xref: /kernel/linux/linux-5.10/fs/ext4/file.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  linux/fs/ext4/file.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 *  from
11 *
12 *  linux/fs/minix/file.c
13 *
14 *  Copyright (C) 1991, 1992  Linus Torvalds
15 *
16 *  ext4 fs regular file handling primitives
17 *
18 *  64-bit file support on 64-bit platforms by Jakub Jelinek
19 *	(jj@sunsite.ms.mff.cuni.cz)
20 */
21
22#include <linux/time.h>
23#include <linux/fs.h>
24#include <linux/iomap.h>
25#include <linux/mount.h>
26#include <linux/path.h>
27#include <linux/dax.h>
28#include <linux/quotaops.h>
29#include <linux/pagevec.h>
30#include <linux/uio.h>
31#include <linux/mman.h>
32#include <linux/backing-dev.h>
33#include "ext4.h"
34#include "ext4_jbd2.h"
35#include "xattr.h"
36#include "acl.h"
37#include "truncate.h"
38
39static bool ext4_dio_supported(struct inode *inode)
40{
41	if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode))
42		return false;
43	if (fsverity_active(inode))
44		return false;
45	if (ext4_should_journal_data(inode))
46		return false;
47	if (ext4_has_inline_data(inode))
48		return false;
49	return true;
50}
51
52static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
53{
54	ssize_t ret;
55	struct inode *inode = file_inode(iocb->ki_filp);
56
57	if (iocb->ki_flags & IOCB_NOWAIT) {
58		if (!inode_trylock_shared(inode))
59			return -EAGAIN;
60	} else {
61		inode_lock_shared(inode);
62	}
63
64	if (!ext4_dio_supported(inode)) {
65		inode_unlock_shared(inode);
66		/*
67		 * Fallback to buffered I/O if the operation being performed on
68		 * the inode is not supported by direct I/O. The IOCB_DIRECT
69		 * flag needs to be cleared here in order to ensure that the
70		 * direct I/O path within generic_file_read_iter() is not
71		 * taken.
72		 */
73		iocb->ki_flags &= ~IOCB_DIRECT;
74		return generic_file_read_iter(iocb, to);
75	}
76
77	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL,
78			   is_sync_kiocb(iocb));
79	inode_unlock_shared(inode);
80
81	file_accessed(iocb->ki_filp);
82	return ret;
83}
84
85#ifdef CONFIG_FS_DAX
86static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
87{
88	struct inode *inode = file_inode(iocb->ki_filp);
89	ssize_t ret;
90
91	if (iocb->ki_flags & IOCB_NOWAIT) {
92		if (!inode_trylock_shared(inode))
93			return -EAGAIN;
94	} else {
95		inode_lock_shared(inode);
96	}
97	/*
98	 * Recheck under inode lock - at this point we are sure it cannot
99	 * change anymore
100	 */
101	if (!IS_DAX(inode)) {
102		inode_unlock_shared(inode);
103		/* Fallback to buffered IO in case we cannot support DAX */
104		return generic_file_read_iter(iocb, to);
105	}
106	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
107	inode_unlock_shared(inode);
108
109	file_accessed(iocb->ki_filp);
110	return ret;
111}
112#endif
113
114static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
115{
116	struct inode *inode = file_inode(iocb->ki_filp);
117
118	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
119		return -EIO;
120
121	if (!iov_iter_count(to))
122		return 0; /* skip atime */
123
124#ifdef CONFIG_FS_DAX
125	if (IS_DAX(inode))
126		return ext4_dax_read_iter(iocb, to);
127#endif
128	if (iocb->ki_flags & IOCB_DIRECT)
129		return ext4_dio_read_iter(iocb, to);
130
131	return generic_file_read_iter(iocb, to);
132}
133
134/*
135 * Called when an inode is released. Note that this is different
136 * from ext4_file_open: open gets called at every open, but release
137 * gets called only when /all/ the files are closed.
