xref: /kernel/linux/linux-5.10/fs/f2fs/segment.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 *             http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/prefetch.h>
13#include <linux/kthread.h>
14#include <linux/swap.h>
15#include <linux/timer.h>
16#include <linux/freezer.h>
17#include <linux/sched/signal.h>
18
19#include "f2fs.h"
20#include "segment.h"
21#include "node.h"
22#include "gc.h"
23#include "trace.h"
24#include <trace/events/f2fs.h>
25
26#define __reverse_ffz(x) __reverse_ffs(~(x))
27
28static struct kmem_cache *discard_entry_slab;
29static struct kmem_cache *discard_cmd_slab;
30static struct kmem_cache *sit_entry_set_slab;
31static struct kmem_cache *inmem_entry_slab;
32
33static struct discard_policy dpolicys[MAX_DPOLICY] = {
34	{DPOLICY_BG, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
35		MAX_PLIST_NUM, false, true, false, false, DISCARD_GRAN_BG,
36		{{1, 0}, {0, 0}, {0, 0}}},
37	{DPOLICY_BALANCE, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
38		MAX_PLIST_NUM - 1, true, true, false, false, DISCARD_GRAN_BL,
39		{{1, 0}, {2, 50}, {0, 0}}},
40	{DPOLICY_FORCE, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
41		MAX_PLIST_NUM - 1, true, true, false, false, DISCARD_GRAN_FORCE,
42		{{1, 0}, {2, 50}, {4, 2000}}},
43	{DPOLICY_FSTRIM, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
44		MAX_PLIST_NUM, false, true, false, false, DISCARD_GRAN_FORCE,
45		{{8, 0}, {8, 0}, {8, 0}}},
46	{DPOLICY_UMOUNT, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
47		MAX_PLIST_NUM, false, true, false, false, DISCARD_GRAN_BG,
48		{{UINT_MAX, 0}, {0, 0}, {0, 0}}}
49};
50
51static unsigned long __reverse_ulong(unsigned char *str)
52{
53	unsigned long tmp = 0;
54	int shift = 24, idx = 0;
55
56#if BITS_PER_LONG == 64
57	shift = 56;
58#endif
59	while (shift >= 0) {
60		tmp |= (unsigned long)str[idx++] << shift;
61		shift -= BITS_PER_BYTE;
62	}
63	return tmp;
64}
65
66/*
67 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
68 * MSB and LSB are reversed in a byte by f2fs_set_bit.
69 */
70static inline unsigned long __reverse_ffs(unsigned long word)
71{
72	int num = 0;
73
74#if BITS_PER_LONG == 64
75	if ((word & 0xffffffff00000000UL) == 0)
76		num += 32;
77	else
78		word >>= 32;
79#endif
80	if ((word & 0xffff0000) == 0)
81		num += 16;
82	else
83		word >>= 16;
84
85	if ((word & 0xff00) == 0)
86		num += 8;
87	else
88		word >>= 8;
89
90	if ((word & 0xf0) == 0)
91		num += 4;
92	else
93		word >>= 4;
94
95	if ((word & 0xc) == 0)
96		num += 2;
97	else
98		word >>= 2;
99
100	if ((word & 0x2) == 0)
101		num += 1;
102	return num;
103}
104
105/*
106 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
107 * f2fs_set_bit makes MSB and LSB reversed in a byte.
108 * @size must be integral times of unsigned long.
109 * Example:
110 *                             MSB <--> LSB
111 *   f2fs_set_bit(0, bitmap) => 1000 0000
112 *   f2fs_set_bit(7, bitmap) => 0000 0001
113 */
114unsigned long find_rev_next_bit(const unsigned long *addr,
115			unsigned long size, unsigned long offset)
116{
117	const unsigned long *p = addr + BIT_WORD(offset);
118	unsigned long result = size;
119	unsigned long tmp;
120
121	if (offset >= size)
122		return size;
123
124	size -= (offset & ~(BITS_PER_LONG - 1));
125	offset %= BITS_PER_LONG;
126
127	while (1) {
128		if (*p == 0)
129			goto pass;
130
131		tmp = __reverse_ulong((unsigned char *)p);
132
133		tmp &= ~0UL >> offset;
134		if (size < BITS_PER_LONG)
135			tmp &= (~0UL << (BITS_PER_LONG - size));
136		if (tmp)
137			goto found;
138pass:
139		if (size <= BITS_PER_LONG)
140			break;
141		size -= BITS_PER_LONG;
142		offset = 0;
143		p++;
144	}
145	return result;
146found:
147	return result - size + __reverse_ffs(tmp);
148}
149
150unsigned long find_rev_next_zero_bit(const unsigned long *addr,
151			unsigned long size, unsigned long offset)
152{
153	const unsigned long *p = addr + BIT_WORD(offset);
154	unsigned long result = size;
155	unsigned long tmp;
156
157	if (offset >= size)
158		return size;
159
160	size -= (offset & ~(BITS_PER_LONG - 1));
161	offset %= BITS_PER_LONG;
162
163	while (1) {
164		if (*p == ~0UL)
165			goto pass;
166
167		tmp = __reverse_ulong((unsigned char *)p);
168
169		if (offset)
170			tmp |= ~0UL << (BITS_PER_LONG - offset);
171		if (size < BITS_PER_LONG)
172			tmp |= ~0UL >> size;
173		if (tmp != ~0UL)
174			goto found;
175pass:
176		if (size <= BITS_PER_LONG)
177			break;
178		size -= BITS_PER_LONG;
179		offset = 0;
180		p++;
181	}
182	return result;
183found:
184	return result - size + __reverse_ffz(tmp);
185}
186
187bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
188{
189	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
190	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
191	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
192
193	if (f2fs_lfs_mode(sbi))
194		return false;
195	if (sbi->gc_mode == GC_URGENT_HIGH)
196		return true;
197	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
198		return true;
199
200	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
201			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
202}
203
204#ifdef CONFIG_F2FS_GRADING_SSR
205static bool need_ssr_by_type(struct f2fs_sb_info *sbi, int type, int contig_level)
206{
207	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
208	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
209	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
210	u64 valid_blocks = sbi->total_valid_block_count;
211	u64 total_blocks = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
212	u64 left_space = (total_blocks - valid_blocks) << 2;
213	unsigned int free_segs = free_segments(sbi);
214	unsigned int ovp_segments = overprovision_segments(sbi);
215	unsigned int lower_limit = 0;
216	unsigned int waterline = 0;
217	int dirty_sum = node_secs + 2 * dent_secs + imeta_secs;
218
219	if (sbi->hot_cold_params.enable == GRADING_SSR_OFF)
220		return f2fs_need_SSR(sbi);
221	if (f2fs_lfs_mode(sbi))
222		return false;
223	if (sbi->gc_mode == GC_URGENT_HIGH)
224		return true;
225	if (contig_level == SEQ_256BLKS && type == CURSEG_WARM_DATA &&
226	    free_sections(sbi) > dirty_sum + 3 * reserved_sections(sbi) / 2)
227		return false;
228	if (free_sections(sbi) <= (unsigned int)(dirty_sum + 2 * reserved_sections(sbi)))
229		return true;
230	if (contig_level >= SEQ_32BLKS || total_blocks <= SSR_MIN_BLKS_LIMIT)
231		return false;
232
233	left_space -= ovp_segments * KBS_PER_SEGMENT;
234	if (unlikely(left_space == 0))
235		return false;
236
237	switch (type) {
238	case CURSEG_HOT_DATA:
239		lower_limit = sbi->hot_cold_params.hot_data_lower_limit;
240		waterline = sbi->hot_cold_params.hot_data_waterline;
241		break;
242	case CURSEG_WARM_DATA:
243		lower_limit = sbi->hot_cold_params.warm_data_lower_limit;
244		waterline = sbi->hot_cold_params.warm_data_waterline;
245		break;
246	case CURSEG_HOT_NODE:
247		lower_limit = sbi->hot_cold_params.hot_node_lower_limit;
248		waterline = sbi->hot_cold_params.hot_node_waterline;
249		break;
250	case CURSEG_WARM_NODE:
251		lower_limit = sbi->hot_cold_params.warm_node_lower_limit;
252		waterline = sbi->hot_cold_params.warm_node_waterline;
253		break;
254	default:
255		return false;
256	}
257
258	if (left_space > lower_limit)
259		return false;
260
261	if (div_u64((free_segs - ovp_segments) * 100, (left_space / KBS_PER_SEGMENT))
262									<= waterline) {
263		trace_f2fs_grading_ssr_allocate(
264			(le64_to_cpu(sbi->raw_super->block_count) - sbi->total_valid_block_count),
265			free_segments(sbi), contig_level);
266		return true;
267	} else {
268		return false;
269	}
270}
271#endif
272
273void f2fs_register_inmem_page(struct inode *inode, struct page *page)
274{
275	struct inmem_pages *new;
276
277	f2fs_trace_pid(page);
278
279	f2fs_set_page_private(page, ATOMIC_WRITTEN_PAGE);
280
281	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
282
283	/* add atomic page indices to the list */
284	new->page = page;
285	INIT_LIST_HEAD(&new->list);
286
287	/* increase reference count with clean state */
288	get_page(page);
289	mutex_lock(&F2FS_I(inode)->inmem_lock);
290	list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
291	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
292	mutex_unlock(&F2FS_I(inode)->inmem_lock);
293
294	trace_f2fs_register_inmem_page(page, INMEM);
295}
296
297static int __revoke_inmem_pages(struct inode *inode,
298				struct list_head *head, bool drop, bool recover,
299				bool trylock)
300{
301	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
302	struct inmem_pages *cur, *tmp;
303	int err = 0;
304
305	list_for_each_entry_safe(cur, tmp, head, list) {
306		struct page *page = cur->page;
307
308		if (drop)
309			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
310
311		if (trylock) {
312			/*
313			 * to avoid deadlock in between page lock and
314			 * inmem_lock.
315			 */
316			if (!trylock_page(page))
317				continue;
318		} else {
319			lock_page(page);
320		}
321
322		f2fs_wait_on_page_writeback(page, DATA, true, true);
323
324		if (recover) {
325			struct dnode_of_data dn;
326			struct node_info ni;
327
328			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
329retry:
330			set_new_dnode(&dn, inode, NULL, NULL, 0);
331			err = f2fs_get_dnode_of_data(&dn, page->index,
332								LOOKUP_NODE);
333			if (err) {
334				if (err == -ENOMEM) {
335					congestion_wait(BLK_RW_ASYNC,
336							DEFAULT_IO_TIMEOUT);
337					cond_resched();
338					goto retry;
339				}
340				err = -EAGAIN;
341				goto next;
342			}
343
344			err = f2fs_get_node_info(sbi, dn.nid, &ni);
345			if (err) {
346				f2fs_put_dnode(&dn);
347				return err;
348			}
349
350			if (cur->old_addr == NEW_ADDR) {
351				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
352				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
353			} else
354				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
355					cur->old_addr, ni.version, true, true);
356			f2fs_put_dnode(&dn);
357		}
358next:
359		/* we don't need to invalidate this in the sccessful status */
360		if (drop || recover) {
361			ClearPageUptodate(page);
362			clear_cold_data(page);
363		}
364		f2fs_clear_page_private(page);
365		f2fs_put_page(page, 1);
366
367		list_del(&cur->list);
368		kmem_cache_free(inmem_entry_slab, cur);
369		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
370	}
371	return err;
372}
373
374void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
375{
376	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
377	struct inode *inode;
378	struct f2fs_inode_info *fi;
379	unsigned int count = sbi->atomic_files;
380	unsigned int looped = 0;
381next:
382	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
383	if (list_empty(head)) {
384		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
385		return;
386	}
387	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
388	inode = igrab(&fi->vfs_inode);
389	if (inode)
390		list_move_tail(&fi->inmem_ilist, head);
391	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
392
393	if (inode) {
394		if (gc_failure) {
395			if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
396				goto skip;
397		}
398		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
399		f2fs_drop_inmem_pages(inode);
400skip:
401		iput(inode);
402	}
403	congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
404	cond_resched();
405	if (gc_failure) {
406		if (++looped >= count)
407			return;
408	}
409	goto next;
410}
411
412void f2fs_drop_inmem_pages(struct inode *inode)
413{
414	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
415	struct f2fs_inode_info *fi = F2FS_I(inode);
416
417	do {
418		mutex_lock(&fi->inmem_lock);
419		if (list_empty(&fi->inmem_pages)) {
420			fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
421
422			spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
423			if (!list_empty(&fi->inmem_ilist))
424				list_del_init(&fi->inmem_ilist);
425			if (f2fs_is_atomic_file(inode)) {
426				clear_inode_flag(inode, FI_ATOMIC_FILE);
427				sbi->atomic_files--;
428			}
429			spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
430
431			mutex_unlock(&fi->inmem_lock);
432			break;
433		}
434		__revoke_inmem_pages(inode, &fi->inmem_pages,
435						true, false, true);
436		mutex_unlock(&fi->inmem_lock);
437	} while (1);
438}
439
440void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
441{
442	struct f2fs_inode_info *fi = F2FS_I(inode);
443	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
444	struct list_head *head = &fi->inmem_pages;
445	struct inmem_pages *cur = NULL;
446	struct inmem_pages *tmp;
447
448	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
449
450	mutex_lock(&fi->inmem_lock);
451	list_for_each_entry(tmp, head, list) {
452		if (tmp->page == page) {
453			cur = tmp;
454			break;
455		}
456	}
457
458	f2fs_bug_on(sbi, !cur);
459	list_del(&cur->list);
460	mutex_unlock(&fi->inmem_lock);
461
462	dec_page_count(sbi, F2FS_INMEM_PAGES);
463	kmem_cache_free(inmem_entry_slab, cur);
464
465	ClearPageUptodate(page);
466	f2fs_clear_page_private(page);
467	f2fs_put_page(page, 0);
468
469	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
470}
471
472static int __f2fs_commit_inmem_pages(struct inode *inode)
473{
474	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
475	struct f2fs_inode_info *fi = F2FS_I(inode);
476	struct inmem_pages *cur, *tmp;
477	struct f2fs_io_info fio = {
478		.sbi = sbi,
479		.ino = inode->i_ino,
480		.type = DATA,
481		.op = REQ_OP_WRITE,
482		.op_flags = REQ_SYNC | REQ_PRIO,
483		.io_type = FS_DATA_IO,
484	};
485	struct list_head revoke_list;
486	bool submit_bio = false;
487	int err = 0;
488
489	INIT_LIST_HEAD(&revoke_list);
490
491	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
492		struct page *page = cur->page;
493
494		lock_page(page);
495		if (page->mapping == inode->i_mapping) {
496			trace_f2fs_commit_inmem_page(page, INMEM);
497
498			f2fs_wait_on_page_writeback(page, DATA, true, true);
499
500			set_page_dirty(page);
501			if (clear_page_dirty_for_io(page)) {
502				inode_dec_dirty_pages(inode);
503				f2fs_remove_dirty_inode(inode);
504			}
505retry:
506			fio.page = page;
507			fio.old_blkaddr = NULL_ADDR;
508			fio.encrypted_page = NULL;
509			fio.need_lock = LOCK_DONE;
510			err = f2fs_do_write_data_page(&fio);
511			if (err) {
512				if (err == -ENOMEM) {
513					congestion_wait(BLK_RW_ASYNC,
514							DEFAULT_IO_TIMEOUT);
515					cond_resched();
516					goto retry;
517				}
518				unlock_page(page);
519				break;
520			}
521			/* record old blkaddr for revoking */
522			cur->old_addr = fio.old_blkaddr;
523			submit_bio = true;
524		}
525		unlock_page(page);
526		list_move_tail(&cur->list, &revoke_list);
527	}
528
529	if (submit_bio)
530		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
531
532	if (err) {
533		/*
534		 * try to revoke all committed pages, but still we could fail
535		 * due to no memory or other reason, if that happened, EAGAIN
536		 * will be returned, which means in such case, transaction is
537		 * already not integrity, caller should use journal to do the
538		 * recovery or rewrite & commit last transaction. For other
539		 * error number, revoking was done by filesystem itself.
540		 */
541		err = __revoke_inmem_pages(inode, &revoke_list,
542						false, true, false);
543
544		/* drop all uncommitted pages */
545		__revoke_inmem_pages(inode, &fi->inmem_pages,
546						true, false, false);
547	} else {
548		__revoke_inmem_pages(inode, &revoke_list,
549						false, false, false);
550	}
551
552	return err;
553}
554
555int f2fs_commit_inmem_pages(struct inode *inode)
556{
557	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
558	struct f2fs_inode_info *fi = F2FS_I(inode);
559	int err;
560
561	f2fs_balance_fs(sbi, true);
562
563	down_write(&fi->i_gc_rwsem[WRITE]);
564
565	f2fs_lock_op(sbi);
566	set_inode_flag(inode, FI_ATOMIC_COMMIT);
567
568	mutex_lock(&fi->inmem_lock);
569	err = __f2fs_commit_inmem_pages(inode);
570	mutex_unlock(&fi->inmem_lock);
571
572	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
573
574	f2fs_unlock_op(sbi);
575	up_write(&fi->i_gc_rwsem[WRITE]);
576
577	return err;
578}
579
580/*
581 * This function balances dirty node and dentry pages.
582 * In addition, it controls garbage collection.
583 */
584void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
585{
586	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
587		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
588		f2fs_stop_checkpoint(sbi, false);
589	}
590
591	/* balance_fs_bg is able to be pending */
592	if (need && excess_cached_nats(sbi))
593		f2fs_balance_fs_bg(sbi, false);
594
595	if (!f2fs_is_checkpoint_ready(sbi))
596		return;
597
598	/*
599	 * We should do GC or end up with checkpoint, if there are so many dirty
600	 * dir/node pages without enough free segments.
