xref: /kernel/linux/linux-5.10/fs/gfs2/file.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4 * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5 */
6
7#include <linux/slab.h>
8#include <linux/spinlock.h>
9#include <linux/compat.h>
10#include <linux/completion.h>
11#include <linux/buffer_head.h>
12#include <linux/pagemap.h>
13#include <linux/uio.h>
14#include <linux/blkdev.h>
15#include <linux/mm.h>
16#include <linux/mount.h>
17#include <linux/fs.h>
18#include <linux/gfs2_ondisk.h>
19#include <linux/falloc.h>
20#include <linux/swap.h>
21#include <linux/crc32.h>
22#include <linux/writeback.h>
23#include <linux/uaccess.h>
24#include <linux/dlm.h>
25#include <linux/dlm_plock.h>
26#include <linux/delay.h>
27#include <linux/backing-dev.h>
28
29#include "gfs2.h"
30#include "incore.h"
31#include "bmap.h"
32#include "aops.h"
33#include "dir.h"
34#include "glock.h"
35#include "glops.h"
36#include "inode.h"
37#include "log.h"
38#include "meta_io.h"
39#include "quota.h"
40#include "rgrp.h"
41#include "trans.h"
42#include "util.h"
43
44/**
45 * gfs2_llseek - seek to a location in a file
46 * @file: the file
47 * @offset: the offset
48 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
49 *
50 * SEEK_END requires the glock for the file because it references the
51 * file's size.
52 *
53 * Returns: The new offset, or errno
54 */
55
56static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
57{
58	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
59	struct gfs2_holder i_gh;
60	loff_t error;
61
62	switch (whence) {
63	case SEEK_END:
64		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
65					   &i_gh);
66		if (!error) {
67			error = generic_file_llseek(file, offset, whence);
68			gfs2_glock_dq_uninit(&i_gh);
69		}
70		break;
71
72	case SEEK_DATA:
73		error = gfs2_seek_data(file, offset);
74		break;
75
76	case SEEK_HOLE:
77		error = gfs2_seek_hole(file, offset);
78		break;
79
80	case SEEK_CUR:
81	case SEEK_SET:
82		/*
83		 * These don't reference inode->i_size and don't depend on the
84		 * block mapping, so we don't need the glock.
85		 */
86		error = generic_file_llseek(file, offset, whence);
87		break;
88	default:
89		error = -EINVAL;
90	}
91
92	return error;
93}
94
95/**
96 * gfs2_readdir - Iterator for a directory
97 * @file: The directory to read from
98 * @ctx: What to feed directory entries to
99 *
100 * Returns: errno
101 */
102
103static int gfs2_readdir(struct file *file, struct dir_context *ctx)
104{
105	struct inode *dir = file->f_mapping->host;
106	struct gfs2_inode *dip = GFS2_I(dir);
107	struct gfs2_holder d_gh;
108	int error;
109
110	error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
111	if (error)
112		return error;
113
114	error = gfs2_dir_read(dir, ctx, &file->f_ra);
115
116	gfs2_glock_dq_uninit(&d_gh);
117
118	return error;
119}
120
121/**
122 * fsflag_gfs2flag
123 *
124 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
125 * and to GFS2_DIF_JDATA for non-directories.
126 */
127static struct {
128	u32 fsflag;
129	u32 gfsflag;
130} fsflag_gfs2flag[] = {
131	{FS_SYNC_FL, GFS2_DIF_SYNC},
132	{FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
133	{FS_APPEND_FL, GFS2_DIF_APPENDONLY},
134	{FS_NOATIME_FL, GFS2_DIF_NOATIME},
135	{FS_INDEX_FL, GFS2_DIF_EXHASH},
136	{FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
137	{FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
138};
139
140static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
141{
142	int i;
143	u32 fsflags = 0;
144
145	if (S_ISDIR(inode->i_mode))
146		gfsflags &= ~GFS2_DIF_JDATA;
147	else
148		gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
149
150	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
151		if (gfsflags & fsflag_gfs2flag[i].gfsflag)
152			fsflags |= fsflag_gfs2flag[i].fsflag;
153	return fsflags;
154}
155
156static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
157{
158	struct inode *inode = file_inode(filp);
159	struct gfs2_inode *ip = GFS2_I(inode);
160	struct gfs2_holder gh;
161	int error;
162	u32 fsflags;
163
164	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
165	error = gfs2_glock_nq(&gh);
166	if (error)
167		goto out_uninit;
168
169	fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
170
171	if (put_user(fsflags, ptr))
172		error = -EFAULT;
173
174	gfs2_glock_dq(&gh);
175out_uninit:
176	gfs2_holder_uninit(&gh);
177	return error;
178}
179
180void gfs2_set_inode_flags(struct inode *inode)
181{
182	struct gfs2_inode *ip = GFS2_I(inode);
183	unsigned int flags = inode->i_flags;
184
185	flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
186	if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
187		flags |= S_NOSEC;
188	if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
189		flags |= S_IMMUTABLE;
190	if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
191		flags |= S_APPEND;
192	if (ip->i_diskflags & GFS2_DIF_NOATIME)
193		flags |= S_NOATIME;
194	if (ip->i_diskflags & GFS2_DIF_SYNC)
195		flags |= S_SYNC;
196	inode->i_flags = flags;
197}
198
199/* Flags that can be set by user space */
200#define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|			\
201			     GFS2_DIF_IMMUTABLE|		\
202			     GFS2_DIF_APPENDONLY|		\
203			     GFS2_DIF_NOATIME|			\
