xref: /kernel/linux/linux-5.10/fs/f2fs/node.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 *             http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/backing-dev.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include "trace.h"
21#include <trace/events/f2fs.h>
22
23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25static struct kmem_cache *nat_entry_slab;
26static struct kmem_cache *free_nid_slab;
27static struct kmem_cache *nat_entry_set_slab;
28static struct kmem_cache *fsync_node_entry_slab;
29
30/*
31 * Check whether the given nid is within node id range.
32 */
33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34{
35	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36		set_sbi_flag(sbi, SBI_NEED_FSCK);
37		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38			  __func__, nid);
39		return -EFSCORRUPTED;
40	}
41	return 0;
42}
43
44bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45{
46	struct f2fs_nm_info *nm_i = NM_I(sbi);
47	struct sysinfo val;
48	unsigned long avail_ram;
49	unsigned long mem_size = 0;
50	bool res = false;
51
52	si_meminfo(&val);
53
54	/* only uses low memory */
55	avail_ram = val.totalram - val.totalhigh;
56
57	/*
58	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59	 */
60	if (type == FREE_NIDS) {
61		mem_size = (nm_i->nid_cnt[FREE_NID] *
62				sizeof(struct free_nid)) >> PAGE_SHIFT;
63		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64	} else if (type == NAT_ENTRIES) {
65		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
66				sizeof(struct nat_entry)) >> PAGE_SHIFT;
67		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68		if (excess_cached_nats(sbi))
69			res = false;
70	} else if (type == DIRTY_DENTS) {
71		if (sbi->sb->s_bdi->wb.dirty_exceeded)
72			return false;
73		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75	} else if (type == INO_ENTRIES) {
76		int i;
77
78		for (i = 0; i < MAX_INO_ENTRY; i++)
79			mem_size += sbi->im[i].ino_num *
80						sizeof(struct ino_entry);
81		mem_size >>= PAGE_SHIFT;
82		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83	} else if (type == EXTENT_CACHE) {
84		mem_size = (atomic_read(&sbi->total_ext_tree) *
85				sizeof(struct extent_tree) +
86				atomic_read(&sbi->total_ext_node) *
87				sizeof(struct extent_node)) >> PAGE_SHIFT;
88		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89	} else if (type == INMEM_PAGES) {
90		/* it allows 20% / total_ram for inmemory pages */
91		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92		res = mem_size < (val.totalram / 5);
93	} else {
94		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95			return true;
96	}
97	return res;
98}
99
100static void clear_node_page_dirty(struct page *page)
101{
102	if (PageDirty(page)) {
103		f2fs_clear_page_cache_dirty_tag(page);
104		clear_page_dirty_for_io(page);
105		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106	}
107	ClearPageUptodate(page);
108}
109
110static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111{
112	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
113}
114
115static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116{
117	struct page *src_page;
118	struct page *dst_page;
119	pgoff_t dst_off;
120	void *src_addr;
121	void *dst_addr;
122	struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126	/* get current nat block page with lock */
127	src_page = get_current_nat_page(sbi, nid);
128	if (IS_ERR(src_page))
129		return src_page;
130	dst_page = f2fs_grab_meta_page(sbi, dst_off);
131	f2fs_bug_on(sbi, PageDirty(src_page));
132
133	src_addr = page_address(src_page);
134	dst_addr = page_address(dst_page);
135	memcpy(dst_addr, src_addr, PAGE_SIZE);
136	set_page_dirty(dst_page);
137	f2fs_put_page(src_page, 1);
138
139	set_to_next_nat(nm_i, nid);
140
141	return dst_page;
142}
143
144static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145{
146	struct nat_entry *new;
147
148	if (no_fail)
149		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150	else
151		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152	if (new) {
153		nat_set_nid(new, nid);
154		nat_reset_flag(new);
155	}
156	return new;
157}
158
159static void __free_nat_entry(struct nat_entry *e)
160{
161	kmem_cache_free(nat_entry_slab, e);
162}
163
164/* must be locked by nat_tree_lock */
165static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167{
168	if (no_fail)
169		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171		return NULL;
172
173	if (raw_ne)
174		node_info_from_raw_nat(&ne->ni, raw_ne);
175
176	spin_lock(&nm_i->nat_list_lock);
177	list_add_tail(&ne->list, &nm_i->nat_entries);
178	spin_unlock(&nm_i->nat_list_lock);
179
180	nm_i->nat_cnt[TOTAL_NAT]++;
181	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
182	return ne;
183}
184
185static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186{
187	struct nat_entry *ne;
188
189	ne = radix_tree_lookup(&nm_i->nat_root, n);
190
191	/* for recent accessed nat entry, move it to tail of lru list */
192	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193		spin_lock(&nm_i->nat_list_lock);
194		if (!list_empty(&ne->list))
195			list_move_tail(&ne->list, &nm_i->nat_entries);
196		spin_unlock(&nm_i->nat_list_lock);
197	}
198
199	return ne;
200}
201
202static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203		nid_t start, unsigned int nr, struct nat_entry **ep)
204{
205	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206}
207
208static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209{
210	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211	nm_i->nat_cnt[TOTAL_NAT]--;
212	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
213	__free_nat_entry(e);
214}
215
216static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217							struct nat_entry *ne)
218{
219	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220	struct nat_entry_set *head;
221
222	head = radix_tree_lookup(&nm_i->nat_set_root, set);
223	if (!head) {
224		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
225
226		INIT_LIST_HEAD(&head->entry_list);
227		INIT_LIST_HEAD(&head->set_list);
228		head->set = set;
229		head->entry_cnt = 0;
230		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
231	}
232	return head;
233}
234
235static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236						struct nat_entry *ne)
237{
238	struct nat_entry_set *head;
239	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240
241	if (!new_ne)
242		head = __grab_nat_entry_set(nm_i, ne);
243
244	/*
245	 * update entry_cnt in below condition:
246	 * 1. update NEW_ADDR to valid block address;
247	 * 2. update old block address to new one;
248	 */
249	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250				!get_nat_flag(ne, IS_DIRTY)))
251		head->entry_cnt++;
252
253	set_nat_flag(ne, IS_PREALLOC, new_ne);
254
255	if (get_nat_flag(ne, IS_DIRTY))
256		goto refresh_list;
257
258	nm_i->nat_cnt[DIRTY_NAT]++;
259	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
260	set_nat_flag(ne, IS_DIRTY, true);
261refresh_list:
262	spin_lock(&nm_i->nat_list_lock);
263	if (new_ne)
264		list_del_init(&ne->list);
265	else
266		list_move_tail(&ne->list, &head->entry_list);
267	spin_unlock(&nm_i->nat_list_lock);
268}
269
270static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
271		struct nat_entry_set *set, struct nat_entry *ne)
272{
273	spin_lock(&nm_i->nat_list_lock);
274	list_move_tail(&ne->list, &nm_i->nat_entries);
275	spin_unlock(&nm_i->nat_list_lock);
276
277	set_nat_flag(ne, IS_DIRTY, false);
278	set->entry_cnt--;
279	nm_i->nat_cnt[DIRTY_NAT]--;
280	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
281}
282
283static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
284		nid_t start, unsigned int nr, struct nat_entry_set **ep)
285{
286	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
287							start, nr);
288}
289
290bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
291{
292	return NODE_MAPPING(sbi) == page->mapping &&
293			IS_DNODE(page) && is_cold_node(page);
294}
295
296void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
297{
298	spin_lock_init(&sbi->fsync_node_lock);
299	INIT_LIST_HEAD(&sbi->fsync_node_list);
300	sbi->fsync_seg_id = 0;
301	sbi->fsync_node_num = 0;
302}
303
304static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
305							struct page *page)
306{
307	struct fsync_node_entry *fn;
308	unsigned long flags;
309	unsigned int seq_id;
310
311	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
312
313	get_page(page);
314	fn->page = page;
315	INIT_LIST_HEAD(&fn->list);
316
317	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
318	list_add_tail(&fn->list, &sbi->fsync_node_list);
319	fn->seq_id = sbi->fsync_seg_id++;
320	seq_id = fn->seq_id;
321	sbi->fsync_node_num++;
322	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
323
324	return seq_id;
325}
326
327void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
328{
329	struct fsync_node_entry *fn;
330	unsigned long flags;
331
332	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
333	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
334		if (fn->page == page) {
335			list_del(&fn->list);
336			sbi->fsync_node_num--;
337			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
338			kmem_cache_free(fsync_node_entry_slab, fn);
339			put_page(page);
340			return;
341		}
342	}
343	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344	f2fs_bug_on(sbi, 1);
345}
346
347void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
348{
349	unsigned long flags;
350
351	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
352	sbi->fsync_seg_id = 0;
353	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
354}
355
356int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
357{
358	struct f2fs_nm_info *nm_i = NM_I(sbi);
359	struct nat_entry *e;
360	bool need = false;
361
362	down_read(&nm_i->nat_tree_lock);
363	e = __lookup_nat_cache(nm_i, nid);
364	if (e) {
365		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
366				!get_nat_flag(e, HAS_FSYNCED_INODE))
367			need = true;
368	}
369	up_read(&nm_i->nat_tree_lock);
370	return need;
371}
372
373bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
374{
375	struct f2fs_nm_info *nm_i = NM_I(sbi);
376	struct nat_entry *e;
377	bool is_cp = true;
378
379	down_read(&nm_i->nat_tree_lock);
380	e = __lookup_nat_cache(nm_i, nid);
381	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
382		is_cp = false;
383	up_read(&nm_i->nat_tree_lock);
384	return is_cp;
385}
386
387bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
388{
389	struct f2fs_nm_info *nm_i = NM_I(sbi);
390	struct nat_entry *e;
391	bool need_update = true;
392
393	down_read(&nm_i->nat_tree_lock);
394	e = __lookup_nat_cache(nm_i, ino);
395	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
396			(get_nat_flag(e, IS_CHECKPOINTED) ||
397			 get_nat_flag(e, HAS_FSYNCED_INODE)))
398		need_update = false;
399	up_read(&nm_i->nat_tree_lock);
400	return need_update;
401}
402
403/* must be locked by nat_tree_lock */
404static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
405						struct f2fs_nat_entry *ne)
406{
407	struct f2fs_nm_info *nm_i = NM_I(sbi);
408	struct nat_entry *new, *e;
409
410	new = __alloc_nat_entry(nid, false);
411	if (!new)
412		return;
413
414	down_write(&nm_i->nat_tree_lock);
415	e = __lookup_nat_cache(nm_i, nid);
416	if (!e)
417		e = __init_nat_entry(nm_i, new, ne, false);
418	else
419		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
420				nat_get_blkaddr(e) !=
421					le32_to_cpu(ne->block_addr) ||
422				nat_get_version(e) != ne->version);
423	up_write(&nm_i->nat_tree_lock);
424	if (e != new)
425		__free_nat_entry(new);
426}
427
428static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
429			block_t new_blkaddr, bool fsync_done)
430{
431	struct f2fs_nm_info *nm_i = NM_I(sbi);
432	struct nat_entry *e;
433	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
434
435	down_write(&nm_i->nat_tree_lock);
436	e = __lookup_nat_cache(nm_i, ni->nid);
437	if (!e) {
438		e = __init_nat_entry(nm_i, new, NULL, true);
439		copy_node_info(&e->ni, ni);
440		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
441	} else if (new_blkaddr == NEW_ADDR) {
442		/*
443		 * when nid is reallocated,
444		 * previous nat entry can be remained in nat cache.
445		 * So, reinitialize it with new information.