601	 */
602	if (has_not_enough_free_secs(sbi, 0, 0)) {
603		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
604					sbi->gc_thread->f2fs_gc_task) {
605			DEFINE_WAIT(wait);
606
607			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
608						TASK_UNINTERRUPTIBLE);
609			wake_up(&sbi->gc_thread->gc_wait_queue_head);
610			io_schedule();
611			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
612		} else {
613			down_write(&sbi->gc_lock);
614			f2fs_gc(sbi, false, false, false, NULL_SEGNO);
615		}
616	}
617}
618
619void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
620{
621	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
622		return;
623
624	/* try to shrink extent cache when there is no enough memory */
625	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
626		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
627
628	/* check the # of cached NAT entries */
629	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
630		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
631
632	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
633		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
634	else
635		f2fs_build_free_nids(sbi, false, false);
636
637	if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
638		excess_prefree_segs(sbi))
639		goto do_sync;
640
641	/* there is background inflight IO or foreground operation recently */
642	if (is_inflight_io(sbi, REQ_TIME) ||
643		(!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
644		return;
645
646	/* exceed periodical checkpoint timeout threshold */
647	if (f2fs_time_over(sbi, CP_TIME))
648		goto do_sync;
649
650	/* checkpoint is the only way to shrink partial cached entries */
651	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
652		f2fs_available_free_memory(sbi, INO_ENTRIES))
653		return;
654
655do_sync:
656	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
657		struct blk_plug plug;
658
659		mutex_lock(&sbi->flush_lock);
660
661		blk_start_plug(&plug);
662		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
663		blk_finish_plug(&plug);
664
665		mutex_unlock(&sbi->flush_lock);
666	}
667	f2fs_sync_fs(sbi->sb, true);
668	stat_inc_bg_cp_count(sbi->stat_info);
669}
670
671static int __submit_flush_wait(struct f2fs_sb_info *sbi,
672				struct block_device *bdev)
673{
674	struct bio *bio;
675	int ret;
676
677	bio = f2fs_bio_alloc(sbi, 0, false);
678	if (!bio)
679		return -ENOMEM;
680
681	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
682	bio_set_dev(bio, bdev);
683	ret = submit_bio_wait(bio);
684	bio_put(bio);
685
686	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
687				test_opt(sbi, FLUSH_MERGE), ret);
688	return ret;
689}
690
691static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
692{
693	int ret = 0;
694	int i;
695
696	if (!f2fs_is_multi_device(sbi))
697		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
698
699	for (i = 0; i < sbi->s_ndevs; i++) {
700		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
701			continue;
702		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
703		if (ret)
704			break;
705	}
706	return ret;
707}
708
709static int issue_flush_thread(void *data)
710{
711	struct f2fs_sb_info *sbi = data;
712	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
713	wait_queue_head_t *q = &fcc->flush_wait_queue;
714repeat:
715	if (kthread_should_stop())
716		return 0;
717
718	sb_start_intwrite(sbi->sb);
719
720	if (!llist_empty(&fcc->issue_list)) {
721		struct flush_cmd *cmd, *next;
722		int ret;
723
724		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
725		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
726
727		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
728
729		ret = submit_flush_wait(sbi, cmd->ino);
730		atomic_inc(&fcc->issued_flush);
731
732		llist_for_each_entry_safe(cmd, next,
733					  fcc->dispatch_list, llnode) {
734			cmd->ret = ret;
735			complete(&cmd->wait);
736		}
737		fcc->dispatch_list = NULL;
738	}
739
740	sb_end_intwrite(sbi->sb);
741
742	wait_event_interruptible(*q,
743		kthread_should_stop() || !llist_empty(&fcc->issue_list));
744	goto repeat;
745}
746
747int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
748{
749	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
750	struct flush_cmd cmd;
751	int ret;
752
753	if (test_opt(sbi, NOBARRIER))
754		return 0;
755
756	if (!test_opt(sbi, FLUSH_MERGE)) {
757		atomic_inc(&fcc->queued_flush);
758		ret = submit_flush_wait(sbi, ino);
759		atomic_dec(&fcc->queued_flush);
760		atomic_inc(&fcc->issued_flush);
761		return ret;
762	}
763
764	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
765	    f2fs_is_multi_device(sbi)) {
766		ret = submit_flush_wait(sbi, ino);
767		atomic_dec(&fcc->queued_flush);
768
769		atomic_inc(&fcc->issued_flush);
770		return ret;
771	}
772
773	cmd.ino = ino;
774	init_completion(&cmd.wait);
775
776	llist_add(&cmd.llnode, &fcc->issue_list);
777
778	/* update issue_list before we wake up issue_flush thread */
779	smp_mb();
780
781	if (waitqueue_active(&fcc->flush_wait_queue))
782		wake_up(&fcc->flush_wait_queue);
783
784	if (fcc->f2fs_issue_flush) {
785		wait_for_completion(&cmd.wait);
786		atomic_dec(&fcc->queued_flush);
787	} else {
788		struct llist_node *list;
789
790		list = llist_del_all(&fcc->issue_list);
791		if (!list) {
792			wait_for_completion(&cmd.wait);
793			atomic_dec(&fcc->queued_flush);
794		} else {
795			struct flush_cmd *tmp, *next;
796
797			ret = submit_flush_wait(sbi, ino);
798
799			llist_for_each_entry_safe(tmp, next, list, llnode) {
800				if (tmp == &cmd) {
801					cmd.ret = ret;
802					atomic_dec(&fcc->queued_flush);
803					continue;
804				}
805				tmp->ret = ret;
806				complete(&tmp->wait);
807			}
808		}
809	}
810
811	return cmd.ret;
812}
813
814int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
815{
816	dev_t dev = sbi->sb->s_bdev->bd_dev;
817	struct flush_cmd_control *fcc;
818	int err = 0;
819
820	if (SM_I(sbi)->fcc_info) {
821		fcc = SM_I(sbi)->fcc_info;
822		if (fcc->f2fs_issue_flush)
823			return err;
824		goto init_thread;
825	}
826
827	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
828	if (!fcc)
829		return -ENOMEM;
830	atomic_set(&fcc->issued_flush, 0);
831	atomic_set(&fcc->queued_flush, 0);
832	init_waitqueue_head(&fcc->flush_wait_queue);
833	init_llist_head(&fcc->issue_list);
834	SM_I(sbi)->fcc_info = fcc;
835	if (!test_opt(sbi, FLUSH_MERGE))
836		return err;
837
838init_thread:
839	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
840				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
841	if (IS_ERR(fcc->f2fs_issue_flush)) {
842		err = PTR_ERR(fcc->f2fs_issue_flush);
843		kfree(fcc);
844		SM_I(sbi)->fcc_info = NULL;
845		return err;
846	}
847
848	return err;
849}
850
851void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
852{
853	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
854
855	if (fcc && fcc->f2fs_issue_flush) {
856		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
857
858		fcc->f2fs_issue_flush = NULL;
859		kthread_stop(flush_thread);
860	}
861	if (free) {
862		kfree(fcc);
863		SM_I(sbi)->fcc_info = NULL;
864	}
865}
866
867int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
868{
869	int ret = 0, i;
870
871	if (!f2fs_is_multi_device(sbi))
872		return 0;
873
874	if (test_opt(sbi, NOBARRIER))
875		return 0;
876
877	for (i = 1; i < sbi->s_ndevs; i++) {
878		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
879			continue;
880		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
881		if (ret)
882			break;
883
884		spin_lock(&sbi->dev_lock);
885		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
886		spin_unlock(&sbi->dev_lock);
887	}
888
889	return ret;
890}
891
892static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
893		enum dirty_type dirty_type)
894{
895	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
896
897	/* need not be added */
898	if (IS_CURSEG(sbi, segno))
899		return;
900
901	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
902		dirty_i->nr_dirty[dirty_type]++;
903
904	if (dirty_type == DIRTY) {
905		struct seg_entry *sentry = get_seg_entry(sbi, segno);
906		enum dirty_type t = sentry->type;
907
908		if (unlikely(t >= DIRTY)) {
909			f2fs_bug_on(sbi, 1);
910			return;
911		}
912		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
913			dirty_i->nr_dirty[t]++;
914
915		if (__is_large_section(sbi)) {
916			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
917			block_t valid_blocks =
918				get_valid_blocks(sbi, segno, true);
919
920			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
921					valid_blocks == BLKS_PER_SEC(sbi)));
922
923			if (!IS_CURSEC(sbi, secno))
924				set_bit(secno, dirty_i->dirty_secmap);
925		}
926	}
927}
928
929static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
930		enum dirty_type dirty_type)
931{
932	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
933	block_t valid_blocks;
934
935	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
936		dirty_i->nr_dirty[dirty_type]--;
937
938	if (dirty_type == DIRTY) {
939		struct seg_entry *sentry = get_seg_entry(sbi, segno);
940		enum dirty_type t = sentry->type;
941
942		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
943			dirty_i->nr_dirty[t]--;
944
945		valid_blocks = get_valid_blocks(sbi, segno, true);
946		if (valid_blocks == 0) {
947			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
948						dirty_i->victim_secmap);
949#ifdef CONFIG_F2FS_CHECK_FS
950			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
951#endif
952		}
953		if (__is_large_section(sbi)) {
954			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
955
956			if (!valid_blocks ||
957					valid_blocks == BLKS_PER_SEC(sbi)) {
958				clear_bit(secno, dirty_i->dirty_secmap);
959				return;
960			}
961
962			if (!IS_CURSEC(sbi, secno))
963				set_bit(secno, dirty_i->dirty_secmap);
964		}
965	}
966}
967
968/*
969 * Should not occur error such as -ENOMEM.
970 * Adding dirty entry into seglist is not critical operation.
971 * If a given segment is one of current working segments, it won't be added.
972 */
973static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
974{
975	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
976	unsigned short valid_blocks, ckpt_valid_blocks;
977	unsigned int usable_blocks;
978
979	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
980		return;
981
982	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
983	mutex_lock(&dirty_i->seglist_lock);
984
985	valid_blocks = get_valid_blocks(sbi, segno, false);
986	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
987
988	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
989		ckpt_valid_blocks == usable_blocks)) {
990		__locate_dirty_segment(sbi, segno, PRE);
991		__remove_dirty_segment(sbi, segno, DIRTY);
992	} else if (valid_blocks < usable_blocks) {
993		__locate_dirty_segment(sbi, segno, DIRTY);
994	} else {
995		/* Recovery routine with SSR needs this */
996		__remove_dirty_segment(sbi, segno, DIRTY);
997	}
998
999	mutex_unlock(&dirty_i->seglist_lock);
1000}
1001
1002/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
1003void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
1004{
1005	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1006	unsigned int segno;
1007
1008	mutex_lock(&dirty_i->seglist_lock);
1009	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
1010		if (get_valid_blocks(sbi, segno, false))
1011			continue;
1012		if (IS_CURSEG(sbi, segno))
1013			continue;
1014		__locate_dirty_segment(sbi, segno, PRE);
1015		__remove_dirty_segment(sbi, segno, DIRTY);
1016	}
1017	mutex_unlock(&dirty_i->seglist_lock);
1018}
1019
1020block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
1021{
1022	int ovp_hole_segs =
1023		(overprovision_segments(sbi) - reserved_segments(sbi));
1024	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
1025	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1026	block_t holes[2] = {0, 0};	/* DATA and NODE */
1027	block_t unusable;
1028	struct seg_entry *se;
1029	unsigned int segno;
1030
1031	mutex_lock(&dirty_i->seglist_lock);
1032	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
1033		se = get_seg_entry(sbi, segno);
1034		if (IS_NODESEG(se->type))
1035			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
1036							se->valid_blocks;
1037		else
1038			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
1039							se->valid_blocks;
1040	}
1041	mutex_unlock(&dirty_i->seglist_lock);
1042
1043	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
1044	if (unusable > ovp_holes)
1045		return unusable - ovp_holes;
1046	return 0;
1047}
1048
1049int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
1050{
1051	int ovp_hole_segs =
1052		(overprovision_segments(sbi) - reserved_segments(sbi));
1053	if (unusable > F2FS_OPTION(sbi).unusable_cap)
1054		return -EAGAIN;
1055	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
1056		dirty_segments(sbi) > ovp_hole_segs)
1057		return -EAGAIN;
1058	return 0;
1059}
1060
1061/* This is only used by SBI_CP_DISABLED */
1062static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
1063{
1064	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1065	unsigned int segno = 0;
1066
1067	mutex_lock(&dirty_i->seglist_lock);
1068	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
1069		if (get_valid_blocks(sbi, segno, false))
1070			continue;
1071		if (get_ckpt_valid_blocks(sbi, segno, false))
1072			continue;
1073		mutex_unlock(&dirty_i->seglist_lock);
1074		return segno;
1075	}
1076	mutex_unlock(&dirty_i->seglist_lock);
1077	return NULL_SEGNO;
1078}
1079
1080static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
1081		struct block_device *bdev, block_t lstart,
1082		block_t start, block_t len)
1083{
1084	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1085	struct list_head *pend_list;
1086	struct discard_cmd *dc;
1087
1088	f2fs_bug_on(sbi, !len);
1089
1090	pend_list = &dcc->pend_list[plist_idx(len)];
1091
1092	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
1093	INIT_LIST_HEAD(&dc->list);
1094	dc->bdev = bdev;
1095	dc->lstart = lstart;
1096	dc->start = start;
1097	dc->len = len;
1098	dc->ref = 0;
1099	dc->state = D_PREP;
1100	dc->queued = 0;
1101	dc->error = 0;
1102	init_completion(&dc->wait);
1103	list_add_tail(&dc->list, pend_list);
1104	spin_lock_init(&dc->lock);
1105	dc->bio_ref = 0;
1106	atomic_inc(&dcc->discard_cmd_cnt);
1107	dcc->undiscard_blks += len;
1108
1109	return dc;
1110}
1111
1112static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1113				struct block_device *bdev, block_t lstart,
1114				block_t start, block_t len,
1115				struct rb_node *parent, struct rb_node **p,
1116				bool leftmost)
1117{
1118	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1119	struct discard_cmd *dc;
1120
1121	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1122
1123	rb_link_node(&dc->rb_node, parent, p);
1124	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1125
1126	return dc;
1127}
1128
1129static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1130							struct discard_cmd *dc)
1131{
1132	if (dc->state == D_DONE)
1133		atomic_sub(dc->queued, &dcc->queued_discard);
1134
1135	list_del(&dc->list);
1136	rb_erase_cached(&dc->rb_node, &dcc->root);
1137	dcc->undiscard_blks -= dc->len;
1138
1139	kmem_cache_free(discard_cmd_slab, dc);
1140
1141	atomic_dec(&dcc->discard_cmd_cnt);
1142}
1143
1144static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1145							struct discard_cmd *dc)
1146{
1147	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1148	unsigned long flags;
1149
1150	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1151
1152	spin_lock_irqsave(&dc->lock, flags);
1153	if (dc->bio_ref) {
1154		spin_unlock_irqrestore(&dc->lock, flags);
1155		return;
1156	}
1157	spin_unlock_irqrestore(&dc->lock, flags);
1158
1159	f2fs_bug_on(sbi, dc->ref);
1160
1161	if (dc->error == -EOPNOTSUPP)
1162		dc->error = 0;
1163
1164	if (dc->error)
1165		printk_ratelimited(
1166			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1167			KERN_INFO, sbi->sb->s_id,
1168			dc->lstart, dc->start, dc->len, dc->error);
1169	__detach_discard_cmd(dcc, dc);
1170}
1171
1172static void f2fs_submit_discard_endio(struct bio *bio)
1173{
1174	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1175	unsigned long flags;
1176
1177	spin_lock_irqsave(&dc->lock, flags);
1178	if (!dc->error)
1179		dc->error = blk_status_to_errno(bio->bi_status);
1180	dc->bio_ref--;
1181	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1182		dc->state = D_DONE;
1183		complete_all(&dc->wait);
1184	}
1185	spin_unlock_irqrestore(&dc->lock, flags);
1186	bio_put(bio);
1187}
1188
1189static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1190				block_t start, block_t end)
1191{
1192#ifdef CONFIG_F2FS_CHECK_FS
1193	struct seg_entry *sentry;
1194	unsigned int segno;
1195	block_t blk = start;
1196	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1197	unsigned long *map;
1198
1199	while (blk < end) {
1200		segno = GET_SEGNO(sbi, blk);
1201		sentry = get_seg_entry(sbi, segno);
1202		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1203
1204		if (end < START_BLOCK(sbi, segno + 1))
1205			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1206		else
1207			size = max_blocks;
1208		map = (unsigned long *)(sentry->cur_valid_map);
1209		offset = find_rev_next_bit(map, size, offset);
1210		f2fs_bug_on(sbi, offset != size);
1211		blk = START_BLOCK(sbi, segno + 1);
1212	}
1213#endif
1214}
1215
1216static void __init_discard_policy(struct f2fs_sb_info *sbi,
1217				struct discard_policy *policy,
1218				int discard_type, unsigned int granularity)
1219{
1220	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1221
1222	if (discard_type == DPOLICY_BG) {
1223		*policy = dpolicys[DPOLICY_BG];
1224	} else if (discard_type == DPOLICY_BALANCE) {
1225		*policy = dpolicys[DPOLICY_BALANCE];
1226	} else if (discard_type == DPOLICY_FORCE) {
1227		*policy = dpolicys[DPOLICY_FORCE];
1228	} else if (discard_type == DPOLICY_FSTRIM) {
1229		*policy = dpolicys[DPOLICY_FSTRIM];
1230		if (policy->granularity != granularity)
1231			policy->granularity = granularity;
1232	} else if (discard_type == DPOLICY_UMOUNT) {
1233		*policy = dpolicys[DPOLICY_UMOUNT];
1234	}
1235	dcc->discard_type = discard_type;
1236}
1237
1238static void select_sub_discard_policy(struct discard_sub_policy **spolicy,
1239						       int index, struct discard_policy *dpolicy)
1240{
1241	if (dpolicy->type == DPOLICY_FSTRIM) {
1242		*spolicy = &dpolicy->sub_policy[SUB_POLICY_BIG];
1243		return;
1244	}
1245
1246	if ((index + 1) >= DISCARD_GRAN_BG)
1247		*spolicy = &dpolicy->sub_policy[SUB_POLICY_BIG];
1248	else if ((index + 1) >= DISCARD_GRAN_BL)
1249		*spolicy = &dpolicy->sub_policy[SUB_POLICY_MID];
1250	else
1251		*spolicy = &dpolicy->sub_policy[SUB_POLICY_SMALL];
1252}
1253
1254static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1255				struct block_device *bdev, block_t lstart,
1256				block_t start, block_t len);
1257/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1258static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1259						struct discard_policy *dpolicy,
1260						int spolicy_index,
1261						struct discard_cmd *dc,
1262						unsigned int *issued)
1263{
1264	struct block_device *bdev = dc->bdev;
1265	struct request_queue *q = bdev_get_queue(bdev);
1266	unsigned int max_discard_blocks =
1267			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1268	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1269	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1270					&(dcc->fstrim_list) : &(dcc->wait_list);
1271	int flag = dpolicy->sync ? REQ_SYNC : 0;
1272	struct discard_sub_policy *spolicy = NULL;
1273	block_t lstart, start, len, total_len;
1274	int err = 0;
1275
1276	select_sub_discard_policy(&spolicy, spolicy_index, dpolicy);
1277
1278	if (dc->state != D_PREP)
1279		return 0;
1280
1281	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1282		return 0;
1283
1284	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1285
1286	lstart = dc->lstart;
1287	start = dc->start;
1288	len = dc->len;
1289	total_len = len;
1290
1291	dc->len = 0;
1292
1293	while (total_len && *issued < spolicy->max_requests && !err) {
1294		struct bio *bio = NULL;
1295		unsigned long flags;
1296		bool last = true;
1297
1298		if (len > max_discard_blocks) {
1299			len = max_discard_blocks;
1300			last = false;
1301		}
1302
1303		(*issued)++;
1304		if (*issued == spolicy->max_requests)
1305			last = true;
1306
1307		dc->len += len;
1308
1309		if (time_to_inject(sbi, FAULT_DISCARD)) {
1310			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1311			err = -EIO;
1312			goto submit;
1313		}
1314		err = __blkdev_issue_discard(bdev,
1315					SECTOR_FROM_BLOCK(start),
1316					SECTOR_FROM_BLOCK(len),
1317					GFP_NOFS, 0, &bio);
1318submit:
1319		if (err) {
1320			spin_lock_irqsave(&dc->lock, flags);
1321			if (dc->state == D_PARTIAL)
1322				dc->state = D_SUBMIT;