204			     GFS2_DIF_SYNC|			\
205			     GFS2_DIF_TOPDIR|			\
206			     GFS2_DIF_INHERIT_JDATA)
207
208/**
209 * do_gfs2_set_flags - set flags on an inode
210 * @filp: file pointer
211 * @reqflags: The flags to set
212 * @mask: Indicates which flags are valid
213 * @fsflags: The FS_* inode flags passed in
214 *
215 */
216static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask,
217			     const u32 fsflags)
218{
219	struct inode *inode = file_inode(filp);
220	struct gfs2_inode *ip = GFS2_I(inode);
221	struct gfs2_sbd *sdp = GFS2_SB(inode);
222	struct buffer_head *bh;
223	struct gfs2_holder gh;
224	int error;
225	u32 new_flags, flags, oldflags;
226
227	error = mnt_want_write_file(filp);
228	if (error)
229		return error;
230
231	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
232	if (error)
233		goto out_drop_write;
234
235	oldflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
236	error = vfs_ioc_setflags_prepare(inode, oldflags, fsflags);
237	if (error)
238		goto out;
239
240	error = -EACCES;
241	if (!inode_owner_or_capable(inode))
242		goto out;
243
244	error = 0;
245	flags = ip->i_diskflags;
246	new_flags = (flags & ~mask) | (reqflags & mask);
247	if ((new_flags ^ flags) == 0)
248		goto out;
249
250	error = -EPERM;
251	if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
252		goto out;
253	if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
254		goto out;
255	if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
256	    !capable(CAP_LINUX_IMMUTABLE))
257		goto out;
258	if (!IS_IMMUTABLE(inode)) {
259		error = gfs2_permission(inode, MAY_WRITE);
260		if (error)
261			goto out;
262	}
263	if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
264		if (new_flags & GFS2_DIF_JDATA)
265			gfs2_log_flush(sdp, ip->i_gl,
266				       GFS2_LOG_HEAD_FLUSH_NORMAL |
267				       GFS2_LFC_SET_FLAGS);
268		error = filemap_fdatawrite(inode->i_mapping);
269		if (error)
270			goto out;
271		error = filemap_fdatawait(inode->i_mapping);
272		if (error)
273			goto out;
274		if (new_flags & GFS2_DIF_JDATA)
275			gfs2_ordered_del_inode(ip);
276	}
277	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
278	if (error)
279		goto out;
280	error = gfs2_meta_inode_buffer(ip, &bh);
281	if (error)
282		goto out_trans_end;
283	inode->i_ctime = current_time(inode);
284	gfs2_trans_add_meta(ip->i_gl, bh);
285	ip->i_diskflags = new_flags;
286	gfs2_dinode_out(ip, bh->b_data);
287	brelse(bh);
288	gfs2_set_inode_flags(inode);
289	gfs2_set_aops(inode);
290out_trans_end:
291	gfs2_trans_end(sdp);
292out:
293	gfs2_glock_dq_uninit(&gh);
294out_drop_write:
295	mnt_drop_write_file(filp);
296	return error;
297}
298
299static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
300{
301	struct inode *inode = file_inode(filp);
302	u32 fsflags, gfsflags = 0;
303	u32 mask;
304	int i;
305
306	if (get_user(fsflags, ptr))
307		return -EFAULT;
308
309	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
310		if (fsflags & fsflag_gfs2flag[i].fsflag) {
311			fsflags &= ~fsflag_gfs2flag[i].fsflag;
312			gfsflags |= fsflag_gfs2flag[i].gfsflag;
313		}
314	}
315	if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
316		return -EINVAL;
317
318	mask = GFS2_FLAGS_USER_SET;
319	if (S_ISDIR(inode->i_mode)) {
320		mask &= ~GFS2_DIF_JDATA;
321	} else {
322		/* The GFS2_DIF_TOPDIR flag is only valid for directories. */
323		if (gfsflags & GFS2_DIF_TOPDIR)
324			return -EINVAL;
325		mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
326	}
327
328	return do_gfs2_set_flags(filp, gfsflags, mask, fsflags);
329}
330
331static int gfs2_getlabel(struct file *filp, char __user *label)
332{
333	struct inode *inode = file_inode(filp);
334	struct gfs2_sbd *sdp = GFS2_SB(inode);
335
336	if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
337		return -EFAULT;
338
339	return 0;
340}
341
342static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
343{
344	switch(cmd) {
345	case FS_IOC_GETFLAGS:
346		return gfs2_get_flags(filp, (u32 __user *)arg);
347	case FS_IOC_SETFLAGS:
348		return gfs2_set_flags(filp, (u32 __user *)arg);
349	case FITRIM:
350		return gfs2_fitrim(filp, (void __user *)arg);
351	case FS_IOC_GETFSLABEL:
352		return gfs2_getlabel(filp, (char __user *)arg);
353	}
354
355	return -ENOTTY;
356}
357
358#ifdef CONFIG_COMPAT
359static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
360{
361	switch(cmd) {
362	/* These are just misnamed, they actually get/put from/to user an int */
363	case FS_IOC32_GETFLAGS:
364		cmd = FS_IOC_GETFLAGS;
365		break;
366	case FS_IOC32_SETFLAGS:
367		cmd = FS_IOC_SETFLAGS;
368		break;
369	/* Keep this list in sync with gfs2_ioctl */
370	case FITRIM:
371	case FS_IOC_GETFSLABEL:
372		break;
373	default:
374		return -ENOIOCTLCMD;
375	}
376
377	return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
378}
379#else
380#define gfs2_compat_ioctl NULL
381#endif
382
383/**
384 * gfs2_size_hint - Give a hint to the size of a write request
385 * @filep: The struct file
386 * @offset: The file offset of the write
387 * @size: The length of the write
388 *
389 * When we are about to do a write, this function records the total
390 * write size in order to provide a suitable hint to the lower layers
391 * about how many blocks will be required.
