xref: /kernel/linux/linux-5.10/fs/gfs2/lock_dlm.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4 * Copyright 2004-2011 Red Hat, Inc.
5 */
6
7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9#include <linux/fs.h>
10#include <linux/dlm.h>
11#include <linux/slab.h>
12#include <linux/types.h>
13#include <linux/delay.h>
14#include <linux/gfs2_ondisk.h>
15#include <linux/sched/signal.h>
16
17#include "incore.h"
18#include "glock.h"
19#include "glops.h"
20#include "recovery.h"
21#include "util.h"
22#include "sys.h"
23#include "trace_gfs2.h"
24
25/**
26 * gfs2_update_stats - Update time based stats
27 * @mv: Pointer to mean/variance structure to update
28 * @sample: New data to include
29 *
30 * @delta is the difference between the current rtt sample and the
31 * running average srtt. We add 1/8 of that to the srtt in order to
32 * update the current srtt estimate. The variance estimate is a bit
33 * more complicated. We subtract the current variance estimate from
34 * the abs value of the @delta and add 1/4 of that to the running
35 * total.  That's equivalent to 3/4 of the current variance
36 * estimate plus 1/4 of the abs of @delta.
37 *
38 * Note that the index points at the array entry containing the smoothed
39 * mean value, and the variance is always in the following entry
40 *
41 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
42 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
43 * they are not scaled fixed point.
44 */
45
46static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
47				     s64 sample)
48{
49	s64 delta = sample - s->stats[index];
50	s->stats[index] += (delta >> 3);
51	index++;
52	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
53}
54
55/**
56 * gfs2_update_reply_times - Update locking statistics
57 * @gl: The glock to update
58 *
59 * This assumes that gl->gl_dstamp has been set earlier.
60 *
61 * The rtt (lock round trip time) is an estimate of the time
62 * taken to perform a dlm lock request. We update it on each
63 * reply from the dlm.
64 *
65 * The blocking flag is set on the glock for all dlm requests
66 * which may potentially block due to lock requests from other nodes.
67 * DLM requests where the current lock state is exclusive, the
68 * requested state is null (or unlocked) or where the TRY or
69 * TRY_1CB flags are set are classified as non-blocking. All
70 * other DLM requests are counted as (potentially) blocking.
71 */
72static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
73{
74	struct gfs2_pcpu_lkstats *lks;
75	const unsigned gltype = gl->gl_name.ln_type;
76	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
77			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
78	s64 rtt;
79
80	preempt_disable();
81	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
82	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
83	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
84	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
85	preempt_enable();
86
87	trace_gfs2_glock_lock_time(gl, rtt);
88}
89
90/**
91 * gfs2_update_request_times - Update locking statistics
92 * @gl: The glock to update
93 *
94 * The irt (lock inter-request times) measures the average time
95 * between requests to the dlm. It is updated immediately before
96 * each dlm call.
97 */
98
99static inline void gfs2_update_request_times(struct gfs2_glock *gl)
100{
101	struct gfs2_pcpu_lkstats *lks;
102	const unsigned gltype = gl->gl_name.ln_type;
103	ktime_t dstamp;
104	s64 irt;
105
106	preempt_disable();
107	dstamp = gl->gl_dstamp;
108	gl->gl_dstamp = ktime_get_real();
109	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
110	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
111	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
112	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
113	preempt_enable();
114}
115
116static void gdlm_ast(void *arg)
117{
118	struct gfs2_glock *gl = arg;
119	unsigned ret = gl->gl_state;
120
121	gfs2_update_reply_times(gl);
122	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
123
124	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
125		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
126
127	switch (gl->gl_lksb.sb_status) {
128	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
129		if (gl->gl_ops->go_free)
130			gl->gl_ops->go_free(gl);
131		gfs2_glock_free(gl);
132		return;
133	case -DLM_ECANCEL: /* Cancel while getting lock */
134		ret |= LM_OUT_CANCELED;
135		goto out;
136	case -EAGAIN: /* Try lock fails */
137	case -EDEADLK: /* Deadlock detected */
138		goto out;
139	case -ETIMEDOUT: /* Canceled due to timeout */
140		ret |= LM_OUT_ERROR;
141		goto out;
142	case 0: /* Success */
143		break;
144	default: /* Something unexpected */
145		BUG();
146	}
147
148	ret = gl->gl_req;
149	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
150		if (gl->gl_req == LM_ST_SHARED)
151			ret = LM_ST_DEFERRED;
152		else if (gl->gl_req == LM_ST_DEFERRED)
153			ret = LM_ST_SHARED;
154		else
155			BUG();
156	}
157
158	set_bit(GLF_INITIAL, &gl->gl_flags);
159	gfs2_glock_complete(gl, ret);
160	return;
161out:
162	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
163		gl->gl_lksb.sb_lkid = 0;
164	gfs2_glock_complete(gl, ret);
165}
166
167static void gdlm_bast(void *arg, int mode)
168{
169	struct gfs2_glock *gl = arg;
170
171	switch (mode) {
172	case DLM_LOCK_EX:
173		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