1323			spin_unlock_irqrestore(&dc->lock, flags);
1324
1325			break;
1326		}
1327
1328		f2fs_bug_on(sbi, !bio);
1329
1330		/*
1331		 * should keep before submission to avoid D_DONE
1332		 * right away
1333		 */
1334		spin_lock_irqsave(&dc->lock, flags);
1335		if (last)
1336			dc->state = D_SUBMIT;
1337		else
1338			dc->state = D_PARTIAL;
1339		dc->bio_ref++;
1340		spin_unlock_irqrestore(&dc->lock, flags);
1341
1342		atomic_inc(&dcc->queued_discard);
1343		dc->queued++;
1344		list_move_tail(&dc->list, wait_list);
1345
1346		/* sanity check on discard range */
1347		__check_sit_bitmap(sbi, lstart, lstart + len);
1348
1349		bio->bi_private = dc;
1350		bio->bi_end_io = f2fs_submit_discard_endio;
1351		bio->bi_opf |= flag;
1352		submit_bio(bio);
1353
1354		atomic_inc(&dcc->issued_discard);
1355
1356		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1357
1358		lstart += len;
1359		start += len;
1360		total_len -= len;
1361		len = total_len;
1362	}
1363
1364	if (!err && len) {
1365		dcc->undiscard_blks -= len;
1366		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1367	}
1368	return err;
1369}
1370
1371static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1372				struct block_device *bdev, block_t lstart,
1373				block_t start, block_t len,
1374				struct rb_node **insert_p,
1375				struct rb_node *insert_parent)
1376{
1377	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1378	struct rb_node **p;
1379	struct rb_node *parent = NULL;
1380	bool leftmost = true;
1381
1382	if (insert_p && insert_parent) {
1383		parent = insert_parent;
1384		p = insert_p;
1385		goto do_insert;
1386	}
1387
1388	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1389							lstart, &leftmost);
1390do_insert:
1391	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1392								p, leftmost);
1393}
1394
1395static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1396						struct discard_cmd *dc)
1397{
1398	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1399}
1400
1401static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1402				struct discard_cmd *dc, block_t blkaddr)
1403{
1404	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1405	struct discard_info di = dc->di;
1406	bool modified = false;
1407
1408	if (dc->state == D_DONE || dc->len == 1) {
1409		__remove_discard_cmd(sbi, dc);
1410		return;
1411	}
1412
1413	dcc->undiscard_blks -= di.len;
1414
1415	if (blkaddr > di.lstart) {
1416		dc->len = blkaddr - dc->lstart;
1417		dcc->undiscard_blks += dc->len;
1418		__relocate_discard_cmd(dcc, dc);
1419		modified = true;
1420	}
1421
1422	if (blkaddr < di.lstart + di.len - 1) {
1423		if (modified) {
1424			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1425					di.start + blkaddr + 1 - di.lstart,
1426					di.lstart + di.len - 1 - blkaddr,
1427					NULL, NULL);
1428		} else {
1429			dc->lstart++;
1430			dc->len--;
1431			dc->start++;
1432			dcc->undiscard_blks += dc->len;
1433			__relocate_discard_cmd(dcc, dc);
1434		}
1435	}
1436}
1437
1438static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1439				struct block_device *bdev, block_t lstart,
1440				block_t start, block_t len)
1441{
1442	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1443	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1444	struct discard_cmd *dc;
1445	struct discard_info di = {0};
1446	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1447	struct request_queue *q = bdev_get_queue(bdev);
1448	unsigned int max_discard_blocks =
1449			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1450	block_t end = lstart + len;
1451
1452	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1453					NULL, lstart,
1454					(struct rb_entry **)&prev_dc,
1455					(struct rb_entry **)&next_dc,
1456					&insert_p, &insert_parent, true, NULL);
1457	if (dc)
1458		prev_dc = dc;
1459
1460	if (!prev_dc) {
1461		di.lstart = lstart;
1462		di.len = next_dc ? next_dc->lstart - lstart : len;
1463		di.len = min(di.len, len);
1464		di.start = start;
1465	}
1466
1467	while (1) {
1468		struct rb_node *node;
1469		bool merged = false;
1470		struct discard_cmd *tdc = NULL;
1471
1472		if (prev_dc) {
1473			di.lstart = prev_dc->lstart + prev_dc->len;
1474			if (di.lstart < lstart)
1475				di.lstart = lstart;
1476			if (di.lstart >= end)
1477				break;
1478
1479			if (!next_dc || next_dc->lstart > end)
1480				di.len = end - di.lstart;
1481			else
1482				di.len = next_dc->lstart - di.lstart;
1483			di.start = start + di.lstart - lstart;
1484		}
1485
1486		if (!di.len)
1487			goto next;
1488
1489		if (prev_dc && prev_dc->state == D_PREP &&
1490			prev_dc->bdev == bdev &&
1491			__is_discard_back_mergeable(&di, &prev_dc->di,
1492							max_discard_blocks)) {
1493			prev_dc->di.len += di.len;
1494			dcc->undiscard_blks += di.len;
1495			__relocate_discard_cmd(dcc, prev_dc);
1496			di = prev_dc->di;
1497			tdc = prev_dc;
1498			merged = true;
1499		}
1500
1501		if (next_dc && next_dc->state == D_PREP &&
1502			next_dc->bdev == bdev &&
1503			__is_discard_front_mergeable(&di, &next_dc->di,
1504							max_discard_blocks)) {
1505			next_dc->di.lstart = di.lstart;
1506			next_dc->di.len += di.len;
1507			next_dc->di.start = di.start;
1508			dcc->undiscard_blks += di.len;
1509			__relocate_discard_cmd(dcc, next_dc);
1510			if (tdc)
1511				__remove_discard_cmd(sbi, tdc);
1512			merged = true;
1513		}
1514
1515		if (!merged) {
1516			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1517							di.len, NULL, NULL);
1518		}
1519 next:
1520		prev_dc = next_dc;
1521		if (!prev_dc)
1522			break;
1523
1524		node = rb_next(&prev_dc->rb_node);
1525		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1526	}
1527}
1528
1529static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1530		struct block_device *bdev, block_t blkstart, block_t blklen)
1531{
1532	block_t lblkstart = blkstart;
1533
1534	if (!f2fs_bdev_support_discard(bdev))
1535		return 0;
1536
1537	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1538
1539	if (f2fs_is_multi_device(sbi)) {
1540		int devi = f2fs_target_device_index(sbi, blkstart);
1541
1542		blkstart -= FDEV(devi).start_blk;
1543	}
1544	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1545	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1546	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1547	return 0;
1548}
1549
1550static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1551					struct discard_policy *dpolicy,
1552					int spolicy_index)
1553{
1554	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1555	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1556	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1557	struct discard_cmd *dc;
1558	struct blk_plug plug;
1559	unsigned int pos = dcc->next_pos;
1560	unsigned int issued = 0;
1561	bool io_interrupted = false;
1562	struct discard_sub_policy *spolicy = NULL;
1563
1564	select_sub_discard_policy(&spolicy, spolicy_index, dpolicy);
1565	mutex_lock(&dcc->cmd_lock);
1566
1567	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1568					NULL, pos,
1569					(struct rb_entry **)&prev_dc,
1570					(struct rb_entry **)&next_dc,
1571					&insert_p, &insert_parent, true, NULL);
1572	if (!dc)
1573		dc = next_dc;
1574
1575	blk_start_plug(&plug);
1576
1577	while (dc) {
1578		struct rb_node *node;
1579		int err = 0;
1580
1581		if (dc->state != D_PREP)
1582			goto next;
1583
1584		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1585			io_interrupted = true;
1586			break;
1587		}
1588
1589		dcc->next_pos = dc->lstart + dc->len;
1590		err = __submit_discard_cmd(sbi, dpolicy, spolicy_index, dc, &issued);
1591
1592		if (issued >= spolicy->max_requests)
1593			break;
1594next:
1595		node = rb_next(&dc->rb_node);
1596		if (err)
1597			__remove_discard_cmd(sbi, dc);
1598		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1599	}
1600
1601	blk_finish_plug(&plug);
1602
1603	if (!dc)
1604		dcc->next_pos = 0;
1605
1606	mutex_unlock(&dcc->cmd_lock);
1607
1608	if (!issued && io_interrupted)
1609		issued = -1;
1610
1611	return issued;
1612}
1613static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1614					struct discard_policy *dpolicy);
1615
1616static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1617					struct discard_policy *dpolicy)
1618{
1619	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1620	struct list_head *pend_list;
1621	struct discard_cmd *dc, *tmp;
1622	struct blk_plug plug;
1623	int i, issued;
1624	bool io_interrupted = false;
1625	struct discard_sub_policy *spolicy = NULL;
1626
1627	if (dpolicy->timeout)
1628		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1629
1630	/* only do this check in CHECK_FS, may be time consumed */
1631	if (unlikely(dcc->rbtree_check)) {
1632		mutex_lock(&dcc->cmd_lock);
1633		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, &dcc->root, false));
1634		mutex_unlock(&dcc->cmd_lock);
1635	}
1636retry:
1637	blk_start_plug(&plug);
1638	issued = 0;
1639	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1640		if (dpolicy->timeout &&
1641				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1642			break;
1643
1644		if (i + 1 < dpolicy->granularity)
1645			break;
1646
1647		select_sub_discard_policy(&spolicy, i, dpolicy);
1648
1649		if (i + 1 < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) {
1650			issued = __issue_discard_cmd_orderly(sbi, dpolicy, i);
1651			blk_finish_plug(&plug);
1652			return issued;
1653		}
1654
1655		pend_list = &dcc->pend_list[i];
1656
1657		mutex_lock(&dcc->cmd_lock);
1658		if (list_empty(pend_list))
1659			goto next;
1660		if (unlikely(dcc->rbtree_check))
1661			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1662							&dcc->root, false));
1663		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1664			f2fs_bug_on(sbi, dc->state != D_PREP);
1665
1666			if (dpolicy->timeout &&
1667				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1668				break;
1669
1670			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1671						!is_idle(sbi, DISCARD_TIME)) {
1672				io_interrupted = true;
1673				goto skip;
1674			}
1675			__submit_discard_cmd(sbi, dpolicy, i, dc, &issued);
1676skip:
1677			if (issued >= spolicy->max_requests)
1678				break;
1679		}
1680next:
1681		mutex_unlock(&dcc->cmd_lock);
1682
1683		if (issued >= spolicy->max_requests || io_interrupted)
1684			break;
1685	}
1686
1687	blk_finish_plug(&plug);
1688	if (spolicy)
1689		dpolicy->min_interval = spolicy->interval;
1690
1691	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1692		__wait_all_discard_cmd(sbi, dpolicy);
1693		goto retry;
1694	}
1695
1696	if (!issued && io_interrupted)
1697		issued = -1;
1698
1699	return issued;
1700}
1701
1702static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1703{
1704	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1705	struct list_head *pend_list;
1706	struct discard_cmd *dc, *tmp;
1707	int i;
1708	bool dropped = false;
1709
1710	mutex_lock(&dcc->cmd_lock);
1711	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1712		pend_list = &dcc->pend_list[i];
1713		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1714			f2fs_bug_on(sbi, dc->state != D_PREP);
1715			__remove_discard_cmd(sbi, dc);
1716			dropped = true;
1717		}
1718	}
1719	mutex_unlock(&dcc->cmd_lock);
1720
1721	return dropped;
1722}
1723
1724void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1725{
1726	__drop_discard_cmd(sbi);
1727}
1728
1729static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1730							struct discard_cmd *dc)
1731{
1732	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1733	unsigned int len = 0;
1734
1735	wait_for_completion_io(&dc->wait);
1736	mutex_lock(&dcc->cmd_lock);
1737	f2fs_bug_on(sbi, dc->state != D_DONE);
1738	dc->ref--;
1739	if (!dc->ref) {
1740		if (!dc->error)
1741			len = dc->len;
1742		__remove_discard_cmd(sbi, dc);
1743	}
1744	mutex_unlock(&dcc->cmd_lock);
1745
1746	return len;
1747}
1748
1749static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1750						struct discard_policy *dpolicy,
1751						block_t start, block_t end)
1752{
1753	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1754	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1755					&(dcc->fstrim_list) : &(dcc->wait_list);
1756	struct discard_cmd *dc, *tmp;
1757	bool need_wait;
1758	unsigned int trimmed = 0;
1759
1760next:
1761	need_wait = false;
1762
1763	mutex_lock(&dcc->cmd_lock);
1764	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1765		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1766			continue;
1767		if (dc->len < dpolicy->granularity)
1768			continue;
1769		if (dc->state == D_DONE && !dc->ref) {
1770			wait_for_completion_io(&dc->wait);
1771			if (!dc->error)
1772				trimmed += dc->len;
1773			__remove_discard_cmd(sbi, dc);
1774		} else {
1775			dc->ref++;
1776			need_wait = true;
1777			break;
1778		}
1779	}
1780	mutex_unlock(&dcc->cmd_lock);
1781
1782	if (need_wait) {
1783		trimmed += __wait_one_discard_bio(sbi, dc);
1784		goto next;
1785	}
1786
1787	return trimmed;
1788}
1789
1790static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1791						struct discard_policy *dpolicy)
1792{
1793	struct discard_policy dp;
1794	unsigned int discard_blks;
1795
1796	if (dpolicy)
1797		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1798
1799	/* wait all */
1800	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1801	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1802	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1803	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1804
1805	return discard_blks;
1806}
1807
1808/* This should be covered by global mutex, &sit_i->sentry_lock */
1809static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1810{
1811	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1812	struct discard_cmd *dc;
1813	bool need_wait = false;
1814
1815	mutex_lock(&dcc->cmd_lock);
1816	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1817							NULL, blkaddr);
1818	if (dc) {
1819		if (dc->state == D_PREP) {
1820			__punch_discard_cmd(sbi, dc, blkaddr);
1821		} else {
1822			dc->ref++;
1823			need_wait = true;
1824		}
1825	}
1826	mutex_unlock(&dcc->cmd_lock);
1827
1828	if (need_wait)
1829		__wait_one_discard_bio(sbi, dc);
1830}
1831
1832void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1833{
1834	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1835
1836	if (dcc && dcc->f2fs_issue_discard) {
1837		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1838
1839		dcc->f2fs_issue_discard = NULL;
1840		kthread_stop(discard_thread);
1841	}
1842}
1843
1844/* This comes from f2fs_put_super */
1845bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1846{
1847	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1848	struct discard_policy dpolicy;
1849	bool dropped;
1850
1851	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 0);
1852	__issue_discard_cmd(sbi, &dpolicy);
1853	dropped = __drop_discard_cmd(sbi);
1854
1855	/* just to make sure there is no pending discard commands */
1856	__wait_all_discard_cmd(sbi, NULL);
1857
1858	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1859	return dropped;
1860}
1861
1862static int select_discard_type(struct f2fs_sb_info *sbi)
1863{
1864	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1865	block_t user_block_count = sbi->user_block_count;
1866	block_t ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
1867	block_t fs_available_blocks = user_block_count -
1868				valid_user_blocks(sbi) + ovp_count;
1869	int discard_type;
1870
1871	if (fs_available_blocks >= fs_free_space_threshold(sbi) &&
1872			fs_available_blocks - dcc->undiscard_blks >=
1873			device_free_space_threshold(sbi)) {
1874		discard_type = DPOLICY_BG;
1875	} else if (fs_available_blocks < fs_free_space_threshold(sbi) &&
1876			fs_available_blocks - dcc->undiscard_blks <
1877			device_free_space_threshold(sbi)) {
1878		discard_type = DPOLICY_FORCE;
1879	} else {
1880		discard_type = DPOLICY_BALANCE;
1881	}
1882	return discard_type;
1883}
1884
1885static int issue_discard_thread(void *data)
1886{
1887	struct f2fs_sb_info *sbi = data;
1888	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1889	wait_queue_head_t *q = &dcc->discard_wait_queue;
1890	struct discard_policy dpolicy;
1891	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1892	int issued, discard_type;
1893
1894	set_freezable();
1895
1896	do {
1897		discard_type = select_discard_type(sbi);
1898		__init_discard_policy(sbi, &dpolicy, discard_type, 0);
1899
1900		wait_event_interruptible_timeout(*q,
1901				kthread_should_stop() || freezing(current) ||
1902				dcc->discard_wake,
1903				msecs_to_jiffies(wait_ms));
1904
1905		if (dcc->discard_wake)
1906			dcc->discard_wake = 0;
1907
1908		/* clean up pending candidates before going to sleep */
1909		if (atomic_read(&dcc->queued_discard))
1910			__wait_all_discard_cmd(sbi, NULL);
1911
1912		if (try_to_freeze())
1913			continue;
1914		if (f2fs_readonly(sbi->sb))
1915			continue;
1916		if (kthread_should_stop())
1917			return 0;
1918		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1919			wait_ms = dpolicy.max_interval;
1920			continue;
1921		}
1922
1923		if (sbi->gc_mode == GC_URGENT_HIGH)
1924			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 0);
1925
1926		sb_start_intwrite(sbi->sb);
1927
1928		issued = __issue_discard_cmd(sbi, &dpolicy);
1929		if (issued > 0) {
1930			__wait_all_discard_cmd(sbi, &dpolicy);
1931			wait_ms = dpolicy.min_interval;
1932		} else if (issued == -1){
1933			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1934			if (!wait_ms)
1935				wait_ms = dpolicy.mid_interval;
1936		} else {
1937			wait_ms = dpolicy.max_interval;
1938		}
1939
1940		sb_end_intwrite(sbi->sb);
1941
1942	} while (!kthread_should_stop());
1943	return 0;
1944}
1945
1946#ifdef CONFIG_BLK_DEV_ZONED
1947static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1948		struct block_device *bdev, block_t blkstart, block_t blklen)
1949{
1950	sector_t sector, nr_sects;
1951	block_t lblkstart = blkstart;
1952	int devi = 0;
1953
1954	if (f2fs_is_multi_device(sbi)) {
1955		devi = f2fs_target_device_index(sbi, blkstart);
1956		if (blkstart < FDEV(devi).start_blk ||
1957		    blkstart > FDEV(devi).end_blk) {
1958			f2fs_err(sbi, "Invalid block %x", blkstart);
1959			return -EIO;
1960		}
1961		blkstart -= FDEV(devi).start_blk;
1962	}
1963
1964	/* For sequential zones, reset the zone write pointer */
1965	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1966		sector = SECTOR_FROM_BLOCK(blkstart);
1967		nr_sects = SECTOR_FROM_BLOCK(blklen);
1968
1969		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1970				nr_sects != bdev_zone_sectors(bdev)) {
1971			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1972				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1973				 blkstart, blklen);
1974			return -EIO;
1975		}
1976		trace_f2fs_issue_reset_zone(bdev, blkstart);
1977		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1978					sector, nr_sects, GFP_NOFS);
1979	}
1980
1981	/* For conventional zones, use regular discard if supported */
1982	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1983}
1984#endif
1985
1986static int __issue_discard_async(struct f2fs_sb_info *sbi,
1987		struct block_device *bdev, block_t blkstart, block_t blklen)
1988{
1989#ifdef CONFIG_BLK_DEV_ZONED
1990	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1991		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1992#endif
1993	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1994}
1995
1996static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1997				block_t blkstart, block_t blklen)
1998{
1999	sector_t start = blkstart, len = 0;
2000	struct block_device *bdev;
2001	struct seg_entry *se;
2002	unsigned int offset;
2003	block_t i;
2004	int err = 0;
2005
2006	bdev = f2fs_target_device(sbi, blkstart, NULL);
2007
2008	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2009		if (i != start) {
2010			struct block_device *bdev2 =
2011				f2fs_target_device(sbi, i, NULL);
2012
2013			if (bdev2 != bdev) {
2014				err = __issue_discard_async(sbi, bdev,
2015						start, len);
2016				if (err)
2017					return err;
2018				bdev = bdev2;
2019				start = i;
2020				len = 0;
2021			}
2022		}
2023
2024		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2025		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2026
2027		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2028			sbi->discard_blks--;
2029	}
2030
2031	if (len)
2032		err = __issue_discard_async(sbi, bdev, start, len);
2033	return err;
2034}
2035
2036static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2037							bool check_only)
2038{
2039	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2040	int max_blocks = sbi->blocks_per_seg;
2041	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2042	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2043	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2044	unsigned long *discard_map = (unsigned long *)se->discard_map;
