1// SPDX-License-Identifier: GPL-2.0 2 3/* 4 * fs/ext4/fast_commit.c 5 * 6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com> 7 * 8 * Ext4 fast commits routines. 9 */ 10#include "ext4.h" 11#include "ext4_jbd2.h" 12#include "ext4_extents.h" 13#include "mballoc.h" 14 15/* 16 * Ext4 Fast Commits 17 * ----------------- 18 * 19 * Ext4 fast commits implement fine grained journalling for Ext4. 20 * 21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See 22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by 23 * TLV during the recovery phase. For the scenarios for which we currently 24 * don't have replay code, fast commit falls back to full commits. 25 * Fast commits record delta in one of the following three categories. 26 * 27 * (A) Directory entry updates: 28 * 29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink 30 * - EXT4_FC_TAG_LINK - records directory entry link 31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation 32 * 33 * (B) File specific data range updates: 34 * 35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode 36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode 37 * 38 * (C) Inode metadata (mtime / ctime etc): 39 * 40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed 41 * during recovery. Note that iblocks field is 42 * not replayed and instead derived during 43 * replay. 44 * Commit Operation 45 * ---------------- 46 * With fast commits, we maintain all the directory entry operations in the 47 * order in which they are issued in an in-memory queue. This queue is flushed 48 * to disk during the commit operation. We also maintain a list of inodes 49 * that need to be committed during a fast commit in another in memory queue of 50 * inodes. During the commit operation, we commit in the following order: 51 * 52 * [1] Lock inodes for any further data updates by setting COMMITTING state 53 * [2] Submit data buffers of all the inodes 54 * [3] Wait for [2] to complete 55 * [4] Commit all the directory entry updates in the fast commit space 56 * [5] Commit all the changed inode structures 57 * [6] Write tail tag (this tag ensures the atomicity, please read the following 58 * section for more details). 59 * [7] Wait for [4], [5] and [6] to complete. 60 * 61 * All the inode updates must call ext4_fc_start_update() before starting an 62 * update. If such an ongoing update is present, fast commit waits for it to 63 * complete. The completion of such an update is marked by 64 * ext4_fc_stop_update(). 65 * 66 * Fast Commit Ineligibility 67 * ------------------------- 68 * Not all operations are supported by fast commits today (e.g extended 69 * attributes). Fast commit ineligibility is marked by calling one of the 70 * two following functions: 71 * 72 * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall 73 * back to full commit. This is useful in case of transient errors. 74 * 75 * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all 76 * the fast commits happening between ext4_fc_start_ineligible() and 77 * ext4_fc_stop_ineligible() and one fast commit after the call to 78 * ext4_fc_stop_ineligible() to fall back to full commits. It is important to 79 * make one more fast commit to fall back to full commit after stop call so 80 * that it guaranteed that the fast commit ineligible operation contained 81 * within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is 82 * followed by at least 1 full commit. 83 * 84 * Atomicity of commits 85 * -------------------- 86 * In order to guarantee atomicity during the commit operation, fast commit 87 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail 88 * tag contains CRC of the contents and TID of the transaction after which 89 * this fast commit should be applied. Recovery code replays fast commit 90 * logs only if there's at least 1 valid tail present. For every fast commit 91 * operation, there is 1 tail. This means, we may end up with multiple tails 92 * in the fast commit space. Here's an example: 93 * 94 * - Create a new file A and remove existing file B 95 * - fsync() 96 * - Append contents to file A 97 * - Truncate file A 98 * - fsync() 99 * 100 * The fast commit space at the end of above operations would look like this: 101 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL] 102 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->| 103 * 104 * Replay code should thus check for all the valid tails in the FC area. 105 * 106 * TODOs 107 * ----- 108 * 1) Make fast commit atomic updates more fine grained. Today, a fast commit 109 * eligible update must be protected within ext4_fc_start_update() and 110 * ext4_fc_stop_update(). These routines are called at much higher 111 * routines. This can be made more fine grained by combining with 112 * ext4_journal_start(). 113 * 114 * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() 115 * 116 * 3) Handle more ineligible cases. 117 */ 118 119#include <trace/events/ext4.h> 120static struct kmem_cache *ext4_fc_dentry_cachep; 121 122static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate) 123{ 124 BUFFER_TRACE(bh, ""); 125 if (uptodate) { 126 ext4_debug("%s: Block %lld up-to-date", 127 __func__, bh->b_blocknr); 128 set_buffer_uptodate(bh); 129 } else { 130 ext4_debug("%s: Block %lld not up-to-date", 131 __func__, bh->b_blocknr); 132 clear_buffer_uptodate(bh); 133 } 134 135 unlock_buffer(bh); 136} 137 138static inline void ext4_fc_reset_inode(struct inode *inode) 139{ 140 struct ext4_inode_info *ei = EXT4_I(inode); 141 142 ei->i_fc_lblk_start = 0; 143 ei->i_fc_lblk_len = 0; 144} 145 146void ext4_fc_init_inode(struct inode *inode) 147{ 148 struct ext4_inode_info *ei = EXT4_I(inode); 149 150 ext4_fc_reset_inode(inode); 151 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING); 152 INIT_LIST_HEAD(&ei->i_fc_list); 153 init_waitqueue_head(&ei->i_fc_wait); 154 atomic_set(&ei->i_fc_updates, 0); 155} 156 157/* This function must be called with sbi->s_fc_lock held. */ 158static void ext4_fc_wait_committing_inode(struct inode *inode) 159__releases(&EXT4_SB(inode->i_sb)->s_fc_lock) 160{ 161 wait_queue_head_t *wq; 162 struct ext4_inode_info *ei = EXT4_I(inode); 163 164#if (BITS_PER_LONG < 64) 165 DEFINE_WAIT_BIT(wait, &ei->i_state_flags, 166 EXT4_STATE_FC_COMMITTING); 167 wq = bit_waitqueue(&ei->i_state_flags, 168 EXT4_STATE_FC_COMMITTING); 169#else 170 DEFINE_WAIT_BIT(wait, &ei->i_flags, 171 EXT4_STATE_FC_COMMITTING); 172 wq = bit_waitqueue(&ei->i_flags, 173 EXT4_STATE_FC_COMMITTING); 174#endif 175 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock); 176 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 177 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 178 schedule(); 179 finish_wait(wq, &wait.wq_entry); 180} 181 182/* 183 * Inform Ext4's fast about start of an inode update 184 * 185 * This function is called by the high level call VFS callbacks before 186 * performing any inode update. This function blocks if there's an ongoing 187 * fast commit on the inode in question. 188 */ 189void ext4_fc_start_update(struct inode *inode) 190{ 191 struct ext4_inode_info *ei = EXT4_I(inode); 192 193 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || 194 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)) 195 return; 196 197restart: 198 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); 199 if (list_empty(&ei->i_fc_list)) 200 goto out; 201 202 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { 203 ext4_fc_wait_committing_inode(inode); 204 goto restart; 205 } 206out: 207 atomic_inc(&ei->i_fc_updates); 208 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 209} 210 211/* 212 * Stop inode update and wake up waiting fast commits if any. 213 */ 214void ext4_fc_stop_update(struct inode *inode) 215{ 216 struct ext4_inode_info *ei = EXT4_I(inode); 217 218 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || 219 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)) 220 return; 221 222 if (atomic_dec_and_test(&ei->i_fc_updates)) 223 wake_up_all(&ei->i_fc_wait); 224} 225 226/* 227 * Remove inode from fast commit list. If the inode is being committed 228 * we wait until inode commit is done. 229 */ 230void ext4_fc_del(struct inode *inode) 231{ 232 struct ext4_inode_info *ei = EXT4_I(inode); 233 234 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || 235 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)) 236 return; 237 238restart: 239 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); 240 if (list_empty(&ei->i_fc_list)) { 241 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 242 return; 243 } 244 245 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { 246 ext4_fc_wait_committing_inode(inode); 247 goto restart; 248 } 249 list_del_init(&ei->i_fc_list); 250 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 251} 252 253/* 254 * Mark file system as fast commit ineligible. This means that next commit 255 * operation would result in a full jbd2 commit. 