xref: /kernel/linux/linux-5.10/fs/ext4/fast_commit.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * fs/ext4/fast_commit.c
5 *
6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7 *
8 * Ext4 fast commits routines.
9 */
10#include "ext4.h"
11#include "ext4_jbd2.h"
12#include "ext4_extents.h"
13#include "mballoc.h"
14
15/*
16 * Ext4 Fast Commits
17 * -----------------
18 *
19 * Ext4 fast commits implement fine grained journalling for Ext4.
20 *
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
26 *
27 * (A) Directory entry updates:
28 *
29 * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
30 * - EXT4_FC_TAG_LINK		- records directory entry link
31 * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
32 *
33 * (B) File specific data range updates:
34 *
35 * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
37 *
38 * (C) Inode metadata (mtime / ctime etc):
39 *
40 * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
41 *				  during recovery. Note that iblocks field is
42 *				  not replayed and instead derived during
43 *				  replay.
44 * Commit Operation
45 * ----------------
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
51 *
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 *     section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
60 *
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
65 *
66 * Fast Commit Ineligibility
67 * -------------------------
68 * Not all operations are supported by fast commits today (e.g extended
69 * attributes). Fast commit ineligibility is marked by calling one of the
70 * two following functions:
71 *
72 * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall
73 *   back to full commit. This is useful in case of transient errors.
74 *
75 * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all
76 *   the fast commits happening between ext4_fc_start_ineligible() and
77 *   ext4_fc_stop_ineligible() and one fast commit after the call to
78 *   ext4_fc_stop_ineligible() to fall back to full commits. It is important to
79 *   make one more fast commit to fall back to full commit after stop call so
80 *   that it guaranteed that the fast commit ineligible operation contained
81 *   within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is
82 *   followed by at least 1 full commit.
83 *
84 * Atomicity of commits
85 * --------------------
86 * In order to guarantee atomicity during the commit operation, fast commit
87 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
88 * tag contains CRC of the contents and TID of the transaction after which
89 * this fast commit should be applied. Recovery code replays fast commit
90 * logs only if there's at least 1 valid tail present. For every fast commit
91 * operation, there is 1 tail. This means, we may end up with multiple tails
92 * in the fast commit space. Here's an example:
93 *
94 * - Create a new file A and remove existing file B
95 * - fsync()
96 * - Append contents to file A
97 * - Truncate file A
98 * - fsync()
99 *
100 * The fast commit space at the end of above operations would look like this:
101 *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
102 *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
103 *
104 * Replay code should thus check for all the valid tails in the FC area.
105 *
106 * TODOs
107 * -----
108 * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
109 *    eligible update must be protected within ext4_fc_start_update() and
110 *    ext4_fc_stop_update(). These routines are called at much higher
111 *    routines. This can be made more fine grained by combining with
112 *    ext4_journal_start().
113 *
114 * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
115 *
116 * 3) Handle more ineligible cases.
117 */
118
119#include <trace/events/ext4.h>
120static struct kmem_cache *ext4_fc_dentry_cachep;
121
122static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
123{
124	BUFFER_TRACE(bh, "");
125	if (uptodate) {
126		ext4_debug("%s: Block %lld up-to-date",
127			   __func__, bh->b_blocknr);
128		set_buffer_uptodate(bh);
129	} else {
130		ext4_debug("%s: Block %lld not up-to-date",
131			   __func__, bh->b_blocknr);
132		clear_buffer_uptodate(bh);
133	}
134
135	unlock_buffer(bh);
136}
137
138static inline void ext4_fc_reset_inode(struct inode *inode)
139{
140	struct ext4_inode_info *ei = EXT4_I(inode);
141
142	ei->i_fc_lblk_start = 0;
143	ei->i_fc_lblk_len = 0;
144}
145
146void ext4_fc_init_inode(struct inode *inode)
147{
148	struct ext4_inode_info *ei = EXT4_I(inode);
149
150	ext4_fc_reset_inode(inode);
151	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
152	INIT_LIST_HEAD(&ei->i_fc_list);
153	init_waitqueue_head(&ei->i_fc_wait);
154	atomic_set(&ei->i_fc_updates, 0);
155}
156
157/* This function must be called with sbi->s_fc_lock held. */
158static void ext4_fc_wait_committing_inode(struct inode *inode)
159__releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
160{
161	wait_queue_head_t *wq;
162	struct ext4_inode_info *ei = EXT4_I(inode);
163
164#if (BITS_PER_LONG < 64)
165	DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
166			EXT4_STATE_FC_COMMITTING);
167	wq = bit_waitqueue(&ei->i_state_flags,
168				EXT4_STATE_FC_COMMITTING);
169#else
170	DEFINE_WAIT_BIT(wait, &ei->i_flags,
171			EXT4_STATE_FC_COMMITTING);
172	wq = bit_waitqueue(&ei->i_flags,
173				EXT4_STATE_FC_COMMITTING);
174#endif
175	lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
176	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
177	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
178	schedule();
179	finish_wait(wq, &wait.wq_entry);
180}
181
182/*
183 * Inform Ext4's fast about start of an inode update
184 *
185 * This function is called by the high level call VFS callbacks before
186 * performing any inode update. This function blocks if there's an ongoing
187 * fast commit on the inode in question.
188 */
189void ext4_fc_start_update(struct inode *inode)
190{
191	struct ext4_inode_info *ei = EXT4_I(inode);
192
193	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
194	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
195		return;
196
197restart:
198	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
199	if (list_empty(&ei->i_fc_list))
200		goto out;
201
202	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
203		ext4_fc_wait_committing_inode(inode);
204		goto restart;
205	}
206out:
207	atomic_inc(&ei->i_fc_updates);
208	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
209}
210
211/*
212 * Stop inode update and wake up waiting fast commits if any.
213 */
214void ext4_fc_stop_update(struct inode *inode)
215{
216	struct ext4_inode_info *ei = EXT4_I(inode);
217
218	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
219	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
220		return;
221
222	if (atomic_dec_and_test(&ei->i_fc_updates))
223		wake_up_all(&ei->i_fc_wait);
224}
225
226/*
227 * Remove inode from fast commit list. If the inode is being committed
228 * we wait until inode commit is done.
229 */
230void ext4_fc_del(struct inode *inode)
231{
232	struct ext4_inode_info *ei = EXT4_I(inode);
233
234	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
235	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
236		return;
237
238restart:
239	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
240	if (list_empty(&ei->i_fc_list)) {
241		spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
242		return;
243	}
244
245	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
246		ext4_fc_wait_committing_inode(inode);
247		goto restart;
248	}
249	list_del_init(&ei->i_fc_list);
250	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
251}
252
253/*
254 * Mark file system as fast commit ineligible. This means that next commit
255 * operation would result in a full jbd2 commit.
256 */
257void ext4_fc_mark_ineligible(struct super_block *sb, int reason)
258{
259	struct ext4_sb_info *sbi = EXT4_SB(sb);
260
261	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
262	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
263		return;
264
265	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
266	WARN_ON(reason >= EXT4_FC_REASON_MAX);
267	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
268}
269
270/*
271 * Start a fast commit ineligible update. Any commits that happen while
272 * such an operation is in progress fall back to full commits.
273 */
274void ext4_fc_start_ineligible(struct super_block *sb, int reason)
275{
276	struct ext4_sb_info *sbi = EXT4_SB(sb);
277
278	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
279	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
280		return;
281
282	WARN_ON(reason >= EXT4_FC_REASON_MAX);
283	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
284	atomic_inc(&sbi->s_fc_ineligible_updates);
285}
286
287/*
288 * Stop a fast commit ineligible update. We set EXT4_MF_FC_INELIGIBLE flag here
289 * to ensure that after stopping the ineligible update, at least one full
290 * commit takes place.
291 */
292void ext4_fc_stop_ineligible(struct super_block *sb)
293{
294	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
295	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
296		return;
297
298	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
299	atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates);
300}
301
302static inline int ext4_fc_is_ineligible(struct super_block *sb)
303{
304	return (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE) ||
305		atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates));
306}
307
308/*
309 * Generic fast commit tracking function. If this is the first time this we are
310 * called after a full commit, we initialize fast commit fields and then call
311 * __fc_track_fn() with update = 0. If we have already been called after a full
312 * commit, we pass update = 1. Based on that, the track function can determine
313 * if it needs to track a field for the first time or if it needs to just
314 * update the previously tracked value.
315 *
316 * If enqueue is set, this function enqueues the inode in fast commit list.