392 *
393 */
394
395static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
396{
397	struct inode *inode = file_inode(filep);
398	struct gfs2_sbd *sdp = GFS2_SB(inode);
399	struct gfs2_inode *ip = GFS2_I(inode);
400	size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
401	int hint = min_t(size_t, INT_MAX, blks);
402
403	if (hint > atomic_read(&ip->i_sizehint))
404		atomic_set(&ip->i_sizehint, hint);
405}
406
407/**
408 * gfs2_allocate_page_backing - Allocate blocks for a write fault
409 * @page: The (locked) page to allocate backing for
410 * @length: Size of the allocation
411 *
412 * We try to allocate all the blocks required for the page in one go.  This
413 * might fail for various reasons, so we keep trying until all the blocks to
414 * back this page are allocated.  If some of the blocks are already allocated,
415 * that is ok too.
416 */
417static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
418{
419	u64 pos = page_offset(page);
420
421	do {
422		struct iomap iomap = { };
423
424		if (gfs2_iomap_get_alloc(page->mapping->host, pos, length, &iomap))
425			return -EIO;
426
427		if (length < iomap.length)
428			iomap.length = length;
429		length -= iomap.length;
430		pos += iomap.length;
431	} while (length > 0);
432
433	return 0;
434}
435
436/**
437 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
438 * @vma: The virtual memory area
439 * @vmf: The virtual memory fault containing the page to become writable
440 *
441 * When the page becomes writable, we need to ensure that we have
442 * blocks allocated on disk to back that page.
443 */
444
445static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
446{
447	struct page *page = vmf->page;
448	struct inode *inode = file_inode(vmf->vma->vm_file);
449	struct gfs2_inode *ip = GFS2_I(inode);
450	struct gfs2_sbd *sdp = GFS2_SB(inode);
451	struct gfs2_alloc_parms ap = { .aflags = 0, };
452	u64 offset = page_offset(page);
453	unsigned int data_blocks, ind_blocks, rblocks;
454	struct gfs2_holder gh;
455	unsigned int length;
456	loff_t size;
457	int ret;
458
459	sb_start_pagefault(inode->i_sb);
460
461	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
462	ret = gfs2_glock_nq(&gh);
463	if (ret)
464		goto out_uninit;
465
466	/* Check page index against inode size */
467	size = i_size_read(inode);
468	if (offset >= size) {
469		ret = -EINVAL;
470		goto out_unlock;
471	}
472
473	/* Update file times before taking page lock */
474	file_update_time(vmf->vma->vm_file);
475
476	/* page is wholly or partially inside EOF */
477	if (size - offset < PAGE_SIZE)
478		length = size - offset;
479	else
480		length = PAGE_SIZE;
481
482	gfs2_size_hint(vmf->vma->vm_file, offset, length);
483
484	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
485	set_bit(GIF_SW_PAGED, &ip->i_flags);
486
487	/*
488	 * iomap_writepage / iomap_writepages currently don't support inline
489	 * files, so always unstuff here.
490	 */
491
492	if (!gfs2_is_stuffed(ip) &&
493	    !gfs2_write_alloc_required(ip, offset, length)) {
494		lock_page(page);
495		if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
496			ret = -EAGAIN;
497			unlock_page(page);
498		}
499		goto out_unlock;
500	}
501
502	ret = gfs2_rindex_update(sdp);
503	if (ret)
504		goto out_unlock;
505
506	gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
507	ap.target = data_blocks + ind_blocks;
508	ret = gfs2_quota_lock_check(ip, &ap);
509	if (ret)
510		goto out_unlock;
511	ret = gfs2_inplace_reserve(ip, &ap);
512	if (ret)
513		goto out_quota_unlock;
514
515	rblocks = RES_DINODE + ind_blocks;
516	if (gfs2_is_jdata(ip))
517		rblocks += data_blocks ? data_blocks : 1;
518	if (ind_blocks || data_blocks) {
519		rblocks += RES_STATFS + RES_QUOTA;
520		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
521	}
522	ret = gfs2_trans_begin(sdp, rblocks, 0);
523	if (ret)
524		goto out_trans_fail;
525
526	lock_page(page);
527	ret = -EAGAIN;
528	/* If truncated, we must retry the operation, we may have raced
529	 * with the glock demotion code.
