xref: /kernel/linux/linux-5.10/fs/ext4/super.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 *  from
11 *
12 *  linux/fs/minix/inode.c
13 *
14 *  Copyright (C) 1991, 1992  Linus Torvalds
15 *
16 *  Big-endian to little-endian byte-swapping/bitmaps by
17 *        David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20#include <linux/module.h>
21#include <linux/string.h>
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/vmalloc.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
29#include <linux/parser.h>
30#include <linux/buffer_head.h>
31#include <linux/exportfs.h>
32#include <linux/vfs.h>
33#include <linux/random.h>
34#include <linux/mount.h>
35#include <linux/namei.h>
36#include <linux/quotaops.h>
37#include <linux/seq_file.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/dax.h>
42#include <linux/cleancache.h>
43#include <linux/uaccess.h>
44#include <linux/iversion.h>
45#include <linux/unicode.h>
46#include <linux/part_stat.h>
47#include <linux/kthread.h>
48#include <linux/freezer.h>
49
50#include "ext4.h"
51#include "ext4_extents.h"	/* Needed for trace points definition */
52#include "ext4_jbd2.h"
53#include "xattr.h"
54#include "acl.h"
55#include "mballoc.h"
56#include "fsmap.h"
57
58#define CREATE_TRACE_POINTS
59#include <trace/events/ext4.h>
60
61static struct ext4_lazy_init *ext4_li_info;
62static struct mutex ext4_li_mtx;
63static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66			     unsigned long journal_devnum);
67static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68static void ext4_update_super(struct super_block *sb);
69static int ext4_commit_super(struct super_block *sb);
70static int ext4_mark_recovery_complete(struct super_block *sb,
71					struct ext4_super_block *es);
72static int ext4_clear_journal_err(struct super_block *sb,
73				  struct ext4_super_block *es);
74static int ext4_sync_fs(struct super_block *sb, int wait);
75static int ext4_remount(struct super_block *sb, int *flags, char *data);
76static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77static int ext4_unfreeze(struct super_block *sb);
78static int ext4_freeze(struct super_block *sb);
79static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80		       const char *dev_name, void *data);
81static inline int ext2_feature_set_ok(struct super_block *sb);
82static inline int ext3_feature_set_ok(struct super_block *sb);
83static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84static void ext4_destroy_lazyinit_thread(void);
85static void ext4_unregister_li_request(struct super_block *sb);
86static void ext4_clear_request_list(void);
87static struct inode *ext4_get_journal_inode(struct super_block *sb,
88					    unsigned int journal_inum);
89
90/*
91 * Lock ordering
92 *
93 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
94 * i_mmap_rwsem (inode->i_mmap_rwsem)!
95 *
96 * page fault path:
97 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
98 *   page lock -> i_data_sem (rw)
99 *
100 * buffered write path:
101 * sb_start_write -> i_mutex -> mmap_lock
102 * sb_start_write -> i_mutex -> transaction start -> page lock ->
103 *   i_data_sem (rw)
104 *
105 * truncate:
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
107 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
108 *   i_data_sem (rw)
109 *
110 * direct IO:
111 * sb_start_write -> i_mutex -> mmap_lock
112 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
113 *
114 * writepages:
115 * transaction start -> page lock(s) -> i_data_sem (rw)
116 */
117
118#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
119static struct file_system_type ext2_fs_type = {
120	.owner		= THIS_MODULE,
121	.name		= "ext2",
122	.mount		= ext4_mount,
123	.kill_sb	= kill_block_super,
124	.fs_flags	= FS_REQUIRES_DEV,
125};
126MODULE_ALIAS_FS("ext2");
127MODULE_ALIAS("ext2");
128#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
129#else
130#define IS_EXT2_SB(sb) (0)
131#endif
132
133
134static struct file_system_type ext3_fs_type = {
135	.owner		= THIS_MODULE,
136	.name		= "ext3",
137	.mount		= ext4_mount,
138	.kill_sb	= kill_block_super,
139	.fs_flags	= FS_REQUIRES_DEV,
140};
141MODULE_ALIAS_FS("ext3");
142MODULE_ALIAS("ext3");
143#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
144
145
146static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
147				  bh_end_io_t *end_io)
148{
149	/*
150	 * buffer's verified bit is no longer valid after reading from
151	 * disk again due to write out error, clear it to make sure we
152	 * recheck the buffer contents.
153	 */
154	clear_buffer_verified(bh);
155
156	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
157	get_bh(bh);
158	submit_bh(REQ_OP_READ, op_flags, bh);
159}
160
161void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
162			 bh_end_io_t *end_io)
163{
164	BUG_ON(!buffer_locked(bh));
165
166	if (ext4_buffer_uptodate(bh)) {
167		unlock_buffer(bh);
168		return;
169	}
170	__ext4_read_bh(bh, op_flags, end_io);
171}
172
173int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
174{
175	BUG_ON(!buffer_locked(bh));
176
177	if (ext4_buffer_uptodate(bh)) {
178		unlock_buffer(bh);
179		return 0;
180	}
181
182	__ext4_read_bh(bh, op_flags, end_io);
183
184	wait_on_buffer(bh);
185	if (buffer_uptodate(bh))
186		return 0;
187	return -EIO;
188}
189
190int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
191{
192	lock_buffer(bh);
193	if (!wait) {
194		ext4_read_bh_nowait(bh, op_flags, NULL);
195		return 0;
196	}
197	return ext4_read_bh(bh, op_flags, NULL);
198}
199
200/*
201 * This works like __bread_gfp() except it uses ERR_PTR for error
202 * returns.  Currently with sb_bread it's impossible to distinguish
203 * between ENOMEM and EIO situations (since both result in a NULL
204 * return.
205 */
206static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
207					       sector_t block, int op_flags,
208					       gfp_t gfp)
209{
210	struct buffer_head *bh;
211	int ret;
212
213	bh = sb_getblk_gfp(sb, block, gfp);
214	if (bh == NULL)
215		return ERR_PTR(-ENOMEM);
216	if (ext4_buffer_uptodate(bh))
217		return bh;
218
219	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
220	if (ret) {
221		put_bh(bh);
222		return ERR_PTR(ret);
223	}
224	return bh;
225}
226
227struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
228				   int op_flags)
229{
230	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
231}
232
233struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
234					    sector_t block)
235{
236	return __ext4_sb_bread_gfp(sb, block, 0, 0);
237}
238
239void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
240{
241	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
242
243	if (likely(bh)) {
244		if (trylock_buffer(bh))
245			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
246		brelse(bh);
247	}
248}
249
250static int ext4_verify_csum_type(struct super_block *sb,
251				 struct ext4_super_block *es)
252{
253	if (!ext4_has_feature_metadata_csum(sb))
254		return 1;
255
256	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
257}
258
259static __le32 ext4_superblock_csum(struct super_block *sb,
260				   struct ext4_super_block *es)
261{
262	struct ext4_sb_info *sbi = EXT4_SB(sb);
263	int offset = offsetof(struct ext4_super_block, s_checksum);
264	__u32 csum;
265
266	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
267
268	return cpu_to_le32(csum);
269}
270
271static int ext4_superblock_csum_verify(struct super_block *sb,
272				       struct ext4_super_block *es)
273{
274	if (!ext4_has_metadata_csum(sb))
275		return 1;
276
277	return es->s_checksum == ext4_superblock_csum(sb, es);
278}
279
280void ext4_superblock_csum_set(struct super_block *sb)
281{
282	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
283
284	if (!ext4_has_metadata_csum(sb))
285		return;
286
287	es->s_checksum = ext4_superblock_csum(sb, es);
288}
289
290ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
291			       struct ext4_group_desc *bg)
292{
293	return le32_to_cpu(bg->bg_block_bitmap_lo) |
294		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
295		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
296}
297
298ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
299			       struct ext4_group_desc *bg)
300{
301	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
302		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
303		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
304}
305
306ext4_fsblk_t ext4_inode_table(struct super_block *sb,
307			      struct ext4_group_desc *bg)
308{
309	return le32_to_cpu(bg->bg_inode_table_lo) |
310		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
311		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
312}
313
314__u32 ext4_free_group_clusters(struct super_block *sb,
315			       struct ext4_group_desc *bg)
316{
317	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
318		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
320}
321
322__u32 ext4_free_inodes_count(struct super_block *sb,
323			      struct ext4_group_desc *bg)
324{
325	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
326		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
328}
329
330__u32 ext4_used_dirs_count(struct super_block *sb,
331			      struct ext4_group_desc *bg)
332{
333	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
334		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
336}
337
338__u32 ext4_itable_unused_count(struct super_block *sb,
339			      struct ext4_group_desc *bg)
340{
341	return le16_to_cpu(bg->bg_itable_unused_lo) |
342		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
344}
345
346void ext4_block_bitmap_set(struct super_block *sb,
347			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
348{
349	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
350	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
351		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
352}
353
354void ext4_inode_bitmap_set(struct super_block *sb,
355			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
356{
357	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
358	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
359		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
360}
361
362void ext4_inode_table_set(struct super_block *sb,
363			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
364{
365	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
366	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
367		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
368}
369
370void ext4_free_group_clusters_set(struct super_block *sb,
371				  struct ext4_group_desc *bg, __u32 count)
372{
373	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
374	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
376}
377
378void ext4_free_inodes_set(struct super_block *sb,
379			  struct ext4_group_desc *bg, __u32 count)
380{
381	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
382	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
384}
385
386void ext4_used_dirs_set(struct super_block *sb,
387			  struct ext4_group_desc *bg, __u32 count)
388{
389	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
390	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
392}
393
394void ext4_itable_unused_set(struct super_block *sb,
395			  struct ext4_group_desc *bg, __u32 count)
396{
397	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
398	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
400}
401
402static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
403{
404	now = clamp_val(now, 0, (1ull << 40) - 1);
405
406	*lo = cpu_to_le32(lower_32_bits(now));
407	*hi = upper_32_bits(now);
408}
409
410static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
411{
412	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
413}
414#define ext4_update_tstamp(es, tstamp) \
415	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
416			     ktime_get_real_seconds())
417#define ext4_get_tstamp(es, tstamp) \
418	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
419
420/*
421 * The del_gendisk() function uninitializes the disk-specific data
422 * structures, including the bdi structure, without telling anyone
423 * else.  Once this happens, any attempt to call mark_buffer_dirty()
424 * (for example, by ext4_commit_super), will cause a kernel OOPS.
425 * This is a kludge to prevent these oops until we can put in a proper
426 * hook in del_gendisk() to inform the VFS and file system layers.
427 */
428static int block_device_ejected(struct super_block *sb)
429{
430	struct inode *bd_inode = sb->s_bdev->bd_inode;
431	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
432
433	return bdi->dev == NULL;
434}
435
436static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
437{
438	struct super_block		*sb = journal->j_private;
439	struct ext4_sb_info		*sbi = EXT4_SB(sb);
440	int				error = is_journal_aborted(journal);
441	struct ext4_journal_cb_entry	*jce;
442
443	BUG_ON(txn->t_state == T_FINISHED);
444
445	ext4_process_freed_data(sb, txn->t_tid);
446
447	spin_lock(&sbi->s_md_lock);
448	while (!list_empty(&txn->t_private_list)) {
449		jce = list_entry(txn->t_private_list.next,
450				 struct ext4_journal_cb_entry, jce_list);
451		list_del_init(&jce->jce_list);
452		spin_unlock(&sbi->s_md_lock);
453		jce->jce_func(sb, jce, error);
454		spin_lock(&sbi->s_md_lock);
455	}
456	spin_unlock(&sbi->s_md_lock);
457}
458
459/*
460 * This writepage callback for write_cache_pages()
461 * takes care of a few cases after page cleaning.
462 *
463 * write_cache_pages() already checks for dirty pages
464 * and calls clear_page_dirty_for_io(), which we want,
465 * to write protect the pages.
466 *
467 * However, we may have to redirty a page (see below.)
468 */
469static int ext4_journalled_writepage_callback(struct page *page,
470					      struct writeback_control *wbc,
471					      void *data)
472{
473	transaction_t *transaction = (transaction_t *) data;
474	struct buffer_head *bh, *head;
475	struct journal_head *jh;
476
477	bh = head = page_buffers(page);
478	do {
479		/*
480		 * We have to redirty a page in these cases:
481		 * 1) If buffer is dirty, it means the page was dirty because it
482		 * contains a buffer that needs checkpointing. So the dirty bit
483		 * needs to be preserved so that checkpointing writes the buffer
484		 * properly.
485		 * 2) If buffer is not part of the committing transaction
486		 * (we may have just accidentally come across this buffer because
487		 * inode range tracking is not exact) or if the currently running
488		 * transaction already contains this buffer as well, dirty bit
489		 * needs to be preserved so that the buffer gets writeprotected
490		 * properly on running transaction's commit.
491		 */
492		jh = bh2jh(bh);
493		if (buffer_dirty(bh) ||
494		    (jh && (jh->b_transaction != transaction ||
495			    jh->b_next_transaction))) {
496			redirty_page_for_writepage(wbc, page);
497			goto out;
498		}
499	} while ((bh = bh->b_this_page) != head);
500
501out:
502	return AOP_WRITEPAGE_ACTIVATE;
503}
504
505static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
506{
507	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
508	struct writeback_control wbc = {
509		.sync_mode =  WB_SYNC_ALL,
510		.nr_to_write = LONG_MAX,
511		.range_start = jinode->i_dirty_start,
512		.range_end = jinode->i_dirty_end,
513        };
514
515	return write_cache_pages(mapping, &wbc,
516				 ext4_journalled_writepage_callback,
517				 jinode->i_transaction);
518}
519
520static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
521{
522	int ret;
523
524	if (ext4_should_journal_data(jinode->i_vfs_inode))
525		ret = ext4_journalled_submit_inode_data_buffers(jinode);
526	else
527		ret = jbd2_journal_submit_inode_data_buffers(jinode);
528
529	return ret;
530}
531
532static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
533{
534	int ret = 0;
535
536	if (!ext4_should_journal_data(jinode->i_vfs_inode))
537		ret = jbd2_journal_finish_inode_data_buffers(jinode);
538
539	return ret;
540}
541
542static bool system_going_down(void)
543{
544	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
545		|| system_state == SYSTEM_RESTART;
546}
547
548struct ext4_err_translation {
549	int code;
550	int errno;
551};
552
553#define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
554
555static struct ext4_err_translation err_translation[] = {
556	EXT4_ERR_TRANSLATE(EIO),
557	EXT4_ERR_TRANSLATE(ENOMEM),
558	EXT4_ERR_TRANSLATE(EFSBADCRC),
559	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
560	EXT4_ERR_TRANSLATE(ENOSPC),
561	EXT4_ERR_TRANSLATE(ENOKEY),
562	EXT4_ERR_TRANSLATE(EROFS),
563	EXT4_ERR_TRANSLATE(EFBIG),
564	EXT4_ERR_TRANSLATE(EEXIST),
565	EXT4_ERR_TRANSLATE(ERANGE),
566	EXT4_ERR_TRANSLATE(EOVERFLOW),
567	EXT4_ERR_TRANSLATE(EBUSY),
568	EXT4_ERR_TRANSLATE(ENOTDIR),
569	EXT4_ERR_TRANSLATE(ENOTEMPTY),
570	EXT4_ERR_TRANSLATE(ESHUTDOWN),
571	EXT4_ERR_TRANSLATE(EFAULT),
572};
573
574static int ext4_errno_to_code(int errno)
575{
576	int i;
577
578	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
579		if (err_translation[i].errno == errno)
580			return err_translation[i].code;
581	return EXT4_ERR_UNKNOWN;
582}
583
584static void save_error_info(struct super_block *sb, int error,
585			    __u32 ino, __u64 block,
586			    const char *func, unsigned int line)
587{
588	struct ext4_sb_info *sbi = EXT4_SB(sb);
589
590	/* We default to EFSCORRUPTED error... */
591	if (error == 0)
592		error = EFSCORRUPTED;
593
594	spin_lock(&sbi->s_error_lock);
595	sbi->s_add_error_count++;
596	sbi->s_last_error_code = error;
597	sbi->s_last_error_line = line;
598	sbi->s_last_error_ino = ino;
599	sbi->s_last_error_block = block;
600	sbi->s_last_error_func = func;
601	sbi->s_last_error_time = ktime_get_real_seconds();
602	if (!sbi->s_first_error_time) {
603		sbi->s_first_error_code = error;
604		sbi->s_first_error_line = line;
605		sbi->s_first_error_ino = ino;
606		sbi->s_first_error_block = block;
607		sbi->s_first_error_func = func;
608		sbi->s_first_error_time = sbi->s_last_error_time;
609	}
610	spin_unlock(&sbi->s_error_lock);
611}
612
613/* Deal with the reporting of failure conditions on a filesystem such as
614 * inconsistencies detected or read IO failures.
615 *
616 * On ext2, we can store the error state of the filesystem in the
617 * superblock.  That is not possible on ext4, because we may have other
618 * write ordering constraints on the superblock which prevent us from
619 * writing it out straight away; and given that the journal is about to
620 * be aborted, we can't rely on the current, or future, transactions to
621 * write out the superblock safely.
622 *
623 * We'll just use the jbd2_journal_abort() error code to record an error in
624 * the journal instead.  On recovery, the journal will complain about
625 * that error until we've noted it down and cleared it.
626 *
627 * If force_ro is set, we unconditionally force the filesystem into an
628 * ABORT|READONLY state, unless the error response on the fs has been set to
629 * panic in which case we take the easy way out and panic immediately. This is
630 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
631 * at a critical moment in log management.
632 */
633static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
634			      __u32 ino, __u64 block,
635			      const char *func, unsigned int line)
636{
637	journal_t *journal = EXT4_SB(sb)->s_journal;
638	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
639
640	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
641	if (test_opt(sb, WARN_ON_ERROR))
642		WARN_ON_ONCE(1);
643
644	if (!continue_fs && !sb_rdonly(sb)) {
645		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
646		if (journal)
647			jbd2_journal_abort(journal, -EIO);
648	}
649
650	if (!bdev_read_only(sb->s_bdev)) {
651		save_error_info(sb, error, ino, block, func, line);
652		/*
653		 * In case the fs should keep running, we need to writeout
654		 * superblock through the journal. Due to lock ordering
655		 * constraints, it may not be safe to do it right here so we
656		 * defer superblock flushing to a workqueue.
657		 */
658		if (continue_fs && journal)
659			schedule_work(&EXT4_SB(sb)->s_error_work);
660		else
661			ext4_commit_super(sb);
662	}
663
664	/*
665	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
666	 * could panic during 'reboot -f' as the underlying device got already
667	 * disabled.
668	 */
669	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
670		panic("EXT4-fs (device %s): panic forced after error\n",
671			sb->s_id);
672	}
673
674	if (sb_rdonly(sb) || continue_fs)
675		return;
676
677	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
678	/*
679	 * Make sure updated value of ->s_mount_flags will be visible before
680	 * ->s_flags update
681	 */
682	smp_wmb();
683	sb->s_flags |= SB_RDONLY;
684}
685
686static void flush_stashed_error_work(struct work_struct *work)
687{
688	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
689						s_error_work);
690	journal_t *journal = sbi->s_journal;
691	handle_t *handle;
692
693	/*
694	 * If the journal is still running, we have to write out superblock
695	 * through the journal to avoid collisions of other journalled sb
696	 * updates.
697	 *
698	 * We use directly jbd2 functions here to avoid recursing back into
699	 * ext4 error handling code during handling of previous errors.
700	 */
701	if (!sb_rdonly(sbi->s_sb) && journal) {
702		struct buffer_head *sbh = sbi->s_sbh;
703		handle = jbd2_journal_start(journal, 1);
704		if (IS_ERR(handle))
705			goto write_directly;
706		if (jbd2_journal_get_write_access(handle, sbh)) {
707			jbd2_journal_stop(handle);
708			goto write_directly;
709		}
710		ext4_update_super(sbi->s_sb);
711		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
712			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
713				 "superblock detected");
714			clear_buffer_write_io_error(sbh);
715			set_buffer_uptodate(sbh);
716		}
717
718		if (jbd2_journal_dirty_metadata(handle, sbh)) {
719			jbd2_journal_stop(handle);
720			goto write_directly;
721		}
722		jbd2_journal_stop(handle);
723		return;
724	}
725write_directly:
726	/*
727	 * Write through journal failed. Write sb directly to get error info
728	 * out and hope for the best.
729	 */
730	ext4_commit_super(sbi->s_sb);
731}
732
733#define ext4_error_ratelimit(sb)					\
734		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
735			     "EXT4-fs error")
736
737void __ext4_error(struct super_block *sb, const char *function,
738		  unsigned int line, bool force_ro, int error, __u64 block,
739		  const char *fmt, ...)
740{
741	struct va_format vaf;
742	va_list args;
743
744	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
745		return;
746
747	trace_ext4_error(sb, function, line);
748	if (ext4_error_ratelimit(sb)) {
749		va_start(args, fmt);
750		vaf.fmt = fmt;
751		vaf.va = &args;
752		printk(KERN_CRIT
753		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
754		       sb->s_id, function, line, current->comm, &vaf);
755		va_end(args);
756	}
757	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
758}
759
760void __ext4_error_inode(struct inode *inode, const char *function,
761			unsigned int line, ext4_fsblk_t block, int error,
762			const char *fmt, ...)
763{
764	va_list args;
765	struct va_format vaf;
766
767	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
768		return;
769
770	trace_ext4_error(inode->i_sb, function, line);
771	if (ext4_error_ratelimit(inode->i_sb)) {
772		va_start(args, fmt);
773		vaf.fmt = fmt;
774		vaf.va = &args;
775		if (block)
776			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
777			       "inode #%lu: block %llu: comm %s: %pV\n",
778			       inode->i_sb->s_id, function, line, inode->i_ino,
779			       block, current->comm, &vaf);
780		else
781			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
782			       "inode #%lu: comm %s: %pV\n",
783			       inode->i_sb->s_id, function, line, inode->i_ino,
784			       current->comm, &vaf);
785		va_end(args);
786	}
787	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
788			  function, line);
789}
790
791void __ext4_error_file(struct file *file, const char *function,
792		       unsigned int line, ext4_fsblk_t block,
793		       const char *fmt, ...)
794{
795	va_list args;
796	struct va_format vaf;
797	struct inode *inode = file_inode(file);
798	char pathname[80], *path;
799
800	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
801		return;
802
803	trace_ext4_error(inode->i_sb, function, line);
804	if (ext4_error_ratelimit(inode->i_sb)) {
805		path = file_path(file, pathname, sizeof(pathname));
806		if (IS_ERR(path))
807			path = "(unknown)";
808		va_start(args, fmt);
809		vaf.fmt = fmt;
810		vaf.va = &args;
811		if (block)
812			printk(KERN_CRIT
813			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
814			       "block %llu: comm %s: path %s: %pV\n",
815			       inode->i_sb->s_id, function, line, inode->i_ino,
816			       block, current->comm, path, &vaf);
817		else
818			printk(KERN_CRIT
819			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
820			       "comm %s: path %s: %pV\n",
821			       inode->i_sb->s_id, function, line, inode->i_ino,
822			       current->comm, path, &vaf);
823		va_end(args);
824	}
825	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
826			  function, line);
827}
828
829const char *ext4_decode_error(struct super_block *sb, int errno,
830			      char nbuf[16])
831{
832	char *errstr = NULL;
833
834	switch (errno) {
835	case -EFSCORRUPTED:
836		errstr = "Corrupt filesystem";
837		break;
838	case -EFSBADCRC:
839		errstr = "Filesystem failed CRC";
840		break;
841	case -EIO:
842		errstr = "IO failure";
843		break;
844	case -ENOMEM:
845		errstr = "Out of memory";
846		break;
847	case -EROFS:
848		if (!sb || (EXT4_SB(sb)->s_journal &&
849			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
850			errstr = "Journal has aborted";
851		else
852			errstr = "Readonly filesystem";
853		break;
854	default:
855		/* If the caller passed in an extra buffer for unknown
856		 * errors, textualise them now.  Else we just return
857		 * NULL. */
858		if (nbuf) {
859			/* Check for truncated error codes... */
860			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
861				errstr = nbuf;
862		}
863		break;
864	}
865
866	return errstr;
867}
868
869/* __ext4_std_error decodes expected errors from journaling functions
870 * automatically and invokes the appropriate error response.  */
871
872void __ext4_std_error(struct super_block *sb, const char *function,
873		      unsigned int line, int errno)
874{
875	char nbuf[16];
876	const char *errstr;
877
878	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
879		return;
880
881	/* Special case: if the error is EROFS, and we're not already
882	 * inside a transaction, then there's really no point in logging
883	 * an error. */
884	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
885		return;
886
887	if (ext4_error_ratelimit(sb)) {
888		errstr = ext4_decode_error(sb, errno, nbuf);
889		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
890		       sb->s_id, function, line, errstr);
891	}
892
893	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
894}
895
896void __ext4_msg(struct super_block *sb,
897		const char *prefix, const char *fmt, ...)
898{
899	struct va_format vaf;
900	va_list args;
901
902	atomic_inc(&EXT4_SB(sb)->s_msg_count);
903	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
904		return;
905
906	va_start(args, fmt);
907	vaf.fmt = fmt;
908	vaf.va = &args;
909	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
910	va_end(args);
911}
912
913static int ext4_warning_ratelimit(struct super_block *sb)
914{
915	atomic_inc(&EXT4_SB(sb)->s_warning_count);
916	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
917			    "EXT4-fs warning");
918}
919
920void __ext4_warning(struct super_block *sb, const char *function,
921		    unsigned int line, const char *fmt, ...)
922{
923	struct va_format vaf;
924	va_list args;
925
926	if (!ext4_warning_ratelimit(sb))
927		return;
928
929	va_start(args, fmt);
930	vaf.fmt = fmt;
931	vaf.va = &args;
932	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
933	       sb->s_id, function, line, &vaf);
934	va_end(args);
935}
936
937void __ext4_warning_inode(const struct inode *inode, const char *function,
938			  unsigned int line, const char *fmt, ...)
939{
940	struct va_format vaf;
941	va_list args;
942
943	if (!ext4_warning_ratelimit(inode->i_sb))
944		return;
945
946	va_start(args, fmt);
947	vaf.fmt = fmt;
948	vaf.va = &args;
949	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
950	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
951	       function, line, inode->i_ino, current->comm, &vaf);
952	va_end(args);
953}
954
955void __ext4_grp_locked_error(const char *function, unsigned int line,
956			     struct super_block *sb, ext4_group_t grp,
957			     unsigned long ino, ext4_fsblk_t block,
958			     const char *fmt, ...)
