xref: /kernel/linux/linux-5.10/fs/f2fs/segment.h (revision 8c2ecf20)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/segment.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 *             http://www.samsung.com/
7 */
8#include <linux/blkdev.h>
9#include <linux/backing-dev.h>
10
11/* constant macro */
12#define NULL_SEGNO			((unsigned int)(~0))
13#define NULL_SECNO			((unsigned int)(~0))
14
15#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
16#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
17
18#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19#define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21/* L: Logical segment # in volume, R: Relative segment # in main area */
22#define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
23#define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
24
25#define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
26#define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27#define SE_PAGETYPE(se)	((IS_NODESEG((se)->type) ? NODE : DATA))
28
29static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30						unsigned short seg_type)
31{
32	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33}
34
35#define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36#define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37#define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38
39#define IS_CURSEG(sbi, seg)						\
40	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
41	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
42	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
43	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
44	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
45	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
46	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
47	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48
49#define IS_CURSEC(sbi, secno)						\
50	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
51	  (sbi)->segs_per_sec) ||	\
52	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
53	  (sbi)->segs_per_sec) ||	\
54	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
55	  (sbi)->segs_per_sec) ||	\
56	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
57	  (sbi)->segs_per_sec) ||	\
58	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
59	  (sbi)->segs_per_sec) ||	\
60	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
61	  (sbi)->segs_per_sec) ||	\
62	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
63	  (sbi)->segs_per_sec) ||	\
64	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
65	  (sbi)->segs_per_sec))
66
67#define MAIN_BLKADDR(sbi)						\
68	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
69		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70#define SEG0_BLKADDR(sbi)						\
71	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
72		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73
74#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
75#define MAIN_SECS(sbi)	((sbi)->total_sections)
76
77#define TOTAL_SEGS(sbi)							\
78	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
79		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
81
82#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83#define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
84					(sbi)->log_blocks_per_seg))
85
86#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
87	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
88
89#define NEXT_FREE_BLKADDR(sbi, curseg)					\
90	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91
92#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
93#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
94	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
95#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
96	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
97
98#define GET_SEGNO(sbi, blk_addr)					\
99	((!__is_valid_data_blkaddr(blk_addr)) ?			\
100	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
101		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102#define BLKS_PER_SEC(sbi)					\
103	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104#define CAP_BLKS_PER_SEC(sbi)					\
105	((sbi)->segs_per_sec * (sbi)->blocks_per_seg -		\
106	 (sbi)->unusable_blocks_per_sec)
107#define CAP_SEGS_PER_SEC(sbi)					\
108	((sbi)->segs_per_sec - ((sbi)->unusable_blocks_per_sec >>\
109	(sbi)->log_blocks_per_seg))
110#define GET_SEC_FROM_SEG(sbi, segno)				\
111	(((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
112#define GET_SEG_FROM_SEC(sbi, secno)				\
113	((secno) * (sbi)->segs_per_sec)
114#define GET_ZONE_FROM_SEC(sbi, secno)				\
115	(((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
116#define GET_ZONE_FROM_SEG(sbi, segno)				\
117	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
118
119#define GET_SUM_BLOCK(sbi, segno)				\
120	((sbi)->sm_info->ssa_blkaddr + (segno))
121
122#define GET_SUM_TYPE(footer) ((footer)->entry_type)
123#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
124
125#define SIT_ENTRY_OFFSET(sit_i, segno)					\
126	((segno) % (sit_i)->sents_per_block)
127#define SIT_BLOCK_OFFSET(segno)					\
128	((segno) / SIT_ENTRY_PER_BLOCK)
129#define	START_SEGNO(segno)		\
130	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
131#define SIT_BLK_CNT(sbi)			\
132	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
133#define f2fs_bitmap_size(nr)			\
134	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
135
136#define SECTOR_FROM_BLOCK(blk_addr)					\
137	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
138#define SECTOR_TO_BLOCK(sectors)					\
139	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
140#ifdef CONFIG_F2FS_GRADING_SSR
141#define KBS_PER_SEGMENT 2048
142#define SSR_MIN_BLKS_LIMIT (16 << 18)	/* 16G */
143#define SSR_CONTIG_DIRTY_NUMS	32	/* Dirty pages for LFS alloction in grading ssr. */
144#define SSR_CONTIG_LARGE	256	/* Larege files */
145#endif
146
147enum {
148	SEQ_NONE,
149	SEQ_32BLKS,
150	SEQ_256BLKS
151};
152/*
153 * indicate a block allocation direction: RIGHT and LEFT.