530	 */
531	if (!PageUptodate(page) || page->mapping != inode->i_mapping)
532		goto out_trans_end;
533
534	/* Unstuff, if required, and allocate backing blocks for page */
535	ret = 0;
536	if (gfs2_is_stuffed(ip))
537		ret = gfs2_unstuff_dinode(ip, page);
538	if (ret == 0)
539		ret = gfs2_allocate_page_backing(page, length);
540
541out_trans_end:
542	if (ret)
543		unlock_page(page);
544	gfs2_trans_end(sdp);
545out_trans_fail:
546	gfs2_inplace_release(ip);
547out_quota_unlock:
548	gfs2_quota_unlock(ip);
549out_unlock:
550	gfs2_glock_dq(&gh);
551out_uninit:
552	gfs2_holder_uninit(&gh);
553	if (ret == 0) {
554		set_page_dirty(page);
555		wait_for_stable_page(page);
556	}
557	sb_end_pagefault(inode->i_sb);
558	return block_page_mkwrite_return(ret);
559}
560
561static vm_fault_t gfs2_fault(struct vm_fault *vmf)
562{
563	struct inode *inode = file_inode(vmf->vma->vm_file);
564	struct gfs2_inode *ip = GFS2_I(inode);
565	struct gfs2_holder gh;
566	vm_fault_t ret;
567	int err;
568
569	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
570	err = gfs2_glock_nq(&gh);
571	if (err) {
572		ret = block_page_mkwrite_return(err);
573		goto out_uninit;
574	}
575	ret = filemap_fault(vmf);
576	gfs2_glock_dq(&gh);
577out_uninit:
578	gfs2_holder_uninit(&gh);
579	return ret;
580}
581
582static const struct vm_operations_struct gfs2_vm_ops = {
583	.fault = gfs2_fault,
584	.map_pages = filemap_map_pages,
585	.page_mkwrite = gfs2_page_mkwrite,
586};
587
588/**
589 * gfs2_mmap -
590 * @file: The file to map
591 * @vma: The VMA which described the mapping
592 *
593 * There is no need to get a lock here unless we should be updating
594 * atime. We ignore any locking errors since the only consequence is
595 * a missed atime update (which will just be deferred until later).
596 *
597 * Returns: 0
598 */
599
600static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
601{
602	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
603
604	if (!(file->f_flags & O_NOATIME) &&
605	    !IS_NOATIME(&ip->i_inode)) {
606		struct gfs2_holder i_gh;
607		int error;
608
609		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
610					   &i_gh);
611		if (error)
612			return error;
613		/* grab lock to update inode */
614		gfs2_glock_dq_uninit(&i_gh);
615		file_accessed(file);
616	}
617	vma->vm_ops = &gfs2_vm_ops;
618
619	return 0;
620}
621
622/**
623 * gfs2_open_common - This is common to open and atomic_open
624 * @inode: The inode being opened
625 * @file: The file being opened
626 *
627 * This maybe called under a glock or not depending upon how it has
628 * been called. We must always be called under a glock for regular
629 * files, however. For other file types, it does not matter whether
630 * we hold the glock or not.
631 *
632 * Returns: Error code or 0 for success
633 */
634
635int gfs2_open_common(struct inode *inode, struct file *file)
636{
637	struct gfs2_file *fp;
638	int ret;
639
640	if (S_ISREG(inode->i_mode)) {
641		ret = generic_file_open(inode, file);
642		if (ret)
643			return ret;
644	}
645
646	fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
647	if (!fp)
648		return -ENOMEM;
649
650	mutex_init(&fp->f_fl_mutex);
651
652	gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
653	file->private_data = fp;
654	if (file->f_mode & FMODE_WRITE) {
655		ret = gfs2_qa_get(GFS2_I(inode));
656		if (ret)
657			goto fail;
658	}
659	return 0;
660
661fail:
662	kfree(file->private_data);
663	file->private_data = NULL;
664	return ret;
665}
666
667/**
668 * gfs2_open - open a file
669 * @inode: the inode to open
670 * @file: the struct file for this opening
671 *
672 * After atomic_open, this function is only used for opening files
673 * which are already cached. We must still get the glock for regular
674 * files to ensure that we have the file size uptodate for the large
675 * file check which is in the common code. That is only an issue for
676 * regular files though.
677 *
678 * Returns: errno
679 */
680
681static int gfs2_open(struct inode *inode, struct file *file)
682{
683	struct gfs2_inode *ip = GFS2_I(inode);
684	struct gfs2_holder i_gh;
685	int error;
686	bool need_unlock = false;
687
688	if (S_ISREG(ip->i_inode.i_mode)) {
689		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
690					   &i_gh);
691		if (error)
692			return error;
693		need_unlock = true;
694	}
695
696	error = gfs2_open_common(inode, file);
697
698	if (need_unlock)
699		gfs2_glock_dq_uninit(&i_gh);
700
701	return error;
702}
703
704/**
705 * gfs2_release - called to close a struct file
706 * @inode: the inode the struct file belongs to
707 * @file: the struct file being closed
708 *
709 * Returns: errno
710 */
711
712static int gfs2_release(struct inode *inode, struct file *file)
713{
714	struct gfs2_inode *ip = GFS2_I(inode);
715
716	kfree(file->private_data);
717	file->private_data = NULL;
718
719	if (file->f_mode & FMODE_WRITE) {
720		if (gfs2_rs_active(&ip->i_res))
721			gfs2_rs_delete(ip);
722		gfs2_qa_put(ip);
723	}
724	return 0;
725}
726
727/**
728 * gfs2_fsync - sync the dirty data for a file (across the cluster)
729 * @file: the file that points to the dentry
730 * @start: the start position in the file to sync
731 * @end: the end position in the file to sync
732 * @datasync: set if we can ignore timestamp changes
733 *
734 * We split the data flushing here so that we don't wait for the data
735 * until after we've also sent the metadata to disk. Note that for
736 * data=ordered, we will write & wait for the data at the log flush
737 * stage anyway, so this is unlikely to make much of a difference
738 * except in the data=writeback case.
739 *
740 * If the fdatawrite fails due to any reason except -EIO, we will
741 * continue the remainder of the fsync, although we'll still report
742 * the error at the end. This is to match filemap_write_and_wait_range()
743 * behaviour.
