1// SPDX-License-Identifier: GPL-2.0 2/* 3 * fs/f2fs/node.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8#include <linux/fs.h> 9#include <linux/f2fs_fs.h> 10#include <linux/mpage.h> 11#include <linux/backing-dev.h> 12#include <linux/blkdev.h> 13#include <linux/pagevec.h> 14#include <linux/swap.h> 15 16#include "f2fs.h" 17#include "node.h" 18#include "segment.h" 19#include "xattr.h" 20#include "trace.h" 21#include <trace/events/f2fs.h> 22 23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 24 25static struct kmem_cache *nat_entry_slab; 26static struct kmem_cache *free_nid_slab; 27static struct kmem_cache *nat_entry_set_slab; 28static struct kmem_cache *fsync_node_entry_slab; 29 30/* 31 * Check whether the given nid is within node id range. 32 */ 33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 34{ 35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 36 set_sbi_flag(sbi, SBI_NEED_FSCK); 37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", 38 __func__, nid); 39 return -EFSCORRUPTED; 40 } 41 return 0; 42} 43 44bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 45{ 46 struct f2fs_nm_info *nm_i = NM_I(sbi); 47 struct sysinfo val; 48 unsigned long avail_ram; 49 unsigned long mem_size = 0; 50 bool res = false; 51 52 si_meminfo(&val); 53 54 /* only uses low memory */ 55 avail_ram = val.totalram - val.totalhigh; 56 57 /* 58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 59 */ 60 if (type == FREE_NIDS) { 61 mem_size = (nm_i->nid_cnt[FREE_NID] * 62 sizeof(struct free_nid)) >> PAGE_SHIFT; 63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 64 } else if (type == NAT_ENTRIES) { 65 mem_size = (nm_i->nat_cnt[TOTAL_NAT] * 66 sizeof(struct nat_entry)) >> PAGE_SHIFT; 67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 68 if (excess_cached_nats(sbi)) 69 res = false; 70 } else if (type == DIRTY_DENTS) { 71 if (sbi->sb->s_bdi->wb.dirty_exceeded) 72 return false; 73 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 75 } else if (type == INO_ENTRIES) { 76 int i; 77 78 for (i = 0; i < MAX_INO_ENTRY; i++) 79 mem_size += sbi->im[i].ino_num * 80 sizeof(struct ino_entry); 81 mem_size >>= PAGE_SHIFT; 82 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 83 } else if (type == EXTENT_CACHE) { 84 mem_size = (atomic_read(&sbi->total_ext_tree) * 85 sizeof(struct extent_tree) + 86 atomic_read(&sbi->total_ext_node) * 87 sizeof(struct extent_node)) >> PAGE_SHIFT; 88 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 89 } else if (type == INMEM_PAGES) { 90 /* it allows 20% / total_ram for inmemory pages */ 91 mem_size = get_pages(sbi, F2FS_INMEM_PAGES); 92 res = mem_size < (val.totalram / 5); 93 } else { 94 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 95 return true; 96 } 97 return res; 98} 99 100static void clear_node_page_dirty(struct page *page) 101{ 102 if (PageDirty(page)) { 103 f2fs_clear_page_cache_dirty_tag(page); 104 clear_page_dirty_for_io(page); 105 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 106 } 107 ClearPageUptodate(page); 108} 109 110static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 111{ 112 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid)); 113} 114 115static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 116{ 117 struct page *src_page; 118 struct page *dst_page; 119 pgoff_t dst_off; 120 void *src_addr; 121 void *dst_addr; 122 struct f2fs_nm_info *nm_i = NM_I(sbi); 123 124 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 125 126 /* get current nat block page with lock */ 127 src_page = get_current_nat_page(sbi, nid); 128 if (IS_ERR(src_page)) 129 return src_page; 130 dst_page = f2fs_grab_meta_page(sbi, dst_off); 131 f2fs_bug_on(sbi, PageDirty(src_page)); 132 133 src_addr = page_address(src_page); 134 dst_addr = page_address(dst_page); 135 memcpy(dst_addr, src_addr, PAGE_SIZE); 136 set_page_dirty(dst_page); 137 f2fs_put_page(src_page, 1); 138 139 set_to_next_nat(nm_i, nid); 140 141 return dst_page; 142} 143 144static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail) 145{ 146 struct nat_entry *new; 147 148 if (no_fail) 149 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); 150 else 151 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); 152 if (new) { 153 nat_set_nid(new, nid); 154 nat_reset_flag(new); 155 } 156 return new; 157} 158 159static void __free_nat_entry(struct nat_entry *e) 160{ 161 kmem_cache_free(nat_entry_slab, e); 162} 163 164/* must be locked by nat_tree_lock */ 165static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 166 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 167{ 168 if (no_fail) 169 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 170 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 171 return NULL; 172 173 if (raw_ne) 174 node_info_from_raw_nat(&ne->ni, raw_ne); 175 176 spin_lock(&nm_i->nat_list_lock); 177 list_add_tail(&ne->list, &nm_i->nat_entries); 178 spin_unlock(&nm_i->nat_list_lock); 179 180 nm_i->nat_cnt[TOTAL_NAT]++; 181 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 182 return ne; 183} 184 185static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 186{ 187 struct nat_entry *ne; 188 189 ne = radix_tree_lookup(&nm_i->nat_root, n); 190 191 /* for recent accessed nat entry, move it to tail of lru list */ 192 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 193 spin_lock(&nm_i->nat_list_lock); 194 if (!list_empty(&ne->list)) 195 list_move_tail(&ne->list, &nm_i->nat_entries); 196 spin_unlock(&nm_i->nat_list_lock); 197 } 198 199 return ne; 200} 201 202static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 203 nid_t start, unsigned int nr, struct nat_entry **ep) 204{ 205 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 206} 207 208static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 209{ 210 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 211 nm_i->nat_cnt[TOTAL_NAT]--; 212 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 213 __free_nat_entry(e); 214} 215 216static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 217 struct nat_entry *ne) 218{ 219 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 220 struct nat_entry_set *head; 221 222 head = radix_tree_lookup(&nm_i->nat_set_root, set); 223 if (!head) { 224 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 225 226 INIT_LIST_HEAD(&head->entry_list); 227 INIT_LIST_HEAD(&head->set_list); 228 head->set = set; 229 head->entry_cnt = 0; 230 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 231 } 232 return head; 233} 234 235static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 236 struct nat_entry *ne) 237{ 238 struct nat_entry_set *head; 239 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 240 241 if (!new_ne) 242 head = __grab_nat_entry_set(nm_i, ne); 243 244 /* 245 * update entry_cnt in below condition: 246 * 1. update NEW_ADDR to valid block address; 247 * 2. update old block address to new one; 248 */ 249 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 250 !get_nat_flag(ne, IS_DIRTY))) 251 head->entry_cnt++; 252 253 set_nat_flag(ne, IS_PREALLOC, new_ne); 254 255 if (get_nat_flag(ne, IS_DIRTY)) 256 goto refresh_list; 257 258 nm_i->nat_cnt[DIRTY_NAT]++; 259 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 260 set_nat_flag(ne, IS_DIRTY, true); 261refresh_list: 262 spin_lock(&nm_i->nat_list_lock); 263 if (new_ne) 264 list_del_init(&ne->list); 265 else 266 list_move_tail(&ne->list, &head->entry_list); 267 spin_unlock(&nm_i->nat_list_lock); 268} 269 270static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 271 struct nat_entry_set *set, struct nat_entry *ne) 272{ 273 spin_lock(&nm_i->nat_list_lock); 274 list_move_tail(&ne->list, &nm_i->nat_entries); 275 spin_unlock(&nm_i->nat_list_lock); 276 277 set_nat_flag(ne, IS_DIRTY, false); 278 set->entry_cnt--; 279 nm_i->nat_cnt[DIRTY_NAT]--; 280 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 281} 282 283static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 284 nid_t start, unsigned int nr, struct nat_entry_set **ep) 285{ 286 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 287 start, nr); 288} 289 290bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) 291{ 292 return NODE_MAPPING(sbi) == page->mapping && 293 IS_DNODE(page) && is_cold_node(page); 294} 295 296void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 297{ 298 spin_lock_init(&sbi->fsync_node_lock); 299 INIT_LIST_HEAD(&sbi->fsync_node_list); 300 sbi->fsync_seg_id = 0; 301 sbi->fsync_node_num = 0; 302} 303 304static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 305 struct page *page) 306{ 307 struct fsync_node_entry *fn; 308 unsigned long flags; 309 unsigned int seq_id; 310 311 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS); 312 313 get_page(page); 314 fn->page = page; 315 INIT_LIST_HEAD(&fn->list); 316 317 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 318 list_add_tail(&fn->list, &sbi->fsync_node_list); 319 fn->seq_id = sbi->fsync_seg_id++; 320 seq_id = fn->seq_id; 321 sbi->fsync_node_num++; 322 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 323 324 return seq_id; 325} 326 327void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) 328{ 329 struct fsync_node_entry *fn; 330 unsigned long flags; 331 332 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 333 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 334 if (fn->page == page) { 335 list_del(&fn->list); 336 sbi->fsync_node_num--; 337 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 338 kmem_cache_free(fsync_node_entry_slab, fn); 339 put_page(page); 340 return; 341 } 342 } 343 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 344 f2fs_bug_on(sbi, 1); 345} 346 347void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 348{ 349 unsigned long flags; 350 351 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 352 sbi->fsync_seg_id = 0; 353 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 354} 355 356int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 357{ 358 struct f2fs_nm_info *nm_i = NM_I(sbi); 359 struct nat_entry *e; 360 bool need = false; 361 362 down_read(&nm_i->nat_tree_lock); 363 e = __lookup_nat_cache(nm_i, nid); 364 if (e) { 365 if (!get_nat_flag(e, IS_CHECKPOINTED) && 366 !get_nat_flag(e, HAS_FSYNCED_INODE)) 367 need = true; 368 } 369 up_read(&nm_i->nat_tree_lock); 370 return need; 371} 372 373bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 374{ 375 struct f2fs_nm_info *nm_i = NM_I(sbi); 376 struct nat_entry *e; 377 bool is_cp = true; 378 379 down_read(&nm_i->nat_tree_lock); 380 e = __lookup_nat_cache(nm_i, nid); 381 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 382 is_cp = false; 383 up_read(&nm_i->nat_tree_lock); 384 return is_cp; 385} 386 387bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 388{ 389 struct f2fs_nm_info *nm_i = NM_I(sbi); 390 struct nat_entry *e; 391 bool need_update = true; 392 393 down_read(&nm_i->nat_tree_lock); 394 e = __lookup_nat_cache(nm_i, ino); 395 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 396 (get_nat_flag(e, IS_CHECKPOINTED) || 397 get_nat_flag(e, HAS_FSYNCED_INODE))) 398 need_update = false; 399 up_read(&nm_i->nat_tree_lock); 400 return need_update; 401} 402 403/* must be locked by nat_tree_lock */ 404static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 405 struct f2fs_nat_entry *ne) 406{ 407 struct f2fs_nm_info *nm_i = NM_I(sbi); 408 struct nat_entry *new, *e; 409 410 new = __alloc_nat_entry(nid, false); 411 if (!new) 412 return; 413 414 down_write(&nm_i->nat_tree_lock); 415 e = __lookup_nat_cache(nm_i, nid); 416 if (!e) 417 e = __init_nat_entry(nm_i, new, ne, false); 418 else 419 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 420 nat_get_blkaddr(e) != 421 le32_to_cpu(ne->block_addr) || 422 nat_get_version(e) != ne->version); 423 up_write(&nm_i->nat_tree_lock); 424 if (e != new) 425 __free_nat_entry(new); 426} 427 428static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 429 block_t new_blkaddr, bool fsync_done) 430{ 431 struct f2fs_nm_info *nm_i = NM_I(sbi); 432 struct nat_entry *e; 433 struct nat_entry *new = __alloc_nat_entry(ni->nid, true); 434 435 down_write(&nm_i->nat_tree_lock); 436 e = __lookup_nat_cache(nm_i, ni->nid); 437 if (!e) { 438 e = __init_nat_entry(nm_i, new, NULL, true); 439 copy_node_info(&e->ni, ni); 440 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 441 } else if (new_blkaddr == NEW_ADDR) { 442 /* 443 * when nid is reallocated, 444 * previous nat entry can be remained in nat cache. 