174		break;
175	case DLM_LOCK_CW:
176		gfs2_glock_cb(gl, LM_ST_DEFERRED);
177		break;
178	case DLM_LOCK_PR:
179		gfs2_glock_cb(gl, LM_ST_SHARED);
180		break;
181	default:
182		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
183		BUG();
184	}
185}
186
187/* convert gfs lock-state to dlm lock-mode */
188
189static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
190{
191	switch (lmstate) {
192	case LM_ST_UNLOCKED:
193		return DLM_LOCK_NL;
194	case LM_ST_EXCLUSIVE:
195		return DLM_LOCK_EX;
196	case LM_ST_DEFERRED:
197		return DLM_LOCK_CW;
198	case LM_ST_SHARED:
199		return DLM_LOCK_PR;
200	}
201	fs_err(sdp, "unknown LM state %d\n", lmstate);
202	BUG();
203	return -1;
204}
205
206static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
207		      const int req)
208{
209	u32 lkf = 0;
210
211	if (gl->gl_lksb.sb_lvbptr)
212		lkf |= DLM_LKF_VALBLK;
213
214	if (gfs_flags & LM_FLAG_TRY)
215		lkf |= DLM_LKF_NOQUEUE;
216
217	if (gfs_flags & LM_FLAG_TRY_1CB) {
218		lkf |= DLM_LKF_NOQUEUE;
219		lkf |= DLM_LKF_NOQUEUEBAST;
220	}
221
222	if (gfs_flags & LM_FLAG_PRIORITY) {
223		lkf |= DLM_LKF_NOORDER;
224		lkf |= DLM_LKF_HEADQUE;
225	}
226
227	if (gfs_flags & LM_FLAG_ANY) {
228		if (req == DLM_LOCK_PR)
229			lkf |= DLM_LKF_ALTCW;
230		else if (req == DLM_LOCK_CW)
231			lkf |= DLM_LKF_ALTPR;
232		else
233			BUG();
234	}
235
236	if (gl->gl_lksb.sb_lkid != 0) {
237		lkf |= DLM_LKF_CONVERT;
238		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
239			lkf |= DLM_LKF_QUECVT;
240	}
241
242	return lkf;
243}
244
245static void gfs2_reverse_hex(char *c, u64 value)
246{
247	*c = '0';
248	while (value) {
249		*c-- = hex_asc[value & 0x0f];
250		value >>= 4;
251	}
252}
253
254static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
255		     unsigned int flags)
256{
257	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
258	int req;
259	u32 lkf;
260	char strname[GDLM_STRNAME_BYTES] = "";
261
262	req = make_mode(gl->gl_name.ln_sbd, req_state);
263	lkf = make_flags(gl, flags, req);
264	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
265	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
266	if (gl->gl_lksb.sb_lkid) {
267		gfs2_update_request_times(gl);
268	} else {
269		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
270		strname[GDLM_STRNAME_BYTES - 1] = '\0';
271		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
272		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
273		gl->gl_dstamp = ktime_get_real();
274	}
275	/*
276	 * Submit the actual lock request.
277	 */
278
279	return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
280			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
281}
282
283static void gdlm_put_lock(struct gfs2_glock *gl)
284{
285	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
286	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
287	int error;
288
289	if (gl->gl_lksb.sb_lkid == 0) {
290		gfs2_glock_free(gl);
291		return;
292	}
293
294	clear_bit(GLF_BLOCKING, &gl->gl_flags);
295	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
296	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
297	gfs2_update_request_times(gl);
298
299	/* don't want to call dlm if we've unmounted the lock protocol */
300	if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
301		gfs2_glock_free(gl);
302		return;
303	}
304	/* don't want to skip dlm_unlock writing the lvb when lock has one */
305
306	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
307	    !gl->gl_lksb.sb_lvbptr) {
308		gfs2_glock_free(gl);
309		return;
310	}
311
312	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
313			   NULL, gl);
314	if (error) {
315		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
316		       gl->gl_name.ln_type,
317		       (unsigned long long)gl->gl_name.ln_number, error);
318		return;
319	}
320}
321
322static void gdlm_cancel(struct gfs2_glock *gl)
323{
324	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
325	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
326}
327
328/*
329 * dlm/gfs2 recovery coordination using dlm_recover callbacks
330 *
331 *  0. gfs2 checks for another cluster node withdraw, needing journal replay
332 *  1. dlm_controld sees lockspace members change
333 *  2. dlm_controld blocks dlm-kernel locking activity
334 *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
335 *  4. dlm_controld starts and finishes its own user level recovery
336 *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
337 *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
338 *  7. dlm_recoverd does its own lock recovery
339 *  8. dlm_recoverd unblocks dlm-kernel locking activity
340 *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
341 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
342 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
343 * 12. gfs2_recover dequeues and recovers journals of failed nodes
344 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
345 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
346 * 15. gfs2_control unblocks normal locking when all journals are recovered
347 *
348 * - failures during recovery
349 *
350 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
351 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
352 * recovering for a prior failure.  gfs2_control needs a way to detect
353 * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
354 * the recover_block and recover_start values.
