1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  fs/ext4/extents_status.c
4 *
5 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6 * Modified by
7 *	Allison Henderson <achender@linux.vnet.ibm.com>
8 *	Hugh Dickins <hughd@google.com>
9 *	Zheng Liu <wenqing.lz@taobao.com>
10 *
11 * Ext4 extents status tree core functions.
12 */
13#include <linux/list_sort.h>
14#include <linux/proc_fs.h>
15#include <linux/seq_file.h>
16#include "ext4.h"
17
18#include <trace/events/ext4.h>
19
20/*
21 * According to previous discussion in Ext4 Developer Workshop, we
22 * will introduce a new structure called io tree to track all extent
23 * status in order to solve some problems that we have met
24 * (e.g. Reservation space warning), and provide extent-level locking.
25 * Delay extent tree is the first step to achieve this goal.  It is
26 * original built by Yongqiang Yang.  At that time it is called delay
27 * extent tree, whose goal is only track delayed extents in memory to
28 * simplify the implementation of fiemap and bigalloc, and introduce
29 * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
30 * delay extent tree at the first commit.  But for better understand
31 * what it does, it has been rename to extent status tree.
32 *
33 * Step1:
34 * Currently the first step has been done.  All delayed extents are
35 * tracked in the tree.  It maintains the delayed extent when a delayed
36 * allocation is issued, and the delayed extent is written out or
37 * invalidated.  Therefore the implementation of fiemap and bigalloc
38 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39 *
40 * The following comment describes the implemenmtation of extent
41 * status tree and future works.
42 *
43 * Step2:
44 * In this step all extent status are tracked by extent status tree.
45 * Thus, we can first try to lookup a block mapping in this tree before
46 * finding it in extent tree.  Hence, single extent cache can be removed
47 * because extent status tree can do a better job.  Extents in status
48 * tree are loaded on-demand.  Therefore, the extent status tree may not
49 * contain all of the extents in a file.  Meanwhile we define a shrinker
50 * to reclaim memory from extent status tree because fragmented extent
51 * tree will make status tree cost too much memory.  written/unwritten/-
52 * hole extents in the tree will be reclaimed by this shrinker when we
53 * are under high memory pressure.  Delayed extents will not be
54 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55 */
56
57/*
58 * Extent status tree implementation for ext4.
59 *
60 *
61 * ==========================================================================
62 * Extent status tree tracks all extent status.
63 *
64 * 1. Why we need to implement extent status tree?
65 *
66 * Without extent status tree, ext4 identifies a delayed extent by looking
67 * up page cache, this has several deficiencies - complicated, buggy,
68 * and inefficient code.
69 *
70 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71 * block or a range of blocks are belonged to a delayed extent.
72 *
73 * Let us have a look at how they do without extent status tree.
74 *   --	FIEMAP
75 *	FIEMAP looks up page cache to identify delayed allocations from holes.
76 *
77 *   --	SEEK_HOLE/DATA
78 *	SEEK_HOLE/DATA has the same problem as FIEMAP.
79 *
80 *   --	bigalloc
81 *	bigalloc looks up page cache to figure out if a block is
82 *	already under delayed allocation or not to determine whether
83 *	quota reserving is needed for the cluster.
84 *
85 *   --	writeout
86 *	Writeout looks up whole page cache to see if a buffer is
87 *	mapped, If there are not very many delayed buffers, then it is
88 *	time consuming.
89 *
90 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91 * bigalloc and writeout can figure out if a block or a range of
92 * blocks is under delayed allocation(belonged to a delayed extent) or
93 * not by searching the extent tree.
94 *
95 *
96 * ==========================================================================
97 * 2. Ext4 extent status tree impelmentation
98 *
99 *   --	extent
100 *	A extent is a range of blocks which are contiguous logically and
101 *	physically.  Unlike extent in extent tree, this extent in ext4 is
102 *	a in-memory struct, there is no corresponding on-disk data.  There
103 *	is no limit on length of extent, so an extent can contain as many
104 *	blocks as they are contiguous logically and physically.
105 *
106 *   --	extent status tree
107 *	Every inode has an extent status tree and all allocation blocks
108 *	are added to the tree with different status.  The extent in the
109 *	tree are ordered by logical block no.
110 *
111 *   --	operations on a extent status tree
112 *	There are three important operations on a delayed extent tree: find
113 *	next extent, adding a extent(a range of blocks) and removing a extent.
114 *
115 *   --	race on a extent status tree
116 *	Extent status tree is protected by inode->i_es_lock.
117 *
118 *   --	memory consumption
119 *      Fragmented extent tree will make extent status tree cost too much
120 *      memory.  Hence, we will reclaim written/unwritten/hole extents from
121 *      the tree under a heavy memory pressure.
122 *
123 *
124 * ==========================================================================
125 * 3. Performance analysis
126 *
127 *   --	overhead
128 *	1. There is a cache extent for write access, so if writes are
129 *	not very random, adding space operaions are in O(1) time.
130 *
131 *   --	gain
132 *	2. Code is much simpler, more readable, more maintainable and
133 *	more efficient.
134 *
135 *
136 * ==========================================================================
137 * 4. TODO list
138 *
139 *   -- Refactor delayed space reservation
140 *
141 *   -- Extent-level locking
142 */
143
144static struct kmem_cache *ext4_es_cachep;
145static struct kmem_cache *ext4_pending_cachep;
146
147static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
148			      struct extent_status *prealloc);
149static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
150			      ext4_lblk_t end, int *reserved,
151			      struct extent_status *prealloc);
152static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
153static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
154		       struct ext4_inode_info *locked_ei);
155static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
156			    ext4_lblk_t len,
157			    struct pending_reservation **prealloc);
158
159int __init ext4_init_es(void)
160{
161	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
162					   sizeof(struct extent_status),
163					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
164	if (ext4_es_cachep == NULL)
165		return -ENOMEM;
166	return 0;
167}
168
169void ext4_exit_es(void)
170{
171	kmem_cache_destroy(ext4_es_cachep);
172}
173
174void ext4_es_init_tree(struct ext4_es_tree *tree)
175{
176	tree->root = RB_ROOT;
177	tree->cache_es = NULL;
178}
179
180#ifdef ES_DEBUG__
181static void ext4_es_print_tree(struct inode *inode)
182{
183	struct ext4_es_tree *tree;
184	struct rb_node *node;
185
186	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
187	tree = &EXT4_I(inode)->i_es_tree;
188	node = rb_first(&tree->root);
189	while (node) {
190		struct extent_status *es;
191		es = rb_entry(node, struct extent_status, rb_node);
192		printk(KERN_DEBUG " [%u/%u) %llu %x",
193		       es->es_lblk, es->es_len,
194		       ext4_es_pblock(es), ext4_es_status(es));
195		node = rb_next(node);
196	}
197	printk(KERN_DEBUG "\n");
198}
199#else
200#define ext4_es_print_tree(inode)
201#endif
202
203static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
204{
205	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
206	return es->es_lblk + es->es_len - 1;
207}
208
209/*
210 * search through the tree for an delayed extent with a given offset.  If
211 * it can't be found, try to find next extent.
212 */
213static struct extent_status *__es_tree_search(struct rb_root *root,
214					      ext4_lblk_t lblk)
215{
216	struct rb_node *node = root->rb_node;
217	struct extent_status *es = NULL;
218
219	while (node) {
220		es = rb_entry(node, struct extent_status, rb_node);
221		if (lblk < es->es_lblk)
222			node = node->rb_left;
223		else if (lblk > ext4_es_end(es))
224			node = node->rb_right;
225		else
226			return es;
227	}
228
229	if (es && lblk < es->es_lblk)
230		return es;
231
232	if (es && lblk > ext4_es_end(es)) {
233		node = rb_next(&es->rb_node);
234		return node ? rb_entry(node, struct extent_status, rb_node) :
235			      NULL;
236	}
237
238	return NULL;
239}
240
241/*
242 * ext4_es_find_extent_range - find extent with specified status within block
243 *                             range or next extent following block range in
244 *                             extents status tree
245 *
246 * @inode - file containing the range
247 * @matching_fn - pointer to function that matches extents with desired status
248 * @lblk - logical block defining start of range
249 * @end - logical block defining end of range
250 * @es - extent found, if any
251 *
252 * Find the first extent within the block range specified by @lblk and @end
253 * in the extents status tree that satisfies @matching_fn.  If a match
254 * is found, it's returned in @es.  If not, and a matching extent is found
255 * beyond the block range, it's returned in @es.  If no match is found, an
256 * extent is returned in @es whose es_lblk, es_len, and es_pblk components
257 * are 0.