317 */
318static int ext4_fc_track_template(
319	handle_t *handle, struct inode *inode,
320	int (*__fc_track_fn)(struct inode *, void *, bool),
321	void *args, int enqueue)
322{
323	bool update = false;
324	struct ext4_inode_info *ei = EXT4_I(inode);
325	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
326	tid_t tid = 0;
327	int ret;
328
329	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
330	    (sbi->s_mount_state & EXT4_FC_REPLAY))
331		return -EOPNOTSUPP;
332
333	if (ext4_fc_is_ineligible(inode->i_sb))
334		return -EINVAL;
335
336	tid = handle->h_transaction->t_tid;
337	mutex_lock(&ei->i_fc_lock);
338	if (tid == ei->i_sync_tid) {
339		update = true;
340	} else {
341		ext4_fc_reset_inode(inode);
342		ei->i_sync_tid = tid;
343	}
344	ret = __fc_track_fn(inode, args, update);
345	mutex_unlock(&ei->i_fc_lock);
346
347	if (!enqueue)
348		return ret;
349
350	spin_lock(&sbi->s_fc_lock);
351	if (list_empty(&EXT4_I(inode)->i_fc_list))
352		list_add_tail(&EXT4_I(inode)->i_fc_list,
353				(ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) ?
354				&sbi->s_fc_q[FC_Q_STAGING] :
355				&sbi->s_fc_q[FC_Q_MAIN]);
356	spin_unlock(&sbi->s_fc_lock);
357
358	return ret;
359}
360
361struct __track_dentry_update_args {
362	struct dentry *dentry;
363	int op;
364};
365
366/* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
367static int __track_dentry_update(struct inode *inode, void *arg, bool update)
368{
369	struct ext4_fc_dentry_update *node;
370	struct ext4_inode_info *ei = EXT4_I(inode);
371	struct __track_dentry_update_args *dentry_update =
372		(struct __track_dentry_update_args *)arg;
373	struct dentry *dentry = dentry_update->dentry;
374	struct inode *dir = dentry->d_parent->d_inode;
375	struct super_block *sb = inode->i_sb;
376	struct ext4_sb_info *sbi = EXT4_SB(sb);
377
378	mutex_unlock(&ei->i_fc_lock);
379
380	if (IS_ENCRYPTED(dir)) {
381		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME);
382		mutex_lock(&ei->i_fc_lock);
383		return -EOPNOTSUPP;
384	}
385
386	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
387	if (!node) {
388		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM);
389		mutex_lock(&ei->i_fc_lock);
390		return -ENOMEM;
391	}
392
393	node->fcd_op = dentry_update->op;
394	node->fcd_parent = dir->i_ino;
395	node->fcd_ino = inode->i_ino;
396	if (dentry->d_name.len > DNAME_INLINE_LEN) {
397		node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
398		if (!node->fcd_name.name) {
399			kmem_cache_free(ext4_fc_dentry_cachep, node);
400			ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM);
401			mutex_lock(&ei->i_fc_lock);
402			return -ENOMEM;
403		}
404		memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
405			dentry->d_name.len);
406	} else {
407		memcpy(node->fcd_iname, dentry->d_name.name,
408			dentry->d_name.len);
409		node->fcd_name.name = node->fcd_iname;
410	}
411	node->fcd_name.len = dentry->d_name.len;
412
413	spin_lock(&sbi->s_fc_lock);
414	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING))
415		list_add_tail(&node->fcd_list,
416				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
417	else
418		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
419	spin_unlock(&sbi->s_fc_lock);
420	mutex_lock(&ei->i_fc_lock);
421
422	return 0;
423}
424
425void __ext4_fc_track_unlink(handle_t *handle,
426		struct inode *inode, struct dentry *dentry)
427{
428	struct __track_dentry_update_args args;
429	int ret;
430
431	args.dentry = dentry;
432	args.op = EXT4_FC_TAG_UNLINK;
433
434	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
435					(void *)&args, 0);
436	trace_ext4_fc_track_unlink(inode, dentry, ret);
437}
438
439void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
440{
441	__ext4_fc_track_unlink(handle, d_inode(dentry), dentry);
442}
443
444void __ext4_fc_track_link(handle_t *handle,
445	struct inode *inode, struct dentry *dentry)
446{
447	struct __track_dentry_update_args args;
448	int ret;
449
450	args.dentry = dentry;
451	args.op = EXT4_FC_TAG_LINK;
452
453	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
454					(void *)&args, 0);
455	trace_ext4_fc_track_link(inode, dentry, ret);
456}
457
458void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
459{
460	__ext4_fc_track_link(handle, d_inode(dentry), dentry);
461}
462
463void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
464			  struct dentry *dentry)
465{
466	struct __track_dentry_update_args args;
467	int ret;
468
469	args.dentry = dentry;
470	args.op = EXT4_FC_TAG_CREAT;
471
472	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
473					(void *)&args, 0);
474	trace_ext4_fc_track_create(inode, dentry, ret);
475}
476
477void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
478{
479	__ext4_fc_track_create(handle, d_inode(dentry), dentry);
480}
481
482/* __track_fn for inode tracking */
483static int __track_inode(struct inode *inode, void *arg, bool update)
484{
485	if (update)
486		return -EEXIST;
487
488	EXT4_I(inode)->i_fc_lblk_len = 0;
489
490	return 0;
491}
492
493void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
494{
495	int ret;
496
497	if (S_ISDIR(inode->i_mode))
498		return;
499
500	if (ext4_should_journal_data(inode)) {
501		ext4_fc_mark_ineligible(inode->i_sb,
502					EXT4_FC_REASON_INODE_JOURNAL_DATA);
503		return;
504	}
505
506	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
507	trace_ext4_fc_track_inode(inode, ret);
508}
509
510struct __track_range_args {
511	ext4_lblk_t start, end;
512};
513
514/* __track_fn for tracking data updates */
515static int __track_range(struct inode *inode, void *arg, bool update)
516{
517	struct ext4_inode_info *ei = EXT4_I(inode);
518	ext4_lblk_t oldstart;
519	struct __track_range_args *__arg =
520		(struct __track_range_args *)arg;
521
522	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
523		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
524		return -ECANCELED;
525	}
526
527	oldstart = ei->i_fc_lblk_start;
528
529	if (update && ei->i_fc_lblk_len > 0) {
530		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
531		ei->i_fc_lblk_len =
532			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
533				ei->i_fc_lblk_start + 1;
534	} else {
535		ei->i_fc_lblk_start = __arg->start;
536		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
537	}
538
539	return 0;
540}
541
542void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
543			 ext4_lblk_t end)
544{
545	struct __track_range_args args;
546	int ret;
547
548	if (S_ISDIR(inode->i_mode))
549		return;
550
551	args.start = start;
552	args.end = end;
553
554	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
555
556	trace_ext4_fc_track_range(inode, start, end, ret);
557}
558
559static void ext4_fc_submit_bh(struct super_block *sb)
560{
561	int write_flags = REQ_SYNC;
562	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
563
564	/* TODO: REQ_FUA | REQ_PREFLUSH is unnecessarily expensive. */
565	if (test_opt(sb, BARRIER))
566		write_flags |= REQ_FUA | REQ_PREFLUSH;
567	lock_buffer(bh);
568	set_buffer_dirty(bh);
569	set_buffer_uptodate(bh);
570	bh->b_end_io = ext4_end_buffer_io_sync;
571	submit_bh(REQ_OP_WRITE, write_flags, bh);
572	EXT4_SB(sb)->s_fc_bh = NULL;
573}
574
575/* Ext4 commit path routines */
576
577/* memzero and update CRC */
578static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
579				u32 *crc)
580{
581	void *ret;
582
583	ret = memset(dst, 0, len);
584	if (crc)
585		*crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
586	return ret;
587}
588
589/*
590 * Allocate len bytes on a fast commit buffer.
591 *
592 * During the commit time this function is used to manage fast commit
593 * block space. We don't split a fast commit log onto different
594 * blocks. So this function makes sure that if there's not enough space
595 * on the current block, the remaining space in the current block is
596 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
597 * new block is from jbd2 and CRC is updated to reflect the padding
598 * we added.
599 */
600static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
601{
602	struct ext4_fc_tl *tl;
603	struct ext4_sb_info *sbi = EXT4_SB(sb);
604	struct buffer_head *bh;
605	int bsize = sbi->s_journal->j_blocksize;
606	int ret, off = sbi->s_fc_bytes % bsize;
607	int pad_len;
608
609	/*
610	 * After allocating len, we should have space at least for a 0 byte
611	 * padding.