445 * So, reinitialize it with new information. 446 */ 447 copy_node_info(&e->ni, ni); 448 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 449 } 450 /* let's free early to reduce memory consumption */ 451 if (e != new) 452 __free_nat_entry(new); 453 454 /* sanity check */ 455 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 456 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 457 new_blkaddr == NULL_ADDR); 458 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 459 new_blkaddr == NEW_ADDR); 460 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && 461 new_blkaddr == NEW_ADDR); 462 463 /* increment version no as node is removed */ 464 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 465 unsigned char version = nat_get_version(e); 466 nat_set_version(e, inc_node_version(version)); 467 } 468 469 /* change address */ 470 nat_set_blkaddr(e, new_blkaddr); 471 if (!__is_valid_data_blkaddr(new_blkaddr)) 472 set_nat_flag(e, IS_CHECKPOINTED, false); 473 __set_nat_cache_dirty(nm_i, e); 474 475 /* update fsync_mark if its inode nat entry is still alive */ 476 if (ni->nid != ni->ino) 477 e = __lookup_nat_cache(nm_i, ni->ino); 478 if (e) { 479 if (fsync_done && ni->nid == ni->ino) 480 set_nat_flag(e, HAS_FSYNCED_INODE, true); 481 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 482 } 483 up_write(&nm_i->nat_tree_lock); 484} 485 486int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 487{ 488 struct f2fs_nm_info *nm_i = NM_I(sbi); 489 int nr = nr_shrink; 490 491 if (!down_write_trylock(&nm_i->nat_tree_lock)) 492 return 0; 493 494 spin_lock(&nm_i->nat_list_lock); 495 while (nr_shrink) { 496 struct nat_entry *ne; 497 498 if (list_empty(&nm_i->nat_entries)) 499 break; 500 501 ne = list_first_entry(&nm_i->nat_entries, 502 struct nat_entry, list); 503 list_del(&ne->list); 504 spin_unlock(&nm_i->nat_list_lock); 505 506 __del_from_nat_cache(nm_i, ne); 507 nr_shrink--; 508 509 spin_lock(&nm_i->nat_list_lock); 510 } 511 spin_unlock(&nm_i->nat_list_lock); 512 513 up_write(&nm_i->nat_tree_lock); 514 return nr - nr_shrink; 515} 516 517int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 518 struct node_info *ni) 519{ 520 struct f2fs_nm_info *nm_i = NM_I(sbi); 521 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 522 struct f2fs_journal *journal = curseg->journal; 523 nid_t start_nid = START_NID(nid); 524 struct f2fs_nat_block *nat_blk; 525 struct page *page = NULL; 526 struct f2fs_nat_entry ne; 527 struct nat_entry *e; 528 pgoff_t index; 529 block_t blkaddr; 530 int i; 531 532 ni->nid = nid; 533 534 /* Check nat cache */ 535 down_read(&nm_i->nat_tree_lock); 536 e = __lookup_nat_cache(nm_i, nid); 537 if (e) { 538 ni->ino = nat_get_ino(e); 539 ni->blk_addr = nat_get_blkaddr(e); 540 ni->version = nat_get_version(e); 541 up_read(&nm_i->nat_tree_lock); 542 return 0; 543 } 544 545 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 546 547 /* Check current segment summary */ 548 down_read(&curseg->journal_rwsem); 549 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 550 if (i >= 0) { 551 ne = nat_in_journal(journal, i); 552 node_info_from_raw_nat(ni, &ne); 553 } 554 up_read(&curseg->journal_rwsem); 555 if (i >= 0) { 556 up_read(&nm_i->nat_tree_lock); 557 goto cache; 558 } 559 560 /* Fill node_info from nat page */ 561 index = current_nat_addr(sbi, nid); 562 up_read(&nm_i->nat_tree_lock); 563 564 page = f2fs_get_meta_page(sbi, index); 565 if (IS_ERR(page)) 566 return PTR_ERR(page); 567 568 nat_blk = (struct f2fs_nat_block *)page_address(page); 569 ne = nat_blk->entries[nid - start_nid]; 570 node_info_from_raw_nat(ni, &ne); 571 f2fs_put_page(page, 1); 572cache: 573 blkaddr = le32_to_cpu(ne.block_addr); 574 if (__is_valid_data_blkaddr(blkaddr) && 575 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) 576 return -EFAULT; 577 578 /* cache nat entry */ 579 cache_nat_entry(sbi, nid, &ne); 580 return 0; 581} 582 583/* 584 * readahead MAX_RA_NODE number of node pages. 585 */ 586static void f2fs_ra_node_pages(struct page *parent, int start, int n) 587{ 588 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 589 struct blk_plug plug; 590 int i, end; 591 nid_t nid; 592 593 blk_start_plug(&plug); 594 595 /* Then, try readahead for siblings of the desired node */ 596 end = start + n; 597 end = min(end, NIDS_PER_BLOCK); 598 for (i = start; i < end; i++) { 599 nid = get_nid(parent, i, false); 600 f2fs_ra_node_page(sbi, nid); 601 } 602 603 blk_finish_plug(&plug); 604} 605 606pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 607{ 608 const long direct_index = ADDRS_PER_INODE(dn->inode); 609 const long direct_blks = ADDRS_PER_BLOCK(dn->inode); 610 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; 611 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); 612 int cur_level = dn->cur_level; 613 int max_level = dn->max_level; 614 pgoff_t base = 0; 615 616 if (!dn->max_level) 617 return pgofs + 1; 618 619 while (max_level-- > cur_level) 620 skipped_unit *= NIDS_PER_BLOCK; 621 622 switch (dn->max_level) { 623 case 3: 624 base += 2 * indirect_blks; 625 fallthrough; 626 case 2: 627 base += 2 * direct_blks; 628 fallthrough; 629 case 1: 630 base += direct_index; 631 break; 632 default: 633 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 634 } 635 636 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 637} 638 639/* 640 * The maximum depth is four. 641 * Offset[0] will have raw inode offset. 642 */ 643static int get_node_path(struct inode *inode, long block, 644 int offset[4], unsigned int noffset[4]) 645{ 646 const long direct_index = ADDRS_PER_INODE(inode); 647 const long direct_blks = ADDRS_PER_BLOCK(inode); 648 const long dptrs_per_blk = NIDS_PER_BLOCK; 649 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; 650 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 651 int n = 0; 652 int level = 0; 653 654 noffset[0] = 0; 655 656 if (block < direct_index) { 657 offset[n] = block; 658 goto got; 659 } 660 block -= direct_index; 661 if (block < direct_blks) { 662 offset[n++] = NODE_DIR1_BLOCK; 663 noffset[n] = 1; 664 offset[n] = block; 665 level = 1; 666 goto got; 667 } 668 block -= direct_blks; 669 if (block < direct_blks) { 670 offset[n++] = NODE_DIR2_BLOCK; 671 noffset[n] = 2; 672 offset[n] = block; 673 level = 1; 674 goto got; 675 } 676 block -= direct_blks; 677 if (block < indirect_blks) { 678 offset[n++] = NODE_IND1_BLOCK; 679 noffset[n] = 3; 680 offset[n++] = block / direct_blks; 681 noffset[n] = 4 + offset[n - 1]; 682 offset[n] = block % direct_blks; 683 level = 2; 684 goto got; 685 } 686 block -= indirect_blks; 687 if (block < indirect_blks) { 688 offset[n++] = NODE_IND2_BLOCK; 689 noffset[n] = 4 + dptrs_per_blk; 690 offset[n++] = block / direct_blks; 691 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 692 offset[n] = block % direct_blks; 693 level = 2; 694 goto got; 695 } 696 block -= indirect_blks; 697 if (block < dindirect_blks) { 698 offset[n++] = NODE_DIND_BLOCK; 699 noffset[n] = 5 + (dptrs_per_blk * 2); 700 offset[n++] = block / indirect_blks; 701 noffset[n] = 6 + (dptrs_per_blk * 2) + 702 offset[n - 1] * (dptrs_per_blk + 1); 703 offset[n++] = (block / direct_blks) % dptrs_per_blk; 704 noffset[n] = 7 + (dptrs_per_blk * 2) + 705 offset[n - 2] * (dptrs_per_blk + 1) + 706 offset[n - 1]; 707 offset[n] = block % direct_blks; 708 level = 3; 709 goto got; 710 } else { 711 return -E2BIG; 712 } 713got: 714 return level; 715} 716 717/* 718 * Caller should call f2fs_put_dnode(dn). 719 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 720 * f2fs_unlock_op() only if mode is set with ALLOC_NODE. 721 */ 722int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 723{ 724 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 725 struct page *npage[4]; 726 struct page *parent = NULL; 727 int offset[4]; 728 unsigned int noffset[4]; 729 nid_t nids[4]; 730 int level, i = 0; 731 int err = 0; 732 733 level = get_node_path(dn->inode, index, offset, noffset); 734 if (level < 0) 735 return level; 736 737 nids[0] = dn->inode->i_ino; 738 npage[0] = dn->inode_page; 739 740 if (!npage[0]) { 741 npage[0] = f2fs_get_node_page(sbi, nids[0]); 742 if (IS_ERR(npage[0])) 743 return PTR_ERR(npage[0]); 744 } 745 746 /* if inline_data is set, should not report any block indices */ 747 if (f2fs_has_inline_data(dn->inode) && index) { 748 err = -ENOENT; 749 f2fs_put_page(npage[0], 1); 750 goto release_out; 751 } 752 753 parent = npage[0]; 754 if (level != 0) 755 nids[1] = get_nid(parent, offset[0], true); 756 dn->inode_page = npage[0]; 757 dn->inode_page_locked = true; 758 759 /* get indirect or direct nodes */ 760 for (i = 1; i <= level; i++) { 761 bool done = false; 762 763 if (!nids[i] && mode == ALLOC_NODE) { 764 /* alloc new node */ 765 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 766 err = -ENOSPC; 767 goto release_pages; 768 } 769 770 dn->nid = nids[i]; 771 npage[i] = f2fs_new_node_page(dn, noffset[i]); 772 if (IS_ERR(npage[i])) { 773 f2fs_alloc_nid_failed(sbi, nids[i]); 774 err = PTR_ERR(npage[i]); 775 goto release_pages; 776 } 777 778 set_nid(parent, offset[i - 1], nids[i], i == 1); 779 f2fs_alloc_nid_done(sbi, nids[i]); 780 done = true; 781 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 782 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 783 if (IS_ERR(npage[i])) { 784 err = PTR_ERR(npage[i]); 785 goto release_pages; 786 } 787 done = true; 788 } 789 if (i == 1) { 790 dn->inode_page_locked = false; 791 unlock_page(parent); 792 } else { 793 f2fs_put_page(parent, 1); 794 } 795 796 if (!done) { 797 npage[i] = f2fs_get_node_page(sbi, nids[i]); 798 if (IS_ERR(npage[i])) { 799 err = PTR_ERR(npage[i]); 800 f2fs_put_page(npage[0], 0); 801 goto release_out; 802 } 803 } 804 if (i < level) { 805 parent = npage[i]; 806 nids[i + 1] = get_nid(parent, offset[i], false); 807 } 808 } 809 dn->nid = nids[level]; 