138 */
139static int ext4_release_file(struct inode *inode, struct file *filp)
140{
141	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
142		ext4_alloc_da_blocks(inode);
143		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
144	}
145	/* if we are the last writer on the inode, drop the block reservation */
146	if ((filp->f_mode & FMODE_WRITE) &&
147			(atomic_read(&inode->i_writecount) == 1) &&
148			!EXT4_I(inode)->i_reserved_data_blocks) {
149		down_write(&EXT4_I(inode)->i_data_sem);
150		ext4_discard_preallocations(inode, 0);
151		up_write(&EXT4_I(inode)->i_data_sem);
152	}
153	if (is_dx(inode) && filp->private_data)
154		ext4_htree_free_dir_info(filp->private_data);
155
156	return 0;
157}
158
159/*
160 * This tests whether the IO in question is block-aligned or not.
161 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
162 * are converted to written only after the IO is complete.  Until they are
163 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
164 * it needs to zero out portions of the start and/or end block.  If 2 AIO
165 * threads are at work on the same unwritten block, they must be synchronized
166 * or one thread will zero the other's data, causing corruption.
167 */
168static bool
169ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
170{
171	struct super_block *sb = inode->i_sb;
172	unsigned long blockmask = sb->s_blocksize - 1;
173
174	if ((pos | iov_iter_alignment(from)) & blockmask)
175		return true;
176
177	return false;
178}
179
180static bool
181ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
182{
183	if (offset + len > i_size_read(inode) ||
184	    offset + len > EXT4_I(inode)->i_disksize)
185		return true;
186	return false;
187}
188
189/* Is IO overwriting allocated and initialized blocks? */
190static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
191{
192	struct ext4_map_blocks map;
193	unsigned int blkbits = inode->i_blkbits;
194	int err, blklen;
195
196	if (pos + len > i_size_read(inode))
197		return false;
198
199	map.m_lblk = pos >> blkbits;
200	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
201	blklen = map.m_len;
202
203	err = ext4_map_blocks(NULL, inode, &map, 0);
204	/*
205	 * 'err==len' means that all of the blocks have been preallocated,
206	 * regardless of whether they have been initialized or not. To exclude
207	 * unwritten extents, we need to check m_flags.
208	 */
209	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
210}
211
212static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
213					 struct iov_iter *from)
214{
215	struct inode *inode = file_inode(iocb->ki_filp);
216	ssize_t ret;
217
218	if (unlikely(IS_IMMUTABLE(inode)))
219		return -EPERM;
220
221	ret = generic_write_checks(iocb, from);
222	if (ret <= 0)
223		return ret;
224
225	/*
226	 * If we have encountered a bitmap-format file, the size limit
227	 * is smaller than s_maxbytes, which is for extent-mapped files.
228	 */
229	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
230		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
231
232		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
233			return -EFBIG;
234		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
235	}
236
237	return iov_iter_count(from);
238}
239
240static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
241{
242	ssize_t ret, count;
243
244	count = ext4_generic_write_checks(iocb, from);
245	if (count <= 0)
246		return count;
247
248	ret = file_modified(iocb->ki_filp);
249	if (ret)
250		return ret;
251	return count;
252}
253
254static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
255					struct iov_iter *from)
256{
257	ssize_t ret;
258	struct inode *inode = file_inode(iocb->ki_filp);
259
260	if (iocb->ki_flags & IOCB_NOWAIT)
261		return -EOPNOTSUPP;
262
263	inode_lock(inode);
264	ret = ext4_write_checks(iocb, from);
265	if (ret <= 0)
266		goto out;
267
268	current->backing_dev_info = inode_to_bdi(inode);
269	ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos);
270	current->backing_dev_info = NULL;
271
272out:
273	inode_unlock(inode);
274	if (likely(ret > 0)) {
275		iocb->ki_pos += ret;
276		ret = generic_write_sync(iocb, ret);
277	}
278
279	return ret;
280}
281
282static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
283					   ssize_t written, size_t count)
284{
285	handle_t *handle;
286	bool truncate = false;
287	u8 blkbits = inode->i_blkbits;
288	ext4_lblk_t written_blk, end_blk;
289	int ret;
290
291	/*
292	 * Note that EXT4_I(inode)->i_disksize can get extended up to
293	 * inode->i_size while the I/O was running due to writeback of delalloc
294	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
295	 * zeroed/unwritten extents if this is possible; thus we won't leave
296	 * uninitialized blocks in a file even if we didn't succeed in writing
297	 * as much as we intended.