612	 */
613	if (len + sizeof(struct ext4_fc_tl) > bsize)
614		return NULL;
615
616	if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
617		/*
618		 * Only allocate from current buffer if we have enough space for
619		 * this request AND we have space to add a zero byte padding.
620		 */
621		if (!sbi->s_fc_bh) {
622			ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
623			if (ret)
624				return NULL;
625			sbi->s_fc_bh = bh;
626		}
627		sbi->s_fc_bytes += len;
628		return sbi->s_fc_bh->b_data + off;
629	}
630	/* Need to add PAD tag */
631	tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
632	tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
633	pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
634	tl->fc_len = cpu_to_le16(pad_len);
635	if (crc)
636		*crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
637	if (pad_len > 0)
638		ext4_fc_memzero(sb, tl + 1, pad_len, crc);
639	/* Don't leak uninitialized memory in the unused last byte. */
640	*((u8 *)(tl + 1) + pad_len) = 0;
641
642	ext4_fc_submit_bh(sb);
643
644	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
645	if (ret)
646		return NULL;
647	sbi->s_fc_bh = bh;
648	sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
649	return sbi->s_fc_bh->b_data;
650}
651
652/* memcpy to fc reserved space and update CRC */
653static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
654				int len, u32 *crc)
655{
656	if (crc)
657		*crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
658	return memcpy(dst, src, len);
659}
660
661/*
662 * Complete a fast commit by writing tail tag.
663 *
664 * Writing tail tag marks the end of a fast commit. In order to guarantee
665 * atomicity, after writing tail tag, even if there's space remaining
666 * in the block, next commit shouldn't use it. That's why tail tag
667 * has the length as that of the remaining space on the block.
668 */
669static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
670{
671	struct ext4_sb_info *sbi = EXT4_SB(sb);
672	struct ext4_fc_tl tl;
673	struct ext4_fc_tail tail;
674	int off, bsize = sbi->s_journal->j_blocksize;
675	u8 *dst;
676
677	/*
678	 * ext4_fc_reserve_space takes care of allocating an extra block if
679	 * there's no enough space on this block for accommodating this tail.
680	 */
681	dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
682	if (!dst)
683		return -ENOSPC;
684
685	off = sbi->s_fc_bytes % bsize;
686
687	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
688	tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
689	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
690
691	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
692	dst += sizeof(tl);
693	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
694	ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
695	dst += sizeof(tail.fc_tid);
696	tail.fc_crc = cpu_to_le32(crc);
697	ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
698	dst += sizeof(tail.fc_crc);
699	memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
700
701	ext4_fc_submit_bh(sb);
702
703	return 0;
704}
705
706/*
707 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
708 * Returns false if there's not enough space.
709 */
710static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
711			   u32 *crc)
712{
713	struct ext4_fc_tl tl;
714	u8 *dst;
715
716	dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
717	if (!dst)
718		return false;
719
720	tl.fc_tag = cpu_to_le16(tag);
721	tl.fc_len = cpu_to_le16(len);
722
723	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
724	ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
725
726	return true;
727}
728
729/* Same as above, but adds dentry tlv. */
730static  bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag,
731					int parent_ino, int ino, int dlen,
732					const unsigned char *dname,
733					u32 *crc)
734{
735	struct ext4_fc_dentry_info fcd;
736	struct ext4_fc_tl tl;
737	u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
738					crc);
739
740	if (!dst)
741		return false;
742
743	fcd.fc_parent_ino = cpu_to_le32(parent_ino);
744	fcd.fc_ino = cpu_to_le32(ino);
745	tl.fc_tag = cpu_to_le16(tag);
746	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
747	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
748	dst += sizeof(tl);
749	ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
750	dst += sizeof(fcd);
751	ext4_fc_memcpy(sb, dst, dname, dlen, crc);
752	dst += dlen;
753
754	return true;
755}
756
757/*
758 * Writes inode in the fast commit space under TLV with tag @tag.
759 * Returns 0 on success, error on failure.
760 */
761static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
762{
763	struct ext4_inode_info *ei = EXT4_I(inode);
764	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
765	int ret;
766	struct ext4_iloc iloc;
767	struct ext4_fc_inode fc_inode;
768	struct ext4_fc_tl tl;
769	u8 *dst;
770
771	ret = ext4_get_inode_loc(inode, &iloc);
772	if (ret)
773		return ret;
774
775	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
776		inode_len += ei->i_extra_isize;
777
778	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
779	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
780	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
781
782	ret = -ECANCELED;
783	dst = ext4_fc_reserve_space(inode->i_sb,
784			sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
785	if (!dst)
786		goto err;
787
788	if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
789		goto err;
790	dst += sizeof(tl);
791	if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
792		goto err;
793	dst += sizeof(fc_inode);
794	if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
795					inode_len, crc))
796		goto err;
797	ret = 0;
798err:
799	brelse(iloc.bh);
800	return ret;
801}
802
803/*
804 * Writes updated data ranges for the inode in question. Updates CRC.
805 * Returns 0 on success, error otherwise.
806 */
807static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
808{
809	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
810	struct ext4_inode_info *ei = EXT4_I(inode);
811	struct ext4_map_blocks map;
812	struct ext4_fc_add_range fc_ext;
813	struct ext4_fc_del_range lrange;
814	struct ext4_extent *ex;
815	int ret;
816
817	mutex_lock(&ei->i_fc_lock);
818	if (ei->i_fc_lblk_len == 0) {
819		mutex_unlock(&ei->i_fc_lock);
820		return 0;
821	}
822	old_blk_size = ei->i_fc_lblk_start;
823	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
824	ei->i_fc_lblk_len = 0;
825	mutex_unlock(&ei->i_fc_lock);
826
827	cur_lblk_off = old_blk_size;
828	jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
829		  __func__, cur_lblk_off, new_blk_size, inode->i_ino);
830
831	while (cur_lblk_off <= new_blk_size) {
832		map.m_lblk = cur_lblk_off;
833		map.m_len = new_blk_size - cur_lblk_off + 1;
834		ret = ext4_map_blocks(NULL, inode, &map, 0);
835		if (ret < 0)
836			return -ECANCELED;
837
838		if (map.m_len == 0) {
839			cur_lblk_off++;
840			continue;
841		}
842
843		if (ret == 0) {
844			lrange.fc_ino = cpu_to_le32(inode->i_ino);
845			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
846			lrange.fc_len = cpu_to_le32(map.m_len);
847			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
848					    sizeof(lrange), (u8 *)&lrange, crc))
849				return -ENOSPC;
850		} else {
851			unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
852				EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
853
854			/* Limit the number of blocks in one extent */
855			map.m_len = min(max, map.m_len);
856
857			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
858			ex = (struct ext4_extent *)&fc_ext.fc_ex;
859			ex->ee_block = cpu_to_le32(map.m_lblk);
860			ex->ee_len = cpu_to_le16(map.m_len);
861			ext4_ext_store_pblock(ex, map.m_pblk);
862			if (map.m_flags & EXT4_MAP_UNWRITTEN)
863				ext4_ext_mark_unwritten(ex);
864			else
865				ext4_ext_mark_initialized(ex);
866			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
867					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
868				return -ENOSPC;
869		}
870
871		cur_lblk_off += map.m_len;
872	}
873
874	return 0;
875}
876
877
878/* Submit data for all the fast commit inodes */
879static int ext4_fc_submit_inode_data_all(journal_t *journal)
880{
881	struct super_block *sb = (struct super_block *)(journal->j_private);
882	struct ext4_sb_info *sbi = EXT4_SB(sb);
883	struct ext4_inode_info *ei;
884	struct list_head *pos;
885	int ret = 0;
886
887	spin_lock(&sbi->s_fc_lock);
888	ext4_set_mount_flag(sb, EXT4_MF_FC_COMMITTING);
889	list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
890		ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
891		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
892		while (atomic_read(&ei->i_fc_updates)) {
893			DEFINE_WAIT(wait);
894
895			prepare_to_wait(&ei->i_fc_wait, &wait,
896						TASK_UNINTERRUPTIBLE);
897			if (atomic_read(&ei->i_fc_updates)) {
898				spin_unlock(&sbi->s_fc_lock);
899				schedule();
900				spin_lock(&sbi->s_fc_lock);
901			}
902			finish_wait(&ei->i_fc_wait, &wait);
903		}
904		spin_unlock(&sbi->s_fc_lock);
905		ret = jbd2_submit_inode_data(ei->jinode);
906		if (ret)
907			return ret;
908		spin_lock(&sbi->s_fc_lock);
909	}
910	spin_unlock(&sbi->s_fc_lock);
911
912	return ret;
913}
914
915/* Wait for completion of data for all the fast commit inodes */
916static int ext4_fc_wait_inode_data_all(journal_t *journal)
917{
918	struct super_block *sb = (struct super_block *)(journal->j_private);
919	struct ext4_sb_info *sbi = EXT4_SB(sb);
920	struct ext4_inode_info *pos, *n;
921	int ret = 0;
922
923	spin_lock(&sbi->s_fc_lock);
924	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
925		if (!ext4_test_inode_state(&pos->vfs_inode,
926					   EXT4_STATE_FC_COMMITTING))
927			continue;
928		spin_unlock(&sbi->s_fc_lock);
929
930		ret = jbd2_wait_inode_data(journal, pos->jinode);
931		if (ret)
932			return ret;
933		spin_lock(&sbi->s_fc_lock);
934	}
935	spin_unlock(&sbi->s_fc_lock);
936
937	return 0;
938}
939
940/* Commit all the directory entry updates */
941static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
942__acquires(&sbi->s_fc_lock)
943__releases(&sbi->s_fc_lock)
944{
945	struct super_block *sb = (struct super_block *)(journal->j_private);
946	struct ext4_sb_info *sbi = EXT4_SB(sb);
947	struct ext4_fc_dentry_update *fc_dentry;
948	struct inode *inode;
949	struct list_head *pos, *n, *fcd_pos, *fcd_n;
950	struct ext4_inode_info *ei;
951	int ret;
952
953	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
954		return 0;
955	list_for_each_safe(fcd_pos, fcd_n, &sbi->s_fc_dentry_q[FC_Q_MAIN]) {
956		fc_dentry = list_entry(fcd_pos, struct ext4_fc_dentry_update,
957					fcd_list);
958		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
959			spin_unlock(&sbi->s_fc_lock);
960			if (!ext4_fc_add_dentry_tlv(
961				sb, fc_dentry->fcd_op,
962				fc_dentry->fcd_parent, fc_dentry->fcd_ino,
963				fc_dentry->fcd_name.len,
964				fc_dentry->fcd_name.name, crc)) {
965				ret = -ENOSPC;
966				goto lock_and_exit;
967			}
968			spin_lock(&sbi->s_fc_lock);
969			continue;
970		}
971
972		inode = NULL;
973		list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
974			ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
975			if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
976				inode = &ei->vfs_inode;
977				break;
978			}
979		}
980		/*
981		 * If we don't find inode in our list, then it was deleted,
982		 * in which case, we don't need to record it's create tag.