744 *
745 * Returns: errno
746 */
747
748static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
749		      int datasync)
750{
751	struct address_space *mapping = file->f_mapping;
752	struct inode *inode = mapping->host;
753	int sync_state = inode->i_state & I_DIRTY_ALL;
754	struct gfs2_inode *ip = GFS2_I(inode);
755	int ret = 0, ret1 = 0;
756
757	if (mapping->nrpages) {
758		ret1 = filemap_fdatawrite_range(mapping, start, end);
759		if (ret1 == -EIO)
760			return ret1;
761	}
762
763	if (!gfs2_is_jdata(ip))
764		sync_state &= ~I_DIRTY_PAGES;
765	if (datasync)
766		sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME);
767
768	if (sync_state) {
769		ret = sync_inode_metadata(inode, 1);
770		if (ret)
771			return ret;
772		if (gfs2_is_jdata(ip))
773			ret = file_write_and_wait(file);
774		if (ret)
775			return ret;
776		gfs2_ail_flush(ip->i_gl, 1);
777	}
778
779	if (mapping->nrpages)
780		ret = file_fdatawait_range(file, start, end);
781
782	return ret ? ret : ret1;
783}
784
785static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
786				     struct gfs2_holder *gh)
787{
788	struct file *file = iocb->ki_filp;
789	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
790	size_t count = iov_iter_count(to);
791	ssize_t ret;
792
793	if (!count)
794		return 0; /* skip atime */
795
796	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
797	ret = gfs2_glock_nq(gh);
798	if (ret)
799		goto out_uninit;
800
801	ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL,
802			   is_sync_kiocb(iocb));
803
804	gfs2_glock_dq(gh);
805out_uninit:
806	gfs2_holder_uninit(gh);
807	return ret;
808}
809
810static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
811				      struct gfs2_holder *gh)
812{
813	struct file *file = iocb->ki_filp;
814	struct inode *inode = file->f_mapping->host;
815	struct gfs2_inode *ip = GFS2_I(inode);
816	size_t len = iov_iter_count(from);
817	loff_t offset = iocb->ki_pos;
818	ssize_t ret;
819
820	/*
821	 * Deferred lock, even if its a write, since we do no allocation on
822	 * this path. All we need to change is the atime, and this lock mode
823	 * ensures that other nodes have flushed their buffered read caches
824	 * (i.e. their page cache entries for this inode). We do not,
825	 * unfortunately, have the option of only flushing a range like the
826	 * VFS does.
827	 */
828	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
829	ret = gfs2_glock_nq(gh);
830	if (ret)
831		goto out_uninit;
832
833	/* Silently fall back to buffered I/O when writing beyond EOF */
834	if (offset + len > i_size_read(&ip->i_inode))
835		goto out;
836
837	ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL,
838			   is_sync_kiocb(iocb));
839	if (ret == -ENOTBLK)
840		ret = 0;
841out:
842	gfs2_glock_dq(gh);
843out_uninit:
844	gfs2_holder_uninit(gh);
845	return ret;
846}
847
848static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
849{
850	struct gfs2_inode *ip;
851	struct gfs2_holder gh;
852	size_t written = 0;
853	ssize_t ret;
854
855	if (iocb->ki_flags & IOCB_DIRECT) {
856		ret = gfs2_file_direct_read(iocb, to, &gh);
857		if (likely(ret != -ENOTBLK))
858			return ret;
859		iocb->ki_flags &= ~IOCB_DIRECT;
860	}
861	pagefault_disable();
862	iocb->ki_flags |= IOCB_NOIO;
863	ret = generic_file_read_iter(iocb, to);
864	iocb->ki_flags &= ~IOCB_NOIO;
865	pagefault_enable();
866	if (ret >= 0) {
867		if (!iov_iter_count(to))
868			return ret;
869		written = ret;
870	} else if (ret != -EFAULT) {
871		if (ret != -EAGAIN)
872			return ret;
873		if (iocb->ki_flags & IOCB_NOWAIT)
874			return ret;
875	}
876	ip = GFS2_I(iocb->ki_filp->f_mapping->host);
877	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
878	ret = gfs2_glock_nq(&gh);
879	if (ret)
880		goto out_uninit;
881	ret = generic_file_read_iter(iocb, to);
882	if (ret > 0)
883		written += ret;
884	gfs2_glock_dq(&gh);
885out_uninit:
886	gfs2_holder_uninit(&gh);
887	return written ? written : ret;
888}
889
890/**
891 * gfs2_file_write_iter - Perform a write to a file
892 * @iocb: The io context
893 * @from: The data to write
894 *
895 * We have to do a lock/unlock here to refresh the inode size for
896 * O_APPEND writes, otherwise we can land up writing at the wrong
897 * offset. There is still a race, but provided the app is using its
898 * own file locking, this will make O_APPEND work as expected.