810 dn->ofs_in_node = offset[level]; 811 dn->node_page = npage[level]; 812 dn->data_blkaddr = f2fs_data_blkaddr(dn); 813 return 0; 814 815release_pages: 816 f2fs_put_page(parent, 1); 817 if (i > 1) 818 f2fs_put_page(npage[0], 0); 819release_out: 820 dn->inode_page = NULL; 821 dn->node_page = NULL; 822 if (err == -ENOENT) { 823 dn->cur_level = i; 824 dn->max_level = level; 825 dn->ofs_in_node = offset[level]; 826 } 827 return err; 828} 829 830static int truncate_node(struct dnode_of_data *dn) 831{ 832 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 833 struct node_info ni; 834 int err; 835 pgoff_t index; 836 837 err = f2fs_get_node_info(sbi, dn->nid, &ni); 838 if (err) 839 return err; 840 841 /* Deallocate node address */ 842 f2fs_invalidate_blocks(sbi, ni.blk_addr); 843 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 844 set_node_addr(sbi, &ni, NULL_ADDR, false); 845 846 if (dn->nid == dn->inode->i_ino) { 847 f2fs_remove_orphan_inode(sbi, dn->nid); 848 dec_valid_inode_count(sbi); 849 f2fs_inode_synced(dn->inode); 850 } 851 852 clear_node_page_dirty(dn->node_page); 853 set_sbi_flag(sbi, SBI_IS_DIRTY); 854 855 index = dn->node_page->index; 856 f2fs_put_page(dn->node_page, 1); 857 858 invalidate_mapping_pages(NODE_MAPPING(sbi), 859 index, index); 860 861 dn->node_page = NULL; 862 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 863 864 return 0; 865} 866 867static int truncate_dnode(struct dnode_of_data *dn) 868{ 869 struct page *page; 870 int err; 871 872 if (dn->nid == 0) 873 return 1; 874 875 /* get direct node */ 876 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 877 if (PTR_ERR(page) == -ENOENT) 878 return 1; 879 else if (IS_ERR(page)) 880 return PTR_ERR(page); 881 882 /* Make dnode_of_data for parameter */ 883 dn->node_page = page; 884 dn->ofs_in_node = 0; 885 f2fs_truncate_data_blocks(dn); 886 err = truncate_node(dn); 887 if (err) { 888 f2fs_put_page(page, 1); 889 return err; 890 } 891 892 return 1; 893} 894 895static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 896 int ofs, int depth) 897{ 898 struct dnode_of_data rdn = *dn; 899 struct page *page; 900 struct f2fs_node *rn; 901 nid_t child_nid; 902 unsigned int child_nofs; 903 int freed = 0; 904 int i, ret; 905 906 if (dn->nid == 0) 907 return NIDS_PER_BLOCK + 1; 908 909 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 910 911 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 912 if (IS_ERR(page)) { 913 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 914 return PTR_ERR(page); 915 } 916 917 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 918 919 rn = F2FS_NODE(page); 920 if (depth < 3) { 921 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 922 child_nid = le32_to_cpu(rn->in.nid[i]); 923 if (child_nid == 0) 924 continue; 925 rdn.nid = child_nid; 926 ret = truncate_dnode(&rdn); 927 if (ret < 0) 928 goto out_err; 929 if (set_nid(page, i, 0, false)) 930 dn->node_changed = true; 931 } 932 } else { 933 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 934 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 935 child_nid = le32_to_cpu(rn->in.nid[i]); 936 if (child_nid == 0) { 937 child_nofs += NIDS_PER_BLOCK + 1; 938 continue; 939 } 940 rdn.nid = child_nid; 941 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 942 if (ret == (NIDS_PER_BLOCK + 1)) { 943 if (set_nid(page, i, 0, false)) 944 dn->node_changed = true; 945 child_nofs += ret; 946 } else if (ret < 0 && ret != -ENOENT) { 947 goto out_err; 948 } 949 } 950 freed = child_nofs; 951 } 952 953 if (!ofs) { 954 /* remove current indirect node */ 955 dn->node_page = page; 956 ret = truncate_node(dn); 957 if (ret) 958 goto out_err; 959 freed++; 960 } else { 961 f2fs_put_page(page, 1); 962 } 963 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 964 return freed; 965 966out_err: 967 f2fs_put_page(page, 1); 968 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 969 return ret; 970} 971 972static int truncate_partial_nodes(struct dnode_of_data *dn, 973 struct f2fs_inode *ri, int *offset, int depth) 974{ 975 struct page *pages[2]; 976 nid_t nid[3]; 977 nid_t child_nid; 978 int err = 0; 979 int i; 980 int idx = depth - 2; 981 982 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 983 if (!nid[0]) 984 return 0; 985 986 /* get indirect nodes in the path */ 987 for (i = 0; i < idx + 1; i++) { 988 /* reference count'll be increased */ 989 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 990 if (IS_ERR(pages[i])) { 991 err = PTR_ERR(pages[i]); 992 idx = i - 1; 993 goto fail; 994 } 995 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 996 } 997 998 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 999 1000 /* free direct nodes linked to a partial indirect node */ 1001 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 1002 child_nid = get_nid(pages[idx], i, false); 1003 if (!child_nid) 1004 continue; 1005 dn->nid = child_nid; 1006 err = truncate_dnode(dn); 1007 if (err < 0) 1008 goto fail; 1009 if (set_nid(pages[idx], i, 0, false)) 1010 dn->node_changed = true; 1011 } 1012 1013 if (offset[idx + 1] == 0) { 1014 dn->node_page = pages[idx]; 1015 dn->nid = nid[idx]; 1016 err = truncate_node(dn); 1017 if (err) 1018 goto fail; 1019 } else { 1020 f2fs_put_page(pages[idx], 1); 1021 } 1022 offset[idx]++; 1023 offset[idx + 1] = 0; 1024 idx--; 1025fail: 1026 for (i = idx; i >= 0; i--) 1027 f2fs_put_page(pages[i], 1); 1028 1029 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1030 1031 return err; 1032} 1033 1034/* 1035 * All the block addresses of data and nodes should be nullified. 1036 */ 1037int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1038{ 1039 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1040 int err = 0, cont = 1; 1041 int level, offset[4], noffset[4]; 1042 unsigned int nofs = 0; 1043 struct f2fs_inode *ri; 1044 struct dnode_of_data dn; 1045 struct page *page; 1046 1047 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1048 1049 level = get_node_path(inode, from, offset, noffset); 1050 if (level < 0) { 1051 trace_f2fs_truncate_inode_blocks_exit(inode, level); 1052 return level; 1053 } 1054 1055 page = f2fs_get_node_page(sbi, inode->i_ino); 1056 if (IS_ERR(page)) { 1057 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 1058 return PTR_ERR(page); 1059 } 1060 1061 set_new_dnode(&dn, inode, page, NULL, 0); 1062 unlock_page(page); 1063 1064 ri = F2FS_INODE(page); 1065 switch (level) { 1066 case 0: 1067 case 1: 1068 nofs = noffset[1]; 1069 break; 1070 case 2: 1071 nofs = noffset[1]; 1072 if (!offset[level - 1]) 1073 goto skip_partial; 1074 err = truncate_partial_nodes(&dn, ri, offset, level); 1075 if (err < 0 && err != -ENOENT) 1076 goto fail; 1077 nofs += 1 + NIDS_PER_BLOCK; 1078 break; 1079 case 3: 1080 nofs = 5 + 2 * NIDS_PER_BLOCK; 1081 if (!offset[level - 1]) 1082 goto skip_partial; 1083 err = truncate_partial_nodes(&dn, ri, offset, level); 1084 if (err < 0 && err != -ENOENT) 1085 goto fail; 1086 break; 1087 default: 1088 BUG(); 1089 } 1090 1091skip_partial: 1092 while (cont) { 1093 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1094 switch (offset[0]) { 1095 case NODE_DIR1_BLOCK: 1096 case NODE_DIR2_BLOCK: 1097 err = truncate_dnode(&dn); 1098 break; 1099 1100 case NODE_IND1_BLOCK: 1101 case NODE_IND2_BLOCK: 1102 err = truncate_nodes(&dn, nofs, offset[1], 2); 1103 break; 1104 1105 case NODE_DIND_BLOCK: 1106 err = truncate_nodes(&dn, nofs, offset[1], 3); 1107 cont = 0; 1108 break; 1109 1110 default: 1111 BUG(); 1112 } 1113 if (err < 0 && err != -ENOENT) 1114 goto fail; 1115 if (offset[1] == 0 && 1116 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 1117 lock_page(page); 1118 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 1119 f2fs_wait_on_page_writeback(page, NODE, true, true); 1120 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 1121 set_page_dirty(page); 1122 unlock_page(page); 1123 } 1124 offset[1] = 0; 1125 offset[0]++; 1126 nofs += err; 1127 } 1128fail: 1129 f2fs_put_page(page, 0); 1130 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1131 return err > 0 ? 0 : err; 1132} 1133 1134/* caller must lock inode page */ 1135int f2fs_truncate_xattr_node(struct inode *inode) 1136{ 1137 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1138 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1139 struct dnode_of_data dn; 1140 struct page *npage; 1141 int err; 1142 1143 if (!nid) 1144 return 0; 1145 1146 npage = f2fs_get_node_page(sbi, nid); 1147 if (IS_ERR(npage)) 1148 return PTR_ERR(npage); 1149 1150 set_new_dnode(&dn, inode, NULL, npage, nid); 1151 err = truncate_node(&dn); 1152 if (err) { 1153 f2fs_put_page(npage, 1); 1154 return err; 1155 } 1156 1157 f2fs_i_xnid_write(inode, 0); 1158 1159 return 0; 1160} 1161 1162/* 1163 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1164 * f2fs_unlock_op(). 1165 */ 1166int f2fs_remove_inode_page(struct inode *inode) 1167{ 1168 struct dnode_of_data dn; 1169 int err; 1170 1171 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1172 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1173 if (err) 1174 return err; 1175 1176 err = f2fs_truncate_xattr_node(inode); 1177 if (err) { 1178 f2fs_put_dnode(&dn); 1179 return err; 1180 } 1181 1182 /* remove potential inline_data blocks */ 1183 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1184 S_ISLNK(inode->i_mode)) 1185 f2fs_truncate_data_blocks_range(&dn, 1); 1186 1187 /* 0 is possible, after f2fs_new_inode() has failed */ 1188 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1189 f2fs_put_dnode(&dn); 1190 return -EIO; 1191 } 1192 1193 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { 1194 f2fs_warn(F2FS_I_SB(inode), 1195 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu", 1196 inode->i_ino, (unsigned long long)inode->i_blocks); 1197 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); 1198 } 1199 1200 /* will put inode & node pages */ 1201 err = truncate_node(&dn); 1202 if (err) { 1203 f2fs_put_dnode(&dn); 1204 return err; 1205 } 1206 return 0; 1207} 1208 1209struct page *f2fs_new_inode_page(struct inode *inode) 1210{ 1211 struct dnode_of_data dn; 1212 1213 /* allocate inode page for new inode */ 1214 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1215 1216 /* caller should f2fs_put_page(page, 1); */ 1217 return f2fs_new_node_page(&dn, 0); 1218} 1219 1220struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1221{ 1222 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1223 struct node_info new_ni; 1224 struct page *page; 1225 int err; 1226 1227 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1228 return ERR_PTR(-EPERM); 1229 1230 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1231 if (!page) 1232 return ERR_PTR(-ENOMEM); 1233 1234 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1235 goto fail; 1236 1237#ifdef CONFIG_F2FS_CHECK_FS 1238 err = f2fs_get_node_info(sbi, dn->nid, &new_ni); 1239 if (err) { 1240 dec_valid_node_count(sbi, dn->inode, !ofs); 1241 goto fail; 1242 } 1243 if (unlikely(new_ni.blk_addr != NULL_ADDR)) { 1244 err = -EFSCORRUPTED; 1245 set_sbi_flag(sbi, SBI_NEED_FSCK); 1246 goto fail; 1247 } 1248#endif 1249 new_ni.nid = dn->nid; 1250 new_ni.ino = dn->inode->i_ino; 1251 new_ni.blk_addr = NULL_ADDR; 1252 new_ni.flag = 0; 1253 new_ni.version = 0; 1254 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1255 1256 f2fs_wait_on_page_writeback(page, NODE, true, true); 1257 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1258 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1259 if (!PageUptodate(page)) 1260 SetPageUptodate(page); 1261 if (set_page_dirty(page)) 1262 dn->node_changed = true; 1263 1264 if (f2fs_has_xattr_block(ofs)) 1265 f2fs_i_xnid_write(dn->inode, dn->nid); 1266 1267 if (ofs == 0) 1268 inc_valid_inode_count(sbi); 1269 return page; 1270 1271fail: 1272 clear_node_page_dirty(page); 1273 f2fs_put_page(page, 1); 1274 return ERR_PTR(err); 1275} 1276 1277/* 1278 * Caller should do after getting the following values. 