256 */ 257void ext4_fc_mark_ineligible(struct super_block *sb, int reason) 258{ 259 struct ext4_sb_info *sbi = EXT4_SB(sb); 260 261 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) || 262 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)) 263 return; 264 265 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 266 WARN_ON(reason >= EXT4_FC_REASON_MAX); 267 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; 268} 269 270/* 271 * Start a fast commit ineligible update. Any commits that happen while 272 * such an operation is in progress fall back to full commits. 273 */ 274void ext4_fc_start_ineligible(struct super_block *sb, int reason) 275{ 276 struct ext4_sb_info *sbi = EXT4_SB(sb); 277 278 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) || 279 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)) 280 return; 281 282 WARN_ON(reason >= EXT4_FC_REASON_MAX); 283 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; 284 atomic_inc(&sbi->s_fc_ineligible_updates); 285} 286 287/* 288 * Stop a fast commit ineligible update. We set EXT4_MF_FC_INELIGIBLE flag here 289 * to ensure that after stopping the ineligible update, at least one full 290 * commit takes place. 291 */ 292void ext4_fc_stop_ineligible(struct super_block *sb) 293{ 294 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) || 295 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)) 296 return; 297 298 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 299 atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates); 300} 301 302static inline int ext4_fc_is_ineligible(struct super_block *sb) 303{ 304 return (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE) || 305 atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates)); 306} 307 308/* 309 * Generic fast commit tracking function. If this is the first time this we are 310 * called after a full commit, we initialize fast commit fields and then call 311 * __fc_track_fn() with update = 0. If we have already been called after a full 312 * commit, we pass update = 1. Based on that, the track function can determine 313 * if it needs to track a field for the first time or if it needs to just 314 * update the previously tracked value. 315 * 316 * If enqueue is set, this function enqueues the inode in fast commit list. 317 */ 318static int ext4_fc_track_template( 319 handle_t *handle, struct inode *inode, 320 int (*__fc_track_fn)(struct inode *, void *, bool), 321 void *args, int enqueue) 322{ 323 bool update = false; 324 struct ext4_inode_info *ei = EXT4_I(inode); 325 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 326 tid_t tid = 0; 327 int ret; 328 329 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || 330 (sbi->s_mount_state & EXT4_FC_REPLAY)) 331 return -EOPNOTSUPP; 332 333 if (ext4_fc_is_ineligible(inode->i_sb)) 334 return -EINVAL; 335 336 tid = handle->h_transaction->t_tid; 337 mutex_lock(&ei->i_fc_lock); 338 if (tid == ei->i_sync_tid) { 339 update = true; 340 } else { 341 ext4_fc_reset_inode(inode); 342 ei->i_sync_tid = tid; 343 } 344 ret = __fc_track_fn(inode, args, update); 345 mutex_unlock(&ei->i_fc_lock); 346 347 if (!enqueue) 348 return ret; 349 350 spin_lock(&sbi->s_fc_lock); 351 if (list_empty(&EXT4_I(inode)->i_fc_list)) 352 list_add_tail(&EXT4_I(inode)->i_fc_list, 353 (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) ? 354 &sbi->s_fc_q[FC_Q_STAGING] : 355 &sbi->s_fc_q[FC_Q_MAIN]); 356 spin_unlock(&sbi->s_fc_lock); 357 358 return ret; 359} 360 361struct __track_dentry_update_args { 362 struct dentry *dentry; 363 int op; 364}; 365 366/* __track_fn for directory entry updates. Called with ei->i_fc_lock. */ 367static int __track_dentry_update(struct inode *inode, void *arg, bool update) 368{ 369 struct ext4_fc_dentry_update *node; 370 struct ext4_inode_info *ei = EXT4_I(inode); 371 struct __track_dentry_update_args *dentry_update = 372 (struct __track_dentry_update_args *)arg; 373 struct dentry *dentry = dentry_update->dentry; 374 struct inode *dir = dentry->d_parent->d_inode; 375 struct super_block *sb = inode->i_sb; 376 struct ext4_sb_info *sbi = EXT4_SB(sb); 377 378 mutex_unlock(&ei->i_fc_lock); 379 380 if (IS_ENCRYPTED(dir)) { 381 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME); 382 mutex_lock(&ei->i_fc_lock); 383 return -EOPNOTSUPP; 384 } 385 386 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS); 387 if (!node) { 388 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM); 389 mutex_lock(&ei->i_fc_lock); 390 return -ENOMEM; 391 } 392 393 node->fcd_op = dentry_update->op; 394 node->fcd_parent = dir->i_ino; 395 node->fcd_ino = inode->i_ino; 396 if (dentry->d_name.len > DNAME_INLINE_LEN) { 397 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS); 398 if (!node->fcd_name.name) { 399 kmem_cache_free(ext4_fc_dentry_cachep, node); 400 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM); 401 mutex_lock(&ei->i_fc_lock); 402 return -ENOMEM; 403 } 404 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name, 405 dentry->d_name.len); 406 } else { 407 memcpy(node->fcd_iname, dentry->d_name.name, 408 dentry->d_name.len); 409 node->fcd_name.name = node->fcd_iname; 410 } 411 node->fcd_name.len = dentry->d_name.len; 412 413 spin_lock(&sbi->s_fc_lock); 414 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) 415 list_add_tail(&node->fcd_list, 416 &sbi->s_fc_dentry_q[FC_Q_STAGING]); 417 else 418 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]); 419 spin_unlock(&sbi->s_fc_lock); 420 mutex_lock(&ei->i_fc_lock); 421 422 return 0; 423} 424 425void __ext4_fc_track_unlink(handle_t *handle, 426 struct inode *inode, struct dentry *dentry) 427{ 428 struct __track_dentry_update_args args; 429 int ret; 430 431 args.dentry = dentry; 432 args.op = EXT4_FC_TAG_UNLINK; 433 434 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 435 (void *)&args, 0); 436 trace_ext4_fc_track_unlink(inode, dentry, ret); 437} 438 439void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry) 440{ 441 __ext4_fc_track_unlink(handle, d_inode(dentry), dentry); 442} 443 444void __ext4_fc_track_link(handle_t *handle, 445 struct inode *inode, struct dentry *dentry) 446{ 447 struct __track_dentry_update_args args; 448 int ret; 449 450 args.dentry = dentry; 451 args.op = EXT4_FC_TAG_LINK; 452 453 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 454 (void *)&args, 0); 455 trace_ext4_fc_track_link(inode, dentry, ret); 456} 457 458void ext4_fc_track_link(handle_t *handle, struct dentry *dentry) 459{ 460 __ext4_fc_track_link(handle, d_inode(dentry), dentry); 461} 462 463void __ext4_fc_track_create(handle_t *handle, struct inode *inode, 464 struct dentry *dentry) 465{ 466 struct __track_dentry_update_args args; 467 int ret; 468 469 args.dentry = dentry; 470 args.op = EXT4_FC_TAG_CREAT; 471 472 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 473 (void *)&args, 0); 474 trace_ext4_fc_track_create(inode, dentry, ret); 475} 476 477void ext4_fc_track_create(handle_t *handle, struct dentry *dentry) 478{ 479 __ext4_fc_track_create(handle, d_inode(dentry), dentry); 480} 481 482/* __track_fn for inode tracking */ 483static int __track_inode(struct inode *inode, void *arg, bool update) 484{ 485 if (update) 486 return -EEXIST; 487 488 EXT4_I(inode)->i_fc_lblk_len = 0; 489 490 return 0; 491} 492 493void ext4_fc_track_inode(handle_t *handle, struct inode *inode) 494{ 495 int ret; 496 497 if (S_ISDIR(inode->i_mode)) 498 return; 499 500 if (ext4_should_journal_data(inode)) { 501 ext4_fc_mark_ineligible(inode->i_sb, 502 EXT4_FC_REASON_INODE_JOURNAL_DATA); 503 return; 504 } 505 506 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1); 507 trace_ext4_fc_track_inode(inode, ret); 508} 509 510struct __track_range_args { 511 ext4_lblk_t start, end; 512}; 513 514/* __track_fn for tracking data updates */ 515static int __track_range(struct inode *inode, void *arg, bool update) 516{ 517 struct ext4_inode_info *ei = EXT4_I(inode); 518 ext4_lblk_t oldstart; 519 struct __track_range_args *__arg = 520 (struct __track_range_args *)arg; 521 522 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) { 523 