258 */
259static void __es_find_extent_range(struct inode *inode,
260				   int (*matching_fn)(struct extent_status *es),
261				   ext4_lblk_t lblk, ext4_lblk_t end,
262				   struct extent_status *es)
263{
264	struct ext4_es_tree *tree = NULL;
265	struct extent_status *es1 = NULL;
266	struct rb_node *node;
267
268	WARN_ON(es == NULL);
269	WARN_ON(end < lblk);
270
271	tree = &EXT4_I(inode)->i_es_tree;
272
273	/* see if the extent has been cached */
274	es->es_lblk = es->es_len = es->es_pblk = 0;
275	es1 = READ_ONCE(tree->cache_es);
276	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
277		es_debug("%u cached by [%u/%u) %llu %x\n",
278			 lblk, es1->es_lblk, es1->es_len,
279			 ext4_es_pblock(es1), ext4_es_status(es1));
280		goto out;
281	}
282
283	es1 = __es_tree_search(&tree->root, lblk);
284
285out:
286	if (es1 && !matching_fn(es1)) {
287		while ((node = rb_next(&es1->rb_node)) != NULL) {
288			es1 = rb_entry(node, struct extent_status, rb_node);
289			if (es1->es_lblk > end) {
290				es1 = NULL;
291				break;
292			}
293			if (matching_fn(es1))
294				break;
295		}
296	}
297
298	if (es1 && matching_fn(es1)) {
299		WRITE_ONCE(tree->cache_es, es1);
300		es->es_lblk = es1->es_lblk;
301		es->es_len = es1->es_len;
302		es->es_pblk = es1->es_pblk;
303	}
304
305}
306
307/*
308 * Locking for __es_find_extent_range() for external use
309 */
310void ext4_es_find_extent_range(struct inode *inode,
311			       int (*matching_fn)(struct extent_status *es),
312			       ext4_lblk_t lblk, ext4_lblk_t end,
313			       struct extent_status *es)
314{
315	es->es_lblk = es->es_len = es->es_pblk = 0;
316
317	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
318		return;
319
320	trace_ext4_es_find_extent_range_enter(inode, lblk);
321
322	read_lock(&EXT4_I(inode)->i_es_lock);
323	__es_find_extent_range(inode, matching_fn, lblk, end, es);
324	read_unlock(&EXT4_I(inode)->i_es_lock);
325
326	trace_ext4_es_find_extent_range_exit(inode, es);
327}
328
329/*
330 * __es_scan_range - search block range for block with specified status
331 *                   in extents status tree
332 *
333 * @inode - file containing the range
334 * @matching_fn - pointer to function that matches extents with desired status
335 * @lblk - logical block defining start of range
336 * @end - logical block defining end of range
337 *
338 * Returns true if at least one block in the specified block range satisfies
339 * the criterion specified by @matching_fn, and false if not.  If at least
340 * one extent has the specified status, then there is at least one block
341 * in the cluster with that status.  Should only be called by code that has
342 * taken i_es_lock.
343 */
344static bool __es_scan_range(struct inode *inode,
345			    int (*matching_fn)(struct extent_status *es),
346			    ext4_lblk_t start, ext4_lblk_t end)
347{
348	struct extent_status es;
349
350	__es_find_extent_range(inode, matching_fn, start, end, &es);
351	if (es.es_len == 0)
352		return false;   /* no matching extent in the tree */
353	else if (es.es_lblk <= start &&
354		 start < es.es_lblk + es.es_len)
355		return true;
356	else if (start <= es.es_lblk && es.es_lblk <= end)
357		return true;
358	else
359		return false;
360}
361/*
362 * Locking for __es_scan_range() for external use
363 */
364bool ext4_es_scan_range(struct inode *inode,
365			int (*matching_fn)(struct extent_status *es),
366			ext4_lblk_t lblk, ext4_lblk_t end)
367{
368	bool ret;
369
370	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
371		return false;
372
373	read_lock(&EXT4_I(inode)->i_es_lock);
374	ret = __es_scan_range(inode, matching_fn, lblk, end);
375	read_unlock(&EXT4_I(inode)->i_es_lock);
376
377	return ret;
378}
379
380/*
381 * __es_scan_clu - search cluster for block with specified status in
382 *                 extents status tree
383 *
384 * @inode - file containing the cluster
385 * @matching_fn - pointer to function that matches extents with desired status
386 * @lblk - logical block in cluster to be searched
387 *
388 * Returns true if at least one extent in the cluster containing @lblk
389 * satisfies the criterion specified by @matching_fn, and false if not.  If at
390 * least one extent has the specified status, then there is at least one block
391 * in the cluster with that status.  Should only be called by code that has
392 * taken i_es_lock.
393 */
394static bool __es_scan_clu(struct inode *inode,
395			  int (*matching_fn)(struct extent_status *es),
396			  ext4_lblk_t lblk)
397{
398	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
399	ext4_lblk_t lblk_start, lblk_end;
400
401	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
402	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
403
404	return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
405}
406
407/*
408 * Locking for __es_scan_clu() for external use
409 */
410bool ext4_es_scan_clu(struct inode *inode,
411		      int (*matching_fn)(struct extent_status *es),
412		      ext4_lblk_t lblk)
413{
414	bool ret;
415
416	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
417		return false;
418
419	read_lock(&EXT4_I(inode)->i_es_lock);
420	ret = __es_scan_clu(inode, matching_fn, lblk);
421	read_unlock(&EXT4_I(inode)->i_es_lock);
422
423	return ret;
424}
425
426static void ext4_es_list_add(struct inode *inode)
427{
428	struct ext4_inode_info *ei = EXT4_I(inode);
429	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
430
431	if (!list_empty(&ei->i_es_list))
432		return;
433
434	spin_lock(&sbi->s_es_lock);
435	if (list_empty(&ei->i_es_list)) {
436		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
437		sbi->s_es_nr_inode++;
438	}
439	spin_unlock(&sbi->s_es_lock);
440}
441
442static void ext4_es_list_del(struct inode *inode)
443{
444	struct ext4_inode_info *ei = EXT4_I(inode);
445	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
446
447	spin_lock(&sbi->s_es_lock);
448	if (!list_empty(&ei->i_es_list)) {
449		list_del_init(&ei->i_es_list);
450		sbi->s_es_nr_inode--;
451		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
452	}
453	spin_unlock(&sbi->s_es_lock);
454}
455
456static inline struct pending_reservation *__alloc_pending(bool nofail)
457{
458	if (!nofail)
459		return kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
460
461	return kmem_cache_zalloc(ext4_pending_cachep, GFP_KERNEL | __GFP_NOFAIL);
462}
463
464static inline void __free_pending(struct pending_reservation *pr)
465{
466	kmem_cache_free(ext4_pending_cachep, pr);
467}
468
469/*
470 * Returns true if we cannot fail to allocate memory for this extent_status
471 * entry and cannot reclaim it until its status changes.
472 */
473static inline bool ext4_es_must_keep(struct extent_status *es)
474{
475	/* fiemap, bigalloc, and seek_data/hole need to use it. */
476	if (ext4_es_is_delayed(es))
477		return true;
478
479	return false;
480}
481
482static inline struct extent_status *__es_alloc_extent(bool nofail)
483{
484	if (!nofail)
485		return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
486
487	return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL);
488}
489
490static void ext4_es_init_extent(struct inode *inode, struct extent_status *es,
491		ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
492{
493	es->es_lblk = lblk;
494	es->es_len = len;
495	es->es_pblk = pblk;
496
497	/* We never try to reclaim a must kept extent, so we don't count it. */
498	if (!ext4_es_must_keep(es)) {
499		if (!EXT4_I(inode)->i_es_shk_nr++)
500			ext4_es_list_add(inode);
501		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
502					s_es_stats.es_stats_shk_cnt);
503	}
504
505	EXT4_I(inode)->i_es_all_nr++;
506	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
507}
508
509static inline void __es_free_extent(struct extent_status *es)
510{
511	kmem_cache_free(ext4_es_cachep, es);
512}
513
514static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
515{
516	EXT4_I(inode)->i_es_all_nr--;
517	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
518
519	/* Decrease the shrink counter when we can reclaim the extent. */
520	if (!ext4_es_must_keep(es)) {
521		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
522		if (!--EXT4_I(inode)->i_es_shk_nr)
523			ext4_es_list_del(inode);
524		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
525					s_es_stats.es_stats_shk_cnt);
526	}
527
528	__es_free_extent(es);
529}
530
531/*
532 * Check whether or not two extents can be merged
533 * Condition:
534 *  - logical block number is contiguous
535 *  - physical block number is contiguous
536 *  - status is equal
537 */
538static int ext4_es_can_be_merged(struct extent_status *es1,
539				 struct extent_status *es2)
540{
541	if (ext4_es_type(es1) != ext4_es_type(es2))
542		return 0;
543
544	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
545		pr_warn("ES assertion failed when merging extents. "
546			"The sum of lengths of es1 (%d) and es2 (%d) "
547			"is bigger than allowed file size (%d)\n",
548			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
549		WARN_ON(1);
550		return 0;
551	}
552
553	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
554		return 0;
555
556	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
557	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
558		return 1;
559
560	if (ext4_es_is_hole(es1))
561		return 1;
562
563	/* we need to check delayed extent is without unwritten status */
564	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
565		return 1;
566
567	return 0;
568}
569
570static struct extent_status *
571ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
572{
573	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
574	struct extent_status *es1;
575	struct rb_node *node;
576
577	node = rb_prev(&es->rb_node);
578	if (!node)
579		return es;
580
581	es1 = rb_entry(node, struct extent_status, rb_node);
582	if (ext4_es_can_be_merged(es1, es)) {
583		es1->es_len += es->es_len;
584		if (ext4_es_is_referenced(es))
585			ext4_es_set_referenced(es1);
586		rb_erase(&es->rb_node, &tree->root);
587		ext4_es_free_extent(inode, es);
588		es = es1;
589	}
590
591	return es;
592}
593
594static struct extent_status *
595ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
596{
597	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
598	struct extent_status *es1;
599	struct rb_node *node;
600
601	node = rb_next(&es->rb_node);
602	if (!node)
603		return es;
604
605	es1 = rb_entry(node, struct extent_status, rb_node);
606	if (ext4_es_can_be_merged(es, es1)) {
607		es->es_len += es1->es_len;
608		if (ext4_es_is_referenced(es1))
609			ext4_es_set_referenced(es);
610		rb_erase(node, &tree->root);
611		ext4_es_free_extent(inode, es1);
612	}
613
614	return es;
615}
616
617#ifdef ES_AGGRESSIVE_TEST
618#include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
619
620static void ext4_es_insert_extent_ext_check(struct inode *inode,
621					    struct extent_status *es)
622{
623	struct ext4_ext_path *path = NULL;
624	struct ext4_extent *ex;
625	ext4_lblk_t ee_block;
626	ext4_fsblk_t ee_start;
627	unsigned short ee_len;
628	int depth, ee_status, es_status;
629
630	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
631	if (IS_ERR(path))
632		return;
633
634	depth = ext_depth(inode);
635	ex = path[depth].p_ext;
636
637	if (ex) {
638
639		ee_block = le32_to_cpu(ex->ee_block);
640		ee_start = ext4_ext_pblock(ex);
641		ee_len = ext4_ext_get_actual_len(ex);
642
643		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
644		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
645
646		/*
647		 * Make sure ex and es are not overlap when we try to insert
648		 * a delayed/hole extent.