2045	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2046	unsigned int start = 0, end = -1;
2047	bool force = (cpc->reason & CP_DISCARD);
2048	struct discard_entry *de = NULL;
2049	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2050	int i;
2051
2052	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
2053		return false;
2054
2055	if (!force) {
2056		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2057			SM_I(sbi)->dcc_info->nr_discards >=
2058				SM_I(sbi)->dcc_info->max_discards)
2059			return false;
2060	}
2061
2062	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2063	for (i = 0; i < entries; i++)
2064		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2065				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2066
2067	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2068				SM_I(sbi)->dcc_info->max_discards) {
2069		start = find_rev_next_bit(dmap, max_blocks, end + 1);
2070		if (start >= max_blocks)
2071			break;
2072
2073		end = find_rev_next_zero_bit(dmap, max_blocks, start + 1);
2074		if (force && start && end != max_blocks
2075					&& (end - start) < cpc->trim_minlen)
2076			continue;
2077
2078		if (check_only)
2079			return true;
2080
2081		if (!de) {
2082			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2083								GFP_F2FS_ZERO);
2084			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2085			list_add_tail(&de->list, head);
2086		}
2087
2088		for (i = start; i < end; i++)
2089			__set_bit_le(i, (void *)de->discard_map);
2090
2091		SM_I(sbi)->dcc_info->nr_discards += end - start;
2092	}
2093	return false;
2094}
2095
2096static void release_discard_addr(struct discard_entry *entry)
2097{
2098	list_del(&entry->list);
2099	kmem_cache_free(discard_entry_slab, entry);
2100}
2101
2102void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2103{
2104	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2105	struct discard_entry *entry, *this;
2106
2107	/* drop caches */
2108	list_for_each_entry_safe(entry, this, head, list)
2109		release_discard_addr(entry);
2110}
2111
2112/*
2113 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2114 */
2115static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2116{
2117	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2118	unsigned int segno;
2119
2120	mutex_lock(&dirty_i->seglist_lock);
2121	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2122		__set_test_and_free(sbi, segno, false);
2123	mutex_unlock(&dirty_i->seglist_lock);
2124}
2125
2126void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2127						struct cp_control *cpc)
2128{
2129	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2130	struct list_head *head = &dcc->entry_list;
2131	struct discard_entry *entry, *this;
2132	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2133	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2134	unsigned int start = 0, end = -1;
2135	unsigned int secno, start_segno;
2136	bool force = (cpc->reason & CP_DISCARD);
2137	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2138
2139	mutex_lock(&dirty_i->seglist_lock);
2140
2141	while (1) {
2142		int i;
2143
2144		if (need_align && end != -1)
2145			end--;
2146		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2147		if (start >= MAIN_SEGS(sbi))
2148			break;
2149		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2150								start + 1);
2151
2152		if (need_align) {
2153			start = rounddown(start, sbi->segs_per_sec);
2154			end = roundup(end, sbi->segs_per_sec);
2155		}
2156
2157		for (i = start; i < end; i++) {
2158			if (test_and_clear_bit(i, prefree_map))
2159				dirty_i->nr_dirty[PRE]--;
2160		}
2161
2162		if (!f2fs_realtime_discard_enable(sbi))
2163			continue;
2164
2165		if (force && start >= cpc->trim_start &&
2166					(end - 1) <= cpc->trim_end)
2167				continue;
2168
2169		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2170			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2171				(end - start) << sbi->log_blocks_per_seg);
2172			continue;
2173		}
2174next:
2175		secno = GET_SEC_FROM_SEG(sbi, start);
2176		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2177		if (!IS_CURSEC(sbi, secno) &&
2178			!get_valid_blocks(sbi, start, true))
2179			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2180				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2181
2182		start = start_segno + sbi->segs_per_sec;
2183		if (start < end)
2184			goto next;
2185		else
2186			end = start - 1;
2187	}
2188	mutex_unlock(&dirty_i->seglist_lock);
2189
2190	/* send small discards */
2191	list_for_each_entry_safe(entry, this, head, list) {
2192		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2193		bool is_valid = test_bit_le(0, entry->discard_map);
2194
2195find_next:
2196		if (is_valid) {
2197			next_pos = find_next_zero_bit_le(entry->discard_map,
2198					sbi->blocks_per_seg, cur_pos);
2199			len = next_pos - cur_pos;
2200
2201			if (f2fs_sb_has_blkzoned(sbi) ||
2202			    (force && len < cpc->trim_minlen))
2203				goto skip;
2204
2205			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2206									len);
2207			total_len += len;
2208		} else {
2209			next_pos = find_next_bit_le(entry->discard_map,
2210					sbi->blocks_per_seg, cur_pos);
2211		}
2212skip:
2213		cur_pos = next_pos;
2214		is_valid = !is_valid;
2215
2216		if (cur_pos < sbi->blocks_per_seg)
2217			goto find_next;
2218
2219		release_discard_addr(entry);
2220		dcc->nr_discards -= total_len;
2221	}
2222
2223	wake_up_discard_thread(sbi, false);
2224}
2225
2226static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2227{
2228	dev_t dev = sbi->sb->s_bdev->bd_dev;
2229	struct discard_cmd_control *dcc;
2230	int err = 0, i;
2231
2232	if (SM_I(sbi)->dcc_info) {
2233		dcc = SM_I(sbi)->dcc_info;
2234		goto init_thread;
2235	}
2236
2237	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2238	if (!dcc)
2239		return -ENOMEM;
2240
2241	dcc->discard_granularity = DISCARD_GRAN_BG;
2242	INIT_LIST_HEAD(&dcc->entry_list);
2243	for (i = 0; i < MAX_PLIST_NUM; i++)
2244		INIT_LIST_HEAD(&dcc->pend_list[i]);
2245	INIT_LIST_HEAD(&dcc->wait_list);
2246	INIT_LIST_HEAD(&dcc->fstrim_list);
2247	mutex_init(&dcc->cmd_lock);
2248	atomic_set(&dcc->issued_discard, 0);
2249	atomic_set(&dcc->queued_discard, 0);
2250	atomic_set(&dcc->discard_cmd_cnt, 0);
2251	dcc->nr_discards = 0;
2252	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2253	dcc->undiscard_blks = 0;
2254	dcc->next_pos = 0;
2255	dcc->root = RB_ROOT_CACHED;
2256	dcc->rbtree_check = false;
2257
2258	init_waitqueue_head(&dcc->discard_wait_queue);
2259	SM_I(sbi)->dcc_info = dcc;
2260init_thread:
2261	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2262				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2263	if (IS_ERR(dcc->f2fs_issue_discard)) {
2264		err = PTR_ERR(dcc->f2fs_issue_discard);
2265		kfree(dcc);
2266		SM_I(sbi)->dcc_info = NULL;
2267		return err;
2268	}
2269
2270	return err;
2271}
2272
2273static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2274{
2275	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2276
2277	if (!dcc)
2278		return;
2279
2280	f2fs_stop_discard_thread(sbi);
2281
2282	/*
2283	 * Recovery can cache discard commands, so in error path of
2284	 * fill_super(), it needs to give a chance to handle them.
2285	 */
2286	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2287		f2fs_issue_discard_timeout(sbi);
2288
2289	kfree(dcc);
2290	SM_I(sbi)->dcc_info = NULL;
2291}
2292
2293static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2294{
2295	struct sit_info *sit_i = SIT_I(sbi);
2296
2297	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2298		sit_i->dirty_sentries++;
2299		return false;
2300	}
2301
2302	return true;
2303}
2304
2305static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2306					unsigned int segno, int modified)
2307{
2308	struct seg_entry *se = get_seg_entry(sbi, segno);
2309	se->type = type;
2310	if (modified)
2311		__mark_sit_entry_dirty(sbi, segno);
2312}
2313
2314static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2315								block_t blkaddr)
2316{
2317	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2318
2319	if (segno == NULL_SEGNO)
2320		return 0;
2321	return get_seg_entry(sbi, segno)->mtime;
2322}
2323
2324static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2325						unsigned long long old_mtime)
2326{
2327	struct seg_entry *se;
2328	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2329	unsigned long long ctime = get_mtime(sbi, false);
2330	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2331
2332	if (segno == NULL_SEGNO)
2333		return;
2334
2335	se = get_seg_entry(sbi, segno);
2336
2337	if (!se->mtime)
2338		se->mtime = mtime;
2339	else
2340		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2341						se->valid_blocks + 1);
2342
2343	if (ctime > SIT_I(sbi)->max_mtime)
2344		SIT_I(sbi)->max_mtime = ctime;
2345}
2346
2347static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2348{
2349	struct seg_entry *se;
2350	unsigned int segno, offset;
2351	long int new_vblocks;
2352	bool exist;
2353#ifdef CONFIG_F2FS_CHECK_FS
2354	bool mir_exist;
2355#endif
2356
2357	segno = GET_SEGNO(sbi, blkaddr);
2358
2359	se = get_seg_entry(sbi, segno);
2360	new_vblocks = se->valid_blocks + del;
2361	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2362
2363	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2364			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2365
2366	se->valid_blocks = new_vblocks;
2367
2368	/* Update valid block bitmap */
2369	if (del > 0) {
2370		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2371#ifdef CONFIG_F2FS_CHECK_FS
2372		mir_exist = f2fs_test_and_set_bit(offset,
2373						se->cur_valid_map_mir);
2374		if (unlikely(exist != mir_exist)) {
2375			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2376				 blkaddr, exist);
2377			f2fs_bug_on(sbi, 1);
2378		}
2379#endif
2380		if (unlikely(exist)) {
2381			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2382				 blkaddr);
2383			f2fs_bug_on(sbi, 1);
2384			se->valid_blocks--;
2385			del = 0;
2386		}
2387
2388		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2389			sbi->discard_blks--;
2390
2391		/*
2392		 * SSR should never reuse block which is checkpointed
2393		 * or newly invalidated.
2394		 */
2395		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2396			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2397				se->ckpt_valid_blocks++;
2398		}
2399	} else {
2400		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2401#ifdef CONFIG_F2FS_CHECK_FS
2402		mir_exist = f2fs_test_and_clear_bit(offset,
2403						se->cur_valid_map_mir);
2404		if (unlikely(exist != mir_exist)) {
2405			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2406				 blkaddr, exist);
2407			f2fs_bug_on(sbi, 1);
2408		}
2409#endif
2410		if (unlikely(!exist)) {
2411			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2412				 blkaddr);
2413			f2fs_bug_on(sbi, 1);
2414			se->valid_blocks++;
2415			del = 0;
2416		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2417			/*
2418			 * If checkpoints are off, we must not reuse data that
2419			 * was used in the previous checkpoint. If it was used
2420			 * before, we must track that to know how much space we
2421			 * really have.
2422			 */
2423			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2424				spin_lock(&sbi->stat_lock);
2425				sbi->unusable_block_count++;
2426				spin_unlock(&sbi->stat_lock);
2427			}
2428		}
2429
2430		if (f2fs_test_and_clear_bit(offset, se->discard_map))
2431			sbi->discard_blks++;
2432	}
2433	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2434		se->ckpt_valid_blocks += del;
2435
2436	__mark_sit_entry_dirty(sbi, segno);
2437
2438	/* update total number of valid blocks to be written in ckpt area */
2439	SIT_I(sbi)->written_valid_blocks += del;
2440
2441	if (__is_large_section(sbi))
2442		get_sec_entry(sbi, segno)->valid_blocks += del;
2443}
2444
2445void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2446{
2447	unsigned int segno = GET_SEGNO(sbi, addr);
2448	struct sit_info *sit_i = SIT_I(sbi);
2449
2450	f2fs_bug_on(sbi, addr == NULL_ADDR);
2451	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2452		return;
2453
2454	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2455
2456	/* add it into sit main buffer */
2457	down_write(&sit_i->sentry_lock);
2458
2459	update_segment_mtime(sbi, addr, 0);
2460	update_sit_entry(sbi, addr, -1);
2461
2462	/* add it into dirty seglist */
2463	locate_dirty_segment(sbi, segno);
2464
2465	up_write(&sit_i->sentry_lock);
2466}
2467
2468bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2469{
2470	struct sit_info *sit_i = SIT_I(sbi);
2471	unsigned int segno, offset;
2472	struct seg_entry *se;
2473	bool is_cp = false;
2474
2475	if (!__is_valid_data_blkaddr(blkaddr))
2476		return true;
2477
2478	down_read(&sit_i->sentry_lock);
2479
2480	segno = GET_SEGNO(sbi, blkaddr);
2481	se = get_seg_entry(sbi, segno);
2482	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2483
2484	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2485		is_cp = true;
2486
2487	up_read(&sit_i->sentry_lock);
2488
2489	return is_cp;
2490}
2491
2492/*
2493 * This function should be resided under the curseg_mutex lock
2494 */
2495static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2496					struct f2fs_summary *sum)
2497{
2498	struct curseg_info *curseg = CURSEG_I(sbi, type);
2499	void *addr = curseg->sum_blk;
2500	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2501	memcpy(addr, sum, sizeof(struct f2fs_summary));
2502}
2503
2504/*
2505 * Calculate the number of current summary pages for writing
2506 */
2507int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2508{
2509	int valid_sum_count = 0;
2510	int i, sum_in_page;
2511
2512	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2513		if (sbi->ckpt->alloc_type[i] == SSR)
2514			valid_sum_count += sbi->blocks_per_seg;
2515		else {
2516			if (for_ra)
2517				valid_sum_count += le16_to_cpu(
2518					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2519			else
2520				valid_sum_count += curseg_blkoff(sbi, i);
2521		}
2522	}
2523
2524	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2525			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2526	if (valid_sum_count <= sum_in_page)
2527		return 1;
2528	else if ((valid_sum_count - sum_in_page) <=
2529		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2530		return 2;
2531	return 3;
2532}
2533
2534/*
2535 * Caller should put this summary page
2536 */
2537struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2538{
2539	if (unlikely(f2fs_cp_error(sbi)))
2540		return ERR_PTR(-EIO);
2541	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2542}
2543
2544void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2545					void *src, block_t blk_addr)
2546{
2547	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2548
2549	memcpy(page_address(page), src, PAGE_SIZE);
2550	set_page_dirty(page);
2551	f2fs_put_page(page, 1);
2552}
2553
2554static void write_sum_page(struct f2fs_sb_info *sbi,
2555			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2556{
2557	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2558}
2559
2560static void write_current_sum_page(struct f2fs_sb_info *sbi,
2561						int type, block_t blk_addr)
2562{
2563	struct curseg_info *curseg = CURSEG_I(sbi, type);
2564	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2565	struct f2fs_summary_block *src = curseg->sum_blk;
2566	struct f2fs_summary_block *dst;
2567
2568	dst = (struct f2fs_summary_block *)page_address(page);
2569	memset(dst, 0, PAGE_SIZE);
2570
2571	mutex_lock(&curseg->curseg_mutex);
2572
2573	down_read(&curseg->journal_rwsem);
2574	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2575	up_read(&curseg->journal_rwsem);
2576
2577	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2578	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2579
2580	mutex_unlock(&curseg->curseg_mutex);
2581
2582	set_page_dirty(page);
2583	f2fs_put_page(page, 1);
2584}
2585
2586static int is_next_segment_free(struct f2fs_sb_info *sbi,
2587				struct curseg_info *curseg, int type)
2588{
2589	unsigned int segno = curseg->segno + 1;
2590	struct free_segmap_info *free_i = FREE_I(sbi);
2591
2592	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2593		return !test_bit(segno, free_i->free_segmap);
2594	return 0;
2595}
2596
2597/*
2598 * Find a new segment from the free segments bitmap to right order
2599 * This function should be returned with success, otherwise BUG
2600 */
2601static void get_new_segment(struct f2fs_sb_info *sbi,
2602			unsigned int *newseg, bool new_sec, int dir)
2603{
2604	struct free_segmap_info *free_i = FREE_I(sbi);
2605	unsigned int segno, secno, zoneno;
2606	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2607	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2608	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2609	unsigned int left_start = hint;
2610	bool init = true;
2611	int go_left = 0;
2612	int i;
2613
2614	spin_lock(&free_i->segmap_lock);
2615
2616	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2617		segno = find_next_zero_bit(free_i->free_segmap,
2618			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2619		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2620			goto got_it;
2621	}
2622find_other_zone:
2623	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2624	if (secno >= MAIN_SECS(sbi)) {
2625		if (dir == ALLOC_RIGHT) {
2626			secno = find_next_zero_bit(free_i->free_secmap,
2627							MAIN_SECS(sbi), 0);
2628			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2629		} else {
2630			go_left = 1;
2631			left_start = hint - 1;
2632		}
2633	}
2634	if (go_left == 0)
2635		goto skip_left;
2636
2637	while (test_bit(left_start, free_i->free_secmap)) {
2638		if (left_start > 0) {
2639			left_start--;
2640			continue;
2641		}
2642		left_start = find_next_zero_bit(free_i->free_secmap,
2643							MAIN_SECS(sbi), 0);
2644		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2645		break;
2646	}
2647	secno = left_start;
2648skip_left:
2649	segno = GET_SEG_FROM_SEC(sbi, secno);
2650	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2651
2652	/* give up on finding another zone */
2653	if (!init)
2654		goto got_it;
2655	if (sbi->secs_per_zone == 1)
2656		goto got_it;
2657	if (zoneno == old_zoneno)
2658		goto got_it;
2659	if (dir == ALLOC_LEFT) {
2660		if (!go_left && zoneno + 1 >= total_zones)
2661			goto got_it;
2662		if (go_left && zoneno == 0)
2663			goto got_it;
2664	}
2665	for (i = 0; i < NR_CURSEG_TYPE; i++)
2666		if (CURSEG_I(sbi, i)->zone == zoneno)
2667			break;
2668
2669	if (i < NR_CURSEG_TYPE) {
2670		/* zone is in user, try another */
2671		if (go_left)
2672			hint = zoneno * sbi->secs_per_zone - 1;
2673		else if (zoneno + 1 >= total_zones)
2674			hint = 0;
2675		else
2676			hint = (zoneno + 1) * sbi->secs_per_zone;
2677		init = false;
2678		goto find_other_zone;
2679	}
2680got_it:
2681	/* set it as dirty segment in free segmap */
2682	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2683	__set_inuse(sbi, segno);
2684	*newseg = segno;
2685	spin_unlock(&free_i->segmap_lock);
2686}
2687
2688static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2689{
2690	struct curseg_info *curseg = CURSEG_I(sbi, type);
2691	struct summary_footer *sum_footer;
2692	unsigned short seg_type = curseg->seg_type;
2693
2694	curseg->inited = true;
2695	curseg->segno = curseg->next_segno;
2696	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2697	curseg->next_blkoff = 0;
2698	curseg->next_segno = NULL_SEGNO;
2699
2700	sum_footer = &(curseg->sum_blk->footer);
2701	memset(sum_footer, 0, sizeof(struct summary_footer));
2702
2703	sanity_check_seg_type(sbi, seg_type);
2704
2705	if (IS_DATASEG(seg_type))
2706		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2707	if (IS_NODESEG(seg_type))
2708		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2709	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2710}
2711
2712static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2713{
2714	struct curseg_info *curseg = CURSEG_I(sbi, type);
2715	unsigned short seg_type = curseg->seg_type;
2716
2717	sanity_check_seg_type(sbi, seg_type);
2718
2719	/* if segs_per_sec is large than 1, we need to keep original policy. */
2720	if (__is_large_section(sbi))
2721		return curseg->segno;
2722
2723	/* inmem log may not locate on any segment after mount */
2724	if (!curseg->inited)
2725		return 0;
2726
2727	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2728		return 0;
2729
2730	if (test_opt(sbi, NOHEAP) &&
2731		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2732		return 0;
2733
2734	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2735		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2736
2737	/* find segments from 0 to reuse freed segments */
2738	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2739		return 0;
2740
2741	return curseg->segno;
2742}
2743
2744/*
2745 * Allocate a current working segment.