298	 */
299	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
300	if (offset + count <= EXT4_I(inode)->i_disksize) {
301		/*
302		 * We need to ensure that the inode is removed from the orphan
303		 * list if it has been added prematurely, due to writeback of
304		 * delalloc blocks.
305		 */
306		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
307			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
308
309			if (IS_ERR(handle)) {
310				ext4_orphan_del(NULL, inode);
311				return PTR_ERR(handle);
312			}
313
314			ext4_orphan_del(handle, inode);
315			ext4_journal_stop(handle);
316		}
317
318		return written;
319	}
320
321	if (written < 0)
322		goto truncate;
323
324	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
325	if (IS_ERR(handle)) {
326		written = PTR_ERR(handle);
327		goto truncate;
328	}
329
330	if (ext4_update_inode_size(inode, offset + written)) {
331		ret = ext4_mark_inode_dirty(handle, inode);
332		if (unlikely(ret)) {
333			written = ret;
334			ext4_journal_stop(handle);
335			goto truncate;
336		}
337	}
338
339	/*
340	 * We may need to truncate allocated but not written blocks beyond EOF.
341	 */
342	written_blk = ALIGN(offset + written, 1 << blkbits);
343	end_blk = ALIGN(offset + count, 1 << blkbits);
344	if (written_blk < end_blk && ext4_can_truncate(inode))
345		truncate = true;
346
347	/*
348	 * Remove the inode from the orphan list if it has been extended and
349	 * everything went OK.
350	 */
351	if (!truncate && inode->i_nlink)
352		ext4_orphan_del(handle, inode);
353	ext4_journal_stop(handle);
354
355	if (truncate) {
356truncate:
357		ext4_truncate_failed_write(inode);
358		/*
359		 * If the truncate operation failed early, then the inode may
360		 * still be on the orphan list. In that case, we need to try
361		 * remove the inode from the in-memory linked list.
362		 */
363		if (inode->i_nlink)
364			ext4_orphan_del(NULL, inode);
365	}
366
367	return written;
368}
369
370static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
371				 int error, unsigned int flags)
372{
373	loff_t pos = iocb->ki_pos;
374	struct inode *inode = file_inode(iocb->ki_filp);
375
376	if (error)
377		return error;
378
379	if (size && flags & IOMAP_DIO_UNWRITTEN) {
380		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
381		if (error < 0)
382			return error;
383	}
384	/*
385	 * If we are extending the file, we have to update i_size here before
386	 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
387	 * buffered reads could zero out too much from page cache pages. Update
388	 * of on-disk size will happen later in ext4_dio_write_iter() where
389	 * we have enough information to also perform orphan list handling etc.
390	 * Note that we perform all extending writes synchronously under
391	 * i_rwsem held exclusively so i_size update is safe here in that case.
392	 * If the write was not extending, we cannot see pos > i_size here
393	 * because operations reducing i_size like truncate wait for all
394	 * outstanding DIO before updating i_size.
395	 */
396	pos += size;
397	if (pos > i_size_read(inode))
398		i_size_write(inode, pos);
399
400	return 0;
401}
402
403static const struct iomap_dio_ops ext4_dio_write_ops = {
404	.end_io = ext4_dio_write_end_io,
405};
406
407/*
408 * The intention here is to start with shared lock acquired then see if any
409 * condition requires an exclusive inode lock. If yes, then we restart the
410 * whole operation by releasing the shared lock and acquiring exclusive lock.