ext4_debug("Special inode %ld being modified\n", inode->i_ino); 524 return -ECANCELED; 525 } 526 527 oldstart = ei->i_fc_lblk_start; 528 529 if (update && ei->i_fc_lblk_len > 0) { 530 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start); 531 ei->i_fc_lblk_len = 532 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) - 533 ei->i_fc_lblk_start + 1; 534 } else { 535 ei->i_fc_lblk_start = __arg->start; 536 ei->i_fc_lblk_len = __arg->end - __arg->start + 1; 537 } 538 539 return 0; 540} 541 542void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start, 543 ext4_lblk_t end) 544{ 545 struct __track_range_args args; 546 int ret; 547 548 if (S_ISDIR(inode->i_mode)) 549 return; 550 551 args.start = start; 552 args.end = end; 553 554 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1); 555 556 trace_ext4_fc_track_range(inode, start, end, ret); 557} 558 559static void ext4_fc_submit_bh(struct super_block *sb) 560{ 561 int write_flags = REQ_SYNC; 562 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh; 563 564 /* TODO: REQ_FUA | REQ_PREFLUSH is unnecessarily expensive. */ 565 if (test_opt(sb, BARRIER)) 566 write_flags |= REQ_FUA | REQ_PREFLUSH; 567 lock_buffer(bh); 568 set_buffer_dirty(bh); 569 set_buffer_uptodate(bh); 570 bh->b_end_io = ext4_end_buffer_io_sync; 571 submit_bh(REQ_OP_WRITE, write_flags, bh); 572 EXT4_SB(sb)->s_fc_bh = NULL; 573} 574 575/* Ext4 commit path routines */ 576 577/* memzero and update CRC */ 578static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len, 579 u32 *crc) 580{ 581 void *ret; 582 583 ret = memset(dst, 0, len); 584 if (crc) 585 *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len); 586 return ret; 587} 588 589/* 590 * Allocate len bytes on a fast commit buffer. 591 * 592 * During the commit time this function is used to manage fast commit 593 * block space. We don't split a fast commit log onto different 594 * blocks. So this function makes sure that if there's not enough space 595 * on the current block, the remaining space in the current block is 596 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case, 597 * new block is from jbd2 and CRC is updated to reflect the padding 598 * we added. 599 */ 600static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc) 601{ 602 struct ext4_fc_tl *tl; 603 struct ext4_sb_info *sbi = EXT4_SB(sb); 604 struct buffer_head *bh; 605 int bsize = sbi->s_journal->j_blocksize; 606 int ret, off = sbi->s_fc_bytes % bsize; 607 int pad_len; 608 609 /* 610 * After allocating len, we should have space at least for a 0 byte 611 * padding. 612 */ 613 if (len + sizeof(struct ext4_fc_tl) > bsize) 614 return NULL; 615 616 if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) { 617 /* 618 * Only allocate from current buffer if we have enough space for 619 * this request AND we have space to add a zero byte padding. 620 */ 621 if (!sbi->s_fc_bh) { 622 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 623 if (ret) 624 return NULL; 625 sbi->s_fc_bh = bh; 626 } 627 sbi->s_fc_bytes += len; 628 return sbi->s_fc_bh->b_data + off; 629 } 630 /* Need to add PAD tag */ 631 tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off); 632 tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD); 633 pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl); 634 tl->fc_len = cpu_to_le16(pad_len); 635 if (crc) 636 *crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl)); 637 if (pad_len > 0) 638 ext4_fc_memzero(sb, tl + 1, pad_len, crc); 639 /* Don't leak uninitialized memory in the unused last byte. */ 640 *((u8 *)(tl + 1) + pad_len) = 0; 641 642 ext4_fc_submit_bh(sb); 643 644 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 645 if (ret) 646 return NULL; 647 sbi->s_fc_bh = bh; 648 sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len; 649 return sbi->s_fc_bh->b_data; 650} 651 652/* memcpy to fc reserved space and update CRC */ 653static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src, 654 int len, u32 *crc) 655{ 656 if (crc) 657 *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len); 658 return memcpy(dst, src, len); 659} 660 661/* 662 * Complete a fast commit by writing tail tag. 663 * 664 * Writing tail tag marks the end of a fast commit. In order to guarantee 665 * atomicity, after writing tail tag, even if there's space remaining 666 * in the block, next commit shouldn't use it. That's why tail tag 667 * has the length as that of the remaining space on the block. 668 */ 669static int ext4_fc_write_tail(struct super_block *sb, u32 crc) 670{ 671 struct ext4_sb_info *sbi = EXT4_SB(sb); 672 struct ext4_fc_tl tl; 673 struct ext4_fc_tail tail; 674 int off, bsize = sbi->s_journal->j_blocksize; 675 u8 *dst; 676 677 /* 678 * ext4_fc_reserve_space takes care of allocating an extra block if 679 * there's no enough space on this block for accommodating this tail. 680 */ 681 dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc); 682 if (!dst) 683 return -ENOSPC; 684 685 off = sbi->s_fc_bytes % bsize; 686 687 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL); 688 tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail)); 689 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize); 690 691 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc); 692 dst += sizeof(tl); 693 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid); 694 ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc); 695 dst += sizeof(tail.fc_tid); 696 tail.fc_crc = cpu_to_le32(crc); 697 ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL); 698 dst += sizeof(tail.fc_crc); 699 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */ 700 701 ext4_fc_submit_bh(sb); 702 703 return 0; 704} 705 706/* 707 * Adds tag, length, value and updates CRC. Returns true if tlv was added. 708 * Returns false if there's not enough space. 709 */ 710static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val, 711 u32 *crc) 712{ 713 struct ext4_fc_tl tl; 714 u8 *dst; 715 716 dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc); 717 if (!dst) 718 return false; 719 720 tl.fc_tag = cpu_to_le16(tag); 721 tl.fc_len = cpu_to_le16(len); 722 723 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc); 724 ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc); 725 726 return true; 727} 728 729/* Same as above, but adds dentry tlv. */ 730static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag, 731 int parent_ino, int ino, int dlen, 732 const unsigned char *dname, 733 u32 *crc) 734{ 735 struct ext4_fc_dentry_info fcd; 736 struct ext4_fc_tl tl; 737 u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen, 738 crc); 739 740 if (!dst) 741 return false; 742 743 fcd.fc_parent_ino = cpu_to_le32(parent_ino); 744 fcd.fc_ino = cpu_to_le32(ino); 745 tl.fc_tag = cpu_to_le16(tag); 746 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen); 747 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc); 748 dst += sizeof(tl); 749 ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc); 750 dst += sizeof(fcd); 751 ext4_fc_memcpy(sb, dst, dname, dlen, crc); 752 dst += dlen; 753 754 return true; 755} 756 757/* 758 * Writes inode in the fast commit space under TLV with tag @tag. 759 * Returns 0 on success, error on failure. 760 */ 761static int ext4_fc_write_inode(struct inode *inode, u32 *crc) 762{ 763 struct ext4_inode_info *ei = EXT4_I(inode); 764 int inode_len = EXT4_GOOD_OLD_INODE_SIZE; 765 int ret; 766 struct ext4_iloc iloc; 767 struct ext4_fc_inode fc_inode; 768 struct ext4_fc_tl tl; 769 u8 *dst; 770 771 ret = ext4_get_inode_loc(inode, &iloc); 772 if (ret) 773 return ret; 774 775 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) 776 inode_len += ei->i_extra_isize; 777 778 fc_inode.fc_ino = cpu_to_le32(inode->i_ino); 779 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE); 780 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino)); 781 782 ret = -ECANCELED; 783 dst = ext4_fc_reserve_space(inode->i_sb, 784 sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc); 785 if (!dst) 786 goto err; 787 788 if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc)) 789 goto err; 790 dst += sizeof(tl); 791 if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc)) 792 goto err; 793 dst += sizeof(fc_inode); 794 if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc), 795 inode_len, crc)) 796 goto err; 797 ret = 0; 798err: 799 brelse(iloc.bh); 800 return ret; 801} 802 803/* 804 * Writes updated data ranges for the inode in question. Updates CRC. 805 * Returns 0 on success, error otherwise. 