1279 * 0: f2fs_put_page(page, 0) 1280 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1281 */ 1282static int read_node_page(struct page *page, int op_flags) 1283{ 1284 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1285 struct node_info ni; 1286 struct f2fs_io_info fio = { 1287 .sbi = sbi, 1288 .type = NODE, 1289 .op = REQ_OP_READ, 1290 .op_flags = op_flags, 1291 .page = page, 1292 .encrypted_page = NULL, 1293 }; 1294 int err; 1295 1296 if (PageUptodate(page)) { 1297 if (!f2fs_inode_chksum_verify(sbi, page)) { 1298 ClearPageUptodate(page); 1299 return -EFSBADCRC; 1300 } 1301 return LOCKED_PAGE; 1302 } 1303 1304 err = f2fs_get_node_info(sbi, page->index, &ni); 1305 if (err) 1306 return err; 1307 1308 if (unlikely(ni.blk_addr == NULL_ADDR) || 1309 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) { 1310 ClearPageUptodate(page); 1311 return -ENOENT; 1312 } 1313 1314 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1315 1316 err = f2fs_submit_page_bio(&fio); 1317 1318 if (!err) 1319 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE); 1320 1321 return err; 1322} 1323 1324/* 1325 * Readahead a node page 1326 */ 1327void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1328{ 1329 struct page *apage; 1330 int err; 1331 1332 if (!nid) 1333 return; 1334 if (f2fs_check_nid_range(sbi, nid)) 1335 return; 1336 1337 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); 1338 if (apage) 1339 return; 1340 1341 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1342 if (!apage) 1343 return; 1344 1345 err = read_node_page(apage, REQ_RAHEAD); 1346 f2fs_put_page(apage, err ? 1 : 0); 1347} 1348 1349static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1350 struct page *parent, int start) 1351{ 1352 struct page *page; 1353 int err; 1354 1355 if (!nid) 1356 return ERR_PTR(-ENOENT); 1357 if (f2fs_check_nid_range(sbi, nid)) 1358 return ERR_PTR(-EINVAL); 1359repeat: 1360 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1361 if (!page) 1362 return ERR_PTR(-ENOMEM); 1363 1364 err = read_node_page(page, 0); 1365 if (err < 0) { 1366 f2fs_put_page(page, 1); 1367 return ERR_PTR(err); 1368 } else if (err == LOCKED_PAGE) { 1369 err = 0; 1370 goto page_hit; 1371 } 1372 1373 if (parent) 1374 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1375 1376 lock_page(page); 1377 1378 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1379 f2fs_put_page(page, 1); 1380 goto repeat; 1381 } 1382 1383 if (unlikely(!PageUptodate(page))) { 1384 err = -EIO; 1385 goto out_err; 1386 } 1387 1388 if (!f2fs_inode_chksum_verify(sbi, page)) { 1389 err = -EFSBADCRC; 1390 goto out_err; 1391 } 1392page_hit: 1393 if(unlikely(nid != nid_of_node(page))) { 1394 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1395 nid, nid_of_node(page), ino_of_node(page), 1396 ofs_of_node(page), cpver_of_node(page), 1397 next_blkaddr_of_node(page)); 1398 set_sbi_flag(sbi, SBI_NEED_FSCK); 1399 err = -EINVAL; 1400out_err: 1401 ClearPageUptodate(page); 1402 f2fs_put_page(page, 1); 1403 return ERR_PTR(err); 1404 } 1405 return page; 1406} 1407 1408struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1409{ 1410 return __get_node_page(sbi, nid, NULL, 0); 1411} 1412 1413struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1414{ 1415 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1416 nid_t nid = get_nid(parent, start, false); 1417 1418 return __get_node_page(sbi, nid, parent, start); 1419} 1420 1421static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1422{ 1423 struct inode *inode; 1424 struct page *page; 1425 int ret; 1426 1427 /* should flush inline_data before evict_inode */ 1428 inode = ilookup(sbi->sb, ino); 1429 if (!inode) 1430 return; 1431 1432 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1433 FGP_LOCK|FGP_NOWAIT, 0); 1434 if (!page) 1435 goto iput_out; 1436 1437 if (!PageUptodate(page)) 1438 goto page_out; 1439 1440 if (!PageDirty(page)) 1441 goto page_out; 1442 1443 if (!clear_page_dirty_for_io(page)) 1444 goto page_out; 1445 1446 ret = f2fs_write_inline_data(inode, page); 1447 inode_dec_dirty_pages(inode); 1448 f2fs_remove_dirty_inode(inode); 1449 if (ret) 1450 set_page_dirty(page); 1451page_out: 1452 f2fs_put_page(page, 1); 1453iput_out: 1454 iput(inode); 1455} 1456 1457static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1458{ 1459 pgoff_t index; 1460 struct pagevec pvec; 1461 struct page *last_page = NULL; 1462 int nr_pages; 1463 1464 pagevec_init(&pvec); 1465 index = 0; 1466 1467 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1468 PAGECACHE_TAG_DIRTY))) { 1469 int i; 1470 1471 for (i = 0; i < nr_pages; i++) { 1472 struct page *page = pvec.pages[i]; 1473 1474 if (unlikely(f2fs_cp_error(sbi))) { 1475 f2fs_put_page(last_page, 0); 1476 pagevec_release(&pvec); 1477 return ERR_PTR(-EIO); 1478 } 1479 1480 if (!IS_DNODE(page) || !is_cold_node(page)) 1481 continue; 1482 if (ino_of_node(page) != ino) 1483 continue; 1484 1485 lock_page(page); 1486 1487 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1488continue_unlock: 1489 unlock_page(page); 1490 continue; 1491 } 1492 if (ino_of_node(page) != ino) 1493 goto continue_unlock; 1494 1495 if (!PageDirty(page)) { 1496 /* someone wrote it for us */ 1497 goto continue_unlock; 1498 } 1499 1500 if (last_page) 1501 f2fs_put_page(last_page, 0); 1502 1503 get_page(page); 1504 last_page = page; 1505 unlock_page(page); 1506 } 1507 pagevec_release(&pvec); 1508 cond_resched(); 1509 } 1510 return last_page; 1511} 1512 1513static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1514 struct writeback_control *wbc, bool do_balance, 1515 enum iostat_type io_type, unsigned int *seq_id) 1516{ 1517 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1518 nid_t nid; 1519 struct node_info ni; 1520 struct f2fs_io_info fio = { 1521 .sbi = sbi, 1522 .ino = ino_of_node(page), 1523 .type = NODE, 1524 .op = REQ_OP_WRITE, 1525 .op_flags = wbc_to_write_flags(wbc), 1526 .page = page, 1527 .encrypted_page = NULL, 1528 .submitted = false, 1529 .io_type = io_type, 1530 .io_wbc = wbc, 1531 }; 1532 unsigned int seq; 1533 1534 trace_f2fs_writepage(page, NODE); 1535 1536 if (unlikely(f2fs_cp_error(sbi))) { 1537 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) { 1538 ClearPageUptodate(page); 1539 dec_page_count(sbi, F2FS_DIRTY_NODES); 1540 unlock_page(page); 1541 return 0; 1542 } 1543 goto redirty_out; 1544 } 1545 1546 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1547 goto redirty_out; 1548 1549 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1550 wbc->sync_mode == WB_SYNC_NONE && 1551 IS_DNODE(page) && is_cold_node(page)) 1552 goto redirty_out; 1553 1554 /* get old block addr of this node page */ 1555 nid = nid_of_node(page); 1556 f2fs_bug_on(sbi, page->index != nid); 1557 1558 if (f2fs_get_node_info(sbi, nid, &ni)) 1559 goto redirty_out; 1560 1561 if (wbc->for_reclaim) { 1562 if (!down_read_trylock(&sbi->node_write)) 1563 goto redirty_out; 1564 } else { 1565 down_read(&sbi->node_write); 1566 } 1567 1568 /* This page is already truncated */ 1569 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1570 ClearPageUptodate(page); 1571 dec_page_count(sbi, F2FS_DIRTY_NODES); 1572 up_read(&sbi->node_write); 1573 unlock_page(page); 1574 return 0; 1575 } 1576 1577 if (__is_valid_data_blkaddr(ni.blk_addr) && 1578 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, 1579 DATA_GENERIC_ENHANCE)) { 1580 up_read(&sbi->node_write); 1581 goto redirty_out; 1582 } 1583 1584 if (atomic && !test_opt(sbi, NOBARRIER)) 1585 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1586 1587 /* should add to global list before clearing PAGECACHE status */ 1588 if (f2fs_in_warm_node_list(sbi, page)) { 1589 seq = f2fs_add_fsync_node_entry(sbi, page); 1590 if (seq_id) 1591 *seq_id = seq; 1592 } 1593 1594 set_page_writeback(page); 1595 ClearPageError(page); 1596 1597 fio.old_blkaddr = ni.blk_addr; 1598 f2fs_do_write_node_page(nid, &fio); 1599 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1600 dec_page_count(sbi, F2FS_DIRTY_NODES); 1601 up_read(&sbi->node_write); 1602 1603 if (wbc->for_reclaim) { 1604 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); 1605 submitted = NULL; 1606 } 1607 1608 unlock_page(page); 1609 1610 if (unlikely(f2fs_cp_error(sbi))) { 1611 f2fs_submit_merged_write(sbi, NODE); 1612 submitted = NULL; 1613 } 1614 if (submitted) 1615 *submitted = fio.submitted; 1616 1617 if (do_balance) 1618 f2fs_balance_fs(sbi, false); 1619 return 0; 1620 1621redirty_out: 1622 redirty_page_for_writepage(wbc, page); 1623 return AOP_WRITEPAGE_ACTIVATE; 1624} 1625 1626int f2fs_move_node_page(struct page *node_page, int gc_type) 1627{ 1628 int err = 0; 1629 1630 if (gc_type == FG_GC) { 1631 struct writeback_control wbc = { 1632 .sync_mode = WB_SYNC_ALL, 1633 .nr_to_write = 1, 1634 .for_reclaim = 0, 1635 }; 1636 1637 f2fs_wait_on_page_writeback(node_page, NODE, true, true); 1638 1639 set_page_dirty(node_page); 1640 1641 if (!clear_page_dirty_for_io(node_page)) { 1642 err = -EAGAIN; 1643 goto out_page; 1644 } 1645 1646 if (__write_node_page(node_page, false, NULL, 1647 &wbc, false, FS_GC_NODE_IO, NULL)) { 1648 err = -EAGAIN; 1649 unlock_page(node_page); 1650 } 1651 goto release_page; 1652 } else { 1653 /* set page dirty and write it */ 1654 if (!PageWriteback(node_page)) 1655 set_page_dirty(node_page); 1656 } 1657out_page: 1658 unlock_page(node_page); 1659release_page: 1660 f2fs_put_page(node_page, 0); 1661 return err; 1662} 1663 1664static int f2fs_write_node_page(struct page *page, 1665 struct writeback_control *wbc) 1666{ 1667 return __write_node_page(page, false, NULL, wbc, false, 1668 FS_NODE_IO, NULL); 1669} 1670 1671int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1672 struct writeback_control *wbc, bool atomic, 1673 unsigned int *seq_id) 1674{ 1675 pgoff_t index; 1676 struct pagevec pvec; 1677 int ret = 0; 1678 struct page *last_page = NULL; 1679 bool marked = false; 1680 nid_t ino = inode->i_ino; 1681 int nr_pages; 1682 int nwritten = 0; 1683 1684 if (atomic) { 1685 last_page = last_fsync_dnode(sbi, ino); 1686 if (IS_ERR_OR_NULL(last_page)) 1687 return PTR_ERR_OR_ZERO(last_page); 1688 } 1689retry: 1690 pagevec_init(&pvec); 1691 index = 0; 1692 1693 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1694 PAGECACHE_TAG_DIRTY))) { 1695 int i; 1696 1697 for (i = 0; i < nr_pages; i++) { 1698 