411 *
412 * - For unaligned_io we never take shared lock as it may cause data corruption
413 *   when two unaligned IO tries to modify the same block e.g. while zeroing.
414 *
415 * - For extending writes case we don't take the shared lock, since it requires
416 *   updating inode i_disksize and/or orphan handling with exclusive lock.
417 *
418 * - shared locking will only be true mostly with overwrites. Otherwise we will
419 *   switch to exclusive i_rwsem lock.
420 */
421static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
422				     bool *ilock_shared, bool *extend)
423{
424	struct file *file = iocb->ki_filp;
425	struct inode *inode = file_inode(file);
426	loff_t offset;
427	size_t count;
428	ssize_t ret;
429
430restart:
431	ret = ext4_generic_write_checks(iocb, from);
432	if (ret <= 0)
433		goto out;
434
435	offset = iocb->ki_pos;
436	count = ret;
437	if (ext4_extending_io(inode, offset, count))
438		*extend = true;
439	/*
440	 * Determine whether the IO operation will overwrite allocated
441	 * and initialized blocks.
442	 * We need exclusive i_rwsem for changing security info
443	 * in file_modified().
444	 */
445	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
446	     !ext4_overwrite_io(inode, offset, count))) {
447		if (iocb->ki_flags & IOCB_NOWAIT) {
448			ret = -EAGAIN;
449			goto out;
450		}
451		inode_unlock_shared(inode);
452		*ilock_shared = false;
453		inode_lock(inode);
454		goto restart;
455	}
456
457	ret = file_modified(file);
458	if (ret < 0)
459		goto out;
460
461	return count;
462out:
463	if (*ilock_shared)
464		inode_unlock_shared(inode);
465	else
466		inode_unlock(inode);
467	return ret;
468}
469
470static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
471{
472	ssize_t ret;
473	handle_t *handle;
474	struct inode *inode = file_inode(iocb->ki_filp);
475	loff_t offset = iocb->ki_pos;
476	size_t count = iov_iter_count(from);
477	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
478	bool extend = false, unaligned_io = false;
479	bool ilock_shared = true;
480
481	/*
482	 * We initially start with shared inode lock unless it is
483	 * unaligned IO which needs exclusive lock anyways.
484	 */
485	if (ext4_unaligned_io(inode, from, offset)) {
486		unaligned_io = true;
487		ilock_shared = false;
488	}
489	/*
490	 * Quick check here without any i_rwsem lock to see if it is extending
491	 * IO. A more reliable check is done in ext4_dio_write_checks() with
492	 * proper locking in place.
493	 */
494	if (offset + count > i_size_read(inode))
495		ilock_shared = false;
496
497	if (iocb->ki_flags & IOCB_NOWAIT) {
498		if (ilock_shared) {
499			if (!inode_trylock_shared(inode))
500				return -EAGAIN;
501		} else {
502			if (!inode_trylock(inode))
503				return -EAGAIN;
504		}
505	} else {
506		if (ilock_shared)
507			inode_lock_shared(inode);
508		else
509			inode_lock(inode);
510	}
511
512	/* Fallback to buffered I/O if the inode does not support direct I/O. */
513	if (!ext4_dio_supported(inode)) {
514		if (ilock_shared)
515			inode_unlock_shared(inode);
516		else
517			inode_unlock(inode);
518		return ext4_buffered_write_iter(iocb, from);
519	}
520
521	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
522	if (ret <= 0)
523		return ret;
524
525	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
526	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
527		ret = -EAGAIN;
528		goto out;
529	}
530	/*
531	 * Make sure inline data cannot be created anymore since we are going
532	 * to allocate blocks for DIO. We know the inode does not have any
533	 * inline data now because ext4_dio_supported() checked for that.
534	 */
535	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
536
537	offset = iocb->ki_pos;
538	count = ret;
539
540	/*
541	 * Unaligned direct IO must be serialized among each other as zeroing
542	 * of partial blocks of two competing unaligned IOs can result in data
543	 * corruption.
