1// SPDX-License-Identifier: GPL-2.0 2/* 3 * linux/fs/ext4/indirect.c 4 * 5 * from 6 * 7 * linux/fs/ext4/inode.c 8 * 9 * Copyright (C) 1992, 1993, 1994, 1995 10 * Remy Card (card@masi.ibp.fr) 11 * Laboratoire MASI - Institut Blaise Pascal 12 * Universite Pierre et Marie Curie (Paris VI) 13 * 14 * from 15 * 16 * linux/fs/minix/inode.c 17 * 18 * Copyright (C) 1991, 1992 Linus Torvalds 19 * 20 * Goal-directed block allocation by Stephen Tweedie 21 * (sct@redhat.com), 1993, 1998 22 */ 23 24#include "ext4_jbd2.h" 25#include "truncate.h" 26#include <linux/dax.h> 27#include <linux/uio.h> 28 29#include <trace/events/ext4.h> 30 31typedef struct { 32 __le32 *p; 33 __le32 key; 34 struct buffer_head *bh; 35} Indirect; 36 37static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 38{ 39 p->key = *(p->p = v); 40 p->bh = bh; 41} 42 43/** 44 * ext4_block_to_path - parse the block number into array of offsets 45 * @inode: inode in question (we are only interested in its superblock) 46 * @i_block: block number to be parsed 47 * @offsets: array to store the offsets in 48 * @boundary: set this non-zero if the referred-to block is likely to be 49 * followed (on disk) by an indirect block. 50 * 51 * To store the locations of file's data ext4 uses a data structure common 52 * for UNIX filesystems - tree of pointers anchored in the inode, with 53 * data blocks at leaves and indirect blocks in intermediate nodes. 54 * This function translates the block number into path in that tree - 55 * return value is the path length and @offsets[n] is the offset of 56 * pointer to (n+1)th node in the nth one. If @block is out of range 57 * (negative or too large) warning is printed and zero returned. 58 * 59 * Note: function doesn't find node addresses, so no IO is needed. All 60 * we need to know is the capacity of indirect blocks (taken from the 61 * inode->i_sb). 62 */ 63 64/* 65 * Portability note: the last comparison (check that we fit into triple 66 * indirect block) is spelled differently, because otherwise on an 67 * architecture with 32-bit longs and 8Kb pages we might get into trouble 68 * if our filesystem had 8Kb blocks. We might use long long, but that would 69 * kill us on x86. Oh, well, at least the sign propagation does not matter - 70 * i_block would have to be negative in the very beginning, so we would not 71 * get there at all. 72 */ 73 74static int ext4_block_to_path(struct inode *inode, 75 ext4_lblk_t i_block, 76 ext4_lblk_t offsets[4], int *boundary) 77{ 78 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 79 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 80 const long direct_blocks = EXT4_NDIR_BLOCKS, 81 indirect_blocks = ptrs, 82 double_blocks = (1 << (ptrs_bits * 2)); 83 int n = 0; 84 int final = 0; 85 86 if (i_block < direct_blocks) { 87 offsets[n++] = i_block; 88 final = direct_blocks; 89 } else if ((i_block -= direct_blocks) < indirect_blocks) { 90 offsets[n++] = EXT4_IND_BLOCK; 91 offsets[n++] = i_block; 92 final = ptrs; 93 } else if ((i_block -= indirect_blocks) < double_blocks) { 94 offsets[n++] = EXT4_DIND_BLOCK; 95 offsets[n++] = i_block >> ptrs_bits; 96 offsets[n++] = i_block & (ptrs - 1); 97 final = ptrs; 98 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 99 offsets[n++] = EXT4_TIND_BLOCK; 100 offsets[n++] = i_block >> (ptrs_bits * 2); 101 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 102 offsets[n++] = i_block & (ptrs - 1); 103 final = ptrs; 104 } else { 105 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 106 i_block + direct_blocks + 107 indirect_blocks + double_blocks, inode->i_ino); 108 } 109 if (boundary) 110 *boundary = final - 1 - (i_block & (ptrs - 1)); 111 return n; 112} 113 114/** 115 * ext4_get_branch - read the chain of indirect blocks leading to data 116 * @inode: inode in question 117 * @depth: depth of the chain (1 - direct pointer, etc.) 118 * @offsets: offsets of pointers in inode/indirect blocks 119 * @chain: place to store the result 120 * @err: here we store the error value 121 * 122 * Function fills the array of triples <key, p, bh> and returns %NULL 123 * if everything went OK or the pointer to the last filled triple 124 * (incomplete one) otherwise. Upon the return chain[i].key contains 125 * the number of (i+1)-th block in the chain (as it is stored in memory, 126 * i.e. little-endian 32-bit), chain[i].p contains the address of that 127 * number (it points into struct inode for i==0 and into the bh->b_data 128 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 129 * block for i>0 and NULL for i==0. In other words, it holds the block 130 * numbers of the chain, addresses they were taken from (and where we can 131 * verify that chain did not change) and buffer_heads hosting these 132 * numbers. 133 * 134 * Function stops when it stumbles upon zero pointer (absent block) 135 * (pointer to last triple returned, *@err == 0) 136 * or when it gets an IO error reading an indirect block 137 * (ditto, *@err == -EIO) 138 * or when it reads all @depth-1 indirect blocks successfully and finds 139 * the whole chain, all way to the data (returns %NULL, *err == 0). 140 * 141 * Need to be called with 142 * down_read(&EXT4_I(inode)->i_data_sem) 143 */ 144static Indirect *ext4_get_branch(struct inode *inode, int depth, 145 ext4_lblk_t *offsets, 146 Indirect chain[4], int *err) 147{ 148 struct super_block *sb = inode->i_sb; 149 Indirect *p = chain; 150 struct buffer_head *bh; 151 unsigned int key; 152 int ret = -EIO; 153 154 *err = 0; 155 /* i_data is not going away, no lock needed */ 156 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 157 if (!p->key) 158 goto no_block; 159 while (--depth) { 160 key = le32_to_cpu(p->key); 161 if (key > ext4_blocks_count(EXT4_SB(sb)->s_es)) { 162 /* the block was out of range */ 163 ret = -EFSCORRUPTED; 164 goto failure; 165 } 166 bh = sb_getblk(sb, key); 167 if (unlikely(!bh)) { 168 ret = -ENOMEM; 169 goto failure; 170 } 171 172 if (!bh_uptodate_or_lock(bh)) { 173 if (ext4_read_bh(bh, 0, NULL) < 0) { 174 put_bh(bh); 175 goto failure; 176 } 177 /* validate block references */ 178 if (ext4_check_indirect_blockref(inode, bh)) { 179 put_bh(bh); 180 goto failure; 181 } 182 } 183 184 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 185 /* Reader: end */ 186 if (!p->key) 187 goto no_block; 188 } 189 return NULL; 190 191failure: 192 *err = ret; 193no_block: 194 return p; 195} 196 197/** 198 * ext4_find_near - find a place for allocation with sufficient locality 199 * @inode: owner 200 * @ind: descriptor of indirect block. 