struct page *page = pvec.pages[i]; 1699 bool submitted = false; 1700 1701 if (unlikely(f2fs_cp_error(sbi))) { 1702 f2fs_put_page(last_page, 0); 1703 pagevec_release(&pvec); 1704 ret = -EIO; 1705 goto out; 1706 } 1707 1708 if (!IS_DNODE(page) || !is_cold_node(page)) 1709 continue; 1710 if (ino_of_node(page) != ino) 1711 continue; 1712 1713 lock_page(page); 1714 1715 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1716continue_unlock: 1717 unlock_page(page); 1718 continue; 1719 } 1720 if (ino_of_node(page) != ino) 1721 goto continue_unlock; 1722 1723 if (!PageDirty(page) && page != last_page) { 1724 /* someone wrote it for us */ 1725 goto continue_unlock; 1726 } 1727 1728 f2fs_wait_on_page_writeback(page, NODE, true, true); 1729 1730 set_fsync_mark(page, 0); 1731 set_dentry_mark(page, 0); 1732 1733 if (!atomic || page == last_page) { 1734 set_fsync_mark(page, 1); 1735 if (IS_INODE(page)) { 1736 if (is_inode_flag_set(inode, 1737 FI_DIRTY_INODE)) 1738 f2fs_update_inode(inode, page); 1739 set_dentry_mark(page, 1740 f2fs_need_dentry_mark(sbi, ino)); 1741 } 1742 /* may be written by other thread */ 1743 if (!PageDirty(page)) 1744 set_page_dirty(page); 1745 } 1746 1747 if (!clear_page_dirty_for_io(page)) 1748 goto continue_unlock; 1749 1750 ret = __write_node_page(page, atomic && 1751 page == last_page, 1752 &submitted, wbc, true, 1753 FS_NODE_IO, seq_id); 1754 if (ret) { 1755 unlock_page(page); 1756 f2fs_put_page(last_page, 0); 1757 break; 1758 } else if (submitted) { 1759 nwritten++; 1760 } 1761 1762 if (page == last_page) { 1763 f2fs_put_page(page, 0); 1764 marked = true; 1765 break; 1766 } 1767 } 1768 pagevec_release(&pvec); 1769 cond_resched(); 1770 1771 if (ret || marked) 1772 break; 1773 } 1774 if (!ret && atomic && !marked) { 1775 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", 1776 ino, last_page->index); 1777 lock_page(last_page); 1778 f2fs_wait_on_page_writeback(last_page, NODE, true, true); 1779 set_page_dirty(last_page); 1780 unlock_page(last_page); 1781 goto retry; 1782 } 1783out: 1784 if (nwritten) 1785 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); 1786 return ret ? -EIO: 0; 1787} 1788 1789static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) 1790{ 1791 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1792 bool clean; 1793 1794 if (inode->i_ino != ino) 1795 return 0; 1796 1797 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) 1798 return 0; 1799 1800 spin_lock(&sbi->inode_lock[DIRTY_META]); 1801 clean = list_empty(&F2FS_I(inode)->gdirty_list); 1802 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1803 1804 if (clean) 1805 return 0; 1806 1807 inode = igrab(inode); 1808 if (!inode) 1809 return 0; 1810 return 1; 1811} 1812 1813static bool flush_dirty_inode(struct page *page) 1814{ 1815 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1816 struct inode *inode; 1817 nid_t ino = ino_of_node(page); 1818 1819 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); 1820 if (!inode) 1821 return false; 1822 1823 f2fs_update_inode(inode, page); 1824 unlock_page(page); 1825 1826 iput(inode); 1827 return true; 1828} 1829 1830void f2fs_flush_inline_data(struct f2fs_sb_info *sbi) 1831{ 1832 pgoff_t index = 0; 1833 struct pagevec pvec; 1834 int nr_pages; 1835 1836 pagevec_init(&pvec); 1837 1838 while ((nr_pages = pagevec_lookup_tag(&pvec, 1839 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1840 int i; 1841 1842 for (i = 0; i < nr_pages; i++) { 1843 struct page *page = pvec.pages[i]; 1844 1845 if (!IS_DNODE(page)) 1846 continue; 1847 1848 lock_page(page); 1849 1850 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1851continue_unlock: 1852 unlock_page(page); 1853 continue; 1854 } 1855 1856 if (!PageDirty(page)) { 1857 /* someone wrote it for us */ 1858 goto continue_unlock; 1859 } 1860 1861 /* flush inline_data, if it's async context. */ 1862 if (is_inline_node(page)) { 1863 clear_inline_node(page); 1864 unlock_page(page); 1865 flush_inline_data(sbi, ino_of_node(page)); 1866 continue; 1867 } 1868 unlock_page(page); 1869 } 1870 pagevec_release(&pvec); 1871 cond_resched(); 1872 } 1873} 1874 1875int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1876 struct writeback_control *wbc, 1877 bool do_balance, enum iostat_type io_type) 1878{ 1879 pgoff_t index; 1880 struct pagevec pvec; 1881 int step = 0; 1882 int nwritten = 0; 1883 int ret = 0; 1884 int nr_pages, done = 0; 1885 1886 pagevec_init(&pvec); 1887 1888next_step: 1889 index = 0; 1890 1891 while (!done && (nr_pages = pagevec_lookup_tag(&pvec, 1892 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1893 int i; 1894 1895 for (i = 0; i < nr_pages; i++) { 1896 struct page *page = pvec.pages[i]; 1897 bool submitted = false; 1898 bool may_dirty = true; 1899 1900 /* give a priority to WB_SYNC threads */ 1901 if (atomic_read(&sbi->wb_sync_req[NODE]) && 1902 wbc->sync_mode == WB_SYNC_NONE) { 1903 done = 1; 1904 break; 1905 } 1906 1907 /* 1908 * flushing sequence with step: 1909 * 0. indirect nodes 1910 * 1. dentry dnodes 1911 * 2. file dnodes 1912 */ 1913 if (step == 0 && IS_DNODE(page)) 1914 continue; 1915 if (step == 1 && (!IS_DNODE(page) || 1916 is_cold_node(page))) 1917 continue; 1918 if (step == 2 && (!IS_DNODE(page) || 1919 !is_cold_node(page))) 1920 continue; 1921lock_node: 1922 if (wbc->sync_mode == WB_SYNC_ALL) 1923 lock_page(page); 1924 else if (!trylock_page(page)) 1925 continue; 1926 1927 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1928continue_unlock: 1929 unlock_page(page); 1930 continue; 1931 } 1932 1933 if (!PageDirty(page)) { 1934 /* someone wrote it for us */ 1935 goto continue_unlock; 1936 } 1937 1938 /* flush inline_data/inode, if it's async context. */ 1939 if (!do_balance) 1940 goto write_node; 1941 1942 /* flush inline_data */ 1943 if (is_inline_node(page)) { 1944 clear_inline_node(page); 1945 unlock_page(page); 1946 flush_inline_data(sbi, ino_of_node(page)); 1947 goto lock_node; 1948 } 1949 1950 /* flush dirty inode */ 1951 if (IS_INODE(page) && may_dirty) { 1952 may_dirty = false; 1953 if (flush_dirty_inode(page)) 1954 goto lock_node; 1955 } 1956write_node: 1957 f2fs_wait_on_page_writeback(page, NODE, true, true); 1958 1959 if (!clear_page_dirty_for_io(page)) 1960 goto continue_unlock; 1961 1962 set_fsync_mark(page, 0); 1963 set_dentry_mark(page, 0); 1964 1965 ret = __write_node_page(page, false, &submitted, 1966 wbc, do_balance, io_type, NULL); 1967 if (ret) 1968 unlock_page(page); 1969 else if (submitted) 1970 nwritten++; 1971 1972 if (--wbc->nr_to_write == 0) 1973 break; 1974 } 1975 pagevec_release(&pvec); 1976 cond_resched(); 1977 1978 if (wbc->nr_to_write == 0) { 1979 step = 2; 1980 break; 1981 } 1982 } 1983 1984 if (step < 2) { 1985 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1986 wbc->sync_mode == WB_SYNC_NONE && step == 1) 1987 goto out; 1988 step++; 1989 goto next_step; 1990 } 1991out: 1992 if (nwritten) 1993 f2fs_submit_merged_write(sbi, NODE); 1994 1995 if (unlikely(f2fs_cp_error(sbi))) 1996 return -EIO; 1997 return ret; 1998} 1999 2000int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 2001 unsigned int seq_id) 2002{ 2003 struct fsync_node_entry *fn; 2004 struct page *page; 2005 struct list_head *head = &sbi->fsync_node_list; 2006 unsigned long flags; 2007 unsigned int cur_seq_id = 0; 2008 int ret2, ret = 0; 2009 2010 while (seq_id && cur_seq_id < seq_id) { 2011 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 2012 if (list_empty(head)) { 2013 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2014 break; 2015 } 2016 fn = list_first_entry(head, struct fsync_node_entry, list); 2017 if (fn->seq_id > seq_id) { 2018 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2019 break; 2020 } 2021 cur_seq_id = fn->seq_id; 2022 page = fn->page; 2023 get_page(page); 2024 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2025 2026 f2fs_wait_on_page_writeback(page, NODE, true, false); 2027 if (TestClearPageError(page)) 2028 ret = -EIO; 2029 2030 put_page(page); 2031 2032 if (ret) 2033 break; 2034 } 2035 2036 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 2037 if (!ret) 2038 ret = ret2; 2039 2040 return ret; 2041} 2042 2043static int f2fs_write_node_pages(struct address_space *mapping, 2044 struct writeback_control *wbc) 2045{ 2046 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2047 struct blk_plug plug; 2048 long diff; 2049 2050 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2051 goto skip_write; 2052 2053 /* balancing f2fs's metadata in background */ 2054 f2fs_balance_fs_bg(sbi, true); 2055 2056 /* collect a number of dirty node pages and write together */ 2057 if (wbc->sync_mode != WB_SYNC_ALL && 2058 get_pages(sbi, F2FS_DIRTY_NODES) < 2059 nr_pages_to_skip(sbi, NODE)) 2060 goto skip_write; 2061 2062 if (wbc->sync_mode == WB_SYNC_ALL) 2063 atomic_inc(&sbi->wb_sync_req[NODE]); 2064 else if (atomic_read(&sbi->wb_sync_req[NODE])) { 2065 /* to avoid potential deadlock */ 2066 if (current->plug) 2067 blk_finish_plug(current->plug); 2068 goto skip_write; 2069 } 2070 2071 trace_f2fs_writepages(mapping->host, wbc, NODE); 2072 2073 diff = nr_pages_to_write(sbi, NODE, wbc); 2074 blk_start_plug(&plug); 2075 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 2076 blk_finish_plug(&plug); 2077 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 2078 2079 if (wbc->sync_mode == WB_SYNC_ALL) 2080 atomic_dec(&sbi->wb_sync_req[NODE]); 2081 return 0; 2082 2083skip_write: 2084 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 2085 trace_f2fs_writepages(mapping->host, wbc, NODE); 2086 return 0; 2087} 2088 2089static int f2fs_set_node_page_dirty(struct page *page) 2090{ 2091 trace_f2fs_set_page_dirty(page, NODE); 2092 2093 if (!PageUptodate(page)) 2094 SetPageUptodate(page); 2095#ifdef CONFIG_F2FS_CHECK_FS 2096 if (IS_INODE(page)) 2097 f2fs_inode_chksum_set(F2FS_P_SB(page), page); 2098#endif 2099 if (!PageDirty(page)) { 2100 __set_page_dirty_nobuffers(page); 2101 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 2102 f2fs_set_page_private(page, 0); 2103 f2fs_trace_pid(page); 2104 return 1; 2105 } 2106 return 0; 2107} 2108 2109/* 2110 * Structure of the f2fs node operations 2111 */ 2112const struct address_space_operations f2fs_node_aops = { 2113 .writepage = f2fs_write_node_page, 2114 .writepages = f2fs_write_node_pages, 2115 .set_page_dirty = f2fs_set_node_page_dirty, 2116 .invalidatepage = f2fs_invalidate_page, 2117 .releasepage = f2fs_release_page, 2118#ifdef CONFIG_MIGRATION 2119 .migratepage = f2fs_migrate_page, 2120#endif 2121}; 2122 2123static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 2124 nid_t n) 2125{ 2126 return radix_tree_lookup(&nm_i->free_nid_root, n); 2127} 2128 2129static int __insert_free_nid(struct f2fs_sb_info *sbi, 2130 struct free_nid *i) 2131{ 2132 struct f2fs_nm_info *nm_i = NM_I(sbi); 2133 2134 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 2135 if (err) 2136 return err; 2137 2138 nm_i->nid_cnt[FREE_NID]++; 2139 list_add_tail(&i->list, &nm_i->free_nid_list); 2140 return 0; 2141} 2142 2143static void __remove_free_nid(struct f2fs_sb_info *sbi, 2144 struct free_nid *i, enum nid_state state) 2145{ 2146 struct f2fs_nm_info *nm_i = NM_I(sbi); 2147 2148 f2fs_bug_on(sbi, state != i->state); 2149 nm_i->nid_cnt[state]--; 2150 if (state == FREE_NID) 2151 list_del(&i->list); 2152 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2153} 2154 2155static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2156 enum nid_state org_state, enum nid_state dst_state) 2157{ 2158 struct f2fs_nm_info *nm_i = NM_I(sbi); 2159 2160 f2fs_bug_on(sbi, org_state != i->state); 2161 i->state = dst_state; 2162 nm_i->nid_cnt[org_state]--; 2163 nm_i->nid_cnt[dst_state]++; 2164 2165 switch (dst_state) { 2166 case PREALLOC_NID: 2167 list_del(&i->list); 2168 break; 2169 case FREE_NID: 2170 list_add_tail(&i->list, &nm_i->free_nid_list); 2171 break; 2172 default: 2173 BUG_ON(1); 2174 } 2175} 2176 2177static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2178 bool set, bool build) 2179{ 2180 struct f2fs_nm_info *nm_i = NM_I(sbi); 2181 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2182 unsigned int nid_ofs = nid - START_NID(nid); 2183 2184 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2185 return; 2186 2187 if (set) { 2188 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2189 return; 2190 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2191 nm_i->free_nid_count[nat_ofs]++; 2192 } else { 2193 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2194 return; 2195 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2196 if (!build) 2197 nm_i->free_nid_count[nat_ofs]--; 2198 } 2199} 2200 2201/* return if the nid is recognized as free */ 2202static bool add_free_nid(struct f2fs_sb_info *sbi, 2203 nid_t nid, bool build, bool update) 2204{ 2205 struct f2fs_nm_info *nm_i = NM_I(sbi); 2206 struct free_nid *i, *e; 2207 struct nat_entry *ne; 2208 int err = -EINVAL; 2209 bool ret = false; 2210 2211 /* 0 nid should not be used */ 2212 if (unlikely(nid == 0)) 2213 return false; 2214 2215 if (unlikely(f2fs_check_nid_range(sbi, nid))) 2216 return false; 2217 2218 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 2219 i->nid = nid; 2220 i->state = FREE_NID; 2221 2222 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2223 2224 spin_lock(&nm_i->nid_list_lock); 2225 2226 if (build) { 2227 /* 2228 * Thread A Thread B 2229 * - f2fs_create 2230 * - f2fs_new_inode 2231 * - f2fs_alloc_nid 2232 * - __insert_nid_to_list(PREALLOC_NID) 2233 * - f2fs_balance_fs_bg 2234 * - f2fs_build_free_nids 2235 * - __f2fs_build_free_nids 2236 * - scan_nat_page 2237 * - add_free_nid 2238 * - __lookup_nat_cache 2239 * - f2fs_add_link 2240 * - f2fs_init_inode_metadata 2241 * - f2fs_new_inode_page 2242 * - f2fs_new_node_page 2243 * - set_node_addr 2244 * - f2fs_alloc_nid_done 2245 * - __remove_nid_from_list(PREALLOC_NID) 2246 * - __insert_nid_to_list(FREE_NID) 2247 */ 2248 ne = __lookup_nat_cache(nm_i, nid); 2249 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2250 nat_get_blkaddr(ne) != NULL_ADDR)) 2251 goto err_out; 2252 2253 e = __lookup_free_nid_list(nm_i, nid); 2254 if (e) { 2255 if (e->state == FREE_NID) 2256 ret = true; 2257 goto err_out; 2258 } 2259 } 2260 ret = true; 2261 err = __insert_free_nid(sbi, i); 2262err_out: 2263 if (update) { 2264 update_free_nid_bitmap(sbi, nid, ret, build); 2265 if (!build) 2266 nm_i->available_nids++; 2267 } 2268 spin_unlock(&nm_i->nid_list_lock); 2269 radix_tree_preload_end(); 2270 2271 if (err) 2272 kmem_cache_free(free_nid_slab, i); 2273 return ret; 2274} 2275 2276static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2277{ 2278 struct f2fs_nm_info *nm_i = NM_I(sbi); 2279 struct free_nid *i; 2280 bool need_free = false; 2281 2282 spin_lock(&nm_i->nid_list_lock); 2283 i = __lookup_free_nid_list(nm_i, nid); 2284 if (i && i->state == FREE_NID) { 2285 __remove_free_nid(sbi, i, FREE_NID); 2286 need_free = true; 2287 } 2288 spin_unlock(&nm_i->nid_list_lock); 2289 2290 if (need_free) 2291 kmem_cache_free(free_nid_slab, i); 2292} 2293 2294static int scan_nat_page(struct f2fs_sb_info *sbi, 2295 struct page *nat_page, nid_t start_nid) 2296{ 2297 struct f2fs_nm_info *nm_i = NM_I(sbi); 2298 struct f2fs_nat_block *nat_blk = page_address(nat_page); 2299 block_t blk_addr; 2300 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2301 int i; 2302 2303 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2304 2305 i = start_nid % NAT_ENTRY_PER_BLOCK; 2306 2307 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2308 if (unlikely(start_nid >= nm_i->max_nid)) 2309 break; 2310 2311 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2312 2313 if (blk_addr == NEW_ADDR) 2314 return -EINVAL; 2315 2316 if (blk_addr == NULL_ADDR) { 2317 add_free_nid(sbi, start_nid, true, true); 2318 } else { 2319 spin_lock(&NM_I(sbi)->nid_list_lock); 2320 update_free_nid_bitmap(sbi, start_nid, false, true); 2321 spin_unlock(&NM_I(sbi)->nid_list_lock); 2322 } 2323 } 2324 2325 return 0; 2326} 2327 2328static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2329{ 2330 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2331 struct f2fs_journal *journal = curseg->journal; 2332 int i; 2333 2334 down_read(&curseg->journal_rwsem); 2335 for (i = 0; i < nats_in_cursum(journal); i++) { 2336 block_t addr; 2337 nid_t nid; 2338 2339 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2340 nid = le32_to_cpu(nid_in_journal(journal, i)); 2341 if (addr == NULL_ADDR) 2342 add_free_nid(sbi, nid, true, false); 2343 else 2344 remove_free_nid(sbi, nid); 2345 } 2346 up_read(&curseg->journal_rwsem); 2347} 2348 2349static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2350{ 2351 struct f2fs_nm_info *nm_i = NM_I(sbi); 2352 unsigned int i, idx; 2353 nid_t nid; 2354 2355 down_read(&nm_i->nat_tree_lock); 2356 2357 for (i = 0; i < nm_i->nat_blocks; i++) { 2358 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2359 continue; 2360 if (!nm_i->free_nid_count[i]) 2361 continue; 2362 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2363 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2364 NAT_ENTRY_PER_BLOCK, idx); 2365 if (idx >= NAT_ENTRY_PER_BLOCK) 2366 break; 2367 2368 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2369 add_free_nid(sbi, nid, true, false); 2370 2371 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2372 goto out; 2373 } 2374 } 2375out: 2376 scan_curseg_cache(sbi); 2377 2378 up_read(&nm_i->nat_tree_lock); 2379} 2380 2381static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2382 bool sync, bool mount) 2383{ 2384 struct f2fs_nm_info *nm_i = NM_I(sbi); 2385 int i = 0, ret; 2386 nid_t nid = nm_i->next_scan_nid; 2387 2388 if (unlikely(nid >= nm_i->max_nid)) 2389 nid = 0; 2390 2391 if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) 2392 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; 2393 2394 /* Enough entries */ 2395 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2396 return 0; 2397 2398 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2399 return 0; 2400 2401 if (!mount) { 2402 /* try to find free nids in free_nid_bitmap */ 2403 scan_free_nid_bits(sbi); 2404 2405 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2406 return 0; 2407 } 2408 2409 /* readahead nat pages to be scanned */ 2410 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2411 META_NAT, true); 2412 2413 down_read(&nm_i->nat_tree_lock); 2414 2415 while (1) { 2416 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2417 nm_i->nat_block_bitmap)) { 2418 struct page *page = get_current_nat_page(sbi, nid); 2419 2420 if (IS_ERR(page)) { 2421 ret = PTR_ERR(page); 2422 } else { 2423 ret = scan_nat_page(sbi, page, nid); 2424 f2fs_put_page(page, 1); 2425 } 2426 2427 if (ret) { 2428 up_read(&nm_i->nat_tree_lock); 2429 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); 2430 return ret; 2431 } 2432 } 2433 2434 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2435 if (unlikely(nid >= nm_i->max_nid)) 2436 nid = 0; 2437 2438 if (++i >= FREE_NID_PAGES) 2439 break; 2440 } 2441 2442 /* go to the next free nat pages to find free nids abundantly */ 2443 nm_i->next_scan_nid = nid; 2444 2445 /* find free nids from current sum_pages */ 2446 scan_curseg_cache(sbi); 2447 2448 up_read(&nm_i->nat_tree_lock); 2449 2450 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2451 nm_i->ra_nid_pages, META_NAT, false); 2452 2453 return 0; 2454} 2455 2456int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2457{ 2458 int ret; 2459 2460 mutex_lock(&NM_I(sbi)->build_lock); 2461 ret = __f2fs_build_free_nids(sbi, sync, mount); 2462 mutex_unlock(&NM_I(sbi)->build_lock); 2463 2464 return ret; 2465} 2466 2467/* 2468 * If this function returns success, caller can obtain a new nid 2469 * from second parameter of this function. 2470 * The returned nid could be used ino as well as nid when inode is created. 2471 */ 2472bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2473{ 2474 struct f2fs_nm_info *nm_i = NM_I(sbi); 2475 struct free_nid *i = NULL; 2476retry: 2477 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2478 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID); 2479 return false; 2480 } 2481 2482 spin_lock(&nm_i->nid_list_lock); 2483 2484 if (unlikely(nm_i->available_nids == 0)) { 2485 spin_unlock(&nm_i->nid_list_lock); 2486 return false; 2487 } 2488 2489 /* We should not use stale free nids created by f2fs_build_free_nids */ 2490 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2491 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2492 i = list_first_entry(&nm_i->free_nid_list, 2493 struct free_nid, list); 2494 *nid = i->nid; 2495 2496 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2497 nm_i->available_nids--; 2498 2499 update_free_nid_bitmap(sbi, *nid, false, false); 2500 2501 spin_unlock(&nm_i->nid_list_lock); 2502 return true; 2503 } 2504 spin_unlock(&nm_i->nid_list_lock); 2505 2506 /* Let's scan nat pages and its caches to get free nids */ 2507 if (!f2fs_build_free_nids(sbi, true, false)) 2508 goto retry; 2509 return false; 2510} 2511 2512/* 2513 * f2fs_alloc_nid() should be called prior to this function. 2514 */ 2515void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2516{ 2517 struct f2fs_nm_info *nm_i = NM_I(sbi); 2518 struct free_nid *i; 2519 2520 spin_lock(&nm_i->nid_list_lock); 2521 i = __lookup_free_nid_list(nm_i, nid); 2522 f2fs_bug_on(sbi, !i); 2523 __remove_free_nid(sbi, i, PREALLOC_NID); 2524 spin_unlock(&nm_i->nid_list_lock); 2525 2526 kmem_cache_free(free_nid_slab, i); 2527} 2528 2529/* 2530 * f2fs_alloc_nid() should be called prior to this function. 