446		 */
447		copy_node_info(&e->ni, ni);
448		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
449	}
450	/* let's free early to reduce memory consumption */
451	if (e != new)
452		__free_nat_entry(new);
453
454	/* sanity check */
455	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
456	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
457			new_blkaddr == NULL_ADDR);
458	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
459			new_blkaddr == NEW_ADDR);
460	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
461			new_blkaddr == NEW_ADDR);
462
463	/* increment version no as node is removed */
464	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
465		unsigned char version = nat_get_version(e);
466		nat_set_version(e, inc_node_version(version));
467	}
468
469	/* change address */
470	nat_set_blkaddr(e, new_blkaddr);
471	if (!__is_valid_data_blkaddr(new_blkaddr))
472		set_nat_flag(e, IS_CHECKPOINTED, false);
473	__set_nat_cache_dirty(nm_i, e);
474
475	/* update fsync_mark if its inode nat entry is still alive */
476	if (ni->nid != ni->ino)
477		e = __lookup_nat_cache(nm_i, ni->ino);
478	if (e) {
479		if (fsync_done && ni->nid == ni->ino)
480			set_nat_flag(e, HAS_FSYNCED_INODE, true);
481		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
482	}
483	up_write(&nm_i->nat_tree_lock);
484}
485
486int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
487{
488	struct f2fs_nm_info *nm_i = NM_I(sbi);
489	int nr = nr_shrink;
490
491	if (!down_write_trylock(&nm_i->nat_tree_lock))
492		return 0;
493
494	spin_lock(&nm_i->nat_list_lock);
495	while (nr_shrink) {
496		struct nat_entry *ne;
497
498		if (list_empty(&nm_i->nat_entries))
499			break;
500
501		ne = list_first_entry(&nm_i->nat_entries,
502					struct nat_entry, list);
503		list_del(&ne->list);
504		spin_unlock(&nm_i->nat_list_lock);
505
506		__del_from_nat_cache(nm_i, ne);
507		nr_shrink--;
508
509		spin_lock(&nm_i->nat_list_lock);
510	}
511	spin_unlock(&nm_i->nat_list_lock);
512
513	up_write(&nm_i->nat_tree_lock);
514	return nr - nr_shrink;
515}
516
517int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518						struct node_info *ni)
519{
520	struct f2fs_nm_info *nm_i = NM_I(sbi);
521	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522	struct f2fs_journal *journal = curseg->journal;
523	nid_t start_nid = START_NID(nid);
524	struct f2fs_nat_block *nat_blk;
525	struct page *page = NULL;
526	struct f2fs_nat_entry ne;
527	struct nat_entry *e;
528	pgoff_t index;
529	block_t blkaddr;
530	int i;
531
532	ni->nid = nid;
533
534	/* Check nat cache */
535	down_read(&nm_i->nat_tree_lock);
536	e = __lookup_nat_cache(nm_i, nid);
537	if (e) {
538		ni->ino = nat_get_ino(e);
539		ni->blk_addr = nat_get_blkaddr(e);
540		ni->version = nat_get_version(e);
541		up_read(&nm_i->nat_tree_lock);
542		return 0;
543	}
544
545	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546
547	/* Check current segment summary */
548	down_read(&curseg->journal_rwsem);
549	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550	if (i >= 0) {
551		ne = nat_in_journal(journal, i);
552		node_info_from_raw_nat(ni, &ne);
553	}
554	up_read(&curseg->journal_rwsem);
555	if (i >= 0) {
556		up_read(&nm_i->nat_tree_lock);
557		goto cache;
558	}
559
560	/* Fill node_info from nat page */
561	index = current_nat_addr(sbi, nid);
562	up_read(&nm_i->nat_tree_lock);
563
564	page = f2fs_get_meta_page(sbi, index);
565	if (IS_ERR(page))
566		return PTR_ERR(page);
567
568	nat_blk = (struct f2fs_nat_block *)page_address(page);
569	ne = nat_blk->entries[nid - start_nid];
570	node_info_from_raw_nat(ni, &ne);
571	f2fs_put_page(page, 1);
572cache:
573	blkaddr = le32_to_cpu(ne.block_addr);
574	if (__is_valid_data_blkaddr(blkaddr) &&
575		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
576		return -EFAULT;
577
578	/* cache nat entry */
579	cache_nat_entry(sbi, nid, &ne);
580	return 0;
581}
582
583/*
584 * readahead MAX_RA_NODE number of node pages.
585 */
586static void f2fs_ra_node_pages(struct page *parent, int start, int n)
587{
588	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
589	struct blk_plug plug;
590	int i, end;
591	nid_t nid;
592
593	blk_start_plug(&plug);
594
595	/* Then, try readahead for siblings of the desired node */
596	end = start + n;
597	end = min(end, NIDS_PER_BLOCK);
598	for (i = start; i < end; i++) {
599		nid = get_nid(parent, i, false);
600		f2fs_ra_node_page(sbi, nid);
601	}
602
603	blk_finish_plug(&plug);
604}
605
606pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
607{
608	const long direct_index = ADDRS_PER_INODE(dn->inode);
609	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
610	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
611	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
612	int cur_level = dn->cur_level;
613	int max_level = dn->max_level;
614	pgoff_t base = 0;
615
616	if (!dn->max_level)
617		return pgofs + 1;
618
619	while (max_level-- > cur_level)
620		skipped_unit *= NIDS_PER_BLOCK;
621
622	switch (dn->max_level) {
623	case 3:
624		base += 2 * indirect_blks;
625		fallthrough;
626	case 2:
627		base += 2 * direct_blks;
628		fallthrough;
629	case 1:
630		base += direct_index;
631		break;
632	default:
633		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
634	}
635
636	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
637}
638
639/*
640 * The maximum depth is four.
641 * Offset[0] will have raw inode offset.
642 */
643static int get_node_path(struct inode *inode, long block,
644				int offset[4], unsigned int noffset[4])
645{
646	const long direct_index = ADDRS_PER_INODE(inode);
647	const long direct_blks = ADDRS_PER_BLOCK(inode);
648	const long dptrs_per_blk = NIDS_PER_BLOCK;
649	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
650	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
651	int n = 0;
652	int level = 0;
653
654	noffset[0] = 0;
655
656	if (block < direct_index) {
657		offset[n] = block;
658		goto got;
659	}
660	block -= direct_index;
661	if (block < direct_blks) {
662		offset[n++] = NODE_DIR1_BLOCK;
663		noffset[n] = 1;
664		offset[n] = block;
665		level = 1;
666		goto got;
667	}
668	block -= direct_blks;
669	if (block < direct_blks) {
670		offset[n++] = NODE_DIR2_BLOCK;
671		noffset[n] = 2;
672		offset[n] = block;
673		level = 1;
674		goto got;
675	}
676	block -= direct_blks;
677	if (block < indirect_blks) {
678		offset[n++] = NODE_IND1_BLOCK;
679		noffset[n] = 3;
680		offset[n++] = block / direct_blks;
681		noffset[n] = 4 + offset[n - 1];
682		offset[n] = block % direct_blks;
683		level = 2;
684		goto got;
685	}
686	block -= indirect_blks;
687	if (block < indirect_blks) {
688		offset[n++] = NODE_IND2_BLOCK;
689		noffset[n] = 4 + dptrs_per_blk;
690		offset[n++] = block / direct_blks;
691		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
692		offset[n] = block % direct_blks;
693		level = 2;
694		goto got;
695	}
696	block -= indirect_blks;
697	if (block < dindirect_blks) {
698		offset[n++] = NODE_DIND_BLOCK;
699		noffset[n] = 5 + (dptrs_per_blk * 2);
700		offset[n++] = block / indirect_blks;
701		noffset[n] = 6 + (dptrs_per_blk * 2) +
702			      offset[n - 1] * (dptrs_per_blk + 1);
703		offset[n++] = (block / direct_blks) % dptrs_per_blk;
704		noffset[n] = 7 + (dptrs_per_blk * 2) +
705			      offset[n - 2] * (dptrs_per_blk + 1) +
706			      offset[n - 1];
707		offset[n] = block % direct_blks;
708		level = 3;
709		goto got;
710	} else {
711		return -E2BIG;
712	}
713got:
714	return level;
715}
716
717/*
718 * Caller should call f2fs_put_dnode(dn).
719 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
720 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
721 */
722int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
723{
724	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725	struct page *npage[4];
726	struct page *parent = NULL;
727	int offset[4];
728	unsigned int noffset[4];
729	nid_t nids[4];
730	int level, i = 0;
731	int err = 0;
732
733	level = get_node_path(dn->inode, index, offset, noffset);
734	if (level < 0)
735		return level;
736
737	nids[0] = dn->inode->i_ino;
738	npage[0] = dn->inode_page;
739
740	if (!npage[0]) {
741		npage[0] = f2fs_get_node_page(sbi, nids[0]);
742		if (IS_ERR(npage[0]))
743			return PTR_ERR(npage[0]);
744	}
745
746	/* if inline_data is set, should not report any block indices */
747	if (f2fs_has_inline_data(dn->inode) && index) {
748		err = -ENOENT;
749		f2fs_put_page(npage[0], 1);
750		goto release_out;
751	}
752
753	parent = npage[0];
754	if (level != 0)
755		nids[1] = get_nid(parent, offset[0], true);
756	dn->inode_page = npage[0];
757	dn->inode_page_locked = true;
758
759	/* get indirect or direct nodes */
760	for (i = 1; i <= level; i++) {
761		bool done = false;
762
763		if (!nids[i] && mode == ALLOC_NODE) {
764			/* alloc new node */
765			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766				err = -ENOSPC;
767				goto release_pages;
768			}
769
770			dn->nid = nids[i];
771			npage[i] = f2fs_new_node_page(dn, noffset[i]);
772			if (IS_ERR(npage[i])) {
773				f2fs_alloc_nid_failed(sbi, nids[i]);
774				err = PTR_ERR(npage[i]);
775				goto release_pages;
776			}
777
778			set_nid(parent, offset[i - 1], nids[i], i == 1);
779			f2fs_alloc_nid_done(sbi, nids[i]);
780			done = true;
781		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783			if (IS_ERR(npage[i])) {
784				err = PTR_ERR(npage[i]);
785				goto release_pages;
786			}
787			done = true;
788		}
789		if (i == 1) {
790			dn->inode_page_locked = false;
791			unlock_page(parent);
792		} else {
793			f2fs_put_page(parent, 1);
794		}
795
796		if (!done) {
797			npage[i] = f2fs_get_node_page(sbi, nids[i]);
798			if (IS_ERR(npage[i])) {
799				err = PTR_ERR(npage[i]);
800				f2fs_put_page(npage[0], 0);
801				goto release_out;
802			}
803		}
804		if (i < level) {
805			parent = npage[i];
806			nids[i + 1] = get_nid(parent, offset[i], false);
807		}
808	}
809	dn->nid = nids[level];
810	dn->ofs_in_node = offset[level];
811	dn->node_page = npage[level];
812	dn->data_blkaddr = f2fs_data_blkaddr(dn);
813	return 0;
814
815release_pages:
816	f2fs_put_page(parent, 1);
817	if (i > 1)
818		f2fs_put_page(npage[0], 0);
819release_out:
820	dn->inode_page = NULL;
821	dn->node_page = NULL;
822	if (err == -ENOENT) {
823		dn->cur_level = i;
824		dn->max_level = level;
825		dn->ofs_in_node = offset[level];
826	}
827	return err;
828}
829
830static int truncate_node(struct dnode_of_data *dn)
831{
832	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
833	struct node_info ni;
834	int err;
835	pgoff_t index;
836
837	err = f2fs_get_node_info(sbi, dn->nid, &ni);
838	if (err)
839		return err;
840
841	/* Deallocate node address */
842	f2fs_invalidate_blocks(sbi, ni.blk_addr);
843	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
844	set_node_addr(sbi, &ni, NULL_ADDR, false);
845
846	if (dn->nid == dn->inode->i_ino) {
847		f2fs_remove_orphan_inode(sbi, dn->nid);
848		dec_valid_inode_count(sbi);
849		f2fs_inode_synced(dn->inode);
850	}
851
852	clear_node_page_dirty(dn->node_page);
853	set_sbi_flag(sbi, SBI_IS_DIRTY);