983		 */
984		if (!inode)
985			continue;
986		spin_unlock(&sbi->s_fc_lock);
987
988		/*
989		 * We first write the inode and then the create dirent. This
990		 * allows the recovery code to create an unnamed inode first
991		 * and then link it to a directory entry. This allows us
992		 * to use namei.c routines almost as is and simplifies
993		 * the recovery code.
994		 */
995		ret = ext4_fc_write_inode(inode, crc);
996		if (ret)
997			goto lock_and_exit;
998
999		ret = ext4_fc_write_inode_data(inode, crc);
1000		if (ret)
1001			goto lock_and_exit;
1002
1003		if (!ext4_fc_add_dentry_tlv(
1004			sb, fc_dentry->fcd_op,
1005			fc_dentry->fcd_parent, fc_dentry->fcd_ino,
1006			fc_dentry->fcd_name.len,
1007			fc_dentry->fcd_name.name, crc)) {
1008			ret = -ENOSPC;
1009			goto lock_and_exit;
1010		}
1011
1012		spin_lock(&sbi->s_fc_lock);
1013	}
1014	return 0;
1015lock_and_exit:
1016	spin_lock(&sbi->s_fc_lock);
1017	return ret;
1018}
1019
1020static int ext4_fc_perform_commit(journal_t *journal)
1021{
1022	struct super_block *sb = (struct super_block *)(journal->j_private);
1023	struct ext4_sb_info *sbi = EXT4_SB(sb);
1024	struct ext4_inode_info *iter;
1025	struct ext4_fc_head head;
1026	struct list_head *pos;
1027	struct inode *inode;
1028	struct blk_plug plug;
1029	int ret = 0;
1030	u32 crc = 0;
1031
1032	ret = ext4_fc_submit_inode_data_all(journal);
1033	if (ret)
1034		return ret;
1035
1036	ret = ext4_fc_wait_inode_data_all(journal);
1037	if (ret)
1038		return ret;
1039
1040	/*
1041	 * If file system device is different from journal device, issue a cache
1042	 * flush before we start writing fast commit blocks.
1043	 */
1044	if (journal->j_fs_dev != journal->j_dev)
1045		blkdev_issue_flush(journal->j_fs_dev, GFP_NOFS);
1046
1047	blk_start_plug(&plug);
1048	if (sbi->s_fc_bytes == 0) {
1049		/*
1050		 * Add a head tag only if this is the first fast commit
1051		 * in this TID.
1052		 */
1053		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1054		head.fc_tid = cpu_to_le32(
1055			sbi->s_journal->j_running_transaction->t_tid);
1056		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1057			(u8 *)&head, &crc)) {
1058			ret = -ENOSPC;
1059			goto out;
1060		}
1061	}
1062
1063	spin_lock(&sbi->s_fc_lock);
1064	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1065	if (ret) {
1066		spin_unlock(&sbi->s_fc_lock);
1067		goto out;
1068	}
1069
1070	list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
1071		iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1072		inode = &iter->vfs_inode;
1073		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1074			continue;
1075
1076		spin_unlock(&sbi->s_fc_lock);
1077		ret = ext4_fc_write_inode_data(inode, &crc);
1078		if (ret)
1079			goto out;
1080		ret = ext4_fc_write_inode(inode, &crc);
1081		if (ret)
1082			goto out;
1083		spin_lock(&sbi->s_fc_lock);
1084	}
1085	spin_unlock(&sbi->s_fc_lock);
1086
1087	ret = ext4_fc_write_tail(sb, crc);
1088
1089out:
1090	blk_finish_plug(&plug);
1091	return ret;
1092}
1093
1094/*
1095 * The main commit entry point. Performs a fast commit for transaction
1096 * commit_tid if needed. If it's not possible to perform a fast commit
1097 * due to various reasons, we fall back to full commit. Returns 0
1098 * on success, error otherwise.
1099 */
1100int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1101{
1102	struct super_block *sb = (struct super_block *)(journal->j_private);
1103	struct ext4_sb_info *sbi = EXT4_SB(sb);
1104	int nblks = 0, ret, bsize = journal->j_blocksize;
1105	int subtid = atomic_read(&sbi->s_fc_subtid);
1106	int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0;
1107	ktime_t start_time, commit_time;
1108
1109	trace_ext4_fc_commit_start(sb);
1110
1111	start_time = ktime_get();
1112
1113	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
1114		(ext4_fc_is_ineligible(sb))) {
1115		reason = EXT4_FC_REASON_INELIGIBLE;
1116		goto out;
1117	}
1118
1119restart_fc:
1120	ret = jbd2_fc_begin_commit(journal, commit_tid);
1121	if (ret == -EALREADY) {
1122		/* There was an ongoing commit, check if we need to restart */
1123		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1124			commit_tid > journal->j_commit_sequence)
1125			goto restart_fc;
1126		reason = EXT4_FC_REASON_ALREADY_COMMITTED;
1127		goto out;
1128	} else if (ret) {
1129		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1130		reason = EXT4_FC_REASON_FC_START_FAILED;
1131		goto out;
1132	}
1133
1134	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1135	ret = ext4_fc_perform_commit(journal);
1136	if (ret < 0) {
1137		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1138		reason = EXT4_FC_REASON_FC_FAILED;
1139		goto out;
1140	}
1141	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1142	ret = jbd2_fc_wait_bufs(journal, nblks);
1143	if (ret < 0) {
1144		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1145		reason = EXT4_FC_REASON_FC_FAILED;
1146		goto out;
1147	}
1148	atomic_inc(&sbi->s_fc_subtid);
1149	jbd2_fc_end_commit(journal);
1150out:
1151	/* Has any ineligible update happened since we started? */
1152	if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) {
1153		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1154		reason = EXT4_FC_REASON_INELIGIBLE;
1155	}
1156
1157	spin_lock(&sbi->s_fc_lock);
1158	if (reason != EXT4_FC_REASON_OK &&
1159		reason != EXT4_FC_REASON_ALREADY_COMMITTED) {
1160		sbi->s_fc_stats.fc_ineligible_commits++;
1161	} else {
1162		sbi->s_fc_stats.fc_num_commits++;
1163		sbi->s_fc_stats.fc_numblks += nblks;
1164	}
1165	spin_unlock(&sbi->s_fc_lock);
1166	nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0;
1167	trace_ext4_fc_commit_stop(sb, nblks, reason);
1168	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1169	/*
1170	 * weight the commit time higher than the average time so we don't
1171	 * react too strongly to vast changes in the commit time
1172	 */
1173	if (likely(sbi->s_fc_avg_commit_time))
1174		sbi->s_fc_avg_commit_time = (commit_time +
1175				sbi->s_fc_avg_commit_time * 3) / 4;
1176	else
1177		sbi->s_fc_avg_commit_time = commit_time;
1178	jbd_debug(1,
1179		"Fast commit ended with blks = %d, reason = %d, subtid - %d",
1180		nblks, reason, subtid);
1181	if (reason == EXT4_FC_REASON_FC_FAILED)
1182		return jbd2_fc_end_commit_fallback(journal);
1183	if (reason == EXT4_FC_REASON_FC_START_FAILED ||
1184		reason == EXT4_FC_REASON_INELIGIBLE)
1185		return jbd2_complete_transaction(journal, commit_tid);
1186	return 0;
1187}
1188
1189/*
1190 * Fast commit cleanup routine. This is called after every fast commit and
1191 * full commit. full is true if we are called after a full commit.
