xref: /kernel/linux/linux-5.10/fs/ext4/fsync.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  linux/fs/ext4/fsync.c
4 *
5 *  Copyright (C) 1993  Stephen Tweedie (sct@redhat.com)
6 *  from
7 *  Copyright (C) 1992  Remy Card (card@masi.ibp.fr)
8 *                      Laboratoire MASI - Institut Blaise Pascal
9 *                      Universite Pierre et Marie Curie (Paris VI)
10 *  from
11 *  linux/fs/minix/truncate.c   Copyright (C) 1991, 1992  Linus Torvalds
12 *
13 *  ext4fs fsync primitive
14 *
15 *  Big-endian to little-endian byte-swapping/bitmaps by
16 *        David S. Miller (davem@caip.rutgers.edu), 1995
17 *
18 *  Removed unnecessary code duplication for little endian machines
19 *  and excessive __inline__s.
20 *        Andi Kleen, 1997
21 *
22 * Major simplications and cleanup - we only need to do the metadata, because
23 * we can depend on generic_block_fdatasync() to sync the data blocks.
24 */
25
26#include <linux/time.h>
27#include <linux/fs.h>
28#include <linux/sched.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31
32#include "ext4.h"
33#include "ext4_jbd2.h"
34
35#include <trace/events/ext4.h>
36
37/*
38 * If we're not journaling and this is a just-created file, we have to
39 * sync our parent directory (if it was freshly created) since
40 * otherwise it will only be written by writeback, leaving a huge
41 * window during which a crash may lose the file.  This may apply for
42 * the parent directory's parent as well, and so on recursively, if
43 * they are also freshly created.
44 */
45static int ext4_sync_parent(struct inode *inode)
46{
47	struct dentry *dentry, *next;
48	int ret = 0;
49
50	if (!ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY))
51		return 0;
52	dentry = d_find_any_alias(inode);
53	if (!dentry)
54		return 0;
55	while (ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY)) {
56		ext4_clear_inode_state(inode, EXT4_STATE_NEWENTRY);
57
58		next = dget_parent(dentry);
59		dput(dentry);
60		dentry = next;
61		inode = dentry->d_inode;
62
63		/*
64		 * The directory inode may have gone through rmdir by now. But
65		 * the inode itself and its blocks are still allocated (we hold
66		 * a reference to the inode via its dentry), so it didn't go
67		 * through ext4_evict_inode()) and so we are safe to flush
68		 * metadata blocks and the inode.
69		 */
70		ret = sync_mapping_buffers(inode->i_mapping);
71		if (ret)
72			break;
73		ret = sync_inode_metadata(inode, 1);
74		if (ret)
75			break;
76	}
77	dput(dentry);
78	return ret;
79}
80
81static int ext4_fsync_nojournal(struct inode *inode, bool datasync,
82				bool *needs_barrier)
83{
84	int ret, err;
85
86	ret = sync_mapping_buffers(inode->i_mapping);
87	if (!(inode->i_state & I_DIRTY_ALL))
88		return ret;
89	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
90		return ret;
91
92	err = sync_inode_metadata(inode, 1);
93	if (!ret)
94		ret = err;
95
96	if (!ret)
97		ret = ext4_sync_parent(inode);
98	if (test_opt(inode->i_sb, BARRIER))
99		*needs_barrier = true;
100
101	return ret;
102}
103
104static int ext4_fsync_journal(struct inode *inode, bool datasync,
105			     bool *needs_barrier)
106{
107	struct ext4_inode_info *ei = EXT4_I(inode);
108	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
109	tid_t commit_tid = datasync ? ei->i_datasync_tid : ei->i_sync_tid;
110
111	if (journal->j_flags & JBD2_BARRIER &&
112	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
113		*needs_barrier = true;
114
115	return ext4_fc_commit(journal, commit_tid);
116}
117
118/*
119 * akpm: A new design for ext4_sync_file().
120 *
121 * This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
122 * There cannot be a transaction open by this task.
123 * Another task could have dirtied this inode.  Its data can be in any
124 * state in the journalling system.
125 *
126 * What we do is just kick off a commit and wait on it.  This will snapshot the
127 * inode to disk.
128 */
129int ext4_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
130{
131	int ret = 0, err;
132	bool needs_barrier = false;
133	struct inode *inode = file->f_mapping->host;
134	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
135
136	if (unlikely(ext4_forced_shutdown(sbi)))
137		return -EIO;
138
139	J_ASSERT(ext4_journal_current_handle() == NULL);
140
141	trace_ext4_sync_file_enter(file, datasync);
142
143	if (sb_rdonly(inode->i_sb)) {
144		/* Make sure that we read updated s_mount_flags value */
145		smp_rmb();
146		if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))
147			ret = -EROFS;
148		goto out;
149	}
150
151	ret = file_write_and_wait_range(file, start, end);
152	if (ret)
153		goto out;
154
155	/*
156	 * data=writeback,ordered:
157	 *  The caller's filemap_fdatawrite()/wait will sync the data.
158	 *  Metadata is in the journal, we wait for proper transaction to
159	 *  commit here.
160	 *
161	 * data=journal:
162	 *  filemap_fdatawrite won't do anything (the buffers are clean).
163	 *  ext4_force_commit will write the file data into the journal and
164	 *  will wait on that.
165	 *  filemap_fdatawait() will encounter a ton of newly-dirtied pages
166	 *  (they were dirtied by commit).  But that's OK - the blocks are
167	 *  safe in-journal, which is all fsync() needs to ensure.
168	 */
169	if (!sbi->s_journal)
170		ret = ext4_fsync_nojournal(inode, datasync, &needs_barrier);
171	else if (ext4_should_journal_data(inode))
172		ret = ext4_force_commit(inode->i_sb);
173	else
174		ret = ext4_fsync_journal(inode, datasync, &needs_barrier);
175
176	if (needs_barrier) {
177		err = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL);
178		if (!ret)
179			ret = err;
180	}
181out:
182	err = file_check_and_advance_wb_err(file);
183	if (ret == 0)
184		ret = err;
185	trace_ext4_sync_file_exit(inode, ret);
186	return ret;
187}
188