1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright 2004-2011 Red Hat, Inc. 5 */ 6 7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9#include <linux/fs.h> 10#include <linux/dlm.h> 11#include <linux/slab.h> 12#include <linux/types.h> 13#include <linux/delay.h> 14#include <linux/gfs2_ondisk.h> 15#include <linux/sched/signal.h> 16 17#include "incore.h" 18#include "glock.h" 19#include "glops.h" 20#include "recovery.h" 21#include "util.h" 22#include "sys.h" 23#include "trace_gfs2.h" 24 25/** 26 * gfs2_update_stats - Update time based stats 27 * @mv: Pointer to mean/variance structure to update 28 * @sample: New data to include 29 * 30 * @delta is the difference between the current rtt sample and the 31 * running average srtt. We add 1/8 of that to the srtt in order to 32 * update the current srtt estimate. The variance estimate is a bit 33 * more complicated. We subtract the current variance estimate from 34 * the abs value of the @delta and add 1/4 of that to the running 35 * total. That's equivalent to 3/4 of the current variance 36 * estimate plus 1/4 of the abs of @delta. 37 * 38 * Note that the index points at the array entry containing the smoothed 39 * mean value, and the variance is always in the following entry 40 * 41 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 42 * All times are in units of integer nanoseconds. Unlike the TCP/IP case, 43 * they are not scaled fixed point. 44 */ 45 46static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 47 s64 sample) 48{ 49 s64 delta = sample - s->stats[index]; 50 s->stats[index] += (delta >> 3); 51 index++; 52 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2; 53} 54 55/** 56 * gfs2_update_reply_times - Update locking statistics 57 * @gl: The glock to update 58 * 59 * This assumes that gl->gl_dstamp has been set earlier. 60 * 61 * The rtt (lock round trip time) is an estimate of the time 62 * taken to perform a dlm lock request. We update it on each 63 * reply from the dlm. 64 * 65 * The blocking flag is set on the glock for all dlm requests 66 * which may potentially block due to lock requests from other nodes. 67 * DLM requests where the current lock state is exclusive, the 68 * requested state is null (or unlocked) or where the TRY or 69 * TRY_1CB flags are set are classified as non-blocking. All 70 * other DLM requests are counted as (potentially) blocking. 71 */ 72static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 73{ 74 struct gfs2_pcpu_lkstats *lks; 75 const unsigned gltype = gl->gl_name.ln_type; 76 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 77 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 78 s64 rtt; 79 80 preempt_disable(); 81 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 82 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 83 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 84 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 85 preempt_enable(); 86 87 trace_gfs2_glock_lock_time(gl, rtt); 88} 89 90/** 91 * gfs2_update_request_times - Update locking statistics 92 * @gl: The glock to update 93 * 94 * The irt (lock inter-request times) measures the average time 95 * between requests to the dlm. It is updated immediately before 96 * each dlm call. 97 */ 98 99static inline void gfs2_update_request_times(struct gfs2_glock *gl) 100{ 101 struct gfs2_pcpu_lkstats *lks; 102 const unsigned gltype = gl->gl_name.ln_type; 103 ktime_t dstamp; 104 s64 irt; 105 106 preempt_disable(); 107 dstamp = gl->gl_dstamp; 108 gl->gl_dstamp = ktime_get_real(); 109 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 110 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 111 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 112 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 113 preempt_enable(); 114} 115 116static void gdlm_ast(void *arg) 117{ 118 struct gfs2_glock *gl = arg; 119 unsigned ret = gl->gl_state; 120 121 gfs2_update_reply_times(gl); 122 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 123 124 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 125 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 126 127 switch (gl->gl_lksb.sb_status) { 128 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 129 if (gl->gl_ops->go_free) 130 gl->gl_ops->go_free(gl); 131 gfs2_glock_free(gl); 132 return; 133 case -DLM_ECANCEL: /* Cancel while getting lock */ 134 ret |= LM_OUT_CANCELED; 135 goto out; 136 case -EAGAIN: /* Try lock fails */ 137 case -EDEADLK: /* Deadlock detected */ 138 goto out; 139 case -ETIMEDOUT: /* Canceled due to timeout */ 140 ret |= LM_OUT_ERROR; 141 goto out; 142 case 0: /* Success */ 143 break; 144 default: /* Something unexpected */ 145 BUG(); 146 } 147 148 ret = gl->gl_req; 149 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 150 if (gl->gl_req == LM_ST_SHARED) 151 ret = LM_ST_DEFERRED; 152 else if (gl->gl_req == LM_ST_DEFERRED) 153 ret = LM_ST_SHARED; 154 else 155 BUG(); 156 } 157 158 set_bit(GLF_INITIAL, &gl->gl_flags); 159 gfs2_glock_complete(gl, ret); 160 return; 161out: 162 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) 163 gl->gl_lksb.sb_lkid = 0; 164 gfs2_glock_complete(gl, ret); 165} 166 167static void gdlm_bast(void *arg, int mode) 168{ 169 struct gfs2_glock *gl = arg; 170 171 switch (mode) { 172 case DLM_LOCK_EX: 173 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 174 break; 175 case DLM_LOCK_CW: 176 gfs2_glock_cb(gl, LM_ST_DEFERRED); 177 break; 178 case DLM_LOCK_PR: 179 gfs2_glock_cb(gl, LM_ST_SHARED); 180 break; 181 default: 182 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode); 