1192 */
1193static void ext4_fc_cleanup(journal_t *journal, int full)
1194{
1195	struct super_block *sb = journal->j_private;
1196	struct ext4_sb_info *sbi = EXT4_SB(sb);
1197	struct ext4_inode_info *iter;
1198	struct ext4_fc_dentry_update *fc_dentry;
1199	struct list_head *pos, *n;
1200
1201	if (full && sbi->s_fc_bh)
1202		sbi->s_fc_bh = NULL;
1203
1204	jbd2_fc_release_bufs(journal);
1205
1206	spin_lock(&sbi->s_fc_lock);
1207	list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
1208		iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1209		list_del_init(&iter->i_fc_list);
1210		ext4_clear_inode_state(&iter->vfs_inode,
1211				       EXT4_STATE_FC_COMMITTING);
1212		ext4_fc_reset_inode(&iter->vfs_inode);
1213		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1214		smp_mb();
1215#if (BITS_PER_LONG < 64)
1216		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1217#else
1218		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1219#endif
1220	}
1221
1222	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1223		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1224					     struct ext4_fc_dentry_update,
1225					     fcd_list);
1226		list_del_init(&fc_dentry->fcd_list);
1227		spin_unlock(&sbi->s_fc_lock);
1228
1229		if (fc_dentry->fcd_name.name &&
1230			fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1231			kfree(fc_dentry->fcd_name.name);
1232		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1233		spin_lock(&sbi->s_fc_lock);
1234	}
1235
1236	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1237				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1238	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1239				&sbi->s_fc_q[FC_Q_MAIN]);
1240
1241	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
1242	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1243
1244	if (full)
1245		sbi->s_fc_bytes = 0;
1246	spin_unlock(&sbi->s_fc_lock);
1247	trace_ext4_fc_stats(sb);
1248}
1249
1250/* Ext4 Replay Path Routines */
1251
1252/* Helper struct for dentry replay routines */
1253struct dentry_info_args {
1254	int parent_ino, dname_len, ino, inode_len;
1255	char *dname;
1256};
1257
1258static inline void tl_to_darg(struct dentry_info_args *darg,
1259			      struct  ext4_fc_tl *tl, u8 *val)
1260{
1261	struct ext4_fc_dentry_info fcd;
1262
1263	memcpy(&fcd, val, sizeof(fcd));
1264
1265	darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1266	darg->ino = le32_to_cpu(fcd.fc_ino);
1267	darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1268	darg->dname_len = le16_to_cpu(tl->fc_len) -
1269		sizeof(struct ext4_fc_dentry_info);
1270}
1271
1272/* Unlink replay function */
1273static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl,
1274				 u8 *val)
1275{
1276	struct inode *inode, *old_parent;
1277	struct qstr entry;
1278	struct dentry_info_args darg;
1279	int ret = 0;
1280
1281	tl_to_darg(&darg, tl, val);
1282
1283	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1284			darg.parent_ino, darg.dname_len);
1285
1286	entry.name = darg.dname;
1287	entry.len = darg.dname_len;
1288	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1289
1290	if (IS_ERR(inode)) {
1291		jbd_debug(1, "Inode %d not found", darg.ino);
1292		return 0;
1293	}
1294
1295	old_parent = ext4_iget(sb, darg.parent_ino,
1296				EXT4_IGET_NORMAL);
1297	if (IS_ERR(old_parent)) {
1298		jbd_debug(1, "Dir with inode  %d not found", darg.parent_ino);
1299		iput(inode);
1300		return 0;
1301	}
1302
1303	ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1304	/* -ENOENT ok coz it might not exist anymore. */
1305	if (ret == -ENOENT)
1306		ret = 0;
1307	iput(old_parent);
1308	iput(inode);
1309	return ret;
1310}
1311
1312static int ext4_fc_replay_link_internal(struct super_block *sb,
1313				struct dentry_info_args *darg,
1314				struct inode *inode)
1315{
1316	struct inode *dir = NULL;
1317	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1318	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1319	int ret = 0;
1320
1321	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1322	if (IS_ERR(dir)) {
1323		jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino);
1324		dir = NULL;
1325		goto out;
1326	}
1327
1328	dentry_dir = d_obtain_alias(dir);
1329	if (IS_ERR(dentry_dir)) {
1330		jbd_debug(1, "Failed to obtain dentry");
1331		dentry_dir = NULL;
1332		goto out;
1333	}
1334
1335	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1336	if (!dentry_inode) {
1337		jbd_debug(1, "Inode dentry not created.");
1338		ret = -ENOMEM;
1339		goto out;
1340	}
1341
1342	ret = __ext4_link(dir, inode, dentry_inode);
1343	/*
1344	 * It's possible that link already existed since data blocks
1345	 * for the dir in question got persisted before we crashed OR
1346	 * we replayed this tag and crashed before the entire replay
1347	 * could complete.
1348	 */
1349	if (ret && ret != -EEXIST) {
1350		jbd_debug(1, "Failed to link\n");
1351		goto out;
1352	}
1353
1354	ret = 0;
1355out:
1356	if (dentry_dir) {
1357		d_drop(dentry_dir);
1358		dput(dentry_dir);
1359	} else if (dir) {
1360		iput(dir);
1361	}
1362	if (dentry_inode) {
1363		d_drop(dentry_inode);
1364		dput(dentry_inode);
1365	}
1366
1367	return ret;
1368}
1369
1370/* Link replay function */
1371static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl,
1372			       u8 *val)
1373{
1374	struct inode *inode;
1375	struct dentry_info_args darg;
1376	int ret = 0;
1377
1378	tl_to_darg(&darg, tl, val);
1379	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1380			darg.parent_ino, darg.dname_len);
1381
1382	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1383	if (IS_ERR(inode)) {
1384		jbd_debug(1, "Inode not found.");
1385		return 0;
1386	}
1387
1388	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1389	iput(inode);
1390	return ret;
1391}
1392
1393/*
1394 * Record all the modified inodes during replay. We use this later to setup
1395 * block bitmaps correctly.