959__releases(bitlock)
960__acquires(bitlock)
961{
962	struct va_format vaf;
963	va_list args;
964
965	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
966		return;
967
968	trace_ext4_error(sb, function, line);
969	if (ext4_error_ratelimit(sb)) {
970		va_start(args, fmt);
971		vaf.fmt = fmt;
972		vaf.va = &args;
973		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
974		       sb->s_id, function, line, grp);
975		if (ino)
976			printk(KERN_CONT "inode %lu: ", ino);
977		if (block)
978			printk(KERN_CONT "block %llu:",
979			       (unsigned long long) block);
980		printk(KERN_CONT "%pV\n", &vaf);
981		va_end(args);
982	}
983
984	if (test_opt(sb, ERRORS_CONT)) {
985		if (test_opt(sb, WARN_ON_ERROR))
986			WARN_ON_ONCE(1);
987		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
988		if (!bdev_read_only(sb->s_bdev)) {
989			save_error_info(sb, EFSCORRUPTED, ino, block, function,
990					line);
991			schedule_work(&EXT4_SB(sb)->s_error_work);
992		}
993		return;
994	}
995	ext4_unlock_group(sb, grp);
996	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
997	/*
998	 * We only get here in the ERRORS_RO case; relocking the group
999	 * may be dangerous, but nothing bad will happen since the
1000	 * filesystem will have already been marked read/only and the
1001	 * journal has been aborted.  We return 1 as a hint to callers
1002	 * who might what to use the return value from
1003	 * ext4_grp_locked_error() to distinguish between the
1004	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1005	 * aggressively from the ext4 function in question, with a
1006	 * more appropriate error code.
1007	 */
1008	ext4_lock_group(sb, grp);
1009	return;
1010}
1011
1012void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1013				     ext4_group_t group,
1014				     unsigned int flags)
1015{
1016	struct ext4_sb_info *sbi = EXT4_SB(sb);
1017	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1018	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1019	int ret;
1020
1021	if (!grp || !gdp)
1022		return;
1023	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1024		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1025					    &grp->bb_state);
1026		if (!ret)
1027			percpu_counter_sub(&sbi->s_freeclusters_counter,
1028					   grp->bb_free);
1029	}
1030
1031	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1032		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1033					    &grp->bb_state);
1034		if (!ret && gdp) {
1035			int count;
1036
1037			count = ext4_free_inodes_count(sb, gdp);
1038			percpu_counter_sub(&sbi->s_freeinodes_counter,
1039					   count);
1040		}
1041	}
1042}
1043
1044void ext4_update_dynamic_rev(struct super_block *sb)
1045{
1046	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1047
1048	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1049		return;
1050
1051	ext4_warning(sb,
1052		     "updating to rev %d because of new feature flag, "
1053		     "running e2fsck is recommended",
1054		     EXT4_DYNAMIC_REV);
1055
1056	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1057	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1058	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1059	/* leave es->s_feature_*compat flags alone */
1060	/* es->s_uuid will be set by e2fsck if empty */
1061
1062	/*
1063	 * The rest of the superblock fields should be zero, and if not it
1064	 * means they are likely already in use, so leave them alone.  We
1065	 * can leave it up to e2fsck to clean up any inconsistencies there.
1066	 */
1067}
1068
1069/*
1070 * Open the external journal device
1071 */
1072static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1073{
1074	struct block_device *bdev;
1075
1076	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1077	if (IS_ERR(bdev))
1078		goto fail;
1079	return bdev;
1080
1081fail:
1082	ext4_msg(sb, KERN_ERR,
1083		 "failed to open journal device unknown-block(%u,%u) %ld",
1084		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1085	return NULL;
1086}
1087
1088/*
1089 * Release the journal device
1090 */
1091static void ext4_blkdev_put(struct block_device *bdev)
1092{
1093	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1094}
1095
1096static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1097{
1098	struct block_device *bdev;
1099	bdev = sbi->s_journal_bdev;
1100	if (bdev) {
1101		/*
1102		 * Invalidate the journal device's buffers.  We don't want them
1103		 * floating about in memory - the physical journal device may
1104		 * hotswapped, and it breaks the `ro-after' testing code.
1105		 */
1106		invalidate_bdev(bdev);
1107		ext4_blkdev_put(bdev);
1108		sbi->s_journal_bdev = NULL;
1109	}
1110}
1111
1112static inline struct inode *orphan_list_entry(struct list_head *l)
1113{
1114	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1115}
1116
1117static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1118{
1119	struct list_head *l;
1120
1121	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1122		 le32_to_cpu(sbi->s_es->s_last_orphan));
1123
1124	printk(KERN_ERR "sb_info orphan list:\n");
1125	list_for_each(l, &sbi->s_orphan) {
1126		struct inode *inode = orphan_list_entry(l);
1127		printk(KERN_ERR "  "
1128		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1129		       inode->i_sb->s_id, inode->i_ino, inode,
1130		       inode->i_mode, inode->i_nlink,
1131		       NEXT_ORPHAN(inode));
1132	}
1133}
1134
1135#ifdef CONFIG_QUOTA
1136static int ext4_quota_off(struct super_block *sb, int type);
1137
1138static inline void ext4_quota_off_umount(struct super_block *sb)
1139{
1140	int type;
1141
1142	/* Use our quota_off function to clear inode flags etc. */
1143	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1144		ext4_quota_off(sb, type);
1145}
1146
1147/*
1148 * This is a helper function which is used in the mount/remount
1149 * codepaths (which holds s_umount) to fetch the quota file name.
1150 */
1151static inline char *get_qf_name(struct super_block *sb,
1152				struct ext4_sb_info *sbi,
1153				int type)
1154{
1155	return rcu_dereference_protected(sbi->s_qf_names[type],
1156					 lockdep_is_held(&sb->s_umount));
1157}
1158#else
1159static inline void ext4_quota_off_umount(struct super_block *sb)
1160{
1161}
1162#endif
1163
1164static void ext4_put_super(struct super_block *sb)
1165{
1166	struct ext4_sb_info *sbi = EXT4_SB(sb);
1167	struct ext4_super_block *es = sbi->s_es;
1168	struct buffer_head **group_desc;
1169	struct flex_groups **flex_groups;
1170	int aborted = 0;
1171	int i, err;
1172
1173	/*
1174	 * Unregister sysfs before destroying jbd2 journal.
1175	 * Since we could still access attr_journal_task attribute via sysfs
1176	 * path which could have sbi->s_journal->j_task as NULL
1177	 * Unregister sysfs before flush sbi->s_error_work.
1178	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1179	 * read metadata verify failed then will queue error work.
1180	 * flush_stashed_error_work will call start_this_handle may trigger
1181	 * BUG_ON.
1182	 */
1183	ext4_unregister_sysfs(sb);
1184
1185	ext4_unregister_li_request(sb);
1186	ext4_quota_off_umount(sb);
1187	flush_work(&sbi->s_error_work);
1188	destroy_workqueue(sbi->rsv_conversion_wq);
1189
1190	if (sbi->s_journal) {
1191		aborted = is_journal_aborted(sbi->s_journal);
1192		err = jbd2_journal_destroy(sbi->s_journal);
1193		sbi->s_journal = NULL;
1194		if ((err < 0) && !aborted) {
1195			ext4_abort(sb, -err, "Couldn't clean up the journal");
1196		}
1197	}
1198
1199	ext4_es_unregister_shrinker(sbi);
1200	del_timer_sync(&sbi->s_err_report);
1201	ext4_release_system_zone(sb);
1202	ext4_mb_release(sb);
1203	ext4_ext_release(sb);
1204
1205	if (!sb_rdonly(sb) && !aborted) {
1206		ext4_clear_feature_journal_needs_recovery(sb);
1207		es->s_state = cpu_to_le16(sbi->s_mount_state);
1208	}
1209	if (!sb_rdonly(sb))
1210		ext4_commit_super(sb);
1211
1212	rcu_read_lock();
1213	group_desc = rcu_dereference(sbi->s_group_desc);
1214	for (i = 0; i < sbi->s_gdb_count; i++)
1215		brelse(group_desc[i]);
1216	kvfree(group_desc);
1217	flex_groups = rcu_dereference(sbi->s_flex_groups);
1218	if (flex_groups) {
1219		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1220			kvfree(flex_groups[i]);
1221		kvfree(flex_groups);
1222	}
1223	rcu_read_unlock();
1224	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1225	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1226	percpu_counter_destroy(&sbi->s_dirs_counter);
1227	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1228	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1229	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1230#ifdef CONFIG_QUOTA
1231	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1232		kfree(get_qf_name(sb, sbi, i));
1233#endif
1234
1235	/* Debugging code just in case the in-memory inode orphan list
1236	 * isn't empty.  The on-disk one can be non-empty if we've
1237	 * detected an error and taken the fs readonly, but the
1238	 * in-memory list had better be clean by this point. */
1239	if (!list_empty(&sbi->s_orphan))
1240		dump_orphan_list(sb, sbi);
1241	J_ASSERT(list_empty(&sbi->s_orphan));
1242
1243	sync_blockdev(sb->s_bdev);
1244	invalidate_bdev(sb->s_bdev);
1245	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1246		sync_blockdev(sbi->s_journal_bdev);
1247		ext4_blkdev_remove(sbi);
1248	}
1249
1250	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1251	sbi->s_ea_inode_cache = NULL;
1252
1253	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1254	sbi->s_ea_block_cache = NULL;
1255
1256	ext4_stop_mmpd(sbi);
1257
1258	brelse(sbi->s_sbh);
1259	sb->s_fs_info = NULL;
1260	/*
1261	 * Now that we are completely done shutting down the
1262	 * superblock, we need to actually destroy the kobject.
1263	 */
1264	kobject_put(&sbi->s_kobj);
1265	wait_for_completion(&sbi->s_kobj_unregister);
1266	if (sbi->s_chksum_driver)
1267		crypto_free_shash(sbi->s_chksum_driver);
1268	kfree(sbi->s_blockgroup_lock);
1269	fs_put_dax(sbi->s_daxdev);
1270	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1271#ifdef CONFIG_UNICODE
1272	utf8_unload(sb->s_encoding);
1273#endif
1274	kfree(sbi);
1275}
1276
1277static struct kmem_cache *ext4_inode_cachep;
1278
1279/*
1280 * Called inside transaction, so use GFP_NOFS
1281 */
1282static struct inode *ext4_alloc_inode(struct super_block *sb)
1283{
1284	struct ext4_inode_info *ei;
1285
1286	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1287	if (!ei)
1288		return NULL;
1289
1290	inode_set_iversion(&ei->vfs_inode, 1);
1291	ei->i_flags = 0;
1292	spin_lock_init(&ei->i_raw_lock);
1293	INIT_LIST_HEAD(&ei->i_prealloc_list);
1294	atomic_set(&ei->i_prealloc_active, 0);
1295	spin_lock_init(&ei->i_prealloc_lock);
1296	ext4_es_init_tree(&ei->i_es_tree);
1297	rwlock_init(&ei->i_es_lock);
1298	INIT_LIST_HEAD(&ei->i_es_list);
1299	ei->i_es_all_nr = 0;
1300	ei->i_es_shk_nr = 0;
1301	ei->i_es_shrink_lblk = 0;
1302	ei->i_reserved_data_blocks = 0;
1303	spin_lock_init(&(ei->i_block_reservation_lock));
1304	ext4_init_pending_tree(&ei->i_pending_tree);
1305#ifdef CONFIG_QUOTA
1306	ei->i_reserved_quota = 0;
1307	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1308#endif
1309	ei->jinode = NULL;
1310	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1311	spin_lock_init(&ei->i_completed_io_lock);
1312	ei->i_sync_tid = 0;
1313	ei->i_datasync_tid = 0;
1314	atomic_set(&ei->i_unwritten, 0);
1315	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1316	ext4_fc_init_inode(&ei->vfs_inode);
1317	mutex_init(&ei->i_fc_lock);
1318	return &ei->vfs_inode;
1319}
1320
1321static int ext4_drop_inode(struct inode *inode)
1322{
1323	int drop = generic_drop_inode(inode);
1324
1325	if (!drop)
1326		drop = fscrypt_drop_inode(inode);
1327
1328	trace_ext4_drop_inode(inode, drop);
1329	return drop;
1330}
1331
1332static void ext4_free_in_core_inode(struct inode *inode)
1333{
1334	fscrypt_free_inode(inode);
1335	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1336		pr_warn("%s: inode %ld still in fc list",
1337			__func__, inode->i_ino);
1338	}
1339	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1340}
1341
1342static void ext4_destroy_inode(struct inode *inode)
1343{
1344	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1345		ext4_msg(inode->i_sb, KERN_ERR,
1346			 "Inode %lu (%p): orphan list check failed!",
1347			 inode->i_ino, EXT4_I(inode));
1348		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1349				EXT4_I(inode), sizeof(struct ext4_inode_info),
1350				true);
1351		dump_stack();
1352	}
1353
1354	if (EXT4_I(inode)->i_reserved_data_blocks)
1355		ext4_msg(inode->i_sb, KERN_ERR,
1356			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1357			 inode->i_ino, EXT4_I(inode),
1358			 EXT4_I(inode)->i_reserved_data_blocks);
1359}
1360
1361static void init_once(void *foo)
1362{
1363	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1364
1365	INIT_LIST_HEAD(&ei->i_orphan);
1366	init_rwsem(&ei->xattr_sem);
1367	init_rwsem(&ei->i_data_sem);
1368	init_rwsem(&ei->i_mmap_sem);
1369	inode_init_once(&ei->vfs_inode);
1370	ext4_fc_init_inode(&ei->vfs_inode);
1371}
1372
1373static int __init init_inodecache(void)
1374{
1375	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1376				sizeof(struct ext4_inode_info), 0,
1377				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1378					SLAB_ACCOUNT),
1379				offsetof(struct ext4_inode_info, i_data),
1380				sizeof_field(struct ext4_inode_info, i_data),
1381				init_once);
1382	if (ext4_inode_cachep == NULL)
1383		return -ENOMEM;
1384	return 0;
1385}
1386
1387static void destroy_inodecache(void)
1388{
1389	/*
1390	 * Make sure all delayed rcu free inodes are flushed before we
1391	 * destroy cache.
1392	 */
1393	rcu_barrier();
1394	kmem_cache_destroy(ext4_inode_cachep);
1395}
1396
1397void ext4_clear_inode(struct inode *inode)
1398{
1399	ext4_fc_del(inode);
1400	invalidate_inode_buffers(inode);
1401	clear_inode(inode);
1402	ext4_discard_preallocations(inode, 0);
1403	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1404	dquot_drop(inode);
1405	if (EXT4_I(inode)->jinode) {
1406		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1407					       EXT4_I(inode)->jinode);
1408		jbd2_free_inode(EXT4_I(inode)->jinode);
1409		EXT4_I(inode)->jinode = NULL;
1410	}
1411	fscrypt_put_encryption_info(inode);
1412	fsverity_cleanup_inode(inode);
1413}
1414
1415static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1416					u64 ino, u32 generation)
1417{
1418	struct inode *inode;
1419
1420	/*
1421	 * Currently we don't know the generation for parent directory, so
1422	 * a generation of 0 means "accept any"
1423	 */
1424	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1425	if (IS_ERR(inode))
1426		return ERR_CAST(inode);
1427	if (generation && inode->i_generation != generation) {
1428		iput(inode);
1429		return ERR_PTR(-ESTALE);
1430	}
1431
1432	return inode;
1433}
1434
1435static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1436					int fh_len, int fh_type)
1437{
1438	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1439				    ext4_nfs_get_inode);
1440}
1441
1442static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1443					int fh_len, int fh_type)
1444{
1445	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1446				    ext4_nfs_get_inode);
1447}
1448
1449static int ext4_nfs_commit_metadata(struct inode *inode)
1450{
1451	struct writeback_control wbc = {
1452		.sync_mode = WB_SYNC_ALL
1453	};
1454
1455	trace_ext4_nfs_commit_metadata(inode);
1456	return ext4_write_inode(inode, &wbc);
1457}
1458
1459#ifdef CONFIG_FS_ENCRYPTION
1460static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1461{
1462	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1463				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1464}
1465
1466static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1467							void *fs_data)
1468{
1469	handle_t *handle = fs_data;
1470	int res, res2, credits, retries = 0;
1471
1472	/*
1473	 * Encrypting the root directory is not allowed because e2fsck expects
1474	 * lost+found to exist and be unencrypted, and encrypting the root
1475	 * directory would imply encrypting the lost+found directory as well as
1476	 * the filename "lost+found" itself.
1477	 */
1478	if (inode->i_ino == EXT4_ROOT_INO)
1479		return -EPERM;
1480
1481	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1482		return -EINVAL;
1483
1484	if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1485		return -EOPNOTSUPP;
1486
1487	res = ext4_convert_inline_data(inode);
1488	if (res)
1489		return res;
1490
1491	/*
1492	 * If a journal handle was specified, then the encryption context is
1493	 * being set on a new inode via inheritance and is part of a larger
1494	 * transaction to create the inode.  Otherwise the encryption context is
1495	 * being set on an existing inode in its own transaction.  Only in the
1496	 * latter case should the "retry on ENOSPC" logic be used.
1497	 */
1498
1499	if (handle) {
1500		res = ext4_xattr_set_handle(handle, inode,
1501					    EXT4_XATTR_INDEX_ENCRYPTION,
1502					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1503					    ctx, len, 0);
1504		if (!res) {
1505			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1506			ext4_clear_inode_state(inode,
1507					EXT4_STATE_MAY_INLINE_DATA);
1508			/*
1509			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1510			 * S_DAX may be disabled
1511			 */
1512			ext4_set_inode_flags(inode, false);
1513		}
1514		return res;
1515	}
1516
1517	res = dquot_initialize(inode);
1518	if (res)
1519		return res;
1520retry:
1521	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1522				     &credits);
1523	if (res)
1524		return res;
1525
1526	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1527	if (IS_ERR(handle))
1528		return PTR_ERR(handle);
1529
1530	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1531				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1532				    ctx, len, 0);
1533	if (!res) {
1534		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1535		/*
1536		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1537		 * S_DAX may be disabled
1538		 */
1539		ext4_set_inode_flags(inode, false);
1540		res = ext4_mark_inode_dirty(handle, inode);
1541		if (res)
1542			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1543	}
1544	res2 = ext4_journal_stop(handle);
1545
1546	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1547		goto retry;
1548	if (!res)
1549		res = res2;
1550	return res;
1551}
1552
1553static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1554{
1555	return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1556}
1557
1558static bool ext4_has_stable_inodes(struct super_block *sb)
1559{
1560	return ext4_has_feature_stable_inodes(sb);
1561}
1562
1563static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1564				       int *ino_bits_ret, int *lblk_bits_ret)
1565{
1566	*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1567	*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1568}
1569
1570static const struct fscrypt_operations ext4_cryptops = {
1571	.key_prefix		= "ext4:",
1572	.get_context		= ext4_get_context,
1573	.set_context		= ext4_set_context,
1574	.get_dummy_policy	= ext4_get_dummy_policy,
1575	.empty_dir		= ext4_empty_dir,
1576	.max_namelen		= EXT4_NAME_LEN,
1577	.has_stable_inodes	= ext4_has_stable_inodes,
1578	.get_ino_and_lblk_bits	= ext4_get_ino_and_lblk_bits,
1579};
1580#endif
1581
1582#ifdef CONFIG_QUOTA
1583static const char * const quotatypes[] = INITQFNAMES;
1584#define QTYPE2NAME(t) (quotatypes[t])
1585
1586static int ext4_write_dquot(struct dquot *dquot);
1587static int ext4_acquire_dquot(struct dquot *dquot);
1588static int ext4_release_dquot(struct dquot *dquot);
1589static int ext4_mark_dquot_dirty(struct dquot *dquot);
1590static int ext4_write_info(struct super_block *sb, int type);
1591static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1592			 const struct path *path);
1593static int ext4_quota_on_mount(struct super_block *sb, int type);
1594static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1595			       size_t len, loff_t off);
1596static ssize_t ext4_quota_write(struct super_block *sb, int type,
1597				const char *data, size_t len, loff_t off);
1598static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1599			     unsigned int flags);
1600static int ext4_enable_quotas(struct super_block *sb);
1601
1602static struct dquot **ext4_get_dquots(struct inode *inode)
1603{
1604	return EXT4_I(inode)->i_dquot;
1605}
1606
1607static const struct dquot_operations ext4_quota_operations = {
1608	.get_reserved_space	= ext4_get_reserved_space,
1609	.write_dquot		= ext4_write_dquot,
1610	.acquire_dquot		= ext4_acquire_dquot,
1611	.release_dquot		= ext4_release_dquot,
1612	.mark_dirty		= ext4_mark_dquot_dirty,
1613	.write_info		= ext4_write_info,
1614	.alloc_dquot		= dquot_alloc,
1615	.destroy_dquot		= dquot_destroy,
1616	.get_projid		= ext4_get_projid,
1617	.get_inode_usage	= ext4_get_inode_usage,
1618	.get_next_id		= dquot_get_next_id,
1619};
1620
1621static const struct quotactl_ops ext4_qctl_operations = {
1622	.quota_on	= ext4_quota_on,
1623	.quota_off	= ext4_quota_off,
1624	.quota_sync	= dquot_quota_sync,
1625	.get_state	= dquot_get_state,
1626	.set_info	= dquot_set_dqinfo,
1627	.get_dqblk	= dquot_get_dqblk,
1628	.set_dqblk	= dquot_set_dqblk,
1629	.get_nextdqblk	= dquot_get_next_dqblk,
1630};
1631#endif
1632
1633static const struct super_operations ext4_sops = {
1634	.alloc_inode	= ext4_alloc_inode,
1635	.free_inode	= ext4_free_in_core_inode,
1636	.destroy_inode	= ext4_destroy_inode,
1637	.write_inode	= ext4_write_inode,
1638	.dirty_inode	= ext4_dirty_inode,
1639	.drop_inode	= ext4_drop_inode,
1640	.evict_inode	= ext4_evict_inode,
1641	.put_super	= ext4_put_super,
1642	.sync_fs	= ext4_sync_fs,
1643	.freeze_fs	= ext4_freeze,
1644	.unfreeze_fs	= ext4_unfreeze,
1645	.statfs		= ext4_statfs,
1646	.remount_fs	= ext4_remount,
1647	.show_options	= ext4_show_options,
1648#ifdef CONFIG_QUOTA
1649	.quota_read	= ext4_quota_read,
1650	.quota_write	= ext4_quota_write,
1651	.get_dquots	= ext4_get_dquots,
1652#endif
1653};
1654
1655static const struct export_operations ext4_export_ops = {
1656	.fh_to_dentry = ext4_fh_to_dentry,
1657	.fh_to_parent = ext4_fh_to_parent,
1658	.get_parent = ext4_get_parent,
1659	.commit_metadata = ext4_nfs_commit_metadata,
1660};
1661
1662enum {
1663	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1664	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1665	Opt_nouid32, Opt_debug, Opt_removed,
1666	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1667	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1668	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1669	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1670	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1671	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1672	Opt_inlinecrypt,
1673	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1674	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1675	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1676	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1677	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1678	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1679	Opt_nowarn_on_error, Opt_mblk_io_submit,
1680	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1681	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1682	Opt_inode_readahead_blks, Opt_journal_ioprio,
1683	Opt_dioread_nolock, Opt_dioread_lock,
1684	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1685	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1686	Opt_prefetch_block_bitmaps,
1687#ifdef CONFIG_EXT4_DEBUG
1688	Opt_fc_debug_max_replay, Opt_fc_debug_force
1689#endif
1690};
1691
1692static const match_table_t tokens = {
1693	{Opt_bsd_df, "bsddf"},
1694	{Opt_minix_df, "minixdf"},
1695	{Opt_grpid, "grpid"},
1696	{Opt_grpid, "bsdgroups"},
1697	{Opt_nogrpid, "nogrpid"},
1698	{Opt_nogrpid, "sysvgroups"},
1699	{Opt_resgid, "resgid=%u"},
1700	{Opt_resuid, "resuid=%u"},
1701	{Opt_sb, "sb=%u"},
1702	{Opt_err_cont, "errors=continue"},
1703	{Opt_err_panic, "errors=panic"},
1704	{Opt_err_ro, "errors=remount-ro"},
1705	{Opt_nouid32, "nouid32"},
1706	{Opt_debug, "debug"},
1707	{Opt_removed, "oldalloc"},
1708	{Opt_removed, "orlov"},
1709	{Opt_user_xattr, "user_xattr"},
1710	{Opt_nouser_xattr, "nouser_xattr"},
1711	{Opt_acl, "acl"},
1712	{Opt_noacl, "noacl"},
1713	{Opt_noload, "norecovery"},
1714	{Opt_noload, "noload"},
1715	{Opt_removed, "nobh"},
1716	{Opt_removed, "bh"},
1717	{Opt_commit, "commit=%u"},
1718	{Opt_min_batch_time, "min_batch_time=%u"},
1719	{Opt_max_batch_time, "max_batch_time=%u"},
1720	{Opt_journal_dev, "journal_dev=%u"},
1721	{Opt_journal_path, "journal_path=%s"},
1722	{Opt_journal_checksum, "journal_checksum"},
1723	{Opt_nojournal_checksum, "nojournal_checksum"},
1724	{Opt_journal_async_commit, "journal_async_commit"},
1725	{Opt_abort, "abort"},
1726	{Opt_data_journal, "data=journal"},
1727	{Opt_data_ordered, "data=ordered"},
1728	{Opt_data_writeback, "data=writeback"},
1729	{Opt_data_err_abort, "data_err=abort"},
