xref: /kernel/linux/linux-5.10/fs/ext4/inode.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 *  from
11 *
12 *  linux/fs/minix/inode.c
13 *
14 *  Copyright (C) 1991, 1992  Linus Torvalds
15 *
16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
17 *	(jj@sunsite.ms.mff.cuni.cz)
18 *
19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/dax.h>
27#include <linux/quotaops.h>
28#include <linux/string.h>
29#include <linux/buffer_head.h>
30#include <linux/writeback.h>
31#include <linux/pagevec.h>
32#include <linux/mpage.h>
33#include <linux/namei.h>
34#include <linux/uio.h>
35#include <linux/bio.h>
36#include <linux/workqueue.h>
37#include <linux/kernel.h>
38#include <linux/printk.h>
39#include <linux/slab.h>
40#include <linux/bitops.h>
41#include <linux/iomap.h>
42#include <linux/iversion.h>
43
44#include "ext4_jbd2.h"
45#include "xattr.h"
46#include "acl.h"
47#include "truncate.h"
48
49#include <trace/events/ext4.h>
50
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52			      struct ext4_inode_info *ei)
53{
54	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55	__u32 csum;
56	__u16 dummy_csum = 0;
57	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58	unsigned int csum_size = sizeof(dummy_csum);
59
60	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62	offset += csum_size;
63	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67		offset = offsetof(struct ext4_inode, i_checksum_hi);
68		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69				   EXT4_GOOD_OLD_INODE_SIZE,
70				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73					   csum_size);
74			offset += csum_size;
75		}
76		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78	}
79
80	return csum;
81}
82
83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84				  struct ext4_inode_info *ei)
85{
86	__u32 provided, calculated;
87
88	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89	    cpu_to_le32(EXT4_OS_LINUX) ||
90	    !ext4_has_metadata_csum(inode->i_sb))
91		return 1;
92
93	provided = le16_to_cpu(raw->i_checksum_lo);
94	calculated = ext4_inode_csum(inode, raw, ei);
95	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98	else
99		calculated &= 0xFFFF;
100
101	return provided == calculated;
102}
103
104void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105			 struct ext4_inode_info *ei)
106{
107	__u32 csum;
108
109	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110	    cpu_to_le32(EXT4_OS_LINUX) ||
111	    !ext4_has_metadata_csum(inode->i_sb))
112		return;
113
114	csum = ext4_inode_csum(inode, raw, ei);
115	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119}
120
121static inline int ext4_begin_ordered_truncate(struct inode *inode,
122					      loff_t new_size)
123{
124	trace_ext4_begin_ordered_truncate(inode, new_size);
125	/*
126	 * If jinode is zero, then we never opened the file for
127	 * writing, so there's no need to call
128	 * jbd2_journal_begin_ordered_truncate() since there's no
129	 * outstanding writes we need to flush.
130	 */
131	if (!EXT4_I(inode)->jinode)
132		return 0;
133	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134						   EXT4_I(inode)->jinode,
135						   new_size);
136}
137
138static void ext4_invalidatepage(struct page *page, unsigned int offset,
139				unsigned int length);
140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143				  int pextents);
144
145/*
146 * Test whether an inode is a fast symlink.
147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148 */
149int ext4_inode_is_fast_symlink(struct inode *inode)
150{
151	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154
155		if (ext4_has_inline_data(inode))
156			return 0;
157
158		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159	}
160	return S_ISLNK(inode->i_mode) && inode->i_size &&
161	       (inode->i_size < EXT4_N_BLOCKS * 4);
162}
163
164/*
165 * Called at the last iput() if i_nlink is zero.
166 */
167void ext4_evict_inode(struct inode *inode)
168{
169	handle_t *handle;
170	int err;
171	/*
172	 * Credits for final inode cleanup and freeing:
173	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175	 */
176	int extra_credits = 6;
177	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178	bool freeze_protected = false;
179
180	trace_ext4_evict_inode(inode);
181
182	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
183		ext4_evict_ea_inode(inode);
184	if (inode->i_nlink) {
185		/*
186		 * When journalling data dirty buffers are tracked only in the
187		 * journal. So although mm thinks everything is clean and
188		 * ready for reaping the inode might still have some pages to
189		 * write in the running transaction or waiting to be
190		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
191		 * (via truncate_inode_pages()) to discard these buffers can
192		 * cause data loss. Also even if we did not discard these
193		 * buffers, we would have no way to find them after the inode
194		 * is reaped and thus user could see stale data if he tries to
195		 * read them before the transaction is checkpointed. So be
196		 * careful and force everything to disk here... We use
197		 * ei->i_datasync_tid to store the newest transaction
198		 * containing inode's data.
199		 *
200		 * Note that directories do not have this problem because they
201		 * don't use page cache.
202		 */
203		if (inode->i_ino != EXT4_JOURNAL_INO &&
204		    ext4_should_journal_data(inode) &&
205		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
206		    inode->i_data.nrpages) {
207			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
208			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
209
210			jbd2_complete_transaction(journal, commit_tid);
211			filemap_write_and_wait(&inode->i_data);
212		}
213		truncate_inode_pages_final(&inode->i_data);
214
215		goto no_delete;
216	}
217
218	if (is_bad_inode(inode))
219		goto no_delete;
220	dquot_initialize(inode);
221
222	if (ext4_should_order_data(inode))
223		ext4_begin_ordered_truncate(inode, 0);
224	truncate_inode_pages_final(&inode->i_data);
225
226	/*
227	 * For inodes with journalled data, transaction commit could have
228	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
229	 * extents converting worker could merge extents and also have dirtied
230	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
231	 * we still need to remove the inode from the writeback lists.
232	 */
233	if (!list_empty_careful(&inode->i_io_list))
234		inode_io_list_del(inode);
235
236	/*
237	 * Protect us against freezing - iput() caller didn't have to have any
238	 * protection against it. When we are in a running transaction though,
239	 * we are already protected against freezing and we cannot grab further
240	 * protection due to lock ordering constraints.
241	 */
242	if (!ext4_journal_current_handle()) {
243		sb_start_intwrite(inode->i_sb);
244		freeze_protected = true;
245	}
246
247	if (!IS_NOQUOTA(inode))
248		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
249
250	/*
251	 * Block bitmap, group descriptor, and inode are accounted in both
252	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
253	 */
254	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
255			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
256	if (IS_ERR(handle)) {
257		ext4_std_error(inode->i_sb, PTR_ERR(handle));
258		/*
259		 * If we're going to skip the normal cleanup, we still need to
260		 * make sure that the in-core orphan linked list is properly
261		 * cleaned up.
262		 */
263		ext4_orphan_del(NULL, inode);
264		if (freeze_protected)
265			sb_end_intwrite(inode->i_sb);
266		goto no_delete;
267	}
268
269	if (IS_SYNC(inode))
270		ext4_handle_sync(handle);
271
272	/*
273	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274	 * special handling of symlinks here because i_size is used to
275	 * determine whether ext4_inode_info->i_data contains symlink data or
276	 * block mappings. Setting i_size to 0 will remove its fast symlink
277	 * status. Erase i_data so that it becomes a valid empty block map.
278	 */
279	if (ext4_inode_is_fast_symlink(inode))
280		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281	inode->i_size = 0;
282	err = ext4_mark_inode_dirty(handle, inode);
283	if (err) {
284		ext4_warning(inode->i_sb,
285			     "couldn't mark inode dirty (err %d)", err);
286		goto stop_handle;
287	}
288	if (inode->i_blocks) {
289		err = ext4_truncate(inode);
290		if (err) {
291			ext4_error_err(inode->i_sb, -err,
292				       "couldn't truncate inode %lu (err %d)",
293				       inode->i_ino, err);
294			goto stop_handle;
295		}
296	}
297
298	/* Remove xattr references. */
299	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300				      extra_credits);
301	if (err) {
302		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303stop_handle:
304		ext4_journal_stop(handle);
305		ext4_orphan_del(NULL, inode);
306		if (freeze_protected)
307			sb_end_intwrite(inode->i_sb);
308		ext4_xattr_inode_array_free(ea_inode_array);
309		goto no_delete;
310	}
311
312	/*
313	 * Kill off the orphan record which ext4_truncate created.
314	 * AKPM: I think this can be inside the above `if'.
315	 * Note that ext4_orphan_del() has to be able to cope with the
316	 * deletion of a non-existent orphan - this is because we don't
317	 * know if ext4_truncate() actually created an orphan record.
318	 * (Well, we could do this if we need to, but heck - it works)
319	 */
320	ext4_orphan_del(handle, inode);
321	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
322
323	/*
324	 * One subtle ordering requirement: if anything has gone wrong
325	 * (transaction abort, IO errors, whatever), then we can still
326	 * do these next steps (the fs will already have been marked as
327	 * having errors), but we can't free the inode if the mark_dirty
328	 * fails.
329	 */
330	if (ext4_mark_inode_dirty(handle, inode))
331		/* If that failed, just do the required in-core inode clear. */
332		ext4_clear_inode(inode);
333	else
334		ext4_free_inode(handle, inode);
335	ext4_journal_stop(handle);
336	if (freeze_protected)
337		sb_end_intwrite(inode->i_sb);
338	ext4_xattr_inode_array_free(ea_inode_array);
339	return;
340no_delete:
341	/*
342	 * Check out some where else accidentally dirty the evicting inode,
343	 * which may probably cause inode use-after-free issues later.
344	 */
345	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
346
347	if (!list_empty(&EXT4_I(inode)->i_fc_list))
348		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
349	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
350}
351
352#ifdef CONFIG_QUOTA
353qsize_t *ext4_get_reserved_space(struct inode *inode)
354{
355	return &EXT4_I(inode)->i_reserved_quota;
356}
357#endif
358
359/*
360 * Called with i_data_sem down, which is important since we can call
361 * ext4_discard_preallocations() from here.
362 */
363void ext4_da_update_reserve_space(struct inode *inode,
364					int used, int quota_claim)
365{
366	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
367	struct ext4_inode_info *ei = EXT4_I(inode);
368
369	spin_lock(&ei->i_block_reservation_lock);
370	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
371	if (unlikely(used > ei->i_reserved_data_blocks)) {
372		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
373			 "with only %d reserved data blocks",
374			 __func__, inode->i_ino, used,
375			 ei->i_reserved_data_blocks);
376		WARN_ON(1);
377		used = ei->i_reserved_data_blocks;
378	}
379
380	/* Update per-inode reservations */
381	ei->i_reserved_data_blocks -= used;
382	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
383
384	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386	/* Update quota subsystem for data blocks */
387	if (quota_claim)
388		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389	else {
390		/*
391		 * We did fallocate with an offset that is already delayed
392		 * allocated. So on delayed allocated writeback we should
393		 * not re-claim the quota for fallocated blocks.
394		 */
395		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396	}
397
398	/*
399	 * If we have done all the pending block allocations and if
400	 * there aren't any writers on the inode, we can discard the
401	 * inode's preallocations.
402	 */
403	if ((ei->i_reserved_data_blocks == 0) &&
404	    !inode_is_open_for_write(inode))
405		ext4_discard_preallocations(inode, 0);
406}
407
408static int __check_block_validity(struct inode *inode, const char *func,
409				unsigned int line,
410				struct ext4_map_blocks *map)
411{
412	if (ext4_has_feature_journal(inode->i_sb) &&
413	    (inode->i_ino ==
414	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
415		return 0;
416	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
417		ext4_error_inode(inode, func, line, map->m_pblk,
418				 "lblock %lu mapped to illegal pblock %llu "
419				 "(length %d)", (unsigned long) map->m_lblk,
420				 map->m_pblk, map->m_len);
421		return -EFSCORRUPTED;
422	}
423	return 0;
424}
425
426int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
427		       ext4_lblk_t len)
428{
429	int ret;
430
431	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
432		return fscrypt_zeroout_range(inode, lblk, pblk, len);
433
434	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
435	if (ret > 0)
436		ret = 0;
437
438	return ret;
439}
440
441#define check_block_validity(inode, map)	\
442	__check_block_validity((inode), __func__, __LINE__, (map))
443
444#ifdef ES_AGGRESSIVE_TEST
445static void ext4_map_blocks_es_recheck(handle_t *handle,
446				       struct inode *inode,
447				       struct ext4_map_blocks *es_map,
448				       struct ext4_map_blocks *map,
449				       int flags)
450{
451	int retval;
452
453	map->m_flags = 0;
454	/*
455	 * There is a race window that the result is not the same.
456	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
457	 * is that we lookup a block mapping in extent status tree with
458	 * out taking i_data_sem.  So at the time the unwritten extent
459	 * could be converted.
460	 */
461	down_read(&EXT4_I(inode)->i_data_sem);
462	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
463		retval = ext4_ext_map_blocks(handle, inode, map, 0);
464	} else {
465		retval = ext4_ind_map_blocks(handle, inode, map, 0);
466	}
467	up_read((&EXT4_I(inode)->i_data_sem));
468
469	/*
470	 * We don't check m_len because extent will be collpased in status
471	 * tree.  So the m_len might not equal.
472	 */
473	if (es_map->m_lblk != map->m_lblk ||
474	    es_map->m_flags != map->m_flags ||
475	    es_map->m_pblk != map->m_pblk) {
476		printk("ES cache assertion failed for inode: %lu "
477		       "es_cached ex [%d/%d/%llu/%x] != "
478		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
479		       inode->i_ino, es_map->m_lblk, es_map->m_len,
480		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
481		       map->m_len, map->m_pblk, map->m_flags,
482		       retval, flags);
483	}
484}
485#endif /* ES_AGGRESSIVE_TEST */
486
487/*
488 * The ext4_map_blocks() function tries to look up the requested blocks,
489 * and returns if the blocks are already mapped.
490 *
491 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
492 * and store the allocated blocks in the result buffer head and mark it
493 * mapped.
494 *
495 * If file type is extents based, it will call ext4_ext_map_blocks(),
496 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
497 * based files
498 *
499 * On success, it returns the number of blocks being mapped or allocated.  if
500 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
501 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
502 *
503 * It returns 0 if plain look up failed (blocks have not been allocated), in
504 * that case, @map is returned as unmapped but we still do fill map->m_len to
505 * indicate the length of a hole starting at map->m_lblk.
506 *
507 * It returns the error in case of allocation failure.
508 */
509int ext4_map_blocks(handle_t *handle, struct inode *inode,
510		    struct ext4_map_blocks *map, int flags)
511{
512	struct extent_status es;
513	int retval;
514	int ret = 0;
515#ifdef ES_AGGRESSIVE_TEST
516	struct ext4_map_blocks orig_map;
517
518	memcpy(&orig_map, map, sizeof(*map));
519#endif
520
521	map->m_flags = 0;
522	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
523		  flags, map->m_len, (unsigned long) map->m_lblk);
524
525	/*
526	 * ext4_map_blocks returns an int, and m_len is an unsigned int
527	 */
528	if (unlikely(map->m_len > INT_MAX))
529		map->m_len = INT_MAX;
530
531	/* We can handle the block number less than EXT_MAX_BLOCKS */
532	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
533		return -EFSCORRUPTED;
534
535	/* Lookup extent status tree firstly */
536	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
537	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
538		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
539			map->m_pblk = ext4_es_pblock(&es) +
540					map->m_lblk - es.es_lblk;
541			map->m_flags |= ext4_es_is_written(&es) ?
542					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
543			retval = es.es_len - (map->m_lblk - es.es_lblk);
544			if (retval > map->m_len)
545				retval = map->m_len;
546			map->m_len = retval;
547		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
548			map->m_pblk = 0;
549			retval = es.es_len - (map->m_lblk - es.es_lblk);
550			if (retval > map->m_len)
551				retval = map->m_len;
552			map->m_len = retval;
553			retval = 0;
554		} else {
555			BUG();
556		}
557#ifdef ES_AGGRESSIVE_TEST
558		ext4_map_blocks_es_recheck(handle, inode, map,
559					   &orig_map, flags);
560#endif
561		goto found;
562	}
563
564	/*
565	 * Try to see if we can get the block without requesting a new
566	 * file system block.
567	 */
568	down_read(&EXT4_I(inode)->i_data_sem);
569	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
570		retval = ext4_ext_map_blocks(handle, inode, map, 0);
571	} else {
572		retval = ext4_ind_map_blocks(handle, inode, map, 0);
573	}
574	if (retval > 0) {
575		unsigned int status;
576
577		if (unlikely(retval != map->m_len)) {
578			ext4_warning(inode->i_sb,
579				     "ES len assertion failed for inode "
580				     "%lu: retval %d != map->m_len %d",
581				     inode->i_ino, retval, map->m_len);
582			WARN_ON(1);
583		}
584
585		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
586				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
587		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
588		    !(status & EXTENT_STATUS_WRITTEN) &&
589		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
590				       map->m_lblk + map->m_len - 1))
591			status |= EXTENT_STATUS_DELAYED;
592		ret = ext4_es_insert_extent(inode, map->m_lblk,
593					    map->m_len, map->m_pblk, status);
594		if (ret < 0)
595			retval = ret;
596	}
597	up_read((&EXT4_I(inode)->i_data_sem));
598
599found:
600	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
601		ret = check_block_validity(inode, map);
602		if (ret != 0)
603			return ret;
604	}
605
606	/* If it is only a block(s) look up */
607	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
608		return retval;
609
610	/*
611	 * Returns if the blocks have already allocated
612	 *
613	 * Note that if blocks have been preallocated
614	 * ext4_ext_get_block() returns the create = 0
615	 * with buffer head unmapped.
616	 */
617	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
618		/*
619		 * If we need to convert extent to unwritten
620		 * we continue and do the actual work in
621		 * ext4_ext_map_blocks()
622		 */
623		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
624			return retval;
625
626	/*
627	 * Here we clear m_flags because after allocating an new extent,
628	 * it will be set again.
629	 */
630	map->m_flags &= ~EXT4_MAP_FLAGS;
631
632	/*
633	 * New blocks allocate and/or writing to unwritten extent
634	 * will possibly result in updating i_data, so we take
635	 * the write lock of i_data_sem, and call get_block()
636	 * with create == 1 flag.
637	 */
638	down_write(&EXT4_I(inode)->i_data_sem);
639
640	/*
641	 * We need to check for EXT4 here because migrate
642	 * could have changed the inode type in between
643	 */
644	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
645		retval = ext4_ext_map_blocks(handle, inode, map, flags);
646	} else {
647		retval = ext4_ind_map_blocks(handle, inode, map, flags);
648
649		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
650			/*
651			 * We allocated new blocks which will result in
652			 * i_data's format changing.  Force the migrate
653			 * to fail by clearing migrate flags
654			 */
655			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
656		}
657	}
658
659	if (retval > 0) {
660		unsigned int status;
661
662		if (unlikely(retval != map->m_len)) {
663			ext4_warning(inode->i_sb,
664				     "ES len assertion failed for inode "
665				     "%lu: retval %d != map->m_len %d",
666				     inode->i_ino, retval, map->m_len);
667			WARN_ON(1);
668		}
669
670		/*
671		 * We have to zeroout blocks before inserting them into extent
672		 * status tree. Otherwise someone could look them up there and
673		 * use them before they are really zeroed. We also have to
674		 * unmap metadata before zeroing as otherwise writeback can
675		 * overwrite zeros with stale data from block device.
676		 */
677		if (flags & EXT4_GET_BLOCKS_ZERO &&
678		    map->m_flags & EXT4_MAP_MAPPED &&
679		    map->m_flags & EXT4_MAP_NEW) {
680			ret = ext4_issue_zeroout(inode, map->m_lblk,
681						 map->m_pblk, map->m_len);
682			if (ret) {
683				retval = ret;
684				goto out_sem;
685			}
686		}
687
688		/*
689		 * If the extent has been zeroed out, we don't need to update
690		 * extent status tree.
691		 */
692		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
693		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
694			if (ext4_es_is_written(&es))
695				goto out_sem;
696		}
697		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
698				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
699		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
700		    !(status & EXTENT_STATUS_WRITTEN) &&
701		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
702				       map->m_lblk + map->m_len - 1))
703			status |= EXTENT_STATUS_DELAYED;
704		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
705					    map->m_pblk, status);
706		if (ret < 0) {
707			retval = ret;
708			goto out_sem;
709		}
710	}
711
712out_sem:
713	up_write((&EXT4_I(inode)->i_data_sem));
714	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
715		ret = check_block_validity(inode, map);
716		if (ret != 0)
717			return ret;
718
719		/*
720		 * Inodes with freshly allocated blocks where contents will be
721		 * visible after transaction commit must be on transaction's
722		 * ordered data list.
723		 */
724		if (map->m_flags & EXT4_MAP_NEW &&
725		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
726		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
727		    !ext4_is_quota_file(inode) &&
728		    ext4_should_order_data(inode)) {
729			loff_t start_byte =
730				(loff_t)map->m_lblk << inode->i_blkbits;
731			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
732
733			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
734				ret = ext4_jbd2_inode_add_wait(handle, inode,
735						start_byte, length);
736			else
737				ret = ext4_jbd2_inode_add_write(handle, inode,
738						start_byte, length);
739			if (ret)
740				return ret;
741		}
742	}
743	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
744				map->m_flags & EXT4_MAP_MAPPED))
745		ext4_fc_track_range(handle, inode, map->m_lblk,
746					map->m_lblk + map->m_len - 1);
747	if (retval < 0)
748		ext_debug(inode, "failed with err %d\n", retval);
749	return retval;
750}
751
752/*
753 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
754 * we have to be careful as someone else may be manipulating b_state as well.
755 */
756static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
757{
758	unsigned long old_state;
759	unsigned long new_state;
760
761	flags &= EXT4_MAP_FLAGS;
762
763	/* Dummy buffer_head? Set non-atomically. */
764	if (!bh->b_page) {
765		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
766		return;
767	}
768	/*
769	 * Someone else may be modifying b_state. Be careful! This is ugly but
770	 * once we get rid of using bh as a container for mapping information
771	 * to pass to / from get_block functions, this can go away.
772	 */
773	do {
774		old_state = READ_ONCE(bh->b_state);
775		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
776	} while (unlikely(
777		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
778}
779
780static int _ext4_get_block(struct inode *inode, sector_t iblock,
781			   struct buffer_head *bh, int flags)
782{
783	struct ext4_map_blocks map;
784	int ret = 0;
785
786	if (ext4_has_inline_data(inode))
787		return -ERANGE;
788
789	map.m_lblk = iblock;
790	map.m_len = bh->b_size >> inode->i_blkbits;
791
792	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
793			      flags);
794	if (ret > 0) {
795		map_bh(bh, inode->i_sb, map.m_pblk);
796		ext4_update_bh_state(bh, map.m_flags);
797		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
798		ret = 0;
799	} else if (ret == 0) {
800		/* hole case, need to fill in bh->b_size */
801		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
802	}
803	return ret;
804}
805
806int ext4_get_block(struct inode *inode, sector_t iblock,
807		   struct buffer_head *bh, int create)
808{
809	return _ext4_get_block(inode, iblock, bh,
810			       create ? EXT4_GET_BLOCKS_CREATE : 0);
811}
812
813/*
814 * Get block function used when preparing for buffered write if we require
815 * creating an unwritten extent if blocks haven't been allocated.  The extent
816 * will be converted to written after the IO is complete.
817 */
818int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
819			     struct buffer_head *bh_result, int create)
820{
821	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
822		   inode->i_ino, create);
823	return _ext4_get_block(inode, iblock, bh_result,
824			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
825}
826
827/* Maximum number of blocks we map for direct IO at once. */
828#define DIO_MAX_BLOCKS 4096
829
830/*
831 * `handle' can be NULL if create is zero
832 */
833struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
834				ext4_lblk_t block, int map_flags)
835{
836	struct ext4_map_blocks map;
837	struct buffer_head *bh;
838	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
839	int err;
840
841	J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
842		 || handle != NULL || create == 0);
843
844	map.m_lblk = block;
845	map.m_len = 1;
846	err = ext4_map_blocks(handle, inode, &map, map_flags);
847
848	if (err == 0)
849		return create ? ERR_PTR(-ENOSPC) : NULL;
850	if (err < 0)
851		return ERR_PTR(err);
852
853	bh = sb_getblk(inode->i_sb, map.m_pblk);
854	if (unlikely(!bh))
855		return ERR_PTR(-ENOMEM);
856	if (map.m_flags & EXT4_MAP_NEW) {
857		J_ASSERT(create != 0);
858		J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
859			 || (handle != NULL));
860
861		/*
862		 * Now that we do not always journal data, we should
863		 * keep in mind whether this should always journal the
864		 * new buffer as metadata.  For now, regular file
865		 * writes use ext4_get_block instead, so it's not a
866		 * problem.