544	 *
545	 * So we make sure we don't allow any unaligned IO in flight.
546	 * For IOs where we need not wait (like unaligned non-AIO DIO),
547	 * below inode_dio_wait() may anyway become a no-op, since we start
548	 * with exclusive lock.
549	 */
550	if (unaligned_io)
551		inode_dio_wait(inode);
552
553	if (extend) {
554		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
555		if (IS_ERR(handle)) {
556			ret = PTR_ERR(handle);
557			goto out;
558		}
559
560		ret = ext4_orphan_add(handle, inode);
561		if (ret) {
562			ext4_journal_stop(handle);
563			goto out;
564		}
565
566		ext4_journal_stop(handle);
567	}
568
569	if (ilock_shared)
570		iomap_ops = &ext4_iomap_overwrite_ops;
571	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
572			   is_sync_kiocb(iocb) || unaligned_io || extend);
573	if (ret == -ENOTBLK)
574		ret = 0;
575
576	if (extend)
577		ret = ext4_handle_inode_extension(inode, offset, ret, count);
578
579out:
580	if (ilock_shared)
581		inode_unlock_shared(inode);
582	else
583		inode_unlock(inode);
584
585	if (ret >= 0 && iov_iter_count(from)) {
586		ssize_t err;
587		loff_t endbyte;
588
589		offset = iocb->ki_pos;
590		err = ext4_buffered_write_iter(iocb, from);
591		if (err < 0)
592			return err;
593
594		/*
595		 * We need to ensure that the pages within the page cache for
596		 * the range covered by this I/O are written to disk and
597		 * invalidated. This is in attempt to preserve the expected
598		 * direct I/O semantics in the case we fallback to buffered I/O
599		 * to complete off the I/O request.
600		 */
601		ret += err;
602		endbyte = offset + err - 1;
603		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
604						   offset, endbyte);
605		if (!err)
606			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
607						 offset >> PAGE_SHIFT,
608						 endbyte >> PAGE_SHIFT);
609	}
610
611	return ret;
612}
613
614#ifdef CONFIG_FS_DAX
615static ssize_t
616ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
617{
618	ssize_t ret;
619	size_t count;
620	loff_t offset;
621	handle_t *handle;
622	bool extend = false;
623	struct inode *inode = file_inode(iocb->ki_filp);
624
625	if (iocb->ki_flags & IOCB_NOWAIT) {
626		if (!inode_trylock(inode))
627			return -EAGAIN;
628	} else {
629		inode_lock(inode);
630	}
631
632	ret = ext4_write_checks(iocb, from);
633	if (ret <= 0)
634		goto out;
635
636	offset = iocb->ki_pos;
637	count = iov_iter_count(from);
638
639	if (offset + count > EXT4_I(inode)->i_disksize) {
640		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
641		if (IS_ERR(handle)) {
642			ret = PTR_ERR(handle);
643			goto out;
644		}
645
646		ret = ext4_orphan_add(handle, inode);
647		if (ret) {
648			ext4_journal_stop(handle);
649			goto out;
650		}
651
652		extend = true;
653		ext4_journal_stop(handle);
654	}
655
656	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
657
658	if (extend)
659		ret = ext4_handle_inode_extension(inode, offset, ret, count);
660out:
661	inode_unlock(inode);
662	if (ret > 0)
663		ret = generic_write_sync(iocb, ret);
664	return ret;
665}
666#endif
667
668static ssize_t
669ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
670{
671	struct inode *inode = file_inode(iocb->ki_filp);
672
673	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
674		return -EIO;
675
676#ifdef CONFIG_FS_DAX
677	if (IS_DAX(inode))
678		return ext4_dax_write_iter(iocb, from);
679#endif
680	if (iocb->ki_flags & IOCB_DIRECT)
681		return ext4_dio_write_iter(iocb, from);
682	else
683		return ext4_buffered_write_iter(iocb, from);
684}
685
686#ifdef CONFIG_FS_DAX
687static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
688		enum page_entry_size pe_size)
689{
690	int error = 0;
691	vm_fault_t result;
692	int retries = 0;
693	handle_t *handle = NULL;
694	struct inode *inode = file_inode(vmf->vma->vm_file);
695	struct super_block *sb = inode->i_sb;
696
697	/*
698	 * We have to distinguish real writes from writes which will result in a
699	 * COW page; COW writes should *not* poke the journal (the file will not
700	 * be changed). Doing so would cause unintended failures when mounted
701	 * read-only.