899 *
900 */
901
902static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
903{
904	struct file *file = iocb->ki_filp;
905	struct inode *inode = file_inode(file);
906	struct gfs2_inode *ip = GFS2_I(inode);
907	struct gfs2_holder gh;
908	ssize_t ret;
909
910	gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
911
912	if (iocb->ki_flags & IOCB_APPEND) {
913		ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
914		if (ret)
915			return ret;
916		gfs2_glock_dq_uninit(&gh);
917	}
918
919	inode_lock(inode);
920	ret = generic_write_checks(iocb, from);
921	if (ret <= 0)
922		goto out_unlock;
923
924	ret = file_remove_privs(file);
925	if (ret)
926		goto out_unlock;
927
928	ret = file_update_time(file);
929	if (ret)
930		goto out_unlock;
931
932	if (iocb->ki_flags & IOCB_DIRECT) {
933		struct address_space *mapping = file->f_mapping;
934		ssize_t buffered, ret2;
935
936		ret = gfs2_file_direct_write(iocb, from, &gh);
937		if (ret < 0 || !iov_iter_count(from))
938			goto out_unlock;
939
940		iocb->ki_flags |= IOCB_DSYNC;
941		current->backing_dev_info = inode_to_bdi(inode);
942		buffered = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
943		current->backing_dev_info = NULL;
944		if (unlikely(buffered <= 0)) {
945			if (!ret)
946				ret = buffered;
947			goto out_unlock;
948		}
949
950		/*
951		 * We need to ensure that the page cache pages are written to
952		 * disk and invalidated to preserve the expected O_DIRECT
953		 * semantics.  If the writeback or invalidate fails, only report
954		 * the direct I/O range as we don't know if the buffered pages
955		 * made it to disk.
956		 */
957		iocb->ki_pos += buffered;
958		ret2 = generic_write_sync(iocb, buffered);
959		invalidate_mapping_pages(mapping,
960				(iocb->ki_pos - buffered) >> PAGE_SHIFT,
961				(iocb->ki_pos - 1) >> PAGE_SHIFT);
962		if (!ret || ret2 > 0)
963			ret += ret2;
964	} else {
965		current->backing_dev_info = inode_to_bdi(inode);
966		ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
967		current->backing_dev_info = NULL;
968		if (likely(ret > 0)) {
969			iocb->ki_pos += ret;
970			ret = generic_write_sync(iocb, ret);
971		}
972	}
973
974out_unlock:
975	inode_unlock(inode);
976	return ret;
977}
978
979static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
980			   int mode)
981{
982	struct super_block *sb = inode->i_sb;
983	struct gfs2_inode *ip = GFS2_I(inode);
984	loff_t end = offset + len;
985	struct buffer_head *dibh;
986	int error;
987
988	error = gfs2_meta_inode_buffer(ip, &dibh);
989	if (unlikely(error))
990		return error;
991
992	gfs2_trans_add_meta(ip->i_gl, dibh);
993
994	if (gfs2_is_stuffed(ip)) {
995		error = gfs2_unstuff_dinode(ip, NULL);
996		if (unlikely(error))
997			goto out;
998	}
999
1000	while (offset < end) {
1001		struct iomap iomap = { };
1002
1003		error = gfs2_iomap_get_alloc(inode, offset, end - offset,
1004					     &iomap);
1005		if (error)
1006			goto out;
1007		offset = iomap.offset + iomap.length;
1008		if (!(iomap.flags & IOMAP_F_NEW))
1009			continue;
1010		error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
1011					 iomap.length >> inode->i_blkbits,
1012					 GFP_NOFS);
1013		if (error) {
1014			fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
1015			goto out;
1016		}
1017	}
1018out:
1019	brelse(dibh);
1020	return error;
1021}
1022
1023/**
1024 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
1025 *                     blocks, determine how many bytes can be written.
1026 * @ip:          The inode in question.
1027 * @len:         Max cap of bytes. What we return in *len must be <= this.
1028 * @data_blocks: Compute and return the number of data blocks needed
1029 * @ind_blocks:  Compute and return the number of indirect blocks needed
1030 * @max_blocks:  The total blocks available to work with.
1031 *
1032 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
1033 */
1034static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
1035			    unsigned int *data_blocks, unsigned int *ind_blocks,
1036			    unsigned int max_blocks)
1037{
1038	loff_t max = *len;
1039	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1040	unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
1041
1042	for (tmp = max_data; tmp > sdp->sd_diptrs;) {
1043		tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
1044		max_data -= tmp;
1045	}
1046
1047	*data_blocks = max_data;
1048	*ind_blocks = max_blocks - max_data;
1049	*len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
1050	if (*len > max) {
1051		*len = max;
1052		gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
1053	}
1054}
1055
1056static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1057{
1058	struct inode *inode = file_inode(file);
1059	struct gfs2_sbd *sdp = GFS2_SB(inode);
1060	struct gfs2_inode *ip = GFS2_I(inode);
1061	struct gfs2_alloc_parms ap = { .aflags = 0, };
1062	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1063	loff_t bytes, max_bytes, max_blks;
1064	int error;
1065	const loff_t pos = offset;
1066	const loff_t count = len;
1067	loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
1068	loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
1069	loff_t max_chunk_size = UINT_MAX & bsize_mask;
1070
1071	next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