867		 */
868		lock_buffer(bh);
869		BUFFER_TRACE(bh, "call get_create_access");
870		err = ext4_journal_get_create_access(handle, bh);
871		if (unlikely(err)) {
872			unlock_buffer(bh);
873			goto errout;
874		}
875		if (!buffer_uptodate(bh)) {
876			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
877			set_buffer_uptodate(bh);
878		}
879		unlock_buffer(bh);
880		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
881		err = ext4_handle_dirty_metadata(handle, inode, bh);
882		if (unlikely(err))
883			goto errout;
884	} else
885		BUFFER_TRACE(bh, "not a new buffer");
886	return bh;
887errout:
888	brelse(bh);
889	return ERR_PTR(err);
890}
891
892struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
893			       ext4_lblk_t block, int map_flags)
894{
895	struct buffer_head *bh;
896	int ret;
897
898	bh = ext4_getblk(handle, inode, block, map_flags);
899	if (IS_ERR(bh))
900		return bh;
901	if (!bh || ext4_buffer_uptodate(bh))
902		return bh;
903
904	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
905	if (ret) {
906		put_bh(bh);
907		return ERR_PTR(ret);
908	}
909	return bh;
910}
911
912/* Read a contiguous batch of blocks. */
913int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
914		     bool wait, struct buffer_head **bhs)
915{
916	int i, err;
917
918	for (i = 0; i < bh_count; i++) {
919		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
920		if (IS_ERR(bhs[i])) {
921			err = PTR_ERR(bhs[i]);
922			bh_count = i;
923			goto out_brelse;
924		}
925	}
926
927	for (i = 0; i < bh_count; i++)
928		/* Note that NULL bhs[i] is valid because of holes. */
929		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
930			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
931
932	if (!wait)
933		return 0;
934
935	for (i = 0; i < bh_count; i++)
936		if (bhs[i])
937			wait_on_buffer(bhs[i]);
938
939	for (i = 0; i < bh_count; i++) {
940		if (bhs[i] && !buffer_uptodate(bhs[i])) {
941			err = -EIO;
942			goto out_brelse;
943		}
944	}
945	return 0;
946
947out_brelse:
948	for (i = 0; i < bh_count; i++) {
949		brelse(bhs[i]);
950		bhs[i] = NULL;
951	}
952	return err;
953}
954
955int ext4_walk_page_buffers(handle_t *handle,
956			   struct buffer_head *head,
957			   unsigned from,
958			   unsigned to,
959			   int *partial,
960			   int (*fn)(handle_t *handle,
961				     struct buffer_head *bh))
962{
963	struct buffer_head *bh;
964	unsigned block_start, block_end;
965	unsigned blocksize = head->b_size;
966	int err, ret = 0;
967	struct buffer_head *next;
968
969	for (bh = head, block_start = 0;
970	     ret == 0 && (bh != head || !block_start);
971	     block_start = block_end, bh = next) {
972		next = bh->b_this_page;
973		block_end = block_start + blocksize;
974		if (block_end <= from || block_start >= to) {
975			if (partial && !buffer_uptodate(bh))
976				*partial = 1;
977			continue;
978		}
979		err = (*fn)(handle, bh);
980		if (!ret)
981			ret = err;
982	}
983	return ret;
984}
985
986/*
987 * To preserve ordering, it is essential that the hole instantiation and
988 * the data write be encapsulated in a single transaction.  We cannot
989 * close off a transaction and start a new one between the ext4_get_block()
990 * and the commit_write().  So doing the jbd2_journal_start at the start of
991 * prepare_write() is the right place.
992 *
993 * Also, this function can nest inside ext4_writepage().  In that case, we
994 * *know* that ext4_writepage() has generated enough buffer credits to do the
995 * whole page.  So we won't block on the journal in that case, which is good,
996 * because the caller may be PF_MEMALLOC.
997 *
998 * By accident, ext4 can be reentered when a transaction is open via
999 * quota file writes.  If we were to commit the transaction while thus
1000 * reentered, there can be a deadlock - we would be holding a quota
1001 * lock, and the commit would never complete if another thread had a
1002 * transaction open and was blocking on the quota lock - a ranking
1003 * violation.
1004 *
1005 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1006 * will _not_ run commit under these circumstances because handle->h_ref
1007 * is elevated.  We'll still have enough credits for the tiny quotafile
1008 * write.
1009 */
1010int do_journal_get_write_access(handle_t *handle,
1011				struct buffer_head *bh)
1012{
1013	int dirty = buffer_dirty(bh);
1014	int ret;
1015
1016	if (!buffer_mapped(bh) || buffer_freed(bh))
1017		return 0;
1018	/*
1019	 * __block_write_begin() could have dirtied some buffers. Clean
1020	 * the dirty bit as jbd2_journal_get_write_access() could complain
1021	 * otherwise about fs integrity issues. Setting of the dirty bit
1022	 * by __block_write_begin() isn't a real problem here as we clear
1023	 * the bit before releasing a page lock and thus writeback cannot
1024	 * ever write the buffer.
1025	 */
1026	if (dirty)
1027		clear_buffer_dirty(bh);
1028	BUFFER_TRACE(bh, "get write access");
1029	ret = ext4_journal_get_write_access(handle, bh);
1030	if (!ret && dirty)
1031		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1032	return ret;
1033}
1034
1035#ifdef CONFIG_FS_ENCRYPTION
1036static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1037				  get_block_t *get_block)
1038{
1039	unsigned from = pos & (PAGE_SIZE - 1);
1040	unsigned to = from + len;
1041	struct inode *inode = page->mapping->host;
1042	unsigned block_start, block_end;
1043	sector_t block;
1044	int err = 0;
1045	unsigned blocksize = inode->i_sb->s_blocksize;
1046	unsigned bbits;
1047	struct buffer_head *bh, *head, *wait[2];
1048	int nr_wait = 0;
1049	int i;
1050
1051	BUG_ON(!PageLocked(page));
1052	BUG_ON(from > PAGE_SIZE);
1053	BUG_ON(to > PAGE_SIZE);
1054	BUG_ON(from > to);
1055
1056	if (!page_has_buffers(page))
1057		create_empty_buffers(page, blocksize, 0);
1058	head = page_buffers(page);
1059	bbits = ilog2(blocksize);
1060	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1061
1062	for (bh = head, block_start = 0; bh != head || !block_start;
1063	    block++, block_start = block_end, bh = bh->b_this_page) {
1064		block_end = block_start + blocksize;
1065		if (block_end <= from || block_start >= to) {
1066			if (PageUptodate(page)) {
1067				if (!buffer_uptodate(bh))
1068					set_buffer_uptodate(bh);
1069			}
1070			continue;
1071		}
1072		if (buffer_new(bh))
1073			clear_buffer_new(bh);
1074		if (!buffer_mapped(bh)) {
1075			WARN_ON(bh->b_size != blocksize);
1076			err = get_block(inode, block, bh, 1);
1077			if (err)
1078				break;
1079			if (buffer_new(bh)) {
1080				if (PageUptodate(page)) {
1081					clear_buffer_new(bh);
1082					set_buffer_uptodate(bh);
1083					mark_buffer_dirty(bh);
1084					continue;
1085				}
1086				if (block_end > to || block_start < from)
1087					zero_user_segments(page, to, block_end,
1088							   block_start, from);
1089				continue;
1090			}
1091		}
1092		if (PageUptodate(page)) {
1093			if (!buffer_uptodate(bh))
1094				set_buffer_uptodate(bh);
1095			continue;
1096		}
1097		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1098		    !buffer_unwritten(bh) &&
1099		    (block_start < from || block_end > to)) {
1100			ext4_read_bh_lock(bh, 0, false);
1101			wait[nr_wait++] = bh;
1102		}
1103	}
1104	/*
1105	 * If we issued read requests, let them complete.
1106	 */
1107	for (i = 0; i < nr_wait; i++) {
1108		wait_on_buffer(wait[i]);
1109		if (!buffer_uptodate(wait[i]))
1110			err = -EIO;
1111	}
1112	if (unlikely(err)) {
1113		page_zero_new_buffers(page, from, to);
1114	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1115		for (i = 0; i < nr_wait; i++) {
1116			int err2;
1117
1118			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1119								bh_offset(wait[i]));
1120			if (err2) {
1121				clear_buffer_uptodate(wait[i]);
1122				err = err2;
1123			}
1124		}
1125	}
1126
1127	return err;
1128}
1129#endif
1130
1131static int ext4_write_begin(struct file *file, struct address_space *mapping,
1132			    loff_t pos, unsigned len, unsigned flags,
1133			    struct page **pagep, void **fsdata)
1134{
1135	struct inode *inode = mapping->host;
1136	int ret, needed_blocks;
1137	handle_t *handle;
1138	int retries = 0;
1139	struct page *page;
1140	pgoff_t index;
1141	unsigned from, to;
1142
1143	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1144		return -EIO;
1145
1146	trace_ext4_write_begin(inode, pos, len, flags);
1147	/*
1148	 * Reserve one block more for addition to orphan list in case
1149	 * we allocate blocks but write fails for some reason
1150	 */
1151	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1152	index = pos >> PAGE_SHIFT;
1153	from = pos & (PAGE_SIZE - 1);
1154	to = from + len;
1155
1156	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1157		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1158						    flags, pagep);
1159		if (ret < 0)
1160			return ret;
1161		if (ret == 1)
1162			return 0;
1163	}
1164
1165	/*
1166	 * grab_cache_page_write_begin() can take a long time if the
1167	 * system is thrashing due to memory pressure, or if the page
1168	 * is being written back.  So grab it first before we start
1169	 * the transaction handle.  This also allows us to allocate
1170	 * the page (if needed) without using GFP_NOFS.
1171	 */
1172retry_grab:
1173	page = grab_cache_page_write_begin(mapping, index, flags);
1174	if (!page)
1175		return -ENOMEM;
1176	/*
1177	 * The same as page allocation, we prealloc buffer heads before
1178	 * starting the handle.
1179	 */
1180	if (!page_has_buffers(page))
1181		create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1182
1183	unlock_page(page);
1184
1185retry_journal:
1186	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1187	if (IS_ERR(handle)) {
1188		put_page(page);
1189		return PTR_ERR(handle);
1190	}
1191
1192	lock_page(page);
1193	if (page->mapping != mapping) {
1194		/* The page got truncated from under us */
1195		unlock_page(page);
1196		put_page(page);
1197		ext4_journal_stop(handle);
1198		goto retry_grab;
1199	}
1200	/* In case writeback began while the page was unlocked */
1201	wait_for_stable_page(page);
1202
1203#ifdef CONFIG_FS_ENCRYPTION
1204	if (ext4_should_dioread_nolock(inode))
1205		ret = ext4_block_write_begin(page, pos, len,
1206					     ext4_get_block_unwritten);
1207	else
1208		ret = ext4_block_write_begin(page, pos, len,
1209					     ext4_get_block);
1210#else
1211	if (ext4_should_dioread_nolock(inode))
1212		ret = __block_write_begin(page, pos, len,
1213					  ext4_get_block_unwritten);
1214	else
1215		ret = __block_write_begin(page, pos, len, ext4_get_block);
1216#endif
1217	if (!ret && ext4_should_journal_data(inode)) {
1218		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1219					     from, to, NULL,
1220					     do_journal_get_write_access);
1221	}
1222
1223	if (ret) {
1224		bool extended = (pos + len > inode->i_size) &&
1225				!ext4_verity_in_progress(inode);
1226
1227		unlock_page(page);
1228		/*
1229		 * __block_write_begin may have instantiated a few blocks
1230		 * outside i_size.  Trim these off again. Don't need
1231		 * i_size_read because we hold i_mutex.
1232		 *
1233		 * Add inode to orphan list in case we crash before
1234		 * truncate finishes
1235		 */
1236		if (extended && ext4_can_truncate(inode))
1237			ext4_orphan_add(handle, inode);
1238
1239		ext4_journal_stop(handle);
1240		if (extended) {
1241			ext4_truncate_failed_write(inode);
1242			/*
1243			 * If truncate failed early the inode might
1244			 * still be on the orphan list; we need to
1245			 * make sure the inode is removed from the
1246			 * orphan list in that case.
1247			 */
1248			if (inode->i_nlink)
1249				ext4_orphan_del(NULL, inode);
1250		}
1251
1252		if (ret == -ENOSPC &&
1253		    ext4_should_retry_alloc(inode->i_sb, &retries))
1254			goto retry_journal;
1255		put_page(page);
1256		return ret;
1257	}
1258	*pagep = page;
1259	return ret;
1260}
1261
1262/* For write_end() in data=journal mode */
1263static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1264{
1265	int ret;
1266	if (!buffer_mapped(bh) || buffer_freed(bh))
1267		return 0;
1268	set_buffer_uptodate(bh);
1269	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1270	clear_buffer_meta(bh);
1271	clear_buffer_prio(bh);
1272	return ret;
1273}
1274
1275/*
1276 * We need to pick up the new inode size which generic_commit_write gave us
1277 * `file' can be NULL - eg, when called from page_symlink().
1278 *
1279 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1280 * buffers are managed internally.
1281 */
1282static int ext4_write_end(struct file *file,
1283			  struct address_space *mapping,
1284			  loff_t pos, unsigned len, unsigned copied,
1285			  struct page *page, void *fsdata)
1286{
1287	handle_t *handle = ext4_journal_current_handle();
1288	struct inode *inode = mapping->host;
1289	loff_t old_size = inode->i_size;
1290	int ret = 0, ret2;
1291	int i_size_changed = 0;
1292	bool verity = ext4_verity_in_progress(inode);
1293
1294	trace_ext4_write_end(inode, pos, len, copied);
1295
1296	if (ext4_has_inline_data(inode) &&
1297	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1298		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1299
1300	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1301	/*
1302	 * it's important to update i_size while still holding page lock:
1303	 * page writeout could otherwise come in and zero beyond i_size.
1304	 *
1305	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1306	 * blocks are being written past EOF, so skip the i_size update.
1307	 */
1308	if (!verity)
1309		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1310	unlock_page(page);
1311	put_page(page);
1312
1313	if (old_size < pos && !verity)
1314		pagecache_isize_extended(inode, old_size, pos);
1315	/*
1316	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1317	 * makes the holding time of page lock longer. Second, it forces lock
1318	 * ordering of page lock and transaction start for journaling
1319	 * filesystems.
1320	 */
1321	if (i_size_changed)
1322		ret = ext4_mark_inode_dirty(handle, inode);
1323
1324	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1325		/* if we have allocated more blocks and copied
1326		 * less. We will have blocks allocated outside
1327		 * inode->i_size. So truncate them
1328		 */
1329		ext4_orphan_add(handle, inode);
1330
1331	ret2 = ext4_journal_stop(handle);
1332	if (!ret)
1333		ret = ret2;
1334
1335	if (pos + len > inode->i_size && !verity) {
1336		ext4_truncate_failed_write(inode);
1337		/*
1338		 * If truncate failed early the inode might still be
1339		 * on the orphan list; we need to make sure the inode
1340		 * is removed from the orphan list in that case.
1341		 */
1342		if (inode->i_nlink)
1343			ext4_orphan_del(NULL, inode);
1344	}
1345
1346	return ret ? ret : copied;
1347}
1348
1349/*
1350 * This is a private version of page_zero_new_buffers() which doesn't
1351 * set the buffer to be dirty, since in data=journalled mode we need
1352 * to call ext4_handle_dirty_metadata() instead.
1353 */
1354static void ext4_journalled_zero_new_buffers(handle_t *handle,
1355					    struct page *page,
1356					    unsigned from, unsigned to)
1357{
1358	unsigned int block_start = 0, block_end;
1359	struct buffer_head *head, *bh;
1360
1361	bh = head = page_buffers(page);
1362	do {
1363		block_end = block_start + bh->b_size;
1364		if (buffer_new(bh)) {
1365			if (block_end > from && block_start < to) {
1366				if (!PageUptodate(page)) {
1367					unsigned start, size;
1368
1369					start = max(from, block_start);
1370					size = min(to, block_end) - start;
1371
1372					zero_user(page, start, size);
1373					write_end_fn(handle, bh);
1374				}
1375				clear_buffer_new(bh);
1376			}
1377		}
1378		block_start = block_end;
1379		bh = bh->b_this_page;
1380	} while (bh != head);
1381}
1382
1383static int ext4_journalled_write_end(struct file *file,
1384				     struct address_space *mapping,
1385				     loff_t pos, unsigned len, unsigned copied,
1386				     struct page *page, void *fsdata)
1387{
1388	handle_t *handle = ext4_journal_current_handle();
1389	struct inode *inode = mapping->host;
1390	loff_t old_size = inode->i_size;
1391	int ret = 0, ret2;
1392	int partial = 0;
1393	unsigned from, to;
1394	int size_changed = 0;
1395	bool verity = ext4_verity_in_progress(inode);
1396
1397	trace_ext4_journalled_write_end(inode, pos, len, copied);
1398	from = pos & (PAGE_SIZE - 1);
1399	to = from + len;
1400
1401	BUG_ON(!ext4_handle_valid(handle));
1402
1403	if (ext4_has_inline_data(inode))
1404		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1405
1406	if (unlikely(copied < len) && !PageUptodate(page)) {
1407		copied = 0;
1408		ext4_journalled_zero_new_buffers(handle, page, from, to);
1409	} else {
1410		if (unlikely(copied < len))
1411			ext4_journalled_zero_new_buffers(handle, page,
1412							 from + copied, to);
1413		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1414					     from + copied, &partial,
1415					     write_end_fn);
1416		if (!partial)
1417			SetPageUptodate(page);
1418	}
1419	if (!verity)
1420		size_changed = ext4_update_inode_size(inode, pos + copied);
1421	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1422	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1423	unlock_page(page);
1424	put_page(page);
1425
1426	if (old_size < pos && !verity)
1427		pagecache_isize_extended(inode, old_size, pos);
1428
1429	if (size_changed) {
1430		ret2 = ext4_mark_inode_dirty(handle, inode);
1431		if (!ret)
1432			ret = ret2;
1433	}
1434
1435	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1436		/* if we have allocated more blocks and copied
1437		 * less. We will have blocks allocated outside
1438		 * inode->i_size. So truncate them
1439		 */
1440		ext4_orphan_add(handle, inode);
1441
1442	ret2 = ext4_journal_stop(handle);
1443	if (!ret)
1444		ret = ret2;
1445	if (pos + len > inode->i_size && !verity) {
1446		ext4_truncate_failed_write(inode);
1447		/*
1448		 * If truncate failed early the inode might still be
1449		 * on the orphan list; we need to make sure the inode
1450		 * is removed from the orphan list in that case.
1451		 */
1452		if (inode->i_nlink)
1453			ext4_orphan_del(NULL, inode);
1454	}
1455
1456	return ret ? ret : copied;
1457}
1458
1459/*
1460 * Reserve space for a single cluster
1461 */
1462static int ext4_da_reserve_space(struct inode *inode)
1463{
1464	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1465	struct ext4_inode_info *ei = EXT4_I(inode);
1466	int ret;
1467
1468	/*
1469	 * We will charge metadata quota at writeout time; this saves
1470	 * us from metadata over-estimation, though we may go over by
1471	 * a small amount in the end.  Here we just reserve for data.
1472	 */
1473	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1474	if (ret)
1475		return ret;
1476
1477	spin_lock(&ei->i_block_reservation_lock);
1478	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1479		spin_unlock(&ei->i_block_reservation_lock);
1480		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1481		return -ENOSPC;
1482	}
1483	ei->i_reserved_data_blocks++;
1484	trace_ext4_da_reserve_space(inode);
1485	spin_unlock(&ei->i_block_reservation_lock);
1486
1487	return 0;       /* success */
1488}
1489
1490void ext4_da_release_space(struct inode *inode, int to_free)
1491{
1492	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1493	struct ext4_inode_info *ei = EXT4_I(inode);
1494
1495	if (!to_free)
1496		return;		/* Nothing to release, exit */
1497
1498	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1499
1500	trace_ext4_da_release_space(inode, to_free);
1501	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1502		/*
1503		 * if there aren't enough reserved blocks, then the
1504		 * counter is messed up somewhere.  Since this
1505		 * function is called from invalidate page, it's
1506		 * harmless to return without any action.
1507		 */
1508		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1509			 "ino %lu, to_free %d with only %d reserved "
1510			 "data blocks", inode->i_ino, to_free,
1511			 ei->i_reserved_data_blocks);
1512		WARN_ON(1);
1513		to_free = ei->i_reserved_data_blocks;
1514	}
1515	ei->i_reserved_data_blocks -= to_free;
1516
1517	/* update fs dirty data blocks counter */
1518	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1519
1520	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1521
1522	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1523}
1524
1525/*
1526 * Delayed allocation stuff
1527 */
1528
1529struct mpage_da_data {
1530	struct inode *inode;
1531	struct writeback_control *wbc;
1532
1533	pgoff_t first_page;	/* The first page to write */
1534	pgoff_t next_page;	/* Current page to examine */
1535	pgoff_t last_page;	/* Last page to examine */
1536	/*
1537	 * Extent to map - this can be after first_page because that can be
1538	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1539	 * is delalloc or unwritten.
1540	 */
1541	struct ext4_map_blocks map;
1542	struct ext4_io_submit io_submit;	/* IO submission data */
1543	unsigned int do_map:1;
1544	unsigned int scanned_until_end:1;
1545};
1546
1547static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1548				       bool invalidate)
1549{
1550	int nr_pages, i;
1551	pgoff_t index, end;
1552	struct pagevec pvec;
1553	struct inode *inode = mpd->inode;
1554	struct address_space *mapping = inode->i_mapping;
1555
1556	/* This is necessary when next_page == 0. */
1557	if (mpd->first_page >= mpd->next_page)
1558		return;
1559
1560	mpd->scanned_until_end = 0;
1561	index = mpd->first_page;
1562	end   = mpd->next_page - 1;
1563	if (invalidate) {
1564		ext4_lblk_t start, last;
1565		start = index << (PAGE_SHIFT - inode->i_blkbits);
1566		last = end << (PAGE_SHIFT - inode->i_blkbits);
1567
1568		/*
1569		 * avoid racing with extent status tree scans made by
1570		 * ext4_insert_delayed_block()
1571		 */
1572		down_write(&EXT4_I(inode)->i_data_sem);
1573		ext4_es_remove_extent(inode, start, last - start + 1);
1574		up_write(&EXT4_I(inode)->i_data_sem);
1575	}
1576
1577	pagevec_init(&pvec);
1578	while (index <= end) {
1579		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1580		if (nr_pages == 0)
1581			break;
1582		for (i = 0; i < nr_pages; i++) {
1583			struct page *page = pvec.pages[i];
1584
1585			BUG_ON(!PageLocked(page));
1586			BUG_ON(PageWriteback(page));
1587			if (invalidate) {
1588				if (page_mapped(page))
1589					clear_page_dirty_for_io(page);
1590				block_invalidatepage(page, 0, PAGE_SIZE);
1591				ClearPageUptodate(page);
1592			}
1593			unlock_page(page);
1594		}
1595		pagevec_release(&pvec);
1596	}
1597}
1598
1599static void ext4_print_free_blocks(struct inode *inode)
1600{
1601	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1602	struct super_block *sb = inode->i_sb;
1603	struct ext4_inode_info *ei = EXT4_I(inode);
1604
1605	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1606	       EXT4_C2B(EXT4_SB(inode->i_sb),
1607			ext4_count_free_clusters(sb)));
1608	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1609	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1610	       (long long) EXT4_C2B(EXT4_SB(sb),
1611		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1612	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1613	       (long long) EXT4_C2B(EXT4_SB(sb),
1614		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1615	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1616	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1617		 ei->i_reserved_data_blocks);
1618	return;
1619}
1620
1621static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1622{
1623	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1624}
1625
1626/*
1627 * ext4_insert_delayed_block - adds a delayed block to the extents status
1628 *                             tree, incrementing the reserved cluster/block
1629 *                             count or making a pending reservation
1630 *                             where needed
1631 *
1632 * @inode - file containing the newly added block
1633 * @lblk - logical block to be added
1634 *
1635 * Returns 0 on success, negative error code on failure.
1636 */
1637static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1638{
1639	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1640	int ret;
1641	bool allocated = false;
1642	bool reserved = false;
1643
1644	/*
1645	 * If the cluster containing lblk is shared with a delayed,
1646	 * written, or unwritten extent in a bigalloc file system, it's
1647	 * already been accounted for and does not need to be reserved.
1648	 * A pending reservation must be made for the cluster if it's
1649	 * shared with a written or unwritten extent and doesn't already
1650	 * have one.  Written and unwritten extents can be purged from the
1651	 * extents status tree if the system is under memory pressure, so
1652	 * it's necessary to examine the extent tree if a search of the
1653	 * extents status tree doesn't get a match.