183 BUG(); 184 } 185} 186 187/* convert gfs lock-state to dlm lock-mode */ 188 189static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate) 190{ 191 switch (lmstate) { 192 case LM_ST_UNLOCKED: 193 return DLM_LOCK_NL; 194 case LM_ST_EXCLUSIVE: 195 return DLM_LOCK_EX; 196 case LM_ST_DEFERRED: 197 return DLM_LOCK_CW; 198 case LM_ST_SHARED: 199 return DLM_LOCK_PR; 200 } 201 fs_err(sdp, "unknown LM state %d\n", lmstate); 202 BUG(); 203 return -1; 204} 205 206static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 207 const int req) 208{ 209 u32 lkf = 0; 210 211 if (gl->gl_lksb.sb_lvbptr) 212 lkf |= DLM_LKF_VALBLK; 213 214 if (gfs_flags & LM_FLAG_TRY) 215 lkf |= DLM_LKF_NOQUEUE; 216 217 if (gfs_flags & LM_FLAG_TRY_1CB) { 218 lkf |= DLM_LKF_NOQUEUE; 219 lkf |= DLM_LKF_NOQUEUEBAST; 220 } 221 222 if (gfs_flags & LM_FLAG_PRIORITY) { 223 lkf |= DLM_LKF_NOORDER; 224 lkf |= DLM_LKF_HEADQUE; 225 } 226 227 if (gfs_flags & LM_FLAG_ANY) { 228 if (req == DLM_LOCK_PR) 229 lkf |= DLM_LKF_ALTCW; 230 else if (req == DLM_LOCK_CW) 231 lkf |= DLM_LKF_ALTPR; 232 else 233 BUG(); 234 } 235 236 if (gl->gl_lksb.sb_lkid != 0) { 237 lkf |= DLM_LKF_CONVERT; 238 if (test_bit(GLF_BLOCKING, &gl->gl_flags)) 239 lkf |= DLM_LKF_QUECVT; 240 } 241 242 return lkf; 243} 244 245static void gfs2_reverse_hex(char *c, u64 value) 246{ 247 *c = '0'; 248 while (value) { 249 *c-- = hex_asc[value & 0x0f]; 250 value >>= 4; 251 } 252} 253 254static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 255 unsigned int flags) 256{ 257 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 258 int req; 259 u32 lkf; 260 char strname[GDLM_STRNAME_BYTES] = ""; 261 262 req = make_mode(gl->gl_name.ln_sbd, req_state); 263 lkf = make_flags(gl, flags, req); 264 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 265 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 266 if (gl->gl_lksb.sb_lkid) { 267 gfs2_update_request_times(gl); 268 } else { 269 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 270 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 271 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 272 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 273 gl->gl_dstamp = ktime_get_real(); 274 } 275 /* 276 * Submit the actual lock request. 277 */ 278 279 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 280 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 281} 282 283static void gdlm_put_lock(struct gfs2_glock *gl) 284{ 285 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 286 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 287 int error; 288 289 if (gl->gl_lksb.sb_lkid == 0) { 290 gfs2_glock_free(gl); 291 return; 292 } 293 294 clear_bit(GLF_BLOCKING, &gl->gl_flags); 295 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 296 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 297 gfs2_update_request_times(gl); 298 299 /* don't want to call dlm if we've unmounted the lock protocol */ 300 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) { 301 gfs2_glock_free(gl); 302 return; 303 } 304 /* don't want to skip dlm_unlock writing the lvb when lock has one */ 305 306 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 307 !gl->gl_lksb.sb_lvbptr) { 308 gfs2_glock_free(gl); 309 return; 310 } 311 312 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, 313 NULL, gl); 314 if (error) { 315 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n", 316 gl->gl_name.ln_type, 317 (unsigned long long)gl->gl_name.ln_number, error); 318 return; 319 } 320} 321 322static void gdlm_cancel(struct gfs2_glock *gl) 323{ 324 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 325 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 326} 327 328/* 329 * dlm/gfs2 recovery coordination using dlm_recover callbacks 330 * 331 * 0. gfs2 checks for another cluster node withdraw, needing journal replay 332 * 1. dlm_controld sees lockspace members change 333 * 2. dlm_controld blocks dlm-kernel locking activity 334 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 335 * 4. dlm_controld starts and finishes its own user level recovery 336 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 337 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 338 * 7. dlm_recoverd does its own lock recovery 339 * 8. dlm_recoverd unblocks dlm-kernel locking activity 340 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 341 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 342 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 343 * 12. gfs2_recover dequeues and recovers journals of failed nodes 344 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 345 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 346 * 15. gfs2_control unblocks normal locking when all journals are recovered 347 * 348 * - failures during recovery 349 * 350 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 351 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 352 * recovering for a prior failure. gfs2_control needs a way to detect 353 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 354 * the recover_block and recover_start values. 355 * 356 * recover_done() provides a new lockspace generation number each time it 357 * is called (step 9). This generation number is saved as recover_start. 