649		 */
650		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
651			if (in_range(es->es_lblk, ee_block, ee_len)) {
652				pr_warn("ES insert assertion failed for "
653					"inode: %lu we can find an extent "
654					"at block [%d/%d/%llu/%c], but we "
655					"want to add a delayed/hole extent "
656					"[%d/%d/%llu/%x]\n",
657					inode->i_ino, ee_block, ee_len,
658					ee_start, ee_status ? 'u' : 'w',
659					es->es_lblk, es->es_len,
660					ext4_es_pblock(es), ext4_es_status(es));
661			}
662			goto out;
663		}
664
665		/*
666		 * We don't check ee_block == es->es_lblk, etc. because es
667		 * might be a part of whole extent, vice versa.
668		 */
669		if (es->es_lblk < ee_block ||
670		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
671			pr_warn("ES insert assertion failed for inode: %lu "
672				"ex_status [%d/%d/%llu/%c] != "
673				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
674				ee_block, ee_len, ee_start,
675				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
676				ext4_es_pblock(es), es_status ? 'u' : 'w');
677			goto out;
678		}
679
680		if (ee_status ^ es_status) {
681			pr_warn("ES insert assertion failed for inode: %lu "
682				"ex_status [%d/%d/%llu/%c] != "
683				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
684				ee_block, ee_len, ee_start,
685				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
686				ext4_es_pblock(es), es_status ? 'u' : 'w');
687		}
688	} else {
689		/*
690		 * We can't find an extent on disk.  So we need to make sure
691		 * that we don't want to add an written/unwritten extent.
692		 */
693		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
694			pr_warn("ES insert assertion failed for inode: %lu "
695				"can't find an extent at block %d but we want "
696				"to add a written/unwritten extent "
697				"[%d/%d/%llu/%x]\n", inode->i_ino,
698				es->es_lblk, es->es_lblk, es->es_len,
699				ext4_es_pblock(es), ext4_es_status(es));
700		}
701	}
702out:
703	ext4_ext_drop_refs(path);
704	kfree(path);
705}
706
707static void ext4_es_insert_extent_ind_check(struct inode *inode,
708					    struct extent_status *es)
709{
710	struct ext4_map_blocks map;
711	int retval;
712
713	/*
714	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
715	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
716	 * access direct/indirect tree from outside.  It is too dirty to define
717	 * this function in indirect.c file.
718	 */
719
720	map.m_lblk = es->es_lblk;
721	map.m_len = es->es_len;
722
723	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
724	if (retval > 0) {
725		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
726			/*
727			 * We want to add a delayed/hole extent but this
728			 * block has been allocated.
729			 */
730			pr_warn("ES insert assertion failed for inode: %lu "
731				"We can find blocks but we want to add a "
732				"delayed/hole extent [%d/%d/%llu/%x]\n",
733				inode->i_ino, es->es_lblk, es->es_len,
734				ext4_es_pblock(es), ext4_es_status(es));
735			return;
736		} else if (ext4_es_is_written(es)) {
737			if (retval != es->es_len) {
738				pr_warn("ES insert assertion failed for "
739					"inode: %lu retval %d != es_len %d\n",
740					inode->i_ino, retval, es->es_len);
741				return;
742			}
743			if (map.m_pblk != ext4_es_pblock(es)) {
744				pr_warn("ES insert assertion failed for "
745					"inode: %lu m_pblk %llu != "
746					"es_pblk %llu\n",
747					inode->i_ino, map.m_pblk,
748					ext4_es_pblock(es));
749				return;
750			}
751		} else {
752			/*
753			 * We don't need to check unwritten extent because
754			 * indirect-based file doesn't have it.
755			 */
756			BUG();
757		}
758	} else if (retval == 0) {
759		if (ext4_es_is_written(es)) {
760			pr_warn("ES insert assertion failed for inode: %lu "
761				"We can't find the block but we want to add "
762				"a written extent [%d/%d/%llu/%x]\n",
763				inode->i_ino, es->es_lblk, es->es_len,
764				ext4_es_pblock(es), ext4_es_status(es));
765			return;
766		}
767	}
768}
769
770static inline void ext4_es_insert_extent_check(struct inode *inode,
771					       struct extent_status *es)
772{
773	/*
774	 * We don't need to worry about the race condition because
775	 * caller takes i_data_sem locking.
776	 */
777	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
778	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
779		ext4_es_insert_extent_ext_check(inode, es);
780	else
781		ext4_es_insert_extent_ind_check(inode, es);
782}
783#else
784static inline void ext4_es_insert_extent_check(struct inode *inode,
785					       struct extent_status *es)
786{
787}
788#endif
789
790static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
791			      struct extent_status *prealloc)
792{
793	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
794	struct rb_node **p = &tree->root.rb_node;
795	struct rb_node *parent = NULL;
796	struct extent_status *es;
797
798	while (*p) {
799		parent = *p;
800		es = rb_entry(parent, struct extent_status, rb_node);
801
802		if (newes->es_lblk < es->es_lblk) {
803			if (ext4_es_can_be_merged(newes, es)) {
804				/*
805				 * Here we can modify es_lblk directly
806				 * because it isn't overlapped.
807				 */
808				es->es_lblk = newes->es_lblk;
809				es->es_len += newes->es_len;
810				if (ext4_es_is_written(es) ||
811				    ext4_es_is_unwritten(es))
812					ext4_es_store_pblock(es,
813							     newes->es_pblk);
814				es = ext4_es_try_to_merge_left(inode, es);
815				goto out;
816			}
817			p = &(*p)->rb_left;
818		} else if (newes->es_lblk > ext4_es_end(es)) {
819			if (ext4_es_can_be_merged(es, newes)) {
820				es->es_len += newes->es_len;
821				es = ext4_es_try_to_merge_right(inode, es);
822				goto out;
823			}
824			p = &(*p)->rb_right;
825		} else {
826			BUG();
827			return -EINVAL;
828		}
829	}
830
831	if (prealloc)
832		es = prealloc;
833	else
834		es = __es_alloc_extent(false);
835	if (!es)
836		return -ENOMEM;
837	ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len,
838			    newes->es_pblk);
839
840	rb_link_node(&es->rb_node, parent, p);
841	rb_insert_color(&es->rb_node, &tree->root);
842
843out:
844	tree->cache_es = es;
845	return 0;
846}
847
848/*
849 * ext4_es_insert_extent() adds information to an inode's extent
850 * status tree.
851 *
852 * Return 0 on success, error code on failure.