355 *
356 * recover_done() provides a new lockspace generation number each time it
357 * is called (step 9).  This generation number is saved as recover_start.
358 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
359 * recover_block = recover_start.  So, while recover_block is equal to
360 * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
361 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
362 *
363 * - more specific gfs2 steps in sequence above
364 *
365 *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
366 *  6. recover_slot records any failed jids (maybe none)
367 *  9. recover_done sets recover_start = new generation number
368 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
369 * 12. gfs2_recover does journal recoveries for failed jids identified above
370 * 14. gfs2_control clears control_lock lvb bits for recovered jids
371 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
372 *     again) then do nothing, otherwise if recover_start > recover_block
373 *     then clear BLOCK_LOCKS.
374 *
375 * - parallel recovery steps across all nodes
376 *
377 * All nodes attempt to update the control_lock lvb with the new generation
378 * number and jid bits, but only the first to get the control_lock EX will
379 * do so; others will see that it's already done (lvb already contains new
380 * generation number.)
381 *
382 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
383 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
384 * . One node gets control_lock first and writes the lvb, others see it's done
385 * . All nodes attempt to recover jids for which they see control_lock bits set
386 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
387 * . All nodes will eventually see all lvb bits clear and unblock locks
388 *
389 * - is there a problem with clearing an lvb bit that should be set
390 *   and missing a journal recovery?
391 *
392 * 1. jid fails
393 * 2. lvb bit set for step 1
394 * 3. jid recovered for step 1
395 * 4. jid taken again (new mount)
396 * 5. jid fails (for step 4)
397 * 6. lvb bit set for step 5 (will already be set)
398 * 7. lvb bit cleared for step 3
399 *
400 * This is not a problem because the failure in step 5 does not
401 * require recovery, because the mount in step 4 could not have
402 * progressed far enough to unblock locks and access the fs.  The
403 * control_mount() function waits for all recoveries to be complete
404 * for the latest lockspace generation before ever unblocking locks
405 * and returning.  The mount in step 4 waits until the recovery in
406 * step 1 is done.
407 *
408 * - special case of first mounter: first node to mount the fs
409 *
410 * The first node to mount a gfs2 fs needs to check all the journals
411 * and recover any that need recovery before other nodes are allowed
412 * to mount the fs.  (Others may begin mounting, but they must wait
413 * for the first mounter to be done before taking locks on the fs
414 * or accessing the fs.)  This has two parts:
415 *
416 * 1. The mounted_lock tells a node it's the first to mount the fs.
417 * Each node holds the mounted_lock in PR while it's mounted.
418 * Each node tries to acquire the mounted_lock in EX when it mounts.
419 * If a node is granted the mounted_lock EX it means there are no
420 * other mounted nodes (no PR locks exist), and it is the first mounter.
421 * The mounted_lock is demoted to PR when first recovery is done, so
422 * others will fail to get an EX lock, but will get a PR lock.
423 *
424 * 2. The control_lock blocks others in control_mount() while the first
425 * mounter is doing first mount recovery of all journals.
426 * A mounting node needs to acquire control_lock in EX mode before
427 * it can proceed.  The first mounter holds control_lock in EX while doing
428 * the first mount recovery, blocking mounts from other nodes, then demotes
429 * control_lock to NL when it's done (others_may_mount/first_done),
430 * allowing other nodes to continue mounting.
431 *
432 * first mounter:
433 * control_lock EX/NOQUEUE success
434 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
435 * set first=1
436 * do first mounter recovery
437 * mounted_lock EX->PR
438 * control_lock EX->NL, write lvb generation
439 *
440 * other mounter:
441 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
442 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
443 * mounted_lock PR/NOQUEUE success
444 * read lvb generation
445 * control_lock EX->NL
446 * set first=0
447 *
448 * - mount during recovery
449 *
450 * If a node mounts while others are doing recovery (not first mounter),
451 * the mounting node will get its initial recover_done() callback without
452 * having seen any previous failures/callbacks.
453 *
454 * It must wait for all recoveries preceding its mount to be finished
455 * before it unblocks locks.  It does this by repeating the "other mounter"
456 * steps above until the lvb generation number is >= its mount generation
457 * number (from initial recover_done) and all lvb bits are clear.
458 *
459 * - control_lock lvb format
460 *
461 * 4 bytes generation number: the latest dlm lockspace generation number
462 * from recover_done callback.  Indicates the jid bitmap has been updated
463 * to reflect all slot failures through that generation.
464 * 4 bytes unused.
465 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
466 * that jid N needs recovery.
