1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7#include <linux/spinlock.h> 8#include <linux/completion.h> 9#include <linux/buffer_head.h> 10#include <linux/blkdev.h> 11#include <linux/gfs2_ondisk.h> 12#include <linux/crc32.h> 13#include <linux/iomap.h> 14#include <linux/ktime.h> 15 16#include "gfs2.h" 17#include "incore.h" 18#include "bmap.h" 19#include "glock.h" 20#include "inode.h" 21#include "meta_io.h" 22#include "quota.h" 23#include "rgrp.h" 24#include "log.h" 25#include "super.h" 26#include "trans.h" 27#include "dir.h" 28#include "util.h" 29#include "aops.h" 30#include "trace_gfs2.h" 31 32/* This doesn't need to be that large as max 64 bit pointers in a 4k 33 * block is 512, so __u16 is fine for that. It saves stack space to 34 * keep it small. 35 */ 36struct metapath { 37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 38 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 39 int mp_fheight; /* find_metapath height */ 40 int mp_aheight; /* actual height (lookup height) */ 41}; 42 43static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 44 45/** 46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 47 * @ip: the inode 48 * @dibh: the dinode buffer 49 * @block: the block number that was allocated 50 * @page: The (optional) page. This is looked up if @page is NULL 51 * 52 * Returns: errno 53 */ 54 55static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 56 u64 block, struct page *page) 57{ 58 struct inode *inode = &ip->i_inode; 59 int release = 0; 60 61 if (!page || page->index) { 62 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 63 if (!page) 64 return -ENOMEM; 65 release = 1; 66 } 67 68 if (!PageUptodate(page)) { 69 void *kaddr = kmap(page); 70 u64 dsize = i_size_read(inode); 71 72 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 73 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 74 kunmap(page); 75 76 SetPageUptodate(page); 77 } 78 79 if (gfs2_is_jdata(ip)) { 80 struct buffer_head *bh; 81 82 if (!page_has_buffers(page)) 83 create_empty_buffers(page, BIT(inode->i_blkbits), 84 BIT(BH_Uptodate)); 85 86 bh = page_buffers(page); 87 if (!buffer_mapped(bh)) 88 map_bh(bh, inode->i_sb, block); 89 90 set_buffer_uptodate(bh); 91 gfs2_trans_add_data(ip->i_gl, bh); 92 } else { 93 set_page_dirty(page); 94 gfs2_ordered_add_inode(ip); 95 } 96 97 if (release) { 98 unlock_page(page); 99 put_page(page); 100 } 101 102 return 0; 103} 104 105/** 106 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 107 * @ip: The GFS2 inode to unstuff 108 * @page: The (optional) page. This is looked up if the @page is NULL 109 * 110 * This routine unstuffs a dinode and returns it to a "normal" state such 111 * that the height can be grown in the traditional way. 112 * 113 * Returns: errno 114 */ 115 116int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page) 117{ 118 struct buffer_head *bh, *dibh; 119 struct gfs2_dinode *di; 120 u64 block = 0; 121 int isdir = gfs2_is_dir(ip); 122 int error; 123 124 down_write(&ip->i_rw_mutex); 125 126 error = gfs2_meta_inode_buffer(ip, &dibh); 127 if (error) 128 goto out; 129 130 if (i_size_read(&ip->i_inode)) { 131 /* Get a free block, fill it with the stuffed data, 132 and write it out to disk */ 133 134 unsigned int n = 1; 135 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 136 if (error) 137 goto out_brelse; 138 if (isdir) { 139 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1); 140 error = gfs2_dir_get_new_buffer(ip, block, &bh); 141 if (error) 142 goto out_brelse; 143 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 144 dibh, sizeof(struct gfs2_dinode)); 145 brelse(bh); 146 } else { 147 error = gfs2_unstuffer_page(ip, dibh, block, page); 148 if (error) 149 goto out_brelse; 150 } 151 } 152 153 /* Set up the pointer to the new block */ 154 155 gfs2_trans_add_meta(ip->i_gl, dibh); 156 di = (struct gfs2_dinode *)dibh->b_data; 157 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 158 159 if (i_size_read(&ip->i_inode)) { 160 *(__be64 *)(di + 1) = cpu_to_be64(block); 161 gfs2_add_inode_blocks(&ip->i_inode, 1); 162 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 163 } 164 165 ip->i_height = 1; 166 di->di_height = cpu_to_be16(1); 167 168out_brelse: 169 brelse(dibh); 170out: 171 up_write(&ip->i_rw_mutex); 172 return error; 173} 174 175 176/** 177 * find_metapath - Find path through the metadata tree 178 * @sdp: The superblock 179 * @block: The disk block to look up 180 * @mp: The metapath to return the result in 181 * @height: The pre-calculated height of the metadata tree 182 * 183 * This routine returns a struct metapath structure that defines a path 184 * through the metadata of inode "ip" to get to block "block". 185 * 186 * Example: 187 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 188 * filesystem with a blocksize of 4096. 189 * 190 * find_metapath() would return a struct metapath structure set to: 191 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 192 * 193 * That means that in order to get to the block containing the byte at 194 * offset 101342453, we would load the indirect block pointed to by pointer 195 * 0 in the dinode. We would then load the indirect block pointed to by 196 * pointer 48 in that indirect block. We would then load the data block 197 * pointed to by pointer 165 in that indirect block. 198 * 199 * ---------------------------------------- 200 * | Dinode | | 201 * | | 4| 202 * | |0 1 2 3 4 5 9| 203 * | | 6| 204 * ---------------------------------------- 205 * | 206 * | 207 * V 208 * ---------------------------------------- 209 * | Indirect Block | 210 * | 5| 211 * | 4 4 4 4 4 5 5 1| 212 * |0 5 6 7 8 9 0 1 2| 213 * ---------------------------------------- 214 * | 215 * | 216 * V 217 * ---------------------------------------- 218 * | Indirect Block | 219 * | 1 1 1 1 1 5| 220 * | 6 6 6 6 6 1| 221 * |0 3 4 5 6 7 2| 222 * ---------------------------------------- 223 * | 224 * | 225 * V 226 * ---------------------------------------- 227 * | Data block containing offset | 228 * | 101342453 | 229 * | | 230 * | | 231 * ---------------------------------------- 232 * 233 */ 234 235static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 236 struct metapath *mp, unsigned int height) 237{ 238 unsigned int i; 239 240 mp->mp_fheight = height; 241 for (i = height; i--;) 242 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 243} 244 245static inline unsigned int metapath_branch_start(const struct metapath *mp) 246{ 247 if (mp->mp_list[0] == 0) 248 return 2; 249 return 1; 250} 251 252/** 253 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 254 * @height: The metadata height (0 = dinode) 255 * @mp: The metapath 256 */ 257static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 258{ 259 struct buffer_head *bh = mp->mp_bh[height]; 260 if (height == 0) 261 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 262 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 263} 264 265/** 266 * metapointer - Return pointer to start of metadata in a buffer 267 * @height: The metadata height (0 = dinode) 268 * @mp: The metapath 269 * 270 * Return a pointer to the block number of the next height of the metadata 271 * tree given a buffer containing the pointer to the current height of the 272 * metadata tree. 273 */ 274 275static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 276{ 277 __be64 *p = metaptr1(height, mp); 278 return p + mp->mp_list[height]; 279} 280 281static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 282{ 283 const struct buffer_head *bh = mp->mp_bh[height]; 284 return (const __be64 *)(bh->b_data + bh->b_size); 285} 286 287static void clone_metapath(struct metapath *clone, struct metapath *mp) 288{ 289 unsigned int hgt; 290 291 *clone = *mp; 292 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 293 get_bh(clone->mp_bh[hgt]); 294} 295 296static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 297{ 298 const __be64 *t; 299 300 for (t = start; t < end; t++) { 301 struct buffer_head *rabh; 302 303 if (!*t) 304 continue; 305 306 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 307 if (trylock_buffer(rabh)) { 308 if (!buffer_uptodate(rabh)) { 309 rabh->b_end_io = end_buffer_read_sync; 310 submit_bh(REQ_OP_READ, 311 REQ_RAHEAD | REQ_META | REQ_PRIO, 312 rabh); 313 continue; 314 } 315 unlock_buffer(rabh); 316 } 317 brelse(rabh); 318 } 319} 320 321static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 322 unsigned int x, unsigned int h) 323{ 324 for (; x < h; x++) { 325 __be64 *ptr = metapointer(x, mp); 326 u64 dblock = be64_to_cpu(*ptr); 327 int ret; 328 329 if (!dblock) 330 break; 331 ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]); 332 if (ret) 333 return ret; 334 } 335 mp->mp_aheight = x + 1; 336 return 0; 337} 338 339/** 340 * lookup_metapath - Walk the metadata tree to a specific point 341 * @ip: The inode 342 * @mp: The metapath 343 * 344 * Assumes that the inode's buffer has already been looked up and 345 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 346 * by find_metapath(). 