1654	 */
1655	if (sbi->s_cluster_ratio == 1) {
1656		ret = ext4_da_reserve_space(inode);
1657		if (ret != 0)   /* ENOSPC */
1658			goto errout;
1659		reserved = true;
1660	} else {   /* bigalloc */
1661		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1662			if (!ext4_es_scan_clu(inode,
1663					      &ext4_es_is_mapped, lblk)) {
1664				ret = ext4_clu_mapped(inode,
1665						      EXT4_B2C(sbi, lblk));
1666				if (ret < 0)
1667					goto errout;
1668				if (ret == 0) {
1669					ret = ext4_da_reserve_space(inode);
1670					if (ret != 0)   /* ENOSPC */
1671						goto errout;
1672					reserved = true;
1673				} else {
1674					allocated = true;
1675				}
1676			} else {
1677				allocated = true;
1678			}
1679		}
1680	}
1681
1682	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1683	if (ret && reserved)
1684		ext4_da_release_space(inode, 1);
1685
1686errout:
1687	return ret;
1688}
1689
1690/*
1691 * This function is grabs code from the very beginning of
1692 * ext4_map_blocks, but assumes that the caller is from delayed write
1693 * time. This function looks up the requested blocks and sets the
1694 * buffer delay bit under the protection of i_data_sem.
1695 */
1696static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1697			      struct ext4_map_blocks *map,
1698			      struct buffer_head *bh)
1699{
1700	struct extent_status es;
1701	int retval;
1702	sector_t invalid_block = ~((sector_t) 0xffff);
1703#ifdef ES_AGGRESSIVE_TEST
1704	struct ext4_map_blocks orig_map;
1705
1706	memcpy(&orig_map, map, sizeof(*map));
1707#endif
1708
1709	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1710		invalid_block = ~0;
1711
1712	map->m_flags = 0;
1713	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1714		  (unsigned long) map->m_lblk);
1715
1716	/* Lookup extent status tree firstly */
1717	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1718		if (ext4_es_is_hole(&es)) {
1719			retval = 0;
1720			down_read(&EXT4_I(inode)->i_data_sem);
1721			goto add_delayed;
1722		}
1723
1724		/*
1725		 * Delayed extent could be allocated by fallocate.
1726		 * So we need to check it.
1727		 */
1728		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1729			map_bh(bh, inode->i_sb, invalid_block);
1730			set_buffer_new(bh);
1731			set_buffer_delay(bh);
1732			return 0;
1733		}
1734
1735		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1736		retval = es.es_len - (iblock - es.es_lblk);
1737		if (retval > map->m_len)
1738			retval = map->m_len;
1739		map->m_len = retval;
1740		if (ext4_es_is_written(&es))
1741			map->m_flags |= EXT4_MAP_MAPPED;
1742		else if (ext4_es_is_unwritten(&es))
1743			map->m_flags |= EXT4_MAP_UNWRITTEN;
1744		else
1745			BUG();
1746
1747#ifdef ES_AGGRESSIVE_TEST
1748		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1749#endif
1750		return retval;
1751	}
1752
1753	/*
1754	 * Try to see if we can get the block without requesting a new
1755	 * file system block.
1756	 */
1757	down_read(&EXT4_I(inode)->i_data_sem);
1758	if (ext4_has_inline_data(inode))
1759		retval = 0;
1760	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1761		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1762	else
1763		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1764
1765add_delayed:
1766	if (retval == 0) {
1767		int ret;
1768
1769		/*
1770		 * XXX: __block_prepare_write() unmaps passed block,
1771		 * is it OK?
1772		 */
1773
1774		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1775		if (ret != 0) {
1776			retval = ret;
1777			goto out_unlock;
1778		}
1779
1780		map_bh(bh, inode->i_sb, invalid_block);
1781		set_buffer_new(bh);
1782		set_buffer_delay(bh);
1783	} else if (retval > 0) {
1784		int ret;
1785		unsigned int status;
1786
1787		if (unlikely(retval != map->m_len)) {
1788			ext4_warning(inode->i_sb,
1789				     "ES len assertion failed for inode "
1790				     "%lu: retval %d != map->m_len %d",
1791				     inode->i_ino, retval, map->m_len);
1792			WARN_ON(1);
1793		}
1794
1795		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1796				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1797		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1798					    map->m_pblk, status);
1799		if (ret != 0)
1800			retval = ret;
1801	}
1802
1803out_unlock:
1804	up_read((&EXT4_I(inode)->i_data_sem));
1805
1806	return retval;
1807}
1808
1809/*
1810 * This is a special get_block_t callback which is used by
1811 * ext4_da_write_begin().  It will either return mapped block or
1812 * reserve space for a single block.
1813 *
1814 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1815 * We also have b_blocknr = -1 and b_bdev initialized properly
1816 *
1817 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1818 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1819 * initialized properly.
1820 */
1821int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1822			   struct buffer_head *bh, int create)
1823{
1824	struct ext4_map_blocks map;
1825	int ret = 0;
1826
1827	BUG_ON(create == 0);
1828	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1829
1830	map.m_lblk = iblock;
1831	map.m_len = 1;
1832
1833	/*
1834	 * first, we need to know whether the block is allocated already
1835	 * preallocated blocks are unmapped but should treated
1836	 * the same as allocated blocks.
1837	 */
1838	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1839	if (ret <= 0)
1840		return ret;
1841
1842	map_bh(bh, inode->i_sb, map.m_pblk);
1843	ext4_update_bh_state(bh, map.m_flags);
1844
1845	if (buffer_unwritten(bh)) {
1846		/* A delayed write to unwritten bh should be marked
1847		 * new and mapped.  Mapped ensures that we don't do
1848		 * get_block multiple times when we write to the same
1849		 * offset and new ensures that we do proper zero out
1850		 * for partial write.
1851		 */
1852		set_buffer_new(bh);
1853		set_buffer_mapped(bh);
1854	}
1855	return 0;
1856}
1857
1858static int bget_one(handle_t *handle, struct buffer_head *bh)
1859{
1860	get_bh(bh);
1861	return 0;
1862}
1863
1864static int bput_one(handle_t *handle, struct buffer_head *bh)
1865{
1866	put_bh(bh);
1867	return 0;
1868}
1869
1870static int __ext4_journalled_writepage(struct page *page,
1871				       unsigned int len)
1872{
1873	struct address_space *mapping = page->mapping;
1874	struct inode *inode = mapping->host;
1875	struct buffer_head *page_bufs = NULL;
1876	handle_t *handle = NULL;
1877	int ret = 0, err = 0;
1878	int inline_data = ext4_has_inline_data(inode);
1879	struct buffer_head *inode_bh = NULL;
1880
1881	ClearPageChecked(page);
1882
1883	if (inline_data) {
1884		BUG_ON(page->index != 0);
1885		BUG_ON(len > ext4_get_max_inline_size(inode));
1886		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1887		if (inode_bh == NULL)
1888			goto out;
1889	} else {
1890		page_bufs = page_buffers(page);
1891		if (!page_bufs) {
1892			BUG();
1893			goto out;
1894		}
1895		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1896				       NULL, bget_one);
1897	}
1898	/*
1899	 * We need to release the page lock before we start the
1900	 * journal, so grab a reference so the page won't disappear
1901	 * out from under us.
1902	 */
1903	get_page(page);
1904	unlock_page(page);
1905
1906	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1907				    ext4_writepage_trans_blocks(inode));
1908	if (IS_ERR(handle)) {
1909		ret = PTR_ERR(handle);
1910		put_page(page);
1911		goto out_no_pagelock;
1912	}
1913	BUG_ON(!ext4_handle_valid(handle));
1914
1915	lock_page(page);
1916	put_page(page);
1917	if (page->mapping != mapping) {
1918		/* The page got truncated from under us */
1919		ext4_journal_stop(handle);
1920		ret = 0;
1921		goto out;
1922	}
1923
1924	if (inline_data) {
1925		ret = ext4_mark_inode_dirty(handle, inode);
1926	} else {
1927		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1928					     do_journal_get_write_access);
1929
1930		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1931					     write_end_fn);
1932	}
1933	if (ret == 0)
1934		ret = err;
1935	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1936	if (ret == 0)
1937		ret = err;
1938	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1939	err = ext4_journal_stop(handle);
1940	if (!ret)
1941		ret = err;
1942
1943	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1944out:
1945	unlock_page(page);
1946out_no_pagelock:
1947	if (!inline_data && page_bufs)
1948		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1949				       NULL, bput_one);
1950	brelse(inode_bh);
1951	return ret;
1952}
1953
1954static void cancel_page_dirty_status(struct page *page)
1955{
1956	struct address_space *mapping = page_mapping(page);
1957	unsigned long flags;
1958
1959	cancel_dirty_page(page);
1960	xa_lock_irqsave(&mapping->i_pages, flags);
1961	__xa_clear_mark(&mapping->i_pages, page_index(page),
1962			PAGECACHE_TAG_DIRTY);
1963	__xa_clear_mark(&mapping->i_pages, page_index(page),
1964			PAGECACHE_TAG_TOWRITE);
1965	xa_unlock_irqrestore(&mapping->i_pages, flags);
1966}
1967
1968/*
1969 * Note that we don't need to start a transaction unless we're journaling data
1970 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1971 * need to file the inode to the transaction's list in ordered mode because if
1972 * we are writing back data added by write(), the inode is already there and if
1973 * we are writing back data modified via mmap(), no one guarantees in which
1974 * transaction the data will hit the disk. In case we are journaling data, we
1975 * cannot start transaction directly because transaction start ranks above page
1976 * lock so we have to do some magic.
1977 *
1978 * This function can get called via...
1979 *   - ext4_writepages after taking page lock (have journal handle)
1980 *   - journal_submit_inode_data_buffers (no journal handle)
1981 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1982 *   - grab_page_cache when doing write_begin (have journal handle)
1983 *
1984 * We don't do any block allocation in this function. If we have page with
1985 * multiple blocks we need to write those buffer_heads that are mapped. This
1986 * is important for mmaped based write. So if we do with blocksize 1K
1987 * truncate(f, 1024);
1988 * a = mmap(f, 0, 4096);
1989 * a[0] = 'a';
1990 * truncate(f, 4096);
1991 * we have in the page first buffer_head mapped via page_mkwrite call back
1992 * but other buffer_heads would be unmapped but dirty (dirty done via the
1993 * do_wp_page). So writepage should write the first block. If we modify
1994 * the mmap area beyond 1024 we will again get a page_fault and the
1995 * page_mkwrite callback will do the block allocation and mark the
1996 * buffer_heads mapped.
1997 *
1998 * We redirty the page if we have any buffer_heads that is either delay or
1999 * unwritten in the page.
2000 *
2001 * We can get recursively called as show below.
2002 *
2003 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2004 *		ext4_writepage()
2005 *
2006 * But since we don't do any block allocation we should not deadlock.
2007 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2008 */
2009static int ext4_writepage(struct page *page,
2010			  struct writeback_control *wbc)
2011{
2012	int ret = 0;
2013	loff_t size;
2014	unsigned int len;
2015	struct buffer_head *page_bufs = NULL;
2016	struct inode *inode = page->mapping->host;
2017	struct ext4_io_submit io_submit;
2018	bool keep_towrite = false;
2019
2020	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2021		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2022		unlock_page(page);
2023		return -EIO;
2024	}
2025
2026	if (WARN_ON(!page_has_buffers(page))) {
2027		cancel_page_dirty_status(page);
2028		unlock_page(page);
2029		return 0;
2030	}
2031
2032	trace_ext4_writepage(page);
2033	size = i_size_read(inode);
2034	if (page->index == size >> PAGE_SHIFT &&
2035	    !ext4_verity_in_progress(inode))
2036		len = size & ~PAGE_MASK;
2037	else
2038		len = PAGE_SIZE;
2039
2040	/* Should never happen but for bugs in other kernel subsystems */
2041	if (!page_has_buffers(page)) {
2042		ext4_warning_inode(inode,
2043		   "page %lu does not have buffers attached", page->index);
2044		ClearPageDirty(page);
2045		unlock_page(page);
2046		return 0;
2047	}
2048
2049	page_bufs = page_buffers(page);
2050	/*
2051	 * We cannot do block allocation or other extent handling in this
2052	 * function. If there are buffers needing that, we have to redirty
2053	 * the page. But we may reach here when we do a journal commit via
2054	 * journal_submit_inode_data_buffers() and in that case we must write
2055	 * allocated buffers to achieve data=ordered mode guarantees.
2056	 *
2057	 * Also, if there is only one buffer per page (the fs block
2058	 * size == the page size), if one buffer needs block
2059	 * allocation or needs to modify the extent tree to clear the
2060	 * unwritten flag, we know that the page can't be written at
2061	 * all, so we might as well refuse the write immediately.
2062	 * Unfortunately if the block size != page size, we can't as
2063	 * easily detect this case using ext4_walk_page_buffers(), but
2064	 * for the extremely common case, this is an optimization that
2065	 * skips a useless round trip through ext4_bio_write_page().
2066	 */
2067	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2068				   ext4_bh_delay_or_unwritten)) {
2069		redirty_page_for_writepage(wbc, page);
2070		if ((current->flags & PF_MEMALLOC) ||
2071		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2072			/*
2073			 * For memory cleaning there's no point in writing only
2074			 * some buffers. So just bail out. Warn if we came here
2075			 * from direct reclaim.
2076			 */
2077			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2078							== PF_MEMALLOC);
2079			unlock_page(page);
2080			return 0;
2081		}
2082		keep_towrite = true;
2083	}
2084
2085	if (PageChecked(page) && ext4_should_journal_data(inode))
2086		/*
2087		 * It's mmapped pagecache.  Add buffers and journal it.  There
2088		 * doesn't seem much point in redirtying the page here.
2089		 */
2090		return __ext4_journalled_writepage(page, len);
2091
2092	ext4_io_submit_init(&io_submit, wbc);
2093	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2094	if (!io_submit.io_end) {
2095		redirty_page_for_writepage(wbc, page);
2096		unlock_page(page);
2097		return -ENOMEM;
2098	}
2099	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2100	ext4_io_submit(&io_submit);
2101	/* Drop io_end reference we got from init */
2102	ext4_put_io_end_defer(io_submit.io_end);
2103	return ret;
2104}
2105
2106static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2107{
2108	int len;
2109	loff_t size;
2110	int err;
2111
2112	BUG_ON(page->index != mpd->first_page);
2113	clear_page_dirty_for_io(page);
2114	/*
2115	 * We have to be very careful here!  Nothing protects writeback path
2116	 * against i_size changes and the page can be writeably mapped into
2117	 * page tables. So an application can be growing i_size and writing
2118	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2119	 * write-protects our page in page tables and the page cannot get
2120	 * written to again until we release page lock. So only after
2121	 * clear_page_dirty_for_io() we are safe to sample i_size for
2122	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2123	 * on the barrier provided by TestClearPageDirty in
2124	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2125	 * after page tables are updated.
2126	 */
2127	size = i_size_read(mpd->inode);
2128	if (page->index == size >> PAGE_SHIFT &&
2129	    !ext4_verity_in_progress(mpd->inode))
2130		len = size & ~PAGE_MASK;
2131	else
2132		len = PAGE_SIZE;
2133	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2134	if (!err)
2135		mpd->wbc->nr_to_write--;
2136	mpd->first_page++;
2137
2138	return err;
2139}
2140
2141#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2142
2143/*
2144 * mballoc gives us at most this number of blocks...
2145 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2146 * The rest of mballoc seems to handle chunks up to full group size.
2147 */
2148#define MAX_WRITEPAGES_EXTENT_LEN 2048
2149
2150/*
2151 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2152 *
2153 * @mpd - extent of blocks
2154 * @lblk - logical number of the block in the file
2155 * @bh - buffer head we want to add to the extent
2156 *
2157 * The function is used to collect contig. blocks in the same state. If the
2158 * buffer doesn't require mapping for writeback and we haven't started the
2159 * extent of buffers to map yet, the function returns 'true' immediately - the
2160 * caller can write the buffer right away. Otherwise the function returns true
2161 * if the block has been added to the extent, false if the block couldn't be
2162 * added.
2163 */
2164static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2165				   struct buffer_head *bh)
2166{
2167	struct ext4_map_blocks *map = &mpd->map;
2168
2169	/* Buffer that doesn't need mapping for writeback? */
2170	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2171	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2172		/* So far no extent to map => we write the buffer right away */
2173		if (map->m_len == 0)
2174			return true;
2175		return false;
2176	}
2177
2178	/* First block in the extent? */
2179	if (map->m_len == 0) {
2180		/* We cannot map unless handle is started... */
2181		if (!mpd->do_map)
2182			return false;
2183		map->m_lblk = lblk;
2184		map->m_len = 1;
2185		map->m_flags = bh->b_state & BH_FLAGS;
2186		return true;
2187	}
2188
2189	/* Don't go larger than mballoc is willing to allocate */
2190	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2191		return false;
2192
2193	/* Can we merge the block to our big extent? */
2194	if (lblk == map->m_lblk + map->m_len &&
2195	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2196		map->m_len++;
2197		return true;
2198	}
2199	return false;
2200}
2201
2202/*
2203 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2204 *
2205 * @mpd - extent of blocks for mapping
2206 * @head - the first buffer in the page
2207 * @bh - buffer we should start processing from
2208 * @lblk - logical number of the block in the file corresponding to @bh
2209 *
2210 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2211 * the page for IO if all buffers in this page were mapped and there's no
2212 * accumulated extent of buffers to map or add buffers in the page to the
2213 * extent of buffers to map. The function returns 1 if the caller can continue
2214 * by processing the next page, 0 if it should stop adding buffers to the
2215 * extent to map because we cannot extend it anymore. It can also return value
2216 * < 0 in case of error during IO submission.
2217 */
2218static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2219				   struct buffer_head *head,
2220				   struct buffer_head *bh,
2221				   ext4_lblk_t lblk)
2222{
2223	struct inode *inode = mpd->inode;
2224	int err;
2225	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2226							>> inode->i_blkbits;
2227
2228	if (ext4_verity_in_progress(inode))
2229		blocks = EXT_MAX_BLOCKS;
2230
2231	do {
2232		BUG_ON(buffer_locked(bh));
2233
2234		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2235			/* Found extent to map? */
2236			if (mpd->map.m_len)
2237				return 0;
2238			/* Buffer needs mapping and handle is not started? */
2239			if (!mpd->do_map)
2240				return 0;
2241			/* Everything mapped so far and we hit EOF */
2242			break;
2243		}
2244	} while (lblk++, (bh = bh->b_this_page) != head);
2245	/* So far everything mapped? Submit the page for IO. */
2246	if (mpd->map.m_len == 0) {
2247		err = mpage_submit_page(mpd, head->b_page);
2248		if (err < 0)
2249			return err;
2250	}
2251	if (lblk >= blocks) {
2252		mpd->scanned_until_end = 1;
2253		return 0;
2254	}
2255	return 1;
2256}
2257
2258/*
2259 * mpage_process_page - update page buffers corresponding to changed extent and
2260 *		       may submit fully mapped page for IO
2261 *
2262 * @mpd		- description of extent to map, on return next extent to map
2263 * @m_lblk	- logical block mapping.
2264 * @m_pblk	- corresponding physical mapping.
2265 * @map_bh	- determines on return whether this page requires any further
2266 *		  mapping or not.
2267 * Scan given page buffers corresponding to changed extent and update buffer
2268 * state according to new extent state.
2269 * We map delalloc buffers to their physical location, clear unwritten bits.
2270 * If the given page is not fully mapped, we update @map to the next extent in
2271 * the given page that needs mapping & return @map_bh as true.
2272 */
2273static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2274			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2275			      bool *map_bh)
2276{
2277	struct buffer_head *head, *bh;
2278	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2279	ext4_lblk_t lblk = *m_lblk;
2280	ext4_fsblk_t pblock = *m_pblk;
2281	int err = 0;
2282	int blkbits = mpd->inode->i_blkbits;
2283	ssize_t io_end_size = 0;
2284	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2285
2286	bh = head = page_buffers(page);
2287	do {
2288		if (lblk < mpd->map.m_lblk)
2289			continue;
2290		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2291			/*
2292			 * Buffer after end of mapped extent.
2293			 * Find next buffer in the page to map.
2294			 */
2295			mpd->map.m_len = 0;
2296			mpd->map.m_flags = 0;
2297			io_end_vec->size += io_end_size;
2298			io_end_size = 0;
2299
2300			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2301			if (err > 0)
2302				err = 0;
2303			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2304				io_end_vec = ext4_alloc_io_end_vec(io_end);
2305				if (IS_ERR(io_end_vec)) {
2306					err = PTR_ERR(io_end_vec);
2307					goto out;
2308				}
2309				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2310			}
2311			*map_bh = true;
2312			goto out;
2313		}
2314		if (buffer_delay(bh)) {
2315			clear_buffer_delay(bh);
2316			bh->b_blocknr = pblock++;
2317		}
2318		clear_buffer_unwritten(bh);
2319		io_end_size += (1 << blkbits);
2320	} while (lblk++, (bh = bh->b_this_page) != head);
2321
2322	io_end_vec->size += io_end_size;
2323	io_end_size = 0;
2324	*map_bh = false;
2325out:
2326	*m_lblk = lblk;
2327	*m_pblk = pblock;
2328	return err;
2329}
2330
2331/*
2332 * mpage_map_buffers - update buffers corresponding to changed extent and
2333 *		       submit fully mapped pages for IO
2334 *
2335 * @mpd - description of extent to map, on return next extent to map
2336 *
2337 * Scan buffers corresponding to changed extent (we expect corresponding pages
2338 * to be already locked) and update buffer state according to new extent state.
2339 * We map delalloc buffers to their physical location, clear unwritten bits,
2340 * and mark buffers as uninit when we perform writes to unwritten extents
2341 * and do extent conversion after IO is finished. If the last page is not fully
2342 * mapped, we update @map to the next extent in the last page that needs
2343 * mapping. Otherwise we submit the page for IO.
2344 */
2345static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2346{
2347	struct pagevec pvec;
2348	int nr_pages, i;
2349	struct inode *inode = mpd->inode;
2350	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2351	pgoff_t start, end;
2352	ext4_lblk_t lblk;
2353	ext4_fsblk_t pblock;
2354	int err;
2355	bool map_bh = false;
2356
2357	start = mpd->map.m_lblk >> bpp_bits;
2358	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2359	lblk = start << bpp_bits;
2360	pblock = mpd->map.m_pblk;
2361
2362	pagevec_init(&pvec);
2363	while (start <= end) {
2364		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2365						&start, end);
2366		if (nr_pages == 0)
2367			break;
2368		for (i = 0; i < nr_pages; i++) {
2369			struct page *page = pvec.pages[i];
2370
2371			err = mpage_process_page(mpd, page, &lblk, &pblock,
2372						 &map_bh);
2373			/*
2374			 * If map_bh is true, means page may require further bh
2375			 * mapping, or maybe the page was submitted for IO.
2376			 * So we return to call further extent mapping.
2377			 */
2378			if (err < 0 || map_bh)
2379				goto out;
2380			/* Page fully mapped - let IO run! */
2381			err = mpage_submit_page(mpd, page);
2382			if (err < 0)
2383				goto out;
2384		}
2385		pagevec_release(&pvec);
2386	}
2387	/* Extent fully mapped and matches with page boundary. We are done. */
2388	mpd->map.m_len = 0;
2389	mpd->map.m_flags = 0;
2390	return 0;
2391out:
2392	pagevec_release(&pvec);
2393	return err;
2394}
2395
2396static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2397{
2398	struct inode *inode = mpd->inode;
2399	struct ext4_map_blocks *map = &mpd->map;
2400	int get_blocks_flags;
2401	int err, dioread_nolock;
2402
2403	trace_ext4_da_write_pages_extent(inode, map);
2404	/*
2405	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2406	 * to convert an unwritten extent to be initialized (in the case
2407	 * where we have written into one or more preallocated blocks).  It is
2408	 * possible that we're going to need more metadata blocks than
2409	 * previously reserved. However we must not fail because we're in
2410	 * writeback and there is nothing we can do about it so it might result
2411	 * in data loss.  So use reserved blocks to allocate metadata if
2412	 * possible.
2413	 *
2414	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2415	 * the blocks in question are delalloc blocks.  This indicates
2416	 * that the blocks and quotas has already been checked when
2417	 * the data was copied into the page cache.
2418	 */
2419	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2420			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2421			   EXT4_GET_BLOCKS_IO_SUBMIT;
2422	dioread_nolock = ext4_should_dioread_nolock(inode);
2423	if (dioread_nolock)
2424		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2425	if (map->m_flags & BIT(BH_Delay))
2426		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2427
2428	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2429	if (err < 0)
2430		return err;
2431	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2432		if (!mpd->io_submit.io_end->handle &&
2433		    ext4_handle_valid(handle)) {
2434			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2435			handle->h_rsv_handle = NULL;
2436		}
2437		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2438	}
2439
2440	BUG_ON(map->m_len == 0);
2441	return 0;
2442}
2443
2444/*
2445 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2446 *				 mpd->len and submit pages underlying it for IO
2447 *
2448 * @handle - handle for journal operations
2449 * @mpd - extent to map
2450 * @give_up_on_write - we set this to true iff there is a fatal error and there
2451 *                     is no hope of writing the data. The caller should discard
2452 *                     dirty pages to avoid infinite loops.