1396 */
1397static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1398{
1399	struct ext4_fc_replay_state *state;
1400	int i;
1401
1402	state = &EXT4_SB(sb)->s_fc_replay_state;
1403	for (i = 0; i < state->fc_modified_inodes_used; i++)
1404		if (state->fc_modified_inodes[i] == ino)
1405			return 0;
1406	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1407		int *fc_modified_inodes;
1408
1409		fc_modified_inodes = krealloc(state->fc_modified_inodes,
1410				sizeof(int) * (state->fc_modified_inodes_size +
1411				EXT4_FC_REPLAY_REALLOC_INCREMENT),
1412				GFP_KERNEL);
1413		if (!fc_modified_inodes)
1414			return -ENOMEM;
1415		state->fc_modified_inodes = fc_modified_inodes;
1416		state->fc_modified_inodes_size +=
1417			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1418	}
1419	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1420	return 0;
1421}
1422
1423/*
1424 * Inode replay function
1425 */
1426static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl,
1427				u8 *val)
1428{
1429	struct ext4_fc_inode fc_inode;
1430	struct ext4_inode *raw_inode;
1431	struct ext4_inode *raw_fc_inode;
1432	struct inode *inode = NULL;
1433	struct ext4_iloc iloc;
1434	int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag);
1435	struct ext4_extent_header *eh;
1436
1437	memcpy(&fc_inode, val, sizeof(fc_inode));
1438
1439	ino = le32_to_cpu(fc_inode.fc_ino);
1440	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1441
1442	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1443	if (!IS_ERR(inode)) {
1444		ext4_ext_clear_bb(inode);
1445		iput(inode);
1446	}
1447	inode = NULL;
1448
1449	ret = ext4_fc_record_modified_inode(sb, ino);
1450	if (ret)
1451		goto out;
1452
1453	raw_fc_inode = (struct ext4_inode *)
1454		(val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1455	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1456	if (ret)
1457		goto out;
1458
1459	inode_len = le16_to_cpu(tl->fc_len) - sizeof(struct ext4_fc_inode);
1460	raw_inode = ext4_raw_inode(&iloc);
1461
1462	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1463	memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1464		inode_len - offsetof(struct ext4_inode, i_generation));
1465	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1466		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1467		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1468			memset(eh, 0, sizeof(*eh));
1469			eh->eh_magic = EXT4_EXT_MAGIC;
1470			eh->eh_max = cpu_to_le16(
1471				(sizeof(raw_inode->i_block) -
1472				 sizeof(struct ext4_extent_header))
1473				 / sizeof(struct ext4_extent));
1474		}
1475	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1476		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1477			sizeof(raw_inode->i_block));
1478	}
1479
1480	/* Immediately update the inode on disk. */
1481	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1482	if (ret)
1483		goto out;
1484	ret = sync_dirty_buffer(iloc.bh);
1485	if (ret)
1486		goto out;
1487	ret = ext4_mark_inode_used(sb, ino);
1488	if (ret)
1489		goto out;
1490
1491	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1492	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1493	if (IS_ERR(inode)) {
1494		jbd_debug(1, "Inode not found.");
1495		return -EFSCORRUPTED;
1496	}
1497
1498	/*
1499	 * Our allocator could have made different decisions than before
1500	 * crashing. This should be fixed but until then, we calculate
1501	 * the number of blocks the inode.
1502	 */
1503	ext4_ext_replay_set_iblocks(inode);
1504
1505	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1506	ext4_reset_inode_seed(inode);
1507
1508	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1509	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1510	sync_dirty_buffer(iloc.bh);
1511	brelse(iloc.bh);
1512out:
1513	iput(inode);
1514	if (!ret)
1515		blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
1516
1517	return 0;
1518}
1519
1520/*
1521 * Dentry create replay function.
1522 *
1523 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1524 * inode for which we are trying to create a dentry here, should already have
1525 * been replayed before we start here.
1526 */
1527static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl,
1528				 u8 *val)
1529{
1530	int ret = 0;
1531	struct inode *inode = NULL;
1532	struct inode *dir = NULL;
1533	struct dentry_info_args darg;
1534
1535	tl_to_darg(&darg, tl, val);
1536
1537	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1538			darg.parent_ino, darg.dname_len);
1539
1540	/* This takes care of update group descriptor and other metadata */
1541	ret = ext4_mark_inode_used(sb, darg.ino);
1542	if (ret)
1543		goto out;
1544
1545	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1546	if (IS_ERR(inode)) {
1547		jbd_debug(1, "inode %d not found.", darg.ino);
1548		inode = NULL;
1549		ret = -EINVAL;
1550		goto out;
1551	}
1552
1553	if (S_ISDIR(inode->i_mode)) {
1554		/*
1555		 * If we are creating a directory, we need to make sure that the
1556		 * dot and dot dot dirents are setup properly.
1557		 */
1558		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1559		if (IS_ERR(dir)) {
1560			jbd_debug(1, "Dir %d not found.", darg.ino);
1561			goto out;
1562		}
1563		ret = ext4_init_new_dir(NULL, dir, inode);
1564		iput(dir);
1565		if (ret) {
1566			ret = 0;
1567			goto out;
1568		}
1569	}
1570	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1571	if (ret)
1572		goto out;
1573	set_nlink(inode, 1);
1574	ext4_mark_inode_dirty(NULL, inode);
1575out:
1576	if (inode)
1577		iput(inode);
1578	return ret;
1579}
1580
1581/*
1582 * Record physical disk regions which are in use as per fast commit area,
1583 * and used by inodes during replay phase. Our simple replay phase
1584 * allocator excludes these regions from allocation.
1585 */
1586int ext4_fc_record_regions(struct super_block *sb, int ino,
1587		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1588{
1589	struct ext4_fc_replay_state *state;
1590	struct ext4_fc_alloc_region *region;
1591
1592	state = &EXT4_SB(sb)->s_fc_replay_state;
1593	/*
1594	 * during replay phase, the fc_regions_valid may not same as
1595	 * fc_regions_used, update it when do new additions.
1596	 */
1597	if (replay && state->fc_regions_used != state->fc_regions_valid)
1598		state->fc_regions_used = state->fc_regions_valid;
1599	if (state->fc_regions_used == state->fc_regions_size) {
1600		struct ext4_fc_alloc_region *fc_regions;
1601
1602		fc_regions = krealloc(state->fc_regions,
1603				      sizeof(struct ext4_fc_alloc_region) *
1604				      (state->fc_regions_size +
1605				       EXT4_FC_REPLAY_REALLOC_INCREMENT),
1606				      GFP_KERNEL);
1607		if (!fc_regions)
1608			return -ENOMEM;
1609		state->fc_regions_size +=
1610			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1611		state->fc_regions = fc_regions;
1612	}
1613	region = &state->fc_regions[state->fc_regions_used++];
1614	region->ino = ino;
1615	region->lblk = lblk;
1616	region->pblk = pblk;
1617	region->len = len;
1618
1619	if (replay)
1620		state->fc_regions_valid++;
1621
1622	return 0;
1623}
1624
1625/* Replay add range tag */
1626static int ext4_fc_replay_add_range(struct super_block *sb,
1627				    struct ext4_fc_tl *tl, u8 *val)
1628{
1629	struct ext4_fc_add_range fc_add_ex;
1630	struct ext4_extent newex, *ex;
1631	struct inode *inode;
1632	ext4_lblk_t start, cur;
1633	int remaining, len;
1634	ext4_fsblk_t start_pblk;
1635	struct ext4_map_blocks map;
1636	struct ext4_ext_path *path = NULL;
1637	int ret;
1638
1639	memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1640	ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1641
1642	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1643		le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1644		ext4_ext_get_actual_len(ex));
1645
1646	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1647	if (IS_ERR(inode)) {
1648		jbd_debug(1, "Inode not found.");
1649		return 0;
1650	}
1651
1652	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1653	if (ret)
1654		goto out;
1655
1656	start = le32_to_cpu(ex->ee_block);
1657	start_pblk = ext4_ext_pblock(ex);
1658	len = ext4_ext_get_actual_len(ex);
1659
1660	cur = start;
1661	remaining = len;
1662	jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1663		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1664		  inode->i_ino);
1665
1666	while (remaining > 0) {
1667		map.m_lblk = cur;
1668		map.m_len = remaining;
1669		map.m_pblk = 0;
1670		ret = ext4_map_blocks(NULL, inode, &map, 0);
1671
1672		if (ret < 0)
1673			goto out;
1674
1675		if (ret == 0) {
1676			/* Range is not mapped */
1677			path = ext4_find_extent(inode, cur, NULL, 0);
1678			if (IS_ERR(path))
1679				goto out;
1680			memset(&newex, 0, sizeof(newex));
1681			newex.ee_block = cpu_to_le32(cur);
1682			ext4_ext_store_pblock(
1683				&newex, start_pblk + cur - start);
1684			newex.ee_len = cpu_to_le16(map.m_len);
1685			if (ext4_ext_is_unwritten(ex))
1686				ext4_ext_mark_unwritten(&newex);
1687			down_write(&EXT4_I(inode)->i_data_sem);
1688			ret = ext4_ext_insert_extent(
1689				NULL, inode, &path, &newex, 0);
1690			up_write((&EXT4_I(inode)->i_data_sem));
1691			ext4_ext_drop_refs(path);
1692			kfree(path);
1693			if (ret)
1694				goto out;
1695			goto next;
1696		}
1697
1698		if (start_pblk + cur - start != map.m_pblk) {
1699			/*
1700			 * Logical to physical mapping changed. This can happen
1701			 * if this range was removed and then reallocated to
1702			 * map to new physical blocks during a fast commit.