467 */
468
469#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
470
471static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
472			     char *lvb_bits)
473{
474	__le32 gen;
475	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
476	memcpy(&gen, lvb_bits, sizeof(__le32));
477	*lvb_gen = le32_to_cpu(gen);
478}
479
480static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
481			      char *lvb_bits)
482{
483	__le32 gen;
484	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
485	gen = cpu_to_le32(lvb_gen);
486	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
487}
488
489static int all_jid_bits_clear(char *lvb)
490{
491	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
492			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
493}
494
495static void sync_wait_cb(void *arg)
496{
497	struct lm_lockstruct *ls = arg;
498	complete(&ls->ls_sync_wait);
499}
500
501static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
502{
503	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
504	int error;
505
506	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
507	if (error) {
508		fs_err(sdp, "%s lkid %x error %d\n",
509		       name, lksb->sb_lkid, error);
510		return error;
511	}
512
513	wait_for_completion(&ls->ls_sync_wait);
514
515	if (lksb->sb_status != -DLM_EUNLOCK) {
516		fs_err(sdp, "%s lkid %x status %d\n",
517		       name, lksb->sb_lkid, lksb->sb_status);
518		return -1;
519	}
520	return 0;
521}
522
523static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
524		     unsigned int num, struct dlm_lksb *lksb, char *name)
525{
526	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
527	char strname[GDLM_STRNAME_BYTES];
528	int error, status;
529
530	memset(strname, 0, GDLM_STRNAME_BYTES);
531	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
532
533	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
534			 strname, GDLM_STRNAME_BYTES - 1,
535			 0, sync_wait_cb, ls, NULL);
536	if (error) {
537		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
538		       name, lksb->sb_lkid, flags, mode, error);
539		return error;
540	}
541
542	wait_for_completion(&ls->ls_sync_wait);
543
544	status = lksb->sb_status;
545
546	if (status && status != -EAGAIN) {
547		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
548		       name, lksb->sb_lkid, flags, mode, status);
549	}
550
551	return status;
552}
553
554static int mounted_unlock(struct gfs2_sbd *sdp)
555{
556	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
557	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
558}
559
560static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
561{
562	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
563	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
564			 &ls->ls_mounted_lksb, "mounted_lock");
565}
566
567static int control_unlock(struct gfs2_sbd *sdp)
568{
569	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
570	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
571}
572
573static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
574{
575	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
576	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
577			 &ls->ls_control_lksb, "control_lock");
578}
579
580/**
581 * remote_withdraw - react to a node withdrawing from the file system
582 * @sdp: The superblock
583 */
584static void remote_withdraw(struct gfs2_sbd *sdp)
585{
586	struct gfs2_jdesc *jd;
587	int ret = 0, count = 0;
588
589	list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
590		if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
591			continue;
592		ret = gfs2_recover_journal(jd, true);
593		if (ret)
594			break;
595		count++;
596	}
597
598	/* Now drop the additional reference we acquired */
599	fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
600}
601
602static void gfs2_control_func(struct work_struct *work)
603{
604	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
605	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
606	uint32_t block_gen, start_gen, lvb_gen, flags;
607	int recover_set = 0;
608	int write_lvb = 0;
609	int recover_size;
610	int i, error;
611
612	/* First check for other nodes that may have done a withdraw. */
613	if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
614		remote_withdraw(sdp);
615		clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
616		return;
617	}
618
619	spin_lock(&ls->ls_recover_spin);
620	/*
621	 * No MOUNT_DONE means we're still mounting; control_mount()
622	 * will set this flag, after which this thread will take over
623	 * all further clearing of BLOCK_LOCKS.
624	 *
625	 * FIRST_MOUNT means this node is doing first mounter recovery,
626	 * for which recovery control is handled by
627	 * control_mount()/control_first_done(), not this thread.
628	 */
629	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
630	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
631		spin_unlock(&ls->ls_recover_spin);
632		return;
633	}
634	block_gen = ls->ls_recover_block;
635	start_gen = ls->ls_recover_start;
636	spin_unlock(&ls->ls_recover_spin);
637
638	/*
639	 * Equal block_gen and start_gen implies we are between
640	 * recover_prep and recover_done callbacks, which means
641	 * dlm recovery is in progress and dlm locking is blocked.
642	 * There's no point trying to do any work until recover_done.
643	 */
644
645	if (block_gen == start_gen)
646		return;
647
648	/*
649	 * Propagate recover_submit[] and recover_result[] to lvb:
650	 * dlm_recoverd adds to recover_submit[] jids needing recovery
651	 * gfs2_recover adds to recover_result[] journal recovery results
652	 *
653	 * set lvb bit for jids in recover_submit[] if the lvb has not
654	 * yet been updated for the generation of the failure
655	 *
656	 * clear lvb bit for jids in recover_result[] if the result of
657	 * the journal recovery is SUCCESS
658	 */
659
660	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
661	if (error) {
662		fs_err(sdp, "control lock EX error %d\n", error);
663		return;
664	}
665
666	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
667
668	spin_lock(&ls->ls_recover_spin);
669	if (block_gen != ls->ls_recover_block ||
670	    start_gen != ls->ls_recover_start) {
671		fs_info(sdp, "recover generation %u block1 %u %u\n",
672			start_gen, block_gen, ls->ls_recover_block);
673		spin_unlock(&ls->ls_recover_spin);
674		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
675		return;
676	}
677
678	recover_size = ls->ls_recover_size;
679
680	if (lvb_gen <= start_gen) {
681		/*
682		 * Clear lvb bits for jids we've successfully recovered.
683		 * Because all nodes attempt to recover failed journals,
684		 * a journal can be recovered multiple times successfully
685		 * in succession.  Only the first will really do recovery,
686		 * the others find it clean, but still report a successful
687		 * recovery.  So, another node may have already recovered
688		 * the jid and cleared the lvb bit for it.