806 */ 807static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc) 808{ 809 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size; 810 struct ext4_inode_info *ei = EXT4_I(inode); 811 struct ext4_map_blocks map; 812 struct ext4_fc_add_range fc_ext; 813 struct ext4_fc_del_range lrange; 814 struct ext4_extent *ex; 815 int ret; 816 817 mutex_lock(&ei->i_fc_lock); 818 if (ei->i_fc_lblk_len == 0) { 819 mutex_unlock(&ei->i_fc_lock); 820 return 0; 821 } 822 old_blk_size = ei->i_fc_lblk_start; 823 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1; 824 ei->i_fc_lblk_len = 0; 825 mutex_unlock(&ei->i_fc_lock); 826 827 cur_lblk_off = old_blk_size; 828 jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n", 829 __func__, cur_lblk_off, new_blk_size, inode->i_ino); 830 831 while (cur_lblk_off <= new_blk_size) { 832 map.m_lblk = cur_lblk_off; 833 map.m_len = new_blk_size - cur_lblk_off + 1; 834 ret = ext4_map_blocks(NULL, inode, &map, 0); 835 if (ret < 0) 836 return -ECANCELED; 837 838 if (map.m_len == 0) { 839 cur_lblk_off++; 840 continue; 841 } 842 843 if (ret == 0) { 844 lrange.fc_ino = cpu_to_le32(inode->i_ino); 845 lrange.fc_lblk = cpu_to_le32(map.m_lblk); 846 lrange.fc_len = cpu_to_le32(map.m_len); 847 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE, 848 sizeof(lrange), (u8 *)&lrange, crc)) 849 return -ENOSPC; 850 } else { 851 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ? 852 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN; 853 854 /* Limit the number of blocks in one extent */ 855 map.m_len = min(max, map.m_len); 856 857 fc_ext.fc_ino = cpu_to_le32(inode->i_ino); 858 ex = (struct ext4_extent *)&fc_ext.fc_ex; 859 ex->ee_block = cpu_to_le32(map.m_lblk); 860 ex->ee_len = cpu_to_le16(map.m_len); 861 ext4_ext_store_pblock(ex, map.m_pblk); 862 if (map.m_flags & EXT4_MAP_UNWRITTEN) 863 ext4_ext_mark_unwritten(ex); 864 else 865 ext4_ext_mark_initialized(ex); 866 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE, 867 sizeof(fc_ext), (u8 *)&fc_ext, crc)) 868 return -ENOSPC; 869 } 870 871 cur_lblk_off += map.m_len; 872 } 873 874 return 0; 875} 876 877 878/* Submit data for all the fast commit inodes */ 879static int ext4_fc_submit_inode_data_all(journal_t *journal) 880{ 881 struct super_block *sb = (struct super_block *)(journal->j_private); 882 struct ext4_sb_info *sbi = EXT4_SB(sb); 883 struct ext4_inode_info *ei; 884 struct list_head *pos; 885 int ret = 0; 886 887 spin_lock(&sbi->s_fc_lock); 888 ext4_set_mount_flag(sb, EXT4_MF_FC_COMMITTING); 889 list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) { 890 ei = list_entry(pos, struct ext4_inode_info, i_fc_list); 891 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING); 892 while (atomic_read(&ei->i_fc_updates)) { 893 DEFINE_WAIT(wait); 894 895 prepare_to_wait(&ei->i_fc_wait, &wait, 896 TASK_UNINTERRUPTIBLE); 897 if (atomic_read(&ei->i_fc_updates)) { 898 spin_unlock(&sbi->s_fc_lock); 899 schedule(); 900 spin_lock(&sbi->s_fc_lock); 901 } 902 finish_wait(&ei->i_fc_wait, &wait); 903 } 904 spin_unlock(&sbi->s_fc_lock); 905 ret = jbd2_submit_inode_data(ei->jinode); 906 if (ret) 907 return ret; 908 spin_lock(&sbi->s_fc_lock); 909 } 910 spin_unlock(&sbi->s_fc_lock); 911 912 return ret; 913} 914 915/* Wait for completion of data for all the fast commit inodes */ 916static int ext4_fc_wait_inode_data_all(journal_t *journal) 917{ 918 struct super_block *sb = (struct super_block *)(journal->j_private); 919 struct ext4_sb_info *sbi = EXT4_SB(sb); 920 struct ext4_inode_info *pos, *n; 921 int ret = 0; 922 923 spin_lock(&sbi->s_fc_lock); 924 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 925 if (!ext4_test_inode_state(&pos->vfs_inode, 926 EXT4_STATE_FC_COMMITTING)) 927 continue; 928 spin_unlock(&sbi->s_fc_lock); 929 930 ret = jbd2_wait_inode_data(journal, pos->jinode); 931 if (ret) 932 return ret; 933 spin_lock(&sbi->s_fc_lock); 934 } 935 spin_unlock(&sbi->s_fc_lock); 936 937 return 0; 938} 939 940/* Commit all the directory entry updates */ 941static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc) 942__acquires(&sbi->s_fc_lock) 943__releases(&sbi->s_fc_lock) 944{ 945 struct super_block *sb = (struct super_block *)(journal->j_private); 946 struct ext4_sb_info *sbi = EXT4_SB(sb); 947 struct ext4_fc_dentry_update *fc_dentry; 948 struct inode *inode; 949 struct list_head *pos, *n, *fcd_pos, *fcd_n; 950 struct ext4_inode_info *ei; 951 int ret; 952 953 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) 954 return 0; 955 list_for_each_safe(fcd_pos, fcd_n, &sbi->s_fc_dentry_q[FC_Q_MAIN]) { 956 fc_dentry = list_entry(fcd_pos, struct ext4_fc_dentry_update, 957 fcd_list); 958 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) { 959 spin_unlock(&sbi->s_fc_lock); 960 if (!ext4_fc_add_dentry_tlv( 961 sb, fc_dentry->fcd_op, 962 fc_dentry->fcd_parent, fc_dentry->fcd_ino, 963 fc_dentry->fcd_name.len, 964 fc_dentry->fcd_name.name, crc)) { 965 ret = -ENOSPC; 966 goto lock_and_exit; 967 } 968 spin_lock(&sbi->s_fc_lock); 969 continue; 970 } 971 972 inode = NULL; 973 list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) { 974 ei = list_entry(pos, struct ext4_inode_info, i_fc_list); 975 if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) { 976 inode = &ei->vfs_inode; 977 break; 978 } 979 } 980 /* 981 * If we don't find inode in our list, then it was deleted, 982 * in which case, we don't need to record it's create tag. 983 */ 984 if (!inode) 985 continue; 986 spin_unlock(&sbi->s_fc_lock); 987 988 /* 989 * We first write the inode and then the create dirent. This 990 * allows the recovery code to create an unnamed inode first 991 * and then link it to a directory entry. This allows us 992 * to use namei.c routines almost as is and simplifies 993 * the recovery code. 994 */ 995 ret = ext4_fc_write_inode(inode, crc); 996 if (ret) 997 goto lock_and_exit; 998 999 ret = ext4_fc_write_inode_data(inode, crc); 1000 if (ret) 1001 goto lock_and_exit; 1002 1003 if (!ext4_fc_add_dentry_tlv( 1004 sb, fc_dentry->fcd_op, 1005 fc_dentry->fcd_parent, fc_dentry->fcd_ino, 1006 fc_dentry->fcd_name.len, 1007 fc_dentry->fcd_name.name, crc)) { 1008 ret = -ENOSPC; 1009 goto lock_and_exit; 1010 } 1011 1012 spin_lock(&sbi->s_fc_lock); 1013 } 1014 return 0; 1015lock_and_exit: 1016 spin_lock(&sbi->s_fc_lock); 1017 return ret; 1018} 1019 1020static int ext4_fc_perform_commit(journal_t *journal) 1021{ 1022 struct super_block *sb = (struct super_block *)(journal->j_private); 1023 struct ext4_sb_info *sbi = EXT4_SB(sb); 1024 struct ext4_inode_info *iter; 1025 struct ext4_fc_head head; 1026 struct list_head *pos; 1027 struct inode *inode; 1028 struct blk_plug plug; 1029 int ret = 0; 1030 u32 crc = 0; 1031 1032 ret = ext4_fc_submit_inode_data_all(journal); 1033 if (ret) 1034 return ret; 1035 1036 ret = ext4_fc_wait_inode_data_all(journal); 1037 if (ret) 1038 return ret; 1039 1040 /* 1041 * If file system device is different from journal device, issue a cache 1042 * flush before we start writing fast commit blocks. 1043 */ 1044 if (journal->j_fs_dev != journal->j_dev) 1045 blkdev_issue_flush(journal->j_fs_dev, GFP_NOFS); 1046 1047 blk_start_plug(&plug); 1048 if (sbi->s_fc_bytes == 0) { 1049 /* 1050 * Add a head tag only if this is the first fast commit 1051 * in this TID. 1052 */ 1053 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES); 1054 head.fc_tid = cpu_to_le32( 1055 sbi->s_journal->j_running_transaction->t_tid); 1056 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head), 1057 (u8 *)&head, &crc)) { 1058 ret = -ENOSPC; 1059 goto out; 1060 } 1061 } 1062 1063 spin_lock(&sbi->s_fc_lock); 1064 ret = ext4_fc_commit_dentry_updates(journal, &crc); 1065 if (ret) { 1066 spin_unlock(&sbi->s_fc_lock); 1067 goto out; 1068 } 1069 1070 list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) { 1071 iter = list_entry(pos, struct ext4_inode_info, i_fc_list); 1072 inode = &iter->vfs_inode; 1073 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) 1074 continue; 1075 1076 spin_unlock(&sbi->s_fc_lock); 1077 ret = ext4_fc_write_inode_data(inode, &crc); 1078 if (ret) 1079 goto out; 1080 ret = ext4_fc_write_inode(inode, &crc); 1081 if (ret) 1082 goto out; 1083 spin_lock(&sbi->s_fc_lock); 1084 } 1085 spin_unlock(&sbi->s_fc_lock); 1086 1087 ret = ext4_fc_write_tail(sb, crc); 1088 1089out: 1090 blk_finish_plug(&plug); 1091 return ret; 1092} 1093 1094/* 1095 * The main commit entry point. Performs a fast commit for transaction 1096 * commit_tid if needed. If it's not possible to perform a fast commit 1097 * due to various reasons, we fall back to full commit. Returns 0 1098 * on success, error otherwise. 