854
855	index = dn->node_page->index;
856	f2fs_put_page(dn->node_page, 1);
857
858	invalidate_mapping_pages(NODE_MAPPING(sbi),
859			index, index);
860
861	dn->node_page = NULL;
862	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
863
864	return 0;
865}
866
867static int truncate_dnode(struct dnode_of_data *dn)
868{
869	struct page *page;
870	int err;
871
872	if (dn->nid == 0)
873		return 1;
874
875	/* get direct node */
876	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
877	if (PTR_ERR(page) == -ENOENT)
878		return 1;
879	else if (IS_ERR(page))
880		return PTR_ERR(page);
881
882	/* Make dnode_of_data for parameter */
883	dn->node_page = page;
884	dn->ofs_in_node = 0;
885	f2fs_truncate_data_blocks(dn);
886	err = truncate_node(dn);
887	if (err) {
888		f2fs_put_page(page, 1);
889		return err;
890	}
891
892	return 1;
893}
894
895static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
896						int ofs, int depth)
897{
898	struct dnode_of_data rdn = *dn;
899	struct page *page;
900	struct f2fs_node *rn;
901	nid_t child_nid;
902	unsigned int child_nofs;
903	int freed = 0;
904	int i, ret;
905
906	if (dn->nid == 0)
907		return NIDS_PER_BLOCK + 1;
908
909	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
910
911	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
912	if (IS_ERR(page)) {
913		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
914		return PTR_ERR(page);
915	}
916
917	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
918
919	rn = F2FS_NODE(page);
920	if (depth < 3) {
921		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
922			child_nid = le32_to_cpu(rn->in.nid[i]);
923			if (child_nid == 0)
924				continue;
925			rdn.nid = child_nid;
926			ret = truncate_dnode(&rdn);
927			if (ret < 0)
928				goto out_err;
929			if (set_nid(page, i, 0, false))
930				dn->node_changed = true;
931		}
932	} else {
933		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
934		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
935			child_nid = le32_to_cpu(rn->in.nid[i]);
936			if (child_nid == 0) {
937				child_nofs += NIDS_PER_BLOCK + 1;
938				continue;
939			}
940			rdn.nid = child_nid;
941			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
942			if (ret == (NIDS_PER_BLOCK + 1)) {
943				if (set_nid(page, i, 0, false))
944					dn->node_changed = true;
945				child_nofs += ret;
946			} else if (ret < 0 && ret != -ENOENT) {
947				goto out_err;
948			}
949		}
950		freed = child_nofs;
951	}
952
953	if (!ofs) {
954		/* remove current indirect node */
955		dn->node_page = page;
956		ret = truncate_node(dn);
957		if (ret)
958			goto out_err;
959		freed++;
960	} else {
961		f2fs_put_page(page, 1);
962	}
963	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
964	return freed;
965
966out_err:
967	f2fs_put_page(page, 1);
968	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
969	return ret;
970}
971
972static int truncate_partial_nodes(struct dnode_of_data *dn,
973			struct f2fs_inode *ri, int *offset, int depth)
974{
975	struct page *pages[2];
976	nid_t nid[3];
977	nid_t child_nid;
978	int err = 0;
979	int i;
980	int idx = depth - 2;
981
982	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
983	if (!nid[0])
984		return 0;
985
986	/* get indirect nodes in the path */
987	for (i = 0; i < idx + 1; i++) {
988		/* reference count'll be increased */
989		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
990		if (IS_ERR(pages[i])) {
991			err = PTR_ERR(pages[i]);
992			idx = i - 1;
993			goto fail;
994		}
995		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
996	}
997
998	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
999
1000	/* free direct nodes linked to a partial indirect node */
1001	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1002		child_nid = get_nid(pages[idx], i, false);
1003		if (!child_nid)
1004			continue;
1005		dn->nid = child_nid;
1006		err = truncate_dnode(dn);
1007		if (err < 0)
1008			goto fail;
1009		if (set_nid(pages[idx], i, 0, false))
1010			dn->node_changed = true;
1011	}
1012
1013	if (offset[idx + 1] == 0) {
1014		dn->node_page = pages[idx];
1015		dn->nid = nid[idx];
1016		err = truncate_node(dn);
1017		if (err)
1018			goto fail;
1019	} else {
1020		f2fs_put_page(pages[idx], 1);
1021	}
1022	offset[idx]++;
1023	offset[idx + 1] = 0;
1024	idx--;
1025fail:
1026	for (i = idx; i >= 0; i--)
1027		f2fs_put_page(pages[i], 1);
1028
1029	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1030
1031	return err;
1032}
1033
1034/*
1035 * All the block addresses of data and nodes should be nullified.
1036 */
1037int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1038{
1039	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1040	int err = 0, cont = 1;
1041	int level, offset[4], noffset[4];
1042	unsigned int nofs = 0;
1043	struct f2fs_inode *ri;
1044	struct dnode_of_data dn;
1045	struct page *page;
1046
1047	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1048
1049	level = get_node_path(inode, from, offset, noffset);
1050	if (level < 0) {
1051		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1052		return level;
1053	}
1054
1055	page = f2fs_get_node_page(sbi, inode->i_ino);
1056	if (IS_ERR(page)) {
1057		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1058		return PTR_ERR(page);
1059	}
1060
1061	set_new_dnode(&dn, inode, page, NULL, 0);
1062	unlock_page(page);
1063
1064	ri = F2FS_INODE(page);
1065	switch (level) {
1066	case 0:
1067	case 1:
1068		nofs = noffset[1];
1069		break;
1070	case 2:
1071		nofs = noffset[1];
1072		if (!offset[level - 1])
1073			goto skip_partial;
1074		err = truncate_partial_nodes(&dn, ri, offset, level);
1075		if (err < 0 && err != -ENOENT)
1076			goto fail;
1077		nofs += 1 + NIDS_PER_BLOCK;
1078		break;
1079	case 3:
1080		nofs = 5 + 2 * NIDS_PER_BLOCK;
1081		if (!offset[level - 1])
1082			goto skip_partial;
1083		err = truncate_partial_nodes(&dn, ri, offset, level);
1084		if (err < 0 && err != -ENOENT)
1085			goto fail;
1086		break;
1087	default:
1088		BUG();
1089	}
1090
1091skip_partial:
1092	while (cont) {
1093		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1094		switch (offset[0]) {
1095		case NODE_DIR1_BLOCK:
1096		case NODE_DIR2_BLOCK:
1097			err = truncate_dnode(&dn);
1098			break;
1099
1100		case NODE_IND1_BLOCK:
1101		case NODE_IND2_BLOCK:
1102			err = truncate_nodes(&dn, nofs, offset[1], 2);
1103			break;
1104
1105		case NODE_DIND_BLOCK:
1106			err = truncate_nodes(&dn, nofs, offset[1], 3);
1107			cont = 0;
1108			break;
1109
1110		default:
1111			BUG();
1112		}
1113		if (err < 0 && err != -ENOENT)
1114			goto fail;
1115		if (offset[1] == 0 &&
1116				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1117			lock_page(page);
1118			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1119			f2fs_wait_on_page_writeback(page, NODE, true, true);
1120			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1121			set_page_dirty(page);
1122			unlock_page(page);
1123		}
1124		offset[1] = 0;
1125		offset[0]++;
1126		nofs += err;
1127	}
1128fail:
1129	f2fs_put_page(page, 0);
1130	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1131	return err > 0 ? 0 : err;
1132}
1133
1134/* caller must lock inode page */
1135int f2fs_truncate_xattr_node(struct inode *inode)
1136{
1137	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1138	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1139	struct dnode_of_data dn;
1140	struct page *npage;
1141	int err;
1142
1143	if (!nid)
1144		return 0;
1145
1146	npage = f2fs_get_node_page(sbi, nid);
1147	if (IS_ERR(npage))
1148		return PTR_ERR(npage);
1149
1150	set_new_dnode(&dn, inode, NULL, npage, nid);
1151	err = truncate_node(&dn);
1152	if (err) {
1153		f2fs_put_page(npage, 1);
1154		return err;
1155	}
1156
1157	f2fs_i_xnid_write(inode, 0);
1158
1159	return 0;
1160}
1161
1162/*
1163 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1164 * f2fs_unlock_op().
1165 */
1166int f2fs_remove_inode_page(struct inode *inode)
1167{
1168	struct dnode_of_data dn;
1169	int err;
1170
1171	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1172	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1173	if (err)
1174		return err;
1175
1176	err = f2fs_truncate_xattr_node(inode);
1177	if (err) {
1178		f2fs_put_dnode(&dn);
1179		return err;
1180	}
1181
1182	/* remove potential inline_data blocks */
1183	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1184				S_ISLNK(inode->i_mode))
1185		f2fs_truncate_data_blocks_range(&dn, 1);
1186
1187	/* 0 is possible, after f2fs_new_inode() has failed */
1188	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1189		f2fs_put_dnode(&dn);
1190		return -EIO;
1191	}
1192
1193	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1194		f2fs_warn(F2FS_I_SB(inode),
1195			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1196			inode->i_ino, (unsigned long long)inode->i_blocks);
1197		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1198	}
1199
1200	/* will put inode & node pages */
1201	err = truncate_node(&dn);
1202	if (err) {
1203		f2fs_put_dnode(&dn);
1204		return err;
1205	}
1206	return 0;
1207}
1208
1209struct page *f2fs_new_inode_page(struct inode *inode)
1210{
1211	struct dnode_of_data dn;
1212
1213	/* allocate inode page for new inode */
1214	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1215
1216	/* caller should f2fs_put_page(page, 1); */
1217	return f2fs_new_node_page(&dn, 0);
1218}
1219
1220struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1221{
1222	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1223	struct node_info new_ni;
1224	struct page *page;
1225	int err;
1226
1227	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1228		return ERR_PTR(-EPERM);
1229
1230	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1231	if (!page)
1232		return ERR_PTR(-ENOMEM);
1233
1234	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1235		goto fail;
1236
1237#ifdef CONFIG_F2FS_CHECK_FS
1238	err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1239	if (err) {
1240		dec_valid_node_count(sbi, dn->inode, !ofs);
1241		goto fail;
1242	}
1243	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1244		err = -EFSCORRUPTED;
1245		set_sbi_flag(sbi, SBI_NEED_FSCK);
1246		goto fail;
1247	}
1248#endif
1249	new_ni.nid = dn->nid;
1250	new_ni.ino = dn->inode->i_ino;
1251	new_ni.blk_addr = NULL_ADDR;
1252	new_ni.flag = 0;
1253	new_ni.version = 0;
1254	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1255
1256	f2fs_wait_on_page_writeback(page, NODE, true, true);
1257	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1258	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1259	if (!PageUptodate(page))
1260		SetPageUptodate(page);
1261	if (set_page_dirty(page))
1262		dn->node_changed = true;
1263
1264	if (f2fs_has_xattr_block(ofs))
1265		f2fs_i_xnid_write(dn->inode, dn->nid);
1266
1267	if (ofs == 0)
1268		inc_valid_inode_count(sbi);
1269	return page;
1270
1271fail:
1272	clear_node_page_dirty(page);
1273	f2fs_put_page(page, 1);
1274	return ERR_PTR(err);
1275}
1276
1277/*
1278 * Caller should do after getting the following values.