689		 */
690		for (i = 0; i < recover_size; i++) {
691			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
692				continue;
693
694			ls->ls_recover_result[i] = 0;
695
696			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
697				continue;
698
699			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
700			write_lvb = 1;
701		}
702	}
703
704	if (lvb_gen == start_gen) {
705		/*
706		 * Failed slots before start_gen are already set in lvb.
707		 */
708		for (i = 0; i < recover_size; i++) {
709			if (!ls->ls_recover_submit[i])
710				continue;
711			if (ls->ls_recover_submit[i] < lvb_gen)
712				ls->ls_recover_submit[i] = 0;
713		}
714	} else if (lvb_gen < start_gen) {
715		/*
716		 * Failed slots before start_gen are not yet set in lvb.
717		 */
718		for (i = 0; i < recover_size; i++) {
719			if (!ls->ls_recover_submit[i])
720				continue;
721			if (ls->ls_recover_submit[i] < start_gen) {
722				ls->ls_recover_submit[i] = 0;
723				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
724			}
725		}
726		/* even if there are no bits to set, we need to write the
727		   latest generation to the lvb */
728		write_lvb = 1;
729	} else {
730		/*
731		 * we should be getting a recover_done() for lvb_gen soon
732		 */
733	}
734	spin_unlock(&ls->ls_recover_spin);
735
736	if (write_lvb) {
737		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
738		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
739	} else {
740		flags = DLM_LKF_CONVERT;
741	}
742
743	error = control_lock(sdp, DLM_LOCK_NL, flags);
744	if (error) {
745		fs_err(sdp, "control lock NL error %d\n", error);
746		return;
747	}
748
749	/*
750	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
751	 * and clear a jid bit in the lvb if the recovery is a success.
752	 * Eventually all journals will be recovered, all jid bits will
753	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
754	 */
755
756	for (i = 0; i < recover_size; i++) {
757		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
758			fs_info(sdp, "recover generation %u jid %d\n",
759				start_gen, i);
760			gfs2_recover_set(sdp, i);
761			recover_set++;
762		}
763	}
764	if (recover_set)
765		return;
766
767	/*
768	 * No more jid bits set in lvb, all recovery is done, unblock locks
769	 * (unless a new recover_prep callback has occured blocking locks
770	 * again while working above)
771	 */
772
773	spin_lock(&ls->ls_recover_spin);
774	if (ls->ls_recover_block == block_gen &&
775	    ls->ls_recover_start == start_gen) {
776		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
777		spin_unlock(&ls->ls_recover_spin);
778		fs_info(sdp, "recover generation %u done\n", start_gen);
779		gfs2_glock_thaw(sdp);
780	} else {
781		fs_info(sdp, "recover generation %u block2 %u %u\n",
782			start_gen, block_gen, ls->ls_recover_block);
783		spin_unlock(&ls->ls_recover_spin);
784	}
785}
786
787static int control_mount(struct gfs2_sbd *sdp)
788{
789	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
790	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
791	int mounted_mode;
792	int retries = 0;
793	int error;
794
795	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
796	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
797	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
798	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
799	init_completion(&ls->ls_sync_wait);
800
801	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
802
803	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
804	if (error) {
805		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
806		return error;
807	}
808
809	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
810	if (error) {
811		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
812		control_unlock(sdp);
813		return error;
814	}
815	mounted_mode = DLM_LOCK_NL;
816
817restart:
818	if (retries++ && signal_pending(current)) {
819		error = -EINTR;
820		goto fail;
821	}
822
823	/*
824	 * We always start with both locks in NL. control_lock is
825	 * demoted to NL below so we don't need to do it here.
826	 */
827
828	if (mounted_mode != DLM_LOCK_NL) {
829		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
830		if (error)
831			goto fail;
832		mounted_mode = DLM_LOCK_NL;
833	}
834
835	/*
836	 * Other nodes need to do some work in dlm recovery and gfs2_control
837	 * before the recover_done and control_lock will be ready for us below.
838	 * A delay here is not required but often avoids having to retry.
839	 */
840
841	msleep_interruptible(500);
842
843	/*
844	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
845	 * control_lock lvb keeps track of any pending journal recoveries.
846	 * mounted_lock indicates if any other nodes have the fs mounted.
847	 */
848
849	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
850	if (error == -EAGAIN) {
851		goto restart;
852	} else if (error) {
853		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
854		goto fail;
855	}
856
857	/**
858	 * If we're a spectator, we don't want to take the lock in EX because
859	 * we cannot do the first-mount responsibility it implies: recovery.
860	 */
861	if (sdp->sd_args.ar_spectator)
862		goto locks_done;
863
864	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
865	if (!error) {
866		mounted_mode = DLM_LOCK_EX;
867		goto locks_done;
868	} else if (error != -EAGAIN) {
869		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
870		goto fail;
871	}
872
873	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
874	if (!error) {
875		mounted_mode = DLM_LOCK_PR;
876		goto locks_done;
877	} else {
878		/* not even -EAGAIN should happen here */
879		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
880		goto fail;
881	}
882
883locks_done:
884	/*
885	 * If we got both locks above in EX, then we're the first mounter.