1703			 */
1704			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1705					ext4_ext_is_unwritten(ex),
1706					start_pblk + cur - start);
1707			if (ret)
1708				goto out;
1709			/*
1710			 * Mark the old blocks as free since they aren't used
1711			 * anymore. We maintain an array of all the modified
1712			 * inodes. In case these blocks are still used at either
1713			 * a different logical range in the same inode or in
1714			 * some different inode, we will mark them as allocated
1715			 * at the end of the FC replay using our array of
1716			 * modified inodes.
1717			 */
1718			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1719			goto next;
1720		}
1721
1722		/* Range is mapped and needs a state change */
1723		jbd_debug(1, "Converting from %ld to %d %lld",
1724				map.m_flags & EXT4_MAP_UNWRITTEN,
1725			ext4_ext_is_unwritten(ex), map.m_pblk);
1726		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1727					ext4_ext_is_unwritten(ex), map.m_pblk);
1728		if (ret)
1729			goto out;
1730		/*
1731		 * We may have split the extent tree while toggling the state.
1732		 * Try to shrink the extent tree now.
1733		 */
1734		ext4_ext_replay_shrink_inode(inode, start + len);
1735next:
1736		cur += map.m_len;
1737		remaining -= map.m_len;
1738	}
1739	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1740					sb->s_blocksize_bits);
1741out:
1742	iput(inode);
1743	return 0;
1744}
1745
1746/* Replay DEL_RANGE tag */
1747static int
1748ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl,
1749			 u8 *val)
1750{
1751	struct inode *inode;
1752	struct ext4_fc_del_range lrange;
1753	struct ext4_map_blocks map;
1754	ext4_lblk_t cur, remaining;
1755	int ret;
1756
1757	memcpy(&lrange, val, sizeof(lrange));
1758	cur = le32_to_cpu(lrange.fc_lblk);
1759	remaining = le32_to_cpu(lrange.fc_len);
1760
1761	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1762		le32_to_cpu(lrange.fc_ino), cur, remaining);
1763
1764	inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1765	if (IS_ERR(inode)) {
1766		jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange.fc_ino));
1767		return 0;
1768	}
1769
1770	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1771	if (ret)
1772		goto out;
1773
1774	jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n",
1775			inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1776			le32_to_cpu(lrange.fc_len));
1777	while (remaining > 0) {
1778		map.m_lblk = cur;
1779		map.m_len = remaining;
1780
1781		ret = ext4_map_blocks(NULL, inode, &map, 0);
1782		if (ret < 0)
1783			goto out;
1784		if (ret > 0) {
1785			remaining -= ret;
1786			cur += ret;
1787			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1788		} else {
1789			remaining -= map.m_len;
1790			cur += map.m_len;
1791		}
1792	}
1793
1794	down_write(&EXT4_I(inode)->i_data_sem);
1795	ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1796				le32_to_cpu(lrange.fc_lblk) +
1797				le32_to_cpu(lrange.fc_len) - 1);
1798	up_write(&EXT4_I(inode)->i_data_sem);
1799	if (ret)
1800		goto out;
1801	ext4_ext_replay_shrink_inode(inode,
1802		i_size_read(inode) >> sb->s_blocksize_bits);
1803	ext4_mark_inode_dirty(NULL, inode);
1804out:
1805	iput(inode);
1806	return 0;
1807}
1808
1809static inline const char *tag2str(u16 tag)
1810{
1811	switch (tag) {
1812	case EXT4_FC_TAG_LINK:
1813		return "TAG_ADD_ENTRY";
1814	case EXT4_FC_TAG_UNLINK:
1815		return "TAG_DEL_ENTRY";
1816	case EXT4_FC_TAG_ADD_RANGE:
1817		return "TAG_ADD_RANGE";
1818	case EXT4_FC_TAG_CREAT:
1819		return "TAG_CREAT_DENTRY";
1820	case EXT4_FC_TAG_DEL_RANGE:
1821		return "TAG_DEL_RANGE";
1822	case EXT4_FC_TAG_INODE:
1823		return "TAG_INODE";
1824	case EXT4_FC_TAG_PAD:
1825		return "TAG_PAD";
1826	case EXT4_FC_TAG_TAIL:
1827		return "TAG_TAIL";
1828	case EXT4_FC_TAG_HEAD:
1829		return "TAG_HEAD";
1830	default:
1831		return "TAG_ERROR";
1832	}
1833}
1834
1835static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1836{
1837	struct ext4_fc_replay_state *state;
1838	struct inode *inode;
1839	struct ext4_ext_path *path = NULL;
1840	struct ext4_map_blocks map;
1841	int i, ret, j;
1842	ext4_lblk_t cur, end;
1843
1844	state = &EXT4_SB(sb)->s_fc_replay_state;
1845	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1846		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1847			EXT4_IGET_NORMAL);
1848		if (IS_ERR(inode)) {
1849			jbd_debug(1, "Inode %d not found.",
1850				state->fc_modified_inodes[i]);
1851			continue;
1852		}
1853		cur = 0;
1854		end = EXT_MAX_BLOCKS;
1855		while (cur < end) {
1856			map.m_lblk = cur;
1857			map.m_len = end - cur;
1858
1859			ret = ext4_map_blocks(NULL, inode, &map, 0);
1860			if (ret < 0)
1861				break;
1862
1863			if (ret > 0) {
1864				path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1865				if (!IS_ERR(path)) {
1866					for (j = 0; j < path->p_depth; j++)
1867						ext4_mb_mark_bb(inode->i_sb,
1868							path[j].p_block, 1, 1);
1869					ext4_ext_drop_refs(path);
1870					kfree(path);
1871				}
1872				cur += ret;
1873				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1874							map.m_len, 1);
1875			} else {
1876				cur = cur + (map.m_len ? map.m_len : 1);
1877			}
1878		}
1879		iput(inode);
1880	}
1881}
1882
1883/*
1884 * Check if block is in excluded regions for block allocation. The simple
1885 * allocator that runs during replay phase is calls this function to see
1886 * if it is okay to use a block.
1887 */
1888bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1889{
1890	int i;
1891	struct ext4_fc_replay_state *state;
1892
1893	state = &EXT4_SB(sb)->s_fc_replay_state;
1894	for (i = 0; i < state->fc_regions_valid; i++) {
1895		if (state->fc_regions[i].ino == 0 ||
1896			state->fc_regions[i].len == 0)
1897			continue;
1898		if (blk >= state->fc_regions[i].pblk &&
1899		    blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1900			return true;
1901	}
1902	return false;
1903}
1904
1905/* Cleanup function called after replay */
1906void ext4_fc_replay_cleanup(struct super_block *sb)
1907{
1908	struct ext4_sb_info *sbi = EXT4_SB(sb);
1909
1910	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1911	kfree(sbi->s_fc_replay_state.fc_regions);
1912	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1913}
1914
1915/*
1916 * Recovery Scan phase handler
1917 *
1918 * This function is called during the scan phase and is responsible
1919 * for doing following things:
1920 * - Make sure the fast commit area has valid tags for replay
1921 * - Count number of tags that need to be replayed by the replay handler
1922 * - Verify CRC
1923 * - Create a list of excluded blocks for allocation during replay phase
1924 *
1925 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1926 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1927 * to indicate that scan has finished and JBD2 can now start replay phase.
1928 * It returns a negative error to indicate that there was an error. At the end
1929 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1930 * to indicate the number of tags that need to replayed during the replay phase.