1279 * 0: f2fs_put_page(page, 0)
1280 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1281 */
1282static int read_node_page(struct page *page, int op_flags)
1283{
1284	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1285	struct node_info ni;
1286	struct f2fs_io_info fio = {
1287		.sbi = sbi,
1288		.type = NODE,
1289		.op = REQ_OP_READ,
1290		.op_flags = op_flags,
1291		.page = page,
1292		.encrypted_page = NULL,
1293	};
1294	int err;
1295
1296	if (PageUptodate(page)) {
1297		if (!f2fs_inode_chksum_verify(sbi, page)) {
1298			ClearPageUptodate(page);
1299			return -EFSBADCRC;
1300		}
1301		return LOCKED_PAGE;
1302	}
1303
1304	err = f2fs_get_node_info(sbi, page->index, &ni);
1305	if (err)
1306		return err;
1307
1308	if (unlikely(ni.blk_addr == NULL_ADDR) ||
1309			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1310		ClearPageUptodate(page);
1311		return -ENOENT;
1312	}
1313
1314	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1315
1316	err = f2fs_submit_page_bio(&fio);
1317
1318	if (!err)
1319		f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1320
1321	return err;
1322}
1323
1324/*
1325 * Readahead a node page
1326 */
1327void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1328{
1329	struct page *apage;
1330	int err;
1331
1332	if (!nid)
1333		return;
1334	if (f2fs_check_nid_range(sbi, nid))
1335		return;
1336
1337	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1338	if (apage)
1339		return;
1340
1341	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1342	if (!apage)
1343		return;
1344
1345	err = read_node_page(apage, REQ_RAHEAD);
1346	f2fs_put_page(apage, err ? 1 : 0);
1347}
1348
1349static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1350					struct page *parent, int start)
1351{
1352	struct page *page;
1353	int err;
1354
1355	if (!nid)
1356		return ERR_PTR(-ENOENT);
1357	if (f2fs_check_nid_range(sbi, nid))
1358		return ERR_PTR(-EINVAL);
1359repeat:
1360	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1361	if (!page)
1362		return ERR_PTR(-ENOMEM);
1363
1364	err = read_node_page(page, 0);
1365	if (err < 0) {
1366		f2fs_put_page(page, 1);
1367		return ERR_PTR(err);
1368	} else if (err == LOCKED_PAGE) {
1369		err = 0;
1370		goto page_hit;
1371	}
1372
1373	if (parent)
1374		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1375
1376	lock_page(page);
1377
1378	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1379		f2fs_put_page(page, 1);
1380		goto repeat;
1381	}
1382
1383	if (unlikely(!PageUptodate(page))) {
1384		err = -EIO;
1385		goto out_err;
1386	}
1387
1388	if (!f2fs_inode_chksum_verify(sbi, page)) {
1389		err = -EFSBADCRC;
1390		goto out_err;
1391	}
1392page_hit:
1393	if(unlikely(nid != nid_of_node(page))) {
1394		f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1395			  nid, nid_of_node(page), ino_of_node(page),
1396			  ofs_of_node(page), cpver_of_node(page),
1397			  next_blkaddr_of_node(page));
1398		set_sbi_flag(sbi, SBI_NEED_FSCK);
1399		err = -EINVAL;
1400out_err:
1401		ClearPageUptodate(page);
1402		f2fs_put_page(page, 1);
1403		return ERR_PTR(err);
1404	}
1405	return page;
1406}
1407
1408struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1409{
1410	return __get_node_page(sbi, nid, NULL, 0);
1411}
1412
1413struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1414{
1415	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1416	nid_t nid = get_nid(parent, start, false);
1417
1418	return __get_node_page(sbi, nid, parent, start);
1419}
1420
1421static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1422{
1423	struct inode *inode;
1424	struct page *page;
1425	int ret;
1426
1427	/* should flush inline_data before evict_inode */
1428	inode = ilookup(sbi->sb, ino);
1429	if (!inode)
1430		return;
1431
1432	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1433					FGP_LOCK|FGP_NOWAIT, 0);
1434	if (!page)
1435		goto iput_out;
1436
1437	if (!PageUptodate(page))
1438		goto page_out;
1439
1440	if (!PageDirty(page))
1441		goto page_out;
1442
1443	if (!clear_page_dirty_for_io(page))
1444		goto page_out;
1445
1446	ret = f2fs_write_inline_data(inode, page);
1447	inode_dec_dirty_pages(inode);
1448	f2fs_remove_dirty_inode(inode);
1449	if (ret)
1450		set_page_dirty(page);
1451page_out:
1452	f2fs_put_page(page, 1);
1453iput_out:
1454	iput(inode);
1455}
1456
1457static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1458{
1459	pgoff_t index;
1460	struct pagevec pvec;
1461	struct page *last_page = NULL;
1462	int nr_pages;
1463
1464	pagevec_init(&pvec);
1465	index = 0;
1466
1467	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1468				PAGECACHE_TAG_DIRTY))) {
1469		int i;
1470
1471		for (i = 0; i < nr_pages; i++) {
1472			struct page *page = pvec.pages[i];
1473
1474			if (unlikely(f2fs_cp_error(sbi))) {
1475				f2fs_put_page(last_page, 0);
1476				pagevec_release(&pvec);
1477				return ERR_PTR(-EIO);
1478			}
1479
1480			if (!IS_DNODE(page) || !is_cold_node(page))
1481				continue;
1482			if (ino_of_node(page) != ino)
1483				continue;
1484
1485			lock_page(page);
1486
1487			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1488continue_unlock:
1489				unlock_page(page);
1490				continue;
1491			}
1492			if (ino_of_node(page) != ino)
1493				goto continue_unlock;
1494
1495			if (!PageDirty(page)) {
1496				/* someone wrote it for us */
1497				goto continue_unlock;
1498			}
1499
1500			if (last_page)
1501				f2fs_put_page(last_page, 0);
1502
1503			get_page(page);
1504			last_page = page;
1505			unlock_page(page);
1506		}
1507		pagevec_release(&pvec);
1508		cond_resched();
1509	}
1510	return last_page;
1511}
1512
1513static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1514				struct writeback_control *wbc, bool do_balance,
1515				enum iostat_type io_type, unsigned int *seq_id)
1516{
1517	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1518	nid_t nid;
1519	struct node_info ni;
1520	struct f2fs_io_info fio = {
1521		.sbi = sbi,
1522		.ino = ino_of_node(page),
1523		.type = NODE,
1524		.op = REQ_OP_WRITE,
1525		.op_flags = wbc_to_write_flags(wbc),
1526		.page = page,
1527		.encrypted_page = NULL,
1528		.submitted = false,
1529		.io_type = io_type,
1530		.io_wbc = wbc,
1531	};
1532	unsigned int seq;
1533
1534	trace_f2fs_writepage(page, NODE);
1535
1536	if (unlikely(f2fs_cp_error(sbi))) {
1537		if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1538			ClearPageUptodate(page);
1539			dec_page_count(sbi, F2FS_DIRTY_NODES);
1540			unlock_page(page);
1541			return 0;
1542		}
1543		goto redirty_out;
1544	}
1545
1546	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1547		goto redirty_out;
1548
1549	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1550			wbc->sync_mode == WB_SYNC_NONE &&
1551			IS_DNODE(page) && is_cold_node(page))
1552		goto redirty_out;
1553
1554	/* get old block addr of this node page */
1555	nid = nid_of_node(page);
1556	f2fs_bug_on(sbi, page->index != nid);
1557
1558	if (f2fs_get_node_info(sbi, nid, &ni))
1559		goto redirty_out;
1560
1561	if (wbc->for_reclaim) {
1562		if (!down_read_trylock(&sbi->node_write))
1563			goto redirty_out;
1564	} else {
1565		down_read(&sbi->node_write);
1566	}
1567
1568	/* This page is already truncated */
1569	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1570		ClearPageUptodate(page);
1571		dec_page_count(sbi, F2FS_DIRTY_NODES);
1572		up_read(&sbi->node_write);
1573		unlock_page(page);
1574		return 0;
1575	}
1576
1577	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1578		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1579					DATA_GENERIC_ENHANCE)) {
1580		up_read(&sbi->node_write);
1581		goto redirty_out;
1582	}
1583
1584	if (atomic && !test_opt(sbi, NOBARRIER))
1585		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1586
1587	/* should add to global list before clearing PAGECACHE status */
1588	if (f2fs_in_warm_node_list(sbi, page)) {
1589		seq = f2fs_add_fsync_node_entry(sbi, page);
1590		if (seq_id)
1591			*seq_id = seq;
1592	}
1593
1594	set_page_writeback(page);
1595	ClearPageError(page);
1596
1597	fio.old_blkaddr = ni.blk_addr;
1598	f2fs_do_write_node_page(nid, &fio);
1599	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1600	dec_page_count(sbi, F2FS_DIRTY_NODES);
1601	up_read(&sbi->node_write);
1602
1603	if (wbc->for_reclaim) {
1604		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1605		submitted = NULL;
1606	}
1607
1608	unlock_page(page);
1609
1610	if (unlikely(f2fs_cp_error(sbi))) {
1611		f2fs_submit_merged_write(sbi, NODE);
1612		submitted = NULL;
1613	}
1614	if (submitted)
1615		*submitted = fio.submitted;
1616
1617	if (do_balance)
1618		f2fs_balance_fs(sbi, false);
1619	return 0;
1620
1621redirty_out:
1622	redirty_page_for_writepage(wbc, page);
1623	return AOP_WRITEPAGE_ACTIVATE;
1624}
1625
1626int f2fs_move_node_page(struct page *node_page, int gc_type)
1627{
1628	int err = 0;
1629
1630	if (gc_type == FG_GC) {
1631		struct writeback_control wbc = {
1632			.sync_mode = WB_SYNC_ALL,
1633			.nr_to_write = 1,
1634			.for_reclaim = 0,
1635		};
1636
1637		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1638
1639		set_page_dirty(node_page);
1640
1641		if (!clear_page_dirty_for_io(node_page)) {
1642			err = -EAGAIN;
1643			goto out_page;
1644		}
1645
1646		if (__write_node_page(node_page, false, NULL,
1647					&wbc, false, FS_GC_NODE_IO, NULL)) {
1648			err = -EAGAIN;
1649			unlock_page(node_page);
1650		}
1651		goto release_page;
1652	} else {
1653		/* set page dirty and write it */
1654		if (!PageWriteback(node_page))
1655			set_page_dirty(node_page);
1656	}
1657out_page:
1658	unlock_page(node_page);
1659release_page:
1660	f2fs_put_page(node_page, 0);
1661	return err;
1662}
1663
1664static int f2fs_write_node_page(struct page *page,
1665				struct writeback_control *wbc)
1666{
1667	return __write_node_page(page, false, NULL, wbc, false,
1668						FS_NODE_IO, NULL);
1669}
1670
1671int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1672			struct writeback_control *wbc, bool atomic,
1673			unsigned int *seq_id)
1674{
1675	pgoff_t index;
1676	struct pagevec pvec;
1677	int ret = 0;
1678	struct page *last_page = NULL;
1679	bool marked = false;
1680	nid_t ino = inode->i_ino;
1681	int nr_pages;
1682	int nwritten = 0;
1683
1684	if (atomic) {
1685		last_page = last_fsync_dnode(sbi, ino);
1686		if (IS_ERR_OR_NULL(last_page))
1687			return PTR_ERR_OR_ZERO(last_page);
1688	}
1689retry:
1690	pagevec_init(&pvec);
1691	index = 0;
1692
1693	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1694				PAGECACHE_TAG_DIRTY))) {
1695		int i;
1696
1697		for (i = 0; i < nr_pages; i++) {
1698			struct page *page = pvec.pages[i];
1699			bool submitted = false;
1700
1701			if (unlikely(f2fs_cp_error(sbi))) {
1702				f2fs_put_page(last_page, 0);
1703				pagevec_release(&pvec);
1704				ret = -EIO;
1705				goto out;
1706			}
1707
1708			if (!IS_DNODE(page) || !is_cold_node(page))
1709				continue;
1710			if (ino_of_node(page) != ino)
1711				continue;
1712
1713			lock_page(page);
1714
1715			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1716continue_unlock:
1717				unlock_page(page);
1718				continue;
1719			}
1720			if (ino_of_node(page) != ino)
1721				goto continue_unlock;
1722
1723			if (!PageDirty(page) && page != last_page) {
1724				/* someone wrote it for us */
1725				goto continue_unlock;
1726			}
1727
1728			f2fs_wait_on_page_writeback(page, NODE, true, true);
1729
1730			set_fsync_mark(page, 0);
1731			set_dentry_mark(page, 0);
1732
1733			if (!atomic || page == last_page) {
1734				set_fsync_mark(page, 1);
1735				if (IS_INODE(page)) {
1736					if (is_inode_flag_set(inode,
1737								FI_DIRTY_INODE))
1738						f2fs_update_inode(inode, page);
1739					set_dentry_mark(page,
1740						f2fs_need_dentry_mark(sbi, ino));
1741				}
1742				/* may be written by other thread */
1743				if (!PageDirty(page))
1744					set_page_dirty(page);
1745			}
1746
1747			if (!clear_page_dirty_for_io(page))
1748				goto continue_unlock;
1749
1750			ret = __write_node_page(page, atomic &&
1751						page == last_page,
1752						&submitted, wbc, true,
1753						FS_NODE_IO, seq_id);
1754			if (ret) {
1755				unlock_page(page);
1756				f2fs_put_page(last_page, 0);
1757				break;
1758			} else if (submitted) {
1759				nwritten++;
1760			}
1761
1762			if (page == last_page) {
1763				f2fs_put_page(page, 0);
1764				marked = true;
1765				break;
1766			}
1767		}
1768		pagevec_release(&pvec);
1769		cond_resched();
1770
1771		if (ret || marked)
1772			break;
1773	}
1774	if (!ret && atomic && !marked) {
1775		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1776			   ino, last_page->index);
1777		lock_page(last_page);
1778		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1779		set_page_dirty(last_page);
1780		unlock_page(last_page);
1781		goto retry;
1782	}
1783out:
1784	if (nwritten)
1785		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1786	return ret ? -EIO: 0;
1787}
1788
1789static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1790{
1791	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1792	bool clean;
1793
1794	if (inode->i_ino != ino)
1795		return 0;
1796
1797	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1798		return 0;
1799
1800	spin_lock(&sbi->inode_lock[DIRTY_META]);
1801	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1802	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1803
1804	if (clean)
1805		return 0;
1806
1807	inode = igrab(inode);
1808	if (!inode)
1809		return 0;
1810	return 1;
1811}
1812
1813static bool flush_dirty_inode(struct page *page)
1814{
1815	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1816	struct inode *inode;
1817	nid_t ino = ino_of_node(page);
1818
1819	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1820	if (!inode)
1821		return false;
1822
1823	f2fs_update_inode(inode, page);
1824	unlock_page(page);
1825
1826	iput(inode);
1827	return true;
1828}
1829
1830void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1831{
1832	pgoff_t index = 0;
1833	struct pagevec pvec;
1834	int nr_pages;
1835
1836	pagevec_init(&pvec);
1837
1838	while ((nr_pages = pagevec_lookup_tag(&pvec,
1839			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1840		int i;
1841
1842		for (i = 0; i < nr_pages; i++) {
1843			struct page *page = pvec.pages[i];
1844
1845			if (!IS_DNODE(page))
1846				continue;
1847
1848			lock_page(page);
1849
1850			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1851continue_unlock:
1852				unlock_page(page);
1853				continue;
1854			}
1855
1856			if (!PageDirty(page)) {
1857				/* someone wrote it for us */
1858				goto continue_unlock;
1859			}
1860
1861			/* flush inline_data, if it's async context. */
1862			if (is_inline_node(page)) {
1863				clear_inline_node(page);
1864				unlock_page(page);
1865				flush_inline_data(sbi, ino_of_node(page));
1866				continue;
1867			}
1868			unlock_page(page);
1869		}
1870		pagevec_release(&pvec);
1871		cond_resched();
1872	}
1873}
1874
1875int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1876				struct writeback_control *wbc,
1877				bool do_balance, enum iostat_type io_type)
1878{
1879	pgoff_t index;
1880	struct pagevec pvec;
1881	int step = 0;
1882	int nwritten = 0;
1883	int ret = 0;
1884	int nr_pages, done = 0;
1885
1886	pagevec_init(&pvec);
1887
1888next_step:
1889	index = 0;
1890
1891	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1892			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1893		int i;
1894
1895		for (i = 0; i < nr_pages; i++) {
1896			struct page *page = pvec.pages[i];
1897			bool submitted = false;
1898			bool may_dirty = true;
1899
1900			/* give a priority to WB_SYNC threads */
1901			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1902					wbc->sync_mode == WB_SYNC_NONE) {
1903				done = 1;
1904				break;
1905			}
1906
1907			/*
1908			 * flushing sequence with step:
1909			 * 0. indirect nodes
1910			 * 1. dentry dnodes
1911			 * 2. file dnodes
1912			 */
1913			if (step == 0 && IS_DNODE(page))
1914				continue;
1915			if (step == 1 && (!IS_DNODE(page) ||
1916						is_cold_node(page)))
1917				continue;
1918			if (step == 2 && (!IS_DNODE(page) ||
1919						!is_cold_node(page)))
1920				continue;
1921lock_node:
1922			if (wbc->sync_mode == WB_SYNC_ALL)
1923				lock_page(page);
1924			else if (!trylock_page(page))
1925				continue;
1926
1927			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1928continue_unlock:
1929				unlock_page(page);
1930				continue;
1931			}
1932
1933			if (!PageDirty(page)) {
1934				/* someone wrote it for us */
1935				goto continue_unlock;
1936			}
1937
1938			/* flush inline_data/inode, if it's async context. */
1939			if (!do_balance)
1940				goto write_node;
1941
1942			/* flush inline_data */
1943			if (is_inline_node(page)) {
1944				clear_inline_node(page);
1945				unlock_page(page);
1946				flush_inline_data(sbi, ino_of_node(page));
1947				goto lock_node;
1948			}
1949
1950			/* flush dirty inode */
1951			if (IS_INODE(page) && may_dirty) {
1952				may_dirty = false;
1953				if (flush_dirty_inode(page))
1954					goto lock_node;
1955			}
1956write_node:
1957			f2fs_wait_on_page_writeback(page, NODE, true, true);
1958
1959			if (!clear_page_dirty_for_io(page))
1960				goto continue_unlock;
1961
1962			set_fsync_mark(page, 0);
1963			set_dentry_mark(page, 0);
1964
1965			ret = __write_node_page(page, false, &submitted,
1966						wbc, do_balance, io_type, NULL);
1967			if (ret)
1968				unlock_page(page);
1969			else if (submitted)
1970				nwritten++;
1971
1972			if (--wbc->nr_to_write == 0)
1973				break;
1974		}
1975		pagevec_release(&pvec);
1976		cond_resched();
1977
1978		if (wbc->nr_to_write == 0) {
1979			step = 2;
1980			break;
1981		}
1982	}
1983
1984	if (step < 2) {
1985		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1986				wbc->sync_mode == WB_SYNC_NONE && step == 1)
1987			goto out;
1988		step++;
1989		goto next_step;
1990	}
1991out:
1992	if (nwritten)
1993		f2fs_submit_merged_write(sbi, NODE);
1994
1995	if (unlikely(f2fs_cp_error(sbi)))
1996		return -EIO;
1997	return ret;
1998}
1999
2000int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2001						unsigned int seq_id)
2002{
2003	struct fsync_node_entry *fn;
2004	struct page *page;
2005	struct list_head *head = &sbi->fsync_node_list;
2006	unsigned long flags;
2007	unsigned int cur_seq_id = 0;
2008	int ret2, ret = 0;
2009
2010	while (seq_id && cur_seq_id < seq_id) {
2011		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2012		if (list_empty(head)) {
2013			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2014			break;
2015		}
2016		fn = list_first_entry(head, struct fsync_node_entry, list);
2017		if (fn->seq_id > seq_id) {
2018			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2019			break;
2020		}
2021		cur_seq_id = fn->seq_id;
2022		page = fn->page;
2023		get_page(page);
2024		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2025
2026		f2fs_wait_on_page_writeback(page, NODE, true, false);
2027		if (TestClearPageError(page))
2028			ret = -EIO;
2029
2030		put_page(page);
2031
2032		if (ret)
2033			break;
2034	}
2035
2036	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2037	if (!ret)
2038		ret = ret2;
2039
2040	return ret;
2041}
2042
2043static int f2fs_write_node_pages(struct address_space *mapping,
2044			    struct writeback_control *wbc)
2045{
2046	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2047	struct blk_plug plug;
2048	long diff;
2049
2050	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2051		goto skip_write;
2052
2053	/* balancing f2fs's metadata in background */
2054	f2fs_balance_fs_bg(sbi, true);
2055
2056	/* collect a number of dirty node pages and write together */
2057	if (wbc->sync_mode != WB_SYNC_ALL &&
2058			get_pages(sbi, F2FS_DIRTY_NODES) <
2059					nr_pages_to_skip(sbi, NODE))
2060		goto skip_write;
2061
2062	if (wbc->sync_mode == WB_SYNC_ALL)
2063		atomic_inc(&sbi->wb_sync_req[NODE]);
2064	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2065		/* to avoid potential deadlock */
2066		if (current->plug)
2067			blk_finish_plug(current->plug);
2068		goto skip_write;
2069	}
2070
2071	trace_f2fs_writepages(mapping->host, wbc, NODE);
2072
2073	diff = nr_pages_to_write(sbi, NODE, wbc);
2074	blk_start_plug(&plug);
2075	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2076	blk_finish_plug(&plug);
2077	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2078
2079	if (wbc->sync_mode == WB_SYNC_ALL)
2080		atomic_dec(&sbi->wb_sync_req[NODE]);
2081	return 0;
2082
2083skip_write:
2084	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2085	trace_f2fs_writepages(mapping->host, wbc, NODE);
2086	return 0;
2087}
2088
2089static int f2fs_set_node_page_dirty(struct page *page)
2090{
2091	trace_f2fs_set_page_dirty(page, NODE);
2092
2093	if (!PageUptodate(page))
2094		SetPageUptodate(page);
2095#ifdef CONFIG_F2FS_CHECK_FS
2096	if (IS_INODE(page))
2097		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2098#endif
2099	if (!PageDirty(page)) {
2100		__set_page_dirty_nobuffers(page);
2101		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2102		f2fs_set_page_private(page, 0);
2103		f2fs_trace_pid(page);
2104		return 1;
2105	}
2106	return 0;
2107}
2108
2109/*
2110 * Structure of the f2fs node operations
2111 */
2112const struct address_space_operations f2fs_node_aops = {
2113	.writepage	= f2fs_write_node_page,
2114	.writepages	= f2fs_write_node_pages,
2115	.set_page_dirty	= f2fs_set_node_page_dirty,
2116	.invalidatepage	= f2fs_invalidate_page,
2117	.releasepage	= f2fs_release_page,
2118#ifdef CONFIG_MIGRATION
2119	.migratepage	= f2fs_migrate_page,
2120#endif
2121};
2122
2123static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2124						nid_t n)
2125{
2126	return radix_tree_lookup(&nm_i->free_nid_root, n);
2127}
2128
2129static int __insert_free_nid(struct f2fs_sb_info *sbi,
2130				struct free_nid *i)
2131{
2132	struct f2fs_nm_info *nm_i = NM_I(sbi);
2133
2134	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2135	if (err)
2136		return err;
2137
2138	nm_i->nid_cnt[FREE_NID]++;
2139	list_add_tail(&i->list, &nm_i->free_nid_list);