2746 * This function always allocates a free segment in LFS manner.
2747 */
2748static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2749{
2750	struct curseg_info *curseg = CURSEG_I(sbi, type);
2751	unsigned short seg_type = curseg->seg_type;
2752	unsigned int segno = curseg->segno;
2753	int dir = ALLOC_LEFT;
2754
2755	if (curseg->inited)
2756		write_sum_page(sbi, curseg->sum_blk,
2757				GET_SUM_BLOCK(sbi, segno));
2758	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2759		dir = ALLOC_RIGHT;
2760
2761	if (test_opt(sbi, NOHEAP))
2762		dir = ALLOC_RIGHT;
2763
2764	segno = __get_next_segno(sbi, type);
2765	get_new_segment(sbi, &segno, new_sec, dir);
2766	curseg->next_segno = segno;
2767	reset_curseg(sbi, type, 1);
2768	curseg->alloc_type = LFS;
2769}
2770
2771static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2772			struct curseg_info *seg, block_t start)
2773{
2774	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2775	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2776	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2777	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2778	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2779	int i, pos;
2780
2781	for (i = 0; i < entries; i++)
2782		target_map[i] = ckpt_map[i] | cur_map[i];
2783
2784	pos = find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2785
2786	seg->next_blkoff = pos;
2787}
2788
2789/*
2790 * If a segment is written by LFS manner, next block offset is just obtained
2791 * by increasing the current block offset. However, if a segment is written by
2792 * SSR manner, next block offset obtained by calling __next_free_blkoff
2793 */
2794static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2795				struct curseg_info *seg)
2796{
2797	if (seg->alloc_type == SSR)
2798		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2799	else
2800		seg->next_blkoff++;
2801}
2802
2803bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2804{
2805	struct seg_entry *se = get_seg_entry(sbi, segno);
2806	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2807	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2808	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2809	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2810	int i, pos;
2811
2812	for (i = 0; i < entries; i++)
2813		target_map[i] = ckpt_map[i] | cur_map[i];
2814
2815	pos = find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, 0);
2816
2817	return pos < sbi->blocks_per_seg;
2818}
2819
2820/*
2821 * This function always allocates a used segment(from dirty seglist) by SSR
2822 * manner, so it should recover the existing segment information of valid blocks
2823 */
2824static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2825{
2826	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2827	struct curseg_info *curseg = CURSEG_I(sbi, type);
2828	unsigned int new_segno = curseg->next_segno;
2829	struct f2fs_summary_block *sum_node;
2830	struct page *sum_page;
2831
2832	if (flush)
2833		write_sum_page(sbi, curseg->sum_blk,
2834					GET_SUM_BLOCK(sbi, curseg->segno));
2835
2836	__set_test_and_inuse(sbi, new_segno);
2837
2838	mutex_lock(&dirty_i->seglist_lock);
2839	__remove_dirty_segment(sbi, new_segno, PRE);
2840	__remove_dirty_segment(sbi, new_segno, DIRTY);
2841	mutex_unlock(&dirty_i->seglist_lock);
2842
2843	reset_curseg(sbi, type, 1);
2844	curseg->alloc_type = SSR;
2845	__next_free_blkoff(sbi, curseg, 0);
2846
2847	sum_page = f2fs_get_sum_page(sbi, new_segno);
2848	if (IS_ERR(sum_page)) {
2849		/* GC won't be able to use stale summary pages by cp_error */
2850		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2851		return;
2852	}
2853	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2854	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2855	f2fs_put_page(sum_page, 1);
2856}
2857
2858static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2859				int alloc_mode, unsigned long long age);
2860
2861static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2862					int target_type, int alloc_mode,
2863					unsigned long long age)
2864{
2865	struct curseg_info *curseg = CURSEG_I(sbi, type);
2866
2867	curseg->seg_type = target_type;
2868
2869	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2870		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2871
2872		curseg->seg_type = se->type;
2873		change_curseg(sbi, type, true);
2874	} else {
2875		/* allocate cold segment by default */
2876		curseg->seg_type = CURSEG_COLD_DATA;
2877		new_curseg(sbi, type, true);
2878	}
2879	stat_inc_seg_type(sbi, curseg);
2880}
2881
2882static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2883{
2884	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2885
2886	if (!sbi->am.atgc_enabled)
2887		return;
2888
2889	down_read(&SM_I(sbi)->curseg_lock);
2890
2891	mutex_lock(&curseg->curseg_mutex);
2892	down_write(&SIT_I(sbi)->sentry_lock);
2893
2894	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2895
2896	up_write(&SIT_I(sbi)->sentry_lock);
2897	mutex_unlock(&curseg->curseg_mutex);
2898
2899	up_read(&SM_I(sbi)->curseg_lock);
2900
2901}
2902void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2903{
2904	__f2fs_init_atgc_curseg(sbi);
2905}
2906
2907static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2908{
2909	struct curseg_info *curseg = CURSEG_I(sbi, type);
2910
2911	mutex_lock(&curseg->curseg_mutex);
2912	if (!curseg->inited)
2913		goto out;
2914
2915	if (get_valid_blocks(sbi, curseg->segno, false)) {
2916		write_sum_page(sbi, curseg->sum_blk,
2917				GET_SUM_BLOCK(sbi, curseg->segno));
2918	} else {
2919		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2920		__set_test_and_free(sbi, curseg->segno, true);
2921		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2922	}
2923out:
2924	mutex_unlock(&curseg->curseg_mutex);
2925}
2926
2927void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2928{
2929	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2930
2931	if (sbi->am.atgc_enabled)
2932		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2933}
2934
2935static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2936{
2937	struct curseg_info *curseg = CURSEG_I(sbi, type);
2938
2939	mutex_lock(&curseg->curseg_mutex);
2940	if (!curseg->inited)
2941		goto out;
2942	if (get_valid_blocks(sbi, curseg->segno, false))
2943		goto out;
2944
2945	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2946	__set_test_and_inuse(sbi, curseg->segno);
2947	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2948out:
2949	mutex_unlock(&curseg->curseg_mutex);
2950}
2951
2952void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2953{
2954	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2955
2956	if (sbi->am.atgc_enabled)
2957		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2958}
2959
2960static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2961				int alloc_mode, unsigned long long age)
2962{
2963	struct curseg_info *curseg = CURSEG_I(sbi, type);
2964	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2965	unsigned segno = NULL_SEGNO;
2966	unsigned short seg_type = curseg->seg_type;
2967	int i, cnt;
2968	bool reversed = false;
2969
2970	sanity_check_seg_type(sbi, seg_type);
2971
2972	/* f2fs_need_SSR() already forces to do this */
2973	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2974		curseg->next_segno = segno;
2975		return 1;
2976	}
2977
2978	/* For node segments, let's do SSR more intensively */
2979	if (IS_NODESEG(seg_type)) {
2980		if (seg_type >= CURSEG_WARM_NODE) {
2981			reversed = true;
2982			i = CURSEG_COLD_NODE;
2983		} else {
2984			i = CURSEG_HOT_NODE;
2985		}
2986		cnt = NR_CURSEG_NODE_TYPE;
2987	} else {
2988		if (seg_type >= CURSEG_WARM_DATA) {
2989			reversed = true;
2990			i = CURSEG_COLD_DATA;
2991		} else {
2992			i = CURSEG_HOT_DATA;
2993		}
2994		cnt = NR_CURSEG_DATA_TYPE;
2995	}
2996
2997	for (; cnt-- > 0; reversed ? i-- : i++) {
2998		if (i == seg_type)
2999			continue;
3000		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3001			curseg->next_segno = segno;
3002			return 1;
3003		}
3004	}
3005
3006	/* find valid_blocks=0 in dirty list */
3007	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3008		segno = get_free_segment(sbi);
3009		if (segno != NULL_SEGNO) {
3010			curseg->next_segno = segno;
3011			return 1;
3012		}
3013	}
3014	return 0;
3015}
3016
3017/*
3018 * flush out current segment and replace it with new segment
3019 * This function should be returned with success, otherwise BUG
3020 */
3021static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
3022					int type, bool force, int contig_level)
3023{
3024	struct curseg_info *curseg = CURSEG_I(sbi, type);
3025
3026	if (force)
3027		new_curseg(sbi, type, true);
3028	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3029					curseg->seg_type == CURSEG_WARM_NODE)
3030		new_curseg(sbi, type, false);
3031	else if (curseg->alloc_type == LFS &&
3032			is_next_segment_free(sbi, curseg, type) &&
3033			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3034		new_curseg(sbi, type, false);
3035#ifdef CONFIG_F2FS_GRADING_SSR
3036	else if (need_ssr_by_type(sbi, type, contig_level) && get_ssr_segment(sbi, type, SSR, 0))
3037#else
3038	else if (f2fs_need_SSR(sbi) &&
3039			get_ssr_segment(sbi, type, SSR, 0))
3040#endif
3041		change_curseg(sbi, type, true);
3042	else
3043		new_curseg(sbi, type, false);
3044
3045	stat_inc_seg_type(sbi, curseg);
3046}
3047
3048void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3049					unsigned int start, unsigned int end)
3050{
3051	struct curseg_info *curseg = CURSEG_I(sbi, type);
3052	unsigned int segno;
3053
3054	down_read(&SM_I(sbi)->curseg_lock);
3055	mutex_lock(&curseg->curseg_mutex);
3056	down_write(&SIT_I(sbi)->sentry_lock);
3057
3058	segno = CURSEG_I(sbi, type)->segno;
3059	if (segno < start || segno > end)
3060		goto unlock;
3061
3062	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3063		change_curseg(sbi, type, true);
3064	else
3065		new_curseg(sbi, type, true);
3066
3067	stat_inc_seg_type(sbi, curseg);
3068
3069	locate_dirty_segment(sbi, segno);
3070unlock:
3071	up_write(&SIT_I(sbi)->sentry_lock);
3072
3073	if (segno != curseg->segno)
3074		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3075			    type, segno, curseg->segno);
3076
3077	mutex_unlock(&curseg->curseg_mutex);
3078	up_read(&SM_I(sbi)->curseg_lock);
3079}
3080
3081static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3082								bool new_sec)
3083{
3084	struct curseg_info *curseg = CURSEG_I(sbi, type);
3085	unsigned int old_segno;
3086
3087	if (!curseg->inited)
3088		goto alloc;
3089
3090	if (curseg->next_blkoff ||
3091		get_valid_blocks(sbi, curseg->segno, new_sec))
3092		goto alloc;
3093
3094	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3095		return;
3096alloc:
3097	old_segno = curseg->segno;
3098	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true, SEQ_NONE);
3099	locate_dirty_segment(sbi, old_segno);
3100}
3101
3102static void __allocate_new_section(struct f2fs_sb_info *sbi, int type)
3103{
3104	__allocate_new_segment(sbi, type, true);
3105}
3106
3107void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type)
3108{
3109	down_read(&SM_I(sbi)->curseg_lock);
3110	down_write(&SIT_I(sbi)->sentry_lock);
3111	__allocate_new_section(sbi, type);
3112	up_write(&SIT_I(sbi)->sentry_lock);
3113	up_read(&SM_I(sbi)->curseg_lock);
3114}
3115
3116void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3117{
3118	int i;
3119
3120	down_read(&SM_I(sbi)->curseg_lock);
3121	down_write(&SIT_I(sbi)->sentry_lock);
3122	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3123		__allocate_new_segment(sbi, i, false);
3124	up_write(&SIT_I(sbi)->sentry_lock);
3125	up_read(&SM_I(sbi)->curseg_lock);
3126}
3127
3128static const struct segment_allocation default_salloc_ops = {
3129	.allocate_segment = allocate_segment_by_default,
3130};
3131
3132bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3133						struct cp_control *cpc)
3134{
3135	__u64 trim_start = cpc->trim_start;
3136	bool has_candidate = false;
3137
3138	down_write(&SIT_I(sbi)->sentry_lock);
3139	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3140		if (add_discard_addrs(sbi, cpc, true)) {
3141			has_candidate = true;
3142			break;
3143		}
3144	}
3145	up_write(&SIT_I(sbi)->sentry_lock);
3146
3147	cpc->trim_start = trim_start;
3148	return has_candidate;
3149}
3150
3151static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3152					struct discard_policy *dpolicy,
3153					unsigned int start, unsigned int end)
3154{
3155	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3156	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3157	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3158	struct discard_cmd *dc;
3159	struct blk_plug plug;
3160	struct discard_sub_policy *spolicy = NULL;
3161	int issued;
3162	unsigned int trimmed = 0;
3163	/* fstrim each time 8 discard without no interrupt */
3164	select_sub_discard_policy(&spolicy, 0, dpolicy);
3165
3166	if (dcc->rbtree_check) {
3167		mutex_lock(&dcc->cmd_lock);
3168		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, &dcc->root, false));
3169		mutex_unlock(&dcc->cmd_lock);
3170	}
3171
3172next:
3173	issued = 0;
3174
3175	mutex_lock(&dcc->cmd_lock);
3176	if (unlikely(dcc->rbtree_check))
3177		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3178							&dcc->root, false));
3179
3180	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3181					NULL, start,
3182					(struct rb_entry **)&prev_dc,
3183					(struct rb_entry **)&next_dc,
3184					&insert_p, &insert_parent, true, NULL);
3185	if (!dc)
3186		dc = next_dc;
3187
3188	blk_start_plug(&plug);
3189
3190	while (dc && dc->lstart <= end) {
3191		struct rb_node *node;
3192		int err = 0;
3193
3194		if (dc->len < dpolicy->granularity)
3195			goto skip;
3196
3197		if (dc->state != D_PREP) {
3198			list_move_tail(&dc->list, &dcc->fstrim_list);
3199			goto skip;
3200		}
3201
3202		err = __submit_discard_cmd(sbi, dpolicy, 0, dc, &issued);
3203
3204		if (issued >= spolicy->max_requests) {
3205			start = dc->lstart + dc->len;
3206
3207			if (err)
3208				__remove_discard_cmd(sbi, dc);
3209
3210			blk_finish_plug(&plug);
3211			mutex_unlock(&dcc->cmd_lock);
3212			trimmed += __wait_all_discard_cmd(sbi, NULL);
3213			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3214			goto next;
3215		}
3216skip:
3217		node = rb_next(&dc->rb_node);
3218		if (err)
3219			__remove_discard_cmd(sbi, dc);
3220		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3221
3222		if (fatal_signal_pending(current))
3223			break;
3224	}
3225
3226	blk_finish_plug(&plug);
3227	mutex_unlock(&dcc->cmd_lock);
3228
3229	return trimmed;
3230}
3231
3232int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3233{
3234	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3235	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3236	unsigned int start_segno, end_segno;
3237	block_t start_block, end_block;
3238	struct cp_control cpc;
3239	struct discard_policy dpolicy;
3240	unsigned long long trimmed = 0;
3241	int err = 0;
3242	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3243
3244	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3245		return -EINVAL;
3246
3247	if (end < MAIN_BLKADDR(sbi))
3248		goto out;
3249
3250	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3251		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3252		return -EFSCORRUPTED;
3253	}
3254
3255	/* start/end segment number in main_area */
3256	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3257	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3258						GET_SEGNO(sbi, end);
3259	if (need_align) {
3260		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3261		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3262	}
3263
3264	cpc.reason = CP_DISCARD;
3265	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3266	cpc.trim_start = start_segno;
3267	cpc.trim_end = end_segno;
3268
3269	if (sbi->discard_blks == 0)
3270		goto out;
3271
3272	down_write(&sbi->gc_lock);
3273	err = f2fs_write_checkpoint(sbi, &cpc);
3274	up_write(&sbi->gc_lock);
3275	if (err)
3276		goto out;
3277
3278	/*
3279	 * We filed discard candidates, but actually we don't need to wait for
3280	 * all of them, since they'll be issued in idle time along with runtime
3281	 * discard option. User configuration looks like using runtime discard
3282	 * or periodic fstrim instead of it.
3283	 */
3284	if (f2fs_realtime_discard_enable(sbi))
3285		goto out;
3286
3287	start_block = START_BLOCK(sbi, start_segno);
3288	end_block = START_BLOCK(sbi, end_segno + 1);
3289
3290	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3291	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3292					start_block, end_block);
3293
3294	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3295					start_block, end_block);
3296out:
3297	if (!err)
3298		range->len = F2FS_BLK_TO_BYTES(trimmed);
3299	return err;
3300}
3301
3302static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3303					struct curseg_info *curseg)
3304{
3305	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3306							curseg->segno);
3307}
3308
3309int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3310{
3311	switch (hint) {
3312	case WRITE_LIFE_SHORT:
3313		return CURSEG_HOT_DATA;
3314	case WRITE_LIFE_EXTREME:
3315		return CURSEG_COLD_DATA;
3316	default:
3317		return CURSEG_WARM_DATA;
3318	}
3319}
3320
3321/* This returns write hints for each segment type. This hints will be
3322 * passed down to block layer. There are mapping tables which depend on
3323 * the mount option 'whint_mode'.