886	 * If not, then we need to wait for the control_lock lvb to be
887	 * updated by other mounted nodes to reflect our mount generation.
888	 *
889	 * In simple first mounter cases, first mounter will see zero lvb_gen,
890	 * but in cases where all existing nodes leave/fail before mounting
891	 * nodes finish control_mount, then all nodes will be mounting and
892	 * lvb_gen will be non-zero.
893	 */
894
895	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
896
897	if (lvb_gen == 0xFFFFFFFF) {
898		/* special value to force mount attempts to fail */
899		fs_err(sdp, "control_mount control_lock disabled\n");
900		error = -EINVAL;
901		goto fail;
902	}
903
904	if (mounted_mode == DLM_LOCK_EX) {
905		/* first mounter, keep both EX while doing first recovery */
906		spin_lock(&ls->ls_recover_spin);
907		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
908		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
909		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
910		spin_unlock(&ls->ls_recover_spin);
911		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
912		return 0;
913	}
914
915	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
916	if (error)
917		goto fail;
918
919	/*
920	 * We are not first mounter, now we need to wait for the control_lock
921	 * lvb generation to be >= the generation from our first recover_done
922	 * and all lvb bits to be clear (no pending journal recoveries.)
923	 */
924
925	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
926		/* journals need recovery, wait until all are clear */
927		fs_info(sdp, "control_mount wait for journal recovery\n");
928		goto restart;
929	}
930
931	spin_lock(&ls->ls_recover_spin);
932	block_gen = ls->ls_recover_block;
933	start_gen = ls->ls_recover_start;
934	mount_gen = ls->ls_recover_mount;
935
936	if (lvb_gen < mount_gen) {
937		/* wait for mounted nodes to update control_lock lvb to our
938		   generation, which might include new recovery bits set */
939		if (sdp->sd_args.ar_spectator) {
940			fs_info(sdp, "Recovery is required. Waiting for a "
941				"non-spectator to mount.\n");
942			msleep_interruptible(1000);
943		} else {
944			fs_info(sdp, "control_mount wait1 block %u start %u "
945				"mount %u lvb %u flags %lx\n", block_gen,
946				start_gen, mount_gen, lvb_gen,
947				ls->ls_recover_flags);
948		}
949		spin_unlock(&ls->ls_recover_spin);
950		goto restart;
951	}
952
953	if (lvb_gen != start_gen) {
954		/* wait for mounted nodes to update control_lock lvb to the
955		   latest recovery generation */
956		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
957			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
958			lvb_gen, ls->ls_recover_flags);
959		spin_unlock(&ls->ls_recover_spin);
960		goto restart;
961	}
962
963	if (block_gen == start_gen) {
964		/* dlm recovery in progress, wait for it to finish */
965		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
966			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
967			lvb_gen, ls->ls_recover_flags);
968		spin_unlock(&ls->ls_recover_spin);
969		goto restart;
970	}
971
972	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
973	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
974	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
975	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
976	spin_unlock(&ls->ls_recover_spin);
977	return 0;
978
979fail:
980	mounted_unlock(sdp);
981	control_unlock(sdp);
982	return error;
983}
984
985static int control_first_done(struct gfs2_sbd *sdp)
986{
987	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
988	uint32_t start_gen, block_gen;
989	int error;
990
991restart:
992	spin_lock(&ls->ls_recover_spin);
993	start_gen = ls->ls_recover_start;
994	block_gen = ls->ls_recover_block;
995
996	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
997	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
998	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
999		/* sanity check, should not happen */
1000		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1001		       start_gen, block_gen, ls->ls_recover_flags);
1002		spin_unlock(&ls->ls_recover_spin);
1003		control_unlock(sdp);
1004		return -1;
1005	}
1006
1007	if (start_gen == block_gen) {
1008		/*
1009		 * Wait for the end of a dlm recovery cycle to switch from
1010		 * first mounter recovery.  We can ignore any recover_slot
1011		 * callbacks between the recover_prep and next recover_done
1012		 * because we are still the first mounter and any failed nodes
1013		 * have not fully mounted, so they don't need recovery.