2453 *
2454 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2455 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2456 * them to initialized or split the described range from larger unwritten
2457 * extent. Note that we need not map all the described range since allocation
2458 * can return less blocks or the range is covered by more unwritten extents. We
2459 * cannot map more because we are limited by reserved transaction credits. On
2460 * the other hand we always make sure that the last touched page is fully
2461 * mapped so that it can be written out (and thus forward progress is
2462 * guaranteed). After mapping we submit all mapped pages for IO.
2463 */
2464static int mpage_map_and_submit_extent(handle_t *handle,
2465				       struct mpage_da_data *mpd,
2466				       bool *give_up_on_write)
2467{
2468	struct inode *inode = mpd->inode;
2469	struct ext4_map_blocks *map = &mpd->map;
2470	int err;
2471	loff_t disksize;
2472	int progress = 0;
2473	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2474	struct ext4_io_end_vec *io_end_vec;
2475
2476	io_end_vec = ext4_alloc_io_end_vec(io_end);
2477	if (IS_ERR(io_end_vec))
2478		return PTR_ERR(io_end_vec);
2479	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2480	do {
2481		err = mpage_map_one_extent(handle, mpd);
2482		if (err < 0) {
2483			struct super_block *sb = inode->i_sb;
2484
2485			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2486			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2487				goto invalidate_dirty_pages;
2488			/*
2489			 * Let the uper layers retry transient errors.
2490			 * In the case of ENOSPC, if ext4_count_free_blocks()
2491			 * is non-zero, a commit should free up blocks.
2492			 */
2493			if ((err == -ENOMEM) ||
2494			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2495				if (progress)
2496					goto update_disksize;
2497				return err;
2498			}
2499			ext4_msg(sb, KERN_CRIT,
2500				 "Delayed block allocation failed for "
2501				 "inode %lu at logical offset %llu with"
2502				 " max blocks %u with error %d",
2503				 inode->i_ino,
2504				 (unsigned long long)map->m_lblk,
2505				 (unsigned)map->m_len, -err);
2506			ext4_msg(sb, KERN_CRIT,
2507				 "This should not happen!! Data will "
2508				 "be lost\n");
2509			if (err == -ENOSPC)
2510				ext4_print_free_blocks(inode);
2511		invalidate_dirty_pages:
2512			*give_up_on_write = true;
2513			return err;
2514		}
2515		progress = 1;
2516		/*
2517		 * Update buffer state, submit mapped pages, and get us new
2518		 * extent to map
2519		 */
2520		err = mpage_map_and_submit_buffers(mpd);
2521		if (err < 0)
2522			goto update_disksize;
2523	} while (map->m_len);
2524
2525update_disksize:
2526	/*
2527	 * Update on-disk size after IO is submitted.  Races with
2528	 * truncate are avoided by checking i_size under i_data_sem.
2529	 */
2530	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2531	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2532		int err2;
2533		loff_t i_size;
2534
2535		down_write(&EXT4_I(inode)->i_data_sem);
2536		i_size = i_size_read(inode);
2537		if (disksize > i_size)
2538			disksize = i_size;
2539		if (disksize > EXT4_I(inode)->i_disksize)
2540			EXT4_I(inode)->i_disksize = disksize;
2541		up_write(&EXT4_I(inode)->i_data_sem);
2542		err2 = ext4_mark_inode_dirty(handle, inode);
2543		if (err2) {
2544			ext4_error_err(inode->i_sb, -err2,
2545				       "Failed to mark inode %lu dirty",
2546				       inode->i_ino);
2547		}
2548		if (!err)
2549			err = err2;
2550	}
2551	return err;
2552}
2553
2554/*
2555 * Calculate the total number of credits to reserve for one writepages
2556 * iteration. This is called from ext4_writepages(). We map an extent of
2557 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2558 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2559 * bpp - 1 blocks in bpp different extents.
2560 */
2561static int ext4_da_writepages_trans_blocks(struct inode *inode)
2562{
2563	int bpp = ext4_journal_blocks_per_page(inode);
2564
2565	return ext4_meta_trans_blocks(inode,
2566				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2567}
2568
2569/*
2570 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2571 * 				 and underlying extent to map
2572 *
2573 * @mpd - where to look for pages
2574 *
2575 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2576 * IO immediately. When we find a page which isn't mapped we start accumulating
2577 * extent of buffers underlying these pages that needs mapping (formed by
2578 * either delayed or unwritten buffers). We also lock the pages containing
2579 * these buffers. The extent found is returned in @mpd structure (starting at
2580 * mpd->lblk with length mpd->len blocks).
2581 *
2582 * Note that this function can attach bios to one io_end structure which are
2583 * neither logically nor physically contiguous. Although it may seem as an
2584 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2585 * case as we need to track IO to all buffers underlying a page in one io_end.
2586 */
2587static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2588{
2589	struct address_space *mapping = mpd->inode->i_mapping;
2590	struct pagevec pvec;
2591	unsigned int nr_pages;
2592	long left = mpd->wbc->nr_to_write;
2593	pgoff_t index = mpd->first_page;
2594	pgoff_t end = mpd->last_page;
2595	xa_mark_t tag;
2596	int i, err = 0;
2597	int blkbits = mpd->inode->i_blkbits;
2598	ext4_lblk_t lblk;
2599	struct buffer_head *head;
2600
2601	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2602		tag = PAGECACHE_TAG_TOWRITE;
2603	else
2604		tag = PAGECACHE_TAG_DIRTY;
2605
2606	pagevec_init(&pvec);
2607	mpd->map.m_len = 0;
2608	mpd->next_page = index;
2609	while (index <= end) {
2610		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2611				tag);
2612		if (nr_pages == 0)
2613			break;
2614
2615		for (i = 0; i < nr_pages; i++) {
2616			struct page *page = pvec.pages[i];
2617
2618			/*
2619			 * Accumulated enough dirty pages? This doesn't apply
2620			 * to WB_SYNC_ALL mode. For integrity sync we have to
2621			 * keep going because someone may be concurrently
2622			 * dirtying pages, and we might have synced a lot of
2623			 * newly appeared dirty pages, but have not synced all
2624			 * of the old dirty pages.
2625			 */
2626			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2627				goto out;
2628
2629			/* If we can't merge this page, we are done. */
2630			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2631				goto out;
2632
2633			lock_page(page);
2634			/*
2635			 * If the page is no longer dirty, or its mapping no
2636			 * longer corresponds to inode we are writing (which
2637			 * means it has been truncated or invalidated), or the
2638			 * page is already under writeback and we are not doing
2639			 * a data integrity writeback, skip the page
2640			 */
2641			if (!PageDirty(page) ||
2642			    (PageWriteback(page) &&
2643			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2644			    unlikely(page->mapping != mapping)) {
2645				unlock_page(page);
2646				continue;
2647			}
2648
2649			if (WARN_ON(!page_has_buffers(page))) {
2650				cancel_page_dirty_status(page);
2651				unlock_page(page);
2652				continue;
2653			}
2654
2655			wait_on_page_writeback(page);
2656			BUG_ON(PageWriteback(page));
2657
2658			/*
2659			 * Should never happen but for buggy code in
2660			 * other subsystems that call
2661			 * set_page_dirty() without properly warning
2662			 * the file system first.  See [1] for more
2663			 * information.
2664			 *
2665			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2666			 */
2667			if (!page_has_buffers(page)) {
2668				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2669				ClearPageDirty(page);
2670				unlock_page(page);
2671				continue;
2672			}
2673
2674			if (mpd->map.m_len == 0)
2675				mpd->first_page = page->index;
2676			mpd->next_page = page->index + 1;
2677			/* Add all dirty buffers to mpd */
2678			lblk = ((ext4_lblk_t)page->index) <<
2679				(PAGE_SHIFT - blkbits);
2680			head = page_buffers(page);
2681			err = mpage_process_page_bufs(mpd, head, head, lblk);
2682			if (err <= 0)
2683				goto out;
2684			err = 0;
2685			left--;
2686		}
2687		pagevec_release(&pvec);
2688		cond_resched();
2689	}
2690	mpd->scanned_until_end = 1;
2691	return 0;
2692out:
2693	pagevec_release(&pvec);
2694	return err;
2695}
2696
2697static int ext4_writepages(struct address_space *mapping,
2698			   struct writeback_control *wbc)
2699{
2700	pgoff_t	writeback_index = 0;
2701	long nr_to_write = wbc->nr_to_write;
2702	int range_whole = 0;
2703	int cycled = 1;
2704	handle_t *handle = NULL;
2705	struct mpage_da_data mpd;
2706	struct inode *inode = mapping->host;
2707	int needed_blocks, rsv_blocks = 0, ret = 0;
2708	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2709	struct blk_plug plug;
2710	bool give_up_on_write = false;
2711
2712	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2713		return -EIO;
2714
2715	percpu_down_read(&sbi->s_writepages_rwsem);
2716	trace_ext4_writepages(inode, wbc);
2717
2718	/*
2719	 * No pages to write? This is mainly a kludge to avoid starting
2720	 * a transaction for special inodes like journal inode on last iput()
2721	 * because that could violate lock ordering on umount
2722	 */
2723	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2724		goto out_writepages;
2725
2726	if (ext4_should_journal_data(inode)) {
2727		ret = generic_writepages(mapping, wbc);
2728		goto out_writepages;
2729	}
2730
2731	/*
2732	 * If the filesystem has aborted, it is read-only, so return
2733	 * right away instead of dumping stack traces later on that
2734	 * will obscure the real source of the problem.  We test
2735	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2736	 * the latter could be true if the filesystem is mounted
2737	 * read-only, and in that case, ext4_writepages should
2738	 * *never* be called, so if that ever happens, we would want
2739	 * the stack trace.
2740	 */
2741	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2742		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2743		ret = -EROFS;
2744		goto out_writepages;
2745	}
2746
2747	/*
2748	 * If we have inline data and arrive here, it means that
2749	 * we will soon create the block for the 1st page, so
2750	 * we'd better clear the inline data here.
2751	 */
2752	if (ext4_has_inline_data(inode)) {
2753		/* Just inode will be modified... */
2754		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2755		if (IS_ERR(handle)) {
2756			ret = PTR_ERR(handle);
2757			goto out_writepages;
2758		}
2759		BUG_ON(ext4_test_inode_state(inode,
2760				EXT4_STATE_MAY_INLINE_DATA));
2761		ext4_destroy_inline_data(handle, inode);
2762		ext4_journal_stop(handle);
2763	}
2764
2765	if (ext4_should_dioread_nolock(inode)) {
2766		/*
2767		 * We may need to convert up to one extent per block in
2768		 * the page and we may dirty the inode.
2769		 */
2770		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2771						PAGE_SIZE >> inode->i_blkbits);
2772	}
2773
2774	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2775		range_whole = 1;
2776
2777	if (wbc->range_cyclic) {
2778		writeback_index = mapping->writeback_index;
2779		if (writeback_index)
2780			cycled = 0;
2781		mpd.first_page = writeback_index;
2782		mpd.last_page = -1;
2783	} else {
2784		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2785		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2786	}
2787
2788	mpd.inode = inode;
2789	mpd.wbc = wbc;
2790	ext4_io_submit_init(&mpd.io_submit, wbc);
2791retry:
2792	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2793		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2794	blk_start_plug(&plug);
2795
2796	/*
2797	 * First writeback pages that don't need mapping - we can avoid
2798	 * starting a transaction unnecessarily and also avoid being blocked
2799	 * in the block layer on device congestion while having transaction
2800	 * started.
2801	 */
2802	mpd.do_map = 0;
2803	mpd.scanned_until_end = 0;
2804	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2805	if (!mpd.io_submit.io_end) {
2806		ret = -ENOMEM;
2807		goto unplug;
2808	}
2809	ret = mpage_prepare_extent_to_map(&mpd);
2810	/* Unlock pages we didn't use */
2811	mpage_release_unused_pages(&mpd, false);
2812	/* Submit prepared bio */
2813	ext4_io_submit(&mpd.io_submit);
2814	ext4_put_io_end_defer(mpd.io_submit.io_end);
2815	mpd.io_submit.io_end = NULL;
2816	if (ret < 0)
2817		goto unplug;
2818
2819	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2820		/* For each extent of pages we use new io_end */
2821		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2822		if (!mpd.io_submit.io_end) {
2823			ret = -ENOMEM;
2824			break;
2825		}
2826
2827		/*
2828		 * We have two constraints: We find one extent to map and we
2829		 * must always write out whole page (makes a difference when
2830		 * blocksize < pagesize) so that we don't block on IO when we
2831		 * try to write out the rest of the page. Journalled mode is
2832		 * not supported by delalloc.
2833		 */
2834		BUG_ON(ext4_should_journal_data(inode));
2835		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2836
2837		/* start a new transaction */
2838		handle = ext4_journal_start_with_reserve(inode,
2839				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2840		if (IS_ERR(handle)) {
2841			ret = PTR_ERR(handle);
2842			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2843			       "%ld pages, ino %lu; err %d", __func__,
2844				wbc->nr_to_write, inode->i_ino, ret);
2845			/* Release allocated io_end */
2846			ext4_put_io_end(mpd.io_submit.io_end);
2847			mpd.io_submit.io_end = NULL;
2848			break;
2849		}
2850		mpd.do_map = 1;
2851
2852		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2853		ret = mpage_prepare_extent_to_map(&mpd);
2854		if (!ret && mpd.map.m_len)
2855			ret = mpage_map_and_submit_extent(handle, &mpd,
2856					&give_up_on_write);
2857		/*
2858		 * Caution: If the handle is synchronous,
2859		 * ext4_journal_stop() can wait for transaction commit
2860		 * to finish which may depend on writeback of pages to
2861		 * complete or on page lock to be released.  In that
2862		 * case, we have to wait until after we have
2863		 * submitted all the IO, released page locks we hold,
2864		 * and dropped io_end reference (for extent conversion
2865		 * to be able to complete) before stopping the handle.
2866		 */
2867		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2868			ext4_journal_stop(handle);
2869			handle = NULL;
2870			mpd.do_map = 0;
2871		}
2872		/* Unlock pages we didn't use */
2873		mpage_release_unused_pages(&mpd, give_up_on_write);
2874		/* Submit prepared bio */
2875		ext4_io_submit(&mpd.io_submit);
2876
2877		/*
2878		 * Drop our io_end reference we got from init. We have
2879		 * to be careful and use deferred io_end finishing if
2880		 * we are still holding the transaction as we can
2881		 * release the last reference to io_end which may end
2882		 * up doing unwritten extent conversion.
2883		 */
2884		if (handle) {
2885			ext4_put_io_end_defer(mpd.io_submit.io_end);
2886			ext4_journal_stop(handle);
2887		} else
2888			ext4_put_io_end(mpd.io_submit.io_end);
2889		mpd.io_submit.io_end = NULL;
2890
2891		if (ret == -ENOSPC && sbi->s_journal) {
2892			/*
2893			 * Commit the transaction which would
2894			 * free blocks released in the transaction
2895			 * and try again
2896			 */
2897			jbd2_journal_force_commit_nested(sbi->s_journal);
2898			ret = 0;
2899			continue;
2900		}
2901		/* Fatal error - ENOMEM, EIO... */
2902		if (ret)
2903			break;
2904	}
2905unplug:
2906	blk_finish_plug(&plug);
2907	if (!ret && !cycled && wbc->nr_to_write > 0) {
2908		cycled = 1;
2909		mpd.last_page = writeback_index - 1;
2910		mpd.first_page = 0;
2911		goto retry;
2912	}
2913
2914	/* Update index */
2915	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2916		/*
2917		 * Set the writeback_index so that range_cyclic
2918		 * mode will write it back later
2919		 */
2920		mapping->writeback_index = mpd.first_page;
2921
2922out_writepages:
2923	trace_ext4_writepages_result(inode, wbc, ret,
2924				     nr_to_write - wbc->nr_to_write);
2925	percpu_up_read(&sbi->s_writepages_rwsem);
2926	return ret;
2927}
2928
2929static int ext4_dax_writepages(struct address_space *mapping,
2930			       struct writeback_control *wbc)
2931{
2932	int ret;
2933	long nr_to_write = wbc->nr_to_write;
2934	struct inode *inode = mapping->host;
2935	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2936
2937	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2938		return -EIO;
2939
2940	percpu_down_read(&sbi->s_writepages_rwsem);
2941	trace_ext4_writepages(inode, wbc);
2942
2943	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2944	trace_ext4_writepages_result(inode, wbc, ret,
2945				     nr_to_write - wbc->nr_to_write);
2946	percpu_up_read(&sbi->s_writepages_rwsem);
2947	return ret;
2948}
2949
2950static int ext4_nonda_switch(struct super_block *sb)
2951{
2952	s64 free_clusters, dirty_clusters;
2953	struct ext4_sb_info *sbi = EXT4_SB(sb);
2954
2955	/*
2956	 * switch to non delalloc mode if we are running low
2957	 * on free block. The free block accounting via percpu
2958	 * counters can get slightly wrong with percpu_counter_batch getting
2959	 * accumulated on each CPU without updating global counters
2960	 * Delalloc need an accurate free block accounting. So switch
2961	 * to non delalloc when we are near to error range.
2962	 */
2963	free_clusters =
2964		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2965	dirty_clusters =
2966		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2967	/*
2968	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2969	 */
2970	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2971		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2972
2973	if (2 * free_clusters < 3 * dirty_clusters ||
2974	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2975		/*
2976		 * free block count is less than 150% of dirty blocks
2977		 * or free blocks is less than watermark
2978		 */
2979		return 1;
2980	}
2981	return 0;
2982}
2983
2984static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2985			       loff_t pos, unsigned len, unsigned flags,
2986			       struct page **pagep, void **fsdata)
2987{
2988	int ret, retries = 0;
2989	struct page *page;
2990	pgoff_t index;
2991	struct inode *inode = mapping->host;
2992
2993	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2994		return -EIO;
2995
2996	index = pos >> PAGE_SHIFT;
2997
2998	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2999	    ext4_verity_in_progress(inode)) {
3000		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3001		return ext4_write_begin(file, mapping, pos,
3002					len, flags, pagep, fsdata);
3003	}
3004	*fsdata = (void *)0;
3005	trace_ext4_da_write_begin(inode, pos, len, flags);
3006
3007	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3008		ret = ext4_da_write_inline_data_begin(mapping, inode,
3009						      pos, len, flags,
3010						      pagep, fsdata);
3011		if (ret < 0)
3012			return ret;
3013		if (ret == 1)
3014			return 0;
3015	}
3016
3017retry:
3018	page = grab_cache_page_write_begin(mapping, index, flags);
3019	if (!page)
3020		return -ENOMEM;
3021
3022	/* In case writeback began while the page was unlocked */
3023	wait_for_stable_page(page);
3024
3025#ifdef CONFIG_FS_ENCRYPTION
3026	ret = ext4_block_write_begin(page, pos, len,
3027				     ext4_da_get_block_prep);
3028#else
3029	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3030#endif
3031	if (ret < 0) {
3032		unlock_page(page);
3033		put_page(page);
3034		/*
3035		 * block_write_begin may have instantiated a few blocks
3036		 * outside i_size.  Trim these off again. Don't need
3037		 * i_size_read because we hold inode lock.
3038		 */
3039		if (pos + len > inode->i_size)
3040			ext4_truncate_failed_write(inode);
3041
3042		if (ret == -ENOSPC &&
3043		    ext4_should_retry_alloc(inode->i_sb, &retries))
3044			goto retry;
3045		return ret;
3046	}
3047
3048	*pagep = page;
3049	return ret;
3050}
3051
3052/*
3053 * Check if we should update i_disksize
3054 * when write to the end of file but not require block allocation
3055 */
3056static int ext4_da_should_update_i_disksize(struct page *page,
3057					    unsigned long offset)
3058{
3059	struct buffer_head *bh;
3060	struct inode *inode = page->mapping->host;
3061	unsigned int idx;
3062	int i;
3063
3064	bh = page_buffers(page);
3065	idx = offset >> inode->i_blkbits;
3066
3067	for (i = 0; i < idx; i++)
3068		bh = bh->b_this_page;
3069
3070	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3071		return 0;
3072	return 1;
3073}
3074
3075static int ext4_da_write_end(struct file *file,
3076			     struct address_space *mapping,
3077			     loff_t pos, unsigned len, unsigned copied,
3078			     struct page *page, void *fsdata)
3079{
3080	struct inode *inode = mapping->host;
3081	loff_t new_i_size;
3082	unsigned long start, end;
3083	int write_mode = (int)(unsigned long)fsdata;
3084
3085	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3086		return ext4_write_end(file, mapping, pos,
3087				      len, copied, page, fsdata);
3088
3089	trace_ext4_da_write_end(inode, pos, len, copied);
3090
3091	if (write_mode != CONVERT_INLINE_DATA &&
3092	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3093	    ext4_has_inline_data(inode))
3094		return ext4_write_inline_data_end(inode, pos, len, copied, page);
3095
3096	start = pos & (PAGE_SIZE - 1);
3097	end = start + copied - 1;
3098
3099	/*
3100	 * Since we are holding inode lock, we are sure i_disksize <=
3101	 * i_size. We also know that if i_disksize < i_size, there are
3102	 * delalloc writes pending in the range upto i_size. If the end of
3103	 * the current write is <= i_size, there's no need to touch
3104	 * i_disksize since writeback will push i_disksize upto i_size
3105	 * eventually. If the end of the current write is > i_size and
3106	 * inside an allocated block (ext4_da_should_update_i_disksize()
3107	 * check), we need to update i_disksize here as neither
3108	 * ext4_writepage() nor certain ext4_writepages() paths not
3109	 * allocating blocks update i_disksize.
3110	 *
3111	 * Note that we defer inode dirtying to generic_write_end() /
3112	 * ext4_da_write_inline_data_end().
3113	 */
3114	new_i_size = pos + copied;
3115	if (copied && new_i_size > inode->i_size &&
3116	    ext4_da_should_update_i_disksize(page, end))
3117		ext4_update_i_disksize(inode, new_i_size);
3118
3119	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3120}
3121
3122/*
3123 * Force all delayed allocation blocks to be allocated for a given inode.
3124 */
3125int ext4_alloc_da_blocks(struct inode *inode)
3126{
3127	trace_ext4_alloc_da_blocks(inode);
3128
3129	if (!EXT4_I(inode)->i_reserved_data_blocks)
3130		return 0;
3131
3132	/*
3133	 * We do something simple for now.  The filemap_flush() will
3134	 * also start triggering a write of the data blocks, which is
3135	 * not strictly speaking necessary (and for users of
3136	 * laptop_mode, not even desirable).  However, to do otherwise
3137	 * would require replicating code paths in:
3138	 *
3139	 * ext4_writepages() ->
3140	 *    write_cache_pages() ---> (via passed in callback function)
3141	 *        __mpage_da_writepage() -->
3142	 *           mpage_add_bh_to_extent()
3143	 *           mpage_da_map_blocks()
3144	 *
3145	 * The problem is that write_cache_pages(), located in
3146	 * mm/page-writeback.c, marks pages clean in preparation for
3147	 * doing I/O, which is not desirable if we're not planning on
3148	 * doing I/O at all.
3149	 *
3150	 * We could call write_cache_pages(), and then redirty all of
3151	 * the pages by calling redirty_page_for_writepage() but that
3152	 * would be ugly in the extreme.  So instead we would need to
3153	 * replicate parts of the code in the above functions,
3154	 * simplifying them because we wouldn't actually intend to
3155	 * write out the pages, but rather only collect contiguous
3156	 * logical block extents, call the multi-block allocator, and
3157	 * then update the buffer heads with the block allocations.
3158	 *
3159	 * For now, though, we'll cheat by calling filemap_flush(),
3160	 * which will map the blocks, and start the I/O, but not
3161	 * actually wait for the I/O to complete.
3162	 */
3163	return filemap_flush(inode->i_mapping);
3164}
3165
3166/*
3167 * bmap() is special.  It gets used by applications such as lilo and by
3168 * the swapper to find the on-disk block of a specific piece of data.
3169 *
3170 * Naturally, this is dangerous if the block concerned is still in the
3171 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3172 * filesystem and enables swap, then they may get a nasty shock when the
3173 * data getting swapped to that swapfile suddenly gets overwritten by
3174 * the original zero's written out previously to the journal and
3175 * awaiting writeback in the kernel's buffer cache.
3176 *
3177 * So, if we see any bmap calls here on a modified, data-journaled file,
3178 * take extra steps to flush any blocks which might be in the cache.