358 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 359 * recover_block = recover_start. So, while recover_block is equal to 360 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 361 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 362 * 363 * - more specific gfs2 steps in sequence above 364 * 365 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 366 * 6. recover_slot records any failed jids (maybe none) 367 * 9. recover_done sets recover_start = new generation number 368 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 369 * 12. gfs2_recover does journal recoveries for failed jids identified above 370 * 14. gfs2_control clears control_lock lvb bits for recovered jids 371 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 372 * again) then do nothing, otherwise if recover_start > recover_block 373 * then clear BLOCK_LOCKS. 374 * 375 * - parallel recovery steps across all nodes 376 * 377 * All nodes attempt to update the control_lock lvb with the new generation 378 * number and jid bits, but only the first to get the control_lock EX will 379 * do so; others will see that it's already done (lvb already contains new 380 * generation number.) 381 * 382 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 383 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 384 * . One node gets control_lock first and writes the lvb, others see it's done 385 * . All nodes attempt to recover jids for which they see control_lock bits set 386 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 387 * . All nodes will eventually see all lvb bits clear and unblock locks 388 * 389 * - is there a problem with clearing an lvb bit that should be set 390 * and missing a journal recovery? 391 * 392 * 1. jid fails 393 * 2. lvb bit set for step 1 394 * 3. jid recovered for step 1 395 * 4. jid taken again (new mount) 396 * 5. jid fails (for step 4) 397 * 6. lvb bit set for step 5 (will already be set) 398 * 7. lvb bit cleared for step 3 399 * 400 * This is not a problem because the failure in step 5 does not 401 * require recovery, because the mount in step 4 could not have 402 * progressed far enough to unblock locks and access the fs. The 403 * control_mount() function waits for all recoveries to be complete 404 * for the latest lockspace generation before ever unblocking locks 405 * and returning. The mount in step 4 waits until the recovery in 406 * step 1 is done. 407 * 408 * - special case of first mounter: first node to mount the fs 409 * 410 * The first node to mount a gfs2 fs needs to check all the journals 411 * and recover any that need recovery before other nodes are allowed 412 * to mount the fs. (Others may begin mounting, but they must wait 413 * for the first mounter to be done before taking locks on the fs 414 * or accessing the fs.) This has two parts: 415 * 416 * 1. The mounted_lock tells a node it's the first to mount the fs. 417 * Each node holds the mounted_lock in PR while it's mounted. 418 * Each node tries to acquire the mounted_lock in EX when it mounts. 419 * If a node is granted the mounted_lock EX it means there are no 420 * other mounted nodes (no PR locks exist), and it is the first mounter. 421 * The mounted_lock is demoted to PR when first recovery is done, so 422 * others will fail to get an EX lock, but will get a PR lock. 423 * 424 * 2. The control_lock blocks others in control_mount() while the first 425 * mounter is doing first mount recovery of all journals. 426 * A mounting node needs to acquire control_lock in EX mode before 427 * it can proceed. The first mounter holds control_lock in EX while doing 428 * the first mount recovery, blocking mounts from other nodes, then demotes 429 * control_lock to NL when it's done (others_may_mount/first_done), 430 * allowing other nodes to continue mounting. 431 * 432 * first mounter: 433 * control_lock EX/NOQUEUE success 434 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 435 * set first=1 436 * do first mounter recovery 437 * mounted_lock EX->PR 438 * control_lock EX->NL, write lvb generation 439 * 440 * other mounter: 441 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 442 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 443 * mounted_lock PR/NOQUEUE success 444 * read lvb generation 445 * control_lock EX->NL 446 * set first=0 447 * 448 * - mount during recovery 449 * 450 * If a node mounts while others are doing recovery (not first mounter), 451 * the mounting node will get its initial recover_done() callback without 452 * having seen any previous failures/callbacks. 453 * 454 * It must wait for all recoveries preceding its mount to be finished 455 * before it unblocks locks. It does this by repeating the "other mounter" 456 * steps above until the lvb generation number is >= its mount generation 457 * number (from initial recover_done) and all lvb bits are clear. 458 * 459 * - control_lock lvb format 460 * 461 * 4 bytes generation number: the latest dlm lockspace generation number 462 * from recover_done callback. Indicates the jid bitmap has been updated 463 * to reflect all slot failures through that generation. 464 * 4 bytes unused. 465 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 466 * that jid N needs recovery. 