853 */
854int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
855			  ext4_lblk_t len, ext4_fsblk_t pblk,
856			  unsigned int status)
857{
858	struct extent_status newes;
859	ext4_lblk_t end = lblk + len - 1;
860	int err1 = 0, err2 = 0, err3 = 0;
861	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
862	struct extent_status *es1 = NULL;
863	struct extent_status *es2 = NULL;
864	struct pending_reservation *pr = NULL;
865	bool revise_pending = false;
866
867	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
868		return 0;
869
870	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
871		 lblk, len, pblk, status, inode->i_ino);
872
873	if (!len)
874		return 0;
875
876	BUG_ON(end < lblk);
877
878	if ((status & EXTENT_STATUS_DELAYED) &&
879	    (status & EXTENT_STATUS_WRITTEN)) {
880		ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
881				" delayed and written which can potentially "
882				" cause data loss.", lblk, len);
883		WARN_ON(1);
884	}
885
886	newes.es_lblk = lblk;
887	newes.es_len = len;
888	ext4_es_store_pblock_status(&newes, pblk, status);
889	trace_ext4_es_insert_extent(inode, &newes);
890
891	ext4_es_insert_extent_check(inode, &newes);
892
893	revise_pending = sbi->s_cluster_ratio > 1 &&
894			 test_opt(inode->i_sb, DELALLOC) &&
895			 (status & (EXTENT_STATUS_WRITTEN |
896				    EXTENT_STATUS_UNWRITTEN));
897retry:
898	if (err1 && !es1)
899		es1 = __es_alloc_extent(true);
900	if ((err1 || err2) && !es2)
901		es2 = __es_alloc_extent(true);
902	if ((err1 || err2 || err3) && revise_pending && !pr)
903		pr = __alloc_pending(true);
904	write_lock(&EXT4_I(inode)->i_es_lock);
905
906	err1 = __es_remove_extent(inode, lblk, end, NULL, es1);
907	if (err1 != 0)
908		goto error;
909	/* Free preallocated extent if it didn't get used. */
910	if (es1) {
911		if (!es1->es_len)
912			__es_free_extent(es1);
913		es1 = NULL;
914	}
915
916	err2 = __es_insert_extent(inode, &newes, es2);
917	if (err2 == -ENOMEM && !ext4_es_must_keep(&newes))
918		err2 = 0;
919	if (err2 != 0)
920		goto error;
921	/* Free preallocated extent if it didn't get used. */
922	if (es2) {
923		if (!es2->es_len)
924			__es_free_extent(es2);
925		es2 = NULL;
926	}
927
928	if (revise_pending) {
929		err3 = __revise_pending(inode, lblk, len, &pr);
930		if (err3 != 0)
931			goto error;
932		if (pr) {
933			__free_pending(pr);
934			pr = NULL;
935		}
936	}
937error:
938	write_unlock(&EXT4_I(inode)->i_es_lock);
939	if (err1 || err2 || err3)
940		goto retry;
941
942	ext4_es_print_tree(inode);
943	return 0;
944}
945
946/*
947 * ext4_es_cache_extent() inserts information into the extent status
948 * tree if and only if there isn't information about the range in
949 * question already.
950 */
951void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
952			  ext4_lblk_t len, ext4_fsblk_t pblk,
953			  unsigned int status)
954{
955	struct extent_status *es;
956	struct extent_status newes;
957	ext4_lblk_t end = lblk + len - 1;
958
959	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
960		return;
961
962	newes.es_lblk = lblk;
963	newes.es_len = len;
964	ext4_es_store_pblock_status(&newes, pblk, status);
965	trace_ext4_es_cache_extent(inode, &newes);
966
967	if (!len)
968		return;
969
970	BUG_ON(end < lblk);
971
972	write_lock(&EXT4_I(inode)->i_es_lock);
973
974	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
975	if (!es || es->es_lblk > end)
976		__es_insert_extent(inode, &newes, NULL);
977	write_unlock(&EXT4_I(inode)->i_es_lock);
978}
979
980/*
981 * ext4_es_lookup_extent() looks up an extent in extent status tree.
982 *
983 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
984 *
985 * Return: 1 on found, 0 on not
986 */
987int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
988			  ext4_lblk_t *next_lblk,
989			  struct extent_status *es)
990{
991	struct ext4_es_tree *tree;
992	struct ext4_es_stats *stats;
993	struct extent_status *es1 = NULL;
994	struct rb_node *node;
995	int found = 0;
996
997	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
998		return 0;
999
1000	trace_ext4_es_lookup_extent_enter(inode, lblk);
1001	es_debug("lookup extent in block %u\n", lblk);
1002
1003	tree = &EXT4_I(inode)->i_es_tree;
1004	read_lock(&EXT4_I(inode)->i_es_lock);
1005
1006	/* find extent in cache firstly */
1007	es->es_lblk = es->es_len = es->es_pblk = 0;
1008	es1 = READ_ONCE(tree->cache_es);
1009	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
1010		es_debug("%u cached by [%u/%u)\n",
1011			 lblk, es1->es_lblk, es1->es_len);
1012		found = 1;
1013		goto out;
1014	}
1015
1016	node = tree->root.rb_node;
1017	while (node) {
1018		es1 = rb_entry(node, struct extent_status, rb_node);
1019		if (lblk < es1->es_lblk)
1020			node = node->rb_left;
1021		else if (lblk > ext4_es_end(es1))
1022			node = node->rb_right;
1023		else {
1024			found = 1;
1025			break;
1026		}
1027	}
1028
1029out:
1030	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
1031	if (found) {
1032		BUG_ON(!es1);
1033		es->es_lblk = es1->es_lblk;
1034		es->es_len = es1->es_len;
1035		es->es_pblk = es1->es_pblk;
1036		if (!ext4_es_is_referenced(es1))
1037			ext4_es_set_referenced(es1);
1038		percpu_counter_inc(&stats->es_stats_cache_hits);
1039		if (next_lblk) {
1040			node = rb_next(&es1->rb_node);
1041			if (node) {
1042				es1 = rb_entry(node, struct extent_status,
1043					       rb_node);
1044				*next_lblk = es1->es_lblk;
1045			} else
1046				*next_lblk = 0;
1047		}
1048	} else {
1049		percpu_counter_inc(&stats->es_stats_cache_misses);
1050	}
1051
1052	read_unlock(&EXT4_I(inode)->i_es_lock);
1053
1054	trace_ext4_es_lookup_extent_exit(inode, es, found);
1055	return found;
1056}
1057
1058struct rsvd_count {
1059	int ndelonly;
1060	bool first_do_lblk_found;
1061	ext4_lblk_t first_do_lblk;
1062	ext4_lblk_t last_do_lblk;
1063	struct extent_status *left_es;
1064	bool partial;
1065	ext4_lblk_t lclu;
1066};
1067
1068/*
1069 * init_rsvd - initialize reserved count data before removing block range
1070 *	       in file from extent status tree
1071 *
1072 * @inode - file containing range
1073 * @lblk - first block in range
1074 * @es - pointer to first extent in range
1075 * @rc - pointer to reserved count data
1076 *
1077 * Assumes es is not NULL
1078 */
1079static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1080		      struct extent_status *es, struct rsvd_count *rc)
1081{
1082	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1083	struct rb_node *node;
1084
1085	rc->ndelonly = 0;
1086
1087	/*
1088	 * for bigalloc, note the first delonly block in the range has not
1089	 * been found, record the extent containing the block to the left of
1090	 * the region to be removed, if any, and note that there's no partial
1091	 * cluster to track
1092	 */
1093	if (sbi->s_cluster_ratio > 1) {
1094		rc->first_do_lblk_found = false;
1095		if (lblk > es->es_lblk) {
1096			rc->left_es = es;
1097		} else {
1098			node = rb_prev(&es->rb_node);
1099			rc->left_es = node ? rb_entry(node,
1100						      struct extent_status,
1101						      rb_node) : NULL;
1102		}
1103		rc->partial = false;
1104	}
1105}
1106
1107/*
1108 * count_rsvd - count the clusters containing delayed and not unwritten
1109 *		(delonly) blocks in a range within an extent and add to
1110 *	        the running tally in rsvd_count
1111 *
1112 * @inode - file containing extent
1113 * @lblk - first block in range
1114 * @len - length of range in blocks
1115 * @es - pointer to extent containing clusters to be counted
1116 * @rc - pointer to reserved count data
1117 *
1118 * Tracks partial clusters found at the beginning and end of extents so
1119 * they aren't overcounted when they span adjacent extents
1120 */
1121static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1122		       struct extent_status *es, struct rsvd_count *rc)
1123{
1124	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1125	ext4_lblk_t i, end, nclu;
1126
1127	if (!ext4_es_is_delonly(es))
1128		return;
1129
1130	WARN_ON(len <= 0);
1131
1132	if (sbi->s_cluster_ratio == 1) {
1133		rc->ndelonly += (int) len;
1134		return;
1135	}
1136
1137	/* bigalloc */
1138
1139	i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1140	end = lblk + (ext4_lblk_t) len - 1;
1141	end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1142
1143	/* record the first block of the first delonly extent seen */
1144	if (!rc->first_do_lblk_found) {
1145		rc->first_do_lblk = i;
1146		rc->first_do_lblk_found = true;
1147	}
1148
1149	/* update the last lblk in the region seen so far */
1150	rc->last_do_lblk = end;
1151
1152	/*
1153	 * if we're tracking a partial cluster and the current extent
1154	 * doesn't start with it, count it and stop tracking
1155	 */
1156	if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1157		rc->ndelonly++;
1158		rc->partial = false;
1159	}
1160
1161	/*
1162	 * if the first cluster doesn't start on a cluster boundary but
1163	 * ends on one, count it
1164	 */
1165	if (EXT4_LBLK_COFF(sbi, i) != 0) {
1166		if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1167			rc->ndelonly++;
1168			rc->partial = false;
1169			i = EXT4_LBLK_CFILL(sbi, i) + 1;
1170		}
1171	}
1172
1173	/*
1174	 * if the current cluster starts on a cluster boundary, count the
1175	 * number of whole delonly clusters in the extent
1176	 */
1177	if ((i + sbi->s_cluster_ratio - 1) <= end) {
1178		nclu = (end - i + 1) >> sbi->s_cluster_bits;
1179		rc->ndelonly += nclu;
1180		i += nclu << sbi->s_cluster_bits;
1181	}
1182
1183	/*
1184	 * start tracking a partial cluster if there's a partial at the end
1185	 * of the current extent and we're not already tracking one
1186	 */
1187	if (!rc->partial && i <= end) {
1188		rc->partial = true;
1189		rc->lclu = EXT4_B2C(sbi, i);
1190	}
1191}
1192
1193/*
1194 * __pr_tree_search - search for a pending cluster reservation
1195 *
1196 * @root - root of pending reservation tree
1197 * @lclu - logical cluster to search for
1198 *
1199 * Returns the pending reservation for the cluster identified by @lclu
1200 * if found.  If not, returns a reservation for the next cluster if any,
1201 * and if not, returns NULL.