3179 */
3180static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3181{
3182	struct inode *inode = mapping->host;
3183	journal_t *journal;
3184	sector_t ret = 0;
3185	int err;
3186
3187	inode_lock_shared(inode);
3188	/*
3189	 * We can get here for an inline file via the FIBMAP ioctl
3190	 */
3191	if (ext4_has_inline_data(inode))
3192		goto out;
3193
3194	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3195			test_opt(inode->i_sb, DELALLOC)) {
3196		/*
3197		 * With delalloc we want to sync the file
3198		 * so that we can make sure we allocate
3199		 * blocks for file
3200		 */
3201		filemap_write_and_wait(mapping);
3202	}
3203
3204	if (EXT4_JOURNAL(inode) &&
3205	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3206		/*
3207		 * This is a REALLY heavyweight approach, but the use of
3208		 * bmap on dirty files is expected to be extremely rare:
3209		 * only if we run lilo or swapon on a freshly made file
3210		 * do we expect this to happen.
3211		 *
3212		 * (bmap requires CAP_SYS_RAWIO so this does not
3213		 * represent an unprivileged user DOS attack --- we'd be
3214		 * in trouble if mortal users could trigger this path at
3215		 * will.)
3216		 *
3217		 * NB. EXT4_STATE_JDATA is not set on files other than
3218		 * regular files.  If somebody wants to bmap a directory
3219		 * or symlink and gets confused because the buffer
3220		 * hasn't yet been flushed to disk, they deserve
3221		 * everything they get.
3222		 */
3223
3224		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3225		journal = EXT4_JOURNAL(inode);
3226		jbd2_journal_lock_updates(journal);
3227		err = jbd2_journal_flush(journal);
3228		jbd2_journal_unlock_updates(journal);
3229
3230		if (err)
3231			goto out;
3232	}
3233
3234	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3235
3236out:
3237	inode_unlock_shared(inode);
3238	return ret;
3239}
3240
3241static int ext4_readpage(struct file *file, struct page *page)
3242{
3243	int ret = -EAGAIN;
3244	struct inode *inode = page->mapping->host;
3245
3246	trace_ext4_readpage(page);
3247
3248	if (ext4_has_inline_data(inode))
3249		ret = ext4_readpage_inline(inode, page);
3250
3251	if (ret == -EAGAIN)
3252		return ext4_mpage_readpages(inode, NULL, page);
3253
3254	return ret;
3255}
3256
3257static void ext4_readahead(struct readahead_control *rac)
3258{
3259	struct inode *inode = rac->mapping->host;
3260
3261	/* If the file has inline data, no need to do readahead. */
3262	if (ext4_has_inline_data(inode))
3263		return;
3264
3265	ext4_mpage_readpages(inode, rac, NULL);
3266}
3267
3268static void ext4_invalidatepage(struct page *page, unsigned int offset,
3269				unsigned int length)
3270{
3271	trace_ext4_invalidatepage(page, offset, length);
3272
3273	/* No journalling happens on data buffers when this function is used */
3274	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3275
3276	block_invalidatepage(page, offset, length);
3277}
3278
3279static int __ext4_journalled_invalidatepage(struct page *page,
3280					    unsigned int offset,
3281					    unsigned int length)
3282{
3283	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3284
3285	trace_ext4_journalled_invalidatepage(page, offset, length);
3286
3287	/*
3288	 * If it's a full truncate we just forget about the pending dirtying
3289	 */
3290	if (offset == 0 && length == PAGE_SIZE)
3291		ClearPageChecked(page);
3292
3293	return jbd2_journal_invalidatepage(journal, page, offset, length);
3294}
3295
3296/* Wrapper for aops... */
3297static void ext4_journalled_invalidatepage(struct page *page,
3298					   unsigned int offset,
3299					   unsigned int length)
3300{
3301	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3302}
3303
3304static int ext4_releasepage(struct page *page, gfp_t wait)
3305{
3306	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3307
3308	trace_ext4_releasepage(page);
3309
3310	/* Page has dirty journalled data -> cannot release */
3311	if (PageChecked(page))
3312		return 0;
3313	if (journal)
3314		return jbd2_journal_try_to_free_buffers(journal, page);
3315	else
3316		return try_to_free_buffers(page);
3317}
3318
3319static bool ext4_inode_datasync_dirty(struct inode *inode)
3320{
3321	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3322
3323	if (journal) {
3324		if (jbd2_transaction_committed(journal,
3325			EXT4_I(inode)->i_datasync_tid))
3326			return false;
3327		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3328			return !list_empty(&EXT4_I(inode)->i_fc_list);
3329		return true;
3330	}
3331
3332	/* Any metadata buffers to write? */
3333	if (!list_empty(&inode->i_mapping->private_list))
3334		return true;
3335	return inode->i_state & I_DIRTY_DATASYNC;
3336}
3337
3338static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3339			   struct ext4_map_blocks *map, loff_t offset,
3340			   loff_t length)
3341{
3342	u8 blkbits = inode->i_blkbits;
3343
3344	/*
3345	 * Writes that span EOF might trigger an I/O size update on completion,
3346	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3347	 * there is no other metadata changes being made or are pending.
3348	 */
3349	iomap->flags = 0;
3350	if (ext4_inode_datasync_dirty(inode) ||
3351	    offset + length > i_size_read(inode))
3352		iomap->flags |= IOMAP_F_DIRTY;
3353
3354	if (map->m_flags & EXT4_MAP_NEW)
3355		iomap->flags |= IOMAP_F_NEW;
3356
3357	iomap->bdev = inode->i_sb->s_bdev;
3358	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3359	iomap->offset = (u64) map->m_lblk << blkbits;
3360	iomap->length = (u64) map->m_len << blkbits;
3361
3362	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3363	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3364		iomap->flags |= IOMAP_F_MERGED;
3365
3366	/*
3367	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3368	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3369	 * set. In order for any allocated unwritten extents to be converted
3370	 * into written extents correctly within the ->end_io() handler, we
3371	 * need to ensure that the iomap->type is set appropriately. Hence, the
3372	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3373	 * been set first.
3374	 */
3375	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3376		iomap->type = IOMAP_UNWRITTEN;
3377		iomap->addr = (u64) map->m_pblk << blkbits;
3378	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3379		iomap->type = IOMAP_MAPPED;
3380		iomap->addr = (u64) map->m_pblk << blkbits;
3381	} else {
3382		iomap->type = IOMAP_HOLE;
3383		iomap->addr = IOMAP_NULL_ADDR;
3384	}
3385}
3386
3387static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3388			    unsigned int flags)
3389{
3390	handle_t *handle;
3391	u8 blkbits = inode->i_blkbits;
3392	int ret, dio_credits, m_flags = 0, retries = 0;
3393
3394	/*
3395	 * Trim the mapping request to the maximum value that we can map at
3396	 * once for direct I/O.
3397	 */
3398	if (map->m_len > DIO_MAX_BLOCKS)
3399		map->m_len = DIO_MAX_BLOCKS;
3400	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3401
3402retry:
3403	/*
3404	 * Either we allocate blocks and then don't get an unwritten extent, so
3405	 * in that case we have reserved enough credits. Or, the blocks are
3406	 * already allocated and unwritten. In that case, the extent conversion
3407	 * fits into the credits as well.
3408	 */
3409	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3410	if (IS_ERR(handle))
3411		return PTR_ERR(handle);
3412
3413	/*
3414	 * DAX and direct I/O are the only two operations that are currently
3415	 * supported with IOMAP_WRITE.
3416	 */
3417	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3418	if (IS_DAX(inode))
3419		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3420	/*
3421	 * We use i_size instead of i_disksize here because delalloc writeback
3422	 * can complete at any point during the I/O and subsequently push the
3423	 * i_disksize out to i_size. This could be beyond where direct I/O is
3424	 * happening and thus expose allocated blocks to direct I/O reads.
3425	 */
3426	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3427		m_flags = EXT4_GET_BLOCKS_CREATE;
3428	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3429		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3430
3431	ret = ext4_map_blocks(handle, inode, map, m_flags);
3432
3433	/*
3434	 * We cannot fill holes in indirect tree based inodes as that could
3435	 * expose stale data in the case of a crash. Use the magic error code
3436	 * to fallback to buffered I/O.
3437	 */
3438	if (!m_flags && !ret)
3439		ret = -ENOTBLK;
3440
3441	ext4_journal_stop(handle);
3442	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3443		goto retry;
3444
3445	return ret;
3446}
3447
3448
3449static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3450		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3451{
3452	int ret;
3453	struct ext4_map_blocks map;
3454	u8 blkbits = inode->i_blkbits;
3455
3456	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3457		return -EINVAL;
3458
3459	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3460		return -ERANGE;
3461
3462	/*
3463	 * Calculate the first and last logical blocks respectively.
3464	 */
3465	map.m_lblk = offset >> blkbits;
3466	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3467			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3468
3469	if (flags & IOMAP_WRITE) {
3470		/*
3471		 * We check here if the blocks are already allocated, then we
3472		 * don't need to start a journal txn and we can directly return
3473		 * the mapping information. This could boost performance
3474		 * especially in multi-threaded overwrite requests.
3475		 */
3476		if (offset + length <= i_size_read(inode)) {
3477			ret = ext4_map_blocks(NULL, inode, &map, 0);
3478			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3479				goto out;
3480		}
3481		ret = ext4_iomap_alloc(inode, &map, flags);
3482	} else {
3483		ret = ext4_map_blocks(NULL, inode, &map, 0);
3484	}
3485
3486	if (ret < 0)
3487		return ret;
3488out:
3489	ext4_set_iomap(inode, iomap, &map, offset, length);
3490
3491	return 0;
3492}
3493
3494static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3495		loff_t length, unsigned flags, struct iomap *iomap,
3496		struct iomap *srcmap)
3497{
3498	int ret;
3499
3500	/*
3501	 * Even for writes we don't need to allocate blocks, so just pretend
3502	 * we are reading to save overhead of starting a transaction.
3503	 */
3504	flags &= ~IOMAP_WRITE;
3505	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3506	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3507	return ret;
3508}
3509
3510static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3511			  ssize_t written, unsigned flags, struct iomap *iomap)
3512{
3513	/*
3514	 * Check to see whether an error occurred while writing out the data to
3515	 * the allocated blocks. If so, return the magic error code so that we
3516	 * fallback to buffered I/O and attempt to complete the remainder of
3517	 * the I/O. Any blocks that may have been allocated in preparation for
3518	 * the direct I/O will be reused during buffered I/O.
3519	 */
3520	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3521		return -ENOTBLK;
3522
3523	return 0;
3524}
3525
3526const struct iomap_ops ext4_iomap_ops = {
3527	.iomap_begin		= ext4_iomap_begin,
3528	.iomap_end		= ext4_iomap_end,
3529};
3530
3531const struct iomap_ops ext4_iomap_overwrite_ops = {
3532	.iomap_begin		= ext4_iomap_overwrite_begin,
3533	.iomap_end		= ext4_iomap_end,
3534};
3535
3536static bool ext4_iomap_is_delalloc(struct inode *inode,
3537				   struct ext4_map_blocks *map)
3538{
3539	struct extent_status es;
3540	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3541
3542	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3543				  map->m_lblk, end, &es);
3544
3545	if (!es.es_len || es.es_lblk > end)
3546		return false;
3547
3548	if (es.es_lblk > map->m_lblk) {
3549		map->m_len = es.es_lblk - map->m_lblk;
3550		return false;
3551	}
3552
3553	offset = map->m_lblk - es.es_lblk;
3554	map->m_len = es.es_len - offset;
3555
3556	return true;
3557}
3558
3559static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3560				   loff_t length, unsigned int flags,
3561				   struct iomap *iomap, struct iomap *srcmap)
3562{
3563	int ret;
3564	bool delalloc = false;
3565	struct ext4_map_blocks map;
3566	u8 blkbits = inode->i_blkbits;
3567
3568	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3569		return -EINVAL;
3570
3571	if (ext4_has_inline_data(inode)) {
3572		ret = ext4_inline_data_iomap(inode, iomap);
3573		if (ret != -EAGAIN) {
3574			if (ret == 0 && offset >= iomap->length)
3575				ret = -ENOENT;
3576			return ret;
3577		}
3578	}
3579
3580	/*
3581	 * Calculate the first and last logical block respectively.
3582	 */
3583	map.m_lblk = offset >> blkbits;
3584	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3585			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3586
3587	/*
3588	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3589	 * So handle it here itself instead of querying ext4_map_blocks().
3590	 * Since ext4_map_blocks() will warn about it and will return
3591	 * -EIO error.
3592	 */
3593	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3594		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3595
3596		if (offset >= sbi->s_bitmap_maxbytes) {
3597			map.m_flags = 0;
3598			goto set_iomap;
3599		}
3600	}
3601
3602	ret = ext4_map_blocks(NULL, inode, &map, 0);
3603	if (ret < 0)
3604		return ret;
3605	if (ret == 0)
3606		delalloc = ext4_iomap_is_delalloc(inode, &map);
3607
3608set_iomap:
3609	ext4_set_iomap(inode, iomap, &map, offset, length);
3610	if (delalloc && iomap->type == IOMAP_HOLE)
3611		iomap->type = IOMAP_DELALLOC;
3612
3613	return 0;
3614}
3615
3616const struct iomap_ops ext4_iomap_report_ops = {
3617	.iomap_begin = ext4_iomap_begin_report,
3618};
3619
3620/*
3621 * Pages can be marked dirty completely asynchronously from ext4's journalling
3622 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3623 * much here because ->set_page_dirty is called under VFS locks.  The page is
3624 * not necessarily locked.
3625 *
3626 * We cannot just dirty the page and leave attached buffers clean, because the
3627 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3628 * or jbddirty because all the journalling code will explode.
3629 *
3630 * So what we do is to mark the page "pending dirty" and next time writepage
3631 * is called, propagate that into the buffers appropriately.
3632 */
3633static int ext4_journalled_set_page_dirty(struct page *page)
3634{
3635	SetPageChecked(page);
3636	return __set_page_dirty_nobuffers(page);
3637}
3638
3639static int ext4_set_page_dirty(struct page *page)
3640{
3641	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3642	WARN_ON_ONCE(!page_has_buffers(page));
3643	return __set_page_dirty_buffers(page);
3644}
3645
3646static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3647				    struct file *file, sector_t *span)
3648{
3649	return iomap_swapfile_activate(sis, file, span,
3650				       &ext4_iomap_report_ops);
3651}
3652
3653static const struct address_space_operations ext4_aops = {
3654	.readpage		= ext4_readpage,
3655	.readahead		= ext4_readahead,
3656	.writepage		= ext4_writepage,
3657	.writepages		= ext4_writepages,
3658	.write_begin		= ext4_write_begin,
3659	.write_end		= ext4_write_end,
3660	.set_page_dirty		= ext4_set_page_dirty,
3661	.bmap			= ext4_bmap,
3662	.invalidatepage		= ext4_invalidatepage,
3663	.releasepage		= ext4_releasepage,
3664	.direct_IO		= noop_direct_IO,
3665	.migratepage		= buffer_migrate_page,
3666	.is_partially_uptodate  = block_is_partially_uptodate,
3667	.error_remove_page	= generic_error_remove_page,
3668	.swap_activate		= ext4_iomap_swap_activate,
3669};
3670
3671static const struct address_space_operations ext4_journalled_aops = {
3672	.readpage		= ext4_readpage,
3673	.readahead		= ext4_readahead,
3674	.writepage		= ext4_writepage,
3675	.writepages		= ext4_writepages,
3676	.write_begin		= ext4_write_begin,
3677	.write_end		= ext4_journalled_write_end,
3678	.set_page_dirty		= ext4_journalled_set_page_dirty,
3679	.bmap			= ext4_bmap,
3680	.invalidatepage		= ext4_journalled_invalidatepage,
3681	.releasepage		= ext4_releasepage,
3682	.direct_IO		= noop_direct_IO,
3683	.is_partially_uptodate  = block_is_partially_uptodate,
3684	.error_remove_page	= generic_error_remove_page,
3685	.swap_activate		= ext4_iomap_swap_activate,
3686};
3687
3688static const struct address_space_operations ext4_da_aops = {
3689	.readpage		= ext4_readpage,
3690	.readahead		= ext4_readahead,
3691	.writepage		= ext4_writepage,
3692	.writepages		= ext4_writepages,
3693	.write_begin		= ext4_da_write_begin,
3694	.write_end		= ext4_da_write_end,
3695	.set_page_dirty		= ext4_set_page_dirty,
3696	.bmap			= ext4_bmap,
3697	.invalidatepage		= ext4_invalidatepage,
3698	.releasepage		= ext4_releasepage,
3699	.direct_IO		= noop_direct_IO,
3700	.migratepage		= buffer_migrate_page,
3701	.is_partially_uptodate  = block_is_partially_uptodate,
3702	.error_remove_page	= generic_error_remove_page,
3703	.swap_activate		= ext4_iomap_swap_activate,
3704};
3705
3706static const struct address_space_operations ext4_dax_aops = {
3707	.writepages		= ext4_dax_writepages,
3708	.direct_IO		= noop_direct_IO,
3709	.set_page_dirty		= noop_set_page_dirty,
3710	.bmap			= ext4_bmap,
3711	.invalidatepage		= noop_invalidatepage,
3712	.swap_activate		= ext4_iomap_swap_activate,
3713};
3714
3715void ext4_set_aops(struct inode *inode)
3716{
3717	switch (ext4_inode_journal_mode(inode)) {
3718	case EXT4_INODE_ORDERED_DATA_MODE:
3719	case EXT4_INODE_WRITEBACK_DATA_MODE:
3720		break;
3721	case EXT4_INODE_JOURNAL_DATA_MODE:
3722		inode->i_mapping->a_ops = &ext4_journalled_aops;
3723		return;
3724	default:
3725		BUG();
3726	}
3727	if (IS_DAX(inode))
3728		inode->i_mapping->a_ops = &ext4_dax_aops;
3729	else if (test_opt(inode->i_sb, DELALLOC))
3730		inode->i_mapping->a_ops = &ext4_da_aops;
3731	else
3732		inode->i_mapping->a_ops = &ext4_aops;
3733}
3734
3735static int __ext4_block_zero_page_range(handle_t *handle,
3736		struct address_space *mapping, loff_t from, loff_t length)
3737{
3738	ext4_fsblk_t index = from >> PAGE_SHIFT;
3739	unsigned offset = from & (PAGE_SIZE-1);
3740	unsigned blocksize, pos;
3741	ext4_lblk_t iblock;
3742	struct inode *inode = mapping->host;
3743	struct buffer_head *bh;
3744	struct page *page;
3745	int err = 0;
3746
3747	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3748				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3749	if (!page)
3750		return -ENOMEM;
3751
3752	blocksize = inode->i_sb->s_blocksize;
3753
3754	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3755
3756	if (!page_has_buffers(page))
3757		create_empty_buffers(page, blocksize, 0);
3758
3759	/* Find the buffer that contains "offset" */
3760	bh = page_buffers(page);
3761	pos = blocksize;
3762	while (offset >= pos) {
3763		bh = bh->b_this_page;
3764		iblock++;
3765		pos += blocksize;
3766	}
3767	if (buffer_freed(bh)) {
3768		BUFFER_TRACE(bh, "freed: skip");
3769		goto unlock;
3770	}
3771	if (!buffer_mapped(bh)) {
3772		BUFFER_TRACE(bh, "unmapped");
3773		ext4_get_block(inode, iblock, bh, 0);
3774		/* unmapped? It's a hole - nothing to do */
3775		if (!buffer_mapped(bh)) {
3776			BUFFER_TRACE(bh, "still unmapped");
3777			goto unlock;
3778		}
3779	}
3780
3781	/* Ok, it's mapped. Make sure it's up-to-date */
3782	if (PageUptodate(page))
3783		set_buffer_uptodate(bh);
3784
3785	if (!buffer_uptodate(bh)) {
3786		err = ext4_read_bh_lock(bh, 0, true);
3787		if (err)
3788			goto unlock;
3789		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3790			/* We expect the key to be set. */
3791			BUG_ON(!fscrypt_has_encryption_key(inode));
3792			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3793							       bh_offset(bh));
3794			if (err) {
3795				clear_buffer_uptodate(bh);
3796				goto unlock;
3797			}
3798		}
3799	}
3800	if (ext4_should_journal_data(inode)) {
3801		BUFFER_TRACE(bh, "get write access");
3802		err = ext4_journal_get_write_access(handle, bh);
3803		if (err)
3804			goto unlock;
3805	}
3806	zero_user(page, offset, length);
3807	BUFFER_TRACE(bh, "zeroed end of block");
3808
3809	if (ext4_should_journal_data(inode)) {
3810		err = ext4_handle_dirty_metadata(handle, inode, bh);
3811	} else {
3812		err = 0;
3813		mark_buffer_dirty(bh);
3814		if (ext4_should_order_data(inode))
3815			err = ext4_jbd2_inode_add_write(handle, inode, from,
3816					length);
3817	}
3818
3819unlock:
3820	unlock_page(page);
3821	put_page(page);
3822	return err;
3823}
3824
3825/*
3826 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3827 * starting from file offset 'from'.  The range to be zero'd must
3828 * be contained with in one block.  If the specified range exceeds
3829 * the end of the block it will be shortened to end of the block
3830 * that corresponds to 'from'
3831 */
3832static int ext4_block_zero_page_range(handle_t *handle,
3833		struct address_space *mapping, loff_t from, loff_t length)
3834{
3835	struct inode *inode = mapping->host;
3836	unsigned offset = from & (PAGE_SIZE-1);
3837	unsigned blocksize = inode->i_sb->s_blocksize;
3838	unsigned max = blocksize - (offset & (blocksize - 1));
3839
3840	/*
3841	 * correct length if it does not fall between
3842	 * 'from' and the end of the block
3843	 */
3844	if (length > max || length < 0)
3845		length = max;
3846
3847	if (IS_DAX(inode)) {
3848		return iomap_zero_range(inode, from, length, NULL,
3849					&ext4_iomap_ops);
3850	}
3851	return __ext4_block_zero_page_range(handle, mapping, from, length);
3852}
3853
3854/*
3855 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3856 * up to the end of the block which corresponds to `from'.
3857 * This required during truncate. We need to physically zero the tail end
3858 * of that block so it doesn't yield old data if the file is later grown.
3859 */
3860static int ext4_block_truncate_page(handle_t *handle,
3861		struct address_space *mapping, loff_t from)
3862{
3863	unsigned offset = from & (PAGE_SIZE-1);
3864	unsigned length;
3865	unsigned blocksize;
3866	struct inode *inode = mapping->host;
3867
3868	/* If we are processing an encrypted inode during orphan list handling */
3869	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3870		return 0;
3871
3872	blocksize = inode->i_sb->s_blocksize;
3873	length = blocksize - (offset & (blocksize - 1));
3874
3875	return ext4_block_zero_page_range(handle, mapping, from, length);
3876}
3877
3878int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3879			     loff_t lstart, loff_t length)
3880{
3881	struct super_block *sb = inode->i_sb;
3882	struct address_space *mapping = inode->i_mapping;
3883	unsigned partial_start, partial_end;
3884	ext4_fsblk_t start, end;
3885	loff_t byte_end = (lstart + length - 1);
3886	int err = 0;
3887
3888	partial_start = lstart & (sb->s_blocksize - 1);
3889	partial_end = byte_end & (sb->s_blocksize - 1);
3890
3891	start = lstart >> sb->s_blocksize_bits;
3892	end = byte_end >> sb->s_blocksize_bits;
3893
3894	/* Handle partial zero within the single block */
3895	if (start == end &&
3896	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3897		err = ext4_block_zero_page_range(handle, mapping,
3898						 lstart, length);
3899		return err;
3900	}
3901	/* Handle partial zero out on the start of the range */
3902	if (partial_start) {
3903		err = ext4_block_zero_page_range(handle, mapping,
3904						 lstart, sb->s_blocksize);
3905		if (err)
3906			return err;
3907	}
3908	/* Handle partial zero out on the end of the range */
3909	if (partial_end != sb->s_blocksize - 1)
3910		err = ext4_block_zero_page_range(handle, mapping,
3911						 byte_end - partial_end,
3912						 partial_end + 1);
3913	return err;
3914}
3915
3916int ext4_can_truncate(struct inode *inode)
3917{
3918	if (S_ISREG(inode->i_mode))
3919		return 1;
3920	if (S_ISDIR(inode->i_mode))
3921		return 1;
3922	if (S_ISLNK(inode->i_mode))
3923		return !ext4_inode_is_fast_symlink(inode);
3924	return 0;
3925}
3926
3927/*
3928 * We have to make sure i_disksize gets properly updated before we truncate
3929 * page cache due to hole punching or zero range. Otherwise i_disksize update
3930 * can get lost as it may have been postponed to submission of writeback but
3931 * that will never happen after we truncate page cache.