2140	return 0;
2141}
2142
2143static void __remove_free_nid(struct f2fs_sb_info *sbi,
2144			struct free_nid *i, enum nid_state state)
2145{
2146	struct f2fs_nm_info *nm_i = NM_I(sbi);
2147
2148	f2fs_bug_on(sbi, state != i->state);
2149	nm_i->nid_cnt[state]--;
2150	if (state == FREE_NID)
2151		list_del(&i->list);
2152	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2153}
2154
2155static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2156			enum nid_state org_state, enum nid_state dst_state)
2157{
2158	struct f2fs_nm_info *nm_i = NM_I(sbi);
2159
2160	f2fs_bug_on(sbi, org_state != i->state);
2161	i->state = dst_state;
2162	nm_i->nid_cnt[org_state]--;
2163	nm_i->nid_cnt[dst_state]++;
2164
2165	switch (dst_state) {
2166	case PREALLOC_NID:
2167		list_del(&i->list);
2168		break;
2169	case FREE_NID:
2170		list_add_tail(&i->list, &nm_i->free_nid_list);
2171		break;
2172	default:
2173		BUG_ON(1);
2174	}
2175}
2176
2177static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2178							bool set, bool build)
2179{
2180	struct f2fs_nm_info *nm_i = NM_I(sbi);
2181	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2182	unsigned int nid_ofs = nid - START_NID(nid);
2183
2184	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2185		return;
2186
2187	if (set) {
2188		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2189			return;
2190		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2191		nm_i->free_nid_count[nat_ofs]++;
2192	} else {
2193		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2194			return;
2195		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2196		if (!build)
2197			nm_i->free_nid_count[nat_ofs]--;
2198	}
2199}
2200
2201/* return if the nid is recognized as free */
2202static bool add_free_nid(struct f2fs_sb_info *sbi,
2203				nid_t nid, bool build, bool update)
2204{
2205	struct f2fs_nm_info *nm_i = NM_I(sbi);
2206	struct free_nid *i, *e;
2207	struct nat_entry *ne;
2208	int err = -EINVAL;
2209	bool ret = false;
2210
2211	/* 0 nid should not be used */
2212	if (unlikely(nid == 0))
2213		return false;
2214
2215	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2216		return false;
2217
2218	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2219	i->nid = nid;
2220	i->state = FREE_NID;
2221
2222	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2223
2224	spin_lock(&nm_i->nid_list_lock);
2225
2226	if (build) {
2227		/*
2228		 *   Thread A             Thread B
2229		 *  - f2fs_create
2230		 *   - f2fs_new_inode
2231		 *    - f2fs_alloc_nid
2232		 *     - __insert_nid_to_list(PREALLOC_NID)
2233		 *                     - f2fs_balance_fs_bg
2234		 *                      - f2fs_build_free_nids
2235		 *                       - __f2fs_build_free_nids
2236		 *                        - scan_nat_page
2237		 *                         - add_free_nid
2238		 *                          - __lookup_nat_cache
2239		 *  - f2fs_add_link
2240		 *   - f2fs_init_inode_metadata
2241		 *    - f2fs_new_inode_page
2242		 *     - f2fs_new_node_page
2243		 *      - set_node_addr
2244		 *  - f2fs_alloc_nid_done
2245		 *   - __remove_nid_from_list(PREALLOC_NID)
2246		 *                         - __insert_nid_to_list(FREE_NID)
2247		 */
2248		ne = __lookup_nat_cache(nm_i, nid);
2249		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2250				nat_get_blkaddr(ne) != NULL_ADDR))
2251			goto err_out;
2252
2253		e = __lookup_free_nid_list(nm_i, nid);
2254		if (e) {
2255			if (e->state == FREE_NID)
2256				ret = true;
2257			goto err_out;
2258		}
2259	}
2260	ret = true;
2261	err = __insert_free_nid(sbi, i);
2262err_out:
2263	if (update) {
2264		update_free_nid_bitmap(sbi, nid, ret, build);
2265		if (!build)
2266			nm_i->available_nids++;
2267	}
2268	spin_unlock(&nm_i->nid_list_lock);
2269	radix_tree_preload_end();
2270
2271	if (err)
2272		kmem_cache_free(free_nid_slab, i);
2273	return ret;
2274}
2275
2276static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2277{
2278	struct f2fs_nm_info *nm_i = NM_I(sbi);
2279	struct free_nid *i;
2280	bool need_free = false;
2281
2282	spin_lock(&nm_i->nid_list_lock);
2283	i = __lookup_free_nid_list(nm_i, nid);
2284	if (i && i->state == FREE_NID) {
2285		__remove_free_nid(sbi, i, FREE_NID);
2286		need_free = true;
2287	}
2288	spin_unlock(&nm_i->nid_list_lock);
2289
2290	if (need_free)
2291		kmem_cache_free(free_nid_slab, i);
2292}
2293
2294static int scan_nat_page(struct f2fs_sb_info *sbi,
2295			struct page *nat_page, nid_t start_nid)
2296{
2297	struct f2fs_nm_info *nm_i = NM_I(sbi);
2298	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2299	block_t blk_addr;
2300	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2301	int i;
2302
2303	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2304
2305	i = start_nid % NAT_ENTRY_PER_BLOCK;
2306
2307	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2308		if (unlikely(start_nid >= nm_i->max_nid))
2309			break;
2310
2311		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2312
2313		if (blk_addr == NEW_ADDR)
2314			return -EINVAL;
2315
2316		if (blk_addr == NULL_ADDR) {
2317			add_free_nid(sbi, start_nid, true, true);
2318		} else {
2319			spin_lock(&NM_I(sbi)->nid_list_lock);
2320			update_free_nid_bitmap(sbi, start_nid, false, true);
2321			spin_unlock(&NM_I(sbi)->nid_list_lock);
2322		}
2323	}
2324
2325	return 0;
2326}
2327
2328static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2329{
2330	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2331	struct f2fs_journal *journal = curseg->journal;
2332	int i;
2333
2334	down_read(&curseg->journal_rwsem);
2335	for (i = 0; i < nats_in_cursum(journal); i++) {
2336		block_t addr;
2337		nid_t nid;
2338
2339		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2340		nid = le32_to_cpu(nid_in_journal(journal, i));
2341		if (addr == NULL_ADDR)
2342			add_free_nid(sbi, nid, true, false);
2343		else
2344			remove_free_nid(sbi, nid);
2345	}
2346	up_read(&curseg->journal_rwsem);
2347}
2348
2349static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2350{
2351	struct f2fs_nm_info *nm_i = NM_I(sbi);
2352	unsigned int i, idx;
2353	nid_t nid;
2354
2355	down_read(&nm_i->nat_tree_lock);
2356
2357	for (i = 0; i < nm_i->nat_blocks; i++) {
2358		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2359			continue;
2360		if (!nm_i->free_nid_count[i])
2361			continue;
2362		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2363			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2364						NAT_ENTRY_PER_BLOCK, idx);
2365			if (idx >= NAT_ENTRY_PER_BLOCK)
2366				break;
2367
2368			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2369			add_free_nid(sbi, nid, true, false);
2370
2371			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2372				goto out;
2373		}
2374	}
2375out:
2376	scan_curseg_cache(sbi);
2377
2378	up_read(&nm_i->nat_tree_lock);
2379}
2380
2381static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2382						bool sync, bool mount)
2383{
2384	struct f2fs_nm_info *nm_i = NM_I(sbi);
2385	int i = 0, ret;
2386	nid_t nid = nm_i->next_scan_nid;
2387
2388	if (unlikely(nid >= nm_i->max_nid))
2389		nid = 0;
2390
2391	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2392		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2393
2394	/* Enough entries */
2395	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2396		return 0;
2397
2398	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2399		return 0;
2400
2401	if (!mount) {
2402		/* try to find free nids in free_nid_bitmap */
2403		scan_free_nid_bits(sbi);
2404
2405		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2406			return 0;
2407	}
2408
2409	/* readahead nat pages to be scanned */
2410	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2411							META_NAT, true);
2412
2413	down_read(&nm_i->nat_tree_lock);
2414
2415	while (1) {
2416		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2417						nm_i->nat_block_bitmap)) {
2418			struct page *page = get_current_nat_page(sbi, nid);
2419
2420			if (IS_ERR(page)) {
2421				ret = PTR_ERR(page);
2422			} else {
2423				ret = scan_nat_page(sbi, page, nid);
2424				f2fs_put_page(page, 1);
2425			}
2426
2427			if (ret) {
2428				up_read(&nm_i->nat_tree_lock);
2429				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2430				return ret;
2431			}
2432		}
2433
2434		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2435		if (unlikely(nid >= nm_i->max_nid))
2436			nid = 0;
2437
2438		if (++i >= FREE_NID_PAGES)
2439			break;
2440	}
2441
2442	/* go to the next free nat pages to find free nids abundantly */
2443	nm_i->next_scan_nid = nid;
2444
2445	/* find free nids from current sum_pages */
2446	scan_curseg_cache(sbi);
2447
2448	up_read(&nm_i->nat_tree_lock);
2449
2450	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2451					nm_i->ra_nid_pages, META_NAT, false);
2452
2453	return 0;
2454}
2455
2456int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2457{
2458	int ret;
2459
2460	mutex_lock(&NM_I(sbi)->build_lock);
2461	ret = __f2fs_build_free_nids(sbi, sync, mount);
2462	mutex_unlock(&NM_I(sbi)->build_lock);
2463
2464	return ret;
2465}
2466
2467/*
2468 * If this function returns success, caller can obtain a new nid
2469 * from second parameter of this function.
2470 * The returned nid could be used ino as well as nid when inode is created.
2471 */
2472bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2473{
2474	struct f2fs_nm_info *nm_i = NM_I(sbi);
2475	struct free_nid *i = NULL;
2476retry:
2477	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2478		f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2479		return false;
2480	}
2481
2482	spin_lock(&nm_i->nid_list_lock);
2483
2484	if (unlikely(nm_i->available_nids == 0)) {
2485		spin_unlock(&nm_i->nid_list_lock);
2486		return false;
2487	}
2488
2489	/* We should not use stale free nids created by f2fs_build_free_nids */
2490	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2491		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2492		i = list_first_entry(&nm_i->free_nid_list,
2493					struct free_nid, list);
2494		*nid = i->nid;
2495
2496		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2497		nm_i->available_nids--;
2498
2499		update_free_nid_bitmap(sbi, *nid, false, false);
2500
2501		spin_unlock(&nm_i->nid_list_lock);
2502		return true;
2503	}
2504	spin_unlock(&nm_i->nid_list_lock);
2505
2506	/* Let's scan nat pages and its caches to get free nids */
2507	if (!f2fs_build_free_nids(sbi, true, false))
2508		goto retry;
2509	return false;
2510}
2511
2512/*
2513 * f2fs_alloc_nid() should be called prior to this function.
2514 */
2515void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2516{
2517	struct f2fs_nm_info *nm_i = NM_I(sbi);
2518	struct free_nid *i;
2519
2520	spin_lock(&nm_i->nid_list_lock);
2521	i = __lookup_free_nid_list(nm_i, nid);
2522	f2fs_bug_on(sbi, !i);
2523	__remove_free_nid(sbi, i, PREALLOC_NID);
2524	spin_unlock(&nm_i->nid_list_lock);
2525
2526	kmem_cache_free(free_nid_slab, i);
2527}
2528
2529/*
2530 * f2fs_alloc_nid() should be called prior to this function.