154 * RIGHT means allocating new sections towards the end of volume.
155 * LEFT means the opposite direction.
156 */
157enum {
158	ALLOC_RIGHT = 0,
159	ALLOC_LEFT
160};
161
162/*
163 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
164 * LFS writes data sequentially with cleaning operations.
165 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
166 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
167 * fragmented segment which has similar aging degree.
168 */
169enum {
170	LFS = 0,
171	SSR,
172	AT_SSR,
173};
174
175/*
176 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
177 * GC_CB is based on cost-benefit algorithm.
178 * GC_GREEDY is based on greedy algorithm.
179 * GC_AT is based on age-threshold algorithm.
180 */
181enum {
182	GC_CB = 0,
183	GC_GREEDY,
184	GC_AT,
185	ALLOC_NEXT,
186	FLUSH_DEVICE,
187	MAX_GC_POLICY,
188};
189
190/*
191 * BG_GC means the background cleaning job.
192 * FG_GC means the on-demand cleaning job.
193 * FORCE_FG_GC means on-demand cleaning job in background.
194 */
195enum {
196	BG_GC = 0,
197	FG_GC,
198	FORCE_FG_GC,
199};
200
201#ifdef CONFIG_F2FS_GRADING_SSR
202enum {
203	GRADING_SSR_OFF = 0,
204	GRADING_SSR_ON
205};
206#endif
207
208/* for a function parameter to select a victim segment */
209struct victim_sel_policy {
210	int alloc_mode;			/* LFS or SSR */
211	int gc_mode;			/* GC_CB or GC_GREEDY */
212	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
213	unsigned int max_search;	/*
214					 * maximum # of segments/sections
215					 * to search
216					 */
217	unsigned int offset;		/* last scanned bitmap offset */
218	unsigned int ofs_unit;		/* bitmap search unit */
219	unsigned int min_cost;		/* minimum cost */
220	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
221	unsigned int min_segno;		/* segment # having min. cost */
222	unsigned long long age;		/* mtime of GCed section*/
223	unsigned long long age_threshold;/* age threshold */
224};
225
226struct seg_entry {
227	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
228	unsigned int valid_blocks:10;	/* # of valid blocks */
229	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
230	unsigned int padding:6;		/* padding */
231	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
232#ifdef CONFIG_F2FS_CHECK_FS
233	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
234#endif
235	/*
236	 * # of valid blocks and the validity bitmap stored in the last
237	 * checkpoint pack. This information is used by the SSR mode.