1099 */ 1100int ext4_fc_commit(journal_t *journal, tid_t commit_tid) 1101{ 1102 struct super_block *sb = (struct super_block *)(journal->j_private); 1103 struct ext4_sb_info *sbi = EXT4_SB(sb); 1104 int nblks = 0, ret, bsize = journal->j_blocksize; 1105 int subtid = atomic_read(&sbi->s_fc_subtid); 1106 int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0; 1107 ktime_t start_time, commit_time; 1108 1109 trace_ext4_fc_commit_start(sb); 1110 1111 start_time = ktime_get(); 1112 1113 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) || 1114 (ext4_fc_is_ineligible(sb))) { 1115 reason = EXT4_FC_REASON_INELIGIBLE; 1116 goto out; 1117 } 1118 1119restart_fc: 1120 ret = jbd2_fc_begin_commit(journal, commit_tid); 1121 if (ret == -EALREADY) { 1122 /* There was an ongoing commit, check if we need to restart */ 1123 if (atomic_read(&sbi->s_fc_subtid) <= subtid && 1124 commit_tid > journal->j_commit_sequence) 1125 goto restart_fc; 1126 reason = EXT4_FC_REASON_ALREADY_COMMITTED; 1127 goto out; 1128 } else if (ret) { 1129 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++; 1130 reason = EXT4_FC_REASON_FC_START_FAILED; 1131 goto out; 1132 } 1133 1134 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize; 1135 ret = ext4_fc_perform_commit(journal); 1136 if (ret < 0) { 1137 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++; 1138 reason = EXT4_FC_REASON_FC_FAILED; 1139 goto out; 1140 } 1141 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before; 1142 ret = jbd2_fc_wait_bufs(journal, nblks); 1143 if (ret < 0) { 1144 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++; 1145 reason = EXT4_FC_REASON_FC_FAILED; 1146 goto out; 1147 } 1148 atomic_inc(&sbi->s_fc_subtid); 1149 jbd2_fc_end_commit(journal); 1150out: 1151 /* Has any ineligible update happened since we started? */ 1152 if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) { 1153 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++; 1154 reason = EXT4_FC_REASON_INELIGIBLE; 1155 } 1156 1157 spin_lock(&sbi->s_fc_lock); 1158 if (reason != EXT4_FC_REASON_OK && 1159 reason != EXT4_FC_REASON_ALREADY_COMMITTED) { 1160 sbi->s_fc_stats.fc_ineligible_commits++; 1161 } else { 1162 sbi->s_fc_stats.fc_num_commits++; 1163 sbi->s_fc_stats.fc_numblks += nblks; 1164 } 1165 spin_unlock(&sbi->s_fc_lock); 1166 nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0; 1167 trace_ext4_fc_commit_stop(sb, nblks, reason); 1168 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); 1169 /* 1170 * weight the commit time higher than the average time so we don't 1171 * react too strongly to vast changes in the commit time 1172 */ 1173 if (likely(sbi->s_fc_avg_commit_time)) 1174 sbi->s_fc_avg_commit_time = (commit_time + 1175 sbi->s_fc_avg_commit_time * 3) / 4; 1176 else 1177 sbi->s_fc_avg_commit_time = commit_time; 1178 jbd_debug(1, 1179 "Fast commit ended with blks = %d, reason = %d, subtid - %d", 1180 nblks, reason, subtid); 1181 if (reason == EXT4_FC_REASON_FC_FAILED) 1182 return jbd2_fc_end_commit_fallback(journal); 1183 if (reason == EXT4_FC_REASON_FC_START_FAILED || 1184 reason == EXT4_FC_REASON_INELIGIBLE) 1185 return jbd2_complete_transaction(journal, commit_tid); 1186 return 0; 1187} 1188 1189/* 1190 * Fast commit cleanup routine. This is called after every fast commit and 1191 * full commit. full is true if we are called after a full commit. 1192 */ 1193static void ext4_fc_cleanup(journal_t *journal, int full) 1194{ 1195 struct super_block *sb = journal->j_private; 1196 struct ext4_sb_info *sbi = EXT4_SB(sb); 1197 struct ext4_inode_info *iter; 1198 struct ext4_fc_dentry_update *fc_dentry; 1199 struct list_head *pos, *n; 1200 1201 if (full && sbi->s_fc_bh) 1202 sbi->s_fc_bh = NULL; 1203 1204 jbd2_fc_release_bufs(journal); 1205 1206 spin_lock(&sbi->s_fc_lock); 1207 list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) { 1208 iter = list_entry(pos, struct ext4_inode_info, i_fc_list); 1209 list_del_init(&iter->i_fc_list); 1210 ext4_clear_inode_state(&iter->vfs_inode, 1211 EXT4_STATE_FC_COMMITTING); 1212 ext4_fc_reset_inode(&iter->vfs_inode); 1213 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */ 1214 smp_mb(); 1215#if (BITS_PER_LONG < 64) 1216 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING); 1217#else 1218 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING); 1219#endif 1220 } 1221 1222 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) { 1223 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN], 1224 struct ext4_fc_dentry_update, 1225 fcd_list); 1226 list_del_init(&fc_dentry->fcd_list); 1227 spin_unlock(&sbi->s_fc_lock); 1228 1229 if (fc_dentry->fcd_name.name && 1230 fc_dentry->fcd_name.len > DNAME_INLINE_LEN) 1231 kfree(fc_dentry->fcd_name.name); 1232 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); 1233 spin_lock(&sbi->s_fc_lock); 1234 } 1235 1236 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING], 1237 &sbi->s_fc_dentry_q[FC_Q_MAIN]); 1238 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING], 1239 &sbi->s_fc_q[FC_Q_MAIN]); 1240 1241 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING); 1242 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 1243 1244 if (full) 1245 sbi->s_fc_bytes = 0; 1246 spin_unlock(&sbi->s_fc_lock); 1247 trace_ext4_fc_stats(sb); 1248} 1249 1250/* Ext4 Replay Path Routines */ 1251 1252/* Helper struct for dentry replay routines */ 1253struct dentry_info_args { 1254 int parent_ino, dname_len, ino, inode_len; 1255 char *dname; 1256}; 1257 1258static inline void tl_to_darg(struct dentry_info_args *darg, 1259 struct ext4_fc_tl *tl, u8 *val) 1260{ 1261 struct ext4_fc_dentry_info fcd; 1262 1263 memcpy(&fcd, val, sizeof(fcd)); 1264 1265 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino); 1266 darg->ino = le32_to_cpu(fcd.fc_ino); 1267 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname); 1268 darg->dname_len = le16_to_cpu(tl->fc_len) - 1269 sizeof(struct ext4_fc_dentry_info); 1270} 1271 1272/* Unlink replay function */ 1273static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl, 1274 u8 *val) 1275{ 1276 struct inode *inode, *old_parent; 1277 struct qstr entry; 1278 struct dentry_info_args darg; 1279 int ret = 0; 1280 1281 tl_to_darg(&darg, tl, val); 1282 1283 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino, 1284 darg.parent_ino, darg.dname_len); 1285 1286 entry.name = darg.dname; 1287 entry.len = darg.dname_len; 1288 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1289 1290 if (IS_ERR(inode)) { 1291 jbd_debug(1, "Inode %d not found", darg.ino); 1292 return 0; 1293 } 1294 1295 old_parent = ext4_iget(sb, darg.parent_ino, 1296 EXT4_IGET_NORMAL); 1297 if (IS_ERR(old_parent)) { 1298 jbd_debug(1, "Dir with inode %d not found", darg.parent_ino); 1299 iput(inode); 1300 return 0; 1301 } 1302 1303 ret = __ext4_unlink(old_parent, &entry, inode, NULL); 1304 /* -ENOENT ok coz it might not exist anymore. */ 1305 if (ret == -ENOENT) 1306 ret = 0; 1307 iput(old_parent); 1308 iput(inode); 1309 return ret; 1310} 1311 1312static int ext4_fc_replay_link_internal(struct super_block *sb, 1313 struct dentry_info_args *darg, 1314 struct inode *inode) 1315{ 1316 struct inode *dir = NULL; 1317 struct dentry *dentry_dir = NULL, *dentry_inode = NULL; 1318 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len); 1319 int ret = 0; 1320 1321 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL); 1322 if (IS_ERR(dir)) { 1323 jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino); 1324 dir = NULL; 1325 goto out; 1326 } 1327 1328 dentry_dir = d_obtain_alias(dir); 1329 if (IS_ERR(dentry_dir)) { 1330 jbd_debug(1, "Failed to obtain dentry"); 1331 dentry_dir = NULL; 1332 goto out; 1333 } 1334 1335 dentry_inode = d_alloc(dentry_dir, &qstr_dname); 1336 if (!dentry_inode) { 1337 jbd_debug(1, "Inode dentry not created."); 1338 ret = -ENOMEM; 1339 goto out; 1340 } 1341 1342 ret = __ext4_link(dir, inode, dentry_inode); 1343 /* 1344 * It's possible that link already existed since data blocks 1345 * for the dir in question got persisted before we crashed OR 1346 * we replayed this tag and crashed before the entire replay 1347 * could complete. 