2531 */
2532void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2533{
2534	struct f2fs_nm_info *nm_i = NM_I(sbi);
2535	struct free_nid *i;
2536	bool need_free = false;
2537
2538	if (!nid)
2539		return;
2540
2541	spin_lock(&nm_i->nid_list_lock);
2542	i = __lookup_free_nid_list(nm_i, nid);
2543	f2fs_bug_on(sbi, !i);
2544
2545	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2546		__remove_free_nid(sbi, i, PREALLOC_NID);
2547		need_free = true;
2548	} else {
2549		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2550	}
2551
2552	nm_i->available_nids++;
2553
2554	update_free_nid_bitmap(sbi, nid, true, false);
2555
2556	spin_unlock(&nm_i->nid_list_lock);
2557
2558	if (need_free)
2559		kmem_cache_free(free_nid_slab, i);
2560}
2561
2562int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2563{
2564	struct f2fs_nm_info *nm_i = NM_I(sbi);
2565	int nr = nr_shrink;
2566
2567	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2568		return 0;
2569
2570	if (!mutex_trylock(&nm_i->build_lock))
2571		return 0;
2572
2573	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2574		struct free_nid *i, *next;
2575		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2576
2577		spin_lock(&nm_i->nid_list_lock);
2578		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2579			if (!nr_shrink || !batch ||
2580				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2581				break;
2582			__remove_free_nid(sbi, i, FREE_NID);
2583			kmem_cache_free(free_nid_slab, i);
2584			nr_shrink--;
2585			batch--;
2586		}
2587		spin_unlock(&nm_i->nid_list_lock);
2588	}
2589
2590	mutex_unlock(&nm_i->build_lock);
2591
2592	return nr - nr_shrink;
2593}
2594
2595int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2596{
2597	void *src_addr, *dst_addr;
2598	size_t inline_size;
2599	struct page *ipage;
2600	struct f2fs_inode *ri;
2601
2602	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2603	if (IS_ERR(ipage))
2604		return PTR_ERR(ipage);
2605
2606	ri = F2FS_INODE(page);
2607	if (ri->i_inline & F2FS_INLINE_XATTR) {
2608		set_inode_flag(inode, FI_INLINE_XATTR);
2609	} else {
2610		clear_inode_flag(inode, FI_INLINE_XATTR);
2611		goto update_inode;
2612	}
2613
2614	dst_addr = inline_xattr_addr(inode, ipage);
2615	src_addr = inline_xattr_addr(inode, page);
2616	inline_size = inline_xattr_size(inode);
2617
2618	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2619	memcpy(dst_addr, src_addr, inline_size);
2620update_inode:
2621	f2fs_update_inode(inode, ipage);
2622	f2fs_put_page(ipage, 1);
2623	return 0;
2624}
2625
2626int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2627{
2628	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2629	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2630	nid_t new_xnid;
2631	struct dnode_of_data dn;
2632	struct node_info ni;
2633	struct page *xpage;
2634	int err;
2635
2636	if (!prev_xnid)
2637		goto recover_xnid;
2638
2639	/* 1: invalidate the previous xattr nid */
2640	err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2641	if (err)
2642		return err;
2643
2644	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2645	dec_valid_node_count(sbi, inode, false);
2646	set_node_addr(sbi, &ni, NULL_ADDR, false);
2647
2648recover_xnid:
2649	/* 2: update xattr nid in inode */
2650	if (!f2fs_alloc_nid(sbi, &new_xnid))
2651		return -ENOSPC;
2652
2653	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2654	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2655	if (IS_ERR(xpage)) {
2656		f2fs_alloc_nid_failed(sbi, new_xnid);
2657		return PTR_ERR(xpage);
2658	}
2659
2660	f2fs_alloc_nid_done(sbi, new_xnid);
2661	f2fs_update_inode_page(inode);
2662
2663	/* 3: update and set xattr node page dirty */
2664	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2665
2666	set_page_dirty(xpage);
2667	f2fs_put_page(xpage, 1);
2668
2669	return 0;
2670}
2671
2672int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2673{
2674	struct f2fs_inode *src, *dst;
2675	nid_t ino = ino_of_node(page);
2676	struct node_info old_ni, new_ni;
2677	struct page *ipage;
2678	int err;
2679
2680	err = f2fs_get_node_info(sbi, ino, &old_ni);
2681	if (err)
2682		return err;
2683
2684	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2685		return -EINVAL;
2686retry:
2687	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2688	if (!ipage) {
2689		congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2690		goto retry;
2691	}
2692
2693	/* Should not use this inode from free nid list */
2694	remove_free_nid(sbi, ino);
2695
2696	if (!PageUptodate(ipage))
2697		SetPageUptodate(ipage);
2698	fill_node_footer(ipage, ino, ino, 0, true);
2699	set_cold_node(ipage, false);
2700
2701	src = F2FS_INODE(page);
2702	dst = F2FS_INODE(ipage);
2703
2704	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2705	dst->i_size = 0;
2706	dst->i_blocks = cpu_to_le64(1);
2707	dst->i_links = cpu_to_le32(1);
2708	dst->i_xattr_nid = 0;
2709	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2710	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2711		dst->i_extra_isize = src->i_extra_isize;
2712
2713		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2714			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2715							i_inline_xattr_size))
2716			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2717
2718		if (f2fs_sb_has_project_quota(sbi) &&
2719			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2720								i_projid))
2721			dst->i_projid = src->i_projid;
2722
2723		if (f2fs_sb_has_inode_crtime(sbi) &&
2724			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2725							i_crtime_nsec)) {
2726			dst->i_crtime = src->i_crtime;
2727			dst->i_crtime_nsec = src->i_crtime_nsec;
2728		}
2729	}
2730
2731	new_ni = old_ni;
2732	new_ni.ino = ino;
2733
2734	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2735		WARN_ON(1);
2736	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2737	inc_valid_inode_count(sbi);
2738	set_page_dirty(ipage);
2739	f2fs_put_page(ipage, 1);
2740	return 0;
2741}
2742
2743int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2744			unsigned int segno, struct f2fs_summary_block *sum)
2745{
2746	struct f2fs_node *rn;
2747	struct f2fs_summary *sum_entry;
2748	block_t addr;
2749	int i, idx, last_offset, nrpages;
2750
2751	/* scan the node segment */
2752	last_offset = sbi->blocks_per_seg;
2753	addr = START_BLOCK(sbi, segno);
2754	sum_entry = &sum->entries[0];
2755
2756	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2757		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2758
2759		/* readahead node pages */
2760		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2761
2762		for (idx = addr; idx < addr + nrpages; idx++) {
2763			struct page *page = f2fs_get_tmp_page(sbi, idx);
2764
2765			if (IS_ERR(page))
2766				return PTR_ERR(page);
2767
2768			rn = F2FS_NODE(page);
2769			sum_entry->nid = rn->footer.nid;
2770			sum_entry->version = 0;
2771			sum_entry->ofs_in_node = 0;
2772			sum_entry++;
2773			f2fs_put_page(page, 1);
2774		}
2775
2776		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2777							addr + nrpages);
2778	}
2779	return 0;
2780}
2781
2782static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2783{
2784	struct f2fs_nm_info *nm_i = NM_I(sbi);
2785	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2786	struct f2fs_journal *journal = curseg->journal;
2787	int i;
2788
2789	down_write(&curseg->journal_rwsem);
2790	for (i = 0; i < nats_in_cursum(journal); i++) {
2791		struct nat_entry *ne;
2792		struct f2fs_nat_entry raw_ne;
2793		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2794
2795		if (f2fs_check_nid_range(sbi, nid))
2796			continue;
2797
2798		raw_ne = nat_in_journal(journal, i);
2799
2800		ne = __lookup_nat_cache(nm_i, nid);
2801		if (!ne) {
2802			ne = __alloc_nat_entry(nid, true);
2803			__init_nat_entry(nm_i, ne, &raw_ne, true);
2804		}
2805
2806		/*
2807		 * if a free nat in journal has not been used after last
2808		 * checkpoint, we should remove it from available nids,
2809		 * since later we will add it again.
2810		 */
2811		if (!get_nat_flag(ne, IS_DIRTY) &&
2812				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2813			spin_lock(&nm_i->nid_list_lock);
2814			nm_i->available_nids--;
2815			spin_unlock(&nm_i->nid_list_lock);
2816		}
2817
2818		__set_nat_cache_dirty(nm_i, ne);
2819	}
2820	update_nats_in_cursum(journal, -i);
2821	up_write(&curseg->journal_rwsem);
2822}
2823
2824static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2825						struct list_head *head, int max)
2826{
2827	struct nat_entry_set *cur;
2828
2829	if (nes->entry_cnt >= max)
2830		goto add_out;
2831
2832	list_for_each_entry(cur, head, set_list) {
2833		if (cur->entry_cnt >= nes->entry_cnt) {
2834			list_add(&nes->set_list, cur->set_list.prev);
2835			return;
2836		}
2837	}
2838add_out:
2839	list_add_tail(&nes->set_list, head);
2840}
2841
2842static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2843						struct page *page)
2844{
2845	struct f2fs_nm_info *nm_i = NM_I(sbi);
2846	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2847	struct f2fs_nat_block *nat_blk = page_address(page);
2848	int valid = 0;
2849	int i = 0;
2850
2851	if (!enabled_nat_bits(sbi, NULL))
2852		return;
2853
2854	if (nat_index == 0) {
2855		valid = 1;
2856		i = 1;
2857	}
2858	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2859		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2860			valid++;
2861	}
2862	if (valid == 0) {
2863		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2864		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2865		return;
2866	}
2867
2868	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2869	if (valid == NAT_ENTRY_PER_BLOCK)
2870		__set_bit_le(nat_index, nm_i->full_nat_bits);
2871	else
2872		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2873}
2874
2875static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2876		struct nat_entry_set *set, struct cp_control *cpc)
2877{
2878	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2879	struct f2fs_journal *journal = curseg->journal;
2880	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2881	bool to_journal = true;
2882	struct f2fs_nat_block *nat_blk;
2883	struct nat_entry *ne, *cur;
2884	struct page *page = NULL;
2885
2886	/*
2887	 * there are two steps to flush nat entries:
2888	 * #1, flush nat entries to journal in current hot data summary block.
2889	 * #2, flush nat entries to nat page.
2890	 */
2891	if (enabled_nat_bits(sbi, cpc) ||
2892		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2893		to_journal = false;
2894
2895	if (to_journal) {
2896		down_write(&curseg->journal_rwsem);
2897	} else {
2898		page = get_next_nat_page(sbi, start_nid);
2899		if (IS_ERR(page))
2900			return PTR_ERR(page);
2901
2902		nat_blk = page_address(page);
2903		f2fs_bug_on(sbi, !nat_blk);
2904	}
2905
2906	/* flush dirty nats in nat entry set */
2907	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2908		struct f2fs_nat_entry *raw_ne;
2909		nid_t nid = nat_get_nid(ne);
2910		int offset;
2911
2912		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2913
2914		if (to_journal) {
2915			offset = f2fs_lookup_journal_in_cursum(journal,
2916							NAT_JOURNAL, nid, 1);
2917			f2fs_bug_on(sbi, offset < 0);
2918			raw_ne = &nat_in_journal(journal, offset);
2919			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2920		} else {
2921			raw_ne = &nat_blk->entries[nid - start_nid];
2922		}
2923		raw_nat_from_node_info(raw_ne, &ne->ni);
2924		nat_reset_flag(ne);
2925		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2926		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2927			add_free_nid(sbi, nid, false, true);
2928		} else {
2929			spin_lock(&NM_I(sbi)->nid_list_lock);
2930			update_free_nid_bitmap(sbi, nid, false, false);
2931			spin_unlock(&NM_I(sbi)->nid_list_lock);
2932		}
2933	}
2934
2935	if (to_journal) {
2936		up_write(&curseg->journal_rwsem);
2937	} else {
2938		__update_nat_bits(sbi, start_nid, page);
2939		f2fs_put_page(page, 1);
2940	}
2941
2942	/* Allow dirty nats by node block allocation in write_begin */
2943	if (!set->entry_cnt) {
2944		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2945		kmem_cache_free(nat_entry_set_slab, set);
2946	}
2947	return 0;
2948}
2949
2950/*
2951 * This function is called during the checkpointing process.