347 * 348 * If this function encounters part of the tree which has not been 349 * allocated, it returns the current height of the tree at the point 350 * at which it found the unallocated block. Blocks which are found are 351 * added to the mp->mp_bh[] list. 352 * 353 * Returns: error 354 */ 355 356static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 357{ 358 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 359} 360 361/** 362 * fillup_metapath - fill up buffers for the metadata path to a specific height 363 * @ip: The inode 364 * @mp: The metapath 365 * @h: The height to which it should be mapped 366 * 367 * Similar to lookup_metapath, but does lookups for a range of heights 368 * 369 * Returns: error or the number of buffers filled 370 */ 371 372static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 373{ 374 unsigned int x = 0; 375 int ret; 376 377 if (h) { 378 /* find the first buffer we need to look up. */ 379 for (x = h - 1; x > 0; x--) { 380 if (mp->mp_bh[x]) 381 break; 382 } 383 } 384 ret = __fillup_metapath(ip, mp, x, h); 385 if (ret) 386 return ret; 387 return mp->mp_aheight - x - 1; 388} 389 390static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp) 391{ 392 sector_t factor = 1, block = 0; 393 int hgt; 394 395 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) { 396 if (hgt < mp->mp_aheight) 397 block += mp->mp_list[hgt] * factor; 398 factor *= sdp->sd_inptrs; 399 } 400 return block; 401} 402 403static void release_metapath(struct metapath *mp) 404{ 405 int i; 406 407 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 408 if (mp->mp_bh[i] == NULL) 409 break; 410 brelse(mp->mp_bh[i]); 411 mp->mp_bh[i] = NULL; 412 } 413} 414 415/** 416 * gfs2_extent_length - Returns length of an extent of blocks 417 * @bh: The metadata block 418 * @ptr: Current position in @bh 419 * @limit: Max extent length to return 420 * @eob: Set to 1 if we hit "end of block" 421 * 422 * Returns: The length of the extent (minimum of one block) 423 */ 424 425static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 426{ 427 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 428 const __be64 *first = ptr; 429 u64 d = be64_to_cpu(*ptr); 430 431 *eob = 0; 432 do { 433 ptr++; 434 if (ptr >= end) 435 break; 436 d++; 437 } while(be64_to_cpu(*ptr) == d); 438 if (ptr >= end) 439 *eob = 1; 440 return ptr - first; 441} 442 443enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE }; 444 445/* 446 * gfs2_metadata_walker - walk an indirect block 447 * @mp: Metapath to indirect block 448 * @ptrs: Number of pointers to look at 449 * 450 * When returning WALK_FOLLOW, the walker must update @mp to point at the right 451 * indirect block to follow. 452 */ 453typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp, 454 unsigned int ptrs); 455 456/* 457 * gfs2_walk_metadata - walk a tree of indirect blocks 458 * @inode: The inode 459 * @mp: Starting point of walk 460 * @max_len: Maximum number of blocks to walk 461 * @walker: Called during the walk 462 * 463 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or 464 * past the end of metadata, and a negative error code otherwise. 465 */ 466 467static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp, 468 u64 max_len, gfs2_metadata_walker walker) 469{ 470 struct gfs2_inode *ip = GFS2_I(inode); 471 struct gfs2_sbd *sdp = GFS2_SB(inode); 472 u64 factor = 1; 473 unsigned int hgt; 474 int ret; 475 476 /* 477 * The walk starts in the lowest allocated indirect block, which may be 478 * before the position indicated by @mp. Adjust @max_len accordingly 479 * to avoid a short walk. 480 */ 481 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) { 482 max_len += mp->mp_list[hgt] * factor; 483 mp->mp_list[hgt] = 0; 484 factor *= sdp->sd_inptrs; 485 } 486 487 for (;;) { 488 u16 start = mp->mp_list[hgt]; 489 enum walker_status status; 490 unsigned int ptrs; 491 u64 len; 492 493 /* Walk indirect block. */ 494 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start; 495 len = ptrs * factor; 496 if (len > max_len) 497 ptrs = DIV_ROUND_UP_ULL(max_len, factor); 498 status = walker(mp, ptrs); 499 switch (status) { 500 case WALK_STOP: 501 return 1; 502 case WALK_FOLLOW: 503 BUG_ON(mp->mp_aheight == mp->mp_fheight); 504 ptrs = mp->mp_list[hgt] - start; 505 len = ptrs * factor; 506 break; 507 case WALK_CONTINUE: 508 break; 509 } 510 if (len >= max_len) 511 break; 512 max_len -= len; 513 if (status == WALK_FOLLOW) 514 goto fill_up_metapath; 515 516lower_metapath: 517 /* Decrease height of metapath. */ 518 brelse(mp->mp_bh[hgt]); 519 mp->mp_bh[hgt] = NULL; 520 mp->mp_list[hgt] = 0; 521 if (!hgt) 522 break; 523 hgt--; 524 factor *= sdp->sd_inptrs; 525 526 /* Advance in metadata tree. */ 527 (mp->mp_list[hgt])++; 528 if (hgt) { 529 if (mp->mp_list[hgt] >= sdp->sd_inptrs) 530 goto lower_metapath; 531 } else { 532 if (mp->mp_list[hgt] >= sdp->sd_diptrs) 533 break; 534 } 535 536fill_up_metapath: 537 /* Increase height of metapath. */ 538 ret = fillup_metapath(ip, mp, ip->i_height - 1); 539 if (ret < 0) 540 return ret; 541 hgt += ret; 542 for (; ret; ret--) 543 do_div(factor, sdp->sd_inptrs); 544 mp->mp_aheight = hgt + 1; 545 } 546 return 0; 547} 548 549static enum walker_status gfs2_hole_walker(struct metapath *mp, 550 unsigned int ptrs) 551{ 552 const __be64 *start, *ptr, *end; 553 unsigned int hgt; 554 555 hgt = mp->mp_aheight - 1; 556 start = metapointer(hgt, mp); 557 end = start + ptrs; 558 559 for (ptr = start; ptr < end; ptr++) { 560 if (*ptr) { 561 mp->mp_list[hgt] += ptr - start; 562 if (mp->mp_aheight == mp->mp_fheight) 563 return WALK_STOP; 564 return WALK_FOLLOW; 565 } 566 } 567 return WALK_CONTINUE; 568} 569 570/** 571 * gfs2_hole_size - figure out the size of a hole 572 * @inode: The inode 573 * @lblock: The logical starting block number 574 * @len: How far to look (in blocks) 575 * @mp: The metapath at lblock 576 * @iomap: The iomap to store the hole size in 577 * 578 * This function modifies @mp. 579 * 580 * Returns: errno on error 581 */ 582static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 583 struct metapath *mp, struct iomap *iomap) 584{ 585 struct metapath clone; 586 u64 hole_size; 587 int ret; 588 589 clone_metapath(&clone, mp); 590 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker); 591 if (ret < 0) 592 goto out; 593 594 if (ret == 1) 595 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock; 596 else 597 hole_size = len; 598 iomap->length = hole_size << inode->i_blkbits; 599 ret = 0; 600 601out: 602 release_metapath(&clone); 603 return ret; 604} 605 606static inline __be64 *gfs2_indirect_init(struct metapath *mp, 607 struct gfs2_glock *gl, unsigned int i, 608 unsigned offset, u64 bn) 609{ 610 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 611 ((i > 1) ? sizeof(struct gfs2_meta_header) : 612 sizeof(struct gfs2_dinode))); 613 BUG_ON(i < 1); 614 BUG_ON(mp->mp_bh[i] != NULL); 615 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 616 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 617 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 618 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 619 ptr += offset; 620 *ptr = cpu_to_be64(bn); 621 return ptr; 622} 623 624enum alloc_state { 625 ALLOC_DATA = 0, 626 ALLOC_GROW_DEPTH = 1, 627 ALLOC_GROW_HEIGHT = 2, 628 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 629}; 630 631/** 632 * gfs2_iomap_alloc - Build a metadata tree of the requested height 633 * @inode: The GFS2 inode 634 * @iomap: The iomap structure 635 * @mp: The metapath, with proper height information calculated 636 * 637 * In this routine we may have to alloc: 638 * i) Indirect blocks to grow the metadata tree height 639 * ii) Indirect blocks to fill in lower part of the metadata tree 640 * iii) Data blocks 641 * 642 * This function is called after gfs2_iomap_get, which works out the 643 * total number of blocks which we need via gfs2_alloc_size. 644 * 645 * We then do the actual allocation asking for an extent at a time (if 646 * enough contiguous free blocks are available, there will only be one 647 * allocation request per call) and uses the state machine to initialise 648 * the blocks in order. 649 * 650 * Right now, this function will allocate at most one indirect block 651 * worth of data -- with a default block size of 4K, that's slightly 652 * less than 2M. If this limitation is ever removed to allow huge 653 * allocations, we would probably still want to limit the iomap size we 654 * return to avoid stalling other tasks during huge writes; the next 655 * iomap iteration would then find the blocks already allocated. 