238	 */
239	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
240	unsigned char *discard_map;
241	unsigned long long mtime;	/* modification time of the segment */
242};
243
244struct sec_entry {
245	unsigned int valid_blocks;	/* # of valid blocks in a section */
246};
247
248struct segment_allocation {
249	void (*allocate_segment)(struct f2fs_sb_info *, int, bool, int);
250};
251
252#define MAX_SKIP_GC_COUNT			16
253
254struct inmem_pages {
255	struct list_head list;
256	struct page *page;
257	block_t old_addr;		/* for revoking when fail to commit */
258};
259
260struct sit_info {
261	const struct segment_allocation *s_ops;
262
263	block_t sit_base_addr;		/* start block address of SIT area */
264	block_t sit_blocks;		/* # of blocks used by SIT area */
265	block_t written_valid_blocks;	/* # of valid blocks in main area */
266	char *bitmap;			/* all bitmaps pointer */
267	char *sit_bitmap;		/* SIT bitmap pointer */
268#ifdef CONFIG_F2FS_CHECK_FS
269	char *sit_bitmap_mir;		/* SIT bitmap mirror */
270
271	/* bitmap of segments to be ignored by GC in case of errors */
272	unsigned long *invalid_segmap;
273#endif
274	unsigned int bitmap_size;	/* SIT bitmap size */
275
276	unsigned long *tmp_map;			/* bitmap for temporal use */
277	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
278	unsigned int dirty_sentries;		/* # of dirty sentries */
279	unsigned int sents_per_block;		/* # of SIT entries per block */
280	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
281	struct seg_entry *sentries;		/* SIT segment-level cache */
282	struct sec_entry *sec_entries;		/* SIT section-level cache */
283
284	/* for cost-benefit algorithm in cleaning procedure */
285	unsigned long long elapsed_time;	/* elapsed time after mount */
286	unsigned long long mounted_time;	/* mount time */
287	unsigned long long min_mtime;		/* min. modification time */
288	unsigned long long max_mtime;		/* max. modification time */
289	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
290	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
291
292	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
293};
294
295struct free_segmap_info {
296	unsigned int start_segno;	/* start segment number logically */
297	unsigned int free_segments;	/* # of free segments */
298	unsigned int free_sections;	/* # of free sections */
299	spinlock_t segmap_lock;		/* free segmap lock */
300	unsigned long *free_segmap;	/* free segment bitmap */
301	unsigned long *free_secmap;	/* free section bitmap */
302};
303
304/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
305enum dirty_type {
306	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
307	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
308	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
309	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
310	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
311	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
312	DIRTY,			/* to count # of dirty segments */
313	PRE,			/* to count # of entirely obsolete segments */
314	NR_DIRTY_TYPE
315};
316
317struct dirty_seglist_info {
318	const struct victim_selection *v_ops;	/* victim selction operation */
319	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
320	unsigned long *dirty_secmap;
321	struct mutex seglist_lock;		/* lock for segment bitmaps */
322	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
323	unsigned long *victim_secmap;		/* background GC victims */
324};
325
326/* victim selection function for cleaning and SSR */
327struct victim_selection {
328	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
329					int, int, char, unsigned long long);
330};
331
332/* for active log information */
333struct curseg_info {
334	struct mutex curseg_mutex;		/* lock for consistency */
335	struct f2fs_summary_block *sum_blk;	/* cached summary block */
336	struct rw_semaphore journal_rwsem;	/* protect journal area */
337	struct f2fs_journal *journal;		/* cached journal info */
338	unsigned char alloc_type;		/* current allocation type */
339	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
340	unsigned int segno;			/* current segment number */
341	unsigned short next_blkoff;		/* next block offset to write */
342	unsigned int zone;			/* current zone number */
343	unsigned int next_segno;		/* preallocated segment */
344	bool inited;				/* indicate inmem log is inited */
345};
346
347struct sit_entry_set {
348	struct list_head set_list;	/* link with all sit sets */
349	unsigned int start_segno;	/* start segno of sits in set */
350	unsigned int entry_cnt;		/* the # of sit entries in set */
351};
352
353/*
354 * inline functions
355 */
356static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
357{
358	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
359}
360
361static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
362						unsigned int segno)
363{
364	struct sit_info *sit_i = SIT_I(sbi);
365	return &sit_i->sentries[segno];
366}
367
368static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
369						unsigned int segno)
370{
371	struct sit_info *sit_i = SIT_I(sbi);
372	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
373}
374
375static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
376				unsigned int segno, bool use_section)
377{
378	/*
379	 * In order to get # of valid blocks in a section instantly from many
380	 * segments, f2fs manages two counting structures separately.