3324 *
3325 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3326 *
3327 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3328 *
3329 * User                  F2FS                     Block
3330 * ----                  ----                     -----
3331 *                       META                     WRITE_LIFE_NOT_SET
3332 *                       HOT_NODE                 "
3333 *                       WARM_NODE                "
3334 *                       COLD_NODE                "
3335 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3336 * extension list        "                        "
3337 *
3338 * -- buffered io
3339 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3340 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3341 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3342 * WRITE_LIFE_NONE       "                        "
3343 * WRITE_LIFE_MEDIUM     "                        "
3344 * WRITE_LIFE_LONG       "                        "
3345 *
3346 * -- direct io
3347 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3348 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3349 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3350 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3351 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3352 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3353 *
3354 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3355 *
3356 * User                  F2FS                     Block
3357 * ----                  ----                     -----
3358 *                       META                     WRITE_LIFE_MEDIUM;
3359 *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3360 *                       WARM_NODE                "
3361 *                       COLD_NODE                WRITE_LIFE_NONE
3362 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3363 * extension list        "                        "
3364 *
3365 * -- buffered io
3366 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3367 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3368 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3369 * WRITE_LIFE_NONE       "                        "
3370 * WRITE_LIFE_MEDIUM     "                        "
3371 * WRITE_LIFE_LONG       "                        "
3372 *
3373 * -- direct io
3374 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3375 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3376 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3377 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3378 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3379 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3380 */
3381
3382enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3383				enum page_type type, enum temp_type temp)
3384{
3385	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3386		if (type == DATA) {
3387			if (temp == WARM)
3388				return WRITE_LIFE_NOT_SET;
3389			else if (temp == HOT)
3390				return WRITE_LIFE_SHORT;
3391			else if (temp == COLD)
3392				return WRITE_LIFE_EXTREME;
3393		} else {
3394			return WRITE_LIFE_NOT_SET;
3395		}
3396	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3397		if (type == DATA) {
3398			if (temp == WARM)
3399				return WRITE_LIFE_LONG;
3400			else if (temp == HOT)
3401				return WRITE_LIFE_SHORT;
3402			else if (temp == COLD)
3403				return WRITE_LIFE_EXTREME;
3404		} else if (type == NODE) {
3405			if (temp == WARM || temp == HOT)
3406				return WRITE_LIFE_NOT_SET;
3407			else if (temp == COLD)
3408				return WRITE_LIFE_NONE;
3409		} else if (type == META) {
3410			return WRITE_LIFE_MEDIUM;
3411		}
3412	}
3413	return WRITE_LIFE_NOT_SET;
3414}
3415
3416static int __get_segment_type_2(struct f2fs_io_info *fio)
3417{
3418	if (fio->type == DATA)
3419		return CURSEG_HOT_DATA;
3420	else
3421		return CURSEG_HOT_NODE;
3422}
3423
3424static int __get_segment_type_4(struct f2fs_io_info *fio)
3425{
3426	if (fio->type == DATA) {
3427		struct inode *inode = fio->page->mapping->host;
3428
3429		if (S_ISDIR(inode->i_mode))
3430			return CURSEG_HOT_DATA;
3431		else
3432			return CURSEG_COLD_DATA;
3433	} else {
3434		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3435			return CURSEG_WARM_NODE;
3436		else
3437			return CURSEG_COLD_NODE;
3438	}
3439}
3440
3441static int __get_segment_type_6(struct f2fs_io_info *fio)
3442{
3443	if (fio->type == DATA) {
3444		struct inode *inode = fio->page->mapping->host;
3445
3446		if (is_cold_data(fio->page)) {
3447			if (fio->sbi->am.atgc_enabled)
3448				return CURSEG_ALL_DATA_ATGC;
3449			else
3450				return CURSEG_COLD_DATA;
3451		}
3452		if (file_is_cold(inode) || f2fs_compressed_file(inode))
3453			return CURSEG_COLD_DATA;
3454		if (file_is_hot(inode) ||
3455				is_inode_flag_set(inode, FI_HOT_DATA) ||
3456				f2fs_is_atomic_file(inode) ||
3457				f2fs_is_volatile_file(inode))
3458			return CURSEG_HOT_DATA;
3459		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3460	} else {
3461		if (IS_DNODE(fio->page))
3462			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3463						CURSEG_HOT_NODE;
3464		return CURSEG_COLD_NODE;
3465	}
3466}
3467
3468static int __get_segment_type(struct f2fs_io_info *fio)
3469{
3470	int type = 0;
3471
3472	switch (F2FS_OPTION(fio->sbi).active_logs) {
3473	case 2:
3474		type = __get_segment_type_2(fio);
3475		break;
3476	case 4:
3477		type = __get_segment_type_4(fio);
3478		break;
3479	case 6:
3480		type = __get_segment_type_6(fio);
3481		break;
3482	default:
3483		f2fs_bug_on(fio->sbi, true);
3484	}
3485
3486	if (IS_HOT(type))
3487		fio->temp = HOT;
3488	else if (IS_WARM(type))
3489		fio->temp = WARM;
3490	else
3491		fio->temp = COLD;
3492	return type;
3493}
3494
3495void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3496		block_t old_blkaddr, block_t *new_blkaddr,
3497		struct f2fs_summary *sum, int type,
3498		struct f2fs_io_info *fio, int contig_level)
3499{
3500	struct sit_info *sit_i = SIT_I(sbi);
3501	struct curseg_info *curseg = CURSEG_I(sbi, type);
3502	unsigned long long old_mtime;
3503	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3504	struct seg_entry *se = NULL;
3505#ifdef CONFIG_F2FS_GRADING_SSR
3506	struct inode *inode = NULL;
3507#endif
3508	int contig = SEQ_NONE;
3509
3510	down_read(&SM_I(sbi)->curseg_lock);
3511
3512	mutex_lock(&curseg->curseg_mutex);
3513	down_write(&sit_i->sentry_lock);
3514
3515	if (from_gc) {
3516		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3517		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3518		sanity_check_seg_type(sbi, se->type);
3519		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3520	}
3521	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3522
3523	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3524
3525	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3526
3527	/*
3528	 * __add_sum_entry should be resided under the curseg_mutex
3529	 * because, this function updates a summary entry in the
3530	 * current summary block.
3531	 */
3532	__add_sum_entry(sbi, type, sum);
3533
3534	__refresh_next_blkoff(sbi, curseg);
3535
3536	stat_inc_block_count(sbi, curseg);
3537
3538	if (from_gc) {
3539		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3540	} else {
3541		update_segment_mtime(sbi, old_blkaddr, 0);
3542		old_mtime = 0;
3543	}
3544	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3545
3546	/*
3547	 * SIT information should be updated before segment allocation,
3548	 * since SSR needs latest valid block information.
3549	 */
3550	update_sit_entry(sbi, *new_blkaddr, 1);
3551	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3552		update_sit_entry(sbi, old_blkaddr, -1);
3553
3554	if (!__has_curseg_space(sbi, curseg)) {
3555		if (from_gc) {
3556			get_atssr_segment(sbi, type, se->type,
3557						AT_SSR, se->mtime);
3558		} else {
3559#ifdef CONFIG_F2FS_GRADING_SSR
3560			if (contig_level != SEQ_NONE) {
3561				contig = contig_level;
3562				goto allocate_label;
3563			}
3564
3565			if (page && page->mapping && page->mapping != NODE_MAPPING(sbi) &&
3566					page->mapping != META_MAPPING(sbi)) {
3567				inode = page->mapping->host;
3568				contig = check_io_seq(get_dirty_pages(inode));
3569			}
3570allocate_label:
3571#endif
3572			sit_i->s_ops->allocate_segment(sbi, type, false, contig);
3573		}
3574	}
3575	/*
3576	 * segment dirty status should be updated after segment allocation,
3577	 * so we just need to update status only one time after previous
3578	 * segment being closed.
3579	 */
3580	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3581	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3582
3583	up_write(&sit_i->sentry_lock);
3584
3585	if (page && IS_NODESEG(type)) {
3586		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3587
3588		f2fs_inode_chksum_set(sbi, page);
3589	}
3590
3591	if (fio) {
3592		struct f2fs_bio_info *io;
3593
3594		if (F2FS_IO_ALIGNED(sbi))
3595			fio->retry = false;
3596
3597		INIT_LIST_HEAD(&fio->list);
3598		fio->in_list = true;
3599		io = sbi->write_io[fio->type] + fio->temp;
3600		spin_lock(&io->io_lock);
3601		list_add_tail(&fio->list, &io->io_list);
3602		spin_unlock(&io->io_lock);
3603	}
3604
3605	mutex_unlock(&curseg->curseg_mutex);
3606
3607	up_read(&SM_I(sbi)->curseg_lock);
3608}
3609
3610static void update_device_state(struct f2fs_io_info *fio)
3611{
3612	struct f2fs_sb_info *sbi = fio->sbi;
3613	unsigned int devidx;
3614
3615	if (!f2fs_is_multi_device(sbi))
3616		return;
3617
3618	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3619
3620	/* update device state for fsync */
3621	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3622
3623	/* update device state for checkpoint */
3624	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3625		spin_lock(&sbi->dev_lock);
3626		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3627		spin_unlock(&sbi->dev_lock);
3628	}
3629}
3630
3631static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3632{
3633	int type = __get_segment_type(fio);
3634	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3635
3636	if (keep_order)
3637		down_read(&fio->sbi->io_order_lock);
3638reallocate:
3639	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3640			&fio->new_blkaddr, sum, type, fio, SEQ_NONE);
3641	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3642		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3643					fio->old_blkaddr, fio->old_blkaddr);
3644
3645	/* writeout dirty page into bdev */
3646	f2fs_submit_page_write(fio);
3647	if (fio->retry) {
3648		fio->old_blkaddr = fio->new_blkaddr;
3649		goto reallocate;
3650	}
3651
3652	update_device_state(fio);
3653
3654	if (keep_order)
3655		up_read(&fio->sbi->io_order_lock);
3656}
3657
3658void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3659					enum iostat_type io_type)
3660{
3661	struct f2fs_io_info fio = {
3662		.sbi = sbi,
3663		.type = META,
3664		.temp = HOT,
3665		.op = REQ_OP_WRITE,
3666		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3667		.old_blkaddr = page->index,
3668		.new_blkaddr = page->index,
3669		.page = page,
3670		.encrypted_page = NULL,
3671		.in_list = false,
3672	};
3673
3674	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3675		fio.op_flags &= ~REQ_META;
3676
3677	set_page_writeback(page);
3678	ClearPageError(page);
3679	f2fs_submit_page_write(&fio);
3680
3681	stat_inc_meta_count(sbi, page->index);
3682	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3683}
3684
3685void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3686{
3687	struct f2fs_summary sum;
3688
3689	set_summary(&sum, nid, 0, 0);
3690	do_write_page(&sum, fio);
3691
3692	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3693}
3694
3695void f2fs_outplace_write_data(struct dnode_of_data *dn,
3696					struct f2fs_io_info *fio)
3697{
3698	struct f2fs_sb_info *sbi = fio->sbi;
3699	struct f2fs_summary sum;
3700
3701	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3702	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3703	do_write_page(&sum, fio);
3704	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3705
3706	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3707}
3708
3709int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3710{
3711	int err;
3712	struct f2fs_sb_info *sbi = fio->sbi;
3713	unsigned int segno;
3714
3715	fio->new_blkaddr = fio->old_blkaddr;
3716	/* i/o temperature is needed for passing down write hints */
3717	__get_segment_type(fio);
3718
3719	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3720
3721	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3722		set_sbi_flag(sbi, SBI_NEED_FSCK);
3723		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3724			  __func__, segno);
3725		return -EFSCORRUPTED;
3726	}
3727
3728	stat_inc_inplace_blocks(fio->sbi);
3729
3730	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3731		err = f2fs_merge_page_bio(fio);
3732	else
3733		err = f2fs_submit_page_bio(fio);
3734	if (!err) {
3735		update_device_state(fio);
3736		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3737	}
3738
3739	return err;
3740}
3741
3742static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3743						unsigned int segno)
3744{
3745	int i;
3746
3747	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3748		if (CURSEG_I(sbi, i)->segno == segno)
3749			break;
3750	}
3751	return i;
3752}
3753
3754void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3755				block_t old_blkaddr, block_t new_blkaddr,
3756				bool recover_curseg, bool recover_newaddr,
3757				bool from_gc)
3758{
3759	struct sit_info *sit_i = SIT_I(sbi);
3760	struct curseg_info *curseg;
3761	unsigned int segno, old_cursegno;
3762	struct seg_entry *se;
3763	int type;
3764	unsigned short old_blkoff;
3765
3766	segno = GET_SEGNO(sbi, new_blkaddr);
3767	se = get_seg_entry(sbi, segno);
3768	type = se->type;
3769
3770	down_write(&SM_I(sbi)->curseg_lock);
3771
3772	if (!recover_curseg) {
3773		/* for recovery flow */
3774		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3775			if (old_blkaddr == NULL_ADDR)
3776				type = CURSEG_COLD_DATA;
3777			else
3778				type = CURSEG_WARM_DATA;
3779		}
3780	} else {
3781		if (IS_CURSEG(sbi, segno)) {
3782			/* se->type is volatile as SSR allocation */
3783			type = __f2fs_get_curseg(sbi, segno);
3784			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3785		} else {
3786			type = CURSEG_WARM_DATA;
3787		}
3788	}
3789
3790	f2fs_bug_on(sbi, !IS_DATASEG(type));
3791	curseg = CURSEG_I(sbi, type);
3792
3793	mutex_lock(&curseg->curseg_mutex);
3794	down_write(&sit_i->sentry_lock);
3795
3796	old_cursegno = curseg->segno;
3797	old_blkoff = curseg->next_blkoff;
3798
3799	/* change the current segment */
3800	if (segno != curseg->segno) {
3801		curseg->next_segno = segno;
3802		change_curseg(sbi, type, true);
3803	}
3804
3805	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3806	__add_sum_entry(sbi, type, sum);
3807
3808	if (!recover_curseg || recover_newaddr) {
3809		if (!from_gc)
3810			update_segment_mtime(sbi, new_blkaddr, 0);
3811		update_sit_entry(sbi, new_blkaddr, 1);
3812	}
3813	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3814		invalidate_mapping_pages(META_MAPPING(sbi),
3815					old_blkaddr, old_blkaddr);
3816		if (!from_gc)
3817			update_segment_mtime(sbi, old_blkaddr, 0);
3818		update_sit_entry(sbi, old_blkaddr, -1);
3819	}
3820
3821	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3822	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3823
3824	locate_dirty_segment(sbi, old_cursegno);
3825
3826	if (recover_curseg) {
3827		if (old_cursegno != curseg->segno) {
3828			curseg->next_segno = old_cursegno;
3829			change_curseg(sbi, type, true);
3830		}
3831		curseg->next_blkoff = old_blkoff;
3832	}
3833
3834	up_write(&sit_i->sentry_lock);
3835	mutex_unlock(&curseg->curseg_mutex);
3836	up_write(&SM_I(sbi)->curseg_lock);
3837}
3838
3839void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3840				block_t old_addr, block_t new_addr,
3841				unsigned char version, bool recover_curseg,
3842				bool recover_newaddr)
3843{
3844	struct f2fs_summary sum;
3845
3846	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3847
3848	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3849					recover_curseg, recover_newaddr, false);
3850
3851	f2fs_update_data_blkaddr(dn, new_addr);
3852}
3853
3854void f2fs_wait_on_page_writeback(struct page *page,
3855				enum page_type type, bool ordered, bool locked)
3856{
3857	if (PageWriteback(page)) {
3858		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3859
3860		/* submit cached LFS IO */
3861		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3862		/* sbumit cached IPU IO */
3863		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3864		if (ordered) {
3865			wait_on_page_writeback(page);
3866			f2fs_bug_on(sbi, locked && PageWriteback(page));
3867		} else {
3868			wait_for_stable_page(page);
3869		}
3870	}
3871}
3872
3873void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3874{
3875	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3876	struct page *cpage;
3877
3878	if (!f2fs_post_read_required(inode))
3879		return;
3880
3881	if (!__is_valid_data_blkaddr(blkaddr))
3882		return;
3883
3884	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3885	if (cpage) {
3886		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3887		f2fs_put_page(cpage, 1);
3888	}
3889}
3890
3891void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3892								block_t len)
3893{
3894	block_t i;
3895
3896	for (i = 0; i < len; i++)
3897		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3898}
3899
3900static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3901{
3902	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3903	struct curseg_info *seg_i;
3904	unsigned char *kaddr;
3905	struct page *page;
3906	block_t start;
3907	int i, j, offset;
3908
3909	start = start_sum_block(sbi);
3910
3911	page = f2fs_get_meta_page(sbi, start++);
3912	if (IS_ERR(page))
3913		return PTR_ERR(page);
3914	kaddr = (unsigned char *)page_address(page);
3915
3916	/* Step 1: restore nat cache */
3917	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3918	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3919
3920	/* Step 2: restore sit cache */
3921	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3922	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3923	offset = 2 * SUM_JOURNAL_SIZE;
3924
3925	/* Step 3: restore summary entries */
3926	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3927		unsigned short blk_off;
3928		unsigned int segno;
3929
3930		seg_i = CURSEG_I(sbi, i);
3931		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3932		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3933		seg_i->next_segno = segno;
3934		reset_curseg(sbi, i, 0);
3935		seg_i->alloc_type = ckpt->alloc_type[i];
3936		seg_i->next_blkoff = blk_off;
3937
3938		if (seg_i->alloc_type == SSR)
3939			blk_off = sbi->blocks_per_seg;
3940
3941		for (j = 0; j < blk_off; j++) {
3942			struct f2fs_summary *s;
3943			s = (struct f2fs_summary *)(kaddr + offset);
3944			seg_i->sum_blk->entries[j] = *s;
3945			offset += SUMMARY_SIZE;
3946			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3947						SUM_FOOTER_SIZE)
3948				continue;
3949
3950			f2fs_put_page(page, 1);
3951			page = NULL;
3952
3953			page = f2fs_get_meta_page(sbi, start++);
3954			if (IS_ERR(page))
3955				return PTR_ERR(page);
3956			kaddr = (unsigned char *)page_address(page);
3957			offset = 0;
3958		}
3959	}
3960	f2fs_put_page(page, 1);
3961	return 0;
3962}
3963
3964static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3965{
3966	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3967	struct f2fs_summary_block *sum;
3968	struct curseg_info *curseg;
3969	struct page *new;
3970	unsigned short blk_off;
3971	unsigned int segno = 0;
3972	block_t blk_addr = 0;
3973	int err = 0;
3974
3975	/* get segment number and block addr */
3976	if (IS_DATASEG(type)) {
3977		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3978		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3979							CURSEG_HOT_DATA]);
3980		if (__exist_node_summaries(sbi))
3981			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3982		else
3983			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3984	} else {
3985		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3986							CURSEG_HOT_NODE]);
3987		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3988							CURSEG_HOT_NODE]);
3989		if (__exist_node_summaries(sbi))
3990			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3991							type - CURSEG_HOT_NODE);
3992		else
3993			blk_addr = GET_SUM_BLOCK(sbi, segno);
3994	}
3995
3996	new = f2fs_get_meta_page(sbi, blk_addr);
3997	if (IS_ERR(new))
3998		return PTR_ERR(new);
3999	sum = (struct f2fs_summary_block *)page_address(new);
4000
4001	if (IS_NODESEG(type)) {
4002		if (__exist_node_summaries(sbi)) {
4003			struct f2fs_summary *ns = &sum->entries[0];
4004			int i;
4005			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
4006				ns->version = 0;
4007				ns->ofs_in_node = 0;
4008			}
4009		} else {
4010			err = f2fs_restore_node_summary(sbi, segno, sum);
4011			if (err)
4012				goto out;
4013		}
4014	}
4015
4016	/* set uncompleted segment to curseg */
4017	curseg = CURSEG_I(sbi, type);
4018	mutex_lock(&curseg->curseg_mutex);
4019
4020	/* update journal info */
4021	down_write(&curseg->journal_rwsem);
4022	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4023	up_write(&curseg->journal_rwsem);
4024
4025	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4026	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4027	curseg->next_segno = segno;
4028	reset_curseg(sbi, type, 0);
4029	curseg->alloc_type = ckpt->alloc_type[type];
4030	curseg->next_blkoff = blk_off;
4031	mutex_unlock(&curseg->curseg_mutex);
4032out:
4033	f2fs_put_page(new, 1);
4034	return err;
4035}
4036
4037static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4038{
4039	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4040	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4041	int type = CURSEG_HOT_DATA;
4042	int err;
4043
4044	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4045		int npages = f2fs_npages_for_summary_flush(sbi, true);
4046
4047		if (npages >= 2)
4048			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4049							META_CP, true);
4050
4051		/* restore for compacted data summary */
4052		err = read_compacted_summaries(sbi);
4053		if (err)
4054			return err;
4055		type = CURSEG_HOT_NODE;
4056	}
4057
4058	if (__exist_node_summaries(sbi))
4059		f2fs_ra_meta_pages(sbi,
4060				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4061				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4062
4063	for (; type <= CURSEG_COLD_NODE; type++) {
4064		err = read_normal_summaries(sbi, type);
4065		if (err)
4066			return err;
4067	}
4068
4069	/* sanity check for summary blocks */
4070	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4071			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4072		f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
4073			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4074		return -EINVAL;
4075	}
4076
4077	return 0;
4078}
4079
4080static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4081{
4082	struct page *page;
4083	unsigned char *kaddr;
4084	struct f2fs_summary *summary;
4085	struct curseg_info *seg_i;
4086	int written_size = 0;
4087	int i, j;
4088
4089	page = f2fs_grab_meta_page(sbi, blkaddr++);
4090	kaddr = (unsigned char *)page_address(page);
4091	memset(kaddr, 0, PAGE_SIZE);
4092
4093	/* Step 1: write nat cache */
4094	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4095	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4096	written_size += SUM_JOURNAL_SIZE;
4097
4098	/* Step 2: write sit cache */
4099	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4100	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4101	written_size += SUM_JOURNAL_SIZE;
4102
4103	/* Step 3: write summary entries */
4104	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4105		unsigned short blkoff;
4106		seg_i = CURSEG_I(sbi, i);
4107		if (sbi->ckpt->alloc_type[i] == SSR)
4108			blkoff = sbi->blocks_per_seg;
4109		else
4110			blkoff = curseg_blkoff(sbi, i);
4111
4112		for (j = 0; j < blkoff; j++) {
4113			if (!page) {
4114				page = f2fs_grab_meta_page(sbi, blkaddr++);