1202 */
1203static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1204						    ext4_lblk_t lclu)
1205{
1206	struct rb_node *node = root->rb_node;
1207	struct pending_reservation *pr = NULL;
1208
1209	while (node) {
1210		pr = rb_entry(node, struct pending_reservation, rb_node);
1211		if (lclu < pr->lclu)
1212			node = node->rb_left;
1213		else if (lclu > pr->lclu)
1214			node = node->rb_right;
1215		else
1216			return pr;
1217	}
1218	if (pr && lclu < pr->lclu)
1219		return pr;
1220	if (pr && lclu > pr->lclu) {
1221		node = rb_next(&pr->rb_node);
1222		return node ? rb_entry(node, struct pending_reservation,
1223				       rb_node) : NULL;
1224	}
1225	return NULL;
1226}
1227
1228/*
1229 * get_rsvd - calculates and returns the number of cluster reservations to be
1230 *	      released when removing a block range from the extent status tree
1231 *	      and releases any pending reservations within the range
1232 *
1233 * @inode - file containing block range
1234 * @end - last block in range
1235 * @right_es - pointer to extent containing next block beyond end or NULL
1236 * @rc - pointer to reserved count data
1237 *
1238 * The number of reservations to be released is equal to the number of
1239 * clusters containing delayed and not unwritten (delonly) blocks within
1240 * the range, minus the number of clusters still containing delonly blocks
1241 * at the ends of the range, and minus the number of pending reservations
1242 * within the range.
1243 */
1244static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1245			     struct extent_status *right_es,
1246			     struct rsvd_count *rc)
1247{
1248	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1249	struct pending_reservation *pr;
1250	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1251	struct rb_node *node;
1252	ext4_lblk_t first_lclu, last_lclu;
1253	bool left_delonly, right_delonly, count_pending;
1254	struct extent_status *es;
1255
1256	if (sbi->s_cluster_ratio > 1) {
1257		/* count any remaining partial cluster */
1258		if (rc->partial)
1259			rc->ndelonly++;
1260
1261		if (rc->ndelonly == 0)
1262			return 0;
1263
1264		first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1265		last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1266
1267		/*
1268		 * decrease the delonly count by the number of clusters at the
1269		 * ends of the range that still contain delonly blocks -
1270		 * these clusters still need to be reserved
1271		 */
1272		left_delonly = right_delonly = false;
1273
1274		es = rc->left_es;
1275		while (es && ext4_es_end(es) >=
1276		       EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1277			if (ext4_es_is_delonly(es)) {
1278				rc->ndelonly--;
1279				left_delonly = true;
1280				break;
1281			}
1282			node = rb_prev(&es->rb_node);
1283			if (!node)
1284				break;
1285			es = rb_entry(node, struct extent_status, rb_node);
1286		}
1287		if (right_es && (!left_delonly || first_lclu != last_lclu)) {
1288			if (end < ext4_es_end(right_es)) {
1289				es = right_es;
1290			} else {
1291				node = rb_next(&right_es->rb_node);
1292				es = node ? rb_entry(node, struct extent_status,
1293						     rb_node) : NULL;
1294			}
1295			while (es && es->es_lblk <=
1296			       EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1297				if (ext4_es_is_delonly(es)) {
1298					rc->ndelonly--;
1299					right_delonly = true;
1300					break;
1301				}
1302				node = rb_next(&es->rb_node);
1303				if (!node)
1304					break;
1305				es = rb_entry(node, struct extent_status,
1306					      rb_node);
1307			}
1308		}
1309
1310		/*
1311		 * Determine the block range that should be searched for
1312		 * pending reservations, if any.  Clusters on the ends of the
1313		 * original removed range containing delonly blocks are
1314		 * excluded.  They've already been accounted for and it's not
1315		 * possible to determine if an associated pending reservation
1316		 * should be released with the information available in the
1317		 * extents status tree.
1318		 */
1319		if (first_lclu == last_lclu) {
1320			if (left_delonly | right_delonly)
1321				count_pending = false;
1322			else
1323				count_pending = true;
1324		} else {
1325			if (left_delonly)
1326				first_lclu++;
1327			if (right_delonly)
1328				last_lclu--;
1329			if (first_lclu <= last_lclu)
1330				count_pending = true;
1331			else
1332				count_pending = false;
1333		}
1334
1335		/*
1336		 * a pending reservation found between first_lclu and last_lclu
1337		 * represents an allocated cluster that contained at least one
1338		 * delonly block, so the delonly total must be reduced by one
1339		 * for each pending reservation found and released
1340		 */
1341		if (count_pending) {
1342			pr = __pr_tree_search(&tree->root, first_lclu);
1343			while (pr && pr->lclu <= last_lclu) {
1344				rc->ndelonly--;
1345				node = rb_next(&pr->rb_node);
1346				rb_erase(&pr->rb_node, &tree->root);
1347				__free_pending(pr);
1348				if (!node)
1349					break;
1350				pr = rb_entry(node, struct pending_reservation,
1351					      rb_node);
1352			}
1353		}
1354	}
1355	return rc->ndelonly;
1356}
1357
1358
1359/*
1360 * __es_remove_extent - removes block range from extent status tree
1361 *
1362 * @inode - file containing range
1363 * @lblk - first block in range
1364 * @end - last block in range
1365 * @reserved - number of cluster reservations released
1366 * @prealloc - pre-allocated es to avoid memory allocation failures
1367 *
1368 * If @reserved is not NULL and delayed allocation is enabled, counts
1369 * block/cluster reservations freed by removing range and if bigalloc
1370 * enabled cancels pending reservations as needed. Returns 0 on success,
1371 * error code on failure.