656 * 657 * Returns: errno on error 658 */ 659 660static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 661 struct metapath *mp) 662{ 663 struct gfs2_inode *ip = GFS2_I(inode); 664 struct gfs2_sbd *sdp = GFS2_SB(inode); 665 struct buffer_head *dibh = mp->mp_bh[0]; 666 u64 bn; 667 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 668 size_t dblks = iomap->length >> inode->i_blkbits; 669 const unsigned end_of_metadata = mp->mp_fheight - 1; 670 int ret; 671 enum alloc_state state; 672 __be64 *ptr; 673 __be64 zero_bn = 0; 674 675 BUG_ON(mp->mp_aheight < 1); 676 BUG_ON(dibh == NULL); 677 BUG_ON(dblks < 1); 678 679 gfs2_trans_add_meta(ip->i_gl, dibh); 680 681 down_write(&ip->i_rw_mutex); 682 683 if (mp->mp_fheight == mp->mp_aheight) { 684 /* Bottom indirect block exists */ 685 state = ALLOC_DATA; 686 } else { 687 /* Need to allocate indirect blocks */ 688 if (mp->mp_fheight == ip->i_height) { 689 /* Writing into existing tree, extend tree down */ 690 iblks = mp->mp_fheight - mp->mp_aheight; 691 state = ALLOC_GROW_DEPTH; 692 } else { 693 /* Building up tree height */ 694 state = ALLOC_GROW_HEIGHT; 695 iblks = mp->mp_fheight - ip->i_height; 696 branch_start = metapath_branch_start(mp); 697 iblks += (mp->mp_fheight - branch_start); 698 } 699 } 700 701 /* start of the second part of the function (state machine) */ 702 703 blks = dblks + iblks; 704 i = mp->mp_aheight; 705 do { 706 n = blks - alloced; 707 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 708 if (ret) 709 goto out; 710 alloced += n; 711 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 712 gfs2_trans_remove_revoke(sdp, bn, n); 713 switch (state) { 714 /* Growing height of tree */ 715 case ALLOC_GROW_HEIGHT: 716 if (i == 1) { 717 ptr = (__be64 *)(dibh->b_data + 718 sizeof(struct gfs2_dinode)); 719 zero_bn = *ptr; 720 } 721 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 722 i++, n--) 723 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 724 if (i - 1 == mp->mp_fheight - ip->i_height) { 725 i--; 726 gfs2_buffer_copy_tail(mp->mp_bh[i], 727 sizeof(struct gfs2_meta_header), 728 dibh, sizeof(struct gfs2_dinode)); 729 gfs2_buffer_clear_tail(dibh, 730 sizeof(struct gfs2_dinode) + 731 sizeof(__be64)); 732 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 733 sizeof(struct gfs2_meta_header)); 734 *ptr = zero_bn; 735 state = ALLOC_GROW_DEPTH; 736 for(i = branch_start; i < mp->mp_fheight; i++) { 737 if (mp->mp_bh[i] == NULL) 738 break; 739 brelse(mp->mp_bh[i]); 740 mp->mp_bh[i] = NULL; 741 } 742 i = branch_start; 743 } 744 if (n == 0) 745 break; 746 fallthrough; /* To branching from existing tree */ 747 case ALLOC_GROW_DEPTH: 748 if (i > 1 && i < mp->mp_fheight) 749 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 750 for (; i < mp->mp_fheight && n > 0; i++, n--) 751 gfs2_indirect_init(mp, ip->i_gl, i, 752 mp->mp_list[i-1], bn++); 753 if (i == mp->mp_fheight) 754 state = ALLOC_DATA; 755 if (n == 0) 756 break; 757 fallthrough; /* To tree complete, adding data blocks */ 758 case ALLOC_DATA: 759 BUG_ON(n > dblks); 760 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 761 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 762 dblks = n; 763 ptr = metapointer(end_of_metadata, mp); 764 iomap->addr = bn << inode->i_blkbits; 765 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 766 while (n-- > 0) 767 *ptr++ = cpu_to_be64(bn++); 768 break; 769 } 770 } while (iomap->addr == IOMAP_NULL_ADDR); 771 772 iomap->type = IOMAP_MAPPED; 773 iomap->length = (u64)dblks << inode->i_blkbits; 774 ip->i_height = mp->mp_fheight; 775 gfs2_add_inode_blocks(&ip->i_inode, alloced); 776 gfs2_dinode_out(ip, dibh->b_data); 777out: 778 up_write(&ip->i_rw_mutex); 779 return ret; 780} 781 782#define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 783 784/** 785 * gfs2_alloc_size - Compute the maximum allocation size 786 * @inode: The inode 787 * @mp: The metapath 788 * @size: Requested size in blocks 789 * 790 * Compute the maximum size of the next allocation at @mp. 791 * 792 * Returns: size in blocks 793 */ 794static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 795{ 796 struct gfs2_inode *ip = GFS2_I(inode); 797 struct gfs2_sbd *sdp = GFS2_SB(inode); 798 const __be64 *first, *ptr, *end; 799 800 /* 801 * For writes to stuffed files, this function is called twice via 802 * gfs2_iomap_get, before and after unstuffing. The size we return the 803 * first time needs to be large enough to get the reservation and 804 * allocation sizes right. The size we return the second time must 805 * be exact or else gfs2_iomap_alloc won't do the right thing. 806 */ 807 808 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 809 unsigned int maxsize = mp->mp_fheight > 1 ? 810 sdp->sd_inptrs : sdp->sd_diptrs; 811 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 812 if (size > maxsize) 813 size = maxsize; 814 return size; 815 } 816 817 first = metapointer(ip->i_height - 1, mp); 818 end = metaend(ip->i_height - 1, mp); 819 if (end - first > size) 820 end = first + size; 821 for (ptr = first; ptr < end; ptr++) { 822 if (*ptr) 823 break; 824 } 825 return ptr - first; 826} 827 828/** 829 * gfs2_iomap_get - Map blocks from an inode to disk blocks 830 * @inode: The inode 831 * @pos: Starting position in bytes 832 * @length: Length to map, in bytes 833 * @flags: iomap flags 834 * @iomap: The iomap structure 835 * @mp: The metapath 836 * 837 * Returns: errno 838 */ 839static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 840 unsigned flags, struct iomap *iomap, 841 struct metapath *mp) 842{ 843 struct gfs2_inode *ip = GFS2_I(inode); 844 struct gfs2_sbd *sdp = GFS2_SB(inode); 845 loff_t size = i_size_read(inode); 846 __be64 *ptr; 847 sector_t lblock; 848 sector_t lblock_stop; 849 int ret; 850 int eob; 851 u64 len; 852 struct buffer_head *dibh = NULL, *bh; 853 u8 height; 854 855 if (!length) 856 return -EINVAL; 857 858 down_read(&ip->i_rw_mutex); 859 860 ret = gfs2_meta_inode_buffer(ip, &dibh); 861 if (ret) 862 goto unlock; 863 mp->mp_bh[0] = dibh; 864 865 if (gfs2_is_stuffed(ip)) { 866 if (flags & IOMAP_WRITE) { 867 loff_t max_size = gfs2_max_stuffed_size(ip); 868 869 if (pos + length > max_size) 870 goto unstuff; 871 iomap->length = max_size; 872 } else { 873 if (pos >= size) { 874 if (flags & IOMAP_REPORT) { 875 ret = -ENOENT; 876 goto unlock; 877 } else { 878 iomap->offset = pos; 879 iomap->length = length; 880 goto hole_found; 881 } 882 } 883 iomap->length = size; 884 } 885 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 886 sizeof(struct gfs2_dinode); 887 iomap->type = IOMAP_INLINE; 888 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 889 goto out; 890 } 891 892unstuff: 893 lblock = pos >> inode->i_blkbits; 894 iomap->offset = lblock << inode->i_blkbits; 895 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 896 len = lblock_stop - lblock + 1; 897 iomap->length = len << inode->i_blkbits; 898 899 height = ip->i_height; 900 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 901 height++; 902 find_metapath(sdp, lblock, mp, height); 903 if (height > ip->i_height || gfs2_is_stuffed(ip)) 904 goto do_alloc; 905 906 ret = lookup_metapath(ip, mp); 907 if (ret) 908 goto unlock; 909 910 if (mp->mp_aheight != ip->i_height) 911 goto do_alloc; 912 913 ptr = metapointer(ip->i_height - 1, mp); 914 if (*ptr == 0) 915 goto do_alloc; 916 917 bh = mp->mp_bh[ip->i_height - 1]; 918 len = gfs2_extent_length(bh, ptr, len, &eob); 919 920 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 921 iomap->length = len << inode->i_blkbits; 922 iomap->type = IOMAP_MAPPED; 923 iomap->flags |= IOMAP_F_MERGED; 924 if (eob) 925 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 926 927out: 928 iomap->bdev = inode->i_sb->s_bdev; 929unlock: 930 up_read(&ip->i_rw_mutex); 931 return ret; 932 933do_alloc: 934 if (flags & IOMAP_REPORT) { 935 if (pos >= size) 936 ret = -ENOENT; 937 else if (height == ip->i_height) 938 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 939 else 940 iomap->length = size - iomap->offset; 941 } else if (flags & IOMAP_WRITE) { 942 u64 alloc_size; 943 944 if (flags & IOMAP_DIRECT) 945 goto out; /* (see gfs2_file_direct_write) */ 946 947 len = gfs2_alloc_size(inode, mp, len); 948 alloc_size = len << inode->i_blkbits; 949 if (alloc_size < iomap->length) 950 iomap->length = alloc_size; 951 } else { 952 if (pos < size && height == ip->i_height) 953 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 954 } 955hole_found: 956 iomap->addr = IOMAP_NULL_ADDR; 957 iomap->type = IOMAP_HOLE; 958 goto out; 959} 960 961/** 962 * gfs2_lblk_to_dblk - convert logical block to disk block 963 * @inode: the inode of the file we're mapping 964 * @lblock: the block relative to the start of the file 965 * @dblock: the returned dblock, if no error 966 * 967 * This function maps a single block from a file logical block (relative to 968 * the start of the file) to a file system absolute block using iomap. 