1072
1073	offset &= bsize_mask;
1074
1075	len = next - offset;
1076	bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
1077	if (!bytes)
1078		bytes = UINT_MAX;
1079	bytes &= bsize_mask;
1080	if (bytes == 0)
1081		bytes = sdp->sd_sb.sb_bsize;
1082
1083	gfs2_size_hint(file, offset, len);
1084
1085	gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
1086	ap.min_target = data_blocks + ind_blocks;
1087
1088	while (len > 0) {
1089		if (len < bytes)
1090			bytes = len;
1091		if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1092			len -= bytes;
1093			offset += bytes;
1094			continue;
1095		}
1096
1097		/* We need to determine how many bytes we can actually
1098		 * fallocate without exceeding quota or going over the
1099		 * end of the fs. We start off optimistically by assuming
1100		 * we can write max_bytes */
1101		max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1102
1103		/* Since max_bytes is most likely a theoretical max, we
1104		 * calculate a more realistic 'bytes' to serve as a good
1105		 * starting point for the number of bytes we may be able
1106		 * to write */
1107		gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1108		ap.target = data_blocks + ind_blocks;
1109
1110		error = gfs2_quota_lock_check(ip, &ap);
1111		if (error)
1112			return error;
1113		/* ap.allowed tells us how many blocks quota will allow
1114		 * us to write. Check if this reduces max_blks */
1115		max_blks = UINT_MAX;
1116		if (ap.allowed)
1117			max_blks = ap.allowed;
1118
1119		error = gfs2_inplace_reserve(ip, &ap);
1120		if (error)
1121			goto out_qunlock;
1122
1123		/* check if the selected rgrp limits our max_blks further */
1124		if (ap.allowed && ap.allowed < max_blks)
1125			max_blks = ap.allowed;
1126
1127		/* Almost done. Calculate bytes that can be written using
1128		 * max_blks. We also recompute max_bytes, data_blocks and
1129		 * ind_blocks */
1130		calc_max_reserv(ip, &max_bytes, &data_blocks,
1131				&ind_blocks, max_blks);
1132
1133		rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1134			  RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1135		if (gfs2_is_jdata(ip))
1136			rblocks += data_blocks ? data_blocks : 1;
1137
1138		error = gfs2_trans_begin(sdp, rblocks,
1139					 PAGE_SIZE >> inode->i_blkbits);
1140		if (error)
1141			goto out_trans_fail;
1142
1143		error = fallocate_chunk(inode, offset, max_bytes, mode);
1144		gfs2_trans_end(sdp);
1145
1146		if (error)
1147			goto out_trans_fail;
1148
1149		len -= max_bytes;
1150		offset += max_bytes;
1151		gfs2_inplace_release(ip);
1152		gfs2_quota_unlock(ip);
1153	}
1154
1155	if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
1156		i_size_write(inode, pos + count);
1157	file_update_time(file);
1158	mark_inode_dirty(inode);
1159
1160	if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1161		return vfs_fsync_range(file, pos, pos + count - 1,
1162			       (file->f_flags & __O_SYNC) ? 0 : 1);
1163	return 0;
1164
1165out_trans_fail:
1166	gfs2_inplace_release(ip);
1167out_qunlock:
1168	gfs2_quota_unlock(ip);
1169	return error;
1170}
1171
1172static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1173{
1174	struct inode *inode = file_inode(file);
1175	struct gfs2_sbd *sdp = GFS2_SB(inode);
1176	struct gfs2_inode *ip = GFS2_I(inode);
1177	struct gfs2_holder gh;
1178	int ret;
1179
1180	if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1181		return -EOPNOTSUPP;
1182	/* fallocate is needed by gfs2_grow to reserve space in the rindex */
1183	if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1184		return -EOPNOTSUPP;
1185
1186	inode_lock(inode);
1187
1188	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1189	ret = gfs2_glock_nq(&gh);
1190	if (ret)
1191		goto out_uninit;
1192
1193	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1194	    (offset + len) > inode->i_size) {
1195		ret = inode_newsize_ok(inode, offset + len);
1196		if (ret)
1197			goto out_unlock;
1198	}
1199
1200	ret = get_write_access(inode);
1201	if (ret)
1202		goto out_unlock;
1203
1204	if (mode & FALLOC_FL_PUNCH_HOLE) {
1205		ret = __gfs2_punch_hole(file, offset, len);
1206	} else {
1207		ret = __gfs2_fallocate(file, mode, offset, len);
1208		if (ret)
1209			gfs2_rs_deltree(&ip->i_res);
1210	}
1211
1212	put_write_access(inode);
1213out_unlock:
1214	gfs2_glock_dq(&gh);
1215out_uninit:
1216	gfs2_holder_uninit(&gh);
1217	inode_unlock(inode);
1218	return ret;
1219}
1220
1221static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1222				      struct file *out, loff_t *ppos,
1223				      size_t len, unsigned int flags)
1224{
1225	ssize_t ret;
1226
1227	gfs2_size_hint(out, *ppos, len);
1228
1229	ret = iter_file_splice_write(pipe, out, ppos, len, flags);
1230	return ret;
1231}
1232
1233#ifdef CONFIG_GFS2_FS_LOCKING_DLM
1234
1235/**
1236 * gfs2_lock - acquire/release a posix lock on a file
1237 * @file: the file pointer
1238 * @cmd: either modify or retrieve lock state, possibly wait
1239 * @fl: type and range of lock
1240 *
1241 * Returns: errno
1242 */
1243
1244static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1245{
1246	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1247	struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1248	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1249