1372 */
1373static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1374			      ext4_lblk_t end, int *reserved,
1375			      struct extent_status *prealloc)
1376{
1377	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1378	struct rb_node *node;
1379	struct extent_status *es;
1380	struct extent_status orig_es;
1381	ext4_lblk_t len1, len2;
1382	ext4_fsblk_t block;
1383	int err = 0;
1384	bool count_reserved = true;
1385	struct rsvd_count rc;
1386
1387	if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1388		count_reserved = false;
1389
1390	es = __es_tree_search(&tree->root, lblk);
1391	if (!es)
1392		goto out;
1393	if (es->es_lblk > end)
1394		goto out;
1395
1396	/* Simply invalidate cache_es. */
1397	tree->cache_es = NULL;
1398	if (count_reserved)
1399		init_rsvd(inode, lblk, es, &rc);
1400
1401	orig_es.es_lblk = es->es_lblk;
1402	orig_es.es_len = es->es_len;
1403	orig_es.es_pblk = es->es_pblk;
1404
1405	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1406	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1407	if (len1 > 0)
1408		es->es_len = len1;
1409	if (len2 > 0) {
1410		if (len1 > 0) {
1411			struct extent_status newes;
1412
1413			newes.es_lblk = end + 1;
1414			newes.es_len = len2;
1415			block = 0x7FDEADBEEFULL;
1416			if (ext4_es_is_written(&orig_es) ||
1417			    ext4_es_is_unwritten(&orig_es))
1418				block = ext4_es_pblock(&orig_es) +
1419					orig_es.es_len - len2;
1420			ext4_es_store_pblock_status(&newes, block,
1421						    ext4_es_status(&orig_es));
1422			err = __es_insert_extent(inode, &newes, prealloc);
1423			if (err) {
1424				if (!ext4_es_must_keep(&newes))
1425					return 0;
1426
1427				es->es_lblk = orig_es.es_lblk;
1428				es->es_len = orig_es.es_len;
1429				goto out;
1430			}
1431		} else {
1432			es->es_lblk = end + 1;
1433			es->es_len = len2;
1434			if (ext4_es_is_written(es) ||
1435			    ext4_es_is_unwritten(es)) {
1436				block = orig_es.es_pblk + orig_es.es_len - len2;
1437				ext4_es_store_pblock(es, block);
1438			}
1439		}
1440		if (count_reserved)
1441			count_rsvd(inode, orig_es.es_lblk + len1,
1442				   orig_es.es_len - len1 - len2, &orig_es, &rc);
1443		goto out_get_reserved;
1444	}
1445
1446	if (len1 > 0) {
1447		if (count_reserved)
1448			count_rsvd(inode, lblk, orig_es.es_len - len1,
1449				   &orig_es, &rc);
1450		node = rb_next(&es->rb_node);
1451		if (node)
1452			es = rb_entry(node, struct extent_status, rb_node);
1453		else
1454			es = NULL;
1455	}
1456
1457	while (es && ext4_es_end(es) <= end) {
1458		if (count_reserved)
1459			count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1460		node = rb_next(&es->rb_node);
1461		rb_erase(&es->rb_node, &tree->root);
1462		ext4_es_free_extent(inode, es);
1463		if (!node) {
1464			es = NULL;
1465			break;
1466		}
1467		es = rb_entry(node, struct extent_status, rb_node);
1468	}
1469
1470	if (es && es->es_lblk < end + 1) {
1471		ext4_lblk_t orig_len = es->es_len;
1472
1473		len1 = ext4_es_end(es) - end;
1474		if (count_reserved)
1475			count_rsvd(inode, es->es_lblk, orig_len - len1,
1476				   es, &rc);
1477		es->es_lblk = end + 1;
1478		es->es_len = len1;
1479		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1480			block = es->es_pblk + orig_len - len1;
1481			ext4_es_store_pblock(es, block);
1482		}
1483	}
1484
1485out_get_reserved:
1486	if (count_reserved)
1487		*reserved = get_rsvd(inode, end, es, &rc);
1488out:
1489	return err;
1490}
1491
1492/*
1493 * ext4_es_remove_extent - removes block range from extent status tree
1494 *
1495 * @inode - file containing range
1496 * @lblk - first block in range
1497 * @len - number of blocks to remove
1498 *
1499 * Reduces block/cluster reservation count and for bigalloc cancels pending
1500 * reservations as needed. Returns 0 on success, error code on failure.
1501 */
1502int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1503			  ext4_lblk_t len)
1504{
1505	ext4_lblk_t end;
1506	int err = 0;
1507	int reserved = 0;
1508	struct extent_status *es = NULL;
1509
1510	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1511		return 0;
1512
1513	trace_ext4_es_remove_extent(inode, lblk, len);
1514	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1515		 lblk, len, inode->i_ino);
1516
1517	if (!len)
1518		return err;
1519
1520	end = lblk + len - 1;
1521	BUG_ON(end < lblk);
1522
1523retry:
1524	if (err && !es)
1525		es = __es_alloc_extent(true);
1526	/*
1527	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1528	 * so that we are sure __es_shrink() is done with the inode before it
1529	 * is reclaimed.
1530	 */
1531	write_lock(&EXT4_I(inode)->i_es_lock);
1532	err = __es_remove_extent(inode, lblk, end, &reserved, es);
1533	/* Free preallocated extent if it didn't get used. */
1534	if (es) {
1535		if (!es->es_len)
1536			__es_free_extent(es);
1537		es = NULL;
1538	}
1539	write_unlock(&EXT4_I(inode)->i_es_lock);
1540	if (err)
1541		goto retry;
1542
1543	ext4_es_print_tree(inode);
1544	ext4_da_release_space(inode, reserved);
1545	return 0;
1546}
1547
1548static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1549		       struct ext4_inode_info *locked_ei)
1550{
1551	struct ext4_inode_info *ei;
1552	struct ext4_es_stats *es_stats;
1553	ktime_t start_time;
1554	u64 scan_time;
1555	int nr_to_walk;
1556	int nr_shrunk = 0;
1557	int retried = 0, nr_skipped = 0;
1558
1559	es_stats = &sbi->s_es_stats;
1560	start_time = ktime_get();
1561
1562retry:
1563	spin_lock(&sbi->s_es_lock);
1564	nr_to_walk = sbi->s_es_nr_inode;
1565	while (nr_to_walk-- > 0) {
1566		if (list_empty(&sbi->s_es_list)) {
1567			spin_unlock(&sbi->s_es_lock);
1568			goto out;
1569		}
1570		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1571				      i_es_list);
1572		/* Move the inode to the tail */
1573		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1574
1575		/*
1576		 * Normally we try hard to avoid shrinking precached inodes,
1577		 * but we will as a last resort.
1578		 */
1579		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1580						EXT4_STATE_EXT_PRECACHED)) {
1581			nr_skipped++;
1582			continue;
1583		}
1584
1585		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1586			nr_skipped++;
1587			continue;
1588		}
1589		/*
1590		 * Now we hold i_es_lock which protects us from inode reclaim
1591		 * freeing inode under us
1592		 */
1593		spin_unlock(&sbi->s_es_lock);
1594
1595		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1596		write_unlock(&ei->i_es_lock);
1597
1598		if (nr_to_scan <= 0)
1599			goto out;
1600		spin_lock(&sbi->s_es_lock);
1601	}
1602	spin_unlock(&sbi->s_es_lock);
1603
1604	/*
1605	 * If we skipped any inodes, and we weren't able to make any
1606	 * forward progress, try again to scan precached inodes.
1607	 */
1608	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1609		retried++;
1610		goto retry;
1611	}
1612
1613	if (locked_ei && nr_shrunk == 0)
1614		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1615
1616out:
1617	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1618	if (likely(es_stats->es_stats_scan_time))
1619		es_stats->es_stats_scan_time = (scan_time +
1620				es_stats->es_stats_scan_time*3) / 4;
1621	else
1622		es_stats->es_stats_scan_time = scan_time;
1623	if (scan_time > es_stats->es_stats_max_scan_time)
1624		es_stats->es_stats_max_scan_time = scan_time;
1625	if (likely(es_stats->es_stats_shrunk))
1626		es_stats->es_stats_shrunk = (nr_shrunk +
1627				es_stats->es_stats_shrunk*3) / 4;
1628	else
1629		es_stats->es_stats_shrunk = nr_shrunk;
1630
1631	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1632			     nr_skipped, retried);
1633	return nr_shrunk;
1634}
1635
1636static unsigned long ext4_es_count(struct shrinker *shrink,
1637				   struct shrink_control *sc)
1638{
1639	unsigned long nr;
1640	struct ext4_sb_info *sbi;
1641
1642	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1643	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1644	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1645	return nr;
1646}
1647
1648static unsigned long ext4_es_scan(struct shrinker *shrink,
1649				  struct shrink_control *sc)
1650{
1651	struct ext4_sb_info *sbi = container_of(shrink,
1652					struct ext4_sb_info, s_es_shrinker);
1653	int nr_to_scan = sc->nr_to_scan;
1654	int ret, nr_shrunk;
1655
1656	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1657	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1658
1659	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1660
1661	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1662	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1663	return nr_shrunk;
1664}
1665
1666int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1667{
1668	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1669	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1670	struct ext4_inode_info *ei, *max = NULL;
1671	unsigned int inode_cnt = 0;
1672
1673	if (v != SEQ_START_TOKEN)
1674		return 0;
1675
1676	/* here we just find an inode that has the max nr. of objects */
1677	spin_lock(&sbi->s_es_lock);
1678	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1679		inode_cnt++;
1680		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1681			max = ei;
1682		else if (!max)
1683			max = ei;
1684	}
1685	spin_unlock(&sbi->s_es_lock);
1686
1687	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1688		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1689		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1690	seq_printf(seq, "  %lld/%lld cache hits/misses\n",
1691		   percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1692		   percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1693	if (inode_cnt)
1694		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1695
1696	seq_printf(seq, "average:\n  %llu us scan time\n",
1697	    div_u64(es_stats->es_stats_scan_time, 1000));
1698	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1699	if (inode_cnt)
1700		seq_printf(seq,
1701		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1702		    "  %llu us max scan time\n",
1703		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1704		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1705
1706	return 0;
1707}
1708
1709int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1710{
1711	int err;
1712
1713	/* Make sure we have enough bits for physical block number */
1714	BUILD_BUG_ON(ES_SHIFT < 48);
1715	INIT_LIST_HEAD(&sbi->s_es_list);
1716	sbi->s_es_nr_inode = 0;
1717	spin_lock_init(&sbi->s_es_lock);
1718	sbi->s_es_stats.es_stats_shrunk = 0;
1719	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1720				  GFP_KERNEL);
1721	if (err)
1722		return err;
1723	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1724				  GFP_KERNEL);
1725	if (err)
1726		goto err1;
1727	sbi->s_es_stats.es_stats_scan_time = 0;
1728	sbi->s_es_stats.es_stats_max_scan_time = 0;
1729	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1730	if (err)
1731		goto err2;
1732	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1733	if (err)
1734		goto err3;
1735
1736	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1737	sbi->s_es_shrinker.count_objects = ext4_es_count;
1738	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1739	err = register_shrinker(&sbi->s_es_shrinker);
1740	if (err)
1741		goto err4;
1742
1743	return 0;
1744err4:
1745	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1746err3:
1747	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1748err2:
1749	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1750err1:
1751	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1752	return err;
1753}
1754
1755void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1756{
1757	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1758	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1759	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1760	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1761	unregister_shrinker(&sbi->s_es_shrinker);
1762}
1763
1764/*
1765 * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1766 * most *nr_to_scan extents, update *nr_to_scan accordingly.