969 * 970 * Returns: the absolute file system block, or an error 971 */ 972int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock) 973{ 974 struct iomap iomap = { }; 975 struct metapath mp = { .mp_aheight = 1, }; 976 loff_t pos = (loff_t)lblock << inode->i_blkbits; 977 int ret; 978 979 ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp); 980 release_metapath(&mp); 981 if (ret == 0) 982 *dblock = iomap.addr >> inode->i_blkbits; 983 984 return ret; 985} 986 987static int gfs2_write_lock(struct inode *inode) 988{ 989 struct gfs2_inode *ip = GFS2_I(inode); 990 struct gfs2_sbd *sdp = GFS2_SB(inode); 991 int error; 992 993 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 994 error = gfs2_glock_nq(&ip->i_gh); 995 if (error) 996 goto out_uninit; 997 if (&ip->i_inode == sdp->sd_rindex) { 998 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 999 1000 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 1001 GL_NOCACHE, &m_ip->i_gh); 1002 if (error) 1003 goto out_unlock; 1004 } 1005 return 0; 1006 1007out_unlock: 1008 gfs2_glock_dq(&ip->i_gh); 1009out_uninit: 1010 gfs2_holder_uninit(&ip->i_gh); 1011 return error; 1012} 1013 1014static void gfs2_write_unlock(struct inode *inode) 1015{ 1016 struct gfs2_inode *ip = GFS2_I(inode); 1017 struct gfs2_sbd *sdp = GFS2_SB(inode); 1018 1019 if (&ip->i_inode == sdp->sd_rindex) { 1020 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 1021 1022 gfs2_glock_dq_uninit(&m_ip->i_gh); 1023 } 1024 gfs2_glock_dq_uninit(&ip->i_gh); 1025} 1026 1027static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos, 1028 unsigned len, struct iomap *iomap) 1029{ 1030 unsigned int blockmask = i_blocksize(inode) - 1; 1031 struct gfs2_sbd *sdp = GFS2_SB(inode); 1032 unsigned int blocks; 1033 1034 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits; 1035 return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0); 1036} 1037 1038static void gfs2_iomap_page_done(struct inode *inode, loff_t pos, 1039 unsigned copied, struct page *page, 1040 struct iomap *iomap) 1041{ 1042 struct gfs2_trans *tr = current->journal_info; 1043 struct gfs2_inode *ip = GFS2_I(inode); 1044 struct gfs2_sbd *sdp = GFS2_SB(inode); 1045 1046 if (page && !gfs2_is_stuffed(ip)) 1047 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 1048 1049 if (tr->tr_num_buf_new) 1050 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1051 1052 gfs2_trans_end(sdp); 1053} 1054 1055static const struct iomap_page_ops gfs2_iomap_page_ops = { 1056 .page_prepare = gfs2_iomap_page_prepare, 1057 .page_done = gfs2_iomap_page_done, 1058}; 1059 1060static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 1061 loff_t length, unsigned flags, 1062 struct iomap *iomap, 1063 struct metapath *mp) 1064{ 1065 struct gfs2_inode *ip = GFS2_I(inode); 1066 struct gfs2_sbd *sdp = GFS2_SB(inode); 1067 bool unstuff; 1068 int ret; 1069 1070 unstuff = gfs2_is_stuffed(ip) && 1071 pos + length > gfs2_max_stuffed_size(ip); 1072 1073 if (unstuff || iomap->type == IOMAP_HOLE) { 1074 unsigned int data_blocks, ind_blocks; 1075 struct gfs2_alloc_parms ap = {}; 1076 unsigned int rblocks; 1077 struct gfs2_trans *tr; 1078 1079 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1080 &ind_blocks); 1081 ap.target = data_blocks + ind_blocks; 1082 ret = gfs2_quota_lock_check(ip, &ap); 1083 if (ret) 1084 return ret; 1085 1086 ret = gfs2_inplace_reserve(ip, &ap); 1087 if (ret) 1088 goto out_qunlock; 1089 1090 rblocks = RES_DINODE + ind_blocks; 1091 if (gfs2_is_jdata(ip)) 1092 rblocks += data_blocks; 1093 if (ind_blocks || data_blocks) 1094 rblocks += RES_STATFS + RES_QUOTA; 1095 if (inode == sdp->sd_rindex) 1096 rblocks += 2 * RES_STATFS; 1097 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1098 1099 ret = gfs2_trans_begin(sdp, rblocks, 1100 iomap->length >> inode->i_blkbits); 1101 if (ret) 1102 goto out_trans_fail; 1103 1104 if (unstuff) { 1105 ret = gfs2_unstuff_dinode(ip, NULL); 1106 if (ret) 1107 goto out_trans_end; 1108 release_metapath(mp); 1109 ret = gfs2_iomap_get(inode, iomap->offset, 1110 iomap->length, flags, iomap, mp); 1111 if (ret) 1112 goto out_trans_end; 1113 } 1114 1115 if (iomap->type == IOMAP_HOLE) { 1116 ret = gfs2_iomap_alloc(inode, iomap, mp); 1117 if (ret) { 1118 gfs2_trans_end(sdp); 1119 gfs2_inplace_release(ip); 1120 punch_hole(ip, iomap->offset, iomap->length); 1121 goto out_qunlock; 1122 } 1123 } 1124 1125 tr = current->journal_info; 1126 if (tr->tr_num_buf_new) 1127 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1128 1129 gfs2_trans_end(sdp); 1130 } 1131 1132 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip)) 1133 iomap->page_ops = &gfs2_iomap_page_ops; 1134 return 0; 1135 1136out_trans_end: 1137 gfs2_trans_end(sdp); 1138out_trans_fail: 1139 gfs2_inplace_release(ip); 1140out_qunlock: 1141 gfs2_quota_unlock(ip); 1142 return ret; 1143} 1144 1145static inline bool gfs2_iomap_need_write_lock(unsigned flags) 1146{ 1147 return (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT); 1148} 1149 1150static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1151 unsigned flags, struct iomap *iomap, 1152 struct iomap *srcmap) 1153{ 1154 struct gfs2_inode *ip = GFS2_I(inode); 1155 struct metapath mp = { .mp_aheight = 1, }; 1156 int ret; 1157 1158 if (gfs2_is_jdata(ip)) 1159 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1160 1161 trace_gfs2_iomap_start(ip, pos, length, flags); 1162 if (gfs2_iomap_need_write_lock(flags)) { 1163 ret = gfs2_write_lock(inode); 1164 if (ret) 1165 goto out; 1166 } 1167 1168 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1169 if (ret) 1170 goto out_unlock; 1171 1172 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1173 case IOMAP_WRITE: 1174 if (flags & IOMAP_DIRECT) { 1175 /* 1176 * Silently fall back to buffered I/O for stuffed files 1177 * or if we've got a hole (see gfs2_file_direct_write). 1178 */ 1179 if (iomap->type != IOMAP_MAPPED) 1180 ret = -ENOTBLK; 1181 goto out_unlock; 1182 } 1183 break; 1184 case IOMAP_ZERO: 1185 if (iomap->type == IOMAP_HOLE) 1186 goto out_unlock; 1187 break; 1188 default: 1189 goto out_unlock; 1190 } 1191 1192 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp); 1193 1194out_unlock: 1195 if (ret && gfs2_iomap_need_write_lock(flags)) 1196 gfs2_write_unlock(inode); 1197 release_metapath(&mp); 1198out: 1199 trace_gfs2_iomap_end(ip, iomap, ret); 1200 return ret; 1201} 1202 1203static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1204 ssize_t written, unsigned flags, struct iomap *iomap) 1205{ 1206 struct gfs2_inode *ip = GFS2_I(inode); 1207 struct gfs2_sbd *sdp = GFS2_SB(inode); 1208 1209 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1210 case IOMAP_WRITE: 1211 if (flags & IOMAP_DIRECT) 1212 return 0; 1213 break; 1214 case IOMAP_ZERO: 1215 if (iomap->type == IOMAP_HOLE) 1216 return 0; 1217 break; 1218 default: 1219 return 0; 1220 } 1221 1222 if (!gfs2_is_stuffed(ip)) 1223 gfs2_ordered_add_inode(ip); 1224 1225 if (inode == sdp->sd_rindex) 1226 adjust_fs_space(inode); 1227 1228 gfs2_inplace_release(ip); 1229 1230 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1231 gfs2_quota_unlock(ip); 1232 1233 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1234 /* Deallocate blocks that were just allocated. */ 1235 loff_t hstart = round_up(pos + written, i_blocksize(inode)); 1236 loff_t hend = iomap->offset + iomap->length; 1237 1238 if (hstart < hend) { 1239 truncate_pagecache_range(inode, hstart, hend - 1); 1240 punch_hole(ip, hstart, hend - hstart); 1241 } 1242 } 1243 1244 if (unlikely(!written)) 1245 goto out_unlock; 1246 1247 if (iomap->flags & IOMAP_F_SIZE_CHANGED) 1248 mark_inode_dirty(inode); 1249 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 1250 1251out_unlock: 1252 if (gfs2_iomap_need_write_lock(flags)) 1253 gfs2_write_unlock(inode); 1254 return 0; 1255} 1256 1257const struct iomap_ops gfs2_iomap_ops = { 1258 .iomap_begin = gfs2_iomap_begin, 1259 .iomap_end = gfs2_iomap_end, 1260}; 1261 1262/** 1263 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1264 * @inode: The inode 1265 * @lblock: The logical block number 1266 * @bh_map: The bh to be mapped 1267 * @create: True if its ok to alloc blocks to satify the request 1268 * 1269 * The size of the requested mapping is defined in bh_map->b_size. 1270 * 1271 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1272 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1273 * bh_map->b_size to indicate the size of the mapping when @lblock and 1274 * successive blocks are mapped, up to the requested size. 1275 * 1276 * Sets buffer_boundary() if a read of metadata will be required 1277 * before the next block can be mapped. Sets buffer_new() if new 1278 * blocks were allocated. 