1730	{Opt_data_err_ignore, "data_err=ignore"},
1731	{Opt_offusrjquota, "usrjquota="},
1732	{Opt_usrjquota, "usrjquota=%s"},
1733	{Opt_offgrpjquota, "grpjquota="},
1734	{Opt_grpjquota, "grpjquota=%s"},
1735	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1736	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1737	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1738	{Opt_grpquota, "grpquota"},
1739	{Opt_noquota, "noquota"},
1740	{Opt_quota, "quota"},
1741	{Opt_usrquota, "usrquota"},
1742	{Opt_prjquota, "prjquota"},
1743	{Opt_barrier, "barrier=%u"},
1744	{Opt_barrier, "barrier"},
1745	{Opt_nobarrier, "nobarrier"},
1746	{Opt_i_version, "i_version"},
1747	{Opt_dax, "dax"},
1748	{Opt_dax_always, "dax=always"},
1749	{Opt_dax_inode, "dax=inode"},
1750	{Opt_dax_never, "dax=never"},
1751	{Opt_stripe, "stripe=%u"},
1752	{Opt_delalloc, "delalloc"},
1753	{Opt_warn_on_error, "warn_on_error"},
1754	{Opt_nowarn_on_error, "nowarn_on_error"},
1755	{Opt_lazytime, "lazytime"},
1756	{Opt_nolazytime, "nolazytime"},
1757	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1758	{Opt_nodelalloc, "nodelalloc"},
1759	{Opt_removed, "mblk_io_submit"},
1760	{Opt_removed, "nomblk_io_submit"},
1761	{Opt_block_validity, "block_validity"},
1762	{Opt_noblock_validity, "noblock_validity"},
1763	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1764	{Opt_journal_ioprio, "journal_ioprio=%u"},
1765	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1766	{Opt_auto_da_alloc, "auto_da_alloc"},
1767	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1768	{Opt_dioread_nolock, "dioread_nolock"},
1769	{Opt_dioread_lock, "nodioread_nolock"},
1770	{Opt_dioread_lock, "dioread_lock"},
1771	{Opt_discard, "discard"},
1772	{Opt_nodiscard, "nodiscard"},
1773	{Opt_init_itable, "init_itable=%u"},
1774	{Opt_init_itable, "init_itable"},
1775	{Opt_noinit_itable, "noinit_itable"},
1776#ifdef CONFIG_EXT4_DEBUG
1777	{Opt_fc_debug_force, "fc_debug_force"},
1778	{Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1779#endif
1780	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1781	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1782	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1783	{Opt_inlinecrypt, "inlinecrypt"},
1784	{Opt_nombcache, "nombcache"},
1785	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1786	{Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
1787	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1788	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1789	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1790	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1791	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1792	{Opt_err, NULL},
1793};
1794
1795static ext4_fsblk_t get_sb_block(void **data)
1796{
1797	ext4_fsblk_t	sb_block;
1798	char		*options = (char *) *data;
1799
1800	if (!options || strncmp(options, "sb=", 3) != 0)
1801		return 1;	/* Default location */
1802
1803	options += 3;
1804	/* TODO: use simple_strtoll with >32bit ext4 */
1805	sb_block = simple_strtoul(options, &options, 0);
1806	if (*options && *options != ',') {
1807		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1808		       (char *) *data);
1809		return 1;
1810	}
1811	if (*options == ',')
1812		options++;
1813	*data = (void *) options;
1814
1815	return sb_block;
1816}
1817
1818#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1819static const char deprecated_msg[] =
1820	"Mount option \"%s\" will be removed by %s\n"
1821	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1822
1823#ifdef CONFIG_QUOTA
1824static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1825{
1826	struct ext4_sb_info *sbi = EXT4_SB(sb);
1827	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1828	int ret = -1;
1829
1830	if (sb_any_quota_loaded(sb) && !old_qname) {
1831		ext4_msg(sb, KERN_ERR,
1832			"Cannot change journaled "
1833			"quota options when quota turned on");
1834		return -1;
1835	}
1836	if (ext4_has_feature_quota(sb)) {
1837		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1838			 "ignored when QUOTA feature is enabled");
1839		return 1;
1840	}
1841	qname = match_strdup(args);
1842	if (!qname) {
1843		ext4_msg(sb, KERN_ERR,
1844			"Not enough memory for storing quotafile name");
1845		return -1;
1846	}
1847	if (old_qname) {
1848		if (strcmp(old_qname, qname) == 0)
1849			ret = 1;
1850		else
1851			ext4_msg(sb, KERN_ERR,
1852				 "%s quota file already specified",
1853				 QTYPE2NAME(qtype));
1854		goto errout;
1855	}
1856	if (strchr(qname, '/')) {
1857		ext4_msg(sb, KERN_ERR,
1858			"quotafile must be on filesystem root");
1859		goto errout;
1860	}
1861	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1862	set_opt(sb, QUOTA);
1863	return 1;
1864errout:
1865	kfree(qname);
1866	return ret;
1867}
1868
1869static int clear_qf_name(struct super_block *sb, int qtype)
1870{
1871
1872	struct ext4_sb_info *sbi = EXT4_SB(sb);
1873	char *old_qname = get_qf_name(sb, sbi, qtype);
1874
1875	if (sb_any_quota_loaded(sb) && old_qname) {
1876		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1877			" when quota turned on");
1878		return -1;
1879	}
1880	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1881	synchronize_rcu();
1882	kfree(old_qname);
1883	return 1;
1884}
1885#endif
1886
1887#define MOPT_SET	0x0001
1888#define MOPT_CLEAR	0x0002
1889#define MOPT_NOSUPPORT	0x0004
1890#define MOPT_EXPLICIT	0x0008
1891#define MOPT_CLEAR_ERR	0x0010
1892#define MOPT_GTE0	0x0020
1893#ifdef CONFIG_QUOTA
1894#define MOPT_Q		0
1895#define MOPT_QFMT	0x0040
1896#else
1897#define MOPT_Q		MOPT_NOSUPPORT
1898#define MOPT_QFMT	MOPT_NOSUPPORT
1899#endif
1900#define MOPT_DATAJ	0x0080
1901#define MOPT_NO_EXT2	0x0100
1902#define MOPT_NO_EXT3	0x0200
1903#define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1904#define MOPT_STRING	0x0400
1905#define MOPT_SKIP	0x0800
1906#define	MOPT_2		0x1000
1907
1908static const struct mount_opts {
1909	int	token;
1910	int	mount_opt;
1911	int	flags;
1912} ext4_mount_opts[] = {
1913	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1914	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1915	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1916	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1917	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1918	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1919	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1920	 MOPT_EXT4_ONLY | MOPT_SET},
1921	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1922	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1923	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1924	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1925	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1926	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1927	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1928	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1929	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1930	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1931	{Opt_commit, 0, MOPT_NO_EXT2},
1932	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1933	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1934	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1935	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1936	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1937				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1938	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1939	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1940	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1941	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1942	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1943	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1944	 MOPT_NO_EXT2},
1945	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1946	 MOPT_NO_EXT2},
1947	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1948	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1949	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1950	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1951	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1952	{Opt_commit, 0, MOPT_GTE0},
1953	{Opt_max_batch_time, 0, MOPT_GTE0},
1954	{Opt_min_batch_time, 0, MOPT_GTE0},
1955	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1956	{Opt_init_itable, 0, MOPT_GTE0},
1957	{Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1958	{Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1959		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1960	{Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1961		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1962	{Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1963		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1964	{Opt_stripe, 0, MOPT_GTE0},
1965	{Opt_resuid, 0, MOPT_GTE0},
1966	{Opt_resgid, 0, MOPT_GTE0},
1967	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1968	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1969	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1970	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1971	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1972	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1973	 MOPT_NO_EXT2 | MOPT_DATAJ},
1974	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1975	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1976#ifdef CONFIG_EXT4_FS_POSIX_ACL
1977	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1978	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1979#else
1980	{Opt_acl, 0, MOPT_NOSUPPORT},
1981	{Opt_noacl, 0, MOPT_NOSUPPORT},
1982#endif
1983	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1984	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1985	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1986	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1987	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1988							MOPT_SET | MOPT_Q},
1989	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1990							MOPT_SET | MOPT_Q},
1991	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1992							MOPT_SET | MOPT_Q},
1993	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1994		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1995							MOPT_CLEAR | MOPT_Q},
1996	{Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
1997	{Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
1998	{Opt_offusrjquota, 0, MOPT_Q},
1999	{Opt_offgrpjquota, 0, MOPT_Q},
2000	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2001	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2002	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2003	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
2004	{Opt_test_dummy_encryption, 0, MOPT_STRING},
2005	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2006	{Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
2007	 MOPT_SET},
2008#ifdef CONFIG_EXT4_DEBUG
2009	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2010	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2011	{Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2012#endif
2013	{Opt_err, 0, 0}
2014};
2015
2016#ifdef CONFIG_UNICODE
2017static const struct ext4_sb_encodings {
2018	__u16 magic;
2019	char *name;
2020	char *version;
2021} ext4_sb_encoding_map[] = {
2022	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2023};
2024
2025static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2026				 const struct ext4_sb_encodings **encoding,
2027				 __u16 *flags)
2028{
2029	__u16 magic = le16_to_cpu(es->s_encoding);
2030	int i;
2031
2032	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2033		if (magic == ext4_sb_encoding_map[i].magic)
2034			break;
2035
2036	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2037		return -EINVAL;
2038
2039	*encoding = &ext4_sb_encoding_map[i];
2040	*flags = le16_to_cpu(es->s_encoding_flags);
2041
2042	return 0;
2043}
2044#endif
2045
2046static int ext4_set_test_dummy_encryption(struct super_block *sb,
2047					  const char *opt,
2048					  const substring_t *arg,
2049					  bool is_remount)
2050{
2051#ifdef CONFIG_FS_ENCRYPTION
2052	struct ext4_sb_info *sbi = EXT4_SB(sb);
2053	int err;
2054
2055	if (!ext4_has_feature_encrypt(sb)) {
2056		ext4_msg(sb, KERN_WARNING,
2057			 "test_dummy_encryption requires encrypt feature");
2058		return -1;
2059	}
2060
2061	/*
2062	 * This mount option is just for testing, and it's not worthwhile to
2063	 * implement the extra complexity (e.g. RCU protection) that would be
2064	 * needed to allow it to be set or changed during remount.  We do allow
2065	 * it to be specified during remount, but only if there is no change.
2066	 */
2067	if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2068		ext4_msg(sb, KERN_WARNING,
2069			 "Can't set test_dummy_encryption on remount");
2070		return -1;
2071	}
2072	err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2073						&sbi->s_dummy_enc_policy);
2074	if (err) {
2075		if (err == -EEXIST)
2076			ext4_msg(sb, KERN_WARNING,
2077				 "Can't change test_dummy_encryption on remount");
2078		else if (err == -EINVAL)
2079			ext4_msg(sb, KERN_WARNING,
2080				 "Value of option \"%s\" is unrecognized", opt);
2081		else
2082			ext4_msg(sb, KERN_WARNING,
2083				 "Error processing option \"%s\" [%d]",
2084				 opt, err);
2085		return -1;
2086	}
2087	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2088	return 1;
2089#else
2090	ext4_msg(sb, KERN_WARNING,
2091		 "test_dummy_encryption option not supported");
2092	return -1;
2093
2094#endif
2095}
2096
2097static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2098			    substring_t *args, unsigned long *journal_devnum,
2099			    unsigned int *journal_ioprio, int is_remount)
2100{
2101	struct ext4_sb_info *sbi = EXT4_SB(sb);
2102	const struct mount_opts *m;
2103	kuid_t uid;
2104	kgid_t gid;
2105	int arg = 0;
2106
2107#ifdef CONFIG_QUOTA
2108	if (token == Opt_usrjquota)
2109		return set_qf_name(sb, USRQUOTA, &args[0]);
2110	else if (token == Opt_grpjquota)
2111		return set_qf_name(sb, GRPQUOTA, &args[0]);
2112	else if (token == Opt_offusrjquota)
2113		return clear_qf_name(sb, USRQUOTA);
2114	else if (token == Opt_offgrpjquota)
2115		return clear_qf_name(sb, GRPQUOTA);
2116#endif
2117	switch (token) {
2118	case Opt_noacl:
2119	case Opt_nouser_xattr:
2120		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2121		break;
2122	case Opt_sb:
2123		return 1;	/* handled by get_sb_block() */
2124	case Opt_removed:
2125		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2126		return 1;
2127	case Opt_abort:
2128		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2129		return 1;
2130	case Opt_i_version:
2131		sb->s_flags |= SB_I_VERSION;
2132		return 1;
2133	case Opt_lazytime:
2134		sb->s_flags |= SB_LAZYTIME;
2135		return 1;
2136	case Opt_nolazytime:
2137		sb->s_flags &= ~SB_LAZYTIME;
2138		return 1;
2139	case Opt_inlinecrypt:
2140#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2141		sb->s_flags |= SB_INLINECRYPT;
2142#else
2143		ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2144#endif
2145		return 1;
2146	}
2147
2148	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2149		if (token == m->token)
2150			break;
2151
2152	if (m->token == Opt_err) {
2153		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2154			 "or missing value", opt);
2155		return -1;
2156	}
2157
2158	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2159		ext4_msg(sb, KERN_ERR,
2160			 "Mount option \"%s\" incompatible with ext2", opt);
2161		return -1;
2162	}
2163	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2164		ext4_msg(sb, KERN_ERR,
2165			 "Mount option \"%s\" incompatible with ext3", opt);
2166		return -1;
2167	}
2168
2169	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2170		return -1;
2171	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2172		return -1;
2173	if (m->flags & MOPT_EXPLICIT) {
2174		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2175			set_opt2(sb, EXPLICIT_DELALLOC);
2176		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2177			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2178		} else
2179			return -1;
2180	}
2181	if (m->flags & MOPT_CLEAR_ERR)
2182		clear_opt(sb, ERRORS_MASK);
2183	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2184		ext4_msg(sb, KERN_ERR, "Cannot change quota "
2185			 "options when quota turned on");
2186		return -1;
2187	}
2188
2189	if (m->flags & MOPT_NOSUPPORT) {
2190		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2191	} else if (token == Opt_commit) {
2192		if (arg == 0)
2193			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2194		else if (arg > INT_MAX / HZ) {
2195			ext4_msg(sb, KERN_ERR,
2196				 "Invalid commit interval %d, "
2197				 "must be smaller than %d",
2198				 arg, INT_MAX / HZ);
2199			return -1;
2200		}
2201		sbi->s_commit_interval = HZ * arg;
2202	} else if (token == Opt_debug_want_extra_isize) {
2203		if ((arg & 1) ||
2204		    (arg < 4) ||
2205		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2206			ext4_msg(sb, KERN_ERR,
2207				 "Invalid want_extra_isize %d", arg);
2208			return -1;
2209		}
2210		sbi->s_want_extra_isize = arg;
2211	} else if (token == Opt_max_batch_time) {
2212		sbi->s_max_batch_time = arg;
2213	} else if (token == Opt_min_batch_time) {
2214		sbi->s_min_batch_time = arg;
2215	} else if (token == Opt_inode_readahead_blks) {
2216		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2217			ext4_msg(sb, KERN_ERR,
2218				 "EXT4-fs: inode_readahead_blks must be "
2219				 "0 or a power of 2 smaller than 2^31");
2220			return -1;
2221		}
2222		sbi->s_inode_readahead_blks = arg;
2223	} else if (token == Opt_init_itable) {
2224		set_opt(sb, INIT_INODE_TABLE);
2225		if (!args->from)
2226			arg = EXT4_DEF_LI_WAIT_MULT;
2227		sbi->s_li_wait_mult = arg;
2228	} else if (token == Opt_max_dir_size_kb) {
2229		sbi->s_max_dir_size_kb = arg;
2230#ifdef CONFIG_EXT4_DEBUG
2231	} else if (token == Opt_fc_debug_max_replay) {
2232		sbi->s_fc_debug_max_replay = arg;
2233#endif
2234	} else if (token == Opt_stripe) {
2235		sbi->s_stripe = arg;
2236	} else if (token == Opt_resuid) {
2237		uid = make_kuid(current_user_ns(), arg);
2238		if (!uid_valid(uid)) {
2239			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2240			return -1;
2241		}
2242		sbi->s_resuid = uid;
2243	} else if (token == Opt_resgid) {
2244		gid = make_kgid(current_user_ns(), arg);
2245		if (!gid_valid(gid)) {
2246			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2247			return -1;
2248		}
2249		sbi->s_resgid = gid;
2250	} else if (token == Opt_journal_dev) {
2251		if (is_remount) {
2252			ext4_msg(sb, KERN_ERR,
2253				 "Cannot specify journal on remount");
2254			return -1;
2255		}
2256		*journal_devnum = arg;
2257	} else if (token == Opt_journal_path) {
2258		char *journal_path;
2259		struct inode *journal_inode;
2260		struct path path;
2261		int error;
2262
2263		if (is_remount) {
2264			ext4_msg(sb, KERN_ERR,
2265				 "Cannot specify journal on remount");
2266			return -1;
2267		}
2268		journal_path = match_strdup(&args[0]);
2269		if (!journal_path) {
2270			ext4_msg(sb, KERN_ERR, "error: could not dup "
2271				"journal device string");
2272			return -1;
2273		}
2274
2275		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2276		if (error) {
2277			ext4_msg(sb, KERN_ERR, "error: could not find "
2278				"journal device path: error %d", error);
2279			kfree(journal_path);
2280			return -1;
2281		}
2282
2283		journal_inode = d_inode(path.dentry);
2284		if (!S_ISBLK(journal_inode->i_mode)) {
2285			ext4_msg(sb, KERN_ERR, "error: journal path %s "
2286				"is not a block device", journal_path);
2287			path_put(&path);
2288			kfree(journal_path);
2289			return -1;
2290		}
2291
2292		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
2293		path_put(&path);
2294		kfree(journal_path);
2295	} else if (token == Opt_journal_ioprio) {
2296		if (arg > 7) {
2297			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2298				 " (must be 0-7)");
2299			return -1;
2300		}
2301		*journal_ioprio =
2302			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2303	} else if (token == Opt_test_dummy_encryption) {
2304		return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2305						      is_remount);
2306	} else if (m->flags & MOPT_DATAJ) {
2307		if (is_remount) {
2308			if (!sbi->s_journal)
2309				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2310			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2311				ext4_msg(sb, KERN_ERR,
2312					 "Cannot change data mode on remount");
2313				return -1;
2314			}
2315		} else {
2316			clear_opt(sb, DATA_FLAGS);
2317			sbi->s_mount_opt |= m->mount_opt;
2318		}
2319#ifdef CONFIG_QUOTA
2320	} else if (m->flags & MOPT_QFMT) {
2321		if (sb_any_quota_loaded(sb) &&
2322		    sbi->s_jquota_fmt != m->mount_opt) {
2323			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2324				 "quota options when quota turned on");
2325			return -1;
2326		}
2327		if (ext4_has_feature_quota(sb)) {
2328			ext4_msg(sb, KERN_INFO,
2329				 "Quota format mount options ignored "
2330				 "when QUOTA feature is enabled");
2331			return 1;
2332		}
2333		sbi->s_jquota_fmt = m->mount_opt;
2334#endif
2335	} else if (token == Opt_dax || token == Opt_dax_always ||
2336		   token == Opt_dax_inode || token == Opt_dax_never) {
2337#ifdef CONFIG_FS_DAX
2338		switch (token) {
2339		case Opt_dax:
2340		case Opt_dax_always:
2341			if (is_remount &&
2342			    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2343			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2344			fail_dax_change_remount:
2345				ext4_msg(sb, KERN_ERR, "can't change "
2346					 "dax mount option while remounting");
2347				return -1;
2348			}
2349			if (is_remount &&
2350			    (test_opt(sb, DATA_FLAGS) ==
2351			     EXT4_MOUNT_JOURNAL_DATA)) {
2352				    ext4_msg(sb, KERN_ERR, "can't mount with "
2353					     "both data=journal and dax");
2354				    return -1;
2355			}
2356			ext4_msg(sb, KERN_WARNING,
2357				"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2358			sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2359			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2360			break;
2361		case Opt_dax_never:
2362			if (is_remount &&
2363			    (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2364			     (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2365				goto fail_dax_change_remount;
2366			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2367			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2368			break;
2369		case Opt_dax_inode:
2370			if (is_remount &&
2371			    ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2372			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2373			     !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2374				goto fail_dax_change_remount;
2375			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2376			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2377			/* Strictly for printing options */
2378			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2379			break;
2380		}
2381#else
2382		ext4_msg(sb, KERN_INFO, "dax option not supported");
2383		sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2384		sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2385		return -1;
2386#endif
2387	} else if (token == Opt_data_err_abort) {
2388		sbi->s_mount_opt |= m->mount_opt;
2389	} else if (token == Opt_data_err_ignore) {
2390		sbi->s_mount_opt &= ~m->mount_opt;
2391	} else {
2392		if (!args->from)
2393			arg = 1;
2394		if (m->flags & MOPT_CLEAR)
2395			arg = !arg;
2396		else if (unlikely(!(m->flags & MOPT_SET))) {
2397			ext4_msg(sb, KERN_WARNING,
2398				 "buggy handling of option %s", opt);
2399			WARN_ON(1);
2400			return -1;
2401		}
2402		if (m->flags & MOPT_2) {
2403			if (arg != 0)
2404				sbi->s_mount_opt2 |= m->mount_opt;
2405			else
2406				sbi->s_mount_opt2 &= ~m->mount_opt;
2407		} else {
2408			if (arg != 0)
2409				sbi->s_mount_opt |= m->mount_opt;
2410			else
2411				sbi->s_mount_opt &= ~m->mount_opt;
2412		}
2413	}
2414	return 1;
2415}
2416
2417static int parse_options(char *options, struct super_block *sb,
2418			 unsigned long *journal_devnum,
2419			 unsigned int *journal_ioprio,
2420			 int is_remount)
2421{
2422	struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2423	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2424	substring_t args[MAX_OPT_ARGS];
2425	int token;
2426
2427	if (!options)
2428		return 1;
2429
2430	while ((p = strsep(&options, ",")) != NULL) {
2431		if (!*p)
2432			continue;
2433		/*
2434		 * Initialize args struct so we know whether arg was
2435		 * found; some options take optional arguments.
2436		 */
2437		args[0].to = args[0].from = NULL;
2438		token = match_token(p, tokens, args);
2439		if (handle_mount_opt(sb, p, token, args, journal_devnum,
2440				     journal_ioprio, is_remount) < 0)
2441			return 0;
2442	}
2443#ifdef CONFIG_QUOTA
2444	/*
2445	 * We do the test below only for project quotas. 'usrquota' and
2446	 * 'grpquota' mount options are allowed even without quota feature
2447	 * to support legacy quotas in quota files.