3932 */
3933int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3934				      loff_t len)
3935{
3936	handle_t *handle;
3937	int ret;
3938
3939	loff_t size = i_size_read(inode);
3940
3941	WARN_ON(!inode_is_locked(inode));
3942	if (offset > size || offset + len < size)
3943		return 0;
3944
3945	if (EXT4_I(inode)->i_disksize >= size)
3946		return 0;
3947
3948	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3949	if (IS_ERR(handle))
3950		return PTR_ERR(handle);
3951	ext4_update_i_disksize(inode, size);
3952	ret = ext4_mark_inode_dirty(handle, inode);
3953	ext4_journal_stop(handle);
3954
3955	return ret;
3956}
3957
3958static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3959{
3960	up_write(&ei->i_mmap_sem);
3961	schedule();
3962	down_write(&ei->i_mmap_sem);
3963}
3964
3965int ext4_break_layouts(struct inode *inode)
3966{
3967	struct ext4_inode_info *ei = EXT4_I(inode);
3968	struct page *page;
3969	int error;
3970
3971	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3972		return -EINVAL;
3973
3974	do {
3975		page = dax_layout_busy_page(inode->i_mapping);
3976		if (!page)
3977			return 0;
3978
3979		error = ___wait_var_event(&page->_refcount,
3980				atomic_read(&page->_refcount) == 1,
3981				TASK_INTERRUPTIBLE, 0, 0,
3982				ext4_wait_dax_page(ei));
3983	} while (error == 0);
3984
3985	return error;
3986}
3987
3988/*
3989 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3990 * associated with the given offset and length
3991 *
3992 * @inode:  File inode
3993 * @offset: The offset where the hole will begin
3994 * @len:    The length of the hole
3995 *
3996 * Returns: 0 on success or negative on failure
3997 */
3998
3999int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4000{
4001	struct inode *inode = file_inode(file);
4002	struct super_block *sb = inode->i_sb;
4003	ext4_lblk_t first_block, stop_block;
4004	struct address_space *mapping = inode->i_mapping;
4005	loff_t first_block_offset, last_block_offset, max_length;
4006	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4007	handle_t *handle;
4008	unsigned int credits;
4009	int ret = 0, ret2 = 0;
4010
4011	trace_ext4_punch_hole(inode, offset, length, 0);
4012
4013	/*
4014	 * Write out all dirty pages to avoid race conditions
4015	 * Then release them.
4016	 */
4017	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4018		ret = filemap_write_and_wait_range(mapping, offset,
4019						   offset + length - 1);
4020		if (ret)
4021			return ret;
4022	}
4023
4024	inode_lock(inode);
4025
4026	/* No need to punch hole beyond i_size */
4027	if (offset >= inode->i_size)
4028		goto out_mutex;
4029
4030	/*
4031	 * If the hole extends beyond i_size, set the hole
4032	 * to end after the page that contains i_size
4033	 */
4034	if (offset + length > inode->i_size) {
4035		length = inode->i_size +
4036		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4037		   offset;
4038	}
4039
4040	/*
4041	 * For punch hole the length + offset needs to be within one block
4042	 * before last range. Adjust the length if it goes beyond that limit.
4043	 */
4044	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4045	if (offset + length > max_length)
4046		length = max_length - offset;
4047
4048	if (offset & (sb->s_blocksize - 1) ||
4049	    (offset + length) & (sb->s_blocksize - 1)) {
4050		/*
4051		 * Attach jinode to inode for jbd2 if we do any zeroing of
4052		 * partial block
4053		 */
4054		ret = ext4_inode_attach_jinode(inode);
4055		if (ret < 0)
4056			goto out_mutex;
4057
4058	}
4059
4060	/* Wait all existing dio workers, newcomers will block on i_mutex */
4061	inode_dio_wait(inode);
4062
4063	ret = file_modified(file);
4064	if (ret)
4065		goto out_mutex;
4066
4067	/*
4068	 * Prevent page faults from reinstantiating pages we have released from
4069	 * page cache.
4070	 */
4071	down_write(&EXT4_I(inode)->i_mmap_sem);
4072
4073	ret = ext4_break_layouts(inode);
4074	if (ret)
4075		goto out_dio;
4076
4077	first_block_offset = round_up(offset, sb->s_blocksize);
4078	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4079
4080	/* Now release the pages and zero block aligned part of pages*/
4081	if (last_block_offset > first_block_offset) {
4082		ret = ext4_update_disksize_before_punch(inode, offset, length);
4083		if (ret)
4084			goto out_dio;
4085		truncate_pagecache_range(inode, first_block_offset,
4086					 last_block_offset);
4087	}
4088
4089	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4090		credits = ext4_writepage_trans_blocks(inode);
4091	else
4092		credits = ext4_blocks_for_truncate(inode);
4093	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4094	if (IS_ERR(handle)) {
4095		ret = PTR_ERR(handle);
4096		ext4_std_error(sb, ret);
4097		goto out_dio;
4098	}
4099
4100	ret = ext4_zero_partial_blocks(handle, inode, offset,
4101				       length);
4102	if (ret)
4103		goto out_stop;
4104
4105	first_block = (offset + sb->s_blocksize - 1) >>
4106		EXT4_BLOCK_SIZE_BITS(sb);
4107	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4108
4109	/* If there are blocks to remove, do it */
4110	if (stop_block > first_block) {
4111
4112		down_write(&EXT4_I(inode)->i_data_sem);
4113		ext4_discard_preallocations(inode, 0);
4114
4115		ret = ext4_es_remove_extent(inode, first_block,
4116					    stop_block - first_block);
4117		if (ret) {
4118			up_write(&EXT4_I(inode)->i_data_sem);
4119			goto out_stop;
4120		}
4121
4122		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4123			ret = ext4_ext_remove_space(inode, first_block,
4124						    stop_block - 1);
4125		else
4126			ret = ext4_ind_remove_space(handle, inode, first_block,
4127						    stop_block);
4128
4129		up_write(&EXT4_I(inode)->i_data_sem);
4130	}
4131	ext4_fc_track_range(handle, inode, first_block, stop_block);
4132	if (IS_SYNC(inode))
4133		ext4_handle_sync(handle);
4134
4135	inode->i_mtime = inode->i_ctime = current_time(inode);
4136	ret2 = ext4_mark_inode_dirty(handle, inode);
4137	if (unlikely(ret2))
4138		ret = ret2;
4139	if (ret >= 0)
4140		ext4_update_inode_fsync_trans(handle, inode, 1);
4141out_stop:
4142	ext4_journal_stop(handle);
4143out_dio:
4144	up_write(&EXT4_I(inode)->i_mmap_sem);
4145out_mutex:
4146	inode_unlock(inode);
4147	return ret;
4148}
4149
4150int ext4_inode_attach_jinode(struct inode *inode)
4151{
4152	struct ext4_inode_info *ei = EXT4_I(inode);
4153	struct jbd2_inode *jinode;
4154
4155	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4156		return 0;
4157
4158	jinode = jbd2_alloc_inode(GFP_KERNEL);
4159	spin_lock(&inode->i_lock);
4160	if (!ei->jinode) {
4161		if (!jinode) {
4162			spin_unlock(&inode->i_lock);
4163			return -ENOMEM;
4164		}
4165		ei->jinode = jinode;
4166		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4167		jinode = NULL;
4168	}
4169	spin_unlock(&inode->i_lock);
4170	if (unlikely(jinode != NULL))
4171		jbd2_free_inode(jinode);
4172	return 0;
4173}
4174
4175/*
4176 * ext4_truncate()
4177 *
4178 * We block out ext4_get_block() block instantiations across the entire
4179 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4180 * simultaneously on behalf of the same inode.
4181 *
4182 * As we work through the truncate and commit bits of it to the journal there
4183 * is one core, guiding principle: the file's tree must always be consistent on
4184 * disk.  We must be able to restart the truncate after a crash.
4185 *
4186 * The file's tree may be transiently inconsistent in memory (although it
4187 * probably isn't), but whenever we close off and commit a journal transaction,
4188 * the contents of (the filesystem + the journal) must be consistent and
4189 * restartable.  It's pretty simple, really: bottom up, right to left (although
4190 * left-to-right works OK too).
4191 *
4192 * Note that at recovery time, journal replay occurs *before* the restart of
4193 * truncate against the orphan inode list.
4194 *
4195 * The committed inode has the new, desired i_size (which is the same as
4196 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4197 * that this inode's truncate did not complete and it will again call
4198 * ext4_truncate() to have another go.  So there will be instantiated blocks
4199 * to the right of the truncation point in a crashed ext4 filesystem.  But
4200 * that's fine - as long as they are linked from the inode, the post-crash
4201 * ext4_truncate() run will find them and release them.
4202 */
4203int ext4_truncate(struct inode *inode)
4204{
4205	struct ext4_inode_info *ei = EXT4_I(inode);
4206	unsigned int credits;
4207	int err = 0, err2;
4208	handle_t *handle;
4209	struct address_space *mapping = inode->i_mapping;
4210
4211	/*
4212	 * There is a possibility that we're either freeing the inode
4213	 * or it's a completely new inode. In those cases we might not
4214	 * have i_mutex locked because it's not necessary.
4215	 */
4216	if (!(inode->i_state & (I_NEW|I_FREEING)))
4217		WARN_ON(!inode_is_locked(inode));
4218	trace_ext4_truncate_enter(inode);
4219
4220	if (!ext4_can_truncate(inode))
4221		goto out_trace;
4222
4223	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4224		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4225
4226	if (ext4_has_inline_data(inode)) {
4227		int has_inline = 1;
4228
4229		err = ext4_inline_data_truncate(inode, &has_inline);
4230		if (err || has_inline)
4231			goto out_trace;
4232	}
4233
4234	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4235	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4236		err = ext4_inode_attach_jinode(inode);
4237		if (err)
4238			goto out_trace;
4239	}
4240
4241	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4242		credits = ext4_writepage_trans_blocks(inode);
4243	else
4244		credits = ext4_blocks_for_truncate(inode);
4245
4246	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4247	if (IS_ERR(handle)) {
4248		err = PTR_ERR(handle);
4249		goto out_trace;
4250	}
4251
4252	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4253		ext4_block_truncate_page(handle, mapping, inode->i_size);
4254
4255	/*
4256	 * We add the inode to the orphan list, so that if this
4257	 * truncate spans multiple transactions, and we crash, we will
4258	 * resume the truncate when the filesystem recovers.  It also
4259	 * marks the inode dirty, to catch the new size.
4260	 *
4261	 * Implication: the file must always be in a sane, consistent
4262	 * truncatable state while each transaction commits.
4263	 */
4264	err = ext4_orphan_add(handle, inode);
4265	if (err)
4266		goto out_stop;
4267
4268	down_write(&EXT4_I(inode)->i_data_sem);
4269
4270	ext4_discard_preallocations(inode, 0);
4271
4272	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4273		err = ext4_ext_truncate(handle, inode);
4274	else
4275		ext4_ind_truncate(handle, inode);
4276
4277	up_write(&ei->i_data_sem);
4278	if (err)
4279		goto out_stop;
4280
4281	if (IS_SYNC(inode))
4282		ext4_handle_sync(handle);
4283
4284out_stop:
4285	/*
4286	 * If this was a simple ftruncate() and the file will remain alive,
4287	 * then we need to clear up the orphan record which we created above.
4288	 * However, if this was a real unlink then we were called by
4289	 * ext4_evict_inode(), and we allow that function to clean up the
4290	 * orphan info for us.
4291	 */
4292	if (inode->i_nlink)
4293		ext4_orphan_del(handle, inode);
4294
4295	inode->i_mtime = inode->i_ctime = current_time(inode);
4296	err2 = ext4_mark_inode_dirty(handle, inode);
4297	if (unlikely(err2 && !err))
4298		err = err2;
4299	ext4_journal_stop(handle);
4300
4301out_trace:
4302	trace_ext4_truncate_exit(inode);
4303	return err;
4304}
4305
4306static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4307{
4308	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4309		return inode_peek_iversion_raw(inode);
4310	else
4311		return inode_peek_iversion(inode);
4312}
4313
4314static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4315				 struct ext4_inode_info *ei)
4316{
4317	struct inode *inode = &(ei->vfs_inode);
4318	u64 i_blocks = READ_ONCE(inode->i_blocks);
4319	struct super_block *sb = inode->i_sb;
4320
4321	if (i_blocks <= ~0U) {
4322		/*
4323		 * i_blocks can be represented in a 32 bit variable
4324		 * as multiple of 512 bytes
4325		 */
4326		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4327		raw_inode->i_blocks_high = 0;
4328		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4329		return 0;
4330	}
4331
4332	/*
4333	 * This should never happen since sb->s_maxbytes should not have
4334	 * allowed this, sb->s_maxbytes was set according to the huge_file
4335	 * feature in ext4_fill_super().
4336	 */
4337	if (!ext4_has_feature_huge_file(sb))
4338		return -EFSCORRUPTED;
4339
4340	if (i_blocks <= 0xffffffffffffULL) {
4341		/*
4342		 * i_blocks can be represented in a 48 bit variable
4343		 * as multiple of 512 bytes
4344		 */
4345		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4346		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4347		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4348	} else {
4349		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4350		/* i_block is stored in file system block size */
4351		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4352		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4353		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4354	}
4355	return 0;
4356}
4357
4358static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4359{
4360	struct ext4_inode_info *ei = EXT4_I(inode);
4361	uid_t i_uid;
4362	gid_t i_gid;
4363	projid_t i_projid;
4364	int block;
4365	int err;
4366
4367	err = ext4_inode_blocks_set(raw_inode, ei);
4368
4369	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4370	i_uid = i_uid_read(inode);
4371	i_gid = i_gid_read(inode);
4372	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4373	if (!(test_opt(inode->i_sb, NO_UID32))) {
4374		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4375		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4376		/*
4377		 * Fix up interoperability with old kernels. Otherwise,
4378		 * old inodes get re-used with the upper 16 bits of the
4379		 * uid/gid intact.
4380		 */
4381		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4382			raw_inode->i_uid_high = 0;
4383			raw_inode->i_gid_high = 0;
4384		} else {
4385			raw_inode->i_uid_high =
4386				cpu_to_le16(high_16_bits(i_uid));
4387			raw_inode->i_gid_high =
4388				cpu_to_le16(high_16_bits(i_gid));
4389		}
4390	} else {
4391		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4392		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4393		raw_inode->i_uid_high = 0;
4394		raw_inode->i_gid_high = 0;
4395	}
4396	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4397
4398	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4399	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4400	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4401	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4402
4403	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4404	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4405	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4406		raw_inode->i_file_acl_high =
4407			cpu_to_le16(ei->i_file_acl >> 32);
4408	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4409	ext4_isize_set(raw_inode, ei->i_disksize);
4410
4411	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4412	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4413		if (old_valid_dev(inode->i_rdev)) {
4414			raw_inode->i_block[0] =
4415				cpu_to_le32(old_encode_dev(inode->i_rdev));
4416			raw_inode->i_block[1] = 0;
4417		} else {
4418			raw_inode->i_block[0] = 0;
4419			raw_inode->i_block[1] =
4420				cpu_to_le32(new_encode_dev(inode->i_rdev));
4421			raw_inode->i_block[2] = 0;
4422		}
4423	} else if (!ext4_has_inline_data(inode)) {
4424		for (block = 0; block < EXT4_N_BLOCKS; block++)
4425			raw_inode->i_block[block] = ei->i_data[block];
4426	}
4427
4428	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4429		u64 ivers = ext4_inode_peek_iversion(inode);
4430
4431		raw_inode->i_disk_version = cpu_to_le32(ivers);
4432		if (ei->i_extra_isize) {
4433			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4434				raw_inode->i_version_hi =
4435					cpu_to_le32(ivers >> 32);
4436			raw_inode->i_extra_isize =
4437				cpu_to_le16(ei->i_extra_isize);
4438		}
4439	}
4440
4441	if (i_projid != EXT4_DEF_PROJID &&
4442	    !ext4_has_feature_project(inode->i_sb))
4443		err = err ?: -EFSCORRUPTED;
4444
4445	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4446	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4447		raw_inode->i_projid = cpu_to_le32(i_projid);
4448
4449	ext4_inode_csum_set(inode, raw_inode, ei);
4450	return err;
4451}
4452
4453/*
4454 * ext4_get_inode_loc returns with an extra refcount against the inode's
4455 * underlying buffer_head on success. If we pass 'inode' and it does not
4456 * have in-inode xattr, we have all inode data in memory that is needed
4457 * to recreate the on-disk version of this inode.
4458 */
4459static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4460				struct inode *inode, struct ext4_iloc *iloc,
4461				ext4_fsblk_t *ret_block)
4462{
4463	struct ext4_group_desc	*gdp;
4464	struct buffer_head	*bh;
4465	ext4_fsblk_t		block;
4466	struct blk_plug		plug;
4467	int			inodes_per_block, inode_offset;
4468
4469	iloc->bh = NULL;
4470	if (ino < EXT4_ROOT_INO ||
4471	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4472		return -EFSCORRUPTED;
4473
4474	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4475	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4476	if (!gdp)
4477		return -EIO;
4478
4479	/*
4480	 * Figure out the offset within the block group inode table
4481	 */
4482	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4483	inode_offset = ((ino - 1) %
4484			EXT4_INODES_PER_GROUP(sb));
4485	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4486
4487	block = ext4_inode_table(sb, gdp);
4488	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4489	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4490		ext4_error(sb, "Invalid inode table block %llu in "
4491			   "block_group %u", block, iloc->block_group);
4492		return -EFSCORRUPTED;
4493	}
4494	block += (inode_offset / inodes_per_block);
4495
4496	bh = sb_getblk(sb, block);
4497	if (unlikely(!bh))
4498		return -ENOMEM;
4499	if (!buffer_uptodate(bh)) {
4500		lock_buffer(bh);
4501
4502		if (ext4_buffer_uptodate(bh)) {
4503			/* someone brought it uptodate while we waited */
4504			unlock_buffer(bh);
4505			goto has_buffer;
4506		}
4507
4508		/*
4509		 * If we have all information of the inode in memory and this
4510		 * is the only valid inode in the block, we need not read the
4511		 * block.
4512		 */
4513		if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4514			struct buffer_head *bitmap_bh;
4515			int i, start;
4516
4517			start = inode_offset & ~(inodes_per_block - 1);
4518
4519			/* Is the inode bitmap in cache? */
4520			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4521			if (unlikely(!bitmap_bh))
4522				goto make_io;
4523
4524			/*
4525			 * If the inode bitmap isn't in cache then the
4526			 * optimisation may end up performing two reads instead
4527			 * of one, so skip it.
4528			 */
4529			if (!buffer_uptodate(bitmap_bh)) {
4530				brelse(bitmap_bh);
4531				goto make_io;
4532			}
4533			for (i = start; i < start + inodes_per_block; i++) {
4534				if (i == inode_offset)
4535					continue;
4536				if (ext4_test_bit(i, bitmap_bh->b_data))
4537					break;
4538			}
4539			brelse(bitmap_bh);
4540			if (i == start + inodes_per_block) {
4541				struct ext4_inode *raw_inode =
4542					(struct ext4_inode *) (bh->b_data + iloc->offset);
4543
4544				/* all other inodes are free, so skip I/O */
4545				memset(bh->b_data, 0, bh->b_size);
4546				if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4547					ext4_fill_raw_inode(inode, raw_inode);
4548				set_buffer_uptodate(bh);
4549				unlock_buffer(bh);
4550				goto has_buffer;
4551			}
4552		}
4553
4554make_io:
4555		/*
4556		 * If we need to do any I/O, try to pre-readahead extra
4557		 * blocks from the inode table.
4558		 */
4559		blk_start_plug(&plug);
4560		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4561			ext4_fsblk_t b, end, table;
4562			unsigned num;
4563			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4564
4565			table = ext4_inode_table(sb, gdp);
4566			/* s_inode_readahead_blks is always a power of 2 */
4567			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4568			if (table > b)
4569				b = table;
4570			end = b + ra_blks;
4571			num = EXT4_INODES_PER_GROUP(sb);
4572			if (ext4_has_group_desc_csum(sb))
4573				num -= ext4_itable_unused_count(sb, gdp);
4574			table += num / inodes_per_block;
4575			if (end > table)
4576				end = table;
4577			while (b <= end)
4578				ext4_sb_breadahead_unmovable(sb, b++);
4579		}
4580
4581		/*
4582		 * There are other valid inodes in the buffer, this inode
4583		 * has in-inode xattrs, or we don't have this inode in memory.
4584		 * Read the block from disk.
4585		 */
4586		trace_ext4_load_inode(sb, ino);
4587		ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4588		blk_finish_plug(&plug);
4589		wait_on_buffer(bh);
4590		ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4591		if (!buffer_uptodate(bh)) {
4592			if (ret_block)
4593				*ret_block = block;
4594			brelse(bh);
4595			return -EIO;
4596		}
4597	}
4598has_buffer:
4599	iloc->bh = bh;
4600	return 0;
4601}
4602
4603static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4604					struct ext4_iloc *iloc)
4605{
4606	ext4_fsblk_t err_blk = 0;
4607	int ret;
4608
4609	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4610					&err_blk);
4611
4612	if (ret == -EIO)
4613		ext4_error_inode_block(inode, err_blk, EIO,
4614					"unable to read itable block");
4615
4616	return ret;
4617}
4618
4619int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4620{
4621	ext4_fsblk_t err_blk = 0;
4622	int ret;
4623
4624	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4625					&err_blk);
4626
4627	if (ret == -EIO)
4628		ext4_error_inode_block(inode, err_blk, EIO,
4629					"unable to read itable block");
4630
4631	return ret;
4632}
4633
4634
4635int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4636			  struct ext4_iloc *iloc)
4637{
4638	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4639}
4640
4641static bool ext4_should_enable_dax(struct inode *inode)
4642{
4643	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4644
4645	if (test_opt2(inode->i_sb, DAX_NEVER))
4646		return false;
4647	if (!S_ISREG(inode->i_mode))
4648		return false;
4649	if (ext4_should_journal_data(inode))
4650		return false;
4651	if (ext4_has_inline_data(inode))
4652		return false;
4653	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4654		return false;
4655	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4656		return false;
4657	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4658		return false;
4659	if (test_opt(inode->i_sb, DAX_ALWAYS))
4660		return true;
4661
4662	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4663}
4664
4665void ext4_set_inode_flags(struct inode *inode, bool init)
4666{
4667	unsigned int flags = EXT4_I(inode)->i_flags;
4668	unsigned int new_fl = 0;
4669
4670	WARN_ON_ONCE(IS_DAX(inode) && init);
4671
4672	if (flags & EXT4_SYNC_FL)
4673		new_fl |= S_SYNC;
4674	if (flags & EXT4_APPEND_FL)
4675		new_fl |= S_APPEND;
4676	if (flags & EXT4_IMMUTABLE_FL)
4677		new_fl |= S_IMMUTABLE;
4678	if (flags & EXT4_NOATIME_FL)
4679		new_fl |= S_NOATIME;
4680	if (flags & EXT4_DIRSYNC_FL)
4681		new_fl |= S_DIRSYNC;
4682
4683	/* Because of the way inode_set_flags() works we must preserve S_DAX
4684	 * here if already set. */
4685	new_fl |= (inode->i_flags & S_DAX);
4686	if (init && ext4_should_enable_dax(inode))
4687		new_fl |= S_DAX;
4688
4689	if (flags & EXT4_ENCRYPT_FL)
4690		new_fl |= S_ENCRYPTED;
4691	if (flags & EXT4_CASEFOLD_FL)
4692		new_fl |= S_CASEFOLD;
4693	if (flags & EXT4_VERITY_FL)
4694		new_fl |= S_VERITY;
4695	inode_set_flags(inode, new_fl,
4696			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4697			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4698}
4699
4700static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4701				  struct ext4_inode_info *ei)
4702{
4703	blkcnt_t i_blocks ;
4704	struct inode *inode = &(ei->vfs_inode);
4705	struct super_block *sb = inode->i_sb;
4706
4707	if (ext4_has_feature_huge_file(sb)) {
4708		/* we are using combined 48 bit field */
4709		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4710					le32_to_cpu(raw_inode->i_blocks_lo);
4711		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4712			/* i_blocks represent file system block size */
4713			return i_blocks  << (inode->i_blkbits - 9);
4714		} else {
4715			return i_blocks;
4716		}
4717	} else {
4718		return le32_to_cpu(raw_inode->i_blocks_lo);
4719	}
4720}
4721
4722static inline int ext4_iget_extra_inode(struct inode *inode,
4723					 struct ext4_inode *raw_inode,
4724					 struct ext4_inode_info *ei)
4725{
4726	__le32 *magic = (void *)raw_inode +
4727			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4728
4729	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4730	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4731		int err;
4732
4733		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4734		err = ext4_find_inline_data_nolock(inode);
4735		if (!err && ext4_has_inline_data(inode))
4736			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4737		return err;
4738	} else
4739		EXT4_I(inode)->i_inline_off = 0;
4740	return 0;
4741}
4742
4743int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4744{
4745	if (!ext4_has_feature_project(inode->i_sb))
4746		return -EOPNOTSUPP;
4747	*projid = EXT4_I(inode)->i_projid;
4748	return 0;
4749}
4750
4751/*
4752 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4753 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4754 * set.