1279 * 1280 * Returns: errno 1281 */ 1282 1283int gfs2_block_map(struct inode *inode, sector_t lblock, 1284 struct buffer_head *bh_map, int create) 1285{ 1286 struct gfs2_inode *ip = GFS2_I(inode); 1287 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1288 loff_t length = bh_map->b_size; 1289 struct metapath mp = { .mp_aheight = 1, }; 1290 struct iomap iomap = { }; 1291 int flags = create ? IOMAP_WRITE : 0; 1292 int ret; 1293 1294 clear_buffer_mapped(bh_map); 1295 clear_buffer_new(bh_map); 1296 clear_buffer_boundary(bh_map); 1297 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1298 1299 ret = gfs2_iomap_get(inode, pos, length, flags, &iomap, &mp); 1300 if (create && !ret && iomap.type == IOMAP_HOLE) 1301 ret = gfs2_iomap_alloc(inode, &iomap, &mp); 1302 release_metapath(&mp); 1303 if (ret) 1304 goto out; 1305 1306 if (iomap.length > bh_map->b_size) { 1307 iomap.length = bh_map->b_size; 1308 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1309 } 1310 if (iomap.addr != IOMAP_NULL_ADDR) 1311 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1312 bh_map->b_size = iomap.length; 1313 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1314 set_buffer_boundary(bh_map); 1315 if (iomap.flags & IOMAP_F_NEW) 1316 set_buffer_new(bh_map); 1317 1318out: 1319 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1320 return ret; 1321} 1322 1323/* 1324 * Deprecated: do not use in new code 1325 */ 1326int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen) 1327{ 1328 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 }; 1329 int ret; 1330 int create = *new; 1331 1332 BUG_ON(!extlen); 1333 BUG_ON(!dblock); 1334 BUG_ON(!new); 1335 1336 bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5)); 1337 ret = gfs2_block_map(inode, lblock, &bh, create); 1338 *extlen = bh.b_size >> inode->i_blkbits; 1339 *dblock = bh.b_blocknr; 1340 if (buffer_new(&bh)) 1341 *new = 1; 1342 else 1343 *new = 0; 1344 return ret; 1345} 1346 1347/* 1348 * NOTE: Never call gfs2_block_zero_range with an open transaction because it 1349 * uses iomap write to perform its actions, which begin their own transactions 1350 * (iomap_begin, page_prepare, etc.) 1351 */ 1352static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1353 unsigned int length) 1354{ 1355 BUG_ON(current->journal_info); 1356 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops); 1357} 1358 1359#define GFS2_JTRUNC_REVOKES 8192 1360 1361/** 1362 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1363 * @inode: The inode being truncated 1364 * @oldsize: The original (larger) size 1365 * @newsize: The new smaller size 1366 * 1367 * With jdata files, we have to journal a revoke for each block which is 1368 * truncated. As a result, we need to split this into separate transactions 1369 * if the number of pages being truncated gets too large. 1370 */ 1371 1372static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1373{ 1374 struct gfs2_sbd *sdp = GFS2_SB(inode); 1375 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1376 u64 chunk; 1377 int error; 1378 1379 while (oldsize != newsize) { 1380 struct gfs2_trans *tr; 1381 unsigned int offs; 1382 1383 chunk = oldsize - newsize; 1384 if (chunk > max_chunk) 1385 chunk = max_chunk; 1386 1387 offs = oldsize & ~PAGE_MASK; 1388 if (offs && chunk > PAGE_SIZE) 1389 chunk = offs + ((chunk - offs) & PAGE_MASK); 1390 1391 truncate_pagecache(inode, oldsize - chunk); 1392 oldsize -= chunk; 1393 1394 tr = current->journal_info; 1395 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1396 continue; 1397 1398 gfs2_trans_end(sdp); 1399 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1400 if (error) 1401 return error; 1402 } 1403 1404 return 0; 1405} 1406 1407static int trunc_start(struct inode *inode, u64 newsize) 1408{ 1409 struct gfs2_inode *ip = GFS2_I(inode); 1410 struct gfs2_sbd *sdp = GFS2_SB(inode); 1411 struct buffer_head *dibh = NULL; 1412 int journaled = gfs2_is_jdata(ip); 1413 u64 oldsize = inode->i_size; 1414 int error; 1415 1416 if (!gfs2_is_stuffed(ip)) { 1417 unsigned int blocksize = i_blocksize(inode); 1418 unsigned int offs = newsize & (blocksize - 1); 1419 if (offs) { 1420 error = gfs2_block_zero_range(inode, newsize, 1421 blocksize - offs); 1422 if (error) 1423 return error; 1424 } 1425 } 1426 if (journaled) 1427 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1428 else 1429 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1430 if (error) 1431 return error; 1432 1433 error = gfs2_meta_inode_buffer(ip, &dibh); 1434 if (error) 1435 goto out; 1436 1437 gfs2_trans_add_meta(ip->i_gl, dibh); 1438 1439 if (gfs2_is_stuffed(ip)) 1440 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1441 else 1442 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1443 1444 i_size_write(inode, newsize); 1445 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1446 gfs2_dinode_out(ip, dibh->b_data); 1447 1448 if (journaled) 1449 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1450 else 1451 truncate_pagecache(inode, newsize); 1452 1453out: 1454 brelse(dibh); 1455 if (current->journal_info) 1456 gfs2_trans_end(sdp); 1457 return error; 1458} 1459 1460int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length, 1461 struct iomap *iomap) 1462{ 1463 struct metapath mp = { .mp_aheight = 1, }; 1464 int ret; 1465 1466 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1467 if (!ret && iomap->type == IOMAP_HOLE) 1468 ret = gfs2_iomap_alloc(inode, iomap, &mp); 1469 release_metapath(&mp); 1470 return ret; 1471} 1472 1473/** 1474 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1475 * @ip: inode 1476 * @rg_gh: holder of resource group glock 1477 * @bh: buffer head to sweep 1478 * @start: starting point in bh 1479 * @end: end point in bh 1480 * @meta: true if bh points to metadata (rather than data) 1481 * @btotal: place to keep count of total blocks freed 1482 * 1483 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1484 * free, and free them all. However, we do it one rgrp at a time. If this 1485 * block has references to multiple rgrps, we break it into individual 1486 * transactions. This allows other processes to use the rgrps while we're 1487 * focused on a single one, for better concurrency / performance. 1488 * At every transaction boundary, we rewrite the inode into the journal. 1489 * That way the bitmaps are kept consistent with the inode and we can recover 1490 * if we're interrupted by power-outages. 1491 * 1492 * Returns: 0, or return code if an error occurred. 1493 * *btotal has the total number of blocks freed 1494 */ 1495static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1496 struct buffer_head *bh, __be64 *start, __be64 *end, 1497 bool meta, u32 *btotal) 1498{ 1499 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1500 struct gfs2_rgrpd *rgd; 1501 struct gfs2_trans *tr; 1502 __be64 *p; 1503 int blks_outside_rgrp; 1504 u64 bn, bstart, isize_blks; 1505 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1506 int ret = 0; 1507 bool buf_in_tr = false; /* buffer was added to transaction */ 1508 1509more_rgrps: 1510 rgd = NULL; 1511 if (gfs2_holder_initialized(rd_gh)) { 1512 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1513 gfs2_assert_withdraw(sdp, 1514 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1515 } 1516 blks_outside_rgrp = 0; 1517 bstart = 0; 1518 blen = 0; 1519 1520 for (p = start; p < end; p++) { 1521 if (!*p) 1522 continue; 1523 bn = be64_to_cpu(*p); 1524 1525 if (rgd) { 1526 if (!rgrp_contains_block(rgd, bn)) { 1527 blks_outside_rgrp++; 1528 continue; 1529 } 1530 } else { 1531 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1532 if (unlikely(!rgd)) { 1533 ret = -EIO; 1534 goto out; 1535 } 1536 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1537 0, rd_gh); 1538 if (ret) 1539 goto out; 1540 1541 /* Must be done with the rgrp glock held: */ 1542 if (gfs2_rs_active(&ip->i_res) && 1543 rgd == ip->i_res.rs_rbm.rgd) 1544 gfs2_rs_deltree(&ip->i_res); 1545 } 1546 1547 /* The size of our transactions will be unknown until we 1548 actually process all the metadata blocks that relate to 1549 the rgrp. So we estimate. We know it can't be more than 1550 the dinode's i_blocks and we don't want to exceed the 1551 journal flush threshold, sd_log_thresh2. */ 1552 if (current->journal_info == NULL) { 1553 unsigned int jblocks_rqsted, revokes; 1554 1555 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1556 RES_INDIRECT; 1557 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1558 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1559 jblocks_rqsted += 1560 atomic_read(&sdp->sd_log_thresh2); 1561 else 1562 jblocks_rqsted += isize_blks; 1563 revokes = jblocks_rqsted; 1564 if (meta) 1565 revokes += end - start; 1566 else if (ip->i_depth) 1567 revokes += sdp->sd_inptrs; 1568 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1569 if (ret) 1570 goto out_unlock; 1571 down_write(&ip->i_rw_mutex); 1572 } 1573 /* check if we will exceed the transaction blocks requested */ 1574 tr = current->journal_info; 1575 if (tr->tr_num_buf_new + RES_STATFS + 1576 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1577 /* We set blks_outside_rgrp to ensure the loop will 1578 be repeated for the same rgrp, but with a new 1579 transaction. */ 1580 blks_outside_rgrp++; 1581 /* This next part is tricky. If the buffer was added 1582 to the transaction, we've already set some block 1583 pointers to 0, so we better follow through and free 1584 them, or we will introduce corruption (so break). 1585 This may be impossible, or at least rare, but I 1586 decided to cover the case regardless. 