702	 *
703	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
704	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
705	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
706	 * we eventually come back with a COW page.
707	 */
708	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
709		(vmf->vma->vm_flags & VM_SHARED);
710	pfn_t pfn;
711
712	if (write) {
713		sb_start_pagefault(sb);
714		file_update_time(vmf->vma->vm_file);
715		down_read(&EXT4_I(inode)->i_mmap_sem);
716retry:
717		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
718					       EXT4_DATA_TRANS_BLOCKS(sb));
719		if (IS_ERR(handle)) {
720			up_read(&EXT4_I(inode)->i_mmap_sem);
721			sb_end_pagefault(sb);
722			return VM_FAULT_SIGBUS;
723		}
724	} else {
725		down_read(&EXT4_I(inode)->i_mmap_sem);
726	}
727	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
728	if (write) {
729		ext4_journal_stop(handle);
730
731		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
732		    ext4_should_retry_alloc(sb, &retries))
733			goto retry;
734		/* Handling synchronous page fault? */
735		if (result & VM_FAULT_NEEDDSYNC)
736			result = dax_finish_sync_fault(vmf, pe_size, pfn);
737		up_read(&EXT4_I(inode)->i_mmap_sem);
738		sb_end_pagefault(sb);
739	} else {
740		up_read(&EXT4_I(inode)->i_mmap_sem);
741	}
742
743	return result;
744}
745
746static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
747{
748	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
749}
750
751static const struct vm_operations_struct ext4_dax_vm_ops = {
752	.fault		= ext4_dax_fault,
753	.huge_fault	= ext4_dax_huge_fault,
754	.page_mkwrite	= ext4_dax_fault,
755	.pfn_mkwrite	= ext4_dax_fault,
756};
757#else
758#define ext4_dax_vm_ops	ext4_file_vm_ops
759#endif
760
761static const struct vm_operations_struct ext4_file_vm_ops = {
762	.fault		= ext4_filemap_fault,
763	.map_pages	= filemap_map_pages,
764	.page_mkwrite   = ext4_page_mkwrite,
765};
766
767static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
768{
769	struct inode *inode = file->f_mapping->host;
770	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
771	struct dax_device *dax_dev = sbi->s_daxdev;
772
773	if (unlikely(ext4_forced_shutdown(sbi)))
774		return -EIO;
775
776	/*
777	 * We don't support synchronous mappings for non-DAX files and
778	 * for DAX files if underneath dax_device is not synchronous.
779	 */
780	if (!daxdev_mapping_supported(vma, dax_dev))
781		return -EOPNOTSUPP;
782
783	file_accessed(file);
784	if (IS_DAX(file_inode(file))) {
785		vma->vm_ops = &ext4_dax_vm_ops;
786		vma->vm_flags |= VM_HUGEPAGE;
787	} else {
788		vma->vm_ops = &ext4_file_vm_ops;
789	}
790	return 0;
791}
792
793static int ext4_sample_last_mounted(struct super_block *sb,
794				    struct vfsmount *mnt)
795{
796	struct ext4_sb_info *sbi = EXT4_SB(sb);
797	struct path path;
798	char buf[64], *cp;
799	handle_t *handle;
800	int err;
801
802	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
803		return 0;
804
805	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
806		return 0;
807
808	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
809	/*
810	 * Sample where the filesystem has been mounted and
811	 * store it in the superblock for sysadmin convenience
812	 * when trying to sort through large numbers of block
813	 * devices or filesystem images.