2952 */
2953int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2954{
2955	struct f2fs_nm_info *nm_i = NM_I(sbi);
2956	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2957	struct f2fs_journal *journal = curseg->journal;
2958	struct nat_entry_set *setvec[SETVEC_SIZE];
2959	struct nat_entry_set *set, *tmp;
2960	unsigned int found;
2961	nid_t set_idx = 0;
2962	LIST_HEAD(sets);
2963	int err = 0;
2964
2965	/*
2966	 * during unmount, let's flush nat_bits before checking
2967	 * nat_cnt[DIRTY_NAT].
2968	 */
2969	if (enabled_nat_bits(sbi, cpc)) {
2970		down_write(&nm_i->nat_tree_lock);
2971		remove_nats_in_journal(sbi);
2972		up_write(&nm_i->nat_tree_lock);
2973	}
2974
2975	if (!nm_i->nat_cnt[DIRTY_NAT])
2976		return 0;
2977
2978	down_write(&nm_i->nat_tree_lock);
2979
2980	/*
2981	 * if there are no enough space in journal to store dirty nat
2982	 * entries, remove all entries from journal and merge them
2983	 * into nat entry set.
2984	 */
2985	if (enabled_nat_bits(sbi, cpc) ||
2986		!__has_cursum_space(journal,
2987			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
2988		remove_nats_in_journal(sbi);
2989
2990	while ((found = __gang_lookup_nat_set(nm_i,
2991					set_idx, SETVEC_SIZE, setvec))) {
2992		unsigned idx;
2993		set_idx = setvec[found - 1]->set + 1;
2994		for (idx = 0; idx < found; idx++)
2995			__adjust_nat_entry_set(setvec[idx], &sets,
2996						MAX_NAT_JENTRIES(journal));
2997	}
2998
2999	/* flush dirty nats in nat entry set */
3000	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3001		err = __flush_nat_entry_set(sbi, set, cpc);
3002		if (err)
3003			break;
3004	}
3005
3006	up_write(&nm_i->nat_tree_lock);
3007	/* Allow dirty nats by node block allocation in write_begin */
3008
3009	return err;
3010}
3011
3012static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3013{
3014	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3015	struct f2fs_nm_info *nm_i = NM_I(sbi);
3016	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3017	unsigned int i;
3018	__u64 cp_ver = cur_cp_version(ckpt);
3019	block_t nat_bits_addr;
3020
3021	if (!enabled_nat_bits(sbi, NULL))
3022		return 0;
3023
3024	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3025	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3026			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3027	if (!nm_i->nat_bits)
3028		return -ENOMEM;
3029
3030	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3031						nm_i->nat_bits_blocks;
3032	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3033		struct page *page;
3034
3035		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3036		if (IS_ERR(page))
3037			return PTR_ERR(page);
3038
3039		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3040					page_address(page), F2FS_BLKSIZE);
3041		f2fs_put_page(page, 1);
3042	}
3043
3044	cp_ver |= (cur_cp_crc(ckpt) << 32);
3045	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3046		disable_nat_bits(sbi, true);
3047		return 0;
3048	}
3049
3050	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3051	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3052
3053	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3054	return 0;
3055}
3056
3057static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3058{
3059	struct f2fs_nm_info *nm_i = NM_I(sbi);
3060	unsigned int i = 0;
3061	nid_t nid, last_nid;
3062
3063	if (!enabled_nat_bits(sbi, NULL))
3064		return;
3065
3066	for (i = 0; i < nm_i->nat_blocks; i++) {
3067		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3068		if (i >= nm_i->nat_blocks)
3069			break;
3070
3071		__set_bit_le(i, nm_i->nat_block_bitmap);
3072
3073		nid = i * NAT_ENTRY_PER_BLOCK;
3074		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3075
3076		spin_lock(&NM_I(sbi)->nid_list_lock);
3077		for (; nid < last_nid; nid++)
3078			update_free_nid_bitmap(sbi, nid, true, true);
3079		spin_unlock(&NM_I(sbi)->nid_list_lock);
3080	}
3081
3082	for (i = 0; i < nm_i->nat_blocks; i++) {
3083		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3084		if (i >= nm_i->nat_blocks)
3085			break;
3086
3087		__set_bit_le(i, nm_i->nat_block_bitmap);
3088	}
3089}
3090
3091static int init_node_manager(struct f2fs_sb_info *sbi)
3092{
3093	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3094	struct f2fs_nm_info *nm_i = NM_I(sbi);
3095	unsigned char *version_bitmap;
3096	unsigned int nat_segs;
3097	int err;
3098
3099	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3100
3101	/* segment_count_nat includes pair segment so divide to 2. */
3102	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3103	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3104	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3105
3106	/* not used nids: 0, node, meta, (and root counted as valid node) */
3107	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3108						F2FS_RESERVED_NODE_NUM;
3109	nm_i->nid_cnt[FREE_NID] = 0;
3110	nm_i->nid_cnt[PREALLOC_NID] = 0;
3111	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3112	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3113	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3114
3115	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3116	INIT_LIST_HEAD(&nm_i->free_nid_list);
3117	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3118	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3119	INIT_LIST_HEAD(&nm_i->nat_entries);
3120	spin_lock_init(&nm_i->nat_list_lock);
3121
3122	mutex_init(&nm_i->build_lock);
3123	spin_lock_init(&nm_i->nid_list_lock);
3124	init_rwsem(&nm_i->nat_tree_lock);
3125
3126	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3127	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3128	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3129	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3130					GFP_KERNEL);
3131	if (!nm_i->nat_bitmap)
3132		return -ENOMEM;
3133
3134	err = __get_nat_bitmaps(sbi);
3135	if (err)
3136		return err;
3137
3138#ifdef CONFIG_F2FS_CHECK_FS
3139	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3140					GFP_KERNEL);
3141	if (!nm_i->nat_bitmap_mir)
3142		return -ENOMEM;
3143#endif
3144
3145	return 0;
3146}
3147
3148static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3149{
3150	struct f2fs_nm_info *nm_i = NM_I(sbi);
3151	int i;
3152
3153	nm_i->free_nid_bitmap =
3154		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3155					      nm_i->nat_blocks),
3156			      GFP_KERNEL);
3157	if (!nm_i->free_nid_bitmap)
3158		return -ENOMEM;
3159
3160	for (i = 0; i < nm_i->nat_blocks; i++) {
3161		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3162			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3163		if (!nm_i->free_nid_bitmap[i])
3164			return -ENOMEM;
3165	}
3166
3167	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3168								GFP_KERNEL);
3169	if (!nm_i->nat_block_bitmap)
3170		return -ENOMEM;
3171
3172	nm_i->free_nid_count =
3173		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3174					      nm_i->nat_blocks),
3175			      GFP_KERNEL);
3176	if (!nm_i->free_nid_count)
3177		return -ENOMEM;
3178	return 0;
3179}
3180
3181int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3182{
3183	int err;
3184
3185	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3186							GFP_KERNEL);
3187	if (!sbi->nm_info)
3188		return -ENOMEM;
3189
3190	err = init_node_manager(sbi);
3191	if (err)
3192		return err;
3193
3194	err = init_free_nid_cache(sbi);
3195	if (err)
3196		return err;
3197
3198	/* load free nid status from nat_bits table */
3199	load_free_nid_bitmap(sbi);
3200
3201	return f2fs_build_free_nids(sbi, true, true);
3202}
3203
3204void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3205{
3206	struct f2fs_nm_info *nm_i = NM_I(sbi);
3207	struct free_nid *i, *next_i;
3208	struct nat_entry *natvec[NATVEC_SIZE];
3209	struct nat_entry_set *setvec[SETVEC_SIZE];
3210	nid_t nid = 0;
3211	unsigned int found;
3212
3213	if (!nm_i)
3214		return;
3215
3216	/* destroy free nid list */
3217	spin_lock(&nm_i->nid_list_lock);
3218	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3219		__remove_free_nid(sbi, i, FREE_NID);
3220		spin_unlock(&nm_i->nid_list_lock);
3221		kmem_cache_free(free_nid_slab, i);
3222		spin_lock(&nm_i->nid_list_lock);
3223	}
3224	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3225	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3226	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3227	spin_unlock(&nm_i->nid_list_lock);
3228
3229	/* destroy nat cache */
3230	down_write(&nm_i->nat_tree_lock);
3231	while ((found = __gang_lookup_nat_cache(nm_i,
3232					nid, NATVEC_SIZE, natvec))) {
3233		unsigned idx;
3234
3235		nid = nat_get_nid(natvec[found - 1]) + 1;
3236		for (idx = 0; idx < found; idx++) {
3237			spin_lock(&nm_i->nat_list_lock);
3238			list_del(&natvec[idx]->list);
3239			spin_unlock(&nm_i->nat_list_lock);
3240
3241			__del_from_nat_cache(nm_i, natvec[idx]);
3242		}
3243	}
3244	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3245
3246	/* destroy nat set cache */
3247	nid = 0;
3248	while ((found = __gang_lookup_nat_set(nm_i,
3249					nid, SETVEC_SIZE, setvec))) {
3250		unsigned idx;
3251
3252		nid = setvec[found - 1]->set + 1;
3253		for (idx = 0; idx < found; idx++) {
3254			/* entry_cnt is not zero, when cp_error was occurred */
3255			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3256			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3257			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3258		}
3259	}
3260	up_write(&nm_i->nat_tree_lock);
3261
3262	kvfree(nm_i->nat_block_bitmap);
3263	if (nm_i->free_nid_bitmap) {
3264		int i;
3265
3266		for (i = 0; i < nm_i->nat_blocks; i++)
3267			kvfree(nm_i->free_nid_bitmap[i]);
3268		kvfree(nm_i->free_nid_bitmap);
3269	}
3270	kvfree(nm_i->free_nid_count);
3271
3272	kvfree(nm_i->nat_bitmap);
3273	kvfree(nm_i->nat_bits);
3274#ifdef CONFIG_F2FS_CHECK_FS
3275	kvfree(nm_i->nat_bitmap_mir);
3276#endif
3277	sbi->nm_info = NULL;
3278	kfree(nm_i);
3279}
3280
3281int __init f2fs_create_node_manager_caches(void)
3282{
3283	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3284			sizeof(struct nat_entry));
3285	if (!nat_entry_slab)
3286		goto fail;
3287
3288	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3289			sizeof(struct free_nid));
3290	if (!free_nid_slab)
3291		goto destroy_nat_entry;
3292
3293	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3294			sizeof(struct nat_entry_set));
3295	if (!nat_entry_set_slab)
3296		goto destroy_free_nid;
3297
3298	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3299			sizeof(struct fsync_node_entry));
3300	if (!fsync_node_entry_slab)
3301		goto destroy_nat_entry_set;
3302	return 0;
3303
3304destroy_nat_entry_set:
3305	kmem_cache_destroy(nat_entry_set_slab);
3306destroy_free_nid:
3307	kmem_cache_destroy(free_nid_slab);
3308destroy_nat_entry:
3309	kmem_cache_destroy(nat_entry_slab);
3310fail:
3311	return -ENOMEM;
3312}
3313
3314void f2fs_destroy_node_manager_caches(void)
3315{
3316	kmem_cache_destroy(fsync_node_entry_slab);
3317	kmem_cache_destroy(nat_entry_set_slab);
3318	kmem_cache_destroy(free_nid_slab);
3319	kmem_cache_destroy(nat_entry_slab);
3320}
3321