2448	 */
2449	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2450		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2451			 "Cannot enable project quota enforcement.");
2452		return 0;
2453	}
2454	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2455	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2456	if (usr_qf_name || grp_qf_name) {
2457		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2458			clear_opt(sb, USRQUOTA);
2459
2460		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2461			clear_opt(sb, GRPQUOTA);
2462
2463		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2464			ext4_msg(sb, KERN_ERR, "old and new quota "
2465					"format mixing");
2466			return 0;
2467		}
2468
2469		if (!sbi->s_jquota_fmt) {
2470			ext4_msg(sb, KERN_ERR, "journaled quota format "
2471					"not specified");
2472			return 0;
2473		}
2474	}
2475#endif
2476	if (test_opt(sb, DIOREAD_NOLOCK)) {
2477		int blocksize =
2478			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2479		if (blocksize < PAGE_SIZE)
2480			ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2481				 "experimental mount option 'dioread_nolock' "
2482				 "for blocksize < PAGE_SIZE");
2483	}
2484	return 1;
2485}
2486
2487static inline void ext4_show_quota_options(struct seq_file *seq,
2488					   struct super_block *sb)
2489{
2490#if defined(CONFIG_QUOTA)
2491	struct ext4_sb_info *sbi = EXT4_SB(sb);
2492	char *usr_qf_name, *grp_qf_name;
2493
2494	if (sbi->s_jquota_fmt) {
2495		char *fmtname = "";
2496
2497		switch (sbi->s_jquota_fmt) {
2498		case QFMT_VFS_OLD:
2499			fmtname = "vfsold";
2500			break;
2501		case QFMT_VFS_V0:
2502			fmtname = "vfsv0";
2503			break;
2504		case QFMT_VFS_V1:
2505			fmtname = "vfsv1";
2506			break;
2507		}
2508		seq_printf(seq, ",jqfmt=%s", fmtname);
2509	}
2510
2511	rcu_read_lock();
2512	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2513	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2514	if (usr_qf_name)
2515		seq_show_option(seq, "usrjquota", usr_qf_name);
2516	if (grp_qf_name)
2517		seq_show_option(seq, "grpjquota", grp_qf_name);
2518	rcu_read_unlock();
2519#endif
2520}
2521
2522static const char *token2str(int token)
2523{
2524	const struct match_token *t;
2525
2526	for (t = tokens; t->token != Opt_err; t++)
2527		if (t->token == token && !strchr(t->pattern, '='))
2528			break;
2529	return t->pattern;
2530}
2531
2532/*
2533 * Show an option if
2534 *  - it's set to a non-default value OR
2535 *  - if the per-sb default is different from the global default
2536 */
2537static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2538			      int nodefs)
2539{
2540	struct ext4_sb_info *sbi = EXT4_SB(sb);
2541	struct ext4_super_block *es = sbi->s_es;
2542	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2543	const struct mount_opts *m;
2544	char sep = nodefs ? '\n' : ',';
2545
2546#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2547#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2548
2549	if (sbi->s_sb_block != 1)
2550		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2551
2552	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2553		int want_set = m->flags & MOPT_SET;
2554		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2555		    (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2556			continue;
2557		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2558			continue; /* skip if same as the default */
2559		if ((want_set &&
2560		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2561		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2562			continue; /* select Opt_noFoo vs Opt_Foo */
2563		SEQ_OPTS_PRINT("%s", token2str(m->token));
2564	}
2565
2566	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2567	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2568		SEQ_OPTS_PRINT("resuid=%u",
2569				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2570	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2571	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2572		SEQ_OPTS_PRINT("resgid=%u",
2573				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2574	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2575	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2576		SEQ_OPTS_PUTS("errors=remount-ro");
2577	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2578		SEQ_OPTS_PUTS("errors=continue");
2579	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2580		SEQ_OPTS_PUTS("errors=panic");
2581	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2582		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2583	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2584		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2585	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2586		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2587	if (sb->s_flags & SB_I_VERSION)
2588		SEQ_OPTS_PUTS("i_version");
2589	if (nodefs || sbi->s_stripe)
2590		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2591	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2592			(sbi->s_mount_opt ^ def_mount_opt)) {
2593		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2594			SEQ_OPTS_PUTS("data=journal");
2595		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2596			SEQ_OPTS_PUTS("data=ordered");
2597		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2598			SEQ_OPTS_PUTS("data=writeback");
2599	}
2600	if (nodefs ||
2601	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2602		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2603			       sbi->s_inode_readahead_blks);
2604
2605	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2606		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2607		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2608	if (nodefs || sbi->s_max_dir_size_kb)
2609		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2610	if (test_opt(sb, DATA_ERR_ABORT))
2611		SEQ_OPTS_PUTS("data_err=abort");
2612
2613	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2614
2615	if (sb->s_flags & SB_INLINECRYPT)
2616		SEQ_OPTS_PUTS("inlinecrypt");
2617
2618	if (test_opt(sb, DAX_ALWAYS)) {
2619		if (IS_EXT2_SB(sb))
2620			SEQ_OPTS_PUTS("dax");
2621		else
2622			SEQ_OPTS_PUTS("dax=always");
2623	} else if (test_opt2(sb, DAX_NEVER)) {
2624		SEQ_OPTS_PUTS("dax=never");
2625	} else if (test_opt2(sb, DAX_INODE)) {
2626		SEQ_OPTS_PUTS("dax=inode");
2627	}
2628	ext4_show_quota_options(seq, sb);
2629	return 0;
2630}
2631
2632static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2633{
2634	return _ext4_show_options(seq, root->d_sb, 0);
2635}
2636
2637int ext4_seq_options_show(struct seq_file *seq, void *offset)
2638{
2639	struct super_block *sb = seq->private;
2640	int rc;
2641
2642	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2643	rc = _ext4_show_options(seq, sb, 1);
2644	seq_puts(seq, "\n");
2645	return rc;
2646}
2647
2648static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2649			    int read_only)
2650{
2651	struct ext4_sb_info *sbi = EXT4_SB(sb);
2652	int err = 0;
2653
2654	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2655		ext4_msg(sb, KERN_ERR, "revision level too high, "
2656			 "forcing read-only mode");
2657		err = -EROFS;
2658		goto done;
2659	}
2660	if (read_only)
2661		goto done;
2662	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2663		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2664			 "running e2fsck is recommended");
2665	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2666		ext4_msg(sb, KERN_WARNING,
2667			 "warning: mounting fs with errors, "
2668			 "running e2fsck is recommended");
2669	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2670		 le16_to_cpu(es->s_mnt_count) >=
2671		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2672		ext4_msg(sb, KERN_WARNING,
2673			 "warning: maximal mount count reached, "
2674			 "running e2fsck is recommended");
2675	else if (le32_to_cpu(es->s_checkinterval) &&
2676		 (ext4_get_tstamp(es, s_lastcheck) +
2677		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2678		ext4_msg(sb, KERN_WARNING,
2679			 "warning: checktime reached, "
2680			 "running e2fsck is recommended");
2681	if (!sbi->s_journal)
2682		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2683	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2684		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2685	le16_add_cpu(&es->s_mnt_count, 1);
2686	ext4_update_tstamp(es, s_mtime);
2687	if (sbi->s_journal)
2688		ext4_set_feature_journal_needs_recovery(sb);
2689
2690	err = ext4_commit_super(sb);
2691done:
2692	if (test_opt(sb, DEBUG))
2693		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2694				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2695			sb->s_blocksize,
2696			sbi->s_groups_count,
2697			EXT4_BLOCKS_PER_GROUP(sb),
2698			EXT4_INODES_PER_GROUP(sb),
2699			sbi->s_mount_opt, sbi->s_mount_opt2);
2700
2701	cleancache_init_fs(sb);
2702	return err;
2703}
2704
2705int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2706{
2707	struct ext4_sb_info *sbi = EXT4_SB(sb);
2708	struct flex_groups **old_groups, **new_groups;
2709	int size, i, j;
2710
2711	if (!sbi->s_log_groups_per_flex)
2712		return 0;
2713
2714	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2715	if (size <= sbi->s_flex_groups_allocated)
2716		return 0;
2717
2718	new_groups = kvzalloc(roundup_pow_of_two(size *
2719			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2720	if (!new_groups) {
2721		ext4_msg(sb, KERN_ERR,
2722			 "not enough memory for %d flex group pointers", size);
2723		return -ENOMEM;
2724	}
2725	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2726		new_groups[i] = kvzalloc(roundup_pow_of_two(
2727					 sizeof(struct flex_groups)),
2728					 GFP_KERNEL);
2729		if (!new_groups[i]) {
2730			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2731				kvfree(new_groups[j]);
2732			kvfree(new_groups);
2733			ext4_msg(sb, KERN_ERR,
2734				 "not enough memory for %d flex groups", size);
2735			return -ENOMEM;
2736		}
2737	}
2738	rcu_read_lock();
2739	old_groups = rcu_dereference(sbi->s_flex_groups);
2740	if (old_groups)
2741		memcpy(new_groups, old_groups,
2742		       (sbi->s_flex_groups_allocated *
2743			sizeof(struct flex_groups *)));
2744	rcu_read_unlock();
2745	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2746	sbi->s_flex_groups_allocated = size;
2747	if (old_groups)
2748		ext4_kvfree_array_rcu(old_groups);
2749	return 0;
2750}
2751
2752static int ext4_fill_flex_info(struct super_block *sb)
2753{
2754	struct ext4_sb_info *sbi = EXT4_SB(sb);
2755	struct ext4_group_desc *gdp = NULL;
2756	struct flex_groups *fg;
2757	ext4_group_t flex_group;
2758	int i, err;
2759
2760	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2761	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2762		sbi->s_log_groups_per_flex = 0;
2763		return 1;
2764	}
2765
2766	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2767	if (err)
2768		goto failed;
2769
2770	for (i = 0; i < sbi->s_groups_count; i++) {
2771		gdp = ext4_get_group_desc(sb, i, NULL);
2772
2773		flex_group = ext4_flex_group(sbi, i);
2774		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2775		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2776		atomic64_add(ext4_free_group_clusters(sb, gdp),
2777			     &fg->free_clusters);
2778		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2779	}
2780
2781	return 1;
2782failed:
2783	return 0;
2784}
2785
2786static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2787				   struct ext4_group_desc *gdp)
2788{
2789	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2790	__u16 crc = 0;
2791	__le32 le_group = cpu_to_le32(block_group);
2792	struct ext4_sb_info *sbi = EXT4_SB(sb);
2793
2794	if (ext4_has_metadata_csum(sbi->s_sb)) {
2795		/* Use new metadata_csum algorithm */
2796		__u32 csum32;
2797		__u16 dummy_csum = 0;
2798
2799		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2800				     sizeof(le_group));
2801		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2802		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2803				     sizeof(dummy_csum));
2804		offset += sizeof(dummy_csum);
2805		if (offset < sbi->s_desc_size)
2806			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2807					     sbi->s_desc_size - offset);
2808
2809		crc = csum32 & 0xFFFF;
2810		goto out;
2811	}
2812
2813	/* old crc16 code */
2814	if (!ext4_has_feature_gdt_csum(sb))
2815		return 0;
2816
2817	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2818	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2819	crc = crc16(crc, (__u8 *)gdp, offset);
2820	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2821	/* for checksum of struct ext4_group_desc do the rest...*/
2822	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
2823		crc = crc16(crc, (__u8 *)gdp + offset,
2824			    sbi->s_desc_size - offset);
2825
2826out:
2827	return cpu_to_le16(crc);
2828}
2829
2830int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2831				struct ext4_group_desc *gdp)
2832{
2833	if (ext4_has_group_desc_csum(sb) &&
2834	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2835		return 0;
2836
2837	return 1;
2838}
2839
2840void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2841			      struct ext4_group_desc *gdp)
2842{
2843	if (!ext4_has_group_desc_csum(sb))
2844		return;
2845	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2846}
2847
2848/* Called at mount-time, super-block is locked */
2849static int ext4_check_descriptors(struct super_block *sb,
2850				  ext4_fsblk_t sb_block,
2851				  ext4_group_t *first_not_zeroed)
2852{
2853	struct ext4_sb_info *sbi = EXT4_SB(sb);
2854	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2855	ext4_fsblk_t last_block;
2856	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2857	ext4_fsblk_t block_bitmap;
2858	ext4_fsblk_t inode_bitmap;
2859	ext4_fsblk_t inode_table;
2860	int flexbg_flag = 0;
2861	ext4_group_t i, grp = sbi->s_groups_count;
2862
2863	if (ext4_has_feature_flex_bg(sb))
2864		flexbg_flag = 1;
2865
2866	ext4_debug("Checking group descriptors");
2867
2868	for (i = 0; i < sbi->s_groups_count; i++) {
2869		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2870
2871		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2872			last_block = ext4_blocks_count(sbi->s_es) - 1;
2873		else
2874			last_block = first_block +
2875				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2876
2877		if ((grp == sbi->s_groups_count) &&
2878		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2879			grp = i;
2880
2881		block_bitmap = ext4_block_bitmap(sb, gdp);
2882		if (block_bitmap == sb_block) {
2883			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2884				 "Block bitmap for group %u overlaps "
2885				 "superblock", i);
2886			if (!sb_rdonly(sb))
2887				return 0;
2888		}
2889		if (block_bitmap >= sb_block + 1 &&
2890		    block_bitmap <= last_bg_block) {
2891			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2892				 "Block bitmap for group %u overlaps "
2893				 "block group descriptors", i);
2894			if (!sb_rdonly(sb))
2895				return 0;
2896		}
2897		if (block_bitmap < first_block || block_bitmap > last_block) {
2898			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2899			       "Block bitmap for group %u not in group "
2900			       "(block %llu)!", i, block_bitmap);
2901			return 0;
2902		}
2903		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2904		if (inode_bitmap == sb_block) {
2905			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2906				 "Inode bitmap for group %u overlaps "
2907				 "superblock", i);
2908			if (!sb_rdonly(sb))
2909				return 0;
2910		}
2911		if (inode_bitmap >= sb_block + 1 &&
2912		    inode_bitmap <= last_bg_block) {
2913			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2914				 "Inode bitmap for group %u overlaps "
2915				 "block group descriptors", i);
2916			if (!sb_rdonly(sb))
2917				return 0;
2918		}
2919		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2920			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2921			       "Inode bitmap for group %u not in group "
2922			       "(block %llu)!", i, inode_bitmap);
2923			return 0;
2924		}
2925		inode_table = ext4_inode_table(sb, gdp);
2926		if (inode_table == sb_block) {
2927			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2928				 "Inode table for group %u overlaps "
2929				 "superblock", i);
2930			if (!sb_rdonly(sb))
2931				return 0;
2932		}
2933		if (inode_table >= sb_block + 1 &&
2934		    inode_table <= last_bg_block) {
2935			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2936				 "Inode table for group %u overlaps "
2937				 "block group descriptors", i);
2938			if (!sb_rdonly(sb))
2939				return 0;
2940		}
2941		if (inode_table < first_block ||
2942		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2943			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2944			       "Inode table for group %u not in group "
2945			       "(block %llu)!", i, inode_table);
2946			return 0;
2947		}
2948		ext4_lock_group(sb, i);
2949		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2950			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2951				 "Checksum for group %u failed (%u!=%u)",
2952				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2953				     gdp)), le16_to_cpu(gdp->bg_checksum));
2954			if (!sb_rdonly(sb)) {
2955				ext4_unlock_group(sb, i);
2956				return 0;
2957			}
2958		}
2959		ext4_unlock_group(sb, i);
2960		if (!flexbg_flag)
2961			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2962	}
2963	if (NULL != first_not_zeroed)
2964		*first_not_zeroed = grp;
2965	return 1;
2966}
2967
2968/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2969 * the superblock) which were deleted from all directories, but held open by
2970 * a process at the time of a crash.  We walk the list and try to delete these
2971 * inodes at recovery time (only with a read-write filesystem).
2972 *
2973 * In order to keep the orphan inode chain consistent during traversal (in
2974 * case of crash during recovery), we link each inode into the superblock
2975 * orphan list_head and handle it the same way as an inode deletion during
2976 * normal operation (which journals the operations for us).
2977 *
2978 * We only do an iget() and an iput() on each inode, which is very safe if we
2979 * accidentally point at an in-use or already deleted inode.  The worst that
2980 * can happen in this case is that we get a "bit already cleared" message from
2981 * ext4_free_inode().  The only reason we would point at a wrong inode is if
2982 * e2fsck was run on this filesystem, and it must have already done the orphan
2983 * inode cleanup for us, so we can safely abort without any further action.
2984 */
2985static void ext4_orphan_cleanup(struct super_block *sb,
2986				struct ext4_super_block *es)
2987{
2988	unsigned int s_flags = sb->s_flags;
2989	int ret, nr_orphans = 0, nr_truncates = 0;
2990#ifdef CONFIG_QUOTA
2991	int quota_update = 0;
2992	int i;
2993#endif
2994	if (!es->s_last_orphan) {
2995		jbd_debug(4, "no orphan inodes to clean up\n");
2996		return;
2997	}
2998
2999	if (bdev_read_only(sb->s_bdev)) {
3000		ext4_msg(sb, KERN_ERR, "write access "
3001			"unavailable, skipping orphan cleanup");
3002		return;
3003	}
3004
3005	/* Check if feature set would not allow a r/w mount */
3006	if (!ext4_feature_set_ok(sb, 0)) {
3007		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3008			 "unknown ROCOMPAT features");
3009		return;
3010	}
3011
3012	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3013		/* don't clear list on RO mount w/ errors */
3014		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3015			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3016				  "clearing orphan list.\n");
3017			es->s_last_orphan = 0;
3018		}
3019		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3020		return;
3021	}
3022
3023	if (s_flags & SB_RDONLY) {
3024		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3025		sb->s_flags &= ~SB_RDONLY;
3026	}
3027#ifdef CONFIG_QUOTA
3028	/*
3029	 * Turn on quotas which were not enabled for read-only mounts if
3030	 * filesystem has quota feature, so that they are updated correctly.
3031	 */
3032	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3033		int ret = ext4_enable_quotas(sb);
3034
3035		if (!ret)
3036			quota_update = 1;
3037		else
3038			ext4_msg(sb, KERN_ERR,
3039				"Cannot turn on quotas: error %d", ret);
3040	}
3041
3042	/* Turn on journaled quotas used for old sytle */
3043	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3044		if (EXT4_SB(sb)->s_qf_names[i]) {
3045			int ret = ext4_quota_on_mount(sb, i);
3046
3047			if (!ret)
3048				quota_update = 1;
3049			else
3050				ext4_msg(sb, KERN_ERR,
3051					"Cannot turn on journaled "
3052					"quota: type %d: error %d", i, ret);
3053		}
3054	}
3055#endif
3056
3057	while (es->s_last_orphan) {
3058		struct inode *inode;
3059
3060		/*
3061		 * We may have encountered an error during cleanup; if
3062		 * so, skip the rest.
3063		 */
3064		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3065			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3066			es->s_last_orphan = 0;
3067			break;
3068		}
3069
3070		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3071		if (IS_ERR(inode)) {
3072			es->s_last_orphan = 0;
3073			break;
3074		}
3075
3076		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3077		dquot_initialize(inode);
3078		if (inode->i_nlink) {
3079			if (test_opt(sb, DEBUG))
3080				ext4_msg(sb, KERN_DEBUG,
3081					"%s: truncating inode %lu to %lld bytes",
3082					__func__, inode->i_ino, inode->i_size);
3083			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3084				  inode->i_ino, inode->i_size);
3085			inode_lock(inode);
3086			truncate_inode_pages(inode->i_mapping, inode->i_size);
3087			ret = ext4_truncate(inode);
3088			if (ret) {
3089				/*
3090				 * We need to clean up the in-core orphan list
3091				 * manually if ext4_truncate() failed to get a
3092				 * transaction handle.
3093				 */
3094				ext4_orphan_del(NULL, inode);
3095				ext4_std_error(inode->i_sb, ret);
3096			}
3097			inode_unlock(inode);
3098			nr_truncates++;
3099		} else {
3100			if (test_opt(sb, DEBUG))
3101				ext4_msg(sb, KERN_DEBUG,
3102					"%s: deleting unreferenced inode %lu",
3103					__func__, inode->i_ino);
3104			jbd_debug(2, "deleting unreferenced inode %lu\n",
3105				  inode->i_ino);
3106			nr_orphans++;
3107		}
3108		iput(inode);  /* The delete magic happens here! */
3109	}
3110
3111#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3112
3113	if (nr_orphans)
3114		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3115		       PLURAL(nr_orphans));
3116	if (nr_truncates)
3117		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3118		       PLURAL(nr_truncates));
3119#ifdef CONFIG_QUOTA
3120	/* Turn off quotas if they were enabled for orphan cleanup */
3121	if (quota_update) {
3122		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3123			if (sb_dqopt(sb)->files[i])
3124				dquot_quota_off(sb, i);
3125		}
3126	}
3127#endif
3128	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3129}
3130
3131/*
3132 * Maximal extent format file size.
3133 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3134 * extent format containers, within a sector_t, and within i_blocks
3135 * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3136 * so that won't be a limiting factor.
3137 *
3138 * However there is other limiting factor. We do store extents in the form
3139 * of starting block and length, hence the resulting length of the extent
3140 * covering maximum file size must fit into on-disk format containers as
3141 * well. Given that length is always by 1 unit bigger than max unit (because
3142 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3143 *
3144 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3145 */
3146static loff_t ext4_max_size(int blkbits, int has_huge_files)
3147{
3148	loff_t res;
3149	loff_t upper_limit = MAX_LFS_FILESIZE;
3150
3151	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3152
3153	if (!has_huge_files) {
3154		upper_limit = (1LL << 32) - 1;
3155
3156		/* total blocks in file system block size */
3157		upper_limit >>= (blkbits - 9);
3158		upper_limit <<= blkbits;
3159	}
3160
3161	/*
3162	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3163	 * by one fs block, so ee_len can cover the extent of maximum file
3164	 * size
3165	 */
3166	res = (1LL << 32) - 1;
3167	res <<= blkbits;
3168
3169	/* Sanity check against vm- & vfs- imposed limits */
3170	if (res > upper_limit)
3171		res = upper_limit;
3172
3173	return res;
3174}
3175
3176/*
3177 * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3178 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3179 * We need to be 1 filesystem block less than the 2^48 sector limit.
3180 */
3181static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3182{
3183	unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS;
3184	int meta_blocks;
3185
3186	/*
3187	 * This is calculated to be the largest file size for a dense, block
3188	 * mapped file such that the file's total number of 512-byte sectors,
3189	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3190	 *
3191	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3192	 * number of 512-byte sectors of the file.
3193	 */
3194	if (!has_huge_files) {
3195		/*
3196		 * !has_huge_files or implies that the inode i_block field
3197		 * represents total file blocks in 2^32 512-byte sectors ==
3198		 * size of vfs inode i_blocks * 8
3199		 */
3200		upper_limit = (1LL << 32) - 1;
3201
3202		/* total blocks in file system block size */
3203		upper_limit >>= (bits - 9);
3204
3205	} else {
3206		/*
3207		 * We use 48 bit ext4_inode i_blocks
3208		 * With EXT4_HUGE_FILE_FL set the i_blocks
3209		 * represent total number of blocks in
3210		 * file system block size
3211		 */
3212		upper_limit = (1LL << 48) - 1;
3213
3214	}
3215
3216	/* indirect blocks */
3217	meta_blocks = 1;
3218	/* double indirect blocks */
3219	meta_blocks += 1 + (1LL << (bits-2));
3220	/* tripple indirect blocks */
3221	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3222
3223	upper_limit -= meta_blocks;
3224	upper_limit <<= bits;
3225
3226	res += 1LL << (bits-2);
3227	res += 1LL << (2*(bits-2));
3228	res += 1LL << (3*(bits-2));
3229	res <<= bits;
3230	if (res > upper_limit)
3231		res = upper_limit;
3232
3233	if (res > MAX_LFS_FILESIZE)
3234		res = MAX_LFS_FILESIZE;
3235
3236	return (loff_t)res;
3237}
3238
3239static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3240				   ext4_fsblk_t logical_sb_block, int nr)
3241{
3242	struct ext4_sb_info *sbi = EXT4_SB(sb);
3243	ext4_group_t bg, first_meta_bg;
3244	int has_super = 0;
3245
3246	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3247
3248	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3249		return logical_sb_block + nr + 1;
3250	bg = sbi->s_desc_per_block * nr;
3251	if (ext4_bg_has_super(sb, bg))
3252		has_super = 1;
3253
3254	/*
3255	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3256	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3257	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3258	 * compensate.
3259	 */
3260	if (sb->s_blocksize == 1024 && nr == 0 &&
3261	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3262		has_super++;
3263
3264	return (has_super + ext4_group_first_block_no(sb, bg));
3265}
3266
3267/**
3268 * ext4_get_stripe_size: Get the stripe size.
3269 * @sbi: In memory super block info
3270 *
3271 * If we have specified it via mount option, then
3272 * use the mount option value. If the value specified at mount time is
3273 * greater than the blocks per group use the super block value.
3274 * If the super block value is greater than blocks per group return 0.
3275 * Allocator needs it be less than blocks per group.
3276 *
3277 */
3278static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3279{
3280	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3281	unsigned long stripe_width =
3282			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3283	int ret;
3284
3285	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3286		ret = sbi->s_stripe;
3287	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3288		ret = stripe_width;
3289	else if (stride && stride <= sbi->s_blocks_per_group)
3290		ret = stride;
3291	else
3292		ret = 0;
3293
3294	/*
3295	 * If the stripe width is 1, this makes no sense and
3296	 * we set it to 0 to turn off stripe handling code.
3297	 */
3298	if (ret <= 1)
3299		ret = 0;
3300
3301	return ret;
3302}
3303
3304/*
3305 * Check whether this filesystem can be mounted based on
3306 * the features present and the RDONLY/RDWR mount requested.
3307 * Returns 1 if this filesystem can be mounted as requested,
3308 * 0 if it cannot be.
3309 */
3310static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3311{
3312	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3313		ext4_msg(sb, KERN_ERR,
3314			"Couldn't mount because of "
3315			"unsupported optional features (%x)",
3316			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3317			~EXT4_FEATURE_INCOMPAT_SUPP));
3318		return 0;
3319	}
3320
3321#ifndef CONFIG_UNICODE
3322	if (ext4_has_feature_casefold(sb)) {
3323		ext4_msg(sb, KERN_ERR,
3324			 "Filesystem with casefold feature cannot be "
3325			 "mounted without CONFIG_UNICODE");
3326		return 0;
3327	}
3328#endif
3329
3330	if (readonly)
3331		return 1;
3332
3333	if (ext4_has_feature_readonly(sb)) {
3334		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3335		sb->s_flags |= SB_RDONLY;
3336		return 1;
3337	}
3338
3339	/* Check that feature set is OK for a read-write mount */
3340	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3341		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3342			 "unsupported optional features (%x)",
3343			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3344				~EXT4_FEATURE_RO_COMPAT_SUPP));
3345		return 0;
3346	}
3347	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3348		ext4_msg(sb, KERN_ERR,
3349			 "Can't support bigalloc feature without "
3350			 "extents feature\n");
3351		return 0;
3352	}
3353
3354#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3355	if (!readonly && (ext4_has_feature_quota(sb) ||
3356			  ext4_has_feature_project(sb))) {
3357		ext4_msg(sb, KERN_ERR,
3358			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3359		return 0;
3360	}
3361#endif  /* CONFIG_QUOTA */
3362	return 1;
3363}
3364
3365/*
3366 * This function is called once a day if we have errors logged
3367 * on the file system
3368 */
3369static void print_daily_error_info(struct timer_list *t)
3370{
3371	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3372	struct super_block *sb = sbi->s_sb;
3373	struct ext4_super_block *es = sbi->s_es;
3374
3375	if (es->s_error_count)
3376		/* fsck newer than v1.41.13 is needed to clean this condition. */
3377		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3378			 le32_to_cpu(es->s_error_count));
3379	if (es->s_first_error_time) {
3380		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3381		       sb->s_id,
3382		       ext4_get_tstamp(es, s_first_error_time),
3383		       (int) sizeof(es->s_first_error_func),
3384		       es->s_first_error_func,
3385		       le32_to_cpu(es->s_first_error_line));
3386		if (es->s_first_error_ino)
3387			printk(KERN_CONT ": inode %u",
3388			       le32_to_cpu(es->s_first_error_ino));
3389		if (es->s_first_error_block)
3390			printk(KERN_CONT ": block %llu", (unsigned long long)
3391			       le64_to_cpu(es->s_first_error_block));
3392		printk(KERN_CONT "\n");
3393	}
3394	if (es->s_last_error_time) {
3395		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3396		       sb->s_id,
3397		       ext4_get_tstamp(es, s_last_error_time),
3398		       (int) sizeof(es->s_last_error_func),
3399		       es->s_last_error_func,
3400		       le32_to_cpu(es->s_last_error_line));
3401		if (es->s_last_error_ino)
3402			printk(KERN_CONT ": inode %u",
3403			       le32_to_cpu(es->s_last_error_ino));
3404		if (es->s_last_error_block)
3405			printk(KERN_CONT ": block %llu", (unsigned long long)
3406			       le64_to_cpu(es->s_last_error_block));
3407		printk(KERN_CONT "\n");
3408	}
3409	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3410}
3411
3412/* Find next suitable group and run ext4_init_inode_table */
3413static int ext4_run_li_request(struct ext4_li_request *elr)
3414{
3415	struct ext4_group_desc *gdp = NULL;
3416	struct super_block *sb = elr->lr_super;
3417	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3418	ext4_group_t group = elr->lr_next_group;
3419	unsigned int prefetch_ios = 0;
3420	int ret = 0;
3421	u64 start_time;
3422
3423	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3424		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3425				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3426		if (prefetch_ios)
3427			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3428					      prefetch_ios);
3429		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3430					    prefetch_ios);
3431		if (group >= elr->lr_next_group) {
3432			ret = 1;
3433			if (elr->lr_first_not_zeroed != ngroups &&
3434			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3435				elr->lr_next_group = elr->lr_first_not_zeroed;
3436				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3437				ret = 0;
3438			}
3439		}
3440		return ret;
3441	}
3442
3443	for (; group < ngroups; group++) {
3444		gdp = ext4_get_group_desc(sb, group, NULL);
3445		if (!gdp) {
3446			ret = 1;
3447			break;
3448		}
3449
3450		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3451			break;
3452	}
3453
3454	if (group >= ngroups)
3455		ret = 1;
3456
3457	if (!ret) {
3458		start_time = ktime_get_real_ns();
3459		ret = ext4_init_inode_table(sb, group,
3460					    elr->lr_timeout ? 0 : 1);
3461		trace_ext4_lazy_itable_init(sb, group);
3462		if (elr->lr_timeout == 0) {
3463			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3464				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3465		}
3466		elr->lr_next_sched = jiffies + elr->lr_timeout;
3467		elr->lr_next_group = group + 1;
3468	}
3469	return ret;
3470}
3471
3472/*
3473 * Remove lr_request from the list_request and free the
3474 * request structure. Should be called with li_list_mtx held
3475 */
3476static void ext4_remove_li_request(struct ext4_li_request *elr)
3477{
3478	if (!elr)
3479		return;
3480
3481	list_del(&elr->lr_request);
3482	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3483	kfree(elr);
3484}
3485
3486static void ext4_unregister_li_request(struct super_block *sb)
3487{
3488	mutex_lock(&ext4_li_mtx);
3489	if (!ext4_li_info) {
3490		mutex_unlock(&ext4_li_mtx);
3491		return;
3492	}
3493
3494	mutex_lock(&ext4_li_info->li_list_mtx);
3495	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3496	mutex_unlock(&ext4_li_info->li_list_mtx);
3497	mutex_unlock(&ext4_li_mtx);
3498}
3499
3500static struct task_struct *ext4_lazyinit_task;
3501
3502/*
3503 * This is the function where ext4lazyinit thread lives. It walks
3504 * through the request list searching for next scheduled filesystem.