201 * 202 * This function returns the preferred place for block allocation. 203 * It is used when heuristic for sequential allocation fails. 204 * Rules are: 205 * + if there is a block to the left of our position - allocate near it. 206 * + if pointer will live in indirect block - allocate near that block. 207 * + if pointer will live in inode - allocate in the same 208 * cylinder group. 209 * 210 * In the latter case we colour the starting block by the callers PID to 211 * prevent it from clashing with concurrent allocations for a different inode 212 * in the same block group. The PID is used here so that functionally related 213 * files will be close-by on-disk. 214 * 215 * Caller must make sure that @ind is valid and will stay that way. 216 */ 217static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 218{ 219 struct ext4_inode_info *ei = EXT4_I(inode); 220 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 221 __le32 *p; 222 223 /* Try to find previous block */ 224 for (p = ind->p - 1; p >= start; p--) { 225 if (*p) 226 return le32_to_cpu(*p); 227 } 228 229 /* No such thing, so let's try location of indirect block */ 230 if (ind->bh) 231 return ind->bh->b_blocknr; 232 233 /* 234 * It is going to be referred to from the inode itself? OK, just put it 235 * into the same cylinder group then. 236 */ 237 return ext4_inode_to_goal_block(inode); 238} 239 240/** 241 * ext4_find_goal - find a preferred place for allocation. 242 * @inode: owner 243 * @block: block we want 244 * @partial: pointer to the last triple within a chain 245 * 246 * Normally this function find the preferred place for block allocation, 247 * returns it. 248 * Because this is only used for non-extent files, we limit the block nr 249 * to 32 bits. 250 */ 251static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 252 Indirect *partial) 253{ 254 ext4_fsblk_t goal; 255 256 /* 257 * XXX need to get goal block from mballoc's data structures 258 */ 259 260 goal = ext4_find_near(inode, partial); 261 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 262 return goal; 263} 264 265/** 266 * ext4_blks_to_allocate - Look up the block map and count the number 267 * of direct blocks need to be allocated for the given branch. 268 * 269 * @branch: chain of indirect blocks 270 * @k: number of blocks need for indirect blocks 271 * @blks: number of data blocks to be mapped. 272 * @blocks_to_boundary: the offset in the indirect block 273 * 274 * return the total number of blocks to be allocate, including the 275 * direct and indirect blocks. 276 */ 277static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 278 int blocks_to_boundary) 279{ 280 unsigned int count = 0; 281 282 /* 283 * Simple case, [t,d]Indirect block(s) has not allocated yet 284 * then it's clear blocks on that path have not allocated 285 */ 286 if (k > 0) { 287 /* right now we don't handle cross boundary allocation */ 288 if (blks < blocks_to_boundary + 1) 289 count += blks; 290 else 291 count += blocks_to_boundary + 1; 292 return count; 293 } 294 295 count++; 296 while (count < blks && count <= blocks_to_boundary && 297 le32_to_cpu(*(branch[0].p + count)) == 0) { 298 count++; 299 } 300 return count; 301} 302 303/** 304 * ext4_alloc_branch() - allocate and set up a chain of blocks 305 * @handle: handle for this transaction 306 * @ar: structure describing the allocation request 307 * @indirect_blks: number of allocated indirect blocks 308 * @offsets: offsets (in the blocks) to store the pointers to next. 309 * @branch: place to store the chain in. 310 * 311 * This function allocates blocks, zeroes out all but the last one, 312 * links them into chain and (if we are synchronous) writes them to disk. 313 * In other words, it prepares a branch that can be spliced onto the 314 * inode. It stores the information about that chain in the branch[], in 315 * the same format as ext4_get_branch() would do. We are calling it after 316 * we had read the existing part of chain and partial points to the last 317 * triple of that (one with zero ->key). Upon the exit we have the same 318 * picture as after the successful ext4_get_block(), except that in one 319 * place chain is disconnected - *branch->p is still zero (we did not 320 * set the last link), but branch->key contains the number that should 321 * be placed into *branch->p to fill that gap. 322 * 323 * If allocation fails we free all blocks we've allocated (and forget 324 * their buffer_heads) and return the error value the from failed 325 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 326 * as described above and return 0. 