4755 */
4756static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4757{
4758	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4759		inode_set_iversion_raw(inode, val);
4760	else
4761		inode_set_iversion_queried(inode, val);
4762}
4763
4764static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4765
4766{
4767	if (flags & EXT4_IGET_EA_INODE) {
4768		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4769			return "missing EA_INODE flag";
4770		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4771		    EXT4_I(inode)->i_file_acl)
4772			return "ea_inode with extended attributes";
4773	} else {
4774		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4775			return "unexpected EA_INODE flag";
4776	}
4777	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4778		return "unexpected bad inode w/o EXT4_IGET_BAD";
4779	return NULL;
4780}
4781
4782struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4783			  ext4_iget_flags flags, const char *function,
4784			  unsigned int line)
4785{
4786	struct ext4_iloc iloc;
4787	struct ext4_inode *raw_inode;
4788	struct ext4_inode_info *ei;
4789	struct inode *inode;
4790	const char *err_str;
4791	journal_t *journal = EXT4_SB(sb)->s_journal;
4792	long ret;
4793	loff_t size;
4794	int block;
4795	uid_t i_uid;
4796	gid_t i_gid;
4797	projid_t i_projid;
4798
4799	if ((!(flags & EXT4_IGET_SPECIAL) &&
4800	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4801	    (ino < EXT4_ROOT_INO) ||
4802	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4803		if (flags & EXT4_IGET_HANDLE)
4804			return ERR_PTR(-ESTALE);
4805		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4806			     "inode #%lu: comm %s: iget: illegal inode #",
4807			     ino, current->comm);
4808		return ERR_PTR(-EFSCORRUPTED);
4809	}
4810
4811	inode = iget_locked(sb, ino);
4812	if (!inode)
4813		return ERR_PTR(-ENOMEM);
4814	if (!(inode->i_state & I_NEW)) {
4815		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4816			ext4_error_inode(inode, function, line, 0, err_str);
4817			iput(inode);
4818			return ERR_PTR(-EFSCORRUPTED);
4819		}
4820		return inode;
4821	}
4822
4823	ei = EXT4_I(inode);
4824	iloc.bh = NULL;
4825
4826	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4827	if (ret < 0)
4828		goto bad_inode;
4829	raw_inode = ext4_raw_inode(&iloc);
4830
4831	if ((flags & EXT4_IGET_HANDLE) &&
4832	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4833		ret = -ESTALE;
4834		goto bad_inode;
4835	}
4836
4837	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4838		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4839		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4840			EXT4_INODE_SIZE(inode->i_sb) ||
4841		    (ei->i_extra_isize & 3)) {
4842			ext4_error_inode(inode, function, line, 0,
4843					 "iget: bad extra_isize %u "
4844					 "(inode size %u)",
4845					 ei->i_extra_isize,
4846					 EXT4_INODE_SIZE(inode->i_sb));
4847			ret = -EFSCORRUPTED;
4848			goto bad_inode;
4849		}
4850	} else
4851		ei->i_extra_isize = 0;
4852
4853	/* Precompute checksum seed for inode metadata */
4854	if (ext4_has_metadata_csum(sb)) {
4855		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4856		__u32 csum;
4857		__le32 inum = cpu_to_le32(inode->i_ino);
4858		__le32 gen = raw_inode->i_generation;
4859		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4860				   sizeof(inum));
4861		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4862					      sizeof(gen));
4863	}
4864
4865	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4866	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4867	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4868		ext4_error_inode_err(inode, function, line, 0,
4869				EFSBADCRC, "iget: checksum invalid");
4870		ret = -EFSBADCRC;
4871		goto bad_inode;
4872	}
4873
4874	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4875	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4876	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4877	if (ext4_has_feature_project(sb) &&
4878	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4879	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4880		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4881	else
4882		i_projid = EXT4_DEF_PROJID;
4883
4884	if (!(test_opt(inode->i_sb, NO_UID32))) {
4885		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4886		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4887	}
4888	i_uid_write(inode, i_uid);
4889	i_gid_write(inode, i_gid);
4890	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4891	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4892
4893	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4894	ei->i_inline_off = 0;
4895	ei->i_dir_start_lookup = 0;
4896	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4897	/* We now have enough fields to check if the inode was active or not.
4898	 * This is needed because nfsd might try to access dead inodes
4899	 * the test is that same one that e2fsck uses
4900	 * NeilBrown 1999oct15
4901	 */
4902	if (inode->i_nlink == 0) {
4903		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4904		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4905		    ino != EXT4_BOOT_LOADER_INO) {
4906			/* this inode is deleted or unallocated */
4907			if (flags & EXT4_IGET_SPECIAL) {
4908				ext4_error_inode(inode, function, line, 0,
4909						 "iget: special inode unallocated");
4910				ret = -EFSCORRUPTED;
4911			} else
4912				ret = -ESTALE;
4913			goto bad_inode;
4914		}
4915		/* The only unlinked inodes we let through here have
4916		 * valid i_mode and are being read by the orphan
4917		 * recovery code: that's fine, we're about to complete
4918		 * the process of deleting those.
4919		 * OR it is the EXT4_BOOT_LOADER_INO which is
4920		 * not initialized on a new filesystem. */
4921	}
4922	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4923	ext4_set_inode_flags(inode, true);
4924	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4925	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4926	if (ext4_has_feature_64bit(sb))
4927		ei->i_file_acl |=
4928			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4929	inode->i_size = ext4_isize(sb, raw_inode);
4930	if ((size = i_size_read(inode)) < 0) {
4931		ext4_error_inode(inode, function, line, 0,
4932				 "iget: bad i_size value: %lld", size);
4933		ret = -EFSCORRUPTED;
4934		goto bad_inode;
4935	}
4936	/*
4937	 * If dir_index is not enabled but there's dir with INDEX flag set,
4938	 * we'd normally treat htree data as empty space. But with metadata
4939	 * checksumming that corrupts checksums so forbid that.
4940	 */
4941	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4942	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4943		ext4_error_inode(inode, function, line, 0,
4944			 "iget: Dir with htree data on filesystem without dir_index feature.");
4945		ret = -EFSCORRUPTED;
4946		goto bad_inode;
4947	}
4948	ei->i_disksize = inode->i_size;
4949#ifdef CONFIG_QUOTA
4950	ei->i_reserved_quota = 0;
4951#endif
4952	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4953	ei->i_block_group = iloc.block_group;
4954	ei->i_last_alloc_group = ~0;
4955	/*
4956	 * NOTE! The in-memory inode i_data array is in little-endian order
4957	 * even on big-endian machines: we do NOT byteswap the block numbers!
4958	 */
4959	for (block = 0; block < EXT4_N_BLOCKS; block++)
4960		ei->i_data[block] = raw_inode->i_block[block];
4961	INIT_LIST_HEAD(&ei->i_orphan);
4962	ext4_fc_init_inode(&ei->vfs_inode);
4963
4964	/*
4965	 * Set transaction id's of transactions that have to be committed
4966	 * to finish f[data]sync. We set them to currently running transaction
4967	 * as we cannot be sure that the inode or some of its metadata isn't
4968	 * part of the transaction - the inode could have been reclaimed and
4969	 * now it is reread from disk.
4970	 */
4971	if (journal) {
4972		transaction_t *transaction;
4973		tid_t tid;
4974
4975		read_lock(&journal->j_state_lock);
4976		if (journal->j_running_transaction)
4977			transaction = journal->j_running_transaction;
4978		else
4979			transaction = journal->j_committing_transaction;
4980		if (transaction)
4981			tid = transaction->t_tid;
4982		else
4983			tid = journal->j_commit_sequence;
4984		read_unlock(&journal->j_state_lock);
4985		ei->i_sync_tid = tid;
4986		ei->i_datasync_tid = tid;
4987	}
4988
4989	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4990		if (ei->i_extra_isize == 0) {
4991			/* The extra space is currently unused. Use it. */
4992			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4993			ei->i_extra_isize = sizeof(struct ext4_inode) -
4994					    EXT4_GOOD_OLD_INODE_SIZE;
4995		} else {
4996			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4997			if (ret)
4998				goto bad_inode;
4999		}
5000	}
5001
5002	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5003	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5004	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5005	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5006
5007	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5008		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5009
5010		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5011			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5012				ivers |=
5013		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5014		}
5015		ext4_inode_set_iversion_queried(inode, ivers);
5016	}
5017
5018	ret = 0;
5019	if (ei->i_file_acl &&
5020	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5021		ext4_error_inode(inode, function, line, 0,
5022				 "iget: bad extended attribute block %llu",
5023				 ei->i_file_acl);
5024		ret = -EFSCORRUPTED;
5025		goto bad_inode;
5026	} else if (!ext4_has_inline_data(inode)) {
5027		/* validate the block references in the inode */
5028		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5029			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5030			(S_ISLNK(inode->i_mode) &&
5031			!ext4_inode_is_fast_symlink(inode)))) {
5032			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5033				ret = ext4_ext_check_inode(inode);
5034			else
5035				ret = ext4_ind_check_inode(inode);
5036		}
5037	}
5038	if (ret)
5039		goto bad_inode;
5040
5041	if (S_ISREG(inode->i_mode)) {
5042		inode->i_op = &ext4_file_inode_operations;
5043		inode->i_fop = &ext4_file_operations;
5044		ext4_set_aops(inode);
5045	} else if (S_ISDIR(inode->i_mode)) {
5046		inode->i_op = &ext4_dir_inode_operations;
5047		inode->i_fop = &ext4_dir_operations;
5048	} else if (S_ISLNK(inode->i_mode)) {
5049		/* VFS does not allow setting these so must be corruption */
5050		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5051			ext4_error_inode(inode, function, line, 0,
5052					 "iget: immutable or append flags "
5053					 "not allowed on symlinks");
5054			ret = -EFSCORRUPTED;
5055			goto bad_inode;
5056		}
5057		if (IS_ENCRYPTED(inode)) {
5058			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5059			ext4_set_aops(inode);
5060		} else if (ext4_inode_is_fast_symlink(inode)) {
5061			inode->i_link = (char *)ei->i_data;
5062			inode->i_op = &ext4_fast_symlink_inode_operations;
5063			nd_terminate_link(ei->i_data, inode->i_size,
5064				sizeof(ei->i_data) - 1);
5065		} else {
5066			inode->i_op = &ext4_symlink_inode_operations;
5067			ext4_set_aops(inode);
5068		}
5069		inode_nohighmem(inode);
5070	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5071	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5072		inode->i_op = &ext4_special_inode_operations;
5073		if (raw_inode->i_block[0])
5074			init_special_inode(inode, inode->i_mode,
5075			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5076		else
5077			init_special_inode(inode, inode->i_mode,
5078			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5079	} else if (ino == EXT4_BOOT_LOADER_INO) {
5080		make_bad_inode(inode);
5081	} else {
5082		ret = -EFSCORRUPTED;
5083		ext4_error_inode(inode, function, line, 0,
5084				 "iget: bogus i_mode (%o)", inode->i_mode);
5085		goto bad_inode;
5086	}
5087	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5088		ext4_error_inode(inode, function, line, 0,
5089				 "casefold flag without casefold feature");
5090	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5091		ext4_error_inode(inode, function, line, 0, err_str);
5092		ret = -EFSCORRUPTED;
5093		goto bad_inode;
5094	}
5095
5096	brelse(iloc.bh);
5097	unlock_new_inode(inode);
5098	return inode;
5099
5100bad_inode:
5101	brelse(iloc.bh);
5102	iget_failed(inode);
5103	return ERR_PTR(ret);
5104}
5105
5106static void __ext4_update_other_inode_time(struct super_block *sb,
5107					   unsigned long orig_ino,
5108					   unsigned long ino,
5109					   struct ext4_inode *raw_inode)
5110{
5111	struct inode *inode;
5112
5113	inode = find_inode_by_ino_rcu(sb, ino);
5114	if (!inode)
5115		return;
5116
5117	if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5118			       I_DIRTY_INODE)) ||
5119	    ((inode->i_state & I_DIRTY_TIME) == 0))
5120		return;
5121
5122	spin_lock(&inode->i_lock);
5123	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5124				I_DIRTY_INODE)) == 0) &&
5125	    (inode->i_state & I_DIRTY_TIME)) {
5126		struct ext4_inode_info	*ei = EXT4_I(inode);
5127
5128		inode->i_state &= ~I_DIRTY_TIME;
5129		spin_unlock(&inode->i_lock);
5130
5131		spin_lock(&ei->i_raw_lock);
5132		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5133		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5134		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5135		ext4_inode_csum_set(inode, raw_inode, ei);
5136		spin_unlock(&ei->i_raw_lock);
5137		trace_ext4_other_inode_update_time(inode, orig_ino);
5138		return;
5139	}
5140	spin_unlock(&inode->i_lock);
5141}
5142
5143/*
5144 * Opportunistically update the other time fields for other inodes in
5145 * the same inode table block.
5146 */
5147static void ext4_update_other_inodes_time(struct super_block *sb,
5148					  unsigned long orig_ino, char *buf)
5149{
5150	unsigned long ino;
5151	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5152	int inode_size = EXT4_INODE_SIZE(sb);
5153
5154	/*
5155	 * Calculate the first inode in the inode table block.  Inode
5156	 * numbers are one-based.  That is, the first inode in a block
5157	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5158	 */
5159	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5160	rcu_read_lock();
5161	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5162		if (ino == orig_ino)
5163			continue;
5164		__ext4_update_other_inode_time(sb, orig_ino, ino,
5165					       (struct ext4_inode *)buf);
5166	}
5167	rcu_read_unlock();
5168}
5169
5170/*
5171 * Post the struct inode info into an on-disk inode location in the
5172 * buffer-cache.  This gobbles the caller's reference to the
5173 * buffer_head in the inode location struct.
5174 *
5175 * The caller must have write access to iloc->bh.
5176 */
5177static int ext4_do_update_inode(handle_t *handle,
5178				struct inode *inode,
5179				struct ext4_iloc *iloc)
5180{
5181	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5182	struct ext4_inode_info *ei = EXT4_I(inode);
5183	struct buffer_head *bh = iloc->bh;
5184	struct super_block *sb = inode->i_sb;
5185	int err;
5186	int need_datasync = 0, set_large_file = 0;
5187
5188	spin_lock(&ei->i_raw_lock);
5189
5190	/*
5191	 * For fields not tracked in the in-memory inode, initialise them
5192	 * to zero for new inodes.
5193	 */
5194	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5195		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5196
5197	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5198		need_datasync = 1;
5199	if (ei->i_disksize > 0x7fffffffULL) {
5200		if (!ext4_has_feature_large_file(sb) ||
5201		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5202			set_large_file = 1;
5203	}
5204
5205	err = ext4_fill_raw_inode(inode, raw_inode);
5206	spin_unlock(&ei->i_raw_lock);
5207	if (err) {
5208		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5209		goto out_brelse;
5210	}
5211
5212	if (inode->i_sb->s_flags & SB_LAZYTIME)
5213		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5214					      bh->b_data);
5215
5216	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5217	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5218	if (err)
5219		goto out_error;
5220	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5221	if (set_large_file) {
5222		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5223		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5224		if (err)
5225			goto out_error;
5226		lock_buffer(EXT4_SB(sb)->s_sbh);
5227		ext4_set_feature_large_file(sb);
5228		ext4_superblock_csum_set(sb);
5229		unlock_buffer(EXT4_SB(sb)->s_sbh);
5230		ext4_handle_sync(handle);
5231		err = ext4_handle_dirty_metadata(handle, NULL,
5232						 EXT4_SB(sb)->s_sbh);
5233	}
5234	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5235out_error:
5236	ext4_std_error(inode->i_sb, err);
5237out_brelse:
5238	brelse(bh);
5239	return err;
5240}
5241
5242/*
5243 * ext4_write_inode()
5244 *
5245 * We are called from a few places:
5246 *
5247 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5248 *   Here, there will be no transaction running. We wait for any running
5249 *   transaction to commit.
5250 *
5251 * - Within flush work (sys_sync(), kupdate and such).
5252 *   We wait on commit, if told to.
5253 *
5254 * - Within iput_final() -> write_inode_now()
5255 *   We wait on commit, if told to.
5256 *
5257 * In all cases it is actually safe for us to return without doing anything,
5258 * because the inode has been copied into a raw inode buffer in
5259 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5260 * writeback.
5261 *
5262 * Note that we are absolutely dependent upon all inode dirtiers doing the
5263 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5264 * which we are interested.
5265 *
5266 * It would be a bug for them to not do this.  The code:
5267 *
5268 *	mark_inode_dirty(inode)
5269 *	stuff();
5270 *	inode->i_size = expr;
5271 *
5272 * is in error because write_inode() could occur while `stuff()' is running,
5273 * and the new i_size will be lost.  Plus the inode will no longer be on the
5274 * superblock's dirty inode list.
5275 */
5276int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5277{
5278	int err;
5279
5280	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5281	    sb_rdonly(inode->i_sb))
5282		return 0;
5283
5284	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5285		return -EIO;
5286
5287	if (EXT4_SB(inode->i_sb)->s_journal) {
5288		if (ext4_journal_current_handle()) {
5289			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5290			dump_stack();
5291			return -EIO;
5292		}
5293
5294		/*
5295		 * No need to force transaction in WB_SYNC_NONE mode. Also
5296		 * ext4_sync_fs() will force the commit after everything is
5297		 * written.
5298		 */
5299		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5300			return 0;
5301
5302		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5303						EXT4_I(inode)->i_sync_tid);
5304	} else {
5305		struct ext4_iloc iloc;
5306
5307		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5308		if (err)
5309			return err;
5310		/*
5311		 * sync(2) will flush the whole buffer cache. No need to do
5312		 * it here separately for each inode.
5313		 */
5314		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5315			sync_dirty_buffer(iloc.bh);
5316		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5317			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5318					       "IO error syncing inode");
5319			err = -EIO;
5320		}
5321		brelse(iloc.bh);
5322	}
5323	return err;
5324}
5325
5326/*
5327 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5328 * buffers that are attached to a page stradding i_size and are undergoing
5329 * commit. In that case we have to wait for commit to finish and try again.
5330 */
5331static void ext4_wait_for_tail_page_commit(struct inode *inode)
5332{
5333	struct page *page;
5334	unsigned offset;
5335	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5336	tid_t commit_tid = 0;
5337	int ret;
5338
5339	offset = inode->i_size & (PAGE_SIZE - 1);
5340	/*
5341	 * If the page is fully truncated, we don't need to wait for any commit
5342	 * (and we even should not as __ext4_journalled_invalidatepage() may
5343	 * strip all buffers from the page but keep the page dirty which can then
5344	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5345	 * buffers). Also we don't need to wait for any commit if all buffers in
5346	 * the page remain valid. This is most beneficial for the common case of
5347	 * blocksize == PAGESIZE.
5348	 */
5349	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5350		return;
5351	while (1) {
5352		page = find_lock_page(inode->i_mapping,
5353				      inode->i_size >> PAGE_SHIFT);
5354		if (!page)
5355			return;
5356		ret = __ext4_journalled_invalidatepage(page, offset,
5357						PAGE_SIZE - offset);
5358		unlock_page(page);
5359		put_page(page);
5360		if (ret != -EBUSY)
5361			return;
5362		commit_tid = 0;
5363		read_lock(&journal->j_state_lock);
5364		if (journal->j_committing_transaction)
5365			commit_tid = journal->j_committing_transaction->t_tid;
5366		read_unlock(&journal->j_state_lock);
5367		if (commit_tid)
5368			jbd2_log_wait_commit(journal, commit_tid);
5369	}
5370}
5371
5372/*
5373 * ext4_setattr()
5374 *
5375 * Called from notify_change.
5376 *
5377 * We want to trap VFS attempts to truncate the file as soon as
5378 * possible.  In particular, we want to make sure that when the VFS
5379 * shrinks i_size, we put the inode on the orphan list and modify
5380 * i_disksize immediately, so that during the subsequent flushing of
5381 * dirty pages and freeing of disk blocks, we can guarantee that any
5382 * commit will leave the blocks being flushed in an unused state on
5383 * disk.  (On recovery, the inode will get truncated and the blocks will
5384 * be freed, so we have a strong guarantee that no future commit will
5385 * leave these blocks visible to the user.)
5386 *
5387 * Another thing we have to assure is that if we are in ordered mode
5388 * and inode is still attached to the committing transaction, we must
5389 * we start writeout of all the dirty pages which are being truncated.
5390 * This way we are sure that all the data written in the previous
5391 * transaction are already on disk (truncate waits for pages under
5392 * writeback).
5393 *
5394 * Called with inode->i_mutex down.
5395 */
5396int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5397{
5398	struct inode *inode = d_inode(dentry);
5399	int error, rc = 0;
5400	int orphan = 0;
5401	const unsigned int ia_valid = attr->ia_valid;
5402
5403	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5404		return -EIO;
5405
5406	if (unlikely(IS_IMMUTABLE(inode)))
5407		return -EPERM;
5408
5409	if (unlikely(IS_APPEND(inode) &&
5410		     (ia_valid & (ATTR_MODE | ATTR_UID |
5411				  ATTR_GID | ATTR_TIMES_SET))))
5412		return -EPERM;
5413
5414	error = setattr_prepare(dentry, attr);
5415	if (error)
5416		return error;
5417
5418	error = fscrypt_prepare_setattr(dentry, attr);
5419	if (error)
5420		return error;
5421
5422	error = fsverity_prepare_setattr(dentry, attr);
5423	if (error)
5424		return error;
5425
5426	if (is_quota_modification(inode, attr)) {
5427		error = dquot_initialize(inode);
5428		if (error)
5429			return error;
5430	}
5431
5432	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5433	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5434		handle_t *handle;
5435
5436		/* (user+group)*(old+new) structure, inode write (sb,
5437		 * inode block, ? - but truncate inode update has it) */
5438		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5439			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5440			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5441		if (IS_ERR(handle)) {
5442			error = PTR_ERR(handle);
5443			goto err_out;
5444		}
5445
5446		/* dquot_transfer() calls back ext4_get_inode_usage() which
5447		 * counts xattr inode references.
5448		 */
5449		down_read(&EXT4_I(inode)->xattr_sem);
5450		error = dquot_transfer(inode, attr);
5451		up_read(&EXT4_I(inode)->xattr_sem);
5452
5453		if (error) {
5454			ext4_journal_stop(handle);
5455			return error;
5456		}
5457		/* Update corresponding info in inode so that everything is in
5458		 * one transaction */
5459		if (attr->ia_valid & ATTR_UID)
5460			inode->i_uid = attr->ia_uid;
5461		if (attr->ia_valid & ATTR_GID)
5462			inode->i_gid = attr->ia_gid;
5463		error = ext4_mark_inode_dirty(handle, inode);
5464		ext4_journal_stop(handle);
5465		if (unlikely(error)) {
5466			return error;
5467		}
5468	}
5469
5470	if (attr->ia_valid & ATTR_SIZE) {
5471		handle_t *handle;
5472		loff_t oldsize = inode->i_size;
5473		loff_t old_disksize;
5474		int shrink = (attr->ia_size < inode->i_size);
5475
5476		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5477			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5478
5479			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5480				return -EFBIG;
5481			}
5482		}
5483		if (!S_ISREG(inode->i_mode)) {
5484			return -EINVAL;
5485		}
5486
5487		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5488			inode_inc_iversion(inode);
5489
5490		if (shrink) {
5491			if (ext4_should_order_data(inode)) {
5492				error = ext4_begin_ordered_truncate(inode,
5493							    attr->ia_size);
5494				if (error)
5495					goto err_out;
5496			}
5497			/*
5498			 * Blocks are going to be removed from the inode. Wait
5499			 * for dio in flight.