1348 */ 1349 if (ret && ret != -EEXIST) { 1350 jbd_debug(1, "Failed to link\n"); 1351 goto out; 1352 } 1353 1354 ret = 0; 1355out: 1356 if (dentry_dir) { 1357 d_drop(dentry_dir); 1358 dput(dentry_dir); 1359 } else if (dir) { 1360 iput(dir); 1361 } 1362 if (dentry_inode) { 1363 d_drop(dentry_inode); 1364 dput(dentry_inode); 1365 } 1366 1367 return ret; 1368} 1369 1370/* Link replay function */ 1371static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl, 1372 u8 *val) 1373{ 1374 struct inode *inode; 1375 struct dentry_info_args darg; 1376 int ret = 0; 1377 1378 tl_to_darg(&darg, tl, val); 1379 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino, 1380 darg.parent_ino, darg.dname_len); 1381 1382 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1383 if (IS_ERR(inode)) { 1384 jbd_debug(1, "Inode not found."); 1385 return 0; 1386 } 1387 1388 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1389 iput(inode); 1390 return ret; 1391} 1392 1393/* 1394 * Record all the modified inodes during replay. We use this later to setup 1395 * block bitmaps correctly. 1396 */ 1397static int ext4_fc_record_modified_inode(struct super_block *sb, int ino) 1398{ 1399 struct ext4_fc_replay_state *state; 1400 int i; 1401 1402 state = &EXT4_SB(sb)->s_fc_replay_state; 1403 for (i = 0; i < state->fc_modified_inodes_used; i++) 1404 if (state->fc_modified_inodes[i] == ino) 1405 return 0; 1406 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) { 1407 int *fc_modified_inodes; 1408 1409 fc_modified_inodes = krealloc(state->fc_modified_inodes, 1410 sizeof(int) * (state->fc_modified_inodes_size + 1411 EXT4_FC_REPLAY_REALLOC_INCREMENT), 1412 GFP_KERNEL); 1413 if (!fc_modified_inodes) 1414 return -ENOMEM; 1415 state->fc_modified_inodes = fc_modified_inodes; 1416 state->fc_modified_inodes_size += 1417 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1418 } 1419 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino; 1420 return 0; 1421} 1422 1423/* 1424 * Inode replay function 1425 */ 1426static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl, 1427 u8 *val) 1428{ 1429 struct ext4_fc_inode fc_inode; 1430 struct ext4_inode *raw_inode; 1431 struct ext4_inode *raw_fc_inode; 1432 struct inode *inode = NULL; 1433 struct ext4_iloc iloc; 1434 int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag); 1435 struct ext4_extent_header *eh; 1436 1437 memcpy(&fc_inode, val, sizeof(fc_inode)); 1438 1439 ino = le32_to_cpu(fc_inode.fc_ino); 1440 trace_ext4_fc_replay(sb, tag, ino, 0, 0); 1441 1442 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1443 if (!IS_ERR(inode)) { 1444 ext4_ext_clear_bb(inode); 1445 iput(inode); 1446 } 1447 inode = NULL; 1448 1449 ret = ext4_fc_record_modified_inode(sb, ino); 1450 if (ret) 1451 goto out; 1452 1453 raw_fc_inode = (struct ext4_inode *) 1454 (val + offsetof(struct ext4_fc_inode, fc_raw_inode)); 1455 ret = ext4_get_fc_inode_loc(sb, ino, &iloc); 1456 if (ret) 1457 goto out; 1458 1459 inode_len = le16_to_cpu(tl->fc_len) - sizeof(struct ext4_fc_inode); 1460 raw_inode = ext4_raw_inode(&iloc); 1461 1462 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block)); 1463 memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation, 1464 inode_len - offsetof(struct ext4_inode, i_generation)); 1465 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) { 1466 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]); 1467 if (eh->eh_magic != EXT4_EXT_MAGIC) { 1468 memset(eh, 0, sizeof(*eh)); 1469 eh->eh_magic = EXT4_EXT_MAGIC; 1470 eh->eh_max = cpu_to_le16( 1471 (sizeof(raw_inode->i_block) - 1472 sizeof(struct ext4_extent_header)) 1473 / sizeof(struct ext4_extent)); 1474 } 1475 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) { 1476 memcpy(raw_inode->i_block, raw_fc_inode->i_block, 1477 sizeof(raw_inode->i_block)); 1478 } 1479 1480 /* Immediately update the inode on disk. */ 1481 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1482 if (ret) 1483 goto out; 1484 ret = sync_dirty_buffer(iloc.bh); 1485 if (ret) 1486 goto out; 1487 ret = ext4_mark_inode_used(sb, ino); 1488 if (ret) 1489 goto out; 1490 1491 /* Given that we just wrote the inode on disk, this SHOULD succeed. */ 1492 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1493 if (IS_ERR(inode)) { 1494 jbd_debug(1, "Inode not found."); 1495 return -EFSCORRUPTED; 1496 } 1497 1498 /* 1499 * Our allocator could have made different decisions than before 1500 * crashing. This should be fixed but until then, we calculate 1501 * the number of blocks the inode. 1502 */ 1503 ext4_ext_replay_set_iblocks(inode); 1504 1505 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation); 1506 ext4_reset_inode_seed(inode); 1507 1508 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode)); 1509 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1510 sync_dirty_buffer(iloc.bh); 1511 brelse(iloc.bh); 1512out: 1513 iput(inode); 1514 if (!ret) 1515 blkdev_issue_flush(sb->s_bdev, GFP_KERNEL); 1516 1517 return 0; 1518} 1519 1520/* 1521 * Dentry create replay function. 1522 * 1523 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the 1524 * inode for which we are trying to create a dentry here, should already have 1525 * been replayed before we start here. 1526 */ 1527static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl, 1528 u8 *val) 1529{ 1530 int ret = 0; 1531 struct inode *inode = NULL; 1532 struct inode *dir = NULL; 1533 struct dentry_info_args darg; 1534 1535 tl_to_darg(&darg, tl, val); 1536 1537 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino, 1538 darg.parent_ino, darg.dname_len); 1539 1540 /* This takes care of update group descriptor and other metadata */ 1541 ret = ext4_mark_inode_used(sb, darg.ino); 1542 if (ret) 1543 goto out; 1544 1545 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1546 if (IS_ERR(inode)) { 1547 jbd_debug(1, "inode %d not found.", darg.ino); 1548 inode = NULL; 1549 ret = -EINVAL; 1550 goto out; 1551 } 1552 1553 if (S_ISDIR(inode->i_mode)) { 1554 /* 1555 * If we are creating a directory, we need to make sure that the 1556 * dot and dot dot dirents are setup properly. 1557 */ 1558 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL); 1559 if (IS_ERR(dir)) { 1560 jbd_debug(1, "Dir %d not found.", darg.ino); 1561 goto out; 1562 } 1563 ret = ext4_init_new_dir(NULL, dir, inode); 1564 iput(dir); 1565 if (ret) { 1566 ret = 0; 1567 goto out; 1568 } 1569 } 1570 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1571 if (ret) 1572 goto out; 1573 set_nlink(inode, 1); 1574 ext4_mark_inode_dirty(NULL, inode); 1575out: 1576 if (inode) 1577 iput(inode); 1578 return ret; 1579} 1580 1581/* 1582 * Record physical disk regions which are in use as per fast commit area, 1583 * and used by inodes during replay phase. Our simple replay phase 1584 * allocator excludes these regions from allocation. 1585 */ 1586int ext4_fc_record_regions(struct super_block *sb, int ino, 1587 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay) 1588{ 1589 struct ext4_fc_replay_state *state; 1590 struct ext4_fc_alloc_region *region; 1591 1592 state = &EXT4_SB(sb)->s_fc_replay_state; 1593 /* 1594 * during replay phase, the fc_regions_valid may not same as 1595 * fc_regions_used, update it when do new additions. 1596 */ 1597 if (replay && state->fc_regions_used != state->fc_regions_valid) 1598 state->fc_regions_used = state->fc_regions_valid; 1599 if (state->fc_regions_used == state->fc_regions_size) { 1600 struct ext4_fc_alloc_region *fc_regions; 1601 1602 fc_regions = krealloc(state->fc_regions, 1603 sizeof(struct ext4_fc_alloc_region) * 1604 (state->fc_regions_size + 1605 EXT4_FC_REPLAY_REALLOC_INCREMENT), 1606 GFP_KERNEL); 1607 if (!fc_regions) 1608 return -ENOMEM; 1609 state->fc_regions_size += 1610 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1611 state->fc_regions = fc_regions; 1612 } 1613 region = &state->fc_regions[state->fc_regions_used++]; 1614 region->ino = ino; 1615 region->lblk = lblk; 1616 region->pblk = pblk; 1617 region->len = len; 1618 1619 if (replay) 1620 state->fc_regions_valid++; 1621 1622 return 0; 1623} 1624 1625/* Replay add range tag */ 1626static int ext4_fc_replay_add_range(struct super_block *sb, 1627 struct ext4_fc_tl *tl, u8 *val) 1628{ 1629 struct ext4_fc_add_range fc_add_ex; 1630 struct ext4_extent newex, *ex; 1631 struct inode *inode; 1632 ext4_lblk_t start, cur; 1633 int remaining, len; 1634 ext4_fsblk_t start_pblk; 1635 struct ext4_map_blocks map; 1636 struct ext4_ext_path *path = NULL; 1637 int ret; 1638 1639 memcpy(&fc_add_ex, val, sizeof(fc_add_ex)); 1640 ex = (struct ext4_extent *)&fc_add_ex.fc_ex; 1641 1642 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE, 1643 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block), 1644 ext4_ext_get_actual_len(ex)); 1645 1646 