327 */ 328static int ext4_alloc_branch(handle_t *handle, 329 struct ext4_allocation_request *ar, 330 int indirect_blks, ext4_lblk_t *offsets, 331 Indirect *branch) 332{ 333 struct buffer_head * bh; 334 ext4_fsblk_t b, new_blocks[4]; 335 __le32 *p; 336 int i, j, err, len = 1; 337 338 for (i = 0; i <= indirect_blks; i++) { 339 if (i == indirect_blks) { 340 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err); 341 } else { 342 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle, 343 ar->inode, ar->goal, 344 ar->flags & EXT4_MB_DELALLOC_RESERVED, 345 NULL, &err); 346 /* Simplify error cleanup... */ 347 branch[i+1].bh = NULL; 348 } 349 if (err) { 350 i--; 351 goto failed; 352 } 353 branch[i].key = cpu_to_le32(new_blocks[i]); 354 if (i == 0) 355 continue; 356 357 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]); 358 if (unlikely(!bh)) { 359 err = -ENOMEM; 360 goto failed; 361 } 362 lock_buffer(bh); 363 BUFFER_TRACE(bh, "call get_create_access"); 364 err = ext4_journal_get_create_access(handle, bh); 365 if (err) { 366 unlock_buffer(bh); 367 goto failed; 368 } 369 370 memset(bh->b_data, 0, bh->b_size); 371 p = branch[i].p = (__le32 *) bh->b_data + offsets[i]; 372 b = new_blocks[i]; 373 374 if (i == indirect_blks) 375 len = ar->len; 376 for (j = 0; j < len; j++) 377 *p++ = cpu_to_le32(b++); 378 379 BUFFER_TRACE(bh, "marking uptodate"); 380 set_buffer_uptodate(bh); 381 unlock_buffer(bh); 382 383 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 384 err = ext4_handle_dirty_metadata(handle, ar->inode, bh); 385 if (err) 386 goto failed; 387 } 388 return 0; 389failed: 390 if (i == indirect_blks) { 391 /* Free data blocks */ 392 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i], 393 ar->len, 0); 394 i--; 395 } 396 for (; i >= 0; i--) { 397 /* 398 * We want to ext4_forget() only freshly allocated indirect 399 * blocks. Buffer for new_blocks[i] is at branch[i+1].bh 400 * (buffer at branch[0].bh is indirect block / inode already 401 * existing before ext4_alloc_branch() was called). Also 402 * because blocks are freshly allocated, we don't need to 403 * revoke them which is why we don't set 404 * EXT4_FREE_BLOCKS_METADATA. 405 */ 406 ext4_free_blocks(handle, ar->inode, branch[i+1].bh, 407 new_blocks[i], 1, 408 branch[i+1].bh ? EXT4_FREE_BLOCKS_FORGET : 0); 409 } 410 return err; 411} 412 413/** 414 * ext4_splice_branch() - splice the allocated branch onto inode. 415 * @handle: handle for this transaction 416 * @ar: structure describing the allocation request 417 * @where: location of missing link 418 * @num: number of indirect blocks we are adding 419 * 420 * This function fills the missing link and does all housekeeping needed in 421 * inode (->i_blocks, etc.). In case of success we end up with the full 422 * chain to new block and return 0. 423 */ 424static int ext4_splice_branch(handle_t *handle, 425 struct ext4_allocation_request *ar, 426 Indirect *where, int num) 427{ 428 int i; 429 int err = 0; 430 ext4_fsblk_t current_block; 431 432 /* 433 * If we're splicing into a [td]indirect block (as opposed to the 434 * inode) then we need to get write access to the [td]indirect block 435 * before the splice. 436 */ 437 if (where->bh) { 438 BUFFER_TRACE(where->bh, "get_write_access"); 439 err = ext4_journal_get_write_access(handle, where->bh); 440 if (err) 441 goto err_out; 442 } 443 /* That's it */ 444 445 *where->p = where->key; 446 447 /* 448 * Update the host buffer_head or inode to point to more just allocated 449 * direct blocks blocks 450 */ 451 if (num == 0 && ar->len > 1) { 452 current_block = le32_to_cpu(where->key) + 1; 453 for (i = 1; i < ar->len; i++) 454 *(where->p + i) = cpu_to_le32(current_block++); 455 } 456 457 /* We are done with atomic stuff, now do the rest of housekeeping */ 458 /* had we spliced it onto indirect block? */ 459 if (where->bh) { 460 /* 461 * If we spliced it onto an indirect block, we haven't 462 * altered the inode. Note however that if it is being spliced 463 * onto an indirect block at the very end of the file (the 464 * file is growing) then we *will* alter the inode to reflect 465 * the new i_size. But that is not done here - it is done in 466 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 467 */ 468 jbd_debug(5, "splicing indirect only\n"); 469 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 470 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh); 471 if (err) 472 goto err_out; 473 } else { 474 /* 475 * OK, we spliced it into the inode itself on a direct block. 476 */ 477 err = ext4_mark_inode_dirty(handle, ar->inode); 478 if (unlikely(err)) 479 goto err_out; 480 jbd_debug(5, "splicing direct\n"); 481 } 482 return err; 483 484err_out: 485 for (i = 1; i <= num; i++) { 486 /* 487 * branch[i].bh is newly allocated, so there is no 488 * need to revoke the block, which is why we don't 489 * need to set EXT4_FREE_BLOCKS_METADATA. 490 */ 491 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1, 492 EXT4_FREE_BLOCKS_FORGET); 493 } 494 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key), 495 ar->len, 0); 496 497 return err; 498} 499 500/* 501 * The ext4_ind_map_blocks() function handles non-extents inodes 502 * (i.e., using the traditional indirect/double-indirect i_blocks 503 * scheme) for ext4_map_blocks(). 504 * 505 * Allocation strategy is simple: if we have to allocate something, we will 506 * have to go the whole way to leaf. So let's do it before attaching anything 507 * to tree, set linkage between the newborn blocks, write them if sync is 508 * required, recheck the path, free and repeat if check fails, otherwise 509 * set the last missing link (that will protect us from any truncate-generated 510 * removals - all blocks on the path are immune now) and possibly force the 511 * write on the parent block. 512 * That has a nice additional property: no special recovery from the failed 513 * allocations is needed - we simply release blocks and do not touch anything 514 * reachable from inode. 515 * 516 * `handle' can be NULL if create == 0. 517 * 518 * return > 0, # of blocks mapped or allocated. 519 * return = 0, if plain lookup failed. 520 * return < 0, error case. 521 * 522 * The ext4_ind_get_blocks() function should be called with 523 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 524 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 525 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 526 * blocks. 