4115				kaddr = (unsigned char *)page_address(page);
4116				memset(kaddr, 0, PAGE_SIZE);
4117				written_size = 0;
4118			}
4119			summary = (struct f2fs_summary *)(kaddr + written_size);
4120			*summary = seg_i->sum_blk->entries[j];
4121			written_size += SUMMARY_SIZE;
4122
4123			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4124							SUM_FOOTER_SIZE)
4125				continue;
4126
4127			set_page_dirty(page);
4128			f2fs_put_page(page, 1);
4129			page = NULL;
4130		}
4131	}
4132	if (page) {
4133		set_page_dirty(page);
4134		f2fs_put_page(page, 1);
4135	}
4136}
4137
4138static void write_normal_summaries(struct f2fs_sb_info *sbi,
4139					block_t blkaddr, int type)
4140{
4141	int i, end;
4142	if (IS_DATASEG(type))
4143		end = type + NR_CURSEG_DATA_TYPE;
4144	else
4145		end = type + NR_CURSEG_NODE_TYPE;
4146
4147	for (i = type; i < end; i++)
4148		write_current_sum_page(sbi, i, blkaddr + (i - type));
4149}
4150
4151void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4152{
4153	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4154		write_compacted_summaries(sbi, start_blk);
4155	else
4156		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4157}
4158
4159void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4160{
4161	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4162}
4163
4164int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4165					unsigned int val, int alloc)
4166{
4167	int i;
4168
4169	if (type == NAT_JOURNAL) {
4170		for (i = 0; i < nats_in_cursum(journal); i++) {
4171			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4172				return i;
4173		}
4174		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4175			return update_nats_in_cursum(journal, 1);
4176	} else if (type == SIT_JOURNAL) {
4177		for (i = 0; i < sits_in_cursum(journal); i++)
4178			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4179				return i;
4180		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4181			return update_sits_in_cursum(journal, 1);
4182	}
4183	return -1;
4184}
4185
4186static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4187					unsigned int segno)
4188{
4189	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4190}
4191
4192static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4193					unsigned int start)
4194{
4195	struct sit_info *sit_i = SIT_I(sbi);
4196	struct page *page;
4197	pgoff_t src_off, dst_off;
4198
4199	src_off = current_sit_addr(sbi, start);
4200	dst_off = next_sit_addr(sbi, src_off);
4201
4202	page = f2fs_grab_meta_page(sbi, dst_off);
4203	seg_info_to_sit_page(sbi, page, start);
4204
4205	set_page_dirty(page);
4206	set_to_next_sit(sit_i, start);
4207
4208	return page;
4209}
4210
4211static struct sit_entry_set *grab_sit_entry_set(void)
4212{
4213	struct sit_entry_set *ses =
4214			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4215
4216	ses->entry_cnt = 0;
4217	INIT_LIST_HEAD(&ses->set_list);
4218	return ses;
4219}
4220
4221static void release_sit_entry_set(struct sit_entry_set *ses)
4222{
4223	list_del(&ses->set_list);
4224	kmem_cache_free(sit_entry_set_slab, ses);
4225}
4226
4227static void adjust_sit_entry_set(struct sit_entry_set *ses,
4228						struct list_head *head)
4229{
4230	struct sit_entry_set *next = ses;
4231
4232	if (list_is_last(&ses->set_list, head))
4233		return;
4234
4235	list_for_each_entry_continue(next, head, set_list)
4236		if (ses->entry_cnt <= next->entry_cnt)
4237			break;
4238
4239	list_move_tail(&ses->set_list, &next->set_list);
4240}
4241
4242static void add_sit_entry(unsigned int segno, struct list_head *head)
4243{
4244	struct sit_entry_set *ses;
4245	unsigned int start_segno = START_SEGNO(segno);
4246
4247	list_for_each_entry(ses, head, set_list) {
4248		if (ses->start_segno == start_segno) {
4249			ses->entry_cnt++;
4250			adjust_sit_entry_set(ses, head);
4251			return;
4252		}
4253	}
4254
4255	ses = grab_sit_entry_set();
4256
4257	ses->start_segno = start_segno;
4258	ses->entry_cnt++;
4259	list_add(&ses->set_list, head);
4260}
4261
4262static void add_sits_in_set(struct f2fs_sb_info *sbi)
4263{
4264	struct f2fs_sm_info *sm_info = SM_I(sbi);
4265	struct list_head *set_list = &sm_info->sit_entry_set;
4266	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4267	unsigned int segno;
4268
4269	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4270		add_sit_entry(segno, set_list);
4271}
4272
4273static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4274{
4275	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4276	struct f2fs_journal *journal = curseg->journal;
4277	int i;
4278
4279	down_write(&curseg->journal_rwsem);
4280	for (i = 0; i < sits_in_cursum(journal); i++) {
4281		unsigned int segno;
4282		bool dirtied;
4283
4284		segno = le32_to_cpu(segno_in_journal(journal, i));
4285		dirtied = __mark_sit_entry_dirty(sbi, segno);
4286
4287		if (!dirtied)
4288			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4289	}
4290	update_sits_in_cursum(journal, -i);
4291	up_write(&curseg->journal_rwsem);
4292}
4293
4294/*
4295 * CP calls this function, which flushes SIT entries including sit_journal,
4296 * and moves prefree segs to free segs.
4297 */
4298void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4299{
4300	struct sit_info *sit_i = SIT_I(sbi);
4301	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4302	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4303	struct f2fs_journal *journal = curseg->journal;
4304	struct sit_entry_set *ses, *tmp;
4305	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4306	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4307	struct seg_entry *se;
4308
4309	down_write(&sit_i->sentry_lock);
4310
4311	if (!sit_i->dirty_sentries)
4312		goto out;
4313
4314	/*
4315	 * add and account sit entries of dirty bitmap in sit entry
4316	 * set temporarily
4317	 */
4318	add_sits_in_set(sbi);
4319
4320	/*
4321	 * if there are no enough space in journal to store dirty sit
4322	 * entries, remove all entries from journal and add and account
4323	 * them in sit entry set.
4324	 */
4325	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4326								!to_journal)
4327		remove_sits_in_journal(sbi);
4328
4329	/*
4330	 * there are two steps to flush sit entries:
4331	 * #1, flush sit entries to journal in current cold data summary block.
4332	 * #2, flush sit entries to sit page.
4333	 */
4334	list_for_each_entry_safe(ses, tmp, head, set_list) {
4335		struct page *page = NULL;
4336		struct f2fs_sit_block *raw_sit = NULL;
4337		unsigned int start_segno = ses->start_segno;
4338		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4339						(unsigned long)MAIN_SEGS(sbi));
4340		unsigned int segno = start_segno;
4341
4342		if (to_journal &&
4343			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4344			to_journal = false;
4345
4346		if (to_journal) {
4347			down_write(&curseg->journal_rwsem);
4348		} else {
4349			page = get_next_sit_page(sbi, start_segno);
4350			raw_sit = page_address(page);
4351		}
4352
4353		/* flush dirty sit entries in region of current sit set */
4354		for_each_set_bit_from(segno, bitmap, end) {
4355			int offset, sit_offset;
4356
4357			se = get_seg_entry(sbi, segno);
4358#ifdef CONFIG_F2FS_CHECK_FS
4359			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4360						SIT_VBLOCK_MAP_SIZE))
4361				f2fs_bug_on(sbi, 1);
4362#endif
4363
4364			/* add discard candidates */
4365			if (!(cpc->reason & CP_DISCARD)) {
4366				cpc->trim_start = segno;
4367				add_discard_addrs(sbi, cpc, false);
4368			}
4369
4370			if (to_journal) {
4371				offset = f2fs_lookup_journal_in_cursum(journal,
4372							SIT_JOURNAL, segno, 1);
4373				f2fs_bug_on(sbi, offset < 0);
4374				segno_in_journal(journal, offset) =
4375							cpu_to_le32(segno);
4376				seg_info_to_raw_sit(se,
4377					&sit_in_journal(journal, offset));
4378				check_block_count(sbi, segno,
4379					&sit_in_journal(journal, offset));
4380			} else {
4381				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4382				seg_info_to_raw_sit(se,
4383						&raw_sit->entries[sit_offset]);
4384				check_block_count(sbi, segno,
4385						&raw_sit->entries[sit_offset]);
4386			}
4387
4388			__clear_bit(segno, bitmap);
4389			sit_i->dirty_sentries--;
4390			ses->entry_cnt--;
4391		}
4392
4393		if (to_journal)
4394			up_write(&curseg->journal_rwsem);
4395		else
4396			f2fs_put_page(page, 1);
4397
4398		f2fs_bug_on(sbi, ses->entry_cnt);
4399		release_sit_entry_set(ses);
4400	}
4401
4402	f2fs_bug_on(sbi, !list_empty(head));
4403	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4404out:
4405	if (cpc->reason & CP_DISCARD) {
4406		__u64 trim_start = cpc->trim_start;
4407
4408		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4409			add_discard_addrs(sbi, cpc, false);
4410
4411		cpc->trim_start = trim_start;
4412	}
4413	up_write(&sit_i->sentry_lock);
4414
4415	set_prefree_as_free_segments(sbi);
4416}
4417
4418static int build_sit_info(struct f2fs_sb_info *sbi)
4419{
4420	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4421	struct sit_info *sit_i;
4422	unsigned int sit_segs, start;
4423	char *src_bitmap, *bitmap;
4424	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4425
4426	/* allocate memory for SIT information */
4427	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4428	if (!sit_i)
4429		return -ENOMEM;
4430
4431	SM_I(sbi)->sit_info = sit_i;
4432
4433	sit_i->sentries =
4434		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4435					      MAIN_SEGS(sbi)),
4436			      GFP_KERNEL);
4437	if (!sit_i->sentries)
4438		return -ENOMEM;
4439
4440	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4441	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4442								GFP_KERNEL);
4443	if (!sit_i->dirty_sentries_bitmap)
4444		return -ENOMEM;
4445
4446#ifdef CONFIG_F2FS_CHECK_FS
4447	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4448#else
4449	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4450#endif
4451	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4452	if (!sit_i->bitmap)
4453		return -ENOMEM;
4454
4455	bitmap = sit_i->bitmap;
4456
4457	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4458		sit_i->sentries[start].cur_valid_map = bitmap;
4459		bitmap += SIT_VBLOCK_MAP_SIZE;
4460
4461		sit_i->sentries[start].ckpt_valid_map = bitmap;
4462		bitmap += SIT_VBLOCK_MAP_SIZE;
4463
4464#ifdef CONFIG_F2FS_CHECK_FS
4465		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4466		bitmap += SIT_VBLOCK_MAP_SIZE;
4467#endif
4468
4469		sit_i->sentries[start].discard_map = bitmap;
4470		bitmap += SIT_VBLOCK_MAP_SIZE;
4471	}
4472
4473	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4474	if (!sit_i->tmp_map)
4475		return -ENOMEM;
4476
4477	if (__is_large_section(sbi)) {
4478		sit_i->sec_entries =
4479			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4480						      MAIN_SECS(sbi)),
4481				      GFP_KERNEL);
4482		if (!sit_i->sec_entries)
4483			return -ENOMEM;
4484	}
4485
4486	/* get information related with SIT */
4487	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4488
4489	/* setup SIT bitmap from ckeckpoint pack */
4490	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4491	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4492
4493	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4494	if (!sit_i->sit_bitmap)
4495		return -ENOMEM;
4496
4497#ifdef CONFIG_F2FS_CHECK_FS
4498	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4499					sit_bitmap_size, GFP_KERNEL);
4500	if (!sit_i->sit_bitmap_mir)
4501		return -ENOMEM;
4502
4503	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4504					main_bitmap_size, GFP_KERNEL);
4505	if (!sit_i->invalid_segmap)
4506		return -ENOMEM;
4507#endif
4508
4509	/* init SIT information */
4510	sit_i->s_ops = &default_salloc_ops;
4511
4512	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4513	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4514	sit_i->written_valid_blocks = 0;
4515	sit_i->bitmap_size = sit_bitmap_size;
4516	sit_i->dirty_sentries = 0;
4517	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4518	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4519	sit_i->mounted_time = ktime_get_boottime_seconds();
4520	init_rwsem(&sit_i->sentry_lock);
4521	return 0;
4522}
4523
4524static int build_free_segmap(struct f2fs_sb_info *sbi)
4525{
4526	struct free_segmap_info *free_i;
4527	unsigned int bitmap_size, sec_bitmap_size;
4528
4529	/* allocate memory for free segmap information */
4530	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4531	if (!free_i)
4532		return -ENOMEM;
4533
4534	SM_I(sbi)->free_info = free_i;
4535
4536	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4537	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4538	if (!free_i->free_segmap)
4539		return -ENOMEM;
4540
4541	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4542	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4543	if (!free_i->free_secmap)
4544		return -ENOMEM;
4545
4546	/* set all segments as dirty temporarily */
4547	memset(free_i->free_segmap, 0xff, bitmap_size);
4548	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4549
4550	/* init free segmap information */
4551	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4552	free_i->free_segments = 0;
4553	free_i->free_sections = 0;
4554	spin_lock_init(&free_i->segmap_lock);
4555	return 0;
4556}
4557
4558static int build_curseg(struct f2fs_sb_info *sbi)
4559{
4560	struct curseg_info *array;
4561	int i;
4562
4563	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4564					sizeof(*array)), GFP_KERNEL);
4565	if (!array)
4566		return -ENOMEM;
4567
4568	SM_I(sbi)->curseg_array = array;
4569
4570	for (i = 0; i < NO_CHECK_TYPE; i++) {
4571		mutex_init(&array[i].curseg_mutex);
4572		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4573		if (!array[i].sum_blk)
4574			return -ENOMEM;
4575		init_rwsem(&array[i].journal_rwsem);
4576		array[i].journal = f2fs_kzalloc(sbi,
4577				sizeof(struct f2fs_journal), GFP_KERNEL);
4578		if (!array[i].journal)
4579			return -ENOMEM;
4580		if (i < NR_PERSISTENT_LOG)
4581			array[i].seg_type = CURSEG_HOT_DATA + i;
4582		else if (i == CURSEG_COLD_DATA_PINNED)
4583			array[i].seg_type = CURSEG_COLD_DATA;
4584		else if (i == CURSEG_ALL_DATA_ATGC)
4585			array[i].seg_type = CURSEG_COLD_DATA;
4586		array[i].segno = NULL_SEGNO;
4587		array[i].next_blkoff = 0;
4588		array[i].inited = false;
4589	}
4590	return restore_curseg_summaries(sbi);
4591}
4592
4593static int build_sit_entries(struct f2fs_sb_info *sbi)
4594{
4595	struct sit_info *sit_i = SIT_I(sbi);
4596	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4597	struct f2fs_journal *journal = curseg->journal;
4598	struct seg_entry *se;
4599	struct f2fs_sit_entry sit;
4600	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4601	unsigned int i, start, end;
4602	unsigned int readed, start_blk = 0;
4603	int err = 0;
4604	block_t sit_valid_blocks[2] = {0, 0};
4605
4606	do {
4607		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4608							META_SIT, true);
4609
4610		start = start_blk * sit_i->sents_per_block;
4611		end = (start_blk + readed) * sit_i->sents_per_block;
4612
4613		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4614			struct f2fs_sit_block *sit_blk;
4615			struct page *page;
4616
4617			se = &sit_i->sentries[start];
4618			page = get_current_sit_page(sbi, start);
4619			if (IS_ERR(page))
4620				return PTR_ERR(page);
4621			sit_blk = (struct f2fs_sit_block *)page_address(page);
4622			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4623			f2fs_put_page(page, 1);
4624
4625			err = check_block_count(sbi, start, &sit);
4626			if (err)
4627				return err;
4628			seg_info_from_raw_sit(se, &sit);
4629
4630			if (se->type >= NR_PERSISTENT_LOG) {
4631				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4632							se->type, start);
4633				return -EFSCORRUPTED;
4634			}
4635
4636			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4637
4638			/* build discard map only one time */
4639			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4640				memset(se->discard_map, 0xff,
4641					SIT_VBLOCK_MAP_SIZE);
4642			} else {
4643				memcpy(se->discard_map,
4644					se->cur_valid_map,
4645					SIT_VBLOCK_MAP_SIZE);
4646				sbi->discard_blks +=
4647					sbi->blocks_per_seg -
4648					se->valid_blocks;
4649			}
4650
4651			if (__is_large_section(sbi))
4652				get_sec_entry(sbi, start)->valid_blocks +=
4653							se->valid_blocks;
4654		}
4655		start_blk += readed;
4656	} while (start_blk < sit_blk_cnt);
4657
4658	down_read(&curseg->journal_rwsem);
4659	for (i = 0; i < sits_in_cursum(journal); i++) {
4660		unsigned int old_valid_blocks;
4661
4662		start = le32_to_cpu(segno_in_journal(journal, i));
4663		if (start >= MAIN_SEGS(sbi)) {
4664			f2fs_err(sbi, "Wrong journal entry on segno %u",
4665				 start);
4666			err = -EFSCORRUPTED;
4667			break;
4668		}
4669
4670		se = &sit_i->sentries[start];
4671		sit = sit_in_journal(journal, i);
4672
4673		old_valid_blocks = se->valid_blocks;
4674
4675		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4676
4677		err = check_block_count(sbi, start, &sit);
4678		if (err)
4679			break;
4680		seg_info_from_raw_sit(se, &sit);
4681
4682		if (se->type >= NR_PERSISTENT_LOG) {
4683			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4684							se->type, start);
4685			err = -EFSCORRUPTED;
4686			break;
4687		}
4688
4689		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4690
4691		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4692			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4693		} else {
4694			memcpy(se->discard_map, se->cur_valid_map,
4695						SIT_VBLOCK_MAP_SIZE);
4696			sbi->discard_blks += old_valid_blocks;
4697			sbi->discard_blks -= se->valid_blocks;
4698		}
4699
4700		if (__is_large_section(sbi)) {
4701			get_sec_entry(sbi, start)->valid_blocks +=
4702							se->valid_blocks;
4703			get_sec_entry(sbi, start)->valid_blocks -=
4704							old_valid_blocks;
4705		}
4706	}
4707	up_read(&curseg->journal_rwsem);
4708
4709	if (err)
4710		return err;
4711
4712	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4713		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4714			 sit_valid_blocks[NODE], valid_node_count(sbi));
4715		return -EFSCORRUPTED;
4716	}
4717
4718	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4719				valid_user_blocks(sbi)) {
4720		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4721			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4722			 valid_user_blocks(sbi));
4723		return -EFSCORRUPTED;
4724	}
4725
4726	return 0;
4727}
4728
4729static void init_free_segmap(struct f2fs_sb_info *sbi)
4730{
4731	unsigned int start;
4732	int type;
4733	struct seg_entry *sentry;
4734
4735	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4736		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4737			continue;
4738		sentry = get_seg_entry(sbi, start);
4739		if (!sentry->valid_blocks)
4740			__set_free(sbi, start);
4741		else
4742			SIT_I(sbi)->written_valid_blocks +=
4743						sentry->valid_blocks;
4744	}
4745
4746	/* set use the current segments */
4747	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4748		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4749		__set_test_and_inuse(sbi, curseg_t->segno);
4750	}
4751}
4752
4753static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4754{
4755	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4756	struct free_segmap_info *free_i = FREE_I(sbi);
4757	unsigned int segno = 0, offset = 0, secno;
4758	block_t valid_blocks, usable_blks_in_seg;
4759	block_t blks_per_sec = BLKS_PER_SEC(sbi);
4760
4761	while (1) {
4762		/* find dirty segment based on free segmap */
4763		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4764		if (segno >= MAIN_SEGS(sbi))
4765			break;
4766		offset = segno + 1;
4767		valid_blocks = get_valid_blocks(sbi, segno, false);
4768		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4769		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4770			continue;
4771		if (valid_blocks > usable_blks_in_seg) {
4772			f2fs_bug_on(sbi, 1);
4773			continue;
4774		}
4775		mutex_lock(&dirty_i->seglist_lock);
4776		__locate_dirty_segment(sbi, segno, DIRTY);
4777		mutex_unlock(&dirty_i->seglist_lock);
4778	}
4779
4780	if (!__is_large_section(sbi))
4781		return;
4782
4783	mutex_lock(&dirty_i->seglist_lock);
4784	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4785		valid_blocks = get_valid_blocks(sbi, segno, true);
4786		secno = GET_SEC_FROM_SEG(sbi, segno);
4787
4788		if (!valid_blocks || valid_blocks == blks_per_sec)
4789			continue;
4790		if (IS_CURSEC(sbi, secno))
4791			continue;
4792		set_bit(secno, dirty_i->dirty_secmap);
4793	}
4794	mutex_unlock(&dirty_i->seglist_lock);
4795}
4796
4797static int init_victim_secmap(struct f2fs_sb_info *sbi)
4798{
4799	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4800	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4801
4802	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4803	if (!dirty_i->victim_secmap)
4804		return -ENOMEM;
4805	return 0;
4806}
4807
4808static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4809{
4810	struct dirty_seglist_info *dirty_i;
4811	unsigned int bitmap_size, i;
4812
4813	/* allocate memory for dirty segments list information */
4814	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4815								GFP_KERNEL);
4816	if (!dirty_i)
4817		return -ENOMEM;
4818
4819	SM_I(sbi)->dirty_info = dirty_i;
4820	mutex_init(&dirty_i->seglist_lock);
4821
4822	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4823
4824	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4825		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4826								GFP_KERNEL);
4827		if (!dirty_i->dirty_segmap[i])
4828			return -ENOMEM;
4829	}
4830
4831	if (__is_large_section(sbi)) {
4832		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4833		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4834						bitmap_size, GFP_KERNEL);
4835		if (!dirty_i->dirty_secmap)
4836			return -ENOMEM;
4837	}
4838
4839	init_dirty_segmap(sbi);
4840	return init_victim_secmap(sbi);
4841}
4842
4843static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4844{
4845	int i;
4846
4847	/*
4848	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4849	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4850	 */
4851	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4852		struct curseg_info *curseg = CURSEG_I(sbi, i);
4853		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4854		unsigned int blkofs = curseg->next_blkoff;
4855
4856		sanity_check_seg_type(sbi, curseg->seg_type);
4857
4858		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4859			f2fs_err(sbi,
4860				 "Current segment has invalid alloc_type:%d",
4861				 curseg->alloc_type);
4862			return -EFSCORRUPTED;
4863		}
4864
4865		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4866			goto out;
4867
4868		if (curseg->alloc_type == SSR)
4869			continue;
4870
4871		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4872			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4873				continue;
4874out:
4875			f2fs_err(sbi,
4876				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4877				 i, curseg->segno, curseg->alloc_type,
4878				 curseg->next_blkoff, blkofs);
4879			return -EFSCORRUPTED;
4880		}
4881	}
4882	return 0;
4883}
4884
4885#ifdef CONFIG_BLK_DEV_ZONED
4886
4887static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4888				    struct f2fs_dev_info *fdev,
4889				    struct blk_zone *zone)
4890{
4891	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4892	block_t zone_block, wp_block, last_valid_block;
4893	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4894	int i, s, b, ret;
4895	struct seg_entry *se;
4896
4897	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4898		return 0;
4899
4900	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4901	wp_segno = GET_SEGNO(sbi, wp_block);
4902	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4903	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4904	zone_segno = GET_SEGNO(sbi, zone_block);
4905	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4906
4907	if (zone_segno >= MAIN_SEGS(sbi))
4908		return 0;
4909
4910	/*
4911	 * Skip check of zones cursegs point to, since
4912	 * fix_curseg_write_pointer() checks them.
