < rlist->rl_rgrps; x++) 2659 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2660 kfree(rlist->rl_ghs); 2661 rlist->rl_ghs = NULL; 2662 } 2663} 2664 2665