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL); 1647 if (IS_ERR(inode)) { 1648 jbd_debug(1, "Inode not found."); 1649 return 0; 1650 } 1651 1652 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1653 if (ret) 1654 goto out; 1655 1656 start = le32_to_cpu(ex->ee_block); 1657 start_pblk = ext4_ext_pblock(ex); 1658 len = ext4_ext_get_actual_len(ex); 1659 1660 cur = start; 1661 remaining = len; 1662 jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n", 1663 start, start_pblk, len, ext4_ext_is_unwritten(ex), 1664 inode->i_ino); 1665 1666 while (remaining > 0) { 1667 map.m_lblk = cur; 1668 map.m_len = remaining; 1669 map.m_pblk = 0; 1670 ret = ext4_map_blocks(NULL, inode, &map, 0); 1671 1672 if (ret < 0) 1673 goto out; 1674 1675 if (ret == 0) { 1676 /* Range is not mapped */ 1677 path = ext4_find_extent(inode, cur, NULL, 0); 1678 if (IS_ERR(path)) 1679 goto out; 1680 memset(&newex, 0, sizeof(newex)); 1681 newex.ee_block = cpu_to_le32(cur); 1682 ext4_ext_store_pblock( 1683 &newex, start_pblk + cur - start); 1684 newex.ee_len = cpu_to_le16(map.m_len); 1685 if (ext4_ext_is_unwritten(ex)) 1686 ext4_ext_mark_unwritten(&newex); 1687 down_write(&EXT4_I(inode)->i_data_sem); 1688 ret = ext4_ext_insert_extent( 1689 NULL, inode, &path, &newex, 0); 1690 up_write((&EXT4_I(inode)->i_data_sem)); 1691 ext4_ext_drop_refs(path); 1692 kfree(path); 1693 if (ret) 1694 goto out; 1695 goto next; 1696 } 1697 1698 if (start_pblk + cur - start != map.m_pblk) { 1699 /* 1700 * Logical to physical mapping changed. This can happen 1701 * if this range was removed and then reallocated to 1702 * map to new physical blocks during a fast commit. 1703 */ 1704 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1705 ext4_ext_is_unwritten(ex), 1706 start_pblk + cur - start); 1707 if (ret) 1708 goto out; 1709 /* 1710 * Mark the old blocks as free since they aren't used 1711 * anymore. We maintain an array of all the modified 1712 * inodes. In case these blocks are still used at either 1713 * a different logical range in the same inode or in 1714 * some different inode, we will mark them as allocated 1715 * at the end of the FC replay using our array of 1716 * modified inodes. 1717 */ 1718 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); 1719 goto next; 1720 } 1721 1722 /* Range is mapped and needs a state change */ 1723 jbd_debug(1, "Converting from %ld to %d %lld", 1724 map.m_flags & EXT4_MAP_UNWRITTEN, 1725 ext4_ext_is_unwritten(ex), map.m_pblk); 1726 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1727 ext4_ext_is_unwritten(ex), map.m_pblk); 1728 if (ret) 1729 goto out; 1730 /* 1731 * We may have split the extent tree while toggling the state. 1732 * Try to shrink the extent tree now. 1733 */ 1734 ext4_ext_replay_shrink_inode(inode, start + len); 1735next: 1736 cur += map.m_len; 1737 remaining -= map.m_len; 1738 } 1739 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >> 1740 sb->s_blocksize_bits); 1741out: 1742 iput(inode); 1743 return 0; 1744} 1745 1746/* Replay DEL_RANGE tag */ 1747static int 1748ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl, 1749 u8 *val) 1750{ 1751 struct inode *inode; 1752 struct ext4_fc_del_range lrange; 1753 struct ext4_map_blocks map; 1754 ext4_lblk_t cur, remaining; 1755 int ret; 1756 1757 memcpy(&lrange, val, sizeof(lrange)); 1758 cur = le32_to_cpu(lrange.fc_lblk); 1759 remaining = le32_to_cpu(lrange.fc_len); 1760 1761 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE, 1762 le32_to_cpu(lrange.fc_ino), cur, remaining); 1763 1764 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL); 1765 if (IS_ERR(inode)) { 1766 jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange.fc_ino)); 1767 return 0; 1768 } 1769 1770 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1771 if (ret) 1772 goto out; 1773 1774 jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n", 1775 inode->i_ino, le32_to_cpu(lrange.fc_lblk), 1776 le32_to_cpu(lrange.fc_len)); 1777 while (remaining > 0) { 1778 map.m_lblk = cur; 1779 map.m_len = remaining; 1780 1781 ret = ext4_map_blocks(NULL, inode, &map, 0); 1782 if (ret < 0) 1783 goto out; 1784 if (ret > 0) { 1785 remaining -= ret; 1786 cur += ret; 1787 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); 1788 } else { 1789 remaining -= map.m_len; 1790 cur += map.m_len; 1791 } 1792 } 1793 1794 down_write(&EXT4_I(inode)->i_data_sem); 1795 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk), 1796 le32_to_cpu(lrange.fc_lblk) + 1797 le32_to_cpu(lrange.fc_len) - 1); 1798 up_write(&EXT4_I(inode)->i_data_sem); 1799 if (ret) 1800 goto out; 1801 ext4_ext_replay_shrink_inode(inode, 1802 i_size_read(inode) >> sb->s_blocksize_bits); 1803 ext4_mark_inode_dirty(NULL, inode); 1804out: 1805 iput(inode); 1806 return 0; 1807} 1808 1809static inline const char *tag2str(u16 tag) 1810{ 1811 switch (tag) { 1812 case EXT4_FC_TAG_LINK: 1813 return "TAG_ADD_ENTRY"; 1814 case EXT4_FC_TAG_UNLINK: 1815 return "TAG_DEL_ENTRY"; 1816 case EXT4_FC_TAG_ADD_RANGE: 1817 return "TAG_ADD_RANGE"; 1818 case EXT4_FC_TAG_CREAT: 1819 return "TAG_CREAT_DENTRY"; 1820 case EXT4_FC_TAG_DEL_RANGE: 1821 return "TAG_DEL_RANGE"; 1822 case EXT4_FC_TAG_INODE: 1823 return "TAG_INODE"; 1824 case EXT4_FC_TAG_PAD: 1825 return "TAG_PAD"; 1826 case EXT4_FC_TAG_TAIL: 1827 return "TAG_TAIL"; 1828 case EXT4_FC_TAG_HEAD: 1829 return "TAG_HEAD"; 1830 default: 1831 return "TAG_ERROR"; 1832 } 1833} 1834 1835static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb) 1836{ 1837 struct ext4_fc_replay_state *state; 1838 struct inode *inode; 1839 struct ext4_ext_path *path = NULL; 1840 struct ext4_map_blocks map; 1841 int i, ret, j; 1842 ext4_lblk_t cur, end; 1843 1844 state = &EXT4_SB(sb)->s_fc_replay_state; 1845 for (i = 0; i < state->fc_modified_inodes_used; i++) { 1846 inode = ext4_iget(sb, state->fc_modified_inodes[i], 1847 EXT4_IGET_NORMAL); 1848 if (IS_ERR(inode)) { 1849 jbd_debug(1, "Inode %d not found.", 1850 state->fc_modified_inodes[i]); 1851 continue; 1852 } 1853 cur = 0; 1854 end = EXT_MAX_BLOCKS; 1855 while (cur < end) { 1856 map.m_lblk = cur; 1857 map.m_len = end - cur; 1858 1859 ret = ext4_map_blocks(NULL, inode, &map, 0); 1860 if (ret < 0) 1861 break; 1862 1863 if (ret > 0) { 1864 path = ext4_find_extent(inode, map.m_lblk, NULL, 0); 1865 if (!IS_ERR(path)) { 1866 for (j = 0; j < path->p_depth; j++) 1867 ext4_mb_mark_bb(inode->i_sb, 1868 path[j].p_block, 1, 1); 1869 ext4_ext_drop_refs(path); 1870 kfree(path); 1871 } 1872 cur += ret; 1873 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, 1874 map.m_len, 1); 1875 } else { 1876 cur = cur + (map.m_len ? map.m_len : 1); 1877 } 1878 } 1879 iput(inode); 1880 } 1881} 1882 1883/* 1884 * Check if block is in excluded regions for block allocation. The simple 1885 * allocator that runs during replay phase is calls this function to see 1886 * if it is okay to use a block. 1887 */ 1888bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk) 1889{ 1890 int i; 1891 struct ext4_fc_replay_state *state; 1892 1893 state = &EXT4_SB(sb)->s_fc_replay_state; 1894 for (i = 0; i < state->fc_regions_valid; i++) { 1895 if (state->fc_regions[i].ino == 0 || 1896 state->fc_regions[i].len == 0) 1897 continue; 1898 if (blk >= state->fc_regions[i].pblk && 1899 blk < state->fc_regions[i].pblk + state->fc_regions[i].len) 1900 return true; 1901 } 1902 return false; 1903} 1904 1905/* Cleanup function called after replay */ 1906void ext4_fc_replay_cleanup(struct super_block *sb) 1907{ 1908 struct ext4_sb_info *sbi = EXT4_SB(sb); 1909 1910 sbi->s_mount_state &= ~EXT4_FC_REPLAY; 1911 kfree(sbi->s_fc_replay_state.fc_regions); 1912 kfree(sbi->s_fc_replay_state.fc_modified_inodes); 1913} 1914 1915/* 1916 * Recovery Scan phase handler 1917 * 1918 * This function is called during the scan phase and is responsible 1919 * for doing following things: 1920 * - Make sure the fast commit area has valid tags for replay 1921 * - Count number of tags that need to be replayed by the replay handler 1922 * - Verify CRC 1923 * - Create a list of excluded blocks for allocation during replay phase 1924 * 1925 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is 1926 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP 1927 * to indicate that scan has finished and JBD2 can now start replay phase. 1928 * It returns a negative error to indicate that there was an error. At the end 1929 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set 1930 * to indicate the number of tags that need to replayed during the replay phase. 