4913	 */
4914	for (i = 0; i < NO_CHECK_TYPE; i++)
4915		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4916						   CURSEG_I(sbi, i)->segno))
4917			return 0;
4918
4919	/*
4920	 * Get last valid block of the zone.
4921	 */
4922	last_valid_block = zone_block - 1;
4923	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4924		segno = zone_segno + s;
4925		se = get_seg_entry(sbi, segno);
4926		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4927			if (f2fs_test_bit(b, se->cur_valid_map)) {
4928				last_valid_block = START_BLOCK(sbi, segno) + b;
4929				break;
4930			}
4931		if (last_valid_block >= zone_block)
4932			break;
4933	}
4934
4935	/*
4936	 * If last valid block is beyond the write pointer, report the
4937	 * inconsistency. This inconsistency does not cause write error
4938	 * because the zone will not be selected for write operation until
4939	 * it get discarded. Just report it.
4940	 */
4941	if (last_valid_block >= wp_block) {
4942		f2fs_notice(sbi, "Valid block beyond write pointer: "
4943			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4944			    GET_SEGNO(sbi, last_valid_block),
4945			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4946			    wp_segno, wp_blkoff);
4947		return 0;
4948	}
4949
4950	/*
4951	 * If there is no valid block in the zone and if write pointer is
4952	 * not at zone start, reset the write pointer.
4953	 */
4954	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4955		f2fs_notice(sbi,
4956			    "Zone without valid block has non-zero write "
4957			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4958			    wp_segno, wp_blkoff);
4959		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4960					zone->len >> log_sectors_per_block);
4961		if (ret) {
4962			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4963				 fdev->path, ret);
4964			return ret;
4965		}
4966	}
4967
4968	return 0;
4969}
4970
4971static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4972						  block_t zone_blkaddr)
4973{
4974	int i;
4975
4976	for (i = 0; i < sbi->s_ndevs; i++) {
4977		if (!bdev_is_zoned(FDEV(i).bdev))
4978			continue;
4979		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4980				zone_blkaddr <= FDEV(i).end_blk))
4981			return &FDEV(i);
4982	}
4983
4984	return NULL;
4985}
4986
4987static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4988			      void *data) {
4989	memcpy(data, zone, sizeof(struct blk_zone));
4990	return 0;
4991}
4992
4993static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4994{
4995	struct curseg_info *cs = CURSEG_I(sbi, type);
4996	struct f2fs_dev_info *zbd;
4997	struct blk_zone zone;
4998	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4999	block_t cs_zone_block, wp_block;
5000	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5001	sector_t zone_sector;
5002	int err;
5003
5004	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5005	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5006
5007	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5008	if (!zbd)
5009		return 0;
5010
5011	/* report zone for the sector the curseg points to */
5012	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5013		<< log_sectors_per_block;
5014	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5015				  report_one_zone_cb, &zone);
5016	if (err != 1) {
5017		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5018			 zbd->path, err);
5019		return err;
5020	}
5021
5022	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5023		return 0;
5024
5025	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5026	wp_segno = GET_SEGNO(sbi, wp_block);
5027	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5028	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5029
5030	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5031		wp_sector_off == 0)
5032		return 0;
5033
5034	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5035		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
5036		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
5037
5038	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5039		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
5040	allocate_segment_by_default(sbi, type, true, SEQ_NONE);
5041
5042	/* check consistency of the zone curseg pointed to */
5043	if (check_zone_write_pointer(sbi, zbd, &zone))
5044		return -EIO;
5045
5046	/* check newly assigned zone */
5047	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5048	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5049
5050	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5051	if (!zbd)
5052		return 0;
5053
5054	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5055		<< log_sectors_per_block;
5056	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5057				  report_one_zone_cb, &zone);
5058	if (err != 1) {
5059		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5060			 zbd->path, err);
5061		return err;
5062	}
5063
5064	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5065		return 0;
5066
5067	if (zone.wp != zone.start) {
5068		f2fs_notice(sbi,
5069			    "New zone for curseg[%d] is not yet discarded. "
5070			    "Reset the zone: curseg[0x%x,0x%x]",
5071			    type, cs->segno, cs->next_blkoff);
5072		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
5073				zone_sector >> log_sectors_per_block,
5074				zone.len >> log_sectors_per_block);
5075		if (err) {
5076			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5077				 zbd->path, err);
5078			return err;
5079		}
5080	}
5081
5082	return 0;
5083}
5084
5085int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5086{
5087	int i, ret;
5088
5089	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5090		ret = fix_curseg_write_pointer(sbi, i);
5091		if (ret)
5092			return ret;
5093	}
5094
5095	return 0;
5096}
5097
5098struct check_zone_write_pointer_args {
5099	struct f2fs_sb_info *sbi;
5100	struct f2fs_dev_info *fdev;
5101};
5102
5103static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5104				      void *data) {
5105	struct check_zone_write_pointer_args *args;
5106	args = (struct check_zone_write_pointer_args *)data;
5107
5108	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5109}
5110
5111int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5112{
5113	int i, ret;
5114	struct check_zone_write_pointer_args args;
5115
5116	for (i = 0; i < sbi->s_ndevs; i++) {
5117		if (!bdev_is_zoned(FDEV(i).bdev))
5118			continue;
5119
5120		args.sbi = sbi;
5121		args.fdev = &FDEV(i);
5122		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5123					  check_zone_write_pointer_cb, &args);
5124		if (ret < 0)
5125			return ret;
5126	}
5127
5128	return 0;
5129}
5130
5131/*
5132 * Return the number of usable blocks in a segment. The number of blocks
5133 * returned is always equal to the number of blocks in a segment for
5134 * segments fully contained within a sequential zone capacity or a
5135 * conventional zone. For segments partially contained in a sequential
5136 * zone capacity, the number of usable blocks up to the zone capacity
5137 * is returned. 0 is returned in all other cases.
5138 */
5139static inline unsigned int f2fs_usable_zone_blks_in_seg(
5140			struct f2fs_sb_info *sbi, unsigned int segno)
5141{
5142	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5143	unsigned int secno;
5144
5145	if (!sbi->unusable_blocks_per_sec)
5146		return sbi->blocks_per_seg;
5147
5148	secno = GET_SEC_FROM_SEG(sbi, segno);
5149	seg_start = START_BLOCK(sbi, segno);
5150	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5151	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5152
5153	/*
5154	 * If segment starts before zone capacity and spans beyond
5155	 * zone capacity, then usable blocks are from seg start to
5156	 * zone capacity. If the segment starts after the zone capacity,
5157	 * then there are no usable blocks.
5158	 */
5159	if (seg_start >= sec_cap_blkaddr)
5160		return 0;
5161	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5162		return sec_cap_blkaddr - seg_start;
5163
5164	return sbi->blocks_per_seg;
5165}
5166#else
5167int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5168{
5169	return 0;
5170}
5171
5172int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5173{
5174	return 0;
5175}
5176
5177static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5178							unsigned int segno)
5179{
5180	return 0;
5181}
5182
5183#endif
5184unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5185					unsigned int segno)
5186{
5187	if (f2fs_sb_has_blkzoned(sbi))
5188		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5189
5190	return sbi->blocks_per_seg;
5191}
5192
5193unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5194					unsigned int segno)
5195{
5196	if (f2fs_sb_has_blkzoned(sbi))
5197		return CAP_SEGS_PER_SEC(sbi);
5198
5199	return sbi->segs_per_sec;
5200}
5201
5202/*
5203 * Update min, max modified time for cost-benefit GC algorithm
5204 */
5205static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5206{
5207	struct sit_info *sit_i = SIT_I(sbi);
5208	unsigned int segno;
5209
5210	down_write(&sit_i->sentry_lock);
5211
5212	sit_i->min_mtime = ULLONG_MAX;
5213
5214	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5215		unsigned int i;
5216		unsigned long long mtime = 0;
5217
5218		for (i = 0; i < sbi->segs_per_sec; i++)
5219			mtime += get_seg_entry(sbi, segno + i)->mtime;
5220
5221		mtime = div_u64(mtime, sbi->segs_per_sec);
5222
5223		if (sit_i->min_mtime > mtime)
5224			sit_i->min_mtime = mtime;
5225	}
5226	sit_i->max_mtime = get_mtime(sbi, false);
5227	sit_i->dirty_max_mtime = 0;
5228	up_write(&sit_i->sentry_lock);
5229}
5230
5231int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5232{
5233	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5234	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5235	struct f2fs_sm_info *sm_info;
5236	int err;
5237
5238	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5239	if (!sm_info)
5240		return -ENOMEM;
5241
5242	/* init sm info */
5243	sbi->sm_info = sm_info;
5244	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5245	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5246	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5247	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5248	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5249	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5250	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5251	sm_info->rec_prefree_segments = sm_info->main_segments *
5252					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5253	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5254		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5255
5256	if (!f2fs_lfs_mode(sbi))
5257		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5258	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5259	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5260	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5261	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5262	sm_info->min_ssr_sections = reserved_sections(sbi);
5263
5264	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5265
5266	init_rwsem(&sm_info->curseg_lock);
5267
5268	if (!f2fs_readonly(sbi->sb)) {
5269		err = f2fs_create_flush_cmd_control(sbi);
5270		if (err)
5271			return err;
5272	}
5273
5274	err = create_discard_cmd_control(sbi);
5275	if (err)
5276		return err;
5277
5278	err = build_sit_info(sbi);
5279	if (err)
5280		return err;
5281	err = build_free_segmap(sbi);
5282	if (err)
5283		return err;
5284	err = build_curseg(sbi);
5285	if (err)
5286		return err;
5287
5288	/* reinit free segmap based on SIT */
5289	err = build_sit_entries(sbi);
5290	if (err)
5291		return err;
5292
5293	init_free_segmap(sbi);
5294	err = build_dirty_segmap(sbi);
5295	if (err)
5296		return err;
5297
5298	err = sanity_check_curseg(sbi);
5299	if (err)
5300		return err;
5301
5302	init_min_max_mtime(sbi);
5303	return 0;
5304}
5305
5306static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5307		enum dirty_type dirty_type)
5308{
5309	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5310
5311	mutex_lock(&dirty_i->seglist_lock);
5312	kvfree(dirty_i->dirty_segmap[dirty_type]);
5313	dirty_i->nr_dirty[dirty_type] = 0;
5314	mutex_unlock(&dirty_i->seglist_lock);
5315}
5316
5317static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5318{
5319	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5320	kvfree(dirty_i->victim_secmap);
5321}
5322
5323static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5324{
5325	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5326	int i;
5327
5328	if (!dirty_i)
5329		return;
5330
5331	/* discard pre-free/dirty segments list */
5332	for (i = 0; i < NR_DIRTY_TYPE; i++)
5333		discard_dirty_segmap(sbi, i);
5334
5335	if (__is_large_section(sbi)) {
5336		mutex_lock(&dirty_i->seglist_lock);
5337		kvfree(dirty_i->dirty_secmap);
5338		mutex_unlock(&dirty_i->seglist_lock);
5339	}
5340
5341	destroy_victim_secmap(sbi);
5342	SM_I(sbi)->dirty_info = NULL;
5343	kfree(dirty_i);
5344}
5345
5346static void destroy_curseg(struct f2fs_sb_info *sbi)
5347{
5348	struct curseg_info *array = SM_I(sbi)->curseg_array;
5349	int i;
5350
5351	if (!array)
5352		return;
5353	SM_I(sbi)->curseg_array = NULL;
5354	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5355		kfree(array[i].sum_blk);
5356		kfree(array[i].journal);
5357	}
5358	kfree(array);
5359}
5360
5361static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5362{
5363	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5364	if (!free_i)
5365		return;
5366	SM_I(sbi)->free_info = NULL;
5367	kvfree(free_i->free_segmap);
5368	kvfree(free_i->free_secmap);
5369	kfree(free_i);
5370}
5371
5372static void destroy_sit_info(struct f2fs_sb_info *sbi)
5373{
5374	struct sit_info *sit_i = SIT_I(sbi);
5375
5376	if (!sit_i)
5377		return;
5378
5379	if (sit_i->sentries)
5380		kvfree(sit_i->bitmap);
5381	kfree(sit_i->tmp_map);
5382
5383	kvfree(sit_i->sentries);
5384	kvfree(sit_i->sec_entries);
5385	kvfree(sit_i->dirty_sentries_bitmap);
5386
5387	SM_I(sbi)->sit_info = NULL;
5388	kvfree(sit_i->sit_bitmap);
5389#ifdef CONFIG_F2FS_CHECK_FS
5390	kvfree(sit_i->sit_bitmap_mir);
5391	kvfree(sit_i->invalid_segmap);
5392#endif
5393	kfree(sit_i);
5394}
5395
5396void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5397{
5398	struct f2fs_sm_info *sm_info = SM_I(sbi);
5399
5400	if (!sm_info)
5401		return;
5402	f2fs_destroy_flush_cmd_control(sbi, true);
5403	destroy_discard_cmd_control(sbi);
5404	destroy_dirty_segmap(sbi);
5405	destroy_curseg(sbi);
5406	destroy_free_segmap(sbi);
5407	destroy_sit_info(sbi);
5408	sbi->sm_info = NULL;
5409	kfree(sm_info);
5410}
5411
5412int __init f2fs_create_segment_manager_caches(void)
5413{
5414	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5415			sizeof(struct discard_entry));
5416	if (!discard_entry_slab)
5417		goto fail;
5418
5419	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5420			sizeof(struct discard_cmd));
5421	if (!discard_cmd_slab)
5422		goto destroy_discard_entry;
5423
5424	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5425			sizeof(struct sit_entry_set));
5426	if (!sit_entry_set_slab)
5427		goto destroy_discard_cmd;
5428
5429	inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5430			sizeof(struct inmem_pages));
5431	if (!inmem_entry_slab)
5432		goto destroy_sit_entry_set;
5433	return 0;
5434
5435destroy_sit_entry_set:
5436	kmem_cache_destroy(sit_entry_set_slab);
5437destroy_discard_cmd:
5438	kmem_cache_destroy(discard_cmd_slab);
5439destroy_discard_entry:
5440	kmem_cache_destroy(discard_entry_slab);
5441fail:
5442	return -ENOMEM;
5443}
5444
5445void f2fs_destroy_segment_manager_caches(void)
5446{
5447	kmem_cache_destroy(sit_entry_set_slab);
5448	kmem_cache_destroy(discard_cmd_slab);
5449	kmem_cache_destroy(discard_entry_slab);
5450	kmem_cache_destroy(inmem_entry_slab);
5451}
5452