5500			 */
5501			inode_dio_wait(inode);
5502		}
5503
5504		down_write(&EXT4_I(inode)->i_mmap_sem);
5505
5506		rc = ext4_break_layouts(inode);
5507		if (rc) {
5508			up_write(&EXT4_I(inode)->i_mmap_sem);
5509			goto err_out;
5510		}
5511
5512		if (attr->ia_size != inode->i_size) {
5513			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5514			if (IS_ERR(handle)) {
5515				error = PTR_ERR(handle);
5516				goto out_mmap_sem;
5517			}
5518			if (ext4_handle_valid(handle) && shrink) {
5519				error = ext4_orphan_add(handle, inode);
5520				orphan = 1;
5521			}
5522			/*
5523			 * Update c/mtime on truncate up, ext4_truncate() will
5524			 * update c/mtime in shrink case below
5525			 */
5526			if (!shrink) {
5527				inode->i_mtime = current_time(inode);
5528				inode->i_ctime = inode->i_mtime;
5529			}
5530
5531			if (shrink)
5532				ext4_fc_track_range(handle, inode,
5533					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5534					inode->i_sb->s_blocksize_bits,
5535					EXT_MAX_BLOCKS - 1);
5536			else
5537				ext4_fc_track_range(
5538					handle, inode,
5539					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5540					inode->i_sb->s_blocksize_bits,
5541					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5542					inode->i_sb->s_blocksize_bits);
5543
5544			down_write(&EXT4_I(inode)->i_data_sem);
5545			old_disksize = EXT4_I(inode)->i_disksize;
5546			EXT4_I(inode)->i_disksize = attr->ia_size;
5547			rc = ext4_mark_inode_dirty(handle, inode);
5548			if (!error)
5549				error = rc;
5550			/*
5551			 * We have to update i_size under i_data_sem together
5552			 * with i_disksize to avoid races with writeback code
5553			 * running ext4_wb_update_i_disksize().
5554			 */
5555			if (!error)
5556				i_size_write(inode, attr->ia_size);
5557			else
5558				EXT4_I(inode)->i_disksize = old_disksize;
5559			up_write(&EXT4_I(inode)->i_data_sem);
5560			ext4_journal_stop(handle);
5561			if (error)
5562				goto out_mmap_sem;
5563			if (!shrink) {
5564				pagecache_isize_extended(inode, oldsize,
5565							 inode->i_size);
5566			} else if (ext4_should_journal_data(inode)) {
5567				ext4_wait_for_tail_page_commit(inode);
5568			}
5569		}
5570
5571		/*
5572		 * Truncate pagecache after we've waited for commit
5573		 * in data=journal mode to make pages freeable.
5574		 */
5575		truncate_pagecache(inode, inode->i_size);
5576		/*
5577		 * Call ext4_truncate() even if i_size didn't change to
5578		 * truncate possible preallocated blocks.
5579		 */
5580		if (attr->ia_size <= oldsize) {
5581			rc = ext4_truncate(inode);
5582			if (rc)
5583				error = rc;
5584		}
5585out_mmap_sem:
5586		up_write(&EXT4_I(inode)->i_mmap_sem);
5587	}
5588
5589	if (!error) {
5590		setattr_copy(inode, attr);
5591		mark_inode_dirty(inode);
5592	}
5593
5594	/*
5595	 * If the call to ext4_truncate failed to get a transaction handle at
5596	 * all, we need to clean up the in-core orphan list manually.
5597	 */
5598	if (orphan && inode->i_nlink)
5599		ext4_orphan_del(NULL, inode);
5600
5601	if (!error && (ia_valid & ATTR_MODE))
5602		rc = posix_acl_chmod(inode, inode->i_mode);
5603
5604err_out:
5605	if  (error)
5606		ext4_std_error(inode->i_sb, error);
5607	if (!error)
5608		error = rc;
5609	return error;
5610}
5611
5612int ext4_getattr(const struct path *path, struct kstat *stat,
5613		 u32 request_mask, unsigned int query_flags)
5614{
5615	struct inode *inode = d_inode(path->dentry);
5616	struct ext4_inode *raw_inode;
5617	struct ext4_inode_info *ei = EXT4_I(inode);
5618	unsigned int flags;
5619
5620	if ((request_mask & STATX_BTIME) &&
5621	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5622		stat->result_mask |= STATX_BTIME;
5623		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5624		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5625	}
5626
5627	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5628	if (flags & EXT4_APPEND_FL)
5629		stat->attributes |= STATX_ATTR_APPEND;
5630	if (flags & EXT4_COMPR_FL)
5631		stat->attributes |= STATX_ATTR_COMPRESSED;
5632	if (flags & EXT4_ENCRYPT_FL)
5633		stat->attributes |= STATX_ATTR_ENCRYPTED;
5634	if (flags & EXT4_IMMUTABLE_FL)
5635		stat->attributes |= STATX_ATTR_IMMUTABLE;
5636	if (flags & EXT4_NODUMP_FL)
5637		stat->attributes |= STATX_ATTR_NODUMP;
5638	if (flags & EXT4_VERITY_FL)
5639		stat->attributes |= STATX_ATTR_VERITY;
5640
5641	stat->attributes_mask |= (STATX_ATTR_APPEND |
5642				  STATX_ATTR_COMPRESSED |
5643				  STATX_ATTR_ENCRYPTED |
5644				  STATX_ATTR_IMMUTABLE |
5645				  STATX_ATTR_NODUMP |
5646				  STATX_ATTR_VERITY);
5647
5648	generic_fillattr(inode, stat);
5649	return 0;
5650}
5651
5652int ext4_file_getattr(const struct path *path, struct kstat *stat,
5653		      u32 request_mask, unsigned int query_flags)
5654{
5655	struct inode *inode = d_inode(path->dentry);
5656	u64 delalloc_blocks;
5657
5658	ext4_getattr(path, stat, request_mask, query_flags);
5659
5660	/*
5661	 * If there is inline data in the inode, the inode will normally not
5662	 * have data blocks allocated (it may have an external xattr block).
5663	 * Report at least one sector for such files, so tools like tar, rsync,
5664	 * others don't incorrectly think the file is completely sparse.
5665	 */
5666	if (unlikely(ext4_has_inline_data(inode)))
5667		stat->blocks += (stat->size + 511) >> 9;
5668
5669	/*
5670	 * We can't update i_blocks if the block allocation is delayed
5671	 * otherwise in the case of system crash before the real block
5672	 * allocation is done, we will have i_blocks inconsistent with
5673	 * on-disk file blocks.
5674	 * We always keep i_blocks updated together with real
5675	 * allocation. But to not confuse with user, stat
5676	 * will return the blocks that include the delayed allocation
5677	 * blocks for this file.
5678	 */
5679	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5680				   EXT4_I(inode)->i_reserved_data_blocks);
5681	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5682	return 0;
5683}
5684
5685static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5686				   int pextents)
5687{
5688	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5689		return ext4_ind_trans_blocks(inode, lblocks);
5690	return ext4_ext_index_trans_blocks(inode, pextents);
5691}
5692
5693/*
5694 * Account for index blocks, block groups bitmaps and block group
5695 * descriptor blocks if modify datablocks and index blocks
5696 * worse case, the indexs blocks spread over different block groups
5697 *
5698 * If datablocks are discontiguous, they are possible to spread over
5699 * different block groups too. If they are contiguous, with flexbg,
5700 * they could still across block group boundary.
5701 *
5702 * Also account for superblock, inode, quota and xattr blocks
5703 */
5704static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5705				  int pextents)
5706{
5707	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5708	int gdpblocks;
5709	int idxblocks;
5710	int ret = 0;
5711
5712	/*
5713	 * How many index blocks need to touch to map @lblocks logical blocks
5714	 * to @pextents physical extents?
5715	 */
5716	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5717
5718	ret = idxblocks;
5719
5720	/*
5721	 * Now let's see how many group bitmaps and group descriptors need
5722	 * to account
5723	 */
5724	groups = idxblocks + pextents;
5725	gdpblocks = groups;
5726	if (groups > ngroups)
5727		groups = ngroups;
5728	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5729		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5730
5731	/* bitmaps and block group descriptor blocks */
5732	ret += groups + gdpblocks;
5733
5734	/* Blocks for super block, inode, quota and xattr blocks */
5735	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5736
5737	return ret;
5738}
5739
5740/*
5741 * Calculate the total number of credits to reserve to fit
5742 * the modification of a single pages into a single transaction,
5743 * which may include multiple chunks of block allocations.
5744 *
5745 * This could be called via ext4_write_begin()
5746 *
5747 * We need to consider the worse case, when
5748 * one new block per extent.
5749 */
5750int ext4_writepage_trans_blocks(struct inode *inode)
5751{
5752	int bpp = ext4_journal_blocks_per_page(inode);
5753	int ret;
5754
5755	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5756
5757	/* Account for data blocks for journalled mode */
5758	if (ext4_should_journal_data(inode))
5759		ret += bpp;
5760	return ret;
5761}
5762
5763/*
5764 * Calculate the journal credits for a chunk of data modification.
5765 *
5766 * This is called from DIO, fallocate or whoever calling
5767 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5768 *
5769 * journal buffers for data blocks are not included here, as DIO
5770 * and fallocate do no need to journal data buffers.
5771 */
5772int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5773{
5774	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5775}
5776
5777/*
5778 * The caller must have previously called ext4_reserve_inode_write().
5779 * Give this, we know that the caller already has write access to iloc->bh.
5780 */
5781int ext4_mark_iloc_dirty(handle_t *handle,
5782			 struct inode *inode, struct ext4_iloc *iloc)
5783{
5784	int err = 0;
5785
5786	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5787		put_bh(iloc->bh);
5788		return -EIO;
5789	}
5790	ext4_fc_track_inode(handle, inode);
5791
5792	/*
5793	 * ea_inodes are using i_version for storing reference count, don't
5794	 * mess with it
5795	 */
5796	if (IS_I_VERSION(inode) &&
5797	    !(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
5798		inode_inc_iversion(inode);
5799
5800	/* the do_update_inode consumes one bh->b_count */
5801	get_bh(iloc->bh);
5802
5803	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5804	err = ext4_do_update_inode(handle, inode, iloc);
5805	put_bh(iloc->bh);
5806	return err;
5807}
5808
5809/*
5810 * On success, We end up with an outstanding reference count against
5811 * iloc->bh.  This _must_ be cleaned up later.
5812 */
5813
5814int
5815ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5816			 struct ext4_iloc *iloc)
5817{
5818	int err;
5819
5820	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5821		return -EIO;
5822
5823	err = ext4_get_inode_loc(inode, iloc);
5824	if (!err) {
5825		BUFFER_TRACE(iloc->bh, "get_write_access");
5826		err = ext4_journal_get_write_access(handle, iloc->bh);
5827		if (err) {
5828			brelse(iloc->bh);
5829			iloc->bh = NULL;
5830		}
5831	}
5832	ext4_std_error(inode->i_sb, err);
5833	return err;
5834}
5835
5836static int __ext4_expand_extra_isize(struct inode *inode,
5837				     unsigned int new_extra_isize,
5838				     struct ext4_iloc *iloc,
5839				     handle_t *handle, int *no_expand)
5840{
5841	struct ext4_inode *raw_inode;
5842	struct ext4_xattr_ibody_header *header;
5843	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5844	struct ext4_inode_info *ei = EXT4_I(inode);
5845	int error;
5846
5847	/* this was checked at iget time, but double check for good measure */
5848	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5849	    (ei->i_extra_isize & 3)) {
5850		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5851				 ei->i_extra_isize,
5852				 EXT4_INODE_SIZE(inode->i_sb));
5853		return -EFSCORRUPTED;
5854	}
5855	if ((new_extra_isize < ei->i_extra_isize) ||
5856	    (new_extra_isize < 4) ||
5857	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5858		return -EINVAL;	/* Should never happen */
5859
5860	raw_inode = ext4_raw_inode(iloc);
5861
5862	header = IHDR(inode, raw_inode);
5863
5864	/* No extended attributes present */
5865	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5866	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5867		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5868		       EXT4_I(inode)->i_extra_isize, 0,
5869		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5870		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5871		return 0;
5872	}
5873
5874	/*
5875	 * We may need to allocate external xattr block so we need quotas
5876	 * initialized. Here we can be called with various locks held so we
5877	 * cannot affort to initialize quotas ourselves. So just bail.
5878	 */
5879	if (dquot_initialize_needed(inode))
5880		return -EAGAIN;
5881
5882	/* try to expand with EAs present */
5883	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5884					   raw_inode, handle);
5885	if (error) {
5886		/*
5887		 * Inode size expansion failed; don't try again
5888		 */
5889		*no_expand = 1;
5890	}
5891
5892	return error;
5893}
5894
5895/*
5896 * Expand an inode by new_extra_isize bytes.
5897 * Returns 0 on success or negative error number on failure.
5898 */
5899static int ext4_try_to_expand_extra_isize(struct inode *inode,
5900					  unsigned int new_extra_isize,
5901					  struct ext4_iloc iloc,
5902					  handle_t *handle)
5903{
5904	int no_expand;
5905	int error;
5906
5907	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5908		return -EOVERFLOW;
5909
5910	/*
5911	 * In nojournal mode, we can immediately attempt to expand
5912	 * the inode.  When journaled, we first need to obtain extra
5913	 * buffer credits since we may write into the EA block
5914	 * with this same handle. If journal_extend fails, then it will
5915	 * only result in a minor loss of functionality for that inode.
5916	 * If this is felt to be critical, then e2fsck should be run to
5917	 * force a large enough s_min_extra_isize.
5918	 */
5919	if (ext4_journal_extend(handle,
5920				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5921		return -ENOSPC;
5922
5923	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5924		return -EBUSY;
5925
5926	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5927					  handle, &no_expand);
5928	ext4_write_unlock_xattr(inode, &no_expand);
5929
5930	return error;
5931}
5932
5933int ext4_expand_extra_isize(struct inode *inode,
5934			    unsigned int new_extra_isize,
5935			    struct ext4_iloc *iloc)
5936{
5937	handle_t *handle;
5938	int no_expand;
5939	int error, rc;
5940
5941	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5942		brelse(iloc->bh);
5943		return -EOVERFLOW;
5944	}
5945
5946	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5947				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5948	if (IS_ERR(handle)) {
5949		error = PTR_ERR(handle);
5950		brelse(iloc->bh);
5951		return error;
5952	}
5953
5954	ext4_write_lock_xattr(inode, &no_expand);
5955
5956	BUFFER_TRACE(iloc->bh, "get_write_access");
5957	error = ext4_journal_get_write_access(handle, iloc->bh);
5958	if (error) {
5959		brelse(iloc->bh);
5960		goto out_unlock;
5961	}
5962
5963	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5964					  handle, &no_expand);
5965
5966	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5967	if (!error)
5968		error = rc;
5969
5970out_unlock:
5971	ext4_write_unlock_xattr(inode, &no_expand);
5972	ext4_journal_stop(handle);
5973	return error;
5974}
5975
5976/*
5977 * What we do here is to mark the in-core inode as clean with respect to inode
5978 * dirtiness (it may still be data-dirty).
5979 * This means that the in-core inode may be reaped by prune_icache
5980 * without having to perform any I/O.  This is a very good thing,
5981 * because *any* task may call prune_icache - even ones which
5982 * have a transaction open against a different journal.
5983 *
5984 * Is this cheating?  Not really.  Sure, we haven't written the
5985 * inode out, but prune_icache isn't a user-visible syncing function.
5986 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5987 * we start and wait on commits.
5988 */
5989int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5990				const char *func, unsigned int line)
5991{
5992	struct ext4_iloc iloc;
5993	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5994	int err;
5995
5996	might_sleep();
5997	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5998	err = ext4_reserve_inode_write(handle, inode, &iloc);
5999	if (err)
6000		goto out;
6001
6002	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6003		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6004					       iloc, handle);
6005
6006	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6007out:
6008	if (unlikely(err))
6009		ext4_error_inode_err(inode, func, line, 0, err,
6010					"mark_inode_dirty error");
6011	return err;
6012}
6013
6014/*
6015 * ext4_dirty_inode() is called from __mark_inode_dirty()
6016 *
6017 * We're really interested in the case where a file is being extended.
6018 * i_size has been changed by generic_commit_write() and we thus need
6019 * to include the updated inode in the current transaction.
6020 *
6021 * Also, dquot_alloc_block() will always dirty the inode when blocks
6022 * are allocated to the file.
6023 *
6024 * If the inode is marked synchronous, we don't honour that here - doing
6025 * so would cause a commit on atime updates, which we don't bother doing.
6026 * We handle synchronous inodes at the highest possible level.
6027 *
6028 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6029 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6030 * to copy into the on-disk inode structure are the timestamp files.
6031 */
6032void ext4_dirty_inode(struct inode *inode, int flags)
6033{
6034	handle_t *handle;
6035
6036	if (flags == I_DIRTY_TIME)
6037		return;
6038	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6039	if (IS_ERR(handle))
6040		goto out;
6041
6042	ext4_mark_inode_dirty(handle, inode);
6043
6044	ext4_journal_stop(handle);
6045out:
6046	return;
6047}
6048
6049int ext4_change_inode_journal_flag(struct inode *inode, int val)
6050{
6051	journal_t *journal;
6052	handle_t *handle;
6053	int err;
6054	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6055
6056	/*
6057	 * We have to be very careful here: changing a data block's
6058	 * journaling status dynamically is dangerous.  If we write a
6059	 * data block to the journal, change the status and then delete
6060	 * that block, we risk forgetting to revoke the old log record
6061	 * from the journal and so a subsequent replay can corrupt data.
6062	 * So, first we make sure that the journal is empty and that
6063	 * nobody is changing anything.
6064	 */
6065
6066	journal = EXT4_JOURNAL(inode);
6067	if (!journal)
6068		return 0;
6069	if (is_journal_aborted(journal))
6070		return -EROFS;
6071
6072	/* Wait for all existing dio workers */
6073	inode_dio_wait(inode);
6074
6075	/*
6076	 * Before flushing the journal and switching inode's aops, we have
6077	 * to flush all dirty data the inode has. There can be outstanding
6078	 * delayed allocations, there can be unwritten extents created by
6079	 * fallocate or buffered writes in dioread_nolock mode covered by
6080	 * dirty data which can be converted only after flushing the dirty
6081	 * data (and journalled aops don't know how to handle these cases).
6082	 */
6083	if (val) {
6084		down_write(&EXT4_I(inode)->i_mmap_sem);
6085		err = filemap_write_and_wait(inode->i_mapping);
6086		if (err < 0) {
6087			up_write(&EXT4_I(inode)->i_mmap_sem);
6088			return err;
6089		}
6090	}
6091
6092	percpu_down_write(&sbi->s_writepages_rwsem);
6093	jbd2_journal_lock_updates(journal);
6094
6095	/*
6096	 * OK, there are no updates running now, and all cached data is
6097	 * synced to disk.  We are now in a completely consistent state
6098	 * which doesn't have anything in the journal, and we know that
6099	 * no filesystem updates are running, so it is safe to modify
6100	 * the inode's in-core data-journaling state flag now.
6101	 */
6102
6103	if (val)
6104		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6105	else {
6106		err = jbd2_journal_flush(journal);
6107		if (err < 0) {
6108			jbd2_journal_unlock_updates(journal);
6109			percpu_up_write(&sbi->s_writepages_rwsem);
6110			return err;
6111		}
6112		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6113	}
6114	ext4_set_aops(inode);
6115
6116	jbd2_journal_unlock_updates(journal);
6117	percpu_up_write(&sbi->s_writepages_rwsem);
6118
6119	if (val)
6120		up_write(&EXT4_I(inode)->i_mmap_sem);
6121
6122	/* Finally we can mark the inode as dirty. */
6123
6124	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6125	if (IS_ERR(handle))
6126		return PTR_ERR(handle);
6127
6128	ext4_fc_mark_ineligible(inode->i_sb,
6129		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6130	err = ext4_mark_inode_dirty(handle, inode);
6131	ext4_handle_sync(handle);
6132	ext4_journal_stop(handle);
6133	ext4_std_error(inode->i_sb, err);
6134
6135	return err;
6136}
6137
6138static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6139{
6140	return !buffer_mapped(bh);
6141}
6142
6143vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6144{
6145	struct vm_area_struct *vma = vmf->vma;
6146	struct page *page = vmf->page;
6147	loff_t size;
6148	unsigned long len;
6149	int err;
6150	vm_fault_t ret;
6151	struct file *file = vma->vm_file;
6152	struct inode *inode = file_inode(file);
6153	struct address_space *mapping = inode->i_mapping;
6154	handle_t *handle;
6155	get_block_t *get_block;
6156	int retries = 0;
6157
6158	if (unlikely(IS_IMMUTABLE(inode)))
6159		return VM_FAULT_SIGBUS;
6160
6161	sb_start_pagefault(inode->i_sb);
6162	file_update_time(vma->vm_file);
6163
6164	down_read(&EXT4_I(inode)->i_mmap_sem);
6165
6166	err = ext4_convert_inline_data(inode);
6167	if (err)
6168		goto out_ret;
6169
6170	/*
6171	 * On data journalling we skip straight to the transaction handle:
6172	 * there's no delalloc; page truncated will be checked later; the
6173	 * early return w/ all buffers mapped (calculates size/len) can't
6174	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6175	 */
6176	if (ext4_should_journal_data(inode))
6177		goto retry_alloc;
6178
6179	/* Delalloc case is easy... */
6180	if (test_opt(inode->i_sb, DELALLOC) &&
6181	    !ext4_nonda_switch(inode->i_sb)) {
6182		do {
6183			err = block_page_mkwrite(vma, vmf,
6184						   ext4_da_get_block_prep);
6185		} while (err == -ENOSPC &&
6186		       ext4_should_retry_alloc(inode->i_sb, &retries));
6187		goto out_ret;
6188	}
6189
6190	lock_page(page);
6191	size = i_size_read(inode);
6192	/* Page got truncated from under us? */
6193	if (page->mapping != mapping || page_offset(page) > size) {
6194		unlock_page(page);
6195		ret = VM_FAULT_NOPAGE;
6196		goto out;
6197	}
6198
6199	if (page->index == size >> PAGE_SHIFT)
6200		len = size & ~PAGE_MASK;
6201	else
6202		len = PAGE_SIZE;
6203	/*
6204	 * Return if we have all the buffers mapped. This avoids the need to do
6205	 * journal_start/journal_stop which can block and take a long time
6206	 *
6207	 * This cannot be done for data journalling, as we have to add the
6208	 * inode to the transaction's list to writeprotect pages on commit.
6209	 */
6210	if (page_has_buffers(page)) {
6211		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6212					    0, len, NULL,
6213					    ext4_bh_unmapped)) {
6214			/* Wait so that we don't change page under IO */
6215			wait_for_stable_page(page);
6216			ret = VM_FAULT_LOCKED;
6217			goto out;
6218		}
6219	}
6220	unlock_page(page);
6221	/* OK, we need to fill the hole... */
6222	if (ext4_should_dioread_nolock(inode))
6223		get_block = ext4_get_block_unwritten;
6224	else
6225		get_block = ext4_get_block;
6226retry_alloc:
6227	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6228				    ext4_writepage_trans_blocks(inode));
6229	if (IS_ERR(handle)) {
6230		ret = VM_FAULT_SIGBUS;
6231		goto out;
6232	}
6233	/*
6234	 * Data journalling can't use block_page_mkwrite() because it
6235	 * will set_buffer_dirty() before do_journal_get_write_access()
6236	 * thus might hit warning messages for dirty metadata buffers.
6237	 */
6238	if (!ext4_should_journal_data(inode)) {
6239		err = block_page_mkwrite(vma, vmf, get_block);
6240	} else {
6241		lock_page(page);
6242		size = i_size_read(inode);
6243		/* Page got truncated from under us? */
6244		if (page->mapping != mapping || page_offset(page) > size) {
6245			ret = VM_FAULT_NOPAGE;
6246			goto out_error;
6247		}
6248
6249		if (page->index == size >> PAGE_SHIFT)
6250			len = size & ~PAGE_MASK;
6251		else
6252			len = PAGE_SIZE;
6253
6254		err = __block_write_begin(page, 0, len, ext4_get_block);
6255		if (!err) {
6256			ret = VM_FAULT_SIGBUS;
6257			if (ext4_walk_page_buffers(handle, page_buffers(page),
6258					0, len, NULL, do_journal_get_write_access))
6259				goto out_error;
6260			if (ext4_walk_page_buffers(handle, page_buffers(page),
6261					0, len, NULL, write_end_fn))
6262				goto out_error;
6263			if (ext4_jbd2_inode_add_write(handle, inode,
6264						      page_offset(page), len))
6265				goto out_error;
6266			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6267		} else {
6268			unlock_page(page);
6269		}
6270	}
6271	ext4_journal_stop(handle);
6272	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6273		goto retry_alloc;
6274out_ret:
6275	ret = block_page_mkwrite_return(err);
6276out:
6277	up_read(&EXT4_I(inode)->i_mmap_sem);
6278	sb_end_pagefault(inode->i_sb);
6279	return ret;
6280out_error:
6281	unlock_page(page);
6282	ext4_journal_stop(handle);
6283	goto out;
6284}
6285
6286vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6287{
6288	struct inode *inode = file_inode(vmf->vma->vm_file);
6289	vm_fault_t ret;
6290
6291	down_read(&EXT4_I(inode)->i_mmap_sem);
6292	ret = filemap_fault(vmf);
6293	up_read(&EXT4_I(inode)->i_mmap_sem);
6294
6295	return ret;
6296}
6297