527 */ 528int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 529 struct ext4_map_blocks *map, 530 int flags) 531{ 532 struct ext4_allocation_request ar; 533 int err = -EIO; 534 ext4_lblk_t offsets[4]; 535 Indirect chain[4]; 536 Indirect *partial; 537 int indirect_blks; 538 int blocks_to_boundary = 0; 539 int depth; 540 int count = 0; 541 ext4_fsblk_t first_block = 0; 542 543 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 544 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 545 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 546 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 547 &blocks_to_boundary); 548 549 if (depth == 0) 550 goto out; 551 552 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 553 554 /* Simplest case - block found, no allocation needed */ 555 if (!partial) { 556 first_block = le32_to_cpu(chain[depth - 1].key); 557 count++; 558 /*map more blocks*/ 559 while (count < map->m_len && count <= blocks_to_boundary) { 560 ext4_fsblk_t blk; 561 562 blk = le32_to_cpu(*(chain[depth-1].p + count)); 563 564 if (blk == first_block + count) 565 count++; 566 else 567 break; 568 } 569 goto got_it; 570 } 571 572 /* Next simple case - plain lookup failed */ 573 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 574 unsigned epb = inode->i_sb->s_blocksize / sizeof(u32); 575 int i; 576 577 /* 578 * Count number blocks in a subtree under 'partial'. At each 579 * level we count number of complete empty subtrees beyond 580 * current offset and then descend into the subtree only 581 * partially beyond current offset. 582 */ 583 count = 0; 584 for (i = partial - chain + 1; i < depth; i++) 585 count = count * epb + (epb - offsets[i] - 1); 586 count++; 587 /* Fill in size of a hole we found */ 588 map->m_pblk = 0; 589 map->m_len = min_t(unsigned int, map->m_len, count); 590 goto cleanup; 591 } 592 593 /* Failed read of indirect block */ 594 if (err == -EIO) 595 goto cleanup; 596 597 /* 598 * Okay, we need to do block allocation. 599 */ 600 if (ext4_has_feature_bigalloc(inode->i_sb)) { 601 EXT4_ERROR_INODE(inode, "Can't allocate blocks for " 602 "non-extent mapped inodes with bigalloc"); 603 err = -EFSCORRUPTED; 604 goto out; 605 } 606 607 /* Set up for the direct block allocation */ 608 memset(&ar, 0, sizeof(ar)); 609 ar.inode = inode; 610 ar.logical = map->m_lblk; 611 if (S_ISREG(inode->i_mode)) 612 ar.flags = EXT4_MB_HINT_DATA; 613 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 614 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 615 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 616 ar.flags |= EXT4_MB_USE_RESERVED; 617 618 ar.goal = ext4_find_goal(inode, map->m_lblk, partial); 619 620 /* the number of blocks need to allocate for [d,t]indirect blocks */ 621 indirect_blks = (chain + depth) - partial - 1; 622 623 /* 624 * Next look up the indirect map to count the totoal number of 625 * direct blocks to allocate for this branch. 626 */ 627 ar.len = ext4_blks_to_allocate(partial, indirect_blks, 628 map->m_len, blocks_to_boundary); 629 630 /* 631 * Block out ext4_truncate while we alter the tree 632 */ 633 err = ext4_alloc_branch(handle, &ar, indirect_blks, 634 offsets + (partial - chain), partial); 635 636 /* 637 * The ext4_splice_branch call will free and forget any buffers 638 * on the new chain if there is a failure, but that risks using 639 * up transaction credits, especially for bitmaps where the 640 * credits cannot be returned. Can we handle this somehow? We 641 * may need to return -EAGAIN upwards in the worst case. --sct 642 */ 643 if (!err) 644 err = ext4_splice_branch(handle, &ar, partial, indirect_blks); 645 if (err) 646 goto cleanup; 647 648 map->m_flags |= EXT4_MAP_NEW; 649 650 ext4_update_inode_fsync_trans(handle, inode, 1); 651 count = ar.len; 652 653 /* 654 * Update reserved blocks/metadata blocks after successful block 655 * allocation which had been deferred till now. 656 */ 657 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 658 ext4_da_update_reserve_space(inode, count, 1); 659 660got_it: 661 map->m_flags |= EXT4_MAP_MAPPED; 662 map->m_pblk = le32_to_cpu(chain[depth-1].key); 663 map->m_len = count; 664 if (count > blocks_to_boundary) 665 map->m_flags |= EXT4_MAP_BOUNDARY; 666 err = count; 667 /* Clean up and exit */ 668 partial = chain + depth - 1; /* the whole chain */ 669cleanup: 670 while (partial > chain) { 671 BUFFER_TRACE(partial->bh, "call brelse"); 672 brelse(partial->bh); 673 partial--; 674 } 675out: 676 trace_ext4_ind_map_blocks_exit(inode, flags, map, err); 677 return err; 678} 679 680/* 681 * Calculate number of indirect blocks touched by mapping @nrblocks logically 682 * contiguous blocks 683 */ 684int ext4_ind_trans_blocks(struct inode *inode, int nrblocks) 685{ 686 /* 687 * With N contiguous data blocks, we need at most 688 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, 689 * 2 dindirect blocks, and 1 tindirect block 690 */ 691 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; 692} 693 694static int ext4_ind_trunc_restart_fn(handle_t *handle, struct inode *inode, 695 struct buffer_head *bh, int *dropped) 696{ 697 int err; 698 699 if (bh) { 700 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 701 err = ext4_handle_dirty_metadata(handle, inode, bh); 702 if (unlikely(err)) 703 return err; 704 } 705 err = ext4_mark_inode_dirty(handle, inode); 706 if (unlikely(err)) 707 return err; 708 /* 709 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 710 * moment, get_block can be called only for blocks inside i_size since 711 * page cache has been already dropped and writes are blocked by 712 * i_mutex. So we can safely drop the i_data_sem here. 713 */ 714 BUG_ON(EXT4_JOURNAL(inode) == NULL); 715 ext4_discard_preallocations(inode, 0); 716 up_write(&EXT4_I(inode)->i_data_sem); 717 *dropped = 1; 718 return 0; 719} 720 721/* 722 * Truncate transactions can be complex and absolutely huge. So we need to 723 * be able to restart the transaction at a convenient checkpoint to make 724 * sure we don't overflow the journal. 