1250	if (!(fl->fl_flags & FL_POSIX))
1251		return -ENOLCK;
1252	if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
1253		return -ENOLCK;
1254
1255	if (cmd == F_CANCELLK) {
1256		/* Hack: */
1257		cmd = F_SETLK;
1258		fl->fl_type = F_UNLCK;
1259	}
1260	if (unlikely(gfs2_withdrawn(sdp))) {
1261		if (fl->fl_type == F_UNLCK)
1262			locks_lock_file_wait(file, fl);
1263		return -EIO;
1264	}
1265	if (IS_GETLK(cmd))
1266		return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1267	else if (fl->fl_type == F_UNLCK)
1268		return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1269	else
1270		return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1271}
1272
1273static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1274{
1275	struct gfs2_file *fp = file->private_data;
1276	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1277	struct gfs2_inode *ip = GFS2_I(file_inode(file));
1278	struct gfs2_glock *gl;
1279	unsigned int state;
1280	u16 flags;
1281	int error = 0;
1282	int sleeptime;
1283
1284	state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1285	flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1286
1287	mutex_lock(&fp->f_fl_mutex);
1288
1289	if (gfs2_holder_initialized(fl_gh)) {
1290		struct file_lock request;
1291		if (fl_gh->gh_state == state)
1292			goto out;
1293		locks_init_lock(&request);
1294		request.fl_type = F_UNLCK;
1295		request.fl_flags = FL_FLOCK;
1296		locks_lock_file_wait(file, &request);
1297		gfs2_glock_dq(fl_gh);
1298		gfs2_holder_reinit(state, flags, fl_gh);
1299	} else {
1300		error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1301				       &gfs2_flock_glops, CREATE, &gl);
1302		if (error)
1303			goto out;
1304		gfs2_holder_init(gl, state, flags, fl_gh);
1305		gfs2_glock_put(gl);
1306	}
1307	for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1308		error = gfs2_glock_nq(fl_gh);
1309		if (error != GLR_TRYFAILED)
1310			break;
1311		fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1312		fl_gh->gh_error = 0;
1313		msleep(sleeptime);
1314	}
1315	if (error) {
1316		gfs2_holder_uninit(fl_gh);
1317		if (error == GLR_TRYFAILED)
1318			error = -EAGAIN;
1319	} else {
1320		error = locks_lock_file_wait(file, fl);
1321		gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1322	}
1323
1324out:
1325	mutex_unlock(&fp->f_fl_mutex);
1326	return error;
1327}
1328
1329static void do_unflock(struct file *file, struct file_lock *fl)
1330{
1331	struct gfs2_file *fp = file->private_data;
1332	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1333
1334	mutex_lock(&fp->f_fl_mutex);
1335	locks_lock_file_wait(file, fl);
1336	if (gfs2_holder_initialized(fl_gh)) {
1337		gfs2_glock_dq(fl_gh);
1338		gfs2_holder_uninit(fl_gh);
1339	}
1340	mutex_unlock(&fp->f_fl_mutex);
1341}
1342
1343/**
1344 * gfs2_flock - acquire/release a flock lock on a file
1345 * @file: the file pointer
1346 * @cmd: either modify or retrieve lock state, possibly wait
1347 * @fl: type and range of lock
1348 *
1349 * Returns: errno
1350 */
1351
1352static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1353{
1354	if (!(fl->fl_flags & FL_FLOCK))
1355		return -ENOLCK;
1356	if (fl->fl_type & LOCK_MAND)
1357		return -EOPNOTSUPP;
1358
1359	if (fl->fl_type == F_UNLCK) {
1360		do_unflock(file, fl);
1361		return 0;
1362	} else {
1363		return do_flock(file, cmd, fl);
1364	}
1365}
1366
1367const struct file_operations gfs2_file_fops = {
1368	.llseek		= gfs2_llseek,
1369	.read_iter	= gfs2_file_read_iter,
1370	.write_iter	= gfs2_file_write_iter,
1371	.iopoll		= iomap_dio_iopoll,
1372	.unlocked_ioctl	= gfs2_ioctl,
1373	.compat_ioctl	= gfs2_compat_ioctl,
1374	.mmap		= gfs2_mmap,
1375	.open		= gfs2_open,
1376	.release	= gfs2_release,
1377	.fsync		= gfs2_fsync,
1378	.lock		= gfs2_lock,
1379	.flock		= gfs2_flock,
1380	.splice_read	= generic_file_splice_read,
1381	.splice_write	= gfs2_file_splice_write,
1382	.setlease	= simple_nosetlease,
1383	.fallocate	= gfs2_fallocate,
1384};
1385
1386const struct file_operations gfs2_dir_fops = {
1387	.iterate_shared	= gfs2_readdir,
1388	.unlocked_ioctl	= gfs2_ioctl,
1389	.compat_ioctl	= gfs2_compat_ioctl,
1390	.open		= gfs2_open,
1391	.release	= gfs2_release,
1392	.fsync		= gfs2_fsync,
1393	.lock		= gfs2_lock,
1394	.flock		= gfs2_flock,
1395	.llseek		= default_llseek,
1396};
1397
1398#endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1399
1400const struct file_operations gfs2_file_fops_nolock = {
1401	.llseek		= gfs2_llseek,
1402	.read_iter	= gfs2_file_read_iter,
1403	.write_iter	= gfs2_file_write_iter,
1404	.iopoll		= iomap_dio_iopoll,
1405	.unlocked_ioctl	= gfs2_ioctl,
1406	.compat_ioctl	= gfs2_compat_ioctl,
1407	.mmap		= gfs2_mmap,
1408	.open		= gfs2_open,
1409	.release	= gfs2_release,
1410	.fsync		= gfs2_fsync,
1411	.splice_read	= generic_file_splice_read,
1412	.splice_write	= gfs2_file_splice_write,
1413	.setlease	= generic_setlease,
1414	.fallocate	= gfs2_fallocate,
1415};
1416
1417const struct file_operations gfs2_dir_fops_nolock = {
1418	.iterate_shared	= gfs2_readdir,
1419	.unlocked_ioctl	= gfs2_ioctl,
1420	.compat_ioctl	= gfs2_compat_ioctl,
1421	.open		= gfs2_open,
1422	.release	= gfs2_release,
1423	.fsync		= gfs2_fsync,
1424	.llseek		= default_llseek,
1425};
1426
1427