381	 */
382	if (use_section && __is_large_section(sbi))
383		return get_sec_entry(sbi, segno)->valid_blocks;
384	else
385		return get_seg_entry(sbi, segno)->valid_blocks;
386}
387
388static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
389				unsigned int segno, bool use_section)
390{
391	if (use_section && __is_large_section(sbi)) {
392		unsigned int start_segno = START_SEGNO(segno);
393		unsigned int blocks = 0;
394		int i;
395
396		for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
397			struct seg_entry *se = get_seg_entry(sbi, start_segno);
398
399			blocks += se->ckpt_valid_blocks;
400		}
401		return blocks;
402	}
403	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
404}
405
406static inline void seg_info_from_raw_sit(struct seg_entry *se,
407					struct f2fs_sit_entry *rs)
408{
409	se->valid_blocks = GET_SIT_VBLOCKS(rs);
410	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
411	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
412	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
413#ifdef CONFIG_F2FS_CHECK_FS
414	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
415#endif
416	se->type = GET_SIT_TYPE(rs);
417	se->mtime = le64_to_cpu(rs->mtime);
418}
419
420static inline void __seg_info_to_raw_sit(struct seg_entry *se,
421					struct f2fs_sit_entry *rs)
422{
423	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
424					se->valid_blocks;
425	rs->vblocks = cpu_to_le16(raw_vblocks);
426	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
427	rs->mtime = cpu_to_le64(se->mtime);
428}
429
430static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
431				struct page *page, unsigned int start)
432{
433	struct f2fs_sit_block *raw_sit;
434	struct seg_entry *se;
435	struct f2fs_sit_entry *rs;
436	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
437					(unsigned long)MAIN_SEGS(sbi));
438	int i;
439
440	raw_sit = (struct f2fs_sit_block *)page_address(page);
441	memset(raw_sit, 0, PAGE_SIZE);
442	for (i = 0; i < end - start; i++) {
443		rs = &raw_sit->entries[i];
444		se = get_seg_entry(sbi, start + i);
445		__seg_info_to_raw_sit(se, rs);
446	}
447}
448
449static inline void seg_info_to_raw_sit(struct seg_entry *se,
450					struct f2fs_sit_entry *rs)
451{
452	__seg_info_to_raw_sit(se, rs);
453
454	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
455	se->ckpt_valid_blocks = se->valid_blocks;
456}
457
458static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
459		unsigned int max, unsigned int segno)
460{
461	unsigned int ret;
462	spin_lock(&free_i->segmap_lock);
463	ret = find_next_bit(free_i->free_segmap, max, segno);
464	spin_unlock(&free_i->segmap_lock);
465	return ret;
466}
467
468static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
469{
470	struct free_segmap_info *free_i = FREE_I(sbi);
471	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
472	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
473	unsigned int next;
474	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
475
476	spin_lock(&free_i->segmap_lock);
477	clear_bit(segno, free_i->free_segmap);
478	free_i->free_segments++;
479
480	next = find_next_bit(free_i->free_segmap,
481			start_segno + sbi->segs_per_sec, start_segno);
482	if (next >= start_segno + usable_segs) {
483		clear_bit(secno, free_i->free_secmap);
484		free_i->free_sections++;
485	}
486	spin_unlock(&free_i->segmap_lock);
487}
488
489static inline void __set_inuse(struct f2fs_sb_info *sbi,
490		unsigned int segno)
491{
492	struct free_segmap_info *free_i = FREE_I(sbi);
493	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
494
495	set_bit(segno, free_i->free_segmap);
496	free_i->free_segments--;
497	if (!test_and_set_bit(secno, free_i->free_secmap))
498		free_i->free_sections--;
499}
500
501static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
502		unsigned int segno, bool inmem)
503{
504	struct free_segmap_info *free_i = FREE_I(sbi);
505	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
506	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
507	unsigned int next;
508	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
509
510	spin_lock(&free_i->segmap_lock);
511	if (test_and_clear_bit(segno, free_i->free_segmap)) {
512		free_i->free_segments++;
513
514		if (!inmem && IS_CURSEC(sbi, secno))
515			goto skip_free;
516		next = find_next_bit(free_i->free_segmap,
517				start_segno + sbi->segs_per_sec, start_segno);
518		if (next >= start_segno + usable_segs) {
519			if (test_and_clear_bit(secno, free_i->free_secmap))
520				free_i->free_sections++;
521		}
522	}
523skip_free:
524	spin_unlock(&free_i->segmap_lock);
525}
526
527static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