725 * 726 * Try to extend this transaction for the purposes of truncation. If 727 * extend fails, we restart transaction. 728 */ 729static int ext4_ind_truncate_ensure_credits(handle_t *handle, 730 struct inode *inode, 731 struct buffer_head *bh, 732 int revoke_creds) 733{ 734 int ret; 735 int dropped = 0; 736 737 ret = ext4_journal_ensure_credits_fn(handle, EXT4_RESERVE_TRANS_BLOCKS, 738 ext4_blocks_for_truncate(inode), revoke_creds, 739 ext4_ind_trunc_restart_fn(handle, inode, bh, &dropped)); 740 if (dropped) 741 down_write(&EXT4_I(inode)->i_data_sem); 742 if (ret <= 0) 743 return ret; 744 if (bh) { 745 BUFFER_TRACE(bh, "retaking write access"); 746 ret = ext4_journal_get_write_access(handle, bh); 747 if (unlikely(ret)) 748 return ret; 749 } 750 return 0; 751} 752 753/* 754 * Probably it should be a library function... search for first non-zero word 755 * or memcmp with zero_page, whatever is better for particular architecture. 756 * Linus? 757 */ 758static inline int all_zeroes(__le32 *p, __le32 *q) 759{ 760 while (p < q) 761 if (*p++) 762 return 0; 763 return 1; 764} 765 766/** 767 * ext4_find_shared - find the indirect blocks for partial truncation. 768 * @inode: inode in question 769 * @depth: depth of the affected branch 770 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 771 * @chain: place to store the pointers to partial indirect blocks 772 * @top: place to the (detached) top of branch 773 * 774 * This is a helper function used by ext4_truncate(). 775 * 776 * When we do truncate() we may have to clean the ends of several 777 * indirect blocks but leave the blocks themselves alive. Block is 778 * partially truncated if some data below the new i_size is referred 779 * from it (and it is on the path to the first completely truncated 780 * data block, indeed). We have to free the top of that path along 781 * with everything to the right of the path. Since no allocation 782 * past the truncation point is possible until ext4_truncate() 783 * finishes, we may safely do the latter, but top of branch may 784 * require special attention - pageout below the truncation point 785 * might try to populate it. 786 * 787 * We atomically detach the top of branch from the tree, store the 788 * block number of its root in *@top, pointers to buffer_heads of 789 * partially truncated blocks - in @chain[].bh and pointers to 790 * their last elements that should not be removed - in 791 * @chain[].p. Return value is the pointer to last filled element 792 * of @chain. 793 * 794 * The work left to caller to do the actual freeing of subtrees: 795 * a) free the subtree starting from *@top 796 * b) free the subtrees whose roots are stored in 797 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 798 * c) free the subtrees growing from the inode past the @chain[0]. 799 * (no partially truncated stuff there). */ 800 801static Indirect *ext4_find_shared(struct inode *inode, int depth, 802 ext4_lblk_t offsets[4], Indirect chain[4], 803 __le32 *top) 804{ 805 Indirect *partial, *p; 806 int k, err; 807 808 *top = 0; 809 /* Make k index the deepest non-null offset + 1 */ 810 for (k = depth; k > 1 && !offsets[k-1]; k--) 811 ; 812 partial = ext4_get_branch(inode, k, offsets, chain, &err); 813 /* Writer: pointers */ 814 if (!partial) 815 partial = chain + k-1; 816 /* 817 * If the branch acquired continuation since we've looked at it - 818 * fine, it should all survive and (new) top doesn't belong to us. 819 */ 820 if (!partial->key && *partial->p) 821 /* Writer: end */ 822 goto no_top; 823 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 824 ; 825 /* 826 * OK, we've found the last block that must survive. The rest of our 827 * branch should be detached before unlocking. However, if that rest 828 * of branch is all ours and does not grow immediately from the inode 829 * it's easier to cheat and just decrement partial->p. 830 */ 831 if (p == chain + k - 1 && p > chain) { 832 p->p--; 833 } else { 834 *top = *p->p; 835 /* Nope, don't do this in ext4. Must leave the tree intact */ 836#if 0 837 *p->p = 0; 838#endif 839 } 840 /* Writer: end */ 841 842 while (partial > p) { 843 brelse(partial->bh); 844 partial--; 845 } 846no_top: 847 return partial; 848} 849 850/* 851 * Zero a number of block pointers in either an inode or an indirect block. 852 * If we restart the transaction we must again get write access to the 853 * indirect block for further modification. 854 * 855 * We release `count' blocks on disk, but (last - first) may be greater 856 * than `count' because there can be holes in there. 857 * 858 * Return 0 on success, 1 on invalid block range 859 * and < 0 on fatal error. 860 */ 861static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 862 struct buffer_head *bh, 863 ext4_fsblk_t block_to_free, 864 unsigned long count, __le32 *first, 865 __le32 *last) 866{ 867 __le32 *p; 868 int flags = EXT4_FREE_BLOCKS_VALIDATED; 869 int err; 870 871 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) || 872 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE)) 873 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA; 874 else if (ext4_should_journal_data(inode)) 875 flags |= EXT4_FREE_BLOCKS_FORGET; 876 877 if (!ext4_inode_block_valid(inode, block_to_free, count)) { 878 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 879 "blocks %llu len %lu", 880 (unsigned long long) block_to_free, count); 881 return 1; 882 } 883 884 err = ext4_ind_truncate_ensure_credits(handle, inode, bh, 885 ext4_free_data_revoke_credits(inode, count)); 886 if (err < 0) 887 goto out_err; 888 889 for (p = first; p < last; p++) 890 *p = 0; 891 892 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 893 return 0; 894out_err: 895 ext4_std_error(inode->i_sb, err); 896 return err; 897} 898 899/** 900 * ext4_free_data - free a list of data blocks 901 * @handle: handle for this transaction 902 * @inode: inode we are dealing with 903 * @this_bh: indirect buffer_head which contains *@first and *@last 904 * @first: array of block numbers 905 * @last: points immediately past the end of array 906 * 907 * We are freeing all blocks referred from that array (numbers are stored as 908 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 909 * 910 * We accumulate contiguous runs of blocks to free. Conveniently, if these 911 * blocks are contiguous then releasing them at one time will only affect one 912 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 913 * actually use a lot of journal space. 