3505 * When such a fs is found, run the lazy initialization request
3506 * (ext4_rn_li_request) and keep track of the time spend in this
3507 * function. Based on that time we compute next schedule time of
3508 * the request. When walking through the list is complete, compute
3509 * next waking time and put itself into sleep.
3510 */
3511static int ext4_lazyinit_thread(void *arg)
3512{
3513	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3514	struct list_head *pos, *n;
3515	struct ext4_li_request *elr;
3516	unsigned long next_wakeup, cur;
3517
3518	BUG_ON(NULL == eli);
3519	set_freezable();
3520
3521cont_thread:
3522	while (true) {
3523		next_wakeup = MAX_JIFFY_OFFSET;
3524
3525		mutex_lock(&eli->li_list_mtx);
3526		if (list_empty(&eli->li_request_list)) {
3527			mutex_unlock(&eli->li_list_mtx);
3528			goto exit_thread;
3529		}
3530		list_for_each_safe(pos, n, &eli->li_request_list) {
3531			int err = 0;
3532			int progress = 0;
3533			elr = list_entry(pos, struct ext4_li_request,
3534					 lr_request);
3535
3536			if (time_before(jiffies, elr->lr_next_sched)) {
3537				if (time_before(elr->lr_next_sched, next_wakeup))
3538					next_wakeup = elr->lr_next_sched;
3539				continue;
3540			}
3541			if (down_read_trylock(&elr->lr_super->s_umount)) {
3542				if (sb_start_write_trylock(elr->lr_super)) {
3543					progress = 1;
3544					/*
3545					 * We hold sb->s_umount, sb can not
3546					 * be removed from the list, it is
3547					 * now safe to drop li_list_mtx
3548					 */
3549					mutex_unlock(&eli->li_list_mtx);
3550					err = ext4_run_li_request(elr);
3551					sb_end_write(elr->lr_super);
3552					mutex_lock(&eli->li_list_mtx);
3553					n = pos->next;
3554				}
3555				up_read((&elr->lr_super->s_umount));
3556			}
3557			/* error, remove the lazy_init job */
3558			if (err) {
3559				ext4_remove_li_request(elr);
3560				continue;
3561			}
3562			if (!progress) {
3563				elr->lr_next_sched = jiffies +
3564					(prandom_u32()
3565					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3566			}
3567			if (time_before(elr->lr_next_sched, next_wakeup))
3568				next_wakeup = elr->lr_next_sched;
3569		}
3570		mutex_unlock(&eli->li_list_mtx);
3571
3572		try_to_freeze();
3573
3574		cur = jiffies;
3575		if ((time_after_eq(cur, next_wakeup)) ||
3576		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3577			cond_resched();
3578			continue;
3579		}
3580
3581		schedule_timeout_interruptible(next_wakeup - cur);
3582
3583		if (kthread_should_stop()) {
3584			ext4_clear_request_list();
3585			goto exit_thread;
3586		}
3587	}
3588
3589exit_thread:
3590	/*
3591	 * It looks like the request list is empty, but we need
3592	 * to check it under the li_list_mtx lock, to prevent any
3593	 * additions into it, and of course we should lock ext4_li_mtx
3594	 * to atomically free the list and ext4_li_info, because at
3595	 * this point another ext4 filesystem could be registering
3596	 * new one.
3597	 */
3598	mutex_lock(&ext4_li_mtx);
3599	mutex_lock(&eli->li_list_mtx);
3600	if (!list_empty(&eli->li_request_list)) {
3601		mutex_unlock(&eli->li_list_mtx);
3602		mutex_unlock(&ext4_li_mtx);
3603		goto cont_thread;
3604	}
3605	mutex_unlock(&eli->li_list_mtx);
3606	kfree(ext4_li_info);
3607	ext4_li_info = NULL;
3608	mutex_unlock(&ext4_li_mtx);
3609
3610	return 0;
3611}
3612
3613static void ext4_clear_request_list(void)
3614{
3615	struct list_head *pos, *n;
3616	struct ext4_li_request *elr;
3617
3618	mutex_lock(&ext4_li_info->li_list_mtx);
3619	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3620		elr = list_entry(pos, struct ext4_li_request,
3621				 lr_request);
3622		ext4_remove_li_request(elr);
3623	}
3624	mutex_unlock(&ext4_li_info->li_list_mtx);
3625}
3626
3627static int ext4_run_lazyinit_thread(void)
3628{
3629	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3630					 ext4_li_info, "ext4lazyinit");
3631	if (IS_ERR(ext4_lazyinit_task)) {
3632		int err = PTR_ERR(ext4_lazyinit_task);
3633		ext4_clear_request_list();
3634		kfree(ext4_li_info);
3635		ext4_li_info = NULL;
3636		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3637				 "initialization thread\n",
3638				 err);
3639		return err;
3640	}
3641	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3642	return 0;
3643}
3644
3645/*
3646 * Check whether it make sense to run itable init. thread or not.
3647 * If there is at least one uninitialized inode table, return
3648 * corresponding group number, else the loop goes through all
3649 * groups and return total number of groups.
3650 */
3651static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3652{
3653	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3654	struct ext4_group_desc *gdp = NULL;
3655
3656	if (!ext4_has_group_desc_csum(sb))
3657		return ngroups;
3658
3659	for (group = 0; group < ngroups; group++) {
3660		gdp = ext4_get_group_desc(sb, group, NULL);
3661		if (!gdp)
3662			continue;
3663
3664		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3665			break;
3666	}
3667
3668	return group;
3669}
3670
3671static int ext4_li_info_new(void)
3672{
3673	struct ext4_lazy_init *eli = NULL;
3674
3675	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3676	if (!eli)
3677		return -ENOMEM;
3678
3679	INIT_LIST_HEAD(&eli->li_request_list);
3680	mutex_init(&eli->li_list_mtx);
3681
3682	eli->li_state |= EXT4_LAZYINIT_QUIT;
3683
3684	ext4_li_info = eli;
3685
3686	return 0;
3687}
3688
3689static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3690					    ext4_group_t start)
3691{
3692	struct ext4_li_request *elr;
3693
3694	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3695	if (!elr)
3696		return NULL;
3697
3698	elr->lr_super = sb;
3699	elr->lr_first_not_zeroed = start;
3700	if (test_opt(sb, PREFETCH_BLOCK_BITMAPS))
3701		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3702	else {
3703		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3704		elr->lr_next_group = start;
3705	}
3706
3707	/*
3708	 * Randomize first schedule time of the request to
3709	 * spread the inode table initialization requests
3710	 * better.
3711	 */
3712	elr->lr_next_sched = jiffies + (prandom_u32() %
3713				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3714	return elr;
3715}
3716
3717int ext4_register_li_request(struct super_block *sb,
3718			     ext4_group_t first_not_zeroed)
3719{
3720	struct ext4_sb_info *sbi = EXT4_SB(sb);
3721	struct ext4_li_request *elr = NULL;
3722	ext4_group_t ngroups = sbi->s_groups_count;
3723	int ret = 0;
3724
3725	mutex_lock(&ext4_li_mtx);
3726	if (sbi->s_li_request != NULL) {
3727		/*
3728		 * Reset timeout so it can be computed again, because
3729		 * s_li_wait_mult might have changed.
3730		 */
3731		sbi->s_li_request->lr_timeout = 0;
3732		goto out;
3733	}
3734
3735	if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) &&
3736	    (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3737	     !test_opt(sb, INIT_INODE_TABLE)))
3738		goto out;
3739
3740	elr = ext4_li_request_new(sb, first_not_zeroed);
3741	if (!elr) {
3742		ret = -ENOMEM;
3743		goto out;
3744	}
3745
3746	if (NULL == ext4_li_info) {
3747		ret = ext4_li_info_new();
3748		if (ret)
3749			goto out;
3750	}
3751
3752	mutex_lock(&ext4_li_info->li_list_mtx);
3753	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3754	mutex_unlock(&ext4_li_info->li_list_mtx);
3755
3756	sbi->s_li_request = elr;
3757	/*
3758	 * set elr to NULL here since it has been inserted to
3759	 * the request_list and the removal and free of it is
3760	 * handled by ext4_clear_request_list from now on.
3761	 */
3762	elr = NULL;
3763
3764	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3765		ret = ext4_run_lazyinit_thread();
3766		if (ret)
3767			goto out;
3768	}
3769out:
3770	mutex_unlock(&ext4_li_mtx);
3771	if (ret)
3772		kfree(elr);
3773	return ret;
3774}
3775
3776/*
3777 * We do not need to lock anything since this is called on
3778 * module unload.
3779 */
3780static void ext4_destroy_lazyinit_thread(void)
3781{
3782	/*
3783	 * If thread exited earlier
3784	 * there's nothing to be done.
3785	 */
3786	if (!ext4_li_info || !ext4_lazyinit_task)
3787		return;
3788
3789	kthread_stop(ext4_lazyinit_task);
3790}
3791
3792static int set_journal_csum_feature_set(struct super_block *sb)
3793{
3794	int ret = 1;
3795	int compat, incompat;
3796	struct ext4_sb_info *sbi = EXT4_SB(sb);
3797
3798	if (ext4_has_metadata_csum(sb)) {
3799		/* journal checksum v3 */
3800		compat = 0;
3801		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3802	} else {
3803		/* journal checksum v1 */
3804		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3805		incompat = 0;
3806	}
3807
3808	jbd2_journal_clear_features(sbi->s_journal,
3809			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3810			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3811			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3812	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3813		ret = jbd2_journal_set_features(sbi->s_journal,
3814				compat, 0,
3815				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3816				incompat);
3817	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3818		ret = jbd2_journal_set_features(sbi->s_journal,
3819				compat, 0,
3820				incompat);
3821		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3822				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3823	} else {
3824		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3825				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3826	}
3827
3828	return ret;
3829}
3830
3831/*
3832 * Note: calculating the overhead so we can be compatible with
3833 * historical BSD practice is quite difficult in the face of
3834 * clusters/bigalloc.  This is because multiple metadata blocks from
3835 * different block group can end up in the same allocation cluster.
3836 * Calculating the exact overhead in the face of clustered allocation
3837 * requires either O(all block bitmaps) in memory or O(number of block
3838 * groups**2) in time.  We will still calculate the superblock for
3839 * older file systems --- and if we come across with a bigalloc file
3840 * system with zero in s_overhead_clusters the estimate will be close to
3841 * correct especially for very large cluster sizes --- but for newer
3842 * file systems, it's better to calculate this figure once at mkfs
3843 * time, and store it in the superblock.  If the superblock value is
3844 * present (even for non-bigalloc file systems), we will use it.
3845 */
3846static int count_overhead(struct super_block *sb, ext4_group_t grp,
3847			  char *buf)
3848{
3849	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3850	struct ext4_group_desc	*gdp;
3851	ext4_fsblk_t		first_block, last_block, b;
3852	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3853	int			s, j, count = 0;
3854	int			has_super = ext4_bg_has_super(sb, grp);
3855
3856	if (!ext4_has_feature_bigalloc(sb))
3857		return (has_super + ext4_bg_num_gdb(sb, grp) +
3858			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
3859			sbi->s_itb_per_group + 2);
3860
3861	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3862		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3863	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3864	for (i = 0; i < ngroups; i++) {
3865		gdp = ext4_get_group_desc(sb, i, NULL);
3866		b = ext4_block_bitmap(sb, gdp);
3867		if (b >= first_block && b <= last_block) {
3868			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3869			count++;
3870		}
3871		b = ext4_inode_bitmap(sb, gdp);
3872		if (b >= first_block && b <= last_block) {
3873			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3874			count++;
3875		}
3876		b = ext4_inode_table(sb, gdp);
3877		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3878			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3879				int c = EXT4_B2C(sbi, b - first_block);
3880				ext4_set_bit(c, buf);
3881				count++;
3882			}
3883		if (i != grp)
3884			continue;
3885		s = 0;
3886		if (ext4_bg_has_super(sb, grp)) {
3887			ext4_set_bit(s++, buf);
3888			count++;
3889		}
3890		j = ext4_bg_num_gdb(sb, grp);
3891		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3892			ext4_error(sb, "Invalid number of block group "
3893				   "descriptor blocks: %d", j);
3894			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3895		}
3896		count += j;
3897		for (; j > 0; j--)
3898			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3899	}
3900	if (!count)
3901		return 0;
3902	return EXT4_CLUSTERS_PER_GROUP(sb) -
3903		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3904}
3905
3906/*
3907 * Compute the overhead and stash it in sbi->s_overhead
3908 */
3909int ext4_calculate_overhead(struct super_block *sb)
3910{
3911	struct ext4_sb_info *sbi = EXT4_SB(sb);
3912	struct ext4_super_block *es = sbi->s_es;
3913	struct inode *j_inode;
3914	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3915	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3916	ext4_fsblk_t overhead = 0;
3917	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3918
3919	if (!buf)
3920		return -ENOMEM;
3921
3922	/*
3923	 * Compute the overhead (FS structures).  This is constant
3924	 * for a given filesystem unless the number of block groups
3925	 * changes so we cache the previous value until it does.
3926	 */
3927
3928	/*
3929	 * All of the blocks before first_data_block are overhead
3930	 */
3931	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3932
3933	/*
3934	 * Add the overhead found in each block group
3935	 */
3936	for (i = 0; i < ngroups; i++) {
3937		int blks;
3938
3939		blks = count_overhead(sb, i, buf);
3940		overhead += blks;
3941		if (blks)
3942			memset(buf, 0, PAGE_SIZE);
3943		cond_resched();
3944	}
3945
3946	/*
3947	 * Add the internal journal blocks whether the journal has been
3948	 * loaded or not
3949	 */
3950	if (sbi->s_journal && !sbi->s_journal_bdev)
3951		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3952	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3953		/* j_inum for internal journal is non-zero */
3954		j_inode = ext4_get_journal_inode(sb, j_inum);
3955		if (j_inode) {
3956			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3957			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3958			iput(j_inode);
3959		} else {
3960			ext4_msg(sb, KERN_ERR, "can't get journal size");
3961		}
3962	}
3963	sbi->s_overhead = overhead;
3964	smp_wmb();
3965	free_page((unsigned long) buf);
3966	return 0;
3967}
3968
3969static void ext4_set_resv_clusters(struct super_block *sb)
3970{
3971	ext4_fsblk_t resv_clusters;
3972	struct ext4_sb_info *sbi = EXT4_SB(sb);
3973
3974	/*
3975	 * There's no need to reserve anything when we aren't using extents.
3976	 * The space estimates are exact, there are no unwritten extents,
3977	 * hole punching doesn't need new metadata... This is needed especially
3978	 * to keep ext2/3 backward compatibility.
3979	 */
3980	if (!ext4_has_feature_extents(sb))
3981		return;
3982	/*
3983	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3984	 * This should cover the situations where we can not afford to run
3985	 * out of space like for example punch hole, or converting
3986	 * unwritten extents in delalloc path. In most cases such
3987	 * allocation would require 1, or 2 blocks, higher numbers are
3988	 * very rare.
3989	 */
3990	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3991			 sbi->s_cluster_bits);
3992
3993	do_div(resv_clusters, 50);
3994	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3995
3996	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3997}
3998
3999static int ext4_fill_super(struct super_block *sb, void *data, int silent)
4000{
4001	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
4002	char *orig_data = kstrdup(data, GFP_KERNEL);
4003	struct buffer_head *bh, **group_desc;
4004	struct ext4_super_block *es = NULL;
4005	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4006	struct flex_groups **flex_groups;
4007	ext4_fsblk_t block;
4008	ext4_fsblk_t sb_block = get_sb_block(&data);
4009	ext4_fsblk_t logical_sb_block;
4010	unsigned long offset = 0;
4011	unsigned long journal_devnum = 0;
4012	unsigned long def_mount_opts;
4013	struct inode *root;
4014	const char *descr;
4015	int ret = -ENOMEM;
4016	int blocksize, clustersize;
4017	unsigned int db_count;
4018	unsigned int i;
4019	int needs_recovery, has_huge_files;
4020	__u64 blocks_count;
4021	int err = 0;
4022	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4023	ext4_group_t first_not_zeroed;
4024
4025	if ((data && !orig_data) || !sbi)
4026		goto out_free_base;
4027
4028	sbi->s_daxdev = dax_dev;
4029	sbi->s_blockgroup_lock =
4030		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4031	if (!sbi->s_blockgroup_lock)
4032		goto out_free_base;
4033
4034	sb->s_fs_info = sbi;
4035	sbi->s_sb = sb;
4036	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4037	sbi->s_sb_block = sb_block;
4038	if (sb->s_bdev->bd_part)
4039		sbi->s_sectors_written_start =
4040			part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
4041
4042	/* Cleanup superblock name */
4043	strreplace(sb->s_id, '/', '!');
4044
4045	/* -EINVAL is default */
4046	ret = -EINVAL;
4047	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4048	if (!blocksize) {
4049		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4050		goto out_fail;
4051	}
4052
4053	/*
4054	 * The ext4 superblock will not be buffer aligned for other than 1kB
4055	 * block sizes.  We need to calculate the offset from buffer start.
4056	 */
4057	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4058		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4059		offset = do_div(logical_sb_block, blocksize);
4060	} else {
4061		logical_sb_block = sb_block;
4062	}
4063
4064	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4065	if (IS_ERR(bh)) {
4066		ext4_msg(sb, KERN_ERR, "unable to read superblock");
4067		ret = PTR_ERR(bh);
4068		bh = NULL;
4069		goto out_fail;
4070	}
4071	/*
4072	 * Note: s_es must be initialized as soon as possible because
4073	 *       some ext4 macro-instructions depend on its value
4074	 */
4075	es = (struct ext4_super_block *) (bh->b_data + offset);
4076	sbi->s_es = es;
4077	sb->s_magic = le16_to_cpu(es->s_magic);
4078	if (sb->s_magic != EXT4_SUPER_MAGIC)
4079		goto cantfind_ext4;
4080	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4081
4082	/* Warn if metadata_csum and gdt_csum are both set. */
4083	if (ext4_has_feature_metadata_csum(sb) &&
4084	    ext4_has_feature_gdt_csum(sb))
4085		ext4_warning(sb, "metadata_csum and uninit_bg are "
4086			     "redundant flags; please run fsck.");
4087
4088	/* Check for a known checksum algorithm */
4089	if (!ext4_verify_csum_type(sb, es)) {
4090		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4091			 "unknown checksum algorithm.");
4092		silent = 1;
4093		goto cantfind_ext4;
4094	}
4095
4096	/* Load the checksum driver */
4097	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4098	if (IS_ERR(sbi->s_chksum_driver)) {
4099		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4100		ret = PTR_ERR(sbi->s_chksum_driver);
4101		sbi->s_chksum_driver = NULL;
4102		goto failed_mount;
4103	}
4104
4105	/* Check superblock checksum */
4106	if (!ext4_superblock_csum_verify(sb, es)) {
4107		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4108			 "invalid superblock checksum.  Run e2fsck?");
4109		silent = 1;
4110		ret = -EFSBADCRC;
4111		goto cantfind_ext4;
4112	}
4113
4114	/* Precompute checksum seed for all metadata */
4115	if (ext4_has_feature_csum_seed(sb))
4116		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4117	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4118		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4119					       sizeof(es->s_uuid));
4120
4121	/* Set defaults before we parse the mount options */
4122	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4123	set_opt(sb, INIT_INODE_TABLE);
4124	if (def_mount_opts & EXT4_DEFM_DEBUG)
4125		set_opt(sb, DEBUG);
4126	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4127		set_opt(sb, GRPID);
4128	if (def_mount_opts & EXT4_DEFM_UID16)
4129		set_opt(sb, NO_UID32);
4130	/* xattr user namespace & acls are now defaulted on */
4131	set_opt(sb, XATTR_USER);
4132#ifdef CONFIG_EXT4_FS_POSIX_ACL
4133	set_opt(sb, POSIX_ACL);
4134#endif
4135	if (ext4_has_feature_fast_commit(sb))
4136		set_opt2(sb, JOURNAL_FAST_COMMIT);
4137	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4138	if (ext4_has_metadata_csum(sb))
4139		set_opt(sb, JOURNAL_CHECKSUM);
4140
4141	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4142		set_opt(sb, JOURNAL_DATA);
4143	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4144		set_opt(sb, ORDERED_DATA);
4145	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4146		set_opt(sb, WRITEBACK_DATA);
4147
4148	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4149		set_opt(sb, ERRORS_PANIC);
4150	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4151		set_opt(sb, ERRORS_CONT);
4152	else
4153		set_opt(sb, ERRORS_RO);
4154	/* block_validity enabled by default; disable with noblock_validity */
4155	set_opt(sb, BLOCK_VALIDITY);
4156	if (def_mount_opts & EXT4_DEFM_DISCARD)
4157		set_opt(sb, DISCARD);
4158
4159	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4160	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4161	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4162	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4163	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4164
4165	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4166		set_opt(sb, BARRIER);
4167
4168	/*
4169	 * enable delayed allocation by default
4170	 * Use -o nodelalloc to turn it off
4171	 */
4172	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4173	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4174		set_opt(sb, DELALLOC);
4175
4176	/*
4177	 * set default s_li_wait_mult for lazyinit, for the case there is
4178	 * no mount option specified.
4179	 */
4180	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4181
4182	if (le32_to_cpu(es->s_log_block_size) >
4183	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4184		ext4_msg(sb, KERN_ERR,
4185			 "Invalid log block size: %u",
4186			 le32_to_cpu(es->s_log_block_size));
4187		goto failed_mount;
4188	}
4189	if (le32_to_cpu(es->s_log_cluster_size) >
4190	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4191		ext4_msg(sb, KERN_ERR,
4192			 "Invalid log cluster size: %u",
4193			 le32_to_cpu(es->s_log_cluster_size));
4194		goto failed_mount;
4195	}
4196
4197	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4198
4199	if (blocksize == PAGE_SIZE)
4200		set_opt(sb, DIOREAD_NOLOCK);
4201
4202	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4203		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4204		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4205	} else {
4206		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4207		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4208		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4209			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4210				 sbi->s_first_ino);
4211			goto failed_mount;
4212		}
4213		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4214		    (!is_power_of_2(sbi->s_inode_size)) ||
4215		    (sbi->s_inode_size > blocksize)) {
4216			ext4_msg(sb, KERN_ERR,
4217			       "unsupported inode size: %d",
4218			       sbi->s_inode_size);
4219			ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4220			goto failed_mount;
4221		}
4222		/*
4223		 * i_atime_extra is the last extra field available for
4224		 * [acm]times in struct ext4_inode. Checking for that
4225		 * field should suffice to ensure we have extra space
4226		 * for all three.
4227		 */
4228		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4229			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4230			sb->s_time_gran = 1;
4231			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4232		} else {
4233			sb->s_time_gran = NSEC_PER_SEC;
4234			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4235		}
4236		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4237	}
4238	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4239		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4240			EXT4_GOOD_OLD_INODE_SIZE;
4241		if (ext4_has_feature_extra_isize(sb)) {
4242			unsigned v, max = (sbi->s_inode_size -
4243					   EXT4_GOOD_OLD_INODE_SIZE);
4244
4245			v = le16_to_cpu(es->s_want_extra_isize);
4246			if (v > max) {
4247				ext4_msg(sb, KERN_ERR,
4248					 "bad s_want_extra_isize: %d", v);
4249				goto failed_mount;
4250			}
4251			if (sbi->s_want_extra_isize < v)
4252				sbi->s_want_extra_isize = v;
4253
4254			v = le16_to_cpu(es->s_min_extra_isize);
4255			if (v > max) {
4256				ext4_msg(sb, KERN_ERR,
4257					 "bad s_min_extra_isize: %d", v);
4258				goto failed_mount;
4259			}
4260			if (sbi->s_want_extra_isize < v)
4261				sbi->s_want_extra_isize = v;
4262		}
4263	}
4264
4265	if (sbi->s_es->s_mount_opts[0]) {
4266		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4267					      sizeof(sbi->s_es->s_mount_opts),
4268					      GFP_KERNEL);
4269		if (!s_mount_opts)
4270			goto failed_mount;
4271		if (!parse_options(s_mount_opts, sb, &journal_devnum,
4272				   &journal_ioprio, 0)) {
4273			ext4_msg(sb, KERN_WARNING,
4274				 "failed to parse options in superblock: %s",
4275				 s_mount_opts);
4276		}
4277		kfree(s_mount_opts);
4278	}
4279	sbi->s_def_mount_opt = sbi->s_mount_opt;
4280	if (!parse_options((char *) data, sb, &journal_devnum,
4281			   &journal_ioprio, 0))
4282		goto failed_mount;
4283
4284#ifdef CONFIG_UNICODE
4285	if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4286		const struct ext4_sb_encodings *encoding_info;
4287		struct unicode_map *encoding;
4288		__u16 encoding_flags;
4289
4290		if (ext4_has_feature_encrypt(sb)) {
4291			ext4_msg(sb, KERN_ERR,
4292				 "Can't mount with encoding and encryption");
4293			goto failed_mount;
4294		}
4295
4296		if (ext4_sb_read_encoding(es, &encoding_info,
4297					  &encoding_flags)) {
4298			ext4_msg(sb, KERN_ERR,
4299				 "Encoding requested by superblock is unknown");
4300			goto failed_mount;
4301		}
4302
4303		encoding = utf8_load(encoding_info->version);
4304		if (IS_ERR(encoding)) {
4305			ext4_msg(sb, KERN_ERR,
4306				 "can't mount with superblock charset: %s-%s "
4307				 "not supported by the kernel. flags: 0x%x.",
4308				 encoding_info->name, encoding_info->version,
4309				 encoding_flags);
4310			goto failed_mount;
4311		}
4312		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4313			 "%s-%s with flags 0x%hx", encoding_info->name,
4314			 encoding_info->version?:"\b", encoding_flags);
4315
4316		sb->s_encoding = encoding;
4317		sb->s_encoding_flags = encoding_flags;
4318	}
4319#endif
4320
4321	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4322		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4323		/* can't mount with both data=journal and dioread_nolock. */
4324		clear_opt(sb, DIOREAD_NOLOCK);
4325		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4326		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4327			ext4_msg(sb, KERN_ERR, "can't mount with "
4328				 "both data=journal and delalloc");
4329			goto failed_mount;
4330		}
4331		if (test_opt(sb, DAX_ALWAYS)) {
4332			ext4_msg(sb, KERN_ERR, "can't mount with "
4333				 "both data=journal and dax");
4334			goto failed_mount;
4335		}
4336		if (ext4_has_feature_encrypt(sb)) {
4337			ext4_msg(sb, KERN_WARNING,
4338				 "encrypted files will use data=ordered "
4339				 "instead of data journaling mode");
4340		}
4341		if (test_opt(sb, DELALLOC))
4342			clear_opt(sb, DELALLOC);
4343	} else {
4344		sb->s_iflags |= SB_I_CGROUPWB;
4345	}
4346
4347	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4348		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4349
4350	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4351	    (ext4_has_compat_features(sb) ||
4352	     ext4_has_ro_compat_features(sb) ||
4353	     ext4_has_incompat_features(sb)))
4354		ext4_msg(sb, KERN_WARNING,
4355		       "feature flags set on rev 0 fs, "
4356		       "running e2fsck is recommended");
4357
4358	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4359		set_opt2(sb, HURD_COMPAT);
4360		if (ext4_has_feature_64bit(sb)) {
4361			ext4_msg(sb, KERN_ERR,
4362				 "The Hurd can't support 64-bit file systems");
4363			goto failed_mount;
4364		}
4365
4366		/*
4367		 * ea_inode feature uses l_i_version field which is not
4368		 * available in HURD_COMPAT mode.