1767 *
1768 * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1769 * Increment *nr_shrunk by the number of reclaimed extents. Also update
1770 * ei->i_es_shrink_lblk to where we should continue scanning.
1771 */
1772static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1773				 int *nr_to_scan, int *nr_shrunk)
1774{
1775	struct inode *inode = &ei->vfs_inode;
1776	struct ext4_es_tree *tree = &ei->i_es_tree;
1777	struct extent_status *es;
1778	struct rb_node *node;
1779
1780	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1781	if (!es)
1782		goto out_wrap;
1783
1784	while (*nr_to_scan > 0) {
1785		if (es->es_lblk > end) {
1786			ei->i_es_shrink_lblk = end + 1;
1787			return 0;
1788		}
1789
1790		(*nr_to_scan)--;
1791		node = rb_next(&es->rb_node);
1792
1793		if (ext4_es_must_keep(es))
1794			goto next;
1795		if (ext4_es_is_referenced(es)) {
1796			ext4_es_clear_referenced(es);
1797			goto next;
1798		}
1799
1800		rb_erase(&es->rb_node, &tree->root);
1801		ext4_es_free_extent(inode, es);
1802		(*nr_shrunk)++;
1803next:
1804		if (!node)
1805			goto out_wrap;
1806		es = rb_entry(node, struct extent_status, rb_node);
1807	}
1808	ei->i_es_shrink_lblk = es->es_lblk;
1809	return 1;
1810out_wrap:
1811	ei->i_es_shrink_lblk = 0;
1812	return 0;
1813}
1814
1815static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1816{
1817	struct inode *inode = &ei->vfs_inode;
1818	int nr_shrunk = 0;
1819	ext4_lblk_t start = ei->i_es_shrink_lblk;
1820	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1821				      DEFAULT_RATELIMIT_BURST);
1822
1823	if (ei->i_es_shk_nr == 0)
1824		return 0;
1825
1826	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1827	    __ratelimit(&_rs))
1828		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1829
1830	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1831	    start != 0)
1832		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1833
1834	ei->i_es_tree.cache_es = NULL;
1835	return nr_shrunk;
1836}
1837
1838/*
1839 * Called to support EXT4_IOC_CLEAR_ES_CACHE.  We can only remove
1840 * discretionary entries from the extent status cache.  (Some entries
1841 * must be present for proper operations.)
1842 */
1843void ext4_clear_inode_es(struct inode *inode)
1844{
1845	struct ext4_inode_info *ei = EXT4_I(inode);
1846	struct extent_status *es;
1847	struct ext4_es_tree *tree;
1848	struct rb_node *node;
1849
1850	write_lock(&ei->i_es_lock);
1851	tree = &EXT4_I(inode)->i_es_tree;
1852	tree->cache_es = NULL;
1853	node = rb_first(&tree->root);
1854	while (node) {
1855		es = rb_entry(node, struct extent_status, rb_node);
1856		node = rb_next(node);
1857		if (!ext4_es_must_keep(es)) {
1858			rb_erase(&es->rb_node, &tree->root);
1859			ext4_es_free_extent(inode, es);
1860		}
1861	}
1862	ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1863	write_unlock(&ei->i_es_lock);
1864}
1865
1866#ifdef ES_DEBUG__
1867static void ext4_print_pending_tree(struct inode *inode)
1868{
1869	struct ext4_pending_tree *tree;
1870	struct rb_node *node;
1871	struct pending_reservation *pr;
1872
1873	printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1874	tree = &EXT4_I(inode)->i_pending_tree;
1875	node = rb_first(&tree->root);
1876	while (node) {
1877		pr = rb_entry(node, struct pending_reservation, rb_node);
1878		printk(KERN_DEBUG " %u", pr->lclu);
1879		node = rb_next(node);
1880	}
1881	printk(KERN_DEBUG "\n");
1882}
1883#else
1884#define ext4_print_pending_tree(inode)
1885#endif
1886
1887int __init ext4_init_pending(void)
1888{
1889	ext4_pending_cachep = kmem_cache_create("ext4_pending_reservation",
1890					   sizeof(struct pending_reservation),
1891					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
1892	if (ext4_pending_cachep == NULL)
1893		return -ENOMEM;
1894	return 0;
1895}
1896
1897void ext4_exit_pending(void)
1898{
1899	kmem_cache_destroy(ext4_pending_cachep);
1900}
1901
1902void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1903{
1904	tree->root = RB_ROOT;
1905}
1906
1907/*
1908 * __get_pending - retrieve a pointer to a pending reservation
1909 *
1910 * @inode - file containing the pending cluster reservation
1911 * @lclu - logical cluster of interest
1912 *
1913 * Returns a pointer to a pending reservation if it's a member of
1914 * the set, and NULL if not.  Must be called holding i_es_lock.
1915 */
1916static struct pending_reservation *__get_pending(struct inode *inode,
1917						 ext4_lblk_t lclu)
1918{
1919	struct ext4_pending_tree *tree;
1920	struct rb_node *node;
1921	struct pending_reservation *pr = NULL;
1922
1923	tree = &EXT4_I(inode)->i_pending_tree;
1924	node = (&tree->root)->rb_node;
1925
1926	while (node) {
1927		pr = rb_entry(node, struct pending_reservation, rb_node);
1928		if (lclu < pr->lclu)
1929			node = node->rb_left;
1930		else if (lclu > pr->lclu)
1931			node = node->rb_right;
1932		else if (lclu == pr->lclu)
1933			return pr;
1934	}
1935	return NULL;
1936}
1937
1938/*
1939 * __insert_pending - adds a pending cluster reservation to the set of
1940 *                    pending reservations
1941 *
1942 * @inode - file containing the cluster
1943 * @lblk - logical block in the cluster to be added
1944 * @prealloc - preallocated pending entry
1945 *
1946 * Returns 0 on successful insertion and -ENOMEM on failure.  If the
1947 * pending reservation is already in the set, returns successfully.
1948 */
1949static int __insert_pending(struct inode *inode, ext4_lblk_t lblk,
1950			    struct pending_reservation **prealloc)
1951{
1952	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1953	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1954	struct rb_node **p = &tree->root.rb_node;
1955	struct rb_node *parent = NULL;
1956	struct pending_reservation *pr;
1957	ext4_lblk_t lclu;
1958	int ret = 0;
1959
1960	lclu = EXT4_B2C(sbi, lblk);
1961	/* search to find parent for insertion */
1962	while (*p) {
1963		parent = *p;
1964		pr = rb_entry(parent, struct pending_reservation, rb_node);
1965
1966		if (lclu < pr->lclu) {
1967			p = &(*p)->rb_left;
1968		} else if (lclu > pr->lclu) {
1969			p = &(*p)->rb_right;
1970		} else {
1971			/* pending reservation already inserted */
1972			goto out;
1973		}
1974	}
1975
1976	if (likely(*prealloc == NULL)) {
1977		pr = __alloc_pending(false);
1978		if (!pr) {
1979			ret = -ENOMEM;
1980			goto out;
1981		}
1982	} else {
1983		pr = *prealloc;
1984		*prealloc = NULL;
1985	}
1986	pr->lclu = lclu;
1987
1988	rb_link_node(&pr->rb_node, parent, p);
1989	rb_insert_color(&pr->rb_node, &tree->root);
1990
1991out:
1992	return ret;
1993}
1994
1995/*
1996 * __remove_pending - removes a pending cluster reservation from the set
1997 *                    of pending reservations
1998 *
1999 * @inode - file containing the cluster
2000 * @lblk - logical block in the pending cluster reservation to be removed
2001 *
2002 * Returns successfully if pending reservation is not a member of the set.
2003 */
2004static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
2005{
2006	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2007	struct pending_reservation *pr;
2008	struct ext4_pending_tree *tree;
2009
2010	pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
2011	if (pr != NULL) {
2012		tree = &EXT4_I(inode)->i_pending_tree;
2013		rb_erase(&pr->rb_node, &tree->root);
2014		__free_pending(pr);
2015	}
2016}
2017
2018/*
2019 * ext4_remove_pending - removes a pending cluster reservation from the set
2020 *                       of pending reservations
2021 *
2022 * @inode - file containing the cluster
2023 * @lblk - logical block in the pending cluster reservation to be removed
2024 *
2025 * Locking for external use of __remove_pending.
2026 */
2027void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
2028{
2029	struct ext4_inode_info *ei = EXT4_I(inode);
2030
2031	write_lock(&ei->i_es_lock);
2032	__remove_pending(inode, lblk);
2033	write_unlock(&ei->i_es_lock);
2034}
2035
2036/*
2037 * ext4_is_pending - determine whether a cluster has a pending reservation
2038 *                   on it
2039 *
2040 * @inode - file containing the cluster
2041 * @lblk - logical block in the cluster
2042 *
2043 * Returns true if there's a pending reservation for the cluster in the
2044 * set of pending reservations, and false if not.