1931 */
1932static int ext4_fc_replay_scan(journal_t *journal,
1933				struct buffer_head *bh, int off,
1934				tid_t expected_tid)
1935{
1936	struct super_block *sb = journal->j_private;
1937	struct ext4_sb_info *sbi = EXT4_SB(sb);
1938	struct ext4_fc_replay_state *state;
1939	int ret = JBD2_FC_REPLAY_CONTINUE;
1940	struct ext4_fc_add_range ext;
1941	struct ext4_fc_tl tl;
1942	struct ext4_fc_tail tail;
1943	__u8 *start, *end, *cur, *val;
1944	struct ext4_fc_head head;
1945	struct ext4_extent *ex;
1946
1947	state = &sbi->s_fc_replay_state;
1948
1949	start = (u8 *)bh->b_data;
1950	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
1951
1952	if (state->fc_replay_expected_off == 0) {
1953		state->fc_cur_tag = 0;
1954		state->fc_replay_num_tags = 0;
1955		state->fc_crc = 0;
1956		state->fc_regions = NULL;
1957		state->fc_regions_valid = state->fc_regions_used =
1958			state->fc_regions_size = 0;
1959		/* Check if we can stop early */
1960		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
1961			!= EXT4_FC_TAG_HEAD)
1962			return 0;
1963	}
1964
1965	if (off != state->fc_replay_expected_off) {
1966		ret = -EFSCORRUPTED;
1967		goto out_err;
1968	}
1969
1970	state->fc_replay_expected_off++;
1971	for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) {
1972		memcpy(&tl, cur, sizeof(tl));
1973		val = cur + sizeof(tl);
1974		jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
1975			  tag2str(le16_to_cpu(tl.fc_tag)), bh->b_blocknr);
1976		switch (le16_to_cpu(tl.fc_tag)) {
1977		case EXT4_FC_TAG_ADD_RANGE:
1978			memcpy(&ext, val, sizeof(ext));
1979			ex = (struct ext4_extent *)&ext.fc_ex;
1980			ret = ext4_fc_record_regions(sb,
1981				le32_to_cpu(ext.fc_ino),
1982				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
1983				ext4_ext_get_actual_len(ex), 0);
1984			if (ret < 0)
1985				break;
1986			ret = JBD2_FC_REPLAY_CONTINUE;
1987			fallthrough;
1988		case EXT4_FC_TAG_DEL_RANGE:
1989		case EXT4_FC_TAG_LINK:
1990		case EXT4_FC_TAG_UNLINK:
1991		case EXT4_FC_TAG_CREAT:
1992		case EXT4_FC_TAG_INODE:
1993		case EXT4_FC_TAG_PAD:
1994			state->fc_cur_tag++;
1995			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
1996					sizeof(tl) + le16_to_cpu(tl.fc_len));
1997			break;
1998		case EXT4_FC_TAG_TAIL:
1999			state->fc_cur_tag++;
2000			memcpy(&tail, val, sizeof(tail));
2001			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2002						sizeof(tl) +
2003						offsetof(struct ext4_fc_tail,
2004						fc_crc));
2005			if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2006				le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2007				state->fc_replay_num_tags = state->fc_cur_tag;
2008				state->fc_regions_valid =
2009					state->fc_regions_used;
2010			} else {
2011				ret = state->fc_replay_num_tags ?
2012					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2013			}
2014			state->fc_crc = 0;
2015			break;
2016		case EXT4_FC_TAG_HEAD:
2017			memcpy(&head, val, sizeof(head));
2018			if (le32_to_cpu(head.fc_features) &
2019				~EXT4_FC_SUPPORTED_FEATURES) {
2020				ret = -EOPNOTSUPP;
2021				break;
2022			}
2023			if (le32_to_cpu(head.fc_tid) != expected_tid) {
2024				ret = JBD2_FC_REPLAY_STOP;
2025				break;
2026			}
2027			state->fc_cur_tag++;
2028			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2029					    sizeof(tl) + le16_to_cpu(tl.fc_len));
2030			break;
2031		default:
2032			ret = state->fc_replay_num_tags ?
2033				JBD2_FC_REPLAY_STOP : -ECANCELED;
2034		}
2035		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2036			break;
2037	}
2038
2039out_err:
2040	trace_ext4_fc_replay_scan(sb, ret, off);
2041	return ret;
2042}
2043
2044/*
2045 * Main recovery path entry point.
2046 * The meaning of return codes is similar as above.
2047 */
2048static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2049				enum passtype pass, int off, tid_t expected_tid)
2050{
2051	struct super_block *sb = journal->j_private;
2052	struct ext4_sb_info *sbi = EXT4_SB(sb);
2053	struct ext4_fc_tl tl;
2054	__u8 *start, *end, *cur, *val;
2055	int ret = JBD2_FC_REPLAY_CONTINUE;
2056	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2057	struct ext4_fc_tail tail;
2058
2059	if (pass == PASS_SCAN) {
2060		state->fc_current_pass = PASS_SCAN;
2061		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2062	}
2063
2064	if (state->fc_current_pass != pass) {
2065		state->fc_current_pass = pass;
2066		sbi->s_mount_state |= EXT4_FC_REPLAY;
2067	}
2068	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2069		jbd_debug(1, "Replay stops\n");
2070		ext4_fc_set_bitmaps_and_counters(sb);
2071		return 0;
2072	}
2073
2074#ifdef CONFIG_EXT4_DEBUG
2075	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2076		pr_warn("Dropping fc block %d because max_replay set\n", off);
2077		return JBD2_FC_REPLAY_STOP;
2078	}
2079#endif
2080
2081	start = (u8 *)bh->b_data;
2082	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2083
2084	for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) {
2085		memcpy(&tl, cur, sizeof(tl));
2086		val = cur + sizeof(tl);
2087
2088		if (state->fc_replay_num_tags == 0) {
2089			ret = JBD2_FC_REPLAY_STOP;
2090			ext4_fc_set_bitmaps_and_counters(sb);
2091			break;
2092		}
2093		jbd_debug(3, "Replay phase, tag:%s\n",
2094				tag2str(le16_to_cpu(tl.fc_tag)));
2095		state->fc_replay_num_tags--;
2096		switch (le16_to_cpu(tl.fc_tag)) {
2097		case EXT4_FC_TAG_LINK:
2098			ret = ext4_fc_replay_link(sb, &tl, val);
2099			break;
2100		case EXT4_FC_TAG_UNLINK:
2101			ret = ext4_fc_replay_unlink(sb, &tl, val);
2102			break;
2103		case EXT4_FC_TAG_ADD_RANGE:
2104			ret = ext4_fc_replay_add_range(sb, &tl, val);
2105			break;
2106		case EXT4_FC_TAG_CREAT:
2107			ret = ext4_fc_replay_create(sb, &tl, val);
2108			break;
2109		case EXT4_FC_TAG_DEL_RANGE:
2110			ret = ext4_fc_replay_del_range(sb, &tl, val);
2111			break;
2112		case EXT4_FC_TAG_INODE:
2113			ret = ext4_fc_replay_inode(sb, &tl, val);
2114			break;
2115		case EXT4_FC_TAG_PAD:
2116			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2117					     le16_to_cpu(tl.fc_len), 0);
2118			break;
2119		case EXT4_FC_TAG_TAIL:
2120			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0,
2121					     le16_to_cpu(tl.fc_len), 0);
2122			memcpy(&tail, val, sizeof(tail));
2123			WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2124			break;
2125		case EXT4_FC_TAG_HEAD:
2126			break;
2127		default:
2128			trace_ext4_fc_replay(sb, le16_to_cpu(tl.fc_tag), 0,
2129					     le16_to_cpu(tl.fc_len), 0);
2130			ret = -ECANCELED;
2131			break;
2132		}
2133		if (ret < 0)
2134			break;
2135		ret = JBD2_FC_REPLAY_CONTINUE;
2136	}
2137	return ret;
2138}
2139
2140void ext4_fc_init(struct super_block *sb, journal_t *journal)
2141{
2142	/*
2143	 * We set replay callback even if fast commit disabled because we may
2144	 * could still have fast commit blocks that need to be replayed even if
2145	 * fast commit has now been turned off.
2146	 */
2147	journal->j_fc_replay_callback = ext4_fc_replay;
2148	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2149		return;
2150	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2151}
2152
2153static const char * const fc_ineligible_reasons[] = {
2154	[EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2155	[EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2156	[EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2157	[EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2158	[EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2159	[EXT4_FC_REASON_RESIZE] = "Resize",
2160	[EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2161	[EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2162	[EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2163	[EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2164};
2165
2166int ext4_fc_info_show(struct seq_file *seq, void *v)
2167{
2168	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2169	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2170	int i;
2171
2172	if (v != SEQ_START_TOKEN)
2173		return 0;
2174
2175	seq_printf(seq,
2176		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2177		   stats->fc_num_commits, stats->fc_ineligible_commits,
2178		   stats->fc_numblks,
2179		   div_u64(sbi->s_fc_avg_commit_time, 1000));
2180	seq_puts(seq, "Ineligible reasons:\n");
2181	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2182		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2183			stats->fc_ineligible_reason_count[i]);
2184
2185	return 0;
2186}
2187
2188int __init ext4_fc_init_dentry_cache(void)
2189{
2190	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2191					   SLAB_RECLAIM_ACCOUNT);
2192
2193	if (ext4_fc_dentry_cachep == NULL)
2194		return -ENOMEM;
2195
2196	return 0;
2197}
2198
2199void ext4_fc_destroy_dentry_cache(void)
2200{
2201	kmem_cache_destroy(ext4_fc_dentry_cachep);
2202}
2203