1931 */ 1932static int ext4_fc_replay_scan(journal_t *journal, 1933 struct buffer_head *bh, int off, 1934 tid_t expected_tid) 1935{ 1936 struct super_block *sb = journal->j_private; 1937 struct ext4_sb_info *sbi = EXT4_SB(sb); 1938 struct ext4_fc_replay_state *state; 1939 int ret = JBD2_FC_REPLAY_CONTINUE; 1940 struct ext4_fc_add_range ext; 1941 struct ext4_fc_tl tl; 1942 struct ext4_fc_tail tail; 1943 __u8 *start, *end, *cur, *val; 1944 struct ext4_fc_head head; 1945 struct ext4_extent *ex; 1946 1947 state = &sbi->s_fc_replay_state; 1948 1949 start = (u8 *)bh->b_data; 1950 end = (__u8 *)bh->b_data + journal->j_blocksize - 1; 1951 1952 if (state->fc_replay_expected_off == 0) { 1953 state->fc_cur_tag = 0; 1954 state->fc_replay_num_tags = 0; 1955 state->fc_crc = 0; 1956 state->fc_regions = NULL; 1957 state->fc_regions_valid = state->fc_regions_used = 1958 state->fc_regions_size = 0; 1959 /* Check if we can stop early */ 1960 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag) 1961 != EXT4_FC_TAG_HEAD) 1962 return 0; 1963 } 1964 1965 if (off != state->fc_replay_expected_off) { 1966 ret = -EFSCORRUPTED; 1967 goto out_err; 1968 } 1969 1970 state->fc_replay_expected_off++; 1971 for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) { 1972 memcpy(&tl, cur, sizeof(tl)); 1973 val = cur + sizeof(tl); 1974 jbd_debug(3, "Scan phase, tag:%s, blk %lld\n", 1975 tag2str(le16_to_cpu(tl.fc_tag)), bh->b_blocknr); 1976 switch (le16_to_cpu(tl.fc_tag)) { 1977 case EXT4_FC_TAG_ADD_RANGE: 1978 memcpy(&ext, val, sizeof(ext)); 1979 ex = (struct ext4_extent *)&ext.fc_ex; 1980 ret = ext4_fc_record_regions(sb, 1981 le32_to_cpu(ext.fc_ino), 1982 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex), 1983 ext4_ext_get_actual_len(ex), 0); 1984 if (ret < 0) 1985 break; 1986 ret = JBD2_FC_REPLAY_CONTINUE; 1987 fallthrough; 1988 case EXT4_FC_TAG_DEL_RANGE: 1989 case EXT4_FC_TAG_LINK: 1990 case EXT4_FC_TAG_UNLINK: 1991 case EXT4_FC_TAG_CREAT: 1992 case EXT4_FC_TAG_INODE: 1993 case EXT4_FC_TAG_PAD: 1994 state->fc_cur_tag++; 1995 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 1996 sizeof(tl) + le16_to_cpu(tl.fc_len)); 1997 break; 1998 case EXT4_FC_TAG_TAIL: 1999 state->fc_cur_tag++; 2000 memcpy(&tail, val, sizeof(tail)); 2001 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2002 sizeof(tl) + 2003 offsetof(struct ext4_fc_tail, 2004 fc_crc)); 2005 if (le32_to_cpu(tail.fc_tid) == expected_tid && 2006 le32_to_cpu(tail.fc_crc) == state->fc_crc) { 2007 state->fc_replay_num_tags = state->fc_cur_tag; 2008 state->fc_regions_valid = 2009 state->fc_regions_used; 2010 } else { 2011 ret = state->fc_replay_num_tags ? 2012 JBD2_FC_REPLAY_STOP : -EFSBADCRC; 2013 } 2014 state->fc_crc = 0; 2015 break; 2016 case EXT4_FC_TAG_HEAD: 2017 memcpy(&head, val, sizeof(head)); 2018 if (le32_to_cpu(head.fc_features) & 2019 ~EXT4_FC_SUPPORTED_FEATURES) { 2020 ret = -EOPNOTSUPP; 2021 break; 2022 } 2023 if (le32_to_cpu(head.fc_tid) != expected_tid) { 2024 ret = JBD2_FC_REPLAY_STOP; 2025 break; 2026 } 2027 state->fc_cur_tag++; 2028 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2029 sizeof(tl) + le16_to_cpu(tl.fc_len)); 2030 break; 2031 default: 2032 ret = state->fc_replay_num_tags ? 2033 JBD2_FC_REPLAY_STOP : -ECANCELED; 2034 } 2035 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP) 2036 break; 2037 } 2038 2039out_err: 2040 trace_ext4_fc_replay_scan(sb, ret, off); 2041 return ret; 2042} 2043 2044/* 2045 * Main recovery path entry point. 2046 * The meaning of return codes is similar as above. 2047 */ 2048static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh, 2049 enum passtype pass, int off, tid_t expected_tid) 2050{ 2051 struct super_block *sb = journal->j_private; 2052 struct ext4_sb_info *sbi = EXT4_SB(sb); 2053 struct ext4_fc_tl tl; 2054 __u8 *start, *end, *cur, *val; 2055 int ret = JBD2_FC_REPLAY_CONTINUE; 2056 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state; 2057 struct ext4_fc_tail tail; 2058 2059 if (pass == PASS_SCAN) { 2060 state->fc_current_pass = PASS_SCAN; 2061 return ext4_fc_replay_scan(journal, bh, off, expected_tid); 2062 } 2063 2064 if (state->fc_current_pass != pass) { 2065 state->fc_current_pass = pass; 2066 sbi->s_mount_state |= EXT4_FC_REPLAY; 2067 } 2068 if (!sbi->s_fc_replay_state.fc_replay_num_tags) { 2069 jbd_debug(1, "Replay stops\n"); 2070 ext4_fc_set_bitmaps_and_counters(sb); 2071 return 0; 2072 } 2073 2074#ifdef CONFIG_EXT4_DEBUG 2075 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) { 2076 pr_warn("Dropping fc block %d because max_replay set\n", off); 2077 return JBD2_FC_REPLAY_STOP; 2078 } 2079#endif 2080 2081 start = (u8 *)bh->b_data; 2082 end = (__u8 *)bh->b_data + journal->j_blocksize - 1; 2083 2084 for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) { 2085 memcpy(&tl, cur, sizeof(tl)); 2086 val = cur + sizeof(tl); 2087 2088 if (state->fc_replay_num_tags == 0) { 2089 ret = JBD2_FC_REPLAY_STOP; 2090 ext4_fc_set_bitmaps_and_counters(sb); 2091 break; 2092 } 2093 jbd_debug(3, "Replay phase, tag:%s\n", 2094 tag2str(le16_to_cpu(tl.fc_tag))); 2095 state->fc_replay_num_tags--; 2096 switch (le16_to_cpu(tl.fc_tag)) { 2097 case EXT4_FC_TAG_LINK: 2098 ret = ext4_fc_replay_link(sb, &tl, val); 2099 break; 2100 case EXT4_FC_TAG_UNLINK: 2101 ret = ext4_fc_replay_unlink(sb, &tl, val); 2102 break; 2103 case EXT4_FC_TAG_ADD_RANGE: 2104 ret = ext4_fc_replay_add_range(sb, &tl, val); 2105 break; 2106 case EXT4_FC_TAG_CREAT: 2107 ret = ext4_fc_replay_create(sb, &tl, val); 2108 break; 2109 case EXT4_FC_TAG_DEL_RANGE: 2110 ret = ext4_fc_replay_del_range(sb, &tl, val); 2111 break; 2112 case EXT4_FC_TAG_INODE: 2113 ret = ext4_fc_replay_inode(sb, &tl, val); 2114 break; 2115 case EXT4_FC_TAG_PAD: 2116 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0, 2117 le16_to_cpu(tl.fc_len), 0); 2118 break; 2119 case EXT4_FC_TAG_TAIL: 2120 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0, 2121 le16_to_cpu(tl.fc_len), 0); 2122 memcpy(&tail, val, sizeof(tail)); 2123 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid); 2124 break; 2125 case EXT4_FC_TAG_HEAD: 2126 break; 2127 default: 2128 trace_ext4_fc_replay(sb, le16_to_cpu(tl.fc_tag), 0, 2129 le16_to_cpu(tl.fc_len), 0); 2130 ret = -ECANCELED; 2131 break; 2132 } 2133 if (ret < 0) 2134 break; 2135 ret = JBD2_FC_REPLAY_CONTINUE; 2136 } 2137 return ret; 2138} 2139 2140void ext4_fc_init(struct super_block *sb, journal_t *journal) 2141{ 2142 /* 2143 * We set replay callback even if fast commit disabled because we may 2144 * could still have fast commit blocks that need to be replayed even if 2145 * fast commit has now been turned off. 2146 */ 2147 journal->j_fc_replay_callback = ext4_fc_replay; 2148 if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) 2149 return; 2150 journal->j_fc_cleanup_callback = ext4_fc_cleanup; 2151} 2152 2153static const char * const fc_ineligible_reasons[] = { 2154 [EXT4_FC_REASON_XATTR] = "Extended attributes changed", 2155 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename", 2156 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed", 2157 [EXT4_FC_REASON_NOMEM] = "Insufficient memory", 2158 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot", 2159 [EXT4_FC_REASON_RESIZE] = "Resize", 2160 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed", 2161 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op", 2162 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling", 2163 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename", 2164}; 2165 2166int ext4_fc_info_show(struct seq_file *seq, void *v) 2167{ 2168 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private); 2169 struct ext4_fc_stats *stats = &sbi->s_fc_stats; 2170 int i; 2171 2172 if (v != SEQ_START_TOKEN) 2173 return 0; 2174 2175 seq_printf(seq, 2176 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n", 2177 stats->fc_num_commits, stats->fc_ineligible_commits, 2178 stats->fc_numblks, 2179 div_u64(sbi->s_fc_avg_commit_time, 1000)); 2180 seq_puts(seq, "Ineligible reasons:\n"); 2181 for (i = 0; i < EXT4_FC_REASON_MAX; i++) 2182 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i], 2183 stats->fc_ineligible_reason_count[i]); 2184 2185 return 0; 2186} 2187 2188int __init ext4_fc_init_dentry_cache(void) 2189{ 2190 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update, 2191 SLAB_RECLAIM_ACCOUNT); 2192 2193 if (ext4_fc_dentry_cachep == NULL) 2194 return -ENOMEM; 2195 2196 return 0; 2197} 2198 2199void ext4_fc_destroy_dentry_cache(void) 2200{ 2201 kmem_cache_destroy(ext4_fc_dentry_cachep); 2202} 2203