2045 */
2046bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
2047{
2048	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2049	struct ext4_inode_info *ei = EXT4_I(inode);
2050	bool ret;
2051
2052	read_lock(&ei->i_es_lock);
2053	ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
2054	read_unlock(&ei->i_es_lock);
2055
2056	return ret;
2057}
2058
2059/*
2060 * ext4_es_insert_delayed_block - adds a delayed block to the extents status
2061 *                                tree, adding a pending reservation where
2062 *                                needed
2063 *
2064 * @inode - file containing the newly added block
2065 * @lblk - logical block to be added
2066 * @allocated - indicates whether a physical cluster has been allocated for
2067 *              the logical cluster that contains the block
2068 *
2069 * Returns 0 on success, negative error code on failure.
2070 */
2071int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
2072				 bool allocated)
2073{
2074	struct extent_status newes;
2075	int err1 = 0, err2 = 0, err3 = 0;
2076	struct extent_status *es1 = NULL;
2077	struct extent_status *es2 = NULL;
2078	struct pending_reservation *pr = NULL;
2079
2080	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
2081		return 0;
2082
2083	es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
2084		 lblk, inode->i_ino);
2085
2086	newes.es_lblk = lblk;
2087	newes.es_len = 1;
2088	ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
2089	trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
2090
2091	ext4_es_insert_extent_check(inode, &newes);
2092
2093retry:
2094	if (err1 && !es1)
2095		es1 = __es_alloc_extent(true);
2096	if ((err1 || err2) && !es2)
2097		es2 = __es_alloc_extent(true);
2098	if ((err1 || err2 || err3) && allocated && !pr)
2099		pr = __alloc_pending(true);
2100	write_lock(&EXT4_I(inode)->i_es_lock);
2101
2102	err1 = __es_remove_extent(inode, lblk, lblk, NULL, es1);
2103	if (err1 != 0)
2104		goto error;
2105	/* Free preallocated extent if it didn't get used. */
2106	if (es1) {
2107		if (!es1->es_len)
2108			__es_free_extent(es1);
2109		es1 = NULL;
2110	}
2111
2112	err2 = __es_insert_extent(inode, &newes, es2);
2113	if (err2 != 0)
2114		goto error;
2115	/* Free preallocated extent if it didn't get used. */
2116	if (es2) {
2117		if (!es2->es_len)
2118			__es_free_extent(es2);
2119		es2 = NULL;
2120	}
2121
2122	if (allocated) {
2123		err3 = __insert_pending(inode, lblk, &pr);
2124		if (err3 != 0)
2125			goto error;
2126		if (pr) {
2127			__free_pending(pr);
2128			pr = NULL;
2129		}
2130	}
2131error:
2132	write_unlock(&EXT4_I(inode)->i_es_lock);
2133	if (err1 || err2 || err3)
2134		goto retry;
2135
2136	ext4_es_print_tree(inode);
2137	ext4_print_pending_tree(inode);
2138	return 0;
2139}
2140
2141/*
2142 * __es_delayed_clu - count number of clusters containing blocks that
2143 *                    are delayed only
2144 *
2145 * @inode - file containing block range
2146 * @start - logical block defining start of range
2147 * @end - logical block defining end of range
2148 *
2149 * Returns the number of clusters containing only delayed (not delayed
2150 * and unwritten) blocks in the range specified by @start and @end.  Any
2151 * cluster or part of a cluster within the range and containing a delayed
2152 * and not unwritten block within the range is counted as a whole cluster.
2153 */
2154static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
2155				     ext4_lblk_t end)
2156{
2157	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
2158	struct extent_status *es;
2159	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2160	struct rb_node *node;
2161	ext4_lblk_t first_lclu, last_lclu;
2162	unsigned long long last_counted_lclu;
2163	unsigned int n = 0;
2164
2165	/* guaranteed to be unequal to any ext4_lblk_t value */
2166	last_counted_lclu = ~0ULL;
2167
2168	es = __es_tree_search(&tree->root, start);
2169
2170	while (es && (es->es_lblk <= end)) {
2171		if (ext4_es_is_delonly(es)) {
2172			if (es->es_lblk <= start)
2173				first_lclu = EXT4_B2C(sbi, start);
2174			else
2175				first_lclu = EXT4_B2C(sbi, es->es_lblk);
2176
2177			if (ext4_es_end(es) >= end)
2178				last_lclu = EXT4_B2C(sbi, end);
2179			else
2180				last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
2181
2182			if (first_lclu == last_counted_lclu)
2183				n += last_lclu - first_lclu;
2184			else
2185				n += last_lclu - first_lclu + 1;
2186			last_counted_lclu = last_lclu;
2187		}
2188		node = rb_next(&es->rb_node);
2189		if (!node)
2190			break;
2191		es = rb_entry(node, struct extent_status, rb_node);
2192	}
2193
2194	return n;
2195}
2196
2197/*
2198 * ext4_es_delayed_clu - count number of clusters containing blocks that
2199 *                       are both delayed and unwritten
2200 *
2201 * @inode - file containing block range
2202 * @lblk - logical block defining start of range
2203 * @len - number of blocks in range
2204 *
2205 * Locking for external use of __es_delayed_clu().
2206 */
2207unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
2208				 ext4_lblk_t len)
2209{
2210	struct ext4_inode_info *ei = EXT4_I(inode);
2211	ext4_lblk_t end;
2212	unsigned int n;
2213
2214	if (len == 0)
2215		return 0;
2216
2217	end = lblk + len - 1;
2218	WARN_ON(end < lblk);
2219
2220	read_lock(&ei->i_es_lock);
2221
2222	n = __es_delayed_clu(inode, lblk, end);
2223
2224	read_unlock(&ei->i_es_lock);
2225
2226	return n;
2227}
2228
2229/*
2230 * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2231 *                    reservations for a specified block range depending
2232 *                    upon the presence or absence of delayed blocks
2233 *                    outside the range within clusters at the ends of the
2234 *                    range
2235 *
2236 * @inode - file containing the range
2237 * @lblk - logical block defining the start of range
2238 * @len  - length of range in blocks
2239 * @prealloc - preallocated pending entry
2240 *
2241 * Used after a newly allocated extent is added to the extents status tree.
2242 * Requires that the extents in the range have either written or unwritten
2243 * status.  Must be called while holding i_es_lock.
2244 */
2245static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2246			    ext4_lblk_t len,
2247			    struct pending_reservation **prealloc)
2248{
2249	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2250	ext4_lblk_t end = lblk + len - 1;
2251	ext4_lblk_t first, last;
2252	bool f_del = false, l_del = false;
2253	int ret = 0;
2254
2255	if (len == 0)
2256		return 0;
2257
2258	/*
2259	 * Two cases - block range within single cluster and block range
2260	 * spanning two or more clusters.  Note that a cluster belonging
2261	 * to a range starting and/or ending on a cluster boundary is treated
2262	 * as if it does not contain a delayed extent.  The new range may
2263	 * have allocated space for previously delayed blocks out to the
2264	 * cluster boundary, requiring that any pre-existing pending
2265	 * reservation be canceled.  Because this code only looks at blocks
2266	 * outside the range, it should revise pending reservations
2267	 * correctly even if the extent represented by the range can't be
2268	 * inserted in the extents status tree due to ENOSPC.
2269	 */
2270
2271	if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2272		first = EXT4_LBLK_CMASK(sbi, lblk);
2273		if (first != lblk)
2274			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2275						first, lblk - 1);
2276		if (f_del) {
2277			ret = __insert_pending(inode, first, prealloc);
2278			if (ret < 0)
2279				goto out;
2280		} else {
2281			last = EXT4_LBLK_CMASK(sbi, end) +
2282			       sbi->s_cluster_ratio - 1;
2283			if (last != end)
2284				l_del = __es_scan_range(inode,
2285							&ext4_es_is_delonly,
2286							end + 1, last);
2287			if (l_del) {
2288				ret = __insert_pending(inode, last, prealloc);
2289				if (ret < 0)
2290					goto out;
2291			} else
2292				__remove_pending(inode, last);
2293		}
2294	} else {
2295		first = EXT4_LBLK_CMASK(sbi, lblk);
2296		if (first != lblk)
2297			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2298						first, lblk - 1);
2299		if (f_del) {
2300			ret = __insert_pending(inode, first, prealloc);
2301			if (ret < 0)
2302				goto out;
2303		} else
2304			__remove_pending(inode, first);
2305
2306		last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2307		if (last != end)
2308			l_del = __es_scan_range(inode, &ext4_es_is_delonly,
2309						end + 1, last);
2310		if (l_del) {
2311			ret = __insert_pending(inode, last, prealloc);
2312			if (ret < 0)
2313				goto out;
2314		} else
2315			__remove_pending(inode, last);
2316	}
2317out:
2318	return ret;
2319}
2320