914 * 915 * @this_bh will be %NULL if @first and @last point into the inode's direct 916 * block pointers. 917 */ 918static void ext4_free_data(handle_t *handle, struct inode *inode, 919 struct buffer_head *this_bh, 920 __le32 *first, __le32 *last) 921{ 922 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 923 unsigned long count = 0; /* Number of blocks in the run */ 924 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 925 corresponding to 926 block_to_free */ 927 ext4_fsblk_t nr; /* Current block # */ 928 __le32 *p; /* Pointer into inode/ind 929 for current block */ 930 int err = 0; 931 932 if (this_bh) { /* For indirect block */ 933 BUFFER_TRACE(this_bh, "get_write_access"); 934 err = ext4_journal_get_write_access(handle, this_bh); 935 /* Important: if we can't update the indirect pointers 936 * to the blocks, we can't free them. */ 937 if (err) 938 return; 939 } 940 941 for (p = first; p < last; p++) { 942 nr = le32_to_cpu(*p); 943 if (nr) { 944 /* accumulate blocks to free if they're contiguous */ 945 if (count == 0) { 946 block_to_free = nr; 947 block_to_free_p = p; 948 count = 1; 949 } else if (nr == block_to_free + count) { 950 count++; 951 } else { 952 err = ext4_clear_blocks(handle, inode, this_bh, 953 block_to_free, count, 954 block_to_free_p, p); 955 if (err) 956 break; 957 block_to_free = nr; 958 block_to_free_p = p; 959 count = 1; 960 } 961 } 962 } 963 964 if (!err && count > 0) 965 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 966 count, block_to_free_p, p); 967 if (err < 0) 968 /* fatal error */ 969 return; 970 971 if (this_bh) { 972 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 973 974 /* 975 * The buffer head should have an attached journal head at this 976 * point. However, if the data is corrupted and an indirect 977 * block pointed to itself, it would have been detached when 978 * the block was cleared. Check for this instead of OOPSing. 979 */ 980 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 981 ext4_handle_dirty_metadata(handle, inode, this_bh); 982 else 983 EXT4_ERROR_INODE(inode, 984 "circular indirect block detected at " 985 "block %llu", 986 (unsigned long long) this_bh->b_blocknr); 987 } 988} 989 990/** 991 * ext4_free_branches - free an array of branches 992 * @handle: JBD handle for this transaction 993 * @inode: inode we are dealing with 994 * @parent_bh: the buffer_head which contains *@first and *@last 995 * @first: array of block numbers 996 * @last: pointer immediately past the end of array 997 * @depth: depth of the branches to free 998 * 999 * We are freeing all blocks referred from these branches (numbers are 1000 * stored as little-endian 32-bit) and updating @inode->i_blocks 1001 * appropriately. 1002 */ 1003static void ext4_free_branches(handle_t *handle, struct inode *inode, 1004 struct buffer_head *parent_bh, 1005 __le32 *first, __le32 *last, int depth) 1006{ 1007 ext4_fsblk_t nr; 1008 __le32 *p; 1009 1010 if (ext4_handle_is_aborted(handle)) 1011 return; 1012 1013 if (depth--) { 1014 struct buffer_head *bh; 1015 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1016 p = last; 1017 while (--p >= first) { 1018 nr = le32_to_cpu(*p); 1019 if (!nr) 1020 continue; /* A hole */ 1021 1022 if (!ext4_inode_block_valid(inode, nr, 1)) { 1023 EXT4_ERROR_INODE(inode, 1024 "invalid indirect mapped " 1025 "block %lu (level %d)", 1026 (unsigned long) nr, depth); 1027 break; 1028 } 1029 1030 /* Go read the buffer for the next level down */ 1031 bh = ext4_sb_bread(inode->i_sb, nr, 0); 1032 1033 /* 1034 * A read failure? Report error and clear slot 1035 * (should be rare). 1036 */ 1037 if (IS_ERR(bh)) { 1038 ext4_error_inode_block(inode, nr, -PTR_ERR(bh), 1039 "Read failure"); 1040 continue; 1041 } 1042 1043 /* This zaps the entire block. Bottom up. */ 1044 BUFFER_TRACE(bh, "free child branches"); 1045 ext4_free_branches(handle, inode, bh, 1046 (__le32 *) bh->b_data, 1047 (__le32 *) bh->b_data + addr_per_block, 1048 depth); 1049 brelse(bh); 1050 1051 /* 1052 * Everything below this pointer has been 1053 * released. Now let this top-of-subtree go. 1054 * 1055 * We want the freeing of this indirect block to be 1056 * atomic in the journal with the updating of the 1057 * bitmap block which owns it. So make some room in 1058 * the journal. 1059 * 1060 * We zero the parent pointer *after* freeing its 1061 * pointee in the bitmaps, so if extend_transaction() 1062 * for some reason fails to put the bitmap changes and 1063 * the release into the same transaction, recovery 1064 * will merely complain about releasing a free block, 1065 * rather than leaking blocks. 1066 */ 1067 if (ext4_handle_is_aborted(handle)) 1068 return; 1069 if (ext4_ind_truncate_ensure_credits(handle, inode, 1070 NULL, 1071 ext4_free_metadata_revoke_credits( 1072 inode->i_sb, 1)) < 0) 1073 return; 1074 1075 /* 1076 * The forget flag here is critical because if 1077 * we are journaling (and not doing data 1078 * journaling), we have to make sure a revoke 1079 * record is written to prevent the journal 1080 * replay from overwriting the (former) 1081 * indirect block if it gets reallocated as a 1082 * data block. This must happen in the same 1083 * transaction where the data blocks are 1084 * actually freed. 