4369		 */
4370		if (ext4_has_feature_ea_inode(sb)) {
4371			ext4_msg(sb, KERN_ERR,
4372				 "ea_inode feature is not supported for Hurd");
4373			goto failed_mount;
4374		}
4375	}
4376
4377	if (IS_EXT2_SB(sb)) {
4378		if (ext2_feature_set_ok(sb))
4379			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4380				 "using the ext4 subsystem");
4381		else {
4382			/*
4383			 * If we're probing be silent, if this looks like
4384			 * it's actually an ext[34] filesystem.
4385			 */
4386			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4387				goto failed_mount;
4388			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4389				 "to feature incompatibilities");
4390			goto failed_mount;
4391		}
4392	}
4393
4394	if (IS_EXT3_SB(sb)) {
4395		if (ext3_feature_set_ok(sb))
4396			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4397				 "using the ext4 subsystem");
4398		else {
4399			/*
4400			 * If we're probing be silent, if this looks like
4401			 * it's actually an ext4 filesystem.
4402			 */
4403			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4404				goto failed_mount;
4405			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4406				 "to feature incompatibilities");
4407			goto failed_mount;
4408		}
4409	}
4410
4411	/*
4412	 * Check feature flags regardless of the revision level, since we
4413	 * previously didn't change the revision level when setting the flags,
4414	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4415	 */
4416	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4417		goto failed_mount;
4418
4419	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4420		ext4_msg(sb, KERN_ERR,
4421			 "Number of reserved GDT blocks insanely large: %d",
4422			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4423		goto failed_mount;
4424	}
4425
4426	if (bdev_dax_supported(sb->s_bdev, blocksize))
4427		set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4428
4429	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4430		if (ext4_has_feature_inline_data(sb)) {
4431			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4432					" that may contain inline data");
4433			goto failed_mount;
4434		}
4435		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4436			ext4_msg(sb, KERN_ERR,
4437				"DAX unsupported by block device.");
4438			goto failed_mount;
4439		}
4440	}
4441
4442	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4443		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4444			 es->s_encryption_level);
4445		goto failed_mount;
4446	}
4447
4448	if (sb->s_blocksize != blocksize) {
4449		/*
4450		 * bh must be released before kill_bdev(), otherwise
4451		 * it won't be freed and its page also. kill_bdev()
4452		 * is called by sb_set_blocksize().
4453		 */
4454		brelse(bh);
4455		/* Validate the filesystem blocksize */
4456		if (!sb_set_blocksize(sb, blocksize)) {
4457			ext4_msg(sb, KERN_ERR, "bad block size %d",
4458					blocksize);
4459			bh = NULL;
4460			goto failed_mount;
4461		}
4462
4463		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4464		offset = do_div(logical_sb_block, blocksize);
4465		bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4466		if (IS_ERR(bh)) {
4467			ext4_msg(sb, KERN_ERR,
4468			       "Can't read superblock on 2nd try");
4469			ret = PTR_ERR(bh);
4470			bh = NULL;
4471			goto failed_mount;
4472		}
4473		es = (struct ext4_super_block *)(bh->b_data + offset);
4474		sbi->s_es = es;
4475		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4476			ext4_msg(sb, KERN_ERR,
4477			       "Magic mismatch, very weird!");
4478			goto failed_mount;
4479		}
4480	}
4481
4482	has_huge_files = ext4_has_feature_huge_file(sb);
4483	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4484						      has_huge_files);
4485	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4486
4487	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4488	if (ext4_has_feature_64bit(sb)) {
4489		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4490		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4491		    !is_power_of_2(sbi->s_desc_size)) {
4492			ext4_msg(sb, KERN_ERR,
4493			       "unsupported descriptor size %lu",
4494			       sbi->s_desc_size);
4495			goto failed_mount;
4496		}
4497	} else
4498		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4499
4500	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4501	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4502
4503	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4504	if (sbi->s_inodes_per_block == 0)
4505		goto cantfind_ext4;
4506	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4507	    sbi->s_inodes_per_group > blocksize * 8) {
4508		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4509			 sbi->s_inodes_per_group);
4510		goto failed_mount;
4511	}
4512	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4513					sbi->s_inodes_per_block;
4514	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4515	sbi->s_sbh = bh;
4516	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
4517	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4518	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4519
4520	for (i = 0; i < 4; i++)
4521		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4522	sbi->s_def_hash_version = es->s_def_hash_version;
4523	if (ext4_has_feature_dir_index(sb)) {
4524		i = le32_to_cpu(es->s_flags);
4525		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4526			sbi->s_hash_unsigned = 3;
4527		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4528#ifdef __CHAR_UNSIGNED__
4529			if (!sb_rdonly(sb))
4530				es->s_flags |=
4531					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4532			sbi->s_hash_unsigned = 3;
4533#else
4534			if (!sb_rdonly(sb))
4535				es->s_flags |=
4536					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4537#endif
4538		}
4539	}
4540
4541	/* Handle clustersize */
4542	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4543	if (ext4_has_feature_bigalloc(sb)) {
4544		if (clustersize < blocksize) {
4545			ext4_msg(sb, KERN_ERR,
4546				 "cluster size (%d) smaller than "
4547				 "block size (%d)", clustersize, blocksize);
4548			goto failed_mount;
4549		}
4550		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4551			le32_to_cpu(es->s_log_block_size);
4552		sbi->s_clusters_per_group =
4553			le32_to_cpu(es->s_clusters_per_group);
4554		if (sbi->s_clusters_per_group > blocksize * 8) {
4555			ext4_msg(sb, KERN_ERR,
4556				 "#clusters per group too big: %lu",
4557				 sbi->s_clusters_per_group);
4558			goto failed_mount;
4559		}
4560		if (sbi->s_blocks_per_group !=
4561		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4562			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4563				 "clusters per group (%lu) inconsistent",
4564				 sbi->s_blocks_per_group,
4565				 sbi->s_clusters_per_group);
4566			goto failed_mount;
4567		}
4568	} else {
4569		if (clustersize != blocksize) {
4570			ext4_msg(sb, KERN_ERR,
4571				 "fragment/cluster size (%d) != "
4572				 "block size (%d)", clustersize, blocksize);
4573			goto failed_mount;
4574		}
4575		if (sbi->s_blocks_per_group > blocksize * 8) {
4576			ext4_msg(sb, KERN_ERR,
4577				 "#blocks per group too big: %lu",
4578				 sbi->s_blocks_per_group);
4579			goto failed_mount;
4580		}
4581		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4582		sbi->s_cluster_bits = 0;
4583	}
4584	sbi->s_cluster_ratio = clustersize / blocksize;
4585
4586	/* Do we have standard group size of clustersize * 8 blocks ? */
4587	if (sbi->s_blocks_per_group == clustersize << 3)
4588		set_opt2(sb, STD_GROUP_SIZE);
4589
4590	/*
4591	 * Test whether we have more sectors than will fit in sector_t,
4592	 * and whether the max offset is addressable by the page cache.
4593	 */
4594	err = generic_check_addressable(sb->s_blocksize_bits,
4595					ext4_blocks_count(es));
4596	if (err) {
4597		ext4_msg(sb, KERN_ERR, "filesystem"
4598			 " too large to mount safely on this system");
4599		goto failed_mount;
4600	}
4601
4602	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4603		goto cantfind_ext4;
4604
4605	/* check blocks count against device size */
4606	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4607	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4608		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4609		       "exceeds size of device (%llu blocks)",
4610		       ext4_blocks_count(es), blocks_count);
4611		goto failed_mount;
4612	}
4613
4614	/*
4615	 * It makes no sense for the first data block to be beyond the end
4616	 * of the filesystem.
4617	 */
4618	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4619		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4620			 "block %u is beyond end of filesystem (%llu)",
4621			 le32_to_cpu(es->s_first_data_block),
4622			 ext4_blocks_count(es));
4623		goto failed_mount;
4624	}
4625	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4626	    (sbi->s_cluster_ratio == 1)) {
4627		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4628			 "block is 0 with a 1k block and cluster size");
4629		goto failed_mount;
4630	}
4631
4632	blocks_count = (ext4_blocks_count(es) -
4633			le32_to_cpu(es->s_first_data_block) +
4634			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4635	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4636	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4637		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4638		       "(block count %llu, first data block %u, "
4639		       "blocks per group %lu)", blocks_count,
4640		       ext4_blocks_count(es),
4641		       le32_to_cpu(es->s_first_data_block),
4642		       EXT4_BLOCKS_PER_GROUP(sb));
4643		goto failed_mount;
4644	}
4645	sbi->s_groups_count = blocks_count;
4646	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4647			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4648	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4649	    le32_to_cpu(es->s_inodes_count)) {
4650		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4651			 le32_to_cpu(es->s_inodes_count),
4652			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4653		ret = -EINVAL;
4654		goto failed_mount;
4655	}
4656	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4657		   EXT4_DESC_PER_BLOCK(sb);
4658	if (ext4_has_feature_meta_bg(sb)) {
4659		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4660			ext4_msg(sb, KERN_WARNING,
4661				 "first meta block group too large: %u "
4662				 "(group descriptor block count %u)",
4663				 le32_to_cpu(es->s_first_meta_bg), db_count);
4664			goto failed_mount;
4665		}
4666	}
4667	rcu_assign_pointer(sbi->s_group_desc,
4668			   kvmalloc_array(db_count,
4669					  sizeof(struct buffer_head *),
4670					  GFP_KERNEL));
4671	if (sbi->s_group_desc == NULL) {
4672		ext4_msg(sb, KERN_ERR, "not enough memory");
4673		ret = -ENOMEM;
4674		goto failed_mount;
4675	}
4676
4677	bgl_lock_init(sbi->s_blockgroup_lock);
4678
4679	/* Pre-read the descriptors into the buffer cache */
4680	for (i = 0; i < db_count; i++) {
4681		block = descriptor_loc(sb, logical_sb_block, i);
4682		ext4_sb_breadahead_unmovable(sb, block);
4683	}
4684
4685	for (i = 0; i < db_count; i++) {
4686		struct buffer_head *bh;
4687
4688		block = descriptor_loc(sb, logical_sb_block, i);
4689		bh = ext4_sb_bread_unmovable(sb, block);
4690		if (IS_ERR(bh)) {
4691			ext4_msg(sb, KERN_ERR,
4692			       "can't read group descriptor %d", i);
4693			db_count = i;
4694			ret = PTR_ERR(bh);
4695			bh = NULL;
4696			goto failed_mount2;
4697		}
4698		rcu_read_lock();
4699		rcu_dereference(sbi->s_group_desc)[i] = bh;
4700		rcu_read_unlock();
4701	}
4702	sbi->s_gdb_count = db_count;
4703	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4704		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4705		ret = -EFSCORRUPTED;
4706		goto failed_mount2;
4707	}
4708
4709	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4710	spin_lock_init(&sbi->s_error_lock);
4711	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4712
4713	/* Register extent status tree shrinker */
4714	if (ext4_es_register_shrinker(sbi))
4715		goto failed_mount3;
4716
4717	sbi->s_stripe = ext4_get_stripe_size(sbi);
4718	sbi->s_extent_max_zeroout_kb = 32;
4719
4720	/*
4721	 * set up enough so that it can read an inode
4722	 */
4723	sb->s_op = &ext4_sops;
4724	sb->s_export_op = &ext4_export_ops;
4725	sb->s_xattr = ext4_xattr_handlers;
4726#ifdef CONFIG_FS_ENCRYPTION
4727	sb->s_cop = &ext4_cryptops;
4728#endif
4729#ifdef CONFIG_FS_VERITY
4730	sb->s_vop = &ext4_verityops;
4731#endif
4732#ifdef CONFIG_QUOTA
4733	sb->dq_op = &ext4_quota_operations;
4734	if (ext4_has_feature_quota(sb))
4735		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4736	else
4737		sb->s_qcop = &ext4_qctl_operations;
4738	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4739#endif
4740	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4741
4742	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4743	mutex_init(&sbi->s_orphan_lock);
4744
4745	/* Initialize fast commit stuff */
4746	atomic_set(&sbi->s_fc_subtid, 0);
4747	atomic_set(&sbi->s_fc_ineligible_updates, 0);
4748	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4749	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4750	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4751	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4752	sbi->s_fc_bytes = 0;
4753	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4754	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4755	spin_lock_init(&sbi->s_fc_lock);
4756	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4757	sbi->s_fc_replay_state.fc_regions = NULL;
4758	sbi->s_fc_replay_state.fc_regions_size = 0;
4759	sbi->s_fc_replay_state.fc_regions_used = 0;
4760	sbi->s_fc_replay_state.fc_regions_valid = 0;
4761	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4762	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4763	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4764
4765	sb->s_root = NULL;
4766
4767	needs_recovery = (es->s_last_orphan != 0 ||
4768			  ext4_has_feature_journal_needs_recovery(sb));
4769
4770	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
4771		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
4772		if (err)
4773			goto failed_mount3a;
4774	}
4775
4776	/*
4777	 * The first inode we look at is the journal inode.  Don't try
4778	 * root first: it may be modified in the journal!
4779	 */
4780	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4781		err = ext4_load_journal(sb, es, journal_devnum);
4782		if (err)
4783			goto failed_mount3a;
4784	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4785		   ext4_has_feature_journal_needs_recovery(sb)) {
4786		ext4_msg(sb, KERN_ERR, "required journal recovery "
4787		       "suppressed and not mounted read-only");
4788		goto failed_mount3a;
4789	} else {
4790		/* Nojournal mode, all journal mount options are illegal */
4791		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4792			ext4_msg(sb, KERN_ERR, "can't mount with "
4793				 "journal_async_commit, fs mounted w/o journal");
4794			goto failed_mount3a;
4795		}
4796
4797		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4798			ext4_msg(sb, KERN_ERR, "can't mount with "
4799				 "journal_checksum, fs mounted w/o journal");
4800			goto failed_mount3a;
4801		}
4802		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4803			ext4_msg(sb, KERN_ERR, "can't mount with "
4804				 "commit=%lu, fs mounted w/o journal",
4805				 sbi->s_commit_interval / HZ);
4806			goto failed_mount3a;
4807		}
4808		if (EXT4_MOUNT_DATA_FLAGS &
4809		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4810			ext4_msg(sb, KERN_ERR, "can't mount with "
4811				 "data=, fs mounted w/o journal");
4812			goto failed_mount3a;
4813		}
4814		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4815		clear_opt(sb, JOURNAL_CHECKSUM);
4816		clear_opt(sb, DATA_FLAGS);
4817		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4818		sbi->s_journal = NULL;
4819		needs_recovery = 0;
4820		goto no_journal;
4821	}
4822
4823	if (ext4_has_feature_64bit(sb) &&
4824	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4825				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4826		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4827		goto failed_mount_wq;
4828	}
4829
4830	if (!set_journal_csum_feature_set(sb)) {
4831		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4832			 "feature set");
4833		goto failed_mount_wq;
4834	}
4835
4836	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4837		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4838					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4839		ext4_msg(sb, KERN_ERR,
4840			"Failed to set fast commit journal feature");
4841		goto failed_mount_wq;
4842	}
4843
4844	/* We have now updated the journal if required, so we can
4845	 * validate the data journaling mode. */
4846	switch (test_opt(sb, DATA_FLAGS)) {
4847	case 0:
4848		/* No mode set, assume a default based on the journal
4849		 * capabilities: ORDERED_DATA if the journal can
4850		 * cope, else JOURNAL_DATA
4851		 */
4852		if (jbd2_journal_check_available_features
4853		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4854			set_opt(sb, ORDERED_DATA);
4855			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4856		} else {
4857			set_opt(sb, JOURNAL_DATA);
4858			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4859		}
4860		break;
4861
4862	case EXT4_MOUNT_ORDERED_DATA:
4863	case EXT4_MOUNT_WRITEBACK_DATA:
4864		if (!jbd2_journal_check_available_features
4865		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4866			ext4_msg(sb, KERN_ERR, "Journal does not support "
4867			       "requested data journaling mode");
4868			goto failed_mount_wq;
4869		}
4870	default:
4871		break;
4872	}
4873
4874	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4875	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4876		ext4_msg(sb, KERN_ERR, "can't mount with "
4877			"journal_async_commit in data=ordered mode");
4878		goto failed_mount_wq;
4879	}
4880
4881	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4882
4883	sbi->s_journal->j_submit_inode_data_buffers =
4884		ext4_journal_submit_inode_data_buffers;
4885	sbi->s_journal->j_finish_inode_data_buffers =
4886		ext4_journal_finish_inode_data_buffers;
4887
4888no_journal:
4889	if (!test_opt(sb, NO_MBCACHE)) {
4890		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4891		if (!sbi->s_ea_block_cache) {
4892			ext4_msg(sb, KERN_ERR,
4893				 "Failed to create ea_block_cache");
4894			goto failed_mount_wq;
4895		}
4896
4897		if (ext4_has_feature_ea_inode(sb)) {
4898			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4899			if (!sbi->s_ea_inode_cache) {
4900				ext4_msg(sb, KERN_ERR,
4901					 "Failed to create ea_inode_cache");
4902				goto failed_mount_wq;
4903			}
4904		}
4905	}
4906
4907	if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4908		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4909		goto failed_mount_wq;
4910	}
4911
4912	/*
4913	 * Get the # of file system overhead blocks from the
4914	 * superblock if present.
4915	 */
4916	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4917	/* ignore the precalculated value if it is ridiculous */
4918	if (sbi->s_overhead > ext4_blocks_count(es))
4919		sbi->s_overhead = 0;
4920	/*
4921	 * If the bigalloc feature is not enabled recalculating the
4922	 * overhead doesn't take long, so we might as well just redo
4923	 * it to make sure we are using the correct value.
4924	 */
4925	if (!ext4_has_feature_bigalloc(sb))
4926		sbi->s_overhead = 0;
4927	if (sbi->s_overhead == 0) {
4928		err = ext4_calculate_overhead(sb);
4929		if (err)
4930			goto failed_mount_wq;
4931	}
4932
4933	/*
4934	 * The maximum number of concurrent works can be high and
4935	 * concurrency isn't really necessary.  Limit it to 1.
4936	 */
4937	EXT4_SB(sb)->rsv_conversion_wq =
4938		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4939	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4940		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4941		ret = -ENOMEM;
4942		goto failed_mount4;
4943	}
4944
4945	/*
4946	 * The jbd2_journal_load will have done any necessary log recovery,
4947	 * so we can safely mount the rest of the filesystem now.
4948	 */
4949
4950	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4951	if (IS_ERR(root)) {
4952		ext4_msg(sb, KERN_ERR, "get root inode failed");
4953		ret = PTR_ERR(root);
4954		root = NULL;
4955		goto failed_mount4;
4956	}
4957	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4958		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4959		iput(root);
4960		goto failed_mount4;
4961	}
4962
4963#ifdef CONFIG_UNICODE
4964	if (sb->s_encoding)
4965		sb->s_d_op = &ext4_dentry_ops;
4966#endif
4967
4968	sb->s_root = d_make_root(root);
4969	if (!sb->s_root) {
4970		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4971		ret = -ENOMEM;
4972		goto failed_mount4;
4973	}
4974
4975	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4976	if (ret == -EROFS) {
4977		sb->s_flags |= SB_RDONLY;
4978		ret = 0;
4979	} else if (ret)
4980		goto failed_mount4a;
4981
4982	ext4_set_resv_clusters(sb);
4983
4984	if (test_opt(sb, BLOCK_VALIDITY)) {
4985		err = ext4_setup_system_zone(sb);
4986		if (err) {
4987			ext4_msg(sb, KERN_ERR, "failed to initialize system "
4988				 "zone (%d)", err);
4989			goto failed_mount4a;
4990		}
4991	}
4992	ext4_fc_replay_cleanup(sb);
4993
4994	ext4_ext_init(sb);
4995	err = ext4_mb_init(sb);
4996	if (err) {
4997		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4998			 err);
4999		goto failed_mount5;
5000	}
5001
5002	/*
5003	 * We can only set up the journal commit callback once
5004	 * mballoc is initialized
5005	 */
5006	if (sbi->s_journal)
5007		sbi->s_journal->j_commit_callback =
5008			ext4_journal_commit_callback;
5009
5010	block = ext4_count_free_clusters(sb);
5011	ext4_free_blocks_count_set(sbi->s_es,
5012				   EXT4_C2B(sbi, block));
5013	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5014				  GFP_KERNEL);
5015	if (!err) {
5016		unsigned long freei = ext4_count_free_inodes(sb);
5017		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5018		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5019					  GFP_KERNEL);
5020	}
5021	/*
5022	 * Update the checksum after updating free space/inode
5023	 * counters.  Otherwise the superblock can have an incorrect
5024	 * checksum in the buffer cache until it is written out and
5025	 * e2fsprogs programs trying to open a file system immediately
5026	 * after it is mounted can fail.
5027	 */
5028	ext4_superblock_csum_set(sb);
5029	if (!err)
5030		err = percpu_counter_init(&sbi->s_dirs_counter,
5031					  ext4_count_dirs(sb), GFP_KERNEL);
5032	if (!err)
5033		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5034					  GFP_KERNEL);
5035	if (!err)
5036		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5037					  GFP_KERNEL);
5038	if (!err)
5039		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5040
5041	if (err) {
5042		ext4_msg(sb, KERN_ERR, "insufficient memory");
5043		goto failed_mount6;
5044	}
5045
5046	if (ext4_has_feature_flex_bg(sb))
5047		if (!ext4_fill_flex_info(sb)) {
5048			ext4_msg(sb, KERN_ERR,
5049			       "unable to initialize "
5050			       "flex_bg meta info!");
5051			ret = -ENOMEM;
5052			goto failed_mount6;
5053		}
5054
5055	err = ext4_register_li_request(sb, first_not_zeroed);
5056	if (err)
5057		goto failed_mount6;
5058
5059	err = ext4_register_sysfs(sb);
5060	if (err)
5061		goto failed_mount7;
5062
5063#ifdef CONFIG_QUOTA
5064	/* Enable quota usage during mount. */
5065	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5066		err = ext4_enable_quotas(sb);
5067		if (err)
5068			goto failed_mount8;
5069	}
5070#endif  /* CONFIG_QUOTA */
5071
5072	/*
5073	 * Save the original bdev mapping's wb_err value which could be
5074	 * used to detect the metadata async write error.