2531 */ 2532void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2533{ 2534 struct f2fs_nm_info *nm_i = NM_I(sbi); 2535 struct free_nid *i; 2536 bool need_free = false; 2537 2538 if (!nid) 2539 return; 2540 2541 spin_lock(&nm_i->nid_list_lock); 2542 i = __lookup_free_nid_list(nm_i, nid); 2543 f2fs_bug_on(sbi, !i); 2544 2545 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2546 __remove_free_nid(sbi, i, PREALLOC_NID); 2547 need_free = true; 2548 } else { 2549 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2550 } 2551 2552 nm_i->available_nids++; 2553 2554 update_free_nid_bitmap(sbi, nid, true, false); 2555 2556 spin_unlock(&nm_i->nid_list_lock); 2557 2558 if (need_free) 2559 kmem_cache_free(free_nid_slab, i); 2560} 2561 2562int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2563{ 2564 struct f2fs_nm_info *nm_i = NM_I(sbi); 2565 int nr = nr_shrink; 2566 2567 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2568 return 0; 2569 2570 if (!mutex_trylock(&nm_i->build_lock)) 2571 return 0; 2572 2573 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) { 2574 struct free_nid *i, *next; 2575 unsigned int batch = SHRINK_NID_BATCH_SIZE; 2576 2577 spin_lock(&nm_i->nid_list_lock); 2578 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2579 if (!nr_shrink || !batch || 2580 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2581 break; 2582 __remove_free_nid(sbi, i, FREE_NID); 2583 kmem_cache_free(free_nid_slab, i); 2584 nr_shrink--; 2585 batch--; 2586 } 2587 spin_unlock(&nm_i->nid_list_lock); 2588 } 2589 2590 mutex_unlock(&nm_i->build_lock); 2591 2592 return nr - nr_shrink; 2593} 2594 2595int f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2596{ 2597 void *src_addr, *dst_addr; 2598 size_t inline_size; 2599 struct page *ipage; 2600 struct f2fs_inode *ri; 2601 2602 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2603 if (IS_ERR(ipage)) 2604 return PTR_ERR(ipage); 2605 2606 ri = F2FS_INODE(page); 2607 if (ri->i_inline & F2FS_INLINE_XATTR) { 2608 set_inode_flag(inode, FI_INLINE_XATTR); 2609 } else { 2610 clear_inode_flag(inode, FI_INLINE_XATTR); 2611 goto update_inode; 2612 } 2613 2614 dst_addr = inline_xattr_addr(inode, ipage); 2615 src_addr = inline_xattr_addr(inode, page); 2616 inline_size = inline_xattr_size(inode); 2617 2618 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 2619 memcpy(dst_addr, src_addr, inline_size); 2620update_inode: 2621 f2fs_update_inode(inode, ipage); 2622 f2fs_put_page(ipage, 1); 2623 return 0; 2624} 2625 2626int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2627{ 2628 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2629 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2630 nid_t new_xnid; 2631 struct dnode_of_data dn; 2632 struct node_info ni; 2633 struct page *xpage; 2634 int err; 2635 2636 if (!prev_xnid) 2637 goto recover_xnid; 2638 2639 /* 1: invalidate the previous xattr nid */ 2640 err = f2fs_get_node_info(sbi, prev_xnid, &ni); 2641 if (err) 2642 return err; 2643 2644 f2fs_invalidate_blocks(sbi, ni.blk_addr); 2645 dec_valid_node_count(sbi, inode, false); 2646 set_node_addr(sbi, &ni, NULL_ADDR, false); 2647 2648recover_xnid: 2649 /* 2: update xattr nid in inode */ 2650 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2651 return -ENOSPC; 2652 2653 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2654 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2655 if (IS_ERR(xpage)) { 2656 f2fs_alloc_nid_failed(sbi, new_xnid); 2657 return PTR_ERR(xpage); 2658 } 2659 2660 f2fs_alloc_nid_done(sbi, new_xnid); 2661 f2fs_update_inode_page(inode); 2662 2663 /* 3: update and set xattr node page dirty */ 2664 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); 2665 2666 set_page_dirty(xpage); 2667 f2fs_put_page(xpage, 1); 2668 2669 return 0; 2670} 2671 2672int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2673{ 2674 struct f2fs_inode *src, *dst; 2675 nid_t ino = ino_of_node(page); 2676 struct node_info old_ni, new_ni; 2677 struct page *ipage; 2678 int err; 2679 2680 err = f2fs_get_node_info(sbi, ino, &old_ni); 2681 if (err) 2682 return err; 2683 2684 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2685 return -EINVAL; 2686retry: 2687 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2688 if (!ipage) { 2689 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 2690 goto retry; 2691 } 2692 2693 /* Should not use this inode from free nid list */ 2694 remove_free_nid(sbi, ino); 2695 2696 if (!PageUptodate(ipage)) 2697 SetPageUptodate(ipage); 2698 fill_node_footer(ipage, ino, ino, 0, true); 2699 set_cold_node(ipage, false); 2700 2701 src = F2FS_INODE(page); 2702 dst = F2FS_INODE(ipage); 2703 2704 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 2705 dst->i_size = 0; 2706 dst->i_blocks = cpu_to_le64(1); 2707 dst->i_links = cpu_to_le32(1); 2708 dst->i_xattr_nid = 0; 2709 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2710 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2711 dst->i_extra_isize = src->i_extra_isize; 2712 2713 if (f2fs_sb_has_flexible_inline_xattr(sbi) && 2714 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2715 i_inline_xattr_size)) 2716 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2717 2718 if (f2fs_sb_has_project_quota(sbi) && 2719 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2720 i_projid)) 2721 dst->i_projid = src->i_projid; 2722 2723 if (f2fs_sb_has_inode_crtime(sbi) && 2724 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2725 i_crtime_nsec)) { 2726 dst->i_crtime = src->i_crtime; 2727 dst->i_crtime_nsec = src->i_crtime_nsec; 2728 } 2729 } 2730 2731 new_ni = old_ni; 2732 new_ni.ino = ino; 2733 2734 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2735 WARN_ON(1); 2736 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2737 inc_valid_inode_count(sbi); 2738 set_page_dirty(ipage); 2739 f2fs_put_page(ipage, 1); 2740 return 0; 2741} 2742 2743int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2744 unsigned int segno, struct f2fs_summary_block *sum) 2745{ 2746 struct f2fs_node *rn; 2747 struct f2fs_summary *sum_entry; 2748 block_t addr; 2749 int i, idx, last_offset, nrpages; 2750 2751 /* scan the node segment */ 2752 last_offset = sbi->blocks_per_seg; 2753 addr = START_BLOCK(sbi, segno); 2754 sum_entry = &sum->entries[0]; 2755 2756 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2757 nrpages = min(last_offset - i, BIO_MAX_PAGES); 2758 2759 /* readahead node pages */ 2760 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2761 2762 for (idx = addr; idx < addr + nrpages; idx++) { 2763 struct page *page = f2fs_get_tmp_page(sbi, idx); 2764 2765 if (IS_ERR(page)) 2766 return PTR_ERR(page); 2767 2768 rn = F2FS_NODE(page); 2769 sum_entry->nid = rn->footer.nid; 2770 sum_entry->version = 0; 2771 sum_entry->ofs_in_node = 0; 2772 sum_entry++; 2773 f2fs_put_page(page, 1); 2774 } 2775 2776 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2777 addr + nrpages); 2778 } 2779 return 0; 2780} 2781 2782static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2783{ 2784 struct f2fs_nm_info *nm_i = NM_I(sbi); 2785 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2786 struct f2fs_journal *journal = curseg->journal; 2787 int i; 2788 2789 down_write(&curseg->journal_rwsem); 2790 for (i = 0; i < nats_in_cursum(journal); i++) { 2791 struct nat_entry *ne; 2792 struct f2fs_nat_entry raw_ne; 2793 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2794 2795 if (f2fs_check_nid_range(sbi, nid)) 2796 continue; 2797 2798 raw_ne = nat_in_journal(journal, i); 2799 2800 ne = __lookup_nat_cache(nm_i, nid); 2801 if (!ne) { 2802 ne = __alloc_nat_entry(nid, true); 2803 __init_nat_entry(nm_i, ne, &raw_ne, true); 2804 } 2805 2806 /* 2807 * if a free nat in journal has not been used after last 2808 * checkpoint, we should remove it from available nids, 2809 * since later we will add it again. 2810 */ 2811 if (!get_nat_flag(ne, IS_DIRTY) && 2812 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2813 spin_lock(&nm_i->nid_list_lock); 2814 nm_i->available_nids--; 2815 spin_unlock(&nm_i->nid_list_lock); 2816 } 2817 2818 __set_nat_cache_dirty(nm_i, ne); 2819 } 2820 update_nats_in_cursum(journal, -i); 2821 up_write(&curseg->journal_rwsem); 2822} 2823 2824static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2825 struct list_head *head, int max) 2826{ 2827 struct nat_entry_set *cur; 2828 2829 if (nes->entry_cnt >= max) 2830 goto add_out; 2831 2832 list_for_each_entry(cur, head, set_list) { 2833 if (cur->entry_cnt >= nes->entry_cnt) { 2834 list_add(&nes->set_list, cur->set_list.prev); 2835 return; 2836 } 2837 } 2838add_out: 2839 list_add_tail(&nes->set_list, head); 2840} 2841 2842static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2843 struct page *page) 2844{ 2845 struct f2fs_nm_info *nm_i = NM_I(sbi); 2846 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2847 struct f2fs_nat_block *nat_blk = page_address(page); 2848 int valid = 0; 2849 int i = 0; 2850 2851 if (!enabled_nat_bits(sbi, NULL)) 2852 return; 2853 2854 if (nat_index == 0) { 2855 valid = 1; 2856 i = 1; 2857 } 2858 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2859 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) 2860 valid++; 2861 } 2862 if (valid == 0) { 2863 __set_bit_le(nat_index, nm_i->empty_nat_bits); 2864 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2865 return; 2866 } 2867 2868 __clear_bit_le(nat_index, nm_i->empty_nat_bits); 2869 if (valid == NAT_ENTRY_PER_BLOCK) 2870 __set_bit_le(nat_index, nm_i->full_nat_bits); 2871 else 2872 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2873} 2874 2875static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2876 struct nat_entry_set *set, struct cp_control *cpc) 2877{ 2878 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2879 struct f2fs_journal *journal = curseg->journal; 2880 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2881 bool to_journal = true; 2882 struct f2fs_nat_block *nat_blk; 2883 struct nat_entry *ne, *cur; 2884 struct page *page = NULL; 2885 2886 /* 2887 * there are two steps to flush nat entries: 2888 * #1, flush nat entries to journal in current hot data summary block. 2889 * #2, flush nat entries to nat page. 2890 */ 2891 if (enabled_nat_bits(sbi, cpc) || 2892 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 2893 to_journal = false; 2894 2895 if (to_journal) { 2896 down_write(&curseg->journal_rwsem); 2897 } else { 2898 page = get_next_nat_page(sbi, start_nid); 2899 if (IS_ERR(page)) 2900 return PTR_ERR(page); 2901 2902 nat_blk = page_address(page); 2903 f2fs_bug_on(sbi, !nat_blk); 2904 } 2905 2906 /* flush dirty nats in nat entry set */ 2907 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 2908 struct f2fs_nat_entry *raw_ne; 2909 nid_t nid = nat_get_nid(ne); 2910 int offset; 2911 2912 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 2913 2914 if (to_journal) { 2915 offset = f2fs_lookup_journal_in_cursum(journal, 2916 NAT_JOURNAL, nid, 1); 2917 f2fs_bug_on(sbi, offset < 0); 2918 raw_ne = &nat_in_journal(journal, offset); 2919 nid_in_journal(journal, offset) = cpu_to_le32(nid); 2920 } else { 2921 raw_ne = &nat_blk->entries[nid - start_nid]; 2922 } 2923 raw_nat_from_node_info(raw_ne, &ne->ni); 2924 nat_reset_flag(ne); 2925 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 2926 if (nat_get_blkaddr(ne) == NULL_ADDR) { 2927 add_free_nid(sbi, nid, false, true); 2928 } else { 2929 spin_lock(&NM_I(sbi)->nid_list_lock); 2930 update_free_nid_bitmap(sbi, nid, false, false); 2931 spin_unlock(&NM_I(sbi)->nid_list_lock); 2932 } 2933 } 2934 2935 if (to_journal) { 2936 up_write(&curseg->journal_rwsem); 2937 } else { 2938 __update_nat_bits(sbi, start_nid, page); 2939 f2fs_put_page(page, 1); 2940 } 2941 2942 /* Allow dirty nats by node block allocation in write_begin */ 2943 if (!set->entry_cnt) { 2944 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 2945 kmem_cache_free(nat_entry_set_slab, set); 2946 } 2947 return 0; 2948} 2949 2950/* 2951 * This function is called during the checkpointing process. 