467 */ 468 469#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 470 471static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 472 char *lvb_bits) 473{ 474 __le32 gen; 475 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 476 memcpy(&gen, lvb_bits, sizeof(__le32)); 477 *lvb_gen = le32_to_cpu(gen); 478} 479 480static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 481 char *lvb_bits) 482{ 483 __le32 gen; 484 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 485 gen = cpu_to_le32(lvb_gen); 486 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); 487} 488 489static int all_jid_bits_clear(char *lvb) 490{ 491 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, 492 GDLM_LVB_SIZE - JID_BITMAP_OFFSET); 493} 494 495static void sync_wait_cb(void *arg) 496{ 497 struct lm_lockstruct *ls = arg; 498 complete(&ls->ls_sync_wait); 499} 500 501static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 502{ 503 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 504 int error; 505 506 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 507 if (error) { 508 fs_err(sdp, "%s lkid %x error %d\n", 509 name, lksb->sb_lkid, error); 510 return error; 511 } 512 513 wait_for_completion(&ls->ls_sync_wait); 514 515 if (lksb->sb_status != -DLM_EUNLOCK) { 516 fs_err(sdp, "%s lkid %x status %d\n", 517 name, lksb->sb_lkid, lksb->sb_status); 518 return -1; 519 } 520 return 0; 521} 522 523static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 524 unsigned int num, struct dlm_lksb *lksb, char *name) 525{ 526 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 527 char strname[GDLM_STRNAME_BYTES]; 528 int error, status; 529 530 memset(strname, 0, GDLM_STRNAME_BYTES); 531 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 532 533 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 534 strname, GDLM_STRNAME_BYTES - 1, 535 0, sync_wait_cb, ls, NULL); 536 if (error) { 537 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 538 name, lksb->sb_lkid, flags, mode, error); 539 return error; 540 } 541 542 wait_for_completion(&ls->ls_sync_wait); 543 544 status = lksb->sb_status; 545 546 if (status && status != -EAGAIN) { 547 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 548 name, lksb->sb_lkid, flags, mode, status); 549 } 550 551 return status; 552} 553 554static int mounted_unlock(struct gfs2_sbd *sdp) 555{ 556 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 557 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 558} 559 560static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 561{ 562 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 563 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 564 &ls->ls_mounted_lksb, "mounted_lock"); 565} 566 567static int control_unlock(struct gfs2_sbd *sdp) 568{ 569 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 570 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 571} 572 573static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 574{ 575 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 576 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 577 &ls->ls_control_lksb, "control_lock"); 578} 579 580/** 581 * remote_withdraw - react to a node withdrawing from the file system 582 * @sdp: The superblock 583 */ 584static void remote_withdraw(struct gfs2_sbd *sdp) 585{ 586 struct gfs2_jdesc *jd; 587 int ret = 0, count = 0; 588 589 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) { 590 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid) 591 continue; 592 ret = gfs2_recover_journal(jd, true); 593 if (ret) 594 break; 595 count++; 596 } 597 598 /* Now drop the additional reference we acquired */ 599 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret); 600} 601 602static void gfs2_control_func(struct work_struct *work) 603{ 604 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 605 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 606 uint32_t block_gen, start_gen, lvb_gen, flags; 607 int recover_set = 0; 608 int write_lvb = 0; 609 int recover_size; 610 int i, error; 611 612 /* First check for other nodes that may have done a withdraw. */ 613 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) { 614 remote_withdraw(sdp); 615 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags); 616 return; 617 } 618 619 spin_lock(&ls->ls_recover_spin); 620 /* 621 * No MOUNT_DONE means we're still mounting; control_mount() 622 * will set this flag, after which this thread will take over 623 * all further clearing of BLOCK_LOCKS. 624 * 625 * FIRST_MOUNT means this node is doing first mounter recovery, 626 * for which recovery control is handled by 627 * control_mount()/control_first_done(), not this thread. 628 */ 629 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 630 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 631 spin_unlock(&ls->ls_recover_spin); 632 return; 633 } 634 block_gen = ls->ls_recover_block; 635 start_gen = ls->ls_recover_start; 636 spin_unlock(&ls->ls_recover_spin); 637 638 /* 639 * Equal block_gen and start_gen implies we are between 640 * recover_prep and recover_done callbacks, which means 641 * dlm recovery is in progress and dlm locking is blocked. 642 * There's no point trying to do any work until recover_done. 643 */ 644 645 if (block_gen == start_gen) 646 return; 647 648 /* 649 * Propagate recover_submit[] and recover_result[] to lvb: 650 * dlm_recoverd adds to recover_submit[] jids needing recovery 651 * gfs2_recover adds to recover_result[] journal recovery results 652 * 653 * set lvb bit for jids in recover_submit[] if the lvb has not 654 * yet been updated for the generation of the failure 655 * 656 * clear lvb bit for jids in recover_result[] if the result of 657 * the journal recovery is SUCCESS 658 */ 659 660 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 661 if (error) { 662 fs_err(sdp, "control lock EX error %d\n", error); 663 return; 664 } 665 666 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 667 668 spin_lock(&ls->ls_recover_spin); 669 if (block_gen != ls->ls_recover_block || 670 start_gen != ls->ls_recover_start) { 671 fs_info(sdp, "recover generation %u block1 %u %u\n", 672 start_gen, block_gen, ls->ls_recover_block); 673 spin_unlock(&ls->ls_recover_spin); 674 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 675 return; 676 } 677 678 recover_size = ls->ls_recover_size; 679 680 if (lvb_gen <= start_gen) { 681 /* 682 * Clear lvb bits for jids we've successfully recovered. 