5075	 */
5076	spin_lock_init(&sbi->s_bdev_wb_lock);
5077	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5078				 &sbi->s_bdev_wb_err);
5079	sb->s_bdev->bd_super = sb;
5080	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5081	ext4_orphan_cleanup(sb, es);
5082	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5083	if (needs_recovery) {
5084		ext4_msg(sb, KERN_INFO, "recovery complete");
5085		err = ext4_mark_recovery_complete(sb, es);
5086		if (err)
5087			goto failed_mount8;
5088	}
5089	if (EXT4_SB(sb)->s_journal) {
5090		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5091			descr = " journalled data mode";
5092		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5093			descr = " ordered data mode";
5094		else
5095			descr = " writeback data mode";
5096	} else
5097		descr = "out journal";
5098
5099	if (test_opt(sb, DISCARD)) {
5100		struct request_queue *q = bdev_get_queue(sb->s_bdev);
5101		if (!blk_queue_discard(q))
5102			ext4_msg(sb, KERN_WARNING,
5103				 "mounting with \"discard\" option, but "
5104				 "the device does not support discard");
5105	}
5106
5107	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5108		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5109			 "Opts: %.*s%s%s", descr,
5110			 (int) sizeof(sbi->s_es->s_mount_opts),
5111			 sbi->s_es->s_mount_opts,
5112			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
5113
5114	if (es->s_error_count)
5115		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5116
5117	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5118	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5119	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5120	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5121	atomic_set(&sbi->s_warning_count, 0);
5122	atomic_set(&sbi->s_msg_count, 0);
5123
5124	kfree(orig_data);
5125	return 0;
5126
5127cantfind_ext4:
5128	if (!silent)
5129		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5130	goto failed_mount;
5131
5132failed_mount8:
5133	ext4_unregister_sysfs(sb);
5134	kobject_put(&sbi->s_kobj);
5135failed_mount7:
5136	ext4_unregister_li_request(sb);
5137failed_mount6:
5138	ext4_mb_release(sb);
5139	rcu_read_lock();
5140	flex_groups = rcu_dereference(sbi->s_flex_groups);
5141	if (flex_groups) {
5142		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5143			kvfree(flex_groups[i]);
5144		kvfree(flex_groups);
5145	}
5146	rcu_read_unlock();
5147	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5148	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5149	percpu_counter_destroy(&sbi->s_dirs_counter);
5150	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5151	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5152	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5153failed_mount5:
5154	ext4_ext_release(sb);
5155	ext4_release_system_zone(sb);
5156failed_mount4a:
5157	dput(sb->s_root);
5158	sb->s_root = NULL;
5159failed_mount4:
5160	ext4_msg(sb, KERN_ERR, "mount failed");
5161	if (EXT4_SB(sb)->rsv_conversion_wq)
5162		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5163failed_mount_wq:
5164	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5165	sbi->s_ea_inode_cache = NULL;
5166
5167	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5168	sbi->s_ea_block_cache = NULL;
5169
5170	if (sbi->s_journal) {
5171		/* flush s_error_work before journal destroy. */
5172		flush_work(&sbi->s_error_work);
5173		jbd2_journal_destroy(sbi->s_journal);
5174		sbi->s_journal = NULL;
5175	}
5176failed_mount3a:
5177	ext4_es_unregister_shrinker(sbi);
5178failed_mount3:
5179	/* flush s_error_work before sbi destroy */
5180	flush_work(&sbi->s_error_work);
5181	del_timer_sync(&sbi->s_err_report);
5182	ext4_stop_mmpd(sbi);
5183failed_mount2:
5184	rcu_read_lock();
5185	group_desc = rcu_dereference(sbi->s_group_desc);
5186	for (i = 0; i < db_count; i++)
5187		brelse(group_desc[i]);
5188	kvfree(group_desc);
5189	rcu_read_unlock();
5190failed_mount:
5191	if (sbi->s_chksum_driver)
5192		crypto_free_shash(sbi->s_chksum_driver);
5193
5194#ifdef CONFIG_UNICODE
5195	utf8_unload(sb->s_encoding);
5196#endif
5197
5198#ifdef CONFIG_QUOTA
5199	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5200		kfree(get_qf_name(sb, sbi, i));
5201#endif
5202	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5203	/* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5204	brelse(bh);
5205	ext4_blkdev_remove(sbi);
5206out_fail:
5207	invalidate_bdev(sb->s_bdev);
5208	sb->s_fs_info = NULL;
5209	kfree(sbi->s_blockgroup_lock);
5210out_free_base:
5211	kfree(sbi);
5212	kfree(orig_data);
5213	fs_put_dax(dax_dev);
5214	return err ? err : ret;
5215}
5216
5217/*
5218 * Setup any per-fs journal parameters now.  We'll do this both on
5219 * initial mount, once the journal has been initialised but before we've
5220 * done any recovery; and again on any subsequent remount.
5221 */
5222static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5223{
5224	struct ext4_sb_info *sbi = EXT4_SB(sb);
5225
5226	journal->j_commit_interval = sbi->s_commit_interval;
5227	journal->j_min_batch_time = sbi->s_min_batch_time;
5228	journal->j_max_batch_time = sbi->s_max_batch_time;
5229	ext4_fc_init(sb, journal);
5230
5231	write_lock(&journal->j_state_lock);
5232	if (test_opt(sb, BARRIER))
5233		journal->j_flags |= JBD2_BARRIER;
5234	else
5235		journal->j_flags &= ~JBD2_BARRIER;
5236	if (test_opt(sb, DATA_ERR_ABORT))
5237		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5238	else
5239		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5240	write_unlock(&journal->j_state_lock);
5241}
5242
5243static struct inode *ext4_get_journal_inode(struct super_block *sb,
5244					     unsigned int journal_inum)
5245{
5246	struct inode *journal_inode;
5247
5248	/*
5249	 * Test for the existence of a valid inode on disk.  Bad things
5250	 * happen if we iget() an unused inode, as the subsequent iput()
5251	 * will try to delete it.
5252	 */
5253	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5254	if (IS_ERR(journal_inode)) {
5255		ext4_msg(sb, KERN_ERR, "no journal found");
5256		return NULL;
5257	}
5258	if (!journal_inode->i_nlink) {
5259		make_bad_inode(journal_inode);
5260		iput(journal_inode);
5261		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5262		return NULL;
5263	}
5264
5265	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5266		  journal_inode, journal_inode->i_size);
5267	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5268		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5269		iput(journal_inode);
5270		return NULL;
5271	}
5272	return journal_inode;
5273}
5274
5275static journal_t *ext4_get_journal(struct super_block *sb,
5276				   unsigned int journal_inum)
5277{
5278	struct inode *journal_inode;
5279	journal_t *journal;
5280
5281	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5282		return NULL;
5283
5284	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5285	if (!journal_inode)
5286		return NULL;
5287
5288	journal = jbd2_journal_init_inode(journal_inode);
5289	if (!journal) {
5290		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5291		iput(journal_inode);
5292		return NULL;
5293	}
5294	journal->j_private = sb;
5295	ext4_init_journal_params(sb, journal);
5296	return journal;
5297}
5298
5299static journal_t *ext4_get_dev_journal(struct super_block *sb,
5300				       dev_t j_dev)
5301{
5302	struct buffer_head *bh;
5303	journal_t *journal;
5304	ext4_fsblk_t start;
5305	ext4_fsblk_t len;
5306	int hblock, blocksize;
5307	ext4_fsblk_t sb_block;
5308	unsigned long offset;
5309	struct ext4_super_block *es;
5310	struct block_device *bdev;
5311
5312	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5313		return NULL;
5314
5315	bdev = ext4_blkdev_get(j_dev, sb);
5316	if (bdev == NULL)
5317		return NULL;
5318
5319	blocksize = sb->s_blocksize;
5320	hblock = bdev_logical_block_size(bdev);
5321	if (blocksize < hblock) {
5322		ext4_msg(sb, KERN_ERR,
5323			"blocksize too small for journal device");
5324		goto out_bdev;
5325	}
5326
5327	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5328	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5329	set_blocksize(bdev, blocksize);
5330	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5331		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5332		       "external journal");
5333		goto out_bdev;
5334	}
5335
5336	es = (struct ext4_super_block *) (bh->b_data + offset);
5337	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5338	    !(le32_to_cpu(es->s_feature_incompat) &
5339	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5340		ext4_msg(sb, KERN_ERR, "external journal has "
5341					"bad superblock");
5342		brelse(bh);
5343		goto out_bdev;
5344	}
5345
5346	if ((le32_to_cpu(es->s_feature_ro_compat) &
5347	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5348	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5349		ext4_msg(sb, KERN_ERR, "external journal has "
5350				       "corrupt superblock");
5351		brelse(bh);
5352		goto out_bdev;
5353	}
5354
5355	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5356		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5357		brelse(bh);
5358		goto out_bdev;
5359	}
5360
5361	len = ext4_blocks_count(es);
5362	start = sb_block + 1;
5363	brelse(bh);	/* we're done with the superblock */
5364
5365	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5366					start, len, blocksize);
5367	if (!journal) {
5368		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5369		goto out_bdev;
5370	}
5371	journal->j_private = sb;
5372	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5373		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5374		goto out_journal;
5375	}
5376	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5377		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5378					"user (unsupported) - %d",
5379			be32_to_cpu(journal->j_superblock->s_nr_users));
5380		goto out_journal;
5381	}
5382	EXT4_SB(sb)->s_journal_bdev = bdev;
5383	ext4_init_journal_params(sb, journal);
5384	return journal;
5385
5386out_journal:
5387	jbd2_journal_destroy(journal);
5388out_bdev:
5389	ext4_blkdev_put(bdev);
5390	return NULL;
5391}
5392
5393static int ext4_load_journal(struct super_block *sb,
5394			     struct ext4_super_block *es,
5395			     unsigned long journal_devnum)
5396{
5397	journal_t *journal;
5398	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5399	dev_t journal_dev;
5400	int err = 0;
5401	int really_read_only;
5402	int journal_dev_ro;
5403
5404	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5405		return -EFSCORRUPTED;
5406
5407	if (journal_devnum &&
5408	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5409		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5410			"numbers have changed");
5411		journal_dev = new_decode_dev(journal_devnum);
5412	} else
5413		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5414
5415	if (journal_inum && journal_dev) {
5416		ext4_msg(sb, KERN_ERR,
5417			 "filesystem has both journal inode and journal device!");
5418		return -EINVAL;
5419	}
5420
5421	if (journal_inum) {
5422		journal = ext4_get_journal(sb, journal_inum);
5423		if (!journal)
5424			return -EINVAL;
5425	} else {
5426		journal = ext4_get_dev_journal(sb, journal_dev);
5427		if (!journal)
5428			return -EINVAL;
5429	}
5430
5431	journal_dev_ro = bdev_read_only(journal->j_dev);
5432	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5433
5434	if (journal_dev_ro && !sb_rdonly(sb)) {
5435		ext4_msg(sb, KERN_ERR,
5436			 "journal device read-only, try mounting with '-o ro'");
5437		err = -EROFS;
5438		goto err_out;
5439	}
5440
5441	/*
5442	 * Are we loading a blank journal or performing recovery after a
5443	 * crash?  For recovery, we need to check in advance whether we
5444	 * can get read-write access to the device.
5445	 */
5446	if (ext4_has_feature_journal_needs_recovery(sb)) {
5447		if (sb_rdonly(sb)) {
5448			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5449					"required on readonly filesystem");
5450			if (really_read_only) {
5451				ext4_msg(sb, KERN_ERR, "write access "
5452					"unavailable, cannot proceed "
5453					"(try mounting with noload)");
5454				err = -EROFS;
5455				goto err_out;
5456			}
5457			ext4_msg(sb, KERN_INFO, "write access will "
5458			       "be enabled during recovery");
5459		}
5460	}
5461
5462	if (!(journal->j_flags & JBD2_BARRIER))
5463		ext4_msg(sb, KERN_INFO, "barriers disabled");
5464
5465	if (!ext4_has_feature_journal_needs_recovery(sb))
5466		err = jbd2_journal_wipe(journal, !really_read_only);
5467	if (!err) {
5468		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5469		if (save)
5470			memcpy(save, ((char *) es) +
5471			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5472		err = jbd2_journal_load(journal);
5473		if (save)
5474			memcpy(((char *) es) + EXT4_S_ERR_START,
5475			       save, EXT4_S_ERR_LEN);
5476		kfree(save);
5477	}
5478
5479	if (err) {
5480		ext4_msg(sb, KERN_ERR, "error loading journal");
5481		goto err_out;
5482	}
5483
5484	EXT4_SB(sb)->s_journal = journal;
5485	err = ext4_clear_journal_err(sb, es);
5486	if (err) {
5487		EXT4_SB(sb)->s_journal = NULL;
5488		jbd2_journal_destroy(journal);
5489		return err;
5490	}
5491
5492	if (!really_read_only && journal_devnum &&
5493	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5494		es->s_journal_dev = cpu_to_le32(journal_devnum);
5495
5496		/* Make sure we flush the recovery flag to disk. */
5497		ext4_commit_super(sb);
5498	}
5499
5500	return 0;
5501
5502err_out:
5503	jbd2_journal_destroy(journal);
5504	return err;
5505}
5506
5507/* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5508static void ext4_update_super(struct super_block *sb)
5509{
5510	struct ext4_sb_info *sbi = EXT4_SB(sb);
5511	struct ext4_super_block *es = sbi->s_es;
5512	struct buffer_head *sbh = sbi->s_sbh;
5513
5514	lock_buffer(sbh);
5515	/*
5516	 * If the file system is mounted read-only, don't update the
5517	 * superblock write time.  This avoids updating the superblock
5518	 * write time when we are mounting the root file system
5519	 * read/only but we need to replay the journal; at that point,
5520	 * for people who are east of GMT and who make their clock
5521	 * tick in localtime for Windows bug-for-bug compatibility,
5522	 * the clock is set in the future, and this will cause e2fsck
5523	 * to complain and force a full file system check.
5524	 */
5525	if (!(sb->s_flags & SB_RDONLY))
5526		ext4_update_tstamp(es, s_wtime);
5527	if (sb->s_bdev->bd_part)
5528		es->s_kbytes_written =
5529			cpu_to_le64(sbi->s_kbytes_written +
5530			    ((part_stat_read(sb->s_bdev->bd_part,
5531					     sectors[STAT_WRITE]) -
5532			      sbi->s_sectors_written_start) >> 1));
5533	else
5534		es->s_kbytes_written = cpu_to_le64(sbi->s_kbytes_written);
5535	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5536		ext4_free_blocks_count_set(es,
5537			EXT4_C2B(sbi, percpu_counter_sum_positive(
5538				&sbi->s_freeclusters_counter)));
5539	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5540		es->s_free_inodes_count =
5541			cpu_to_le32(percpu_counter_sum_positive(
5542				&sbi->s_freeinodes_counter));
5543	/* Copy error information to the on-disk superblock */
5544	spin_lock(&sbi->s_error_lock);
5545	if (sbi->s_add_error_count > 0) {
5546		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5547		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5548			__ext4_update_tstamp(&es->s_first_error_time,
5549					     &es->s_first_error_time_hi,
5550					     sbi->s_first_error_time);
5551			strncpy(es->s_first_error_func, sbi->s_first_error_func,
5552				sizeof(es->s_first_error_func));
5553			es->s_first_error_line =
5554				cpu_to_le32(sbi->s_first_error_line);
5555			es->s_first_error_ino =
5556				cpu_to_le32(sbi->s_first_error_ino);
5557			es->s_first_error_block =
5558				cpu_to_le64(sbi->s_first_error_block);
5559			es->s_first_error_errcode =
5560				ext4_errno_to_code(sbi->s_first_error_code);
5561		}
5562		__ext4_update_tstamp(&es->s_last_error_time,
5563				     &es->s_last_error_time_hi,
5564				     sbi->s_last_error_time);
5565		strncpy(es->s_last_error_func, sbi->s_last_error_func,
5566			sizeof(es->s_last_error_func));
5567		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5568		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5569		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5570		es->s_last_error_errcode =
5571				ext4_errno_to_code(sbi->s_last_error_code);
5572		/*
5573		 * Start the daily error reporting function if it hasn't been
5574		 * started already
5575		 */
5576		if (!es->s_error_count)
5577			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5578		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5579		sbi->s_add_error_count = 0;
5580	}
5581	spin_unlock(&sbi->s_error_lock);
5582
5583	ext4_superblock_csum_set(sb);
5584	unlock_buffer(sbh);
5585}
5586
5587static int ext4_commit_super(struct super_block *sb)
5588{
5589	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5590	int error = 0;
5591
5592	if (!sbh)
5593		return -EINVAL;
5594	if (block_device_ejected(sb))
5595		return -ENODEV;
5596
5597	ext4_update_super(sb);
5598
5599	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5600		/*
5601		 * Oh, dear.  A previous attempt to write the
5602		 * superblock failed.  This could happen because the
5603		 * USB device was yanked out.  Or it could happen to
5604		 * be a transient write error and maybe the block will
5605		 * be remapped.  Nothing we can do but to retry the
5606		 * write and hope for the best.
5607		 */
5608		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5609		       "superblock detected");
5610		clear_buffer_write_io_error(sbh);
5611		set_buffer_uptodate(sbh);
5612	}
5613	BUFFER_TRACE(sbh, "marking dirty");
5614	mark_buffer_dirty(sbh);
5615	error = __sync_dirty_buffer(sbh,
5616		REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5617	if (buffer_write_io_error(sbh)) {
5618		ext4_msg(sb, KERN_ERR, "I/O error while writing "
5619		       "superblock");
5620		clear_buffer_write_io_error(sbh);
5621		set_buffer_uptodate(sbh);
5622	}
5623	return error;
5624}
5625
5626/*
5627 * Have we just finished recovery?  If so, and if we are mounting (or
5628 * remounting) the filesystem readonly, then we will end up with a
5629 * consistent fs on disk.  Record that fact.
5630 */
5631static int ext4_mark_recovery_complete(struct super_block *sb,
5632				       struct ext4_super_block *es)
5633{
5634	int err;
5635	journal_t *journal = EXT4_SB(sb)->s_journal;
5636
5637	if (!ext4_has_feature_journal(sb)) {
5638		if (journal != NULL) {
5639			ext4_error(sb, "Journal got removed while the fs was "
5640				   "mounted!");
5641			return -EFSCORRUPTED;
5642		}
5643		return 0;
5644	}
5645	jbd2_journal_lock_updates(journal);
5646	err = jbd2_journal_flush(journal);
5647	if (err < 0)
5648		goto out;
5649
5650	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5651		ext4_clear_feature_journal_needs_recovery(sb);
5652		ext4_commit_super(sb);
5653	}
5654out:
5655	jbd2_journal_unlock_updates(journal);
5656	return err;
5657}
5658
5659/*
5660 * If we are mounting (or read-write remounting) a filesystem whose journal
5661 * has recorded an error from a previous lifetime, move that error to the
5662 * main filesystem now.
5663 */
5664static int ext4_clear_journal_err(struct super_block *sb,
5665				   struct ext4_super_block *es)
5666{
5667	journal_t *journal;
5668	int j_errno;
5669	const char *errstr;
5670
5671	if (!ext4_has_feature_journal(sb)) {
5672		ext4_error(sb, "Journal got removed while the fs was mounted!");
5673		return -EFSCORRUPTED;
5674	}
5675
5676	journal = EXT4_SB(sb)->s_journal;
5677
5678	/*
5679	 * Now check for any error status which may have been recorded in the
5680	 * journal by a prior ext4_error() or ext4_abort()
5681	 */
5682
5683	j_errno = jbd2_journal_errno(journal);
5684	if (j_errno) {
5685		char nbuf[16];
5686
5687		errstr = ext4_decode_error(sb, j_errno, nbuf);
5688		ext4_warning(sb, "Filesystem error recorded "
5689			     "from previous mount: %s", errstr);
5690		ext4_warning(sb, "Marking fs in need of filesystem check.");
5691
5692		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5693		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5694		ext4_commit_super(sb);
5695
5696		jbd2_journal_clear_err(journal);
5697		jbd2_journal_update_sb_errno(journal);
5698	}
5699	return 0;
5700}
5701
5702/*
5703 * Force the running and committing transactions to commit,
5704 * and wait on the commit.
5705 */
5706int ext4_force_commit(struct super_block *sb)
5707{
5708	journal_t *journal;
5709
5710	if (sb_rdonly(sb))
5711		return 0;
5712
5713	journal = EXT4_SB(sb)->s_journal;
5714	return ext4_journal_force_commit(journal);
5715}
5716
5717static int ext4_sync_fs(struct super_block *sb, int wait)
5718{
5719	int ret = 0;
5720	tid_t target;
5721	bool needs_barrier = false;
5722	struct ext4_sb_info *sbi = EXT4_SB(sb);
5723
5724	if (unlikely(ext4_forced_shutdown(sbi)))
5725		return 0;
5726
5727	trace_ext4_sync_fs(sb, wait);
5728	flush_workqueue(sbi->rsv_conversion_wq);
5729	/*
5730	 * Writeback quota in non-journalled quota case - journalled quota has
5731	 * no dirty dquots
5732	 */
5733	dquot_writeback_dquots(sb, -1);
5734	/*
5735	 * Data writeback is possible w/o journal transaction, so barrier must
5736	 * being sent at the end of the function. But we can skip it if
5737	 * transaction_commit will do it for us.
5738	 */
5739	if (sbi->s_journal) {
5740		target = jbd2_get_latest_transaction(sbi->s_journal);
5741		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5742		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5743			needs_barrier = true;
5744
5745		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5746			if (wait)
5747				ret = jbd2_log_wait_commit(sbi->s_journal,
5748							   target);
5749		}
5750	} else if (wait && test_opt(sb, BARRIER))
5751		needs_barrier = true;
5752	if (needs_barrier) {
5753		int err;
5754		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
5755		if (!ret)
5756			ret = err;
5757	}
5758
5759	return ret;
5760}
5761
5762/*
5763 * LVM calls this function before a (read-only) snapshot is created.  This
5764 * gives us a chance to flush the journal completely and mark the fs clean.
5765 *
5766 * Note that only this function cannot bring a filesystem to be in a clean
5767 * state independently. It relies on upper layer to stop all data & metadata
5768 * modifications.
5769 */
5770static int ext4_freeze(struct super_block *sb)
5771{
5772	int error = 0;
5773	journal_t *journal;
5774
5775	if (sb_rdonly(sb))
5776		return 0;
5777
5778	journal = EXT4_SB(sb)->s_journal;
5779
5780	if (journal) {
5781		/* Now we set up the journal barrier. */
5782		jbd2_journal_lock_updates(journal);
5783
5784		/*
5785		 * Don't clear the needs_recovery flag if we failed to
5786		 * flush the journal.
5787		 */
5788		error = jbd2_journal_flush(journal);
5789		if (error < 0)
5790			goto out;
5791
5792		/* Journal blocked and flushed, clear needs_recovery flag. */
5793		ext4_clear_feature_journal_needs_recovery(sb);
5794	}
5795
5796	error = ext4_commit_super(sb);
5797out:
5798	if (journal)
5799		/* we rely on upper layer to stop further updates */
5800		jbd2_journal_unlock_updates(journal);
5801	return error;
5802}
5803
5804/*
5805 * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5806 * flag here, even though the filesystem is not technically dirty yet.
5807 */
5808static int ext4_unfreeze(struct super_block *sb)
5809{
5810	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5811		return 0;
5812
5813	if (EXT4_SB(sb)->s_journal) {
5814		/* Reset the needs_recovery flag before the fs is unlocked. */
5815		ext4_set_feature_journal_needs_recovery(sb);
5816	}
5817
5818	ext4_commit_super(sb);
5819	return 0;
5820}
5821
5822/*
5823 * Structure to save mount options for ext4_remount's benefit
5824 */
5825struct ext4_mount_options {
5826	unsigned long s_mount_opt;
5827	unsigned long s_mount_opt2;
5828	kuid_t s_resuid;
5829	kgid_t s_resgid;
5830	unsigned long s_commit_interval;
5831	u32 s_min_batch_time, s_max_batch_time;
5832#ifdef CONFIG_QUOTA
5833	int s_jquota_fmt;
5834	char *s_qf_names[EXT4_MAXQUOTAS];
5835#endif
5836};
5837
5838static int ext4_remount(struct super_block *sb, int *flags, char *data)
5839{
5840	struct ext4_super_block *es;
5841	struct ext4_sb_info *sbi = EXT4_SB(sb);
5842	unsigned long old_sb_flags, vfs_flags;
5843	struct ext4_mount_options old_opts;
5844	ext4_group_t g;
5845	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5846	int err = 0;
5847#ifdef CONFIG_QUOTA
5848	int enable_quota = 0;
5849	int i, j;
5850	char *to_free[EXT4_MAXQUOTAS];
5851#endif
5852	char *orig_data = kstrdup(data, GFP_KERNEL);
5853
5854	if (data && !orig_data)
5855		return -ENOMEM;
5856
5857	/* Store the original options */
5858	old_sb_flags = sb->s_flags;
5859	old_opts.s_mount_opt = sbi->s_mount_opt;
5860	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5861	old_opts.s_resuid = sbi->s_resuid;
5862	old_opts.s_resgid = sbi->s_resgid;
5863	old_opts.s_commit_interval = sbi->s_commit_interval;
5864	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5865	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5866#ifdef CONFIG_QUOTA
5867	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5868	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5869		if (sbi->s_qf_names[i]) {
5870			char *qf_name = get_qf_name(sb, sbi, i);
5871
5872			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5873			if (!old_opts.s_qf_names[i]) {
5874				for (j = 0; j < i; j++)
5875					kfree(old_opts.s_qf_names[j]);
5876				kfree(orig_data);
5877				return -ENOMEM;
5878			}
5879		} else
5880			old_opts.s_qf_names[i] = NULL;
5881#endif
5882	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5883		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5884
5885	/*
5886	 * Some options can be enabled by ext4 and/or by VFS mount flag
5887	 * either way we need to make sure it matches in both *flags and
5888	 * s_flags. Copy those selected flags from *flags to s_flags
5889	 */
5890	vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5891	sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5892
5893	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5894		err = -EINVAL;
5895		goto restore_opts;
5896	}
5897
5898	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5899	    test_opt(sb, JOURNAL_CHECKSUM)) {
5900		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5901			 "during remount not supported; ignoring");
5902		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5903	}
5904
5905	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5906		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5907			ext4_msg(sb, KERN_ERR, "can't mount with "
5908				 "both data=journal and delalloc");
5909			err = -EINVAL;
5910			goto restore_opts;
5911		}
5912		if (test_opt(sb, DIOREAD_NOLOCK)) {
5913			ext4_msg(sb, KERN_ERR, "can't mount with "
5914				 "both data=journal and dioread_nolock");
5915			err = -EINVAL;
5916			goto restore_opts;
5917		}
5918	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5919		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5920			ext4_msg(sb, KERN_ERR, "can't mount with "
5921				"journal_async_commit in data=ordered mode");
5922			err = -EINVAL;
5923			goto restore_opts;
5924		}
5925	}
5926
5927	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5928		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5929		err = -EINVAL;
5930		goto restore_opts;
5931	}
5932
5933	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5934		ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5935
5936	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5937		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5938
5939	es = sbi->s_es;
5940
5941	if (sbi->s_journal) {
5942		ext4_init_journal_params(sb, sbi->s_journal);
5943		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5944	}
5945
5946	/* Flush outstanding errors before changing fs state */
5947	flush_work(&sbi->s_error_work);
5948
5949	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5950		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5951			err = -EROFS;
5952			goto restore_opts;
5953		}
5954
5955		if (*flags & SB_RDONLY) {
5956			err = sync_filesystem(sb);
5957			if (err < 0)
5958				goto restore_opts;
5959			err = dquot_suspend(sb, -1);
5960			if (err < 0)
5961				goto restore_opts;
5962
5963			/*
5964			 * First of all, the unconditional stuff we have to do
5965			 * to disable replay of the journal when we next remount
5966			 */
5967			sb->s_flags |= SB_RDONLY;
5968
5969			/*
5970			 * OK, test if we are remounting a valid rw partition
5971			 * readonly, and if so set the rdonly flag and then
5972			 * mark the partition as valid again.