528		unsigned int segno)
529{
530	struct free_segmap_info *free_i = FREE_I(sbi);
531	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
532
533	spin_lock(&free_i->segmap_lock);
534	if (!test_and_set_bit(segno, free_i->free_segmap)) {
535		free_i->free_segments--;
536		if (!test_and_set_bit(secno, free_i->free_secmap))
537			free_i->free_sections--;
538	}
539	spin_unlock(&free_i->segmap_lock);
540}
541
542static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
543		void *dst_addr)
544{
545	struct sit_info *sit_i = SIT_I(sbi);
546
547#ifdef CONFIG_F2FS_CHECK_FS
548	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
549						sit_i->bitmap_size))
550		f2fs_bug_on(sbi, 1);
551#endif
552	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
553}
554
555static inline block_t written_block_count(struct f2fs_sb_info *sbi)
556{
557	return SIT_I(sbi)->written_valid_blocks;
558}
559
560static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
561{
562	return FREE_I(sbi)->free_segments;
563}
564
565static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
566{
567	return SM_I(sbi)->reserved_segments +
568			SM_I(sbi)->additional_reserved_segments;
569}
570
571static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
572{
573	return FREE_I(sbi)->free_sections;
574}
575
576static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
577{
578	return DIRTY_I(sbi)->nr_dirty[PRE];
579}
580
581static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
582{
583	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
584		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
585		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
586		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
587		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
588		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
589}
590
591static inline int overprovision_segments(struct f2fs_sb_info *sbi)
592{
593	return SM_I(sbi)->ovp_segments;
594}
595
596static inline int reserved_sections(struct f2fs_sb_info *sbi)
597{
598	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
599}
600
601static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
602			unsigned int node_blocks, unsigned int dent_blocks)
603{
604
605	unsigned int segno, left_blocks;
606	int i;
607
608	/* check current node segment */
609	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
610		segno = CURSEG_I(sbi, i)->segno;
611		left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
612				get_seg_entry(sbi, segno)->ckpt_valid_blocks;
613
614		if (node_blocks > left_blocks)
615			return false;
616	}
617
618	/* check current data segment */
619	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
620	left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
621			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
622	if (dent_blocks > left_blocks)
623		return false;
624	return true;
625}
626
627static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
628					int freed, int needed)
629{
630	unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
631					get_pages(sbi, F2FS_DIRTY_DENTS) +
632					get_pages(sbi, F2FS_DIRTY_IMETA);
633	unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
634	unsigned int node_secs = total_node_blocks / BLKS_PER_SEC(sbi);
635	unsigned int dent_secs = total_dent_blocks / BLKS_PER_SEC(sbi);
636	unsigned int node_blocks = total_node_blocks % BLKS_PER_SEC(sbi);
637	unsigned int dent_blocks = total_dent_blocks % BLKS_PER_SEC(sbi);
638	unsigned int free, need_lower, need_upper;
639
640	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
641		return false;
642
643	free = free_sections(sbi) + freed;
644	need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed;
645	need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
646
647	if (free > need_upper)
648		return false;
649	else if (free <= need_lower)
650		return true;
651	return !has_curseg_enough_space(sbi, node_blocks, dent_blocks);
652}
653
654static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
655{
656	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
657		return true;
658	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
659		return true;
660	return false;
661}
662
663static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
664{
665	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
666}
667
668static inline int utilization(struct f2fs_sb_info *sbi)
669{
670	return div_u64((u64)valid_user_blocks(sbi) * 100,
671					sbi->user_block_count);
672}
673
674/*
675 * Sometimes f2fs may be better to drop out-of-place update policy.
676 * And, users can control the policy through sysfs entries.
677 * There are five policies with triggering conditions as follows.