1587 1588 If the buffer was not added to the transaction 1589 (this call), doing so would exceed our transaction 1590 size, so we need to end the transaction and start a 1591 new one (so goto). */ 1592 1593 if (buf_in_tr) 1594 break; 1595 goto out_unlock; 1596 } 1597 1598 gfs2_trans_add_meta(ip->i_gl, bh); 1599 buf_in_tr = true; 1600 *p = 0; 1601 if (bstart + blen == bn) { 1602 blen++; 1603 continue; 1604 } 1605 if (bstart) { 1606 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1607 (*btotal) += blen; 1608 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1609 } 1610 bstart = bn; 1611 blen = 1; 1612 } 1613 if (bstart) { 1614 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1615 (*btotal) += blen; 1616 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1617 } 1618out_unlock: 1619 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1620 outside the rgrp we just processed, 1621 do it all over again. */ 1622 if (current->journal_info) { 1623 struct buffer_head *dibh; 1624 1625 ret = gfs2_meta_inode_buffer(ip, &dibh); 1626 if (ret) 1627 goto out; 1628 1629 /* Every transaction boundary, we rewrite the dinode 1630 to keep its di_blocks current in case of failure. */ 1631 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1632 current_time(&ip->i_inode); 1633 gfs2_trans_add_meta(ip->i_gl, dibh); 1634 gfs2_dinode_out(ip, dibh->b_data); 1635 brelse(dibh); 1636 up_write(&ip->i_rw_mutex); 1637 gfs2_trans_end(sdp); 1638 buf_in_tr = false; 1639 } 1640 gfs2_glock_dq_uninit(rd_gh); 1641 cond_resched(); 1642 goto more_rgrps; 1643 } 1644out: 1645 return ret; 1646} 1647 1648static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1649{ 1650 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1651 return false; 1652 return true; 1653} 1654 1655/** 1656 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1657 * @mp: starting metapath 1658 * @h: desired height to search 1659 * 1660 * Assumes the metapath is valid (with buffers) out to height h. 1661 * Returns: true if a non-null pointer was found in the metapath buffer 1662 * false if all remaining pointers are NULL in the buffer 1663 */ 1664static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1665 unsigned int h, 1666 __u16 *end_list, unsigned int end_aligned) 1667{ 1668 struct buffer_head *bh = mp->mp_bh[h]; 1669 __be64 *first, *ptr, *end; 1670 1671 first = metaptr1(h, mp); 1672 ptr = first + mp->mp_list[h]; 1673 end = (__be64 *)(bh->b_data + bh->b_size); 1674 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1675 bool keep_end = h < end_aligned; 1676 end = first + end_list[h] + keep_end; 1677 } 1678 1679 while (ptr < end) { 1680 if (*ptr) { /* if we have a non-null pointer */ 1681 mp->mp_list[h] = ptr - first; 1682 h++; 1683 if (h < GFS2_MAX_META_HEIGHT) 1684 mp->mp_list[h] = 0; 1685 return true; 1686 } 1687 ptr++; 1688 } 1689 return false; 1690} 1691 1692enum dealloc_states { 1693 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1694 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1695 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1696 DEALLOC_DONE = 3, /* process complete */ 1697}; 1698 1699static inline void 1700metapointer_range(struct metapath *mp, int height, 1701 __u16 *start_list, unsigned int start_aligned, 1702 __u16 *end_list, unsigned int end_aligned, 1703 __be64 **start, __be64 **end) 1704{ 1705 struct buffer_head *bh = mp->mp_bh[height]; 1706 __be64 *first; 1707 1708 first = metaptr1(height, mp); 1709 *start = first; 1710 if (mp_eq_to_hgt(mp, start_list, height)) { 1711 bool keep_start = height < start_aligned; 1712 *start = first + start_list[height] + keep_start; 1713 } 1714 *end = (__be64 *)(bh->b_data + bh->b_size); 1715 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1716 bool keep_end = height < end_aligned; 1717 *end = first + end_list[height] + keep_end; 1718 } 1719} 1720 1721static inline bool walk_done(struct gfs2_sbd *sdp, 1722 struct metapath *mp, int height, 1723 __u16 *end_list, unsigned int end_aligned) 1724{ 1725 __u16 end; 1726 1727 if (end_list) { 1728 bool keep_end = height < end_aligned; 1729 if (!mp_eq_to_hgt(mp, end_list, height)) 1730 return false; 1731 end = end_list[height] + keep_end; 1732 } else 1733 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1734 return mp->mp_list[height] >= end; 1735} 1736 1737/** 1738 * punch_hole - deallocate blocks in a file 1739 * @ip: inode to truncate 1740 * @offset: the start of the hole 1741 * @length: the size of the hole (or 0 for truncate) 1742 * 1743 * Punch a hole into a file or truncate a file at a given position. This 1744 * function operates in whole blocks (@offset and @length are rounded 1745 * accordingly); partially filled blocks must be cleared otherwise. 1746 * 1747 * This function works from the bottom up, and from the right to the left. In 1748 * other words, it strips off the highest layer (data) before stripping any of 1749 * the metadata. Doing it this way is best in case the operation is interrupted 1750 * by power failure, etc. The dinode is rewritten in every transaction to 1751 * guarantee integrity. 1752 */ 1753static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1754{ 1755 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1756 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1757 struct metapath mp = {}; 1758 struct buffer_head *dibh, *bh; 1759 struct gfs2_holder rd_gh; 1760 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1761 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1762 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1763 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1764 unsigned int start_aligned, end_aligned; 1765 unsigned int strip_h = ip->i_height - 1; 1766 u32 btotal = 0; 1767 int ret, state; 1768 int mp_h; /* metapath buffers are read in to this height */ 1769 u64 prev_bnr = 0; 1770 __be64 *start, *end; 1771 1772 if (offset >= maxsize) { 1773 /* 1774 * The starting point lies beyond the allocated meta-data; 1775 * there are no blocks do deallocate. 1776 */ 1777 return 0; 1778 } 1779 1780 /* 1781 * The start position of the hole is defined by lblock, start_list, and 1782 * start_aligned. The end position of the hole is defined by lend, 1783 * end_list, and end_aligned. 1784 * 1785 * start_aligned and end_aligned define down to which height the start 1786 * and end positions are aligned to the metadata tree (i.e., the 1787 * position is a multiple of the metadata granularity at the height 1788 * above). This determines at which heights additional meta pointers 1789 * needs to be preserved for the remaining data. 1790 */ 1791 1792 if (length) { 1793 u64 end_offset = offset + length; 1794 u64 lend; 1795 1796 /* 1797 * Clip the end at the maximum file size for the given height: 1798 * that's how far the metadata goes; files bigger than that 1799 * will have additional layers of indirection. 1800 */ 1801 if (end_offset > maxsize) 1802 end_offset = maxsize; 1803 lend = end_offset >> bsize_shift; 1804 1805 if (lblock >= lend) 1806 return 0; 1807 1808 find_metapath(sdp, lend, &mp, ip->i_height); 1809 end_list = __end_list; 1810 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1811 1812 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1813 if (end_list[mp_h]) 1814 break; 1815 } 1816 end_aligned = mp_h; 1817 } 1818 1819 find_metapath(sdp, lblock, &mp, ip->i_height); 1820 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1821 1822 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1823 if (start_list[mp_h]) 1824 break; 1825 } 1826 start_aligned = mp_h; 1827 1828 ret = gfs2_meta_inode_buffer(ip, &dibh); 1829 if (ret) 1830 return ret; 1831 1832 mp.mp_bh[0] = dibh; 1833 ret = lookup_metapath(ip, &mp); 1834 if (ret) 1835 goto out_metapath; 1836 1837 /* issue read-ahead on metadata */ 1838 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1839 metapointer_range(&mp, mp_h, start_list, start_aligned, 1840 end_list, end_aligned, &start, &end); 1841 gfs2_metapath_ra(ip->i_gl, start, end); 1842 } 1843 1844 if (mp.mp_aheight == ip->i_height) 1845 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1846 else 1847 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1848 1849 ret = gfs2_rindex_update(sdp); 1850 if (ret) 1851 goto out_metapath; 1852 1853 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1854 if (ret) 1855 goto out_metapath; 1856 gfs2_holder_mark_uninitialized(&rd_gh); 1857 1858 mp_h = strip_h; 1859 1860 while (state != DEALLOC_DONE) { 1861 switch (state) { 1862 /* Truncate a full metapath at the given strip height. 1863 * Note that strip_h == mp_h in order to be in this state. */ 1864 case DEALLOC_MP_FULL: 1865 bh = mp.mp_bh[mp_h]; 1866 gfs2_assert_withdraw(sdp, bh); 1867 if (gfs2_assert_withdraw(sdp, 1868 prev_bnr != bh->b_blocknr)) { 1869 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u," 1870 "s_h:%u, mp_h:%u\n", 1871 (unsigned long long)ip->i_no_addr, 1872 prev_bnr, ip->i_height, strip_h, mp_h); 1873 } 1874 prev_bnr = bh->b_blocknr; 1875 1876 if (gfs2_metatype_check(sdp, bh, 1877 (mp_h ? GFS2_METATYPE_IN : 1878 GFS2_METATYPE_DI))) { 1879 ret = -EIO; 1880 goto out; 1881 } 1882 1883 /* 1884 * Below, passing end_aligned as 0 gives us the 1885 * metapointer range excluding the end point: the end 1886 * point is the first metapath we must not deallocate! 