5973			 */
5974			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5975			    (sbi->s_mount_state & EXT4_VALID_FS))
5976				es->s_state = cpu_to_le16(sbi->s_mount_state);
5977
5978			if (sbi->s_journal) {
5979				/*
5980				 * We let remount-ro finish even if marking fs
5981				 * as clean failed...
5982				 */
5983				ext4_mark_recovery_complete(sb, es);
5984			}
5985		} else {
5986			/* Make sure we can mount this feature set readwrite */
5987			if (ext4_has_feature_readonly(sb) ||
5988			    !ext4_feature_set_ok(sb, 0)) {
5989				err = -EROFS;
5990				goto restore_opts;
5991			}
5992			/*
5993			 * Make sure the group descriptor checksums
5994			 * are sane.  If they aren't, refuse to remount r/w.
5995			 */
5996			for (g = 0; g < sbi->s_groups_count; g++) {
5997				struct ext4_group_desc *gdp =
5998					ext4_get_group_desc(sb, g, NULL);
5999
6000				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6001					ext4_msg(sb, KERN_ERR,
6002	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6003		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6004					       le16_to_cpu(gdp->bg_checksum));
6005					err = -EFSBADCRC;
6006					goto restore_opts;
6007				}
6008			}
6009
6010			/*
6011			 * If we have an unprocessed orphan list hanging
6012			 * around from a previously readonly bdev mount,
6013			 * require a full umount/remount for now.
6014			 */
6015			if (es->s_last_orphan) {
6016				ext4_msg(sb, KERN_WARNING, "Couldn't "
6017				       "remount RDWR because of unprocessed "
6018				       "orphan inode list.  Please "
6019				       "umount/remount instead");
6020				err = -EINVAL;
6021				goto restore_opts;
6022			}
6023
6024			/*
6025			 * Mounting a RDONLY partition read-write, so reread
6026			 * and store the current valid flag.  (It may have
6027			 * been changed by e2fsck since we originally mounted
6028			 * the partition.)
6029			 */
6030			if (sbi->s_journal) {
6031				err = ext4_clear_journal_err(sb, es);
6032				if (err)
6033					goto restore_opts;
6034			}
6035			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6036					      ~EXT4_FC_REPLAY);
6037
6038			err = ext4_setup_super(sb, es, 0);
6039			if (err)
6040				goto restore_opts;
6041
6042			sb->s_flags &= ~SB_RDONLY;
6043			if (ext4_has_feature_mmp(sb)) {
6044				err = ext4_multi_mount_protect(sb,
6045						le64_to_cpu(es->s_mmp_block));
6046				if (err)
6047					goto restore_opts;
6048			}
6049#ifdef CONFIG_QUOTA
6050			enable_quota = 1;
6051#endif
6052		}
6053	}
6054
6055	/*
6056	 * Handle creation of system zone data early because it can fail.
6057	 * Releasing of existing data is done when we are sure remount will
6058	 * succeed.
6059	 */
6060	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6061		err = ext4_setup_system_zone(sb);
6062		if (err)
6063			goto restore_opts;
6064	}
6065
6066	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6067		err = ext4_commit_super(sb);
6068		if (err)
6069			goto restore_opts;
6070	}
6071
6072#ifdef CONFIG_QUOTA
6073	if (enable_quota) {
6074		if (sb_any_quota_suspended(sb))
6075			dquot_resume(sb, -1);
6076		else if (ext4_has_feature_quota(sb)) {
6077			err = ext4_enable_quotas(sb);
6078			if (err)
6079				goto restore_opts;
6080		}
6081	}
6082	/* Release old quota file names */
6083	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6084		kfree(old_opts.s_qf_names[i]);
6085#endif
6086	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6087		ext4_release_system_zone(sb);
6088
6089	/*
6090	 * Reinitialize lazy itable initialization thread based on
6091	 * current settings
6092	 */
6093	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6094		ext4_unregister_li_request(sb);
6095	else {
6096		ext4_group_t first_not_zeroed;
6097		first_not_zeroed = ext4_has_uninit_itable(sb);
6098		ext4_register_li_request(sb, first_not_zeroed);
6099	}
6100
6101	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6102		ext4_stop_mmpd(sbi);
6103
6104	/*
6105	 * Some options can be enabled by ext4 and/or by VFS mount flag
6106	 * either way we need to make sure it matches in both *flags and
6107	 * s_flags. Copy those selected flags from s_flags to *flags
6108	 */
6109	*flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6110
6111	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
6112	kfree(orig_data);
6113	return 0;
6114
6115restore_opts:
6116	/*
6117	 * If there was a failing r/w to ro transition, we may need to
6118	 * re-enable quota
6119	 */
6120	if ((sb->s_flags & SB_RDONLY) && !(old_sb_flags & SB_RDONLY) &&
6121	    sb_any_quota_suspended(sb))
6122		dquot_resume(sb, -1);
6123	sb->s_flags = old_sb_flags;
6124	sbi->s_mount_opt = old_opts.s_mount_opt;
6125	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6126	sbi->s_resuid = old_opts.s_resuid;
6127	sbi->s_resgid = old_opts.s_resgid;
6128	sbi->s_commit_interval = old_opts.s_commit_interval;
6129	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6130	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6131	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6132		ext4_release_system_zone(sb);
6133#ifdef CONFIG_QUOTA
6134	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6135	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6136		to_free[i] = get_qf_name(sb, sbi, i);
6137		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6138	}
6139	synchronize_rcu();
6140	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6141		kfree(to_free[i]);
6142#endif
6143	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6144		ext4_stop_mmpd(sbi);
6145	kfree(orig_data);
6146	return err;
6147}
6148
6149#ifdef CONFIG_QUOTA
6150static int ext4_statfs_project(struct super_block *sb,
6151			       kprojid_t projid, struct kstatfs *buf)
6152{
6153	struct kqid qid;
6154	struct dquot *dquot;
6155	u64 limit;
6156	u64 curblock;
6157
6158	qid = make_kqid_projid(projid);
6159	dquot = dqget(sb, qid);
6160	if (IS_ERR(dquot))
6161		return PTR_ERR(dquot);
6162	spin_lock(&dquot->dq_dqb_lock);
6163
6164	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6165			     dquot->dq_dqb.dqb_bhardlimit);
6166	limit >>= sb->s_blocksize_bits;
6167
6168	if (limit && buf->f_blocks > limit) {
6169		curblock = (dquot->dq_dqb.dqb_curspace +
6170			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6171		buf->f_blocks = limit;
6172		buf->f_bfree = buf->f_bavail =
6173			(buf->f_blocks > curblock) ?
6174			 (buf->f_blocks - curblock) : 0;
6175	}
6176
6177	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6178			     dquot->dq_dqb.dqb_ihardlimit);
6179	if (limit && buf->f_files > limit) {
6180		buf->f_files = limit;
6181		buf->f_ffree =
6182			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6183			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6184	}
6185
6186	spin_unlock(&dquot->dq_dqb_lock);
6187	dqput(dquot);
6188	return 0;
6189}
6190#endif
6191
6192static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6193{
6194	struct super_block *sb = dentry->d_sb;
6195	struct ext4_sb_info *sbi = EXT4_SB(sb);
6196	struct ext4_super_block *es = sbi->s_es;
6197	ext4_fsblk_t overhead = 0, resv_blocks;
6198	u64 fsid;
6199	s64 bfree;
6200	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6201
6202	if (!test_opt(sb, MINIX_DF))
6203		overhead = sbi->s_overhead;
6204
6205	buf->f_type = EXT4_SUPER_MAGIC;
6206	buf->f_bsize = sb->s_blocksize;
6207	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6208	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6209		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6210	/* prevent underflow in case that few free space is available */
6211	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6212	buf->f_bavail = buf->f_bfree -
6213			(ext4_r_blocks_count(es) + resv_blocks);
6214	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6215		buf->f_bavail = 0;
6216	buf->f_files = le32_to_cpu(es->s_inodes_count);
6217	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6218	buf->f_namelen = EXT4_NAME_LEN;
6219	fsid = le64_to_cpup((void *)es->s_uuid) ^
6220	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
6221	buf->f_fsid = u64_to_fsid(fsid);
6222
6223#ifdef CONFIG_QUOTA
6224	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6225	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6226		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6227#endif
6228	return 0;
6229}
6230
6231
6232#ifdef CONFIG_QUOTA
6233
6234/*
6235 * Helper functions so that transaction is started before we acquire dqio_sem
6236 * to keep correct lock ordering of transaction > dqio_sem
6237 */
6238static inline struct inode *dquot_to_inode(struct dquot *dquot)
6239{
6240	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6241}
6242
6243static int ext4_write_dquot(struct dquot *dquot)
6244{
6245	int ret, err;
6246	handle_t *handle;
6247	struct inode *inode;
6248
6249	inode = dquot_to_inode(dquot);
6250	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6251				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6252	if (IS_ERR(handle))
6253		return PTR_ERR(handle);
6254	ret = dquot_commit(dquot);
6255	err = ext4_journal_stop(handle);
6256	if (!ret)
6257		ret = err;
6258	return ret;
6259}
6260
6261static int ext4_acquire_dquot(struct dquot *dquot)
6262{
6263	int ret, err;
6264	handle_t *handle;
6265
6266	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6267				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6268	if (IS_ERR(handle))
6269		return PTR_ERR(handle);
6270	ret = dquot_acquire(dquot);
6271	err = ext4_journal_stop(handle);
6272	if (!ret)
6273		ret = err;
6274	return ret;
6275}
6276
6277static int ext4_release_dquot(struct dquot *dquot)
6278{
6279	int ret, err;
6280	handle_t *handle;
6281
6282	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6283				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6284	if (IS_ERR(handle)) {
6285		/* Release dquot anyway to avoid endless cycle in dqput() */
6286		dquot_release(dquot);
6287		return PTR_ERR(handle);
6288	}
6289	ret = dquot_release(dquot);
6290	err = ext4_journal_stop(handle);
6291	if (!ret)
6292		ret = err;
6293	return ret;
6294}
6295
6296static int ext4_mark_dquot_dirty(struct dquot *dquot)
6297{
6298	struct super_block *sb = dquot->dq_sb;
6299	struct ext4_sb_info *sbi = EXT4_SB(sb);
6300
6301	/* Are we journaling quotas? */
6302	if (ext4_has_feature_quota(sb) ||
6303	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
6304		dquot_mark_dquot_dirty(dquot);
6305		return ext4_write_dquot(dquot);
6306	} else {
6307		return dquot_mark_dquot_dirty(dquot);
6308	}
6309}
6310
6311static int ext4_write_info(struct super_block *sb, int type)
6312{
6313	int ret, err;
6314	handle_t *handle;
6315
6316	/* Data block + inode block */
6317	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6318	if (IS_ERR(handle))
6319		return PTR_ERR(handle);
6320	ret = dquot_commit_info(sb, type);
6321	err = ext4_journal_stop(handle);
6322	if (!ret)
6323		ret = err;
6324	return ret;
6325}
6326
6327/*
6328 * Turn on quotas during mount time - we need to find
6329 * the quota file and such...
6330 */
6331static int ext4_quota_on_mount(struct super_block *sb, int type)
6332{
6333	return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6334					EXT4_SB(sb)->s_jquota_fmt, type);
6335}
6336
6337static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6338{
6339	struct ext4_inode_info *ei = EXT4_I(inode);
6340
6341	/* The first argument of lockdep_set_subclass has to be
6342	 * *exactly* the same as the argument to init_rwsem() --- in
6343	 * this case, in init_once() --- or lockdep gets unhappy
6344	 * because the name of the lock is set using the
6345	 * stringification of the argument to init_rwsem().
6346	 */
6347	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6348	lockdep_set_subclass(&ei->i_data_sem, subclass);
6349}
6350
6351/*
6352 * Standard function to be called on quota_on
6353 */
6354static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6355			 const struct path *path)
6356{
6357	int err;
6358
6359	if (!test_opt(sb, QUOTA))
6360		return -EINVAL;
6361
6362	/* Quotafile not on the same filesystem? */
6363	if (path->dentry->d_sb != sb)
6364		return -EXDEV;
6365
6366	/* Quota already enabled for this file? */
6367	if (IS_NOQUOTA(d_inode(path->dentry)))
6368		return -EBUSY;
6369
6370	/* Journaling quota? */
6371	if (EXT4_SB(sb)->s_qf_names[type]) {
6372		/* Quotafile not in fs root? */
6373		if (path->dentry->d_parent != sb->s_root)
6374			ext4_msg(sb, KERN_WARNING,
6375				"Quota file not on filesystem root. "
6376				"Journaled quota will not work");
6377		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6378	} else {
6379		/*
6380		 * Clear the flag just in case mount options changed since
6381		 * last time.
6382		 */
6383		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6384	}
6385
6386	/*
6387	 * When we journal data on quota file, we have to flush journal to see
6388	 * all updates to the file when we bypass pagecache...
6389	 */
6390	if (EXT4_SB(sb)->s_journal &&
6391	    ext4_should_journal_data(d_inode(path->dentry))) {
6392		/*
6393		 * We don't need to lock updates but journal_flush() could
6394		 * otherwise be livelocked...
6395		 */
6396		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6397		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6398		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6399		if (err)
6400			return err;
6401	}
6402
6403	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6404	err = dquot_quota_on(sb, type, format_id, path);
6405	if (!err) {
6406		struct inode *inode = d_inode(path->dentry);
6407		handle_t *handle;
6408
6409		/*
6410		 * Set inode flags to prevent userspace from messing with quota
6411		 * files. If this fails, we return success anyway since quotas
6412		 * are already enabled and this is not a hard failure.
6413		 */
6414		inode_lock(inode);
6415		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6416		if (IS_ERR(handle))
6417			goto unlock_inode;
6418		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6419		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6420				S_NOATIME | S_IMMUTABLE);
6421		err = ext4_mark_inode_dirty(handle, inode);
6422		ext4_journal_stop(handle);
6423	unlock_inode:
6424		inode_unlock(inode);
6425		if (err)
6426			dquot_quota_off(sb, type);
6427	}
6428	if (err)
6429		lockdep_set_quota_inode(path->dentry->d_inode,
6430					     I_DATA_SEM_NORMAL);
6431	return err;
6432}
6433
6434static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6435{
6436	switch (type) {
6437	case USRQUOTA:
6438		return qf_inum == EXT4_USR_QUOTA_INO;
6439	case GRPQUOTA:
6440		return qf_inum == EXT4_GRP_QUOTA_INO;
6441	case PRJQUOTA:
6442		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6443	default:
6444		BUG();
6445	}
6446}
6447
6448static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6449			     unsigned int flags)
6450{
6451	int err;
6452	struct inode *qf_inode;
6453	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6454		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6455		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6456		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6457	};
6458
6459	BUG_ON(!ext4_has_feature_quota(sb));
6460
6461	if (!qf_inums[type])
6462		return -EPERM;
6463
6464	if (!ext4_check_quota_inum(type, qf_inums[type])) {
6465		ext4_error(sb, "Bad quota inum: %lu, type: %d",
6466				qf_inums[type], type);
6467		return -EUCLEAN;
6468	}
6469
6470	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6471	if (IS_ERR(qf_inode)) {
6472		ext4_error(sb, "Bad quota inode: %lu, type: %d",
6473				qf_inums[type], type);
6474		return PTR_ERR(qf_inode);
6475	}
6476
6477	/* Don't account quota for quota files to avoid recursion */
6478	qf_inode->i_flags |= S_NOQUOTA;
6479	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6480	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6481	if (err)
6482		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6483	iput(qf_inode);
6484
6485	return err;
6486}
6487
6488/* Enable usage tracking for all quota types. */
6489static int ext4_enable_quotas(struct super_block *sb)
6490{
6491	int type, err = 0;
6492	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6493		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6494		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6495		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6496	};
6497	bool quota_mopt[EXT4_MAXQUOTAS] = {
6498		test_opt(sb, USRQUOTA),
6499		test_opt(sb, GRPQUOTA),
6500		test_opt(sb, PRJQUOTA),
6501	};
6502
6503	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6504	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6505		if (qf_inums[type]) {
6506			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6507				DQUOT_USAGE_ENABLED |
6508				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6509			if (err) {
6510				ext4_warning(sb,
6511					"Failed to enable quota tracking "
6512					"(type=%d, err=%d, ino=%lu). "
6513					"Please run e2fsck to fix.", type,
6514					err, qf_inums[type]);
6515				for (type--; type >= 0; type--) {
6516					struct inode *inode;
6517
6518					inode = sb_dqopt(sb)->files[type];
6519					if (inode)
6520						inode = igrab(inode);
6521					dquot_quota_off(sb, type);
6522					if (inode) {
6523						lockdep_set_quota_inode(inode,
6524							I_DATA_SEM_NORMAL);
6525						iput(inode);
6526					}
6527				}
6528
6529				return err;
6530			}
6531		}
6532	}
6533	return 0;
6534}
6535
6536static int ext4_quota_off(struct super_block *sb, int type)
6537{
6538	struct inode *inode = sb_dqopt(sb)->files[type];
6539	handle_t *handle;
6540	int err;
6541
6542	/* Force all delayed allocation blocks to be allocated.
6543	 * Caller already holds s_umount sem */
6544	if (test_opt(sb, DELALLOC))
6545		sync_filesystem(sb);
6546
6547	if (!inode || !igrab(inode))
6548		goto out;
6549
6550	err = dquot_quota_off(sb, type);
6551	if (err || ext4_has_feature_quota(sb))
6552		goto out_put;
6553
6554	inode_lock(inode);
6555	/*
6556	 * Update modification times of quota files when userspace can
6557	 * start looking at them. If we fail, we return success anyway since
6558	 * this is not a hard failure and quotas are already disabled.
6559	 */
6560	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6561	if (IS_ERR(handle)) {
6562		err = PTR_ERR(handle);
6563		goto out_unlock;
6564	}
6565	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6566	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6567	inode->i_mtime = inode->i_ctime = current_time(inode);
6568	err = ext4_mark_inode_dirty(handle, inode);
6569	ext4_journal_stop(handle);
6570out_unlock:
6571	inode_unlock(inode);
6572out_put:
6573	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6574	iput(inode);
6575	return err;
6576out:
6577	return dquot_quota_off(sb, type);
6578}
6579
6580/* Read data from quotafile - avoid pagecache and such because we cannot afford
6581 * acquiring the locks... As quota files are never truncated and quota code
6582 * itself serializes the operations (and no one else should touch the files)
6583 * we don't have to be afraid of races */
6584static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6585			       size_t len, loff_t off)
6586{
6587	struct inode *inode = sb_dqopt(sb)->files[type];
6588	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6589	int offset = off & (sb->s_blocksize - 1);
6590	int tocopy;
6591	size_t toread;
6592	struct buffer_head *bh;
6593	loff_t i_size = i_size_read(inode);
6594
6595	if (off > i_size)
6596		return 0;
6597	if (off+len > i_size)
6598		len = i_size-off;
6599	toread = len;
6600	while (toread > 0) {
6601		tocopy = sb->s_blocksize - offset < toread ?
6602				sb->s_blocksize - offset : toread;
6603		bh = ext4_bread(NULL, inode, blk, 0);
6604		if (IS_ERR(bh))
6605			return PTR_ERR(bh);
6606		if (!bh)	/* A hole? */
6607			memset(data, 0, tocopy);
6608		else
6609			memcpy(data, bh->b_data+offset, tocopy);
6610		brelse(bh);
6611		offset = 0;
6612		toread -= tocopy;
6613		data += tocopy;
6614		blk++;
6615	}
6616	return len;
6617}
6618
6619/* Write to quotafile (we know the transaction is already started and has
6620 * enough credits) */
6621static ssize_t ext4_quota_write(struct super_block *sb, int type,
6622				const char *data, size_t len, loff_t off)
6623{
6624	struct inode *inode = sb_dqopt(sb)->files[type];
6625	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6626	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6627	int retries = 0;
6628	struct buffer_head *bh;
6629	handle_t *handle = journal_current_handle();
6630
6631	if (!handle) {
6632		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6633			" cancelled because transaction is not started",
6634			(unsigned long long)off, (unsigned long long)len);
6635		return -EIO;
6636	}
6637	/*
6638	 * Since we account only one data block in transaction credits,
6639	 * then it is impossible to cross a block boundary.
6640	 */
6641	if (sb->s_blocksize - offset < len) {
6642		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6643			" cancelled because not block aligned",
6644			(unsigned long long)off, (unsigned long long)len);
6645		return -EIO;
6646	}
6647
6648	do {
6649		bh = ext4_bread(handle, inode, blk,
6650				EXT4_GET_BLOCKS_CREATE |
6651				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6652	} while (PTR_ERR(bh) == -ENOSPC &&
6653		 ext4_should_retry_alloc(inode->i_sb, &retries));
6654	if (IS_ERR(bh))
6655		return PTR_ERR(bh);
6656	if (!bh)
6657		goto out;
6658	BUFFER_TRACE(bh, "get write access");
6659	err = ext4_journal_get_write_access(handle, bh);
6660	if (err) {
6661		brelse(bh);
6662		return err;
6663	}
6664	lock_buffer(bh);
6665	memcpy(bh->b_data+offset, data, len);
6666	flush_dcache_page(bh->b_page);
6667	unlock_buffer(bh);
6668	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6669	brelse(bh);
6670out:
6671	if (inode->i_size < off + len) {
6672		i_size_write(inode, off + len);
6673		EXT4_I(inode)->i_disksize = inode->i_size;
6674		err2 = ext4_mark_inode_dirty(handle, inode);
6675		if (unlikely(err2 && !err))
6676			err = err2;
6677	}
6678	return err ? err : len;
6679}
6680#endif
6681
6682static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6683		       const char *dev_name, void *data)
6684{
6685	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6686}
6687
6688#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6689static inline void register_as_ext2(void)
6690{
6691	int err = register_filesystem(&ext2_fs_type);
6692	if (err)
6693		printk(KERN_WARNING
6694		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6695}
6696
6697static inline void unregister_as_ext2(void)
6698{
6699	unregister_filesystem(&ext2_fs_type);
6700}
6701
6702static inline int ext2_feature_set_ok(struct super_block *sb)
6703{
6704	if (ext4_has_unknown_ext2_incompat_features(sb))
6705		return 0;
6706	if (sb_rdonly(sb))
6707		return 1;
6708	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6709		return 0;
6710	return 1;
6711}
6712#else
6713static inline void register_as_ext2(void) { }
6714static inline void unregister_as_ext2(void) { }
6715static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6716#endif
6717
6718static inline void register_as_ext3(void)
6719{
6720	int err = register_filesystem(&ext3_fs_type);
6721	if (err)
6722		printk(KERN_WARNING
6723		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6724}
6725
6726static inline void unregister_as_ext3(void)
6727{
6728	unregister_filesystem(&ext3_fs_type);
6729}
6730
6731static inline int ext3_feature_set_ok(struct super_block *sb)
6732{
6733	if (ext4_has_unknown_ext3_incompat_features(sb))
6734		return 0;
6735	if (!ext4_has_feature_journal(sb))
6736		return 0;
6737	if (sb_rdonly(sb))
6738		return 1;
6739	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6740		return 0;
6741	return 1;
6742}
6743
6744static struct file_system_type ext4_fs_type = {
6745	.owner		= THIS_MODULE,
6746	.name		= "ext4",
6747	.mount		= ext4_mount,
6748	.kill_sb	= kill_block_super,
6749	.fs_flags	= FS_REQUIRES_DEV,
6750};
6751MODULE_ALIAS_FS("ext4");
6752
6753/* Shared across all ext4 file systems */
6754wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6755
6756static int __init ext4_init_fs(void)
6757{
6758	int i, err;
6759
6760	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6761	ext4_li_info = NULL;
6762	mutex_init(&ext4_li_mtx);
6763
6764	/* Build-time check for flags consistency */
6765	ext4_check_flag_values();
6766
6767	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6768		init_waitqueue_head(&ext4__ioend_wq[i]);
6769
6770	err = ext4_init_es();
6771	if (err)
6772		return err;
6773
6774	err = ext4_init_pending();
6775	if (err)
6776		goto out7;
6777
6778	err = ext4_init_post_read_processing();
6779	if (err)
6780		goto out6;
6781
6782	err = ext4_init_pageio();
6783	if (err)
6784		goto out5;
6785
6786	err = ext4_init_system_zone();
6787	if (err)
6788		goto out4;
6789
6790	err = ext4_init_sysfs();
6791	if (err)
6792		goto out3;
6793
6794	err = ext4_init_mballoc();
6795	if (err)
6796		goto out2;
6797	err = init_inodecache();
6798	if (err)
6799		goto out1;
6800
6801	err = ext4_fc_init_dentry_cache();
6802	if (err)
6803		goto out05;
6804
6805	register_as_ext3();
6806	register_as_ext2();
6807	err = register_filesystem(&ext4_fs_type);
6808	if (err)
6809		goto out;
6810
6811	return 0;
6812out:
6813	unregister_as_ext2();
6814	unregister_as_ext3();
6815	ext4_fc_destroy_dentry_cache();
6816out05:
6817	destroy_inodecache();
6818out1:
6819	ext4_exit_mballoc();
6820out2:
6821	ext4_exit_sysfs();
6822out3:
6823	ext4_exit_system_zone();
6824out4:
6825	ext4_exit_pageio();
6826out5:
6827	ext4_exit_post_read_processing();
6828out6:
6829	ext4_exit_pending();
6830out7:
6831	ext4_exit_es();
6832
6833	return err;
6834}
6835
6836static void __exit ext4_exit_fs(void)
6837{
6838	ext4_destroy_lazyinit_thread();
6839	unregister_as_ext2();
6840	unregister_as_ext3();
6841	unregister_filesystem(&ext4_fs_type);
6842	ext4_fc_destroy_dentry_cache();
6843	destroy_inodecache();
6844	ext4_exit_mballoc();
6845	ext4_exit_sysfs();
6846	ext4_exit_system_zone();
6847	ext4_exit_pageio();
6848	ext4_exit_post_read_processing();
6849	ext4_exit_es();
6850	ext4_exit_pending();
6851}
6852
6853MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6854MODULE_DESCRIPTION("Fourth Extended Filesystem");
6855MODULE_LICENSE("GPL");
6856MODULE_SOFTDEP("pre: crc32c");
6857module_init(ext4_init_fs)
6858module_exit(ext4_exit_fs)
6859