1014		 */
1015		spin_unlock(&ls->ls_recover_spin);
1016		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1017
1018		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1019			    TASK_UNINTERRUPTIBLE);
1020		goto restart;
1021	}
1022
1023	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1024	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1025	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1026	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1027	spin_unlock(&ls->ls_recover_spin);
1028
1029	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1030	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1031
1032	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1033	if (error)
1034		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1035
1036	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1037	if (error)
1038		fs_err(sdp, "control_first_done control NL error %d\n", error);
1039
1040	return error;
1041}
1042
1043/*
1044 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1045 * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
1046 * gfs2 jids start at 0, so jid = slot - 1)
1047 */
1048
1049#define RECOVER_SIZE_INC 16
1050
1051static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1052			    int num_slots)
1053{
1054	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1055	uint32_t *submit = NULL;
1056	uint32_t *result = NULL;
1057	uint32_t old_size, new_size;
1058	int i, max_jid;
1059
1060	if (!ls->ls_lvb_bits) {
1061		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1062		if (!ls->ls_lvb_bits)
1063			return -ENOMEM;
1064	}
1065
1066	max_jid = 0;
1067	for (i = 0; i < num_slots; i++) {
1068		if (max_jid < slots[i].slot - 1)
1069			max_jid = slots[i].slot - 1;
1070	}
1071
1072	old_size = ls->ls_recover_size;
1073	new_size = old_size;
1074	while (new_size < max_jid + 1)
1075		new_size += RECOVER_SIZE_INC;
1076	if (new_size == old_size)
1077		return 0;
1078
1079	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1080	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1081	if (!submit || !result) {
1082		kfree(submit);
1083		kfree(result);
1084		return -ENOMEM;
1085	}
1086
1087	spin_lock(&ls->ls_recover_spin);
1088	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1089	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1090	kfree(ls->ls_recover_submit);
1091	kfree(ls->ls_recover_result);
1092	ls->ls_recover_submit = submit;
1093	ls->ls_recover_result = result;
1094	ls->ls_recover_size = new_size;
1095	spin_unlock(&ls->ls_recover_spin);
1096	return 0;
1097}
1098
1099static void free_recover_size(struct lm_lockstruct *ls)
1100{
1101	kfree(ls->ls_lvb_bits);
1102	kfree(ls->ls_recover_submit);
1103	kfree(ls->ls_recover_result);
1104	ls->ls_recover_submit = NULL;
1105	ls->ls_recover_result = NULL;
1106	ls->ls_recover_size = 0;
1107	ls->ls_lvb_bits = NULL;
1108}
1109
1110/* dlm calls before it does lock recovery */
1111
1112static void gdlm_recover_prep(void *arg)
1113{
1114	struct gfs2_sbd *sdp = arg;
1115	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1116
1117	if (gfs2_withdrawn(sdp)) {
1118		fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1119		return;
1120	}
1121	spin_lock(&ls->ls_recover_spin);
1122	ls->ls_recover_block = ls->ls_recover_start;
1123	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1124
1125	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1126	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1127		spin_unlock(&ls->ls_recover_spin);
1128		return;
1129	}
1130	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1131	spin_unlock(&ls->ls_recover_spin);
1132}
1133
1134/* dlm calls after recover_prep has been completed on all lockspace members;
1135   identifies slot/jid of failed member */
1136
1137static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1138{
1139	struct gfs2_sbd *sdp = arg;
1140	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1141	int jid = slot->slot - 1;
1142
1143	if (gfs2_withdrawn(sdp)) {
1144		fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1145		       jid);
1146		return;
1147	}
1148	spin_lock(&ls->ls_recover_spin);
1149	if (ls->ls_recover_size < jid + 1) {
1150		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1151		       jid, ls->ls_recover_block, ls->ls_recover_size);
1152		spin_unlock(&ls->ls_recover_spin);
1153		return;
1154	}
1155
1156	if (ls->ls_recover_submit[jid]) {
1157		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1158			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1159	}
1160	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1161	spin_unlock(&ls->ls_recover_spin);
1162}
1163
1164/* dlm calls after recover_slot and after it completes lock recovery */
1165
1166static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1167			      int our_slot, uint32_t generation)
1168{
1169	struct gfs2_sbd *sdp = arg;
1170	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1171
1172	if (gfs2_withdrawn(sdp)) {
1173		fs_err(sdp, "recover_done ignored due to withdraw.\n");
1174		return;
1175	}
1176	/* ensure the ls jid arrays are large enough */
1177	set_recover_size(sdp, slots, num_slots);
1178
1179	spin_lock(&ls->ls_recover_spin);
1180	ls->ls_recover_start = generation;
1181
1182	if (!ls->ls_recover_mount) {
1183		ls->ls_recover_mount = generation;
1184		ls->ls_jid = our_slot - 1;
1185	}
1186
1187	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1188		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1189
1190	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1191	smp_mb__after_atomic();
1192	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1193	spin_unlock(&ls->ls_recover_spin);
1194}
1195
1196/* gfs2_recover thread has a journal recovery result */
1197