1887 */ 1888 1889 metapointer_range(&mp, mp_h, start_list, start_aligned, 1890 end_list, 0 /* end_aligned */, 1891 &start, &end); 1892 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1893 start, end, 1894 mp_h != ip->i_height - 1, 1895 &btotal); 1896 1897 /* If we hit an error or just swept dinode buffer, 1898 just exit. */ 1899 if (ret || !mp_h) { 1900 state = DEALLOC_DONE; 1901 break; 1902 } 1903 state = DEALLOC_MP_LOWER; 1904 break; 1905 1906 /* lower the metapath strip height */ 1907 case DEALLOC_MP_LOWER: 1908 /* We're done with the current buffer, so release it, 1909 unless it's the dinode buffer. Then back up to the 1910 previous pointer. */ 1911 if (mp_h) { 1912 brelse(mp.mp_bh[mp_h]); 1913 mp.mp_bh[mp_h] = NULL; 1914 } 1915 /* If we can't get any lower in height, we've stripped 1916 off all we can. Next step is to back up and start 1917 stripping the previous level of metadata. */ 1918 if (mp_h == 0) { 1919 strip_h--; 1920 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1921 mp_h = strip_h; 1922 state = DEALLOC_FILL_MP; 1923 break; 1924 } 1925 mp.mp_list[mp_h] = 0; 1926 mp_h--; /* search one metadata height down */ 1927 mp.mp_list[mp_h]++; 1928 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1929 break; 1930 /* Here we've found a part of the metapath that is not 1931 * allocated. We need to search at that height for the 1932 * next non-null pointer. */ 1933 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1934 state = DEALLOC_FILL_MP; 1935 mp_h++; 1936 } 1937 /* No more non-null pointers at this height. Back up 1938 to the previous height and try again. */ 1939 break; /* loop around in the same state */ 1940 1941 /* Fill the metapath with buffers to the given height. */ 1942 case DEALLOC_FILL_MP: 1943 /* Fill the buffers out to the current height. */ 1944 ret = fillup_metapath(ip, &mp, mp_h); 1945 if (ret < 0) 1946 goto out; 1947 1948 /* On the first pass, issue read-ahead on metadata. */ 1949 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) { 1950 unsigned int height = mp.mp_aheight - 1; 1951 1952 /* No read-ahead for data blocks. */ 1953 if (mp.mp_aheight - 1 == strip_h) 1954 height--; 1955 1956 for (; height >= mp.mp_aheight - ret; height--) { 1957 metapointer_range(&mp, height, 1958 start_list, start_aligned, 1959 end_list, end_aligned, 1960 &start, &end); 1961 gfs2_metapath_ra(ip->i_gl, start, end); 1962 } 1963 } 1964 1965 /* If buffers found for the entire strip height */ 1966 if (mp.mp_aheight - 1 == strip_h) { 1967 state = DEALLOC_MP_FULL; 1968 break; 1969 } 1970 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1971 mp_h = mp.mp_aheight - 1; 1972 1973 /* If we find a non-null block pointer, crawl a bit 1974 higher up in the metapath and try again, otherwise 1975 we need to look lower for a new starting point. */ 1976 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1977 mp_h++; 1978 else 1979 state = DEALLOC_MP_LOWER; 1980 break; 1981 } 1982 } 1983 1984 if (btotal) { 1985 if (current->journal_info == NULL) { 1986 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1987 RES_QUOTA, 0); 1988 if (ret) 1989 goto out; 1990 down_write(&ip->i_rw_mutex); 1991 } 1992 gfs2_statfs_change(sdp, 0, +btotal, 0); 1993 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 1994 ip->i_inode.i_gid); 1995 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1996 gfs2_trans_add_meta(ip->i_gl, dibh); 1997 gfs2_dinode_out(ip, dibh->b_data); 1998 up_write(&ip->i_rw_mutex); 1999 gfs2_trans_end(sdp); 2000 } 2001 2002out: 2003 if (gfs2_holder_initialized(&rd_gh)) 2004 gfs2_glock_dq_uninit(&rd_gh); 2005 if (current->journal_info) { 2006 up_write(&ip->i_rw_mutex); 2007 gfs2_trans_end(sdp); 2008 cond_resched(); 2009 } 2010 gfs2_quota_unhold(ip); 2011out_metapath: 2012 release_metapath(&mp); 2013 return ret; 2014} 2015 2016static int trunc_end(struct gfs2_inode *ip) 2017{ 2018 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2019 struct buffer_head *dibh; 2020 int error; 2021 2022 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2023 if (error) 2024 return error; 2025 2026 down_write(&ip->i_rw_mutex); 2027 2028 error = gfs2_meta_inode_buffer(ip, &dibh); 2029 if (error) 2030 goto out; 2031 2032 if (!i_size_read(&ip->i_inode)) { 2033 ip->i_height = 0; 2034 ip->i_goal = ip->i_no_addr; 2035 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 2036 gfs2_ordered_del_inode(ip); 2037 } 2038 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2039 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 2040 2041 gfs2_trans_add_meta(ip->i_gl, dibh); 2042 gfs2_dinode_out(ip, dibh->b_data); 2043 brelse(dibh); 2044 2045out: 2046 up_write(&ip->i_rw_mutex); 2047 gfs2_trans_end(sdp); 2048 return error; 2049} 2050 2051/** 2052 * do_shrink - make a file smaller 2053 * @inode: the inode 2054 * @newsize: the size to make the file 2055 * 2056 * Called with an exclusive lock on @inode. The @size must 2057 * be equal to or smaller than the current inode size. 2058 * 2059 * Returns: errno 2060 */ 2061 2062static int do_shrink(struct inode *inode, u64 newsize) 2063{ 2064 struct gfs2_inode *ip = GFS2_I(inode); 2065 int error; 2066 2067 error = trunc_start(inode, newsize); 2068 if (error < 0) 2069 return error; 2070 if (gfs2_is_stuffed(ip)) 2071 return 0; 2072 2073 error = punch_hole(ip, newsize, 0); 2074 if (error == 0) 2075 error = trunc_end(ip); 2076 2077 return error; 2078} 2079 2080void gfs2_trim_blocks(struct inode *inode) 2081{ 2082 int ret; 2083 2084 ret = do_shrink(inode, inode->i_size); 2085 WARN_ON(ret != 0); 2086} 2087 2088/** 2089 * do_grow - Touch and update inode size 2090 * @inode: The inode 2091 * @size: The new size 2092 * 2093 * This function updates the timestamps on the inode and 2094 * may also increase the size of the inode. This function 2095 * must not be called with @size any smaller than the current 2096 * inode size. 2097 * 2098 * Although it is not strictly required to unstuff files here, 2099 * earlier versions of GFS2 have a bug in the stuffed file reading 2100 * code which will result in a buffer overrun if the size is larger 2101 * than the max stuffed file size. In order to prevent this from 2102 * occurring, such files are unstuffed, but in other cases we can 2103 * just update the inode size directly. 2104 * 2105 * Returns: 0 on success, or -ve on error 2106 */ 2107 2108static int do_grow(struct inode *inode, u64 size) 2109{ 2110 struct gfs2_inode *ip = GFS2_I(inode); 2111 struct gfs2_sbd *sdp = GFS2_SB(inode); 2112 struct gfs2_alloc_parms ap = { .target = 1, }; 2113 struct buffer_head *dibh; 2114 int error; 2115 int unstuff = 0; 2116 2117 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2118 error = gfs2_quota_lock_check(ip, &ap); 2119 if (error) 2120 return error; 2121 2122 error = gfs2_inplace_reserve(ip, &ap); 2123 if (error) 2124 goto do_grow_qunlock; 2125 unstuff = 1; 2126 } 2127 2128 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2129 (unstuff && 2130 gfs2_is_jdata(ip) ? RES_JDATA : 0) + 2131 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2132 0 : RES_QUOTA), 0); 2133 if (error) 2134 goto do_grow_release; 2135 2136 if (unstuff) { 2137 error = gfs2_unstuff_dinode(ip, NULL); 2138 if (error) 2139 goto do_end_trans; 2140 } 2141 2142 error = gfs2_meta_inode_buffer(ip, &dibh); 2143 if (error) 2144 goto do_end_trans; 2145 2146 truncate_setsize(inode, size); 2147 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2148 gfs2_trans_add_meta(ip->i_gl, dibh); 2149 gfs2_dinode_out(ip, dibh->b_data); 2150 brelse(dibh); 2151 2152do_end_trans: 2153 gfs2_trans_end(sdp); 2154do_grow_release: 2155 if (unstuff) { 2156 gfs2_inplace_release(ip); 2157do_grow_qunlock: 2158 gfs2_quota_unlock(ip); 2159 } 2160 return error; 2161} 2162 2163/** 2164 * gfs2_setattr_size - make a file a given size 2165 * @inode: the inode 2166 * @newsize: the size to make the file 2167 * 2168 * The file size can grow, shrink, or stay the same size. This 2169 * is called holding i_rwsem and an exclusive glock on the inode 2170 * in question. 