683 * Because all nodes attempt to recover failed journals, 684 * a journal can be recovered multiple times successfully 685 * in succession. Only the first will really do recovery, 686 * the others find it clean, but still report a successful 687 * recovery. So, another node may have already recovered 688 * the jid and cleared the lvb bit for it. 689 */ 690 for (i = 0; i < recover_size; i++) { 691 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 692 continue; 693 694 ls->ls_recover_result[i] = 0; 695 696 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) 697 continue; 698 699 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 700 write_lvb = 1; 701 } 702 } 703 704 if (lvb_gen == start_gen) { 705 /* 706 * Failed slots before start_gen are already set in lvb. 707 */ 708 for (i = 0; i < recover_size; i++) { 709 if (!ls->ls_recover_submit[i]) 710 continue; 711 if (ls->ls_recover_submit[i] < lvb_gen) 712 ls->ls_recover_submit[i] = 0; 713 } 714 } else if (lvb_gen < start_gen) { 715 /* 716 * Failed slots before start_gen are not yet set in lvb. 717 */ 718 for (i = 0; i < recover_size; i++) { 719 if (!ls->ls_recover_submit[i]) 720 continue; 721 if (ls->ls_recover_submit[i] < start_gen) { 722 ls->ls_recover_submit[i] = 0; 723 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 724 } 725 } 726 /* even if there are no bits to set, we need to write the 727 latest generation to the lvb */ 728 write_lvb = 1; 729 } else { 730 /* 731 * we should be getting a recover_done() for lvb_gen soon 732 */ 733 } 734 spin_unlock(&ls->ls_recover_spin); 735 736 if (write_lvb) { 737 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 738 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 739 } else { 740 flags = DLM_LKF_CONVERT; 741 } 742 743 error = control_lock(sdp, DLM_LOCK_NL, flags); 744 if (error) { 745 fs_err(sdp, "control lock NL error %d\n", error); 746 return; 747 } 748 749 /* 750 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 751 * and clear a jid bit in the lvb if the recovery is a success. 752 * Eventually all journals will be recovered, all jid bits will 753 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 754 */ 755 756 for (i = 0; i < recover_size; i++) { 757 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { 758 fs_info(sdp, "recover generation %u jid %d\n", 759 start_gen, i); 760 gfs2_recover_set(sdp, i); 761 recover_set++; 762 } 763 } 764 if (recover_set) 765 return; 766 767 /* 768 * No more jid bits set in lvb, all recovery is done, unblock locks 769 * (unless a new recover_prep callback has occured blocking locks 770 * again while working above) 771 */ 772 773 spin_lock(&ls->ls_recover_spin); 774 if (ls->ls_recover_block == block_gen && 775 ls->ls_recover_start == start_gen) { 776 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 777 spin_unlock(&ls->ls_recover_spin); 778 fs_info(sdp, "recover generation %u done\n", start_gen); 779 gfs2_glock_thaw(sdp); 780 } else { 781 fs_info(sdp, "recover generation %u block2 %u %u\n", 782 start_gen, block_gen, ls->ls_recover_block); 783 spin_unlock(&ls->ls_recover_spin); 784 } 785} 786 787static int control_mount(struct gfs2_sbd *sdp) 788{ 789 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 790 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 791 int mounted_mode; 792 int retries = 0; 793 int error; 794 795 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 796 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 797 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 798 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 799 init_completion(&ls->ls_sync_wait); 800 801 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 802 803 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 804 if (error) { 805 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 806 return error; 807 } 808 809 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 810 if (error) { 811 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 812 control_unlock(sdp); 813 return error; 814 } 815 mounted_mode = DLM_LOCK_NL; 816 817restart: 818 if (retries++ && signal_pending(current)) { 819 error = -EINTR; 820 goto fail; 821 } 822 823 /* 824 * We always start with both locks in NL. control_lock is 825 * demoted to NL below so we don't need to do it here. 826 */ 827 828 if (mounted_mode != DLM_LOCK_NL) { 829 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 830 if (error) 831 goto fail; 832 mounted_mode = DLM_LOCK_NL; 833 } 834 835 /* 836 * Other nodes need to do some work in dlm recovery and gfs2_control 837 * before the recover_done and control_lock will be ready for us below. 838 * A delay here is not required but often avoids having to retry. 839 */ 840 841 msleep_interruptible(500); 842 843 /* 844 * Acquire control_lock in EX and mounted_lock in either EX or PR. 845 * control_lock lvb keeps track of any pending journal recoveries. 846 * mounted_lock indicates if any other nodes have the fs mounted. 847 */ 848 849 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 850 if (error == -EAGAIN) { 851 goto restart; 852 } else if (error) { 853 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 854 goto fail; 855 } 856 857 /** 858 * If we're a spectator, we don't want to take the lock in EX because 859 * we cannot do the first-mount responsibility it implies: recovery. 