814	 */
815	memset(buf, 0, sizeof(buf));
816	path.mnt = mnt;
817	path.dentry = mnt->mnt_root;
818	cp = d_path(&path, buf, sizeof(buf));
819	err = 0;
820	if (IS_ERR(cp))
821		goto out;
822
823	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
824	err = PTR_ERR(handle);
825	if (IS_ERR(handle))
826		goto out;
827	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
828	err = ext4_journal_get_write_access(handle, sbi->s_sbh);
829	if (err)
830		goto out_journal;
831	lock_buffer(sbi->s_sbh);
832	strncpy(sbi->s_es->s_last_mounted, cp,
833		sizeof(sbi->s_es->s_last_mounted));
834	ext4_superblock_csum_set(sb);
835	unlock_buffer(sbi->s_sbh);
836	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
837out_journal:
838	ext4_journal_stop(handle);
839out:
840	sb_end_intwrite(sb);
841	return err;
842}
843
844static int ext4_file_open(struct inode *inode, struct file *filp)
845{
846	int ret;
847
848	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
849		return -EIO;
850
851	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
852	if (ret)
853		return ret;
854
855	ret = fscrypt_file_open(inode, filp);
856	if (ret)
857		return ret;
858
859	ret = fsverity_file_open(inode, filp);
860	if (ret)
861		return ret;
862
863	/*
864	 * Set up the jbd2_inode if we are opening the inode for
865	 * writing and the journal is present
866	 */
867	if (filp->f_mode & FMODE_WRITE) {
868		ret = ext4_inode_attach_jinode(inode);
869		if (ret < 0)
870			return ret;
871	}
872
873	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
874	return dquot_file_open(inode, filp);
875}
876
877/*
878 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
879 * by calling generic_file_llseek_size() with the appropriate maxbytes
880 * value for each.
881 */
882loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
883{
884	struct inode *inode = file->f_mapping->host;
885	loff_t maxbytes;
886
887	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
888		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
889	else
890		maxbytes = inode->i_sb->s_maxbytes;
891
892	switch (whence) {
893	default:
894		return generic_file_llseek_size(file, offset, whence,
895						maxbytes, i_size_read(inode));
896	case SEEK_HOLE:
897		inode_lock_shared(inode);
898		offset = iomap_seek_hole(inode, offset,
899					 &ext4_iomap_report_ops);
900		inode_unlock_shared(inode);
901		break;
902	case SEEK_DATA:
903		inode_lock_shared(inode);
904		offset = iomap_seek_data(inode, offset,
905					 &ext4_iomap_report_ops);
906		inode_unlock_shared(inode);
907		break;
908	}
909
910	if (offset < 0)
911		return offset;
912	return vfs_setpos(file, offset, maxbytes);
913}
914
915const struct file_operations ext4_file_operations = {
916	.llseek		= ext4_llseek,
917	.read_iter	= ext4_file_read_iter,
918	.write_iter	= ext4_file_write_iter,
919	.iopoll		= iomap_dio_iopoll,
920	.unlocked_ioctl = ext4_ioctl,
921#ifdef CONFIG_COMPAT
922	.compat_ioctl	= ext4_compat_ioctl,
923#endif
924	.mmap		= ext4_file_mmap,
925	.mmap_supported_flags = MAP_SYNC,
926	.open		= ext4_file_open,
927	.release	= ext4_release_file,
928	.fsync		= ext4_sync_file,
929	.get_unmapped_area = thp_get_unmapped_area,
930	.splice_read	= generic_file_splice_read,
931	.splice_write	= iter_file_splice_write,
932	.fallocate	= ext4_fallocate,
933};
934
935const struct inode_operations ext4_file_inode_operations = {
936	.setattr	= ext4_setattr,
937	.getattr	= ext4_file_getattr,
938	.listxattr	= ext4_listxattr,
939	.get_acl	= ext4_get_acl,
940	.set_acl	= ext4_set_acl,
941	.fiemap		= ext4_fiemap,
942};
943
944