2952 */ 2953int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2954{ 2955 struct f2fs_nm_info *nm_i = NM_I(sbi); 2956 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2957 struct f2fs_journal *journal = curseg->journal; 2958 struct nat_entry_set *setvec[SETVEC_SIZE]; 2959 struct nat_entry_set *set, *tmp; 2960 unsigned int found; 2961 nid_t set_idx = 0; 2962 LIST_HEAD(sets); 2963 int err = 0; 2964 2965 /* 2966 * during unmount, let's flush nat_bits before checking 2967 * nat_cnt[DIRTY_NAT]. 2968 */ 2969 if (enabled_nat_bits(sbi, cpc)) { 2970 down_write(&nm_i->nat_tree_lock); 2971 remove_nats_in_journal(sbi); 2972 up_write(&nm_i->nat_tree_lock); 2973 } 2974 2975 if (!nm_i->nat_cnt[DIRTY_NAT]) 2976 return 0; 2977 2978 down_write(&nm_i->nat_tree_lock); 2979 2980 /* 2981 * if there are no enough space in journal to store dirty nat 2982 * entries, remove all entries from journal and merge them 2983 * into nat entry set. 2984 */ 2985 if (enabled_nat_bits(sbi, cpc) || 2986 !__has_cursum_space(journal, 2987 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL)) 2988 remove_nats_in_journal(sbi); 2989 2990 while ((found = __gang_lookup_nat_set(nm_i, 2991 set_idx, SETVEC_SIZE, setvec))) { 2992 unsigned idx; 2993 set_idx = setvec[found - 1]->set + 1; 2994 for (idx = 0; idx < found; idx++) 2995 __adjust_nat_entry_set(setvec[idx], &sets, 2996 MAX_NAT_JENTRIES(journal)); 2997 } 2998 2999 /* flush dirty nats in nat entry set */ 3000 list_for_each_entry_safe(set, tmp, &sets, set_list) { 3001 err = __flush_nat_entry_set(sbi, set, cpc); 3002 if (err) 3003 break; 3004 } 3005 3006 up_write(&nm_i->nat_tree_lock); 3007 /* Allow dirty nats by node block allocation in write_begin */ 3008 3009 return err; 3010} 3011 3012static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 3013{ 3014 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3015 struct f2fs_nm_info *nm_i = NM_I(sbi); 3016 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 3017 unsigned int i; 3018 __u64 cp_ver = cur_cp_version(ckpt); 3019 block_t nat_bits_addr; 3020 3021 if (!enabled_nat_bits(sbi, NULL)) 3022 return 0; 3023 3024 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3025 nm_i->nat_bits = f2fs_kvzalloc(sbi, 3026 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 3027 if (!nm_i->nat_bits) 3028 return -ENOMEM; 3029 3030 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 3031 nm_i->nat_bits_blocks; 3032 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 3033 struct page *page; 3034 3035 page = f2fs_get_meta_page(sbi, nat_bits_addr++); 3036 if (IS_ERR(page)) 3037 return PTR_ERR(page); 3038 3039 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 3040 page_address(page), F2FS_BLKSIZE); 3041 f2fs_put_page(page, 1); 3042 } 3043 3044 cp_ver |= (cur_cp_crc(ckpt) << 32); 3045 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 3046 disable_nat_bits(sbi, true); 3047 return 0; 3048 } 3049 3050 nm_i->full_nat_bits = nm_i->nat_bits + 8; 3051 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 3052 3053 f2fs_notice(sbi, "Found nat_bits in checkpoint"); 3054 return 0; 3055} 3056 3057static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 3058{ 3059 struct f2fs_nm_info *nm_i = NM_I(sbi); 3060 unsigned int i = 0; 3061 nid_t nid, last_nid; 3062 3063 if (!enabled_nat_bits(sbi, NULL)) 3064 return; 3065 3066 for (i = 0; i < nm_i->nat_blocks; i++) { 3067 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 3068 if (i >= nm_i->nat_blocks) 3069 break; 3070 3071 __set_bit_le(i, nm_i->nat_block_bitmap); 3072 3073 nid = i * NAT_ENTRY_PER_BLOCK; 3074 last_nid = nid + NAT_ENTRY_PER_BLOCK; 3075 3076 spin_lock(&NM_I(sbi)->nid_list_lock); 3077 for (; nid < last_nid; nid++) 3078 update_free_nid_bitmap(sbi, nid, true, true); 3079 spin_unlock(&NM_I(sbi)->nid_list_lock); 3080 } 3081 3082 for (i = 0; i < nm_i->nat_blocks; i++) { 3083 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 3084 if (i >= nm_i->nat_blocks) 3085 break; 3086 3087 __set_bit_le(i, nm_i->nat_block_bitmap); 3088 } 3089} 3090 3091static int init_node_manager(struct f2fs_sb_info *sbi) 3092{ 3093 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 3094 struct f2fs_nm_info *nm_i = NM_I(sbi); 3095 unsigned char *version_bitmap; 3096 unsigned int nat_segs; 3097 int err; 3098 3099 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 3100 3101 /* segment_count_nat includes pair segment so divide to 2. */ 3102 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 3103 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 3104 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 3105 3106 /* not used nids: 0, node, meta, (and root counted as valid node) */ 3107 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 3108 F2FS_RESERVED_NODE_NUM; 3109 nm_i->nid_cnt[FREE_NID] = 0; 3110 nm_i->nid_cnt[PREALLOC_NID] = 0; 3111 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 3112 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 3113 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 3114 3115 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 3116 INIT_LIST_HEAD(&nm_i->free_nid_list); 3117 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 3118 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 3119 INIT_LIST_HEAD(&nm_i->nat_entries); 3120 spin_lock_init(&nm_i->nat_list_lock); 3121 3122 mutex_init(&nm_i->build_lock); 3123 spin_lock_init(&nm_i->nid_list_lock); 3124 init_rwsem(&nm_i->nat_tree_lock); 3125 3126 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 3127 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 3128 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 3129 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 3130 GFP_KERNEL); 3131 if (!nm_i->nat_bitmap) 3132 return -ENOMEM; 3133 3134 err = __get_nat_bitmaps(sbi); 3135 if (err) 3136 return err; 3137 3138#ifdef CONFIG_F2FS_CHECK_FS 3139 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 3140 GFP_KERNEL); 3141 if (!nm_i->nat_bitmap_mir) 3142 return -ENOMEM; 3143#endif 3144 3145 return 0; 3146} 3147 3148static int init_free_nid_cache(struct f2fs_sb_info *sbi) 3149{ 3150 struct f2fs_nm_info *nm_i = NM_I(sbi); 3151 int i; 3152 3153 nm_i->free_nid_bitmap = 3154 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *), 3155 nm_i->nat_blocks), 3156 GFP_KERNEL); 3157 if (!nm_i->free_nid_bitmap) 3158 return -ENOMEM; 3159 3160 for (i = 0; i < nm_i->nat_blocks; i++) { 3161 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 3162 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 3163 if (!nm_i->free_nid_bitmap[i]) 3164 return -ENOMEM; 3165 } 3166 3167 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 3168 GFP_KERNEL); 3169 if (!nm_i->nat_block_bitmap) 3170 return -ENOMEM; 3171 3172 nm_i->free_nid_count = 3173 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 3174 nm_i->nat_blocks), 3175 GFP_KERNEL); 3176 if (!nm_i->free_nid_count) 3177 return -ENOMEM; 3178 return 0; 3179} 3180 3181int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3182{ 3183 int err; 3184 3185 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3186 GFP_KERNEL); 3187 if (!sbi->nm_info) 3188 return -ENOMEM; 3189 3190 err = init_node_manager(sbi); 3191 if (err) 3192 return err; 3193 3194 err = init_free_nid_cache(sbi); 3195 if (err) 3196 return err; 3197 3198 /* load free nid status from nat_bits table */ 3199 load_free_nid_bitmap(sbi); 3200 3201 return f2fs_build_free_nids(sbi, true, true); 3202} 3203 3204void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3205{ 3206 struct f2fs_nm_info *nm_i = NM_I(sbi); 3207 struct free_nid *i, *next_i; 3208 struct nat_entry *natvec[NATVEC_SIZE]; 3209 struct nat_entry_set *setvec[SETVEC_SIZE]; 3210 nid_t nid = 0; 3211 unsigned int found; 3212 3213 if (!nm_i) 3214 return; 3215 3216 /* destroy free nid list */ 3217 spin_lock(&nm_i->nid_list_lock); 3218 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3219 __remove_free_nid(sbi, i, FREE_NID); 3220 spin_unlock(&nm_i->nid_list_lock); 3221 kmem_cache_free(free_nid_slab, i); 3222 spin_lock(&nm_i->nid_list_lock); 3223 } 3224 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3225 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3226 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3227 spin_unlock(&nm_i->nid_list_lock); 3228 3229 /* destroy nat cache */ 3230 down_write(&nm_i->nat_tree_lock); 3231 while ((found = __gang_lookup_nat_cache(nm_i, 3232 nid, NATVEC_SIZE, natvec))) { 3233 unsigned idx; 3234 3235 nid = nat_get_nid(natvec[found - 1]) + 1; 3236 for (idx = 0; idx < found; idx++) { 3237 spin_lock(&nm_i->nat_list_lock); 3238 list_del(&natvec[idx]->list); 3239 spin_unlock(&nm_i->nat_list_lock); 3240 3241 __del_from_nat_cache(nm_i, natvec[idx]); 3242 } 3243 } 3244 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]); 3245 3246 /* destroy nat set cache */ 3247 nid = 0; 3248 while ((found = __gang_lookup_nat_set(nm_i, 3249 nid, SETVEC_SIZE, setvec))) { 3250 unsigned idx; 3251 3252 nid = setvec[found - 1]->set + 1; 3253 for (idx = 0; idx < found; idx++) { 3254 /* entry_cnt is not zero, when cp_error was occurred */ 3255 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3256 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3257 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3258 } 3259 } 3260 up_write(&nm_i->nat_tree_lock); 3261 3262 kvfree(nm_i->nat_block_bitmap); 3263 if (nm_i->free_nid_bitmap) { 3264 int i; 3265 3266 for (i = 0; i < nm_i->nat_blocks; i++) 3267 kvfree(nm_i->free_nid_bitmap[i]); 3268 kvfree(nm_i->free_nid_bitmap); 3269 } 3270 kvfree(nm_i->free_nid_count); 3271 3272 kvfree(nm_i->nat_bitmap); 3273 kvfree(nm_i->nat_bits); 3274#ifdef CONFIG_F2FS_CHECK_FS 3275 kvfree(nm_i->nat_bitmap_mir); 3276#endif 3277 sbi->nm_info = NULL; 3278 kfree(nm_i); 3279} 3280 3281int __init f2fs_create_node_manager_caches(void) 3282{ 3283 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry", 3284 sizeof(struct nat_entry)); 3285 if (!nat_entry_slab) 3286 goto fail; 3287 3288 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid", 3289 sizeof(struct free_nid)); 3290 if (!free_nid_slab) 3291 goto destroy_nat_entry; 3292 3293 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set", 3294 sizeof(struct nat_entry_set)); 3295 if (!nat_entry_set_slab) 3296 goto destroy_free_nid; 3297 3298 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry", 3299 sizeof(struct fsync_node_entry)); 3300 if (!fsync_node_entry_slab) 3301 goto destroy_nat_entry_set; 3302 return 0; 3303 3304destroy_nat_entry_set: 3305 kmem_cache_destroy(nat_entry_set_slab); 3306destroy_free_nid: 3307 kmem_cache_destroy(free_nid_slab); 3308destroy_nat_entry: 3309 kmem_cache_destroy(nat_entry_slab); 3310fail: 3311 return -ENOMEM; 3312} 3313 3314void f2fs_destroy_node_manager_caches(void) 3315{ 3316 kmem_cache_destroy(fsync_node_entry_slab); 3317 kmem_cache_destroy(nat_entry_set_slab); 3318 kmem_cache_destroy(free_nid_slab); 3319 kmem_cache_destroy(nat_entry_slab); 3320} 3321