860 */ 861 if (sdp->sd_args.ar_spectator) 862 goto locks_done; 863 864 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 865 if (!error) { 866 mounted_mode = DLM_LOCK_EX; 867 goto locks_done; 868 } else if (error != -EAGAIN) { 869 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 870 goto fail; 871 } 872 873 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 874 if (!error) { 875 mounted_mode = DLM_LOCK_PR; 876 goto locks_done; 877 } else { 878 /* not even -EAGAIN should happen here */ 879 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 880 goto fail; 881 } 882 883locks_done: 884 /* 885 * If we got both locks above in EX, then we're the first mounter. 886 * If not, then we need to wait for the control_lock lvb to be 887 * updated by other mounted nodes to reflect our mount generation. 888 * 889 * In simple first mounter cases, first mounter will see zero lvb_gen, 890 * but in cases where all existing nodes leave/fail before mounting 891 * nodes finish control_mount, then all nodes will be mounting and 892 * lvb_gen will be non-zero. 893 */ 894 895 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 896 897 if (lvb_gen == 0xFFFFFFFF) { 898 /* special value to force mount attempts to fail */ 899 fs_err(sdp, "control_mount control_lock disabled\n"); 900 error = -EINVAL; 901 goto fail; 902 } 903 904 if (mounted_mode == DLM_LOCK_EX) { 905 /* first mounter, keep both EX while doing first recovery */ 906 spin_lock(&ls->ls_recover_spin); 907 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 908 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 909 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 910 spin_unlock(&ls->ls_recover_spin); 911 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 912 return 0; 913 } 914 915 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 916 if (error) 917 goto fail; 918 919 /* 920 * We are not first mounter, now we need to wait for the control_lock 921 * lvb generation to be >= the generation from our first recover_done 922 * and all lvb bits to be clear (no pending journal recoveries.) 923 */ 924 925 if (!all_jid_bits_clear(ls->ls_lvb_bits)) { 926 /* journals need recovery, wait until all are clear */ 927 fs_info(sdp, "control_mount wait for journal recovery\n"); 928 goto restart; 929 } 930 931 spin_lock(&ls->ls_recover_spin); 932 block_gen = ls->ls_recover_block; 933 start_gen = ls->ls_recover_start; 934 mount_gen = ls->ls_recover_mount; 935 936 if (lvb_gen < mount_gen) { 937 /* wait for mounted nodes to update control_lock lvb to our 938 generation, which might include new recovery bits set */ 939 if (sdp->sd_args.ar_spectator) { 940 fs_info(sdp, "Recovery is required. Waiting for a " 941 "non-spectator to mount.\n"); 942 msleep_interruptible(1000); 943 } else { 944 fs_info(sdp, "control_mount wait1 block %u start %u " 945 "mount %u lvb %u flags %lx\n", block_gen, 946 start_gen, mount_gen, lvb_gen, 947 ls->ls_recover_flags); 948 } 949 spin_unlock(&ls->ls_recover_spin); 950 goto restart; 951 } 952 953 if (lvb_gen != start_gen) { 954 /* wait for mounted nodes to update control_lock lvb to the 955 latest recovery generation */ 956 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 957 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 958 lvb_gen, ls->ls_recover_flags); 959 spin_unlock(&ls->ls_recover_spin); 960 goto restart; 961 } 962 963 if (block_gen == start_gen) { 964 /* dlm recovery in progress, wait for it to finish */ 965 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 966 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 967 lvb_gen, ls->ls_recover_flags); 968 spin_unlock(&ls->ls_recover_spin); 969 goto restart; 970 } 971 972 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 973 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 974 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 975 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 976 spin_unlock(&ls->ls_recover_spin); 977 return 0; 978 979fail: 980 mounted_unlock(sdp); 981 control_unlock(sdp); 982 return error; 983} 984 985static int control_first_done(struct gfs2_sbd *sdp) 986{ 987 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 988 uint32_t start_gen, block_gen; 989 int error; 990 991restart: 992 spin_lock(&ls->ls_recover_spin); 993 start_gen = ls->ls_recover_start; 994 block_gen = ls->ls_recover_block; 995 996 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 997 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 998 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 999 /* sanity check, should not happen */ 1000 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 1001 start_gen, block_gen, ls->ls_recover_flags); 1002 spin_unlock(&ls->ls_recover_spin); 1003 control_unlock(sdp); 1004 return -1; 1005 } 1006 1007 if (start_gen == block_gen) { 1008 /* 1009 * Wait for the end of a dlm recovery cycle to switch from 1010 * first mounter recovery. We can ignore any recover_slot 1011 * callbacks between the recover_prep and next recover_done 1012 * because we are still the first mounter and any failed nodes 1013 * have not fully mounted, so they don't need recovery. 