1085 */ 1086 ext4_free_blocks(handle, inode, NULL, nr, 1, 1087 EXT4_FREE_BLOCKS_METADATA| 1088 EXT4_FREE_BLOCKS_FORGET); 1089 1090 if (parent_bh) { 1091 /* 1092 * The block which we have just freed is 1093 * pointed to by an indirect block: journal it 1094 */ 1095 BUFFER_TRACE(parent_bh, "get_write_access"); 1096 if (!ext4_journal_get_write_access(handle, 1097 parent_bh)){ 1098 *p = 0; 1099 BUFFER_TRACE(parent_bh, 1100 "call ext4_handle_dirty_metadata"); 1101 ext4_handle_dirty_metadata(handle, 1102 inode, 1103 parent_bh); 1104 } 1105 } 1106 } 1107 } else { 1108 /* We have reached the bottom of the tree. */ 1109 BUFFER_TRACE(parent_bh, "free data blocks"); 1110 ext4_free_data(handle, inode, parent_bh, first, last); 1111 } 1112} 1113 1114void ext4_ind_truncate(handle_t *handle, struct inode *inode) 1115{ 1116 struct ext4_inode_info *ei = EXT4_I(inode); 1117 __le32 *i_data = ei->i_data; 1118 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1119 ext4_lblk_t offsets[4]; 1120 Indirect chain[4]; 1121 Indirect *partial; 1122 __le32 nr = 0; 1123 int n = 0; 1124 ext4_lblk_t last_block, max_block; 1125 unsigned blocksize = inode->i_sb->s_blocksize; 1126 1127 last_block = (inode->i_size + blocksize-1) 1128 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1129 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1130 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1131 1132 if (last_block != max_block) { 1133 n = ext4_block_to_path(inode, last_block, offsets, NULL); 1134 if (n == 0) 1135 return; 1136 } 1137 1138 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block); 1139 1140 /* 1141 * The orphan list entry will now protect us from any crash which 1142 * occurs before the truncate completes, so it is now safe to propagate 1143 * the new, shorter inode size (held for now in i_size) into the 1144 * on-disk inode. We do this via i_disksize, which is the value which 1145 * ext4 *really* writes onto the disk inode. 1146 */ 1147 ei->i_disksize = inode->i_size; 1148 1149 if (last_block == max_block) { 1150 /* 1151 * It is unnecessary to free any data blocks if last_block is 1152 * equal to the indirect block limit. 1153 */ 1154 return; 1155 } else if (n == 1) { /* direct blocks */ 1156 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 1157 i_data + EXT4_NDIR_BLOCKS); 1158 goto do_indirects; 1159 } 1160 1161 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1162 /* Kill the top of shared branch (not detached) */ 1163 if (nr) { 1164 if (partial == chain) { 1165 /* Shared branch grows from the inode */ 1166 ext4_free_branches(handle, inode, NULL, 1167 &nr, &nr+1, (chain+n-1) - partial); 1168 *partial->p = 0; 1169 /* 1170 * We mark the inode dirty prior to restart, 1171 * and prior to stop. No need for it here. 1172 */ 1173 } else { 1174 /* Shared branch grows from an indirect block */ 1175 BUFFER_TRACE(partial->bh, "get_write_access"); 1176 ext4_free_branches(handle, inode, partial->bh, 1177 partial->p, 1178 partial->p+1, (chain+n-1) - partial); 1179 } 1180 } 1181 /* Clear the ends of indirect blocks on the shared branch */ 1182 while (partial > chain) { 1183 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 1184 (__le32*)partial->bh->b_data+addr_per_block, 1185 (chain+n-1) - partial); 1186 BUFFER_TRACE(partial->bh, "call brelse"); 1187 brelse(partial->bh); 1188 partial--; 1189 } 1190do_indirects: 1191 /* Kill the remaining (whole) subtrees */ 1192 switch (offsets[0]) { 1193 default: 1194 nr = i_data[EXT4_IND_BLOCK]; 1195 if (nr) { 1196 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1197 i_data[EXT4_IND_BLOCK] = 0; 1198 } 1199 fallthrough; 1200 case EXT4_IND_BLOCK: 1201 nr = i_data[EXT4_DIND_BLOCK]; 1202 if (nr) { 1203 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1204 i_data[EXT4_DIND_BLOCK] = 0; 1205 } 1206 fallthrough; 1207 case EXT4_DIND_BLOCK: 1208 nr = i_data[EXT4_TIND_BLOCK]; 1209 if (nr) { 1210 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1211 i_data[EXT4_TIND_BLOCK] = 0; 1212 } 1213 fallthrough; 1214 case EXT4_TIND_BLOCK: 1215 ; 1216 } 1217} 1218 1219/** 1220 * ext4_ind_remove_space - remove space from the range 1221 * @handle: JBD handle for this transaction 1222 * @inode: inode we are dealing with 1223 * @start: First block to remove 1224 * @end: One block after the last block to remove (exclusive) 1225 * 1226 * Free the blocks in the defined range (end is exclusive endpoint of 1227 * range). This is used by ext4_punch_hole(). 1228 */ 1229int ext4_ind_remove_space(handle_t *handle, struct inode *inode, 1230 ext4_lblk_t start, ext4_lblk_t end) 1231{ 1232 struct ext4_inode_info *ei = EXT4_I(inode); 1233 __le32 *i_data = ei->i_data; 1234 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1235 ext4_lblk_t offsets[4], offsets2[4]; 1236 Indirect chain[4], chain2[4]; 1237 Indirect *partial, *partial2; 1238 Indirect *p = NULL, *p2 = NULL; 1239 ext4_lblk_t max_block; 1240 __le32 nr = 0, nr2 = 0; 1241 int n = 0, n2 = 0; 1242 unsigned blocksize = inode->i_sb->s_blocksize; 1243 1244 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1245 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1246 if (end >= max_block) 1247 end = max_block; 1248 if ((start >= end) || (start > max_block)) 1249 return 0; 1250 1251 n = ext4_block_to_path(inode, start, offsets, NULL); 1252 n2 = ext4_block_to_path(inode, end, offsets2, NULL); 1253 1254 BUG_ON(n > n2); 1255 1256 if ((n == 1) && (n == n2)) { 1257 /* We're punching only within direct block range */ 1258 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1259 i_data + offsets2[0]); 1260 return 0; 1261 } else if (n2 > n) { 1262 /* 1263 * Start and end are on a different levels so we're going to 1264 * free partial block at start, and partial block at end of 1265 * the range. If there are some levels in between then 1266 * do_indirects label will take care of that. 1267 */ 1268 1269 if (n == 1) { 1270 /* 1271 * Start is at the direct block level, free 1272 * everything to the end of the level. 