678 * F2FS_IPU_FORCE - all the time,
679 * F2FS_IPU_SSR - if SSR mode is activated,
680 * F2FS_IPU_UTIL - if FS utilization is over threashold,
681 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
682 *                     threashold,
683 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
684 *                     storages. IPU will be triggered only if the # of dirty
685 *                     pages over min_fsync_blocks. (=default option)
686 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
687 * F2FS_IPU_NOCACHE - disable IPU bio cache.
688 * F2FS_IPUT_DISABLE - disable IPU. (=default option in LFS mode)
689 */
690#define DEF_MIN_IPU_UTIL	70
691#define DEF_MIN_FSYNC_BLOCKS	8
692#define DEF_MIN_HOT_BLOCKS	16
693
694#define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
695
696enum {
697	F2FS_IPU_FORCE,
698	F2FS_IPU_SSR,
699	F2FS_IPU_UTIL,
700	F2FS_IPU_SSR_UTIL,
701	F2FS_IPU_FSYNC,
702	F2FS_IPU_ASYNC,
703	F2FS_IPU_NOCACHE,
704};
705
706static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
707		int type)
708{
709	struct curseg_info *curseg = CURSEG_I(sbi, type);
710	return curseg->segno;
711}
712
713static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
714		int type)
715{
716	struct curseg_info *curseg = CURSEG_I(sbi, type);
717	return curseg->alloc_type;
718}
719
720static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
721{
722	struct curseg_info *curseg = CURSEG_I(sbi, type);
723	return curseg->next_blkoff;
724}
725
726static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
727{
728	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
729}
730
731static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
732{
733	struct f2fs_sb_info *sbi = fio->sbi;
734
735	if (__is_valid_data_blkaddr(fio->old_blkaddr))
736		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
737					META_GENERIC : DATA_GENERIC);
738	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
739					META_GENERIC : DATA_GENERIC_ENHANCE);
740}
741
742/*
743 * Summary block is always treated as an invalid block
744 */
745static inline int check_block_count(struct f2fs_sb_info *sbi,
746		int segno, struct f2fs_sit_entry *raw_sit)
747{
748	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
749	int valid_blocks = 0;
750	int cur_pos = 0, next_pos;
751	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
752
753	/* check bitmap with valid block count */
754	do {
755		if (is_valid) {
756			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
757					usable_blks_per_seg,
758					cur_pos);
759			valid_blocks += next_pos - cur_pos;
760		} else
761			next_pos = find_next_bit_le(&raw_sit->valid_map,
762					usable_blks_per_seg,
763					cur_pos);
764		cur_pos = next_pos;
765		is_valid = !is_valid;
766	} while (cur_pos < usable_blks_per_seg);
767
768	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
769		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
770			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
771		set_sbi_flag(sbi, SBI_NEED_FSCK);
772		return -EFSCORRUPTED;
773	}
774
775	if (usable_blks_per_seg < sbi->blocks_per_seg)
776		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
777				sbi->blocks_per_seg,
778				usable_blks_per_seg) != sbi->blocks_per_seg);
779
780	/* check segment usage, and check boundary of a given segment number */
781	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
782					|| segno > TOTAL_SEGS(sbi) - 1)) {
783		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
784			 GET_SIT_VBLOCKS(raw_sit), segno);
785		set_sbi_flag(sbi, SBI_NEED_FSCK);
786		return -EFSCORRUPTED;
787	}
788	return 0;
789}
790
791static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
792						unsigned int start)
793{
794	struct sit_info *sit_i = SIT_I(sbi);
795	unsigned int offset = SIT_BLOCK_OFFSET(start);
796	block_t blk_addr = sit_i->sit_base_addr + offset;
797
798	check_seg_range(sbi, start);
799
800#ifdef CONFIG_F2FS_CHECK_FS
801	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
802			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
803		f2fs_bug_on(sbi, 1);
804#endif
805
806	/* calculate sit block address */