1014 */ 1015 spin_unlock(&ls->ls_recover_spin); 1016 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 1017 1018 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 1019 TASK_UNINTERRUPTIBLE); 1020 goto restart; 1021 } 1022 1023 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1024 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 1025 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 1026 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 1027 spin_unlock(&ls->ls_recover_spin); 1028 1029 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); 1030 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 1031 1032 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 1033 if (error) 1034 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 1035 1036 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 1037 if (error) 1038 fs_err(sdp, "control_first_done control NL error %d\n", error); 1039 1040 return error; 1041} 1042 1043/* 1044 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 1045 * to accomodate the largest slot number. (NB dlm slot numbers start at 1, 1046 * gfs2 jids start at 0, so jid = slot - 1) 1047 */ 1048 1049#define RECOVER_SIZE_INC 16 1050 1051static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1052 int num_slots) 1053{ 1054 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1055 uint32_t *submit = NULL; 1056 uint32_t *result = NULL; 1057 uint32_t old_size, new_size; 1058 int i, max_jid; 1059 1060 if (!ls->ls_lvb_bits) { 1061 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1062 if (!ls->ls_lvb_bits) 1063 return -ENOMEM; 1064 } 1065 1066 max_jid = 0; 1067 for (i = 0; i < num_slots; i++) { 1068 if (max_jid < slots[i].slot - 1) 1069 max_jid = slots[i].slot - 1; 1070 } 1071 1072 old_size = ls->ls_recover_size; 1073 new_size = old_size; 1074 while (new_size < max_jid + 1) 1075 new_size += RECOVER_SIZE_INC; 1076 if (new_size == old_size) 1077 return 0; 1078 1079 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1080 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1081 if (!submit || !result) { 1082 kfree(submit); 1083 kfree(result); 1084 return -ENOMEM; 1085 } 1086 1087 spin_lock(&ls->ls_recover_spin); 1088 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1089 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1090 kfree(ls->ls_recover_submit); 1091 kfree(ls->ls_recover_result); 1092 ls->ls_recover_submit = submit; 1093 ls->ls_recover_result = result; 1094 ls->ls_recover_size = new_size; 1095 spin_unlock(&ls->ls_recover_spin); 1096 return 0; 1097} 1098 1099static void free_recover_size(struct lm_lockstruct *ls) 1100{ 1101 kfree(ls->ls_lvb_bits); 1102 kfree(ls->ls_recover_submit); 1103 kfree(ls->ls_recover_result); 1104 ls->ls_recover_submit = NULL; 1105 ls->ls_recover_result = NULL; 1106 ls->ls_recover_size = 0; 1107 ls->ls_lvb_bits = NULL; 1108} 1109 1110/* dlm calls before it does lock recovery */ 1111 1112static void gdlm_recover_prep(void *arg) 1113{ 1114 struct gfs2_sbd *sdp = arg; 1115 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1116 1117 if (gfs2_withdrawn(sdp)) { 1118 fs_err(sdp, "recover_prep ignored due to withdraw.\n"); 1119 return; 1120 } 1121 spin_lock(&ls->ls_recover_spin); 1122 ls->ls_recover_block = ls->ls_recover_start; 1123 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1124 1125 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1126 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1127 spin_unlock(&ls->ls_recover_spin); 1128 return; 1129 } 1130 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1131 spin_unlock(&ls->ls_recover_spin); 1132} 1133 1134/* dlm calls after recover_prep has been completed on all lockspace members; 1135 identifies slot/jid of failed member */ 1136 1137static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1138{ 1139 struct gfs2_sbd *sdp = arg; 1140 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1141 int jid = slot->slot - 1; 1142 1143 if (gfs2_withdrawn(sdp)) { 1144 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n", 1145 jid); 1146 return; 1147 } 1148 spin_lock(&ls->ls_recover_spin); 1149 if (ls->ls_recover_size < jid + 1) { 1150 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n", 1151 jid, ls->ls_recover_block, ls->ls_recover_size); 1152 spin_unlock(&ls->ls_recover_spin); 1153 return; 1154 } 1155 1156 if (ls->ls_recover_submit[jid]) { 1157 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", 1158 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1159 } 1160 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1161 spin_unlock(&ls->ls_recover_spin); 1162} 1163 1164/* dlm calls after recover_slot and after it completes lock recovery */ 1165 1166static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1167 int our_slot, uint32_t generation) 1168{ 1169 struct gfs2_sbd *sdp = arg; 1170 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1171 1172 if (gfs2_withdrawn(sdp)) { 1173 fs_err(sdp, "recover_done ignored due to withdraw.\n"); 1174 return; 1175 } 1176 /* ensure the ls jid arrays are large enough */ 1177 set_recover_size(sdp, slots, num_slots); 1178 1179 spin_lock(&ls->ls_recover_spin); 1180 ls->ls_recover_start = generation; 1181 1182 if (!ls->ls_recover_mount) { 1183 ls->ls_recover_mount = generation; 1184 ls->ls_jid = our_slot - 1; 1185 } 1186 1187 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1188 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1189 1190 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1191 smp_mb__after_atomic(); 1192 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1193 spin_unlock(&ls->ls_recover_spin); 1194} 1195 1196/* gfs2_recover thread has a journal recovery result */ 1197 1198static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1199 unsigned int result) 1200{ 1201 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1202 1203 if (gfs2_withdrawn(sdp)) { 1204 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n", 1205 jid); 1206 return; 1207 } 1208 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1209 return; 1210 1211 /* don't care about the recovery of own journal during mount */ 1212 if (jid == ls->ls_jid) 1213 return; 1214 1215 spin_lock(&ls->ls_recover_spin); 1216 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1217 spin_unlock(&ls->ls_recover_spin); 1218 return; 1219 } 1220 if (ls->ls_recover_size < jid + 1) { 1221 fs_err(sdp, "recovery_result jid %d short size %d\n", 1222 jid, ls->ls_recover_size); 1223 spin_unlock(&ls->ls_recover_spin); 1224 return; 1225 } 1226 1227 fs_info(sdp, "recover jid %d result %s\n", jid, 1228 result == LM_RD_GAVEUP ? "busy" : "success"); 1229 1230 ls->ls_recover_result[jid] = result; 1231 1232 /* GAVEUP means another node is recovering the journal; delay our 1233 next attempt to recover it, to give the other node a chance to 1234 finish before trying again */ 1235 1236 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1237 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1238 result == LM_RD_GAVEUP ? HZ : 0); 1239 spin_unlock(&ls->ls_recover_spin); 1240} 1241 1242static const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1243 .recover_prep = gdlm_recover_prep, 1244 .recover_slot = gdlm_recover_slot, 1245 .recover_done = gdlm_recover_done, 1246}; 1247 1248static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1249{ 1250 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1251 char cluster[GFS2_LOCKNAME_LEN]; 1252 const char *fsname; 1253 uint32_t flags; 1254 int error, ops_result; 1255 1256 /* 1257 * initialize everything 1258 */ 1259 1260 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1261 spin_lock_init(&ls->ls_recover_spin); 1262 ls->ls_recover_flags = 0; 1263 ls->ls_recover_mount = 0; 1264 ls->ls_recover_start = 0; 1265 ls->ls_recover_block = 0; 1266 ls->ls_recover_size = 0; 1267 ls->ls_recover_submit = NULL; 1268 ls->ls_recover_result = NULL; 1269 ls->ls_lvb_bits = NULL; 1270 1271 error = set_recover_size(sdp, NULL, 0); 1272 if (error) 1273 goto fail; 1274 1275 /* 1276 * prepare dlm_new_lockspace args 1277 */ 1278 1279 fsname = strchr(table, ':'); 1280 if (!fsname) { 1281 fs_info(sdp, "no fsname found\n"); 1282 error = -EINVAL; 1283 goto fail_free; 1284 } 1285 memset(cluster, 0, sizeof(cluster)); 1286 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1287 fsname++; 1288 1289 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL; 1290 1291 /* 1292 * create/join lockspace 1293 */ 1294 1295 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1296 &gdlm_lockspace_ops, sdp, &ops_result, 1297 &ls->ls_dlm); 1298 if (error) { 1299 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1300 goto fail_free; 1301 } 1302 1303 if (ops_result < 0) { 1304 /* 1305 * dlm does not support ops callbacks, 1306 * old dlm_controld/gfs_controld are used, try without ops. 1307 */ 1308 fs_info(sdp, "dlm lockspace ops not used\n"); 1309 free_recover_size(ls); 1310 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1311 return 0; 1312 } 1313 1314 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1315 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1316 error = -EINVAL; 1317 goto fail_release; 1318 } 1319 1320 /* 1321 * control_mount() uses control_lock to determine first mounter, 1322 * and for later mounts, waits for any recoveries to be cleared. 1323 */ 1324 1325 error = control_mount(sdp); 1326 if (error) { 1327 fs_err(sdp, "mount control error %d\n", error); 1328 goto fail_release; 1329 } 1330 1331 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1332 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1333 smp_mb__after_atomic(); 1334 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1335 return 0; 1336 1337fail_release: 1338 dlm_release_lockspace(ls->ls_dlm, 2); 1339fail_free: 1340 free_recover_size(ls); 1341fail: 1342 return error; 1343} 1344 1345static void gdlm_first_done(struct gfs2_sbd *sdp) 1346{ 1347 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1348 int error; 1349 1350 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1351 return; 1352 1353 error = control_first_done(sdp); 1354 if (error) 1355 fs_err(sdp, "mount first_done error %d\n", error); 1356} 1357 1358static void gdlm_unmount(struct gfs2_sbd *sdp) 1359{ 1360 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1361 1362 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1363 goto release; 1364 1365 /* wait for gfs2_control_wq to be done with this mount */ 1366 1367 spin_lock(&ls->ls_recover_spin); 1368 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1369 spin_unlock(&ls->ls_recover_spin); 1370 flush_delayed_work(&sdp->sd_control_work); 1371 1372 /* mounted_lock and control_lock will be purged in dlm recovery */ 1373release: 1374 if (ls->ls_dlm) { 1375 dlm_release_lockspace(ls->ls_dlm, 2); 1376 ls->ls_dlm = NULL; 1377 } 1378 1379 free_recover_size(ls); 1380} 1381 1382static const match_table_t dlm_tokens = { 1383 { Opt_jid, "jid=%d"}, 1384 { Opt_id, "id=%d"}, 1385 { Opt_first, "first=%d"}, 1386 { Opt_nodir, "nodir=%d"}, 1387 { Opt_err, NULL }, 1388}; 1389 1390const struct lm_lockops gfs2_dlm_ops = { 1391 .lm_proto_name = "lock_dlm", 1392 .lm_mount = gdlm_mount, 1393 .lm_first_done = gdlm_first_done, 1394 .lm_recovery_result = gdlm_recovery_result, 1395 .lm_unmount = gdlm_unmount, 1396 .lm_put_lock = gdlm_put_lock, 1397 .lm_lock = gdlm_lock, 1398 .lm_cancel = gdlm_cancel, 1399 .lm_tokens = &dlm_tokens, 1400}; 1401 1402