2171 * 2172 * Returns: errno 2173 */ 2174 2175int gfs2_setattr_size(struct inode *inode, u64 newsize) 2176{ 2177 struct gfs2_inode *ip = GFS2_I(inode); 2178 int ret; 2179 2180 BUG_ON(!S_ISREG(inode->i_mode)); 2181 2182 ret = inode_newsize_ok(inode, newsize); 2183 if (ret) 2184 return ret; 2185 2186 inode_dio_wait(inode); 2187 2188 ret = gfs2_qa_get(ip); 2189 if (ret) 2190 goto out; 2191 2192 if (newsize >= inode->i_size) { 2193 ret = do_grow(inode, newsize); 2194 goto out; 2195 } 2196 2197 ret = do_shrink(inode, newsize); 2198out: 2199 gfs2_rs_delete(ip); 2200 gfs2_qa_put(ip); 2201 return ret; 2202} 2203 2204int gfs2_truncatei_resume(struct gfs2_inode *ip) 2205{ 2206 int error; 2207 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2208 if (!error) 2209 error = trunc_end(ip); 2210 return error; 2211} 2212 2213int gfs2_file_dealloc(struct gfs2_inode *ip) 2214{ 2215 return punch_hole(ip, 0, 0); 2216} 2217 2218/** 2219 * gfs2_free_journal_extents - Free cached journal bmap info 2220 * @jd: The journal 2221 * 2222 */ 2223 2224void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2225{ 2226 struct gfs2_journal_extent *jext; 2227 2228 while(!list_empty(&jd->extent_list)) { 2229 jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2230 list_del(&jext->list); 2231 kfree(jext); 2232 } 2233} 2234 2235/** 2236 * gfs2_add_jextent - Add or merge a new extent to extent cache 2237 * @jd: The journal descriptor 2238 * @lblock: The logical block at start of new extent 2239 * @dblock: The physical block at start of new extent 2240 * @blocks: Size of extent in fs blocks 2241 * 2242 * Returns: 0 on success or -ENOMEM 2243 */ 2244 2245static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2246{ 2247 struct gfs2_journal_extent *jext; 2248 2249 if (!list_empty(&jd->extent_list)) { 2250 jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2251 if ((jext->dblock + jext->blocks) == dblock) { 2252 jext->blocks += blocks; 2253 return 0; 2254 } 2255 } 2256 2257 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2258 if (jext == NULL) 2259 return -ENOMEM; 2260 jext->dblock = dblock; 2261 jext->lblock = lblock; 2262 jext->blocks = blocks; 2263 list_add_tail(&jext->list, &jd->extent_list); 2264 jd->nr_extents++; 2265 return 0; 2266} 2267 2268/** 2269 * gfs2_map_journal_extents - Cache journal bmap info 2270 * @sdp: The super block 2271 * @jd: The journal to map 2272 * 2273 * Create a reusable "extent" mapping from all logical 2274 * blocks to all physical blocks for the given journal. This will save 2275 * us time when writing journal blocks. Most journals will have only one 2276 * extent that maps all their logical blocks. That's because gfs2.mkfs 2277 * arranges the journal blocks sequentially to maximize performance. 2278 * So the extent would map the first block for the entire file length. 2279 * However, gfs2_jadd can happen while file activity is happening, so 2280 * those journals may not be sequential. Less likely is the case where 2281 * the users created their own journals by mounting the metafs and 2282 * laying it out. But it's still possible. These journals might have 2283 * several extents. 2284 * 2285 * Returns: 0 on success, or error on failure 2286 */ 2287 2288int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2289{ 2290 u64 lblock = 0; 2291 u64 lblock_stop; 2292 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2293 struct buffer_head bh; 2294 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2295 u64 size; 2296 int rc; 2297 ktime_t start, end; 2298 2299 start = ktime_get(); 2300 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2301 size = (lblock_stop - lblock) << shift; 2302 jd->nr_extents = 0; 2303 WARN_ON(!list_empty(&jd->extent_list)); 2304 2305 do { 2306 bh.b_state = 0; 2307 bh.b_blocknr = 0; 2308 bh.b_size = size; 2309 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2310 if (rc || !buffer_mapped(&bh)) 2311 goto fail; 2312 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2313 if (rc) 2314 goto fail; 2315 size -= bh.b_size; 2316 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2317 } while(size > 0); 2318 2319 end = ktime_get(); 2320 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid, 2321 jd->nr_extents, ktime_ms_delta(end, start)); 2322 return 0; 2323 2324fail: 2325 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2326 rc, jd->jd_jid, 2327 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2328 jd->nr_extents); 2329 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2330 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2331 bh.b_state, (unsigned long long)bh.b_size); 2332 gfs2_free_journal_extents(jd); 2333 return rc; 2334} 2335 2336/** 2337 * gfs2_write_alloc_required - figure out if a write will require an allocation 2338 * @ip: the file being written to 2339 * @offset: the offset to write to 2340 * @len: the number of bytes being written 2341 * 2342 * Returns: 1 if an alloc is required, 0 otherwise 2343 */ 2344 2345int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2346 unsigned int len) 2347{ 2348 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2349 struct buffer_head bh; 2350 unsigned int shift; 2351 u64 lblock, lblock_stop, size; 2352 u64 end_of_file; 2353 2354 if (!len) 2355 return 0; 2356 2357 if (gfs2_is_stuffed(ip)) { 2358 if (offset + len > gfs2_max_stuffed_size(ip)) 2359 return 1; 2360 return 0; 2361 } 2362 2363 shift = sdp->sd_sb.sb_bsize_shift; 2364 BUG_ON(gfs2_is_dir(ip)); 2365 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2366 lblock = offset >> shift; 2367 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2368 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2369 return 1; 2370 2371 size = (lblock_stop - lblock) << shift; 2372 do { 2373 bh.b_state = 0; 2374 bh.b_size = size; 2375 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2376 if (!buffer_mapped(&bh)) 2377 return 1; 2378 size -= bh.b_size; 2379 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2380 } while(size > 0); 2381 2382 return 0; 2383} 2384 2385static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2386{ 2387 struct gfs2_inode *ip = GFS2_I(inode); 2388 struct buffer_head *dibh; 2389 int error; 2390 2391 if (offset >= inode->i_size) 2392 return 0; 2393 if (offset + length > inode->i_size) 2394 length = inode->i_size - offset; 2395 2396 error = gfs2_meta_inode_buffer(ip, &dibh); 2397 if (error) 2398 return error; 2399 gfs2_trans_add_meta(ip->i_gl, dibh); 2400 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2401 length); 2402 brelse(dibh); 2403 return 0; 2404} 2405 2406static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2407 loff_t length) 2408{ 2409 struct gfs2_sbd *sdp = GFS2_SB(inode); 2410 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2411 int error; 2412 2413 while (length) { 2414 struct gfs2_trans *tr; 2415 loff_t chunk; 2416 unsigned int offs; 2417 2418 chunk = length; 2419 if (chunk > max_chunk) 2420 chunk = max_chunk; 2421 2422 offs = offset & ~PAGE_MASK; 2423 if (offs && chunk > PAGE_SIZE) 2424 chunk = offs + ((chunk - offs) & PAGE_MASK); 2425 2426 truncate_pagecache_range(inode, offset, chunk); 2427 offset += chunk; 2428 length -= chunk; 2429 2430 tr = current->journal_info; 2431 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2432 continue; 2433 2434 gfs2_trans_end(sdp); 2435 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2436 if (error) 2437 return error; 2438 } 2439 return 0; 2440} 2441 2442int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2443{ 2444 struct inode *inode = file_inode(file); 2445 struct gfs2_inode *ip = GFS2_I(inode); 2446 struct gfs2_sbd *sdp = GFS2_SB(inode); 2447 unsigned int blocksize = i_blocksize(inode); 2448 loff_t start, end; 2449 int error; 2450 2451 if (!gfs2_is_stuffed(ip)) { 2452 unsigned int start_off, end_len; 2453 2454 start_off = offset & (blocksize - 1); 2455 end_len = (offset + length) & (blocksize - 1); 2456 if (start_off) { 2457 unsigned int len = length; 2458 if (length > blocksize - start_off) 2459 len = blocksize - start_off; 2460 error = gfs2_block_zero_range(inode, offset, len); 2461 if (error) 2462 goto out; 2463 if (start_off + length < blocksize) 2464 end_len = 0; 2465 } 2466 if (end_len) { 2467 error = gfs2_block_zero_range(inode, 2468 offset + length - end_len, end_len); 2469 if (error) 2470 goto out; 2471 } 2472 } 2473 2474 start = round_down(offset, blocksize); 2475 end = round_up(offset + length, blocksize) - 1; 2476 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 2477 if (error) 2478 return error; 2479 2480 if (gfs2_is_jdata(ip)) 2481 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2482 GFS2_JTRUNC_REVOKES); 2483 else 2484 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2485 if (error) 2486 return error; 2487 2488 if (gfs2_is_stuffed(ip)) { 2489 error = stuffed_zero_range(inode, offset, length); 2490 if (error) 2491 goto out; 2492 } 2493 2494 if (gfs2_is_jdata(ip)) { 2495 BUG_ON(!current->journal_info); 2496 gfs2_journaled_truncate_range(inode, offset, length); 2497 } else 2498 truncate_pagecache_range(inode, offset, offset + length - 1); 2499 2500 file_update_time(file); 2501 mark_inode_dirty(inode); 2502 2503 if (current->journal_info) 2504 gfs2_trans_end(sdp); 2505 2506 if (!gfs2_is_stuffed(ip)) 2507 error = punch_hole(ip, offset, length); 2508 2509out: 2510 if (current->journal_info) 2511 gfs2_trans_end(sdp); 2512 return error; 2513} 2514 2515static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode, 2516 loff_t offset) 2517{ 2518 struct metapath mp = { .mp_aheight = 1, }; 2519 int ret; 2520 2521 if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode)))) 2522 return -EIO; 2523 2524 if (offset >= wpc->iomap.offset && 2525 offset < wpc->iomap.offset + wpc->iomap.length) 2526 return 0; 2527 2528 memset(&wpc->iomap, 0, sizeof(wpc->iomap)); 2529 ret = gfs2_iomap_get(inode, offset, INT_MAX, 0, &wpc->iomap, &mp); 2530 release_metapath(&mp); 2531 return ret; 2532} 2533 2534const struct iomap_writeback_ops gfs2_writeback_ops = { 2535 .map_blocks = gfs2_map_blocks, 2536}; 2537