1273 */ 1274 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1275 i_data + EXT4_NDIR_BLOCKS); 1276 goto end_range; 1277 } 1278 1279 1280 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr); 1281 if (nr) { 1282 if (partial == chain) { 1283 /* Shared branch grows from the inode */ 1284 ext4_free_branches(handle, inode, NULL, 1285 &nr, &nr+1, (chain+n-1) - partial); 1286 *partial->p = 0; 1287 } else { 1288 /* Shared branch grows from an indirect block */ 1289 BUFFER_TRACE(partial->bh, "get_write_access"); 1290 ext4_free_branches(handle, inode, partial->bh, 1291 partial->p, 1292 partial->p+1, (chain+n-1) - partial); 1293 } 1294 } 1295 1296 /* 1297 * Clear the ends of indirect blocks on the shared branch 1298 * at the start of the range 1299 */ 1300 while (partial > chain) { 1301 ext4_free_branches(handle, inode, partial->bh, 1302 partial->p + 1, 1303 (__le32 *)partial->bh->b_data+addr_per_block, 1304 (chain+n-1) - partial); 1305 partial--; 1306 } 1307 1308end_range: 1309 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1310 if (nr2) { 1311 if (partial2 == chain2) { 1312 /* 1313 * Remember, end is exclusive so here we're at 1314 * the start of the next level we're not going 1315 * to free. Everything was covered by the start 1316 * of the range. 1317 */ 1318 goto do_indirects; 1319 } 1320 } else { 1321 /* 1322 * ext4_find_shared returns Indirect structure which 1323 * points to the last element which should not be 1324 * removed by truncate. But this is end of the range 1325 * in punch_hole so we need to point to the next element 1326 */ 1327 partial2->p++; 1328 } 1329 1330 /* 1331 * Clear the ends of indirect blocks on the shared branch 1332 * at the end of the range 1333 */ 1334 while (partial2 > chain2) { 1335 ext4_free_branches(handle, inode, partial2->bh, 1336 (__le32 *)partial2->bh->b_data, 1337 partial2->p, 1338 (chain2+n2-1) - partial2); 1339 partial2--; 1340 } 1341 goto do_indirects; 1342 } 1343 1344 /* Punch happened within the same level (n == n2) */ 1345 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr); 1346 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1347 1348 /* Free top, but only if partial2 isn't its subtree. */ 1349 if (nr) { 1350 int level = min(partial - chain, partial2 - chain2); 1351 int i; 1352 int subtree = 1; 1353 1354 for (i = 0; i <= level; i++) { 1355 if (offsets[i] != offsets2[i]) { 1356 subtree = 0; 1357 break; 1358 } 1359 } 1360 1361 if (!subtree) { 1362 if (partial == chain) { 1363 /* Shared branch grows from the inode */ 1364 ext4_free_branches(handle, inode, NULL, 1365 &nr, &nr+1, 1366 (chain+n-1) - partial); 1367 *partial->p = 0; 1368 } else { 1369 /* Shared branch grows from an indirect block */ 1370 BUFFER_TRACE(partial->bh, "get_write_access"); 1371 ext4_free_branches(handle, inode, partial->bh, 1372 partial->p, 1373 partial->p+1, 1374 (chain+n-1) - partial); 1375 } 1376 } 1377 } 1378 1379 if (!nr2) { 1380 /* 1381 * ext4_find_shared returns Indirect structure which 1382 * points to the last element which should not be 1383 * removed by truncate. But this is end of the range 1384 * in punch_hole so we need to point to the next element 1385 */ 1386 partial2->p++; 1387 } 1388 1389 while (partial > chain || partial2 > chain2) { 1390 int depth = (chain+n-1) - partial; 1391 int depth2 = (chain2+n2-1) - partial2; 1392 1393 if (partial > chain && partial2 > chain2 && 1394 partial->bh->b_blocknr == partial2->bh->b_blocknr) { 1395 /* 1396 * We've converged on the same block. Clear the range, 1397 * then we're done. 1398 */ 1399 ext4_free_branches(handle, inode, partial->bh, 1400 partial->p + 1, 1401 partial2->p, 1402 (chain+n-1) - partial); 1403 goto cleanup; 1404 } 1405 1406 /* 1407 * The start and end partial branches may not be at the same 1408 * level even though the punch happened within one level. So, we 1409 * give them a chance to arrive at the same level, then walk 1410 * them in step with each other until we converge on the same 1411 * block. 1412 */ 1413 if (partial > chain && depth <= depth2) { 1414 ext4_free_branches(handle, inode, partial->bh, 1415 partial->p + 1, 1416 (__le32 *)partial->bh->b_data+addr_per_block, 1417 (chain+n-1) - partial); 1418 partial--; 1419 } 1420 if (partial2 > chain2 && depth2 <= depth) { 1421 ext4_free_branches(handle, inode, partial2->bh, 1422 (__le32 *)partial2->bh->b_data, 1423 partial2->p, 1424 (chain2+n2-1) - partial2); 1425 partial2--; 1426 } 1427 } 1428 1429cleanup: 1430 while (p && p > chain) { 1431 BUFFER_TRACE(p->bh, "call brelse"); 1432 brelse(p->bh); 1433 p--; 1434 } 1435 while (p2 && p2 > chain2) { 1436 BUFFER_TRACE(p2->bh, "call brelse"); 1437 brelse(p2->bh); 1438 p2--; 1439 } 1440 return 0; 1441 1442do_indirects: 1443 /* Kill the remaining (whole) subtrees */ 1444 switch (offsets[0]) { 1445 default: 1446 if (++n >= n2) 1447 break; 1448 nr = i_data[EXT4_IND_BLOCK]; 1449 if (nr) { 1450 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1451 i_data[EXT4_IND_BLOCK] = 0; 1452 } 1453 fallthrough; 1454 case EXT4_IND_BLOCK: 1455 if (++n >= n2) 1456 break; 1457 nr = i_data[EXT4_DIND_BLOCK]; 1458 if (nr) { 1459 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1460 i_data[EXT4_DIND_BLOCK] = 0; 1461 } 1462 fallthrough; 1463 case EXT4_DIND_BLOCK: 1464 if (++n >= n2) 1465 break; 1466 nr = i_data[EXT4_TIND_BLOCK]; 1467 if (nr) { 1468 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1469 i_data[EXT4_TIND_BLOCK] = 0; 1470 } 1471 fallthrough; 1472 case EXT4_TIND_BLOCK: 1473 ; 1474 } 1475 goto cleanup; 1476} 1477