807	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
808		blk_addr += sit_i->sit_blocks;
809
810	return blk_addr;
811}
812
813static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
814						pgoff_t block_addr)
815{
816	struct sit_info *sit_i = SIT_I(sbi);
817	block_addr -= sit_i->sit_base_addr;
818	if (block_addr < sit_i->sit_blocks)
819		block_addr += sit_i->sit_blocks;
820	else
821		block_addr -= sit_i->sit_blocks;
822
823	return block_addr + sit_i->sit_base_addr;
824}
825
826static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
827{
828	unsigned int block_off = SIT_BLOCK_OFFSET(start);
829
830	f2fs_change_bit(block_off, sit_i->sit_bitmap);
831#ifdef CONFIG_F2FS_CHECK_FS
832	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
833#endif
834}
835
836static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
837						bool base_time)
838{
839	struct sit_info *sit_i = SIT_I(sbi);
840	time64_t diff, now = ktime_get_boottime_seconds();
841
842	if (now >= sit_i->mounted_time)
843		return sit_i->elapsed_time + now - sit_i->mounted_time;
844
845	/* system time is set to the past */
846	if (!base_time) {
847		diff = sit_i->mounted_time - now;
848		if (sit_i->elapsed_time >= diff)
849			return sit_i->elapsed_time - diff;
850		return 0;
851	}
852	return sit_i->elapsed_time;
853}
854
855static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
856			unsigned int ofs_in_node, unsigned char version)
857{
858	sum->nid = cpu_to_le32(nid);
859	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
860	sum->version = version;
861}
862
863static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
864{
865	return __start_cp_addr(sbi) +
866		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
867}
868
869static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
870{
871	return __start_cp_addr(sbi) +
872		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
873				- (base + 1) + type;
874}
875
876static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
877{
878	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
879		return true;
880	return false;
881}
882
883/*
884 * It is very important to gather dirty pages and write at once, so that we can
885 * submit a big bio without interfering other data writes.
886 * By default, 512 pages for directory data,
887 * 512 pages (2MB) * 8 for nodes, and
888 * 256 pages * 8 for meta are set.
889 */
890static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
891{
892	if (sbi->sb->s_bdi->wb.dirty_exceeded)
893		return 0;
894
895	if (type == DATA)
896		return sbi->blocks_per_seg;
897	else if (type == NODE)
898		return 8 * sbi->blocks_per_seg;
899	else if (type == META)
900		return 8 * BIO_MAX_PAGES;
901	else
902		return 0;
903}
904
905/*
906 * When writing pages, it'd better align nr_to_write for segment size.
907 */
908static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
909					struct writeback_control *wbc)
910{
911	long nr_to_write, desired;
912
913	if (wbc->sync_mode != WB_SYNC_NONE)
914		return 0;
915
916	nr_to_write = wbc->nr_to_write;
917	desired = BIO_MAX_PAGES;
918	if (type == NODE)
919		desired <<= 1;
920
921	wbc->nr_to_write = desired;
922	return desired - nr_to_write;
923}
924
925static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
926{
927	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
928	bool wakeup = false;
929	int i;
930
931	if (force)
932		goto wake_up;
933
934	mutex_lock(&dcc->cmd_lock);
935	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
936		if (i + 1 < dcc->discard_granularity)
937			break;
938		if (!list_empty(&dcc->pend_list[i])) {
939			wakeup = true;
940			break;
941		}
942	}
943	mutex_unlock(&dcc->cmd_lock);
944	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
945		return;
946wake_up:
947	dcc->discard_wake = 1;
948	wake_up_interruptible_all(&dcc->discard_wait_queue);
949}
950
951#ifdef CONFIG_F2FS_GRADING_SSR
952static inline int check_io_seq(int blks)
953{
954	if (blks >= SSR_CONTIG_LARGE)
955		return SEQ_256BLKS;
956	if (blks >= SSR_CONTIG_DIRTY_NUMS)
957		return SEQ_32BLKS;
958	return SEQ_NONE;
959}
960#endif
961