1198static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1199				 unsigned int result)
1200{
1201	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1202
1203	if (gfs2_withdrawn(sdp)) {
1204		fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1205		       jid);
1206		return;
1207	}
1208	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1209		return;
1210
1211	/* don't care about the recovery of own journal during mount */
1212	if (jid == ls->ls_jid)
1213		return;
1214
1215	spin_lock(&ls->ls_recover_spin);
1216	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1217		spin_unlock(&ls->ls_recover_spin);
1218		return;
1219	}
1220	if (ls->ls_recover_size < jid + 1) {
1221		fs_err(sdp, "recovery_result jid %d short size %d\n",
1222		       jid, ls->ls_recover_size);
1223		spin_unlock(&ls->ls_recover_spin);
1224		return;
1225	}
1226
1227	fs_info(sdp, "recover jid %d result %s\n", jid,
1228		result == LM_RD_GAVEUP ? "busy" : "success");
1229
1230	ls->ls_recover_result[jid] = result;
1231
1232	/* GAVEUP means another node is recovering the journal; delay our
1233	   next attempt to recover it, to give the other node a chance to
1234	   finish before trying again */
1235
1236	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1237		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1238				   result == LM_RD_GAVEUP ? HZ : 0);
1239	spin_unlock(&ls->ls_recover_spin);
1240}
1241
1242static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1243	.recover_prep = gdlm_recover_prep,
1244	.recover_slot = gdlm_recover_slot,
1245	.recover_done = gdlm_recover_done,
1246};
1247
1248static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1249{
1250	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1251	char cluster[GFS2_LOCKNAME_LEN];
1252	const char *fsname;
1253	uint32_t flags;
1254	int error, ops_result;
1255
1256	/*
1257	 * initialize everything
1258	 */
1259
1260	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1261	spin_lock_init(&ls->ls_recover_spin);
1262	ls->ls_recover_flags = 0;
1263	ls->ls_recover_mount = 0;
1264	ls->ls_recover_start = 0;
1265	ls->ls_recover_block = 0;
1266	ls->ls_recover_size = 0;
1267	ls->ls_recover_submit = NULL;
1268	ls->ls_recover_result = NULL;
1269	ls->ls_lvb_bits = NULL;
1270
1271	error = set_recover_size(sdp, NULL, 0);
1272	if (error)
1273		goto fail;
1274
1275	/*
1276	 * prepare dlm_new_lockspace args
1277	 */
1278
1279	fsname = strchr(table, ':');
1280	if (!fsname) {
1281		fs_info(sdp, "no fsname found\n");
1282		error = -EINVAL;
1283		goto fail_free;
1284	}
1285	memset(cluster, 0, sizeof(cluster));
1286	memcpy(cluster, table, strlen(table) - strlen(fsname));
1287	fsname++;
1288
1289	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1290
1291	/*
1292	 * create/join lockspace
1293	 */
1294
1295	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1296				  &gdlm_lockspace_ops, sdp, &ops_result,
1297				  &ls->ls_dlm);
1298	if (error) {
1299		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1300		goto fail_free;
1301	}
1302
1303	if (ops_result < 0) {
1304		/*
1305		 * dlm does not support ops callbacks,
1306		 * old dlm_controld/gfs_controld are used, try without ops.
1307		 */
1308		fs_info(sdp, "dlm lockspace ops not used\n");
1309		free_recover_size(ls);
1310		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1311		return 0;
1312	}
1313
1314	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1315		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1316		error = -EINVAL;
1317		goto fail_release;
1318	}
1319
1320	/*
1321	 * control_mount() uses control_lock to determine first mounter,
1322	 * and for later mounts, waits for any recoveries to be cleared.
1323	 */
1324
1325	error = control_mount(sdp);
1326	if (error) {
1327		fs_err(sdp, "mount control error %d\n", error);
1328		goto fail_release;
1329	}
1330
1331	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1332	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1333	smp_mb__after_atomic();
1334	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1335	return 0;
1336
1337fail_release:
1338	dlm_release_lockspace(ls->ls_dlm, 2);
1339fail_free:
1340	free_recover_size(ls);
1341fail:
1342	return error;
1343}
1344
1345static void gdlm_first_done(struct gfs2_sbd *sdp)
1346{
1347	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1348	int error;
1349
1350	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1351		return;
1352
1353	error = control_first_done(sdp);
1354	if (error)
1355		fs_err(sdp, "mount first_done error %d\n", error);
1356}
1357
1358static void gdlm_unmount(struct gfs2_sbd *sdp)
1359{
1360	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1361
1362	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1363		goto release;
1364
1365	/* wait for gfs2_control_wq to be done with this mount */
1366
1367	spin_lock(&ls->ls_recover_spin);
1368	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1369	spin_unlock(&ls->ls_recover_spin);
1370	flush_delayed_work(&sdp->sd_control_work);
1371
1372	/* mounted_lock and control_lock will be purged in dlm recovery */
1373release:
1374	if (ls->ls_dlm) {
1375		dlm_release_lockspace(ls->ls_dlm, 2);
1376		ls->ls_dlm = NULL;
1377	}
1378
1379	free_recover_size(ls);
1380}
1381
1382static const match_table_t dlm_tokens = {
1383	{ Opt_jid, "jid=%d"},
1384	{ Opt_id, "id=%d"},
1385	{ Opt_first, "first=%d"},
1386	{ Opt_nodir, "nodir=%d"},
1387	{ Opt_err, NULL },
1388};
1389
1390const struct lm_lockops gfs2_dlm_ops = {
1391	.lm_proto_name = "lock_dlm",
1392	.lm_mount = gdlm_mount,
1393	.lm_first_done = gdlm_first_done,
1394	.lm_recovery_result = gdlm_recovery_result,
1395	.lm_unmount = gdlm_unmount,
1396	.lm_put_lock = gdlm_put_lock,
1397	.lm_lock = gdlm_lock,
1398	.lm_cancel = gdlm_cancel,
1399	.lm_tokens = &dlm_tokens,
1400};
1401
1402