xref: /kernel/linux/linux-5.10/fs/ext2/inode.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  linux/fs/ext2/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 *  from
11 *
12 *  linux/fs/minix/inode.c
13 *
14 *  Copyright (C) 1991, 1992  Linus Torvalds
15 *
16 *  Goal-directed block allocation by Stephen Tweedie
17 * 	(sct@dcs.ed.ac.uk), 1993, 1998
18 *  Big-endian to little-endian byte-swapping/bitmaps by
19 *        David S. Miller (davem@caip.rutgers.edu), 1995
20 *  64-bit file support on 64-bit platforms by Jakub Jelinek
21 * 	(jj@sunsite.ms.mff.cuni.cz)
22 *
23 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
24 */
25
26#include <linux/time.h>
27#include <linux/highuid.h>
28#include <linux/pagemap.h>
29#include <linux/dax.h>
30#include <linux/blkdev.h>
31#include <linux/quotaops.h>
32#include <linux/writeback.h>
33#include <linux/buffer_head.h>
34#include <linux/mpage.h>
35#include <linux/fiemap.h>
36#include <linux/iomap.h>
37#include <linux/namei.h>
38#include <linux/uio.h>
39#include "ext2.h"
40#include "acl.h"
41#include "xattr.h"
42
43static int __ext2_write_inode(struct inode *inode, int do_sync);
44
45/*
46 * Test whether an inode is a fast symlink.
47 */
48static inline int ext2_inode_is_fast_symlink(struct inode *inode)
49{
50	int ea_blocks = EXT2_I(inode)->i_file_acl ?
51		(inode->i_sb->s_blocksize >> 9) : 0;
52
53	return (S_ISLNK(inode->i_mode) &&
54		inode->i_blocks - ea_blocks == 0);
55}
56
57static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
58
59static void ext2_write_failed(struct address_space *mapping, loff_t to)
60{
61	struct inode *inode = mapping->host;
62
63	if (to > inode->i_size) {
64		truncate_pagecache(inode, inode->i_size);
65		ext2_truncate_blocks(inode, inode->i_size);
66	}
67}
68
69/*
70 * Called at the last iput() if i_nlink is zero.
71 */
72void ext2_evict_inode(struct inode * inode)
73{
74	struct ext2_block_alloc_info *rsv;
75	int want_delete = 0;
76
77	if (!inode->i_nlink && !is_bad_inode(inode)) {
78		want_delete = 1;
79		dquot_initialize(inode);
80	} else {
81		dquot_drop(inode);
82	}
83
84	truncate_inode_pages_final(&inode->i_data);
85
86	if (want_delete) {
87		sb_start_intwrite(inode->i_sb);
88		/* set dtime */
89		EXT2_I(inode)->i_dtime	= ktime_get_real_seconds();
90		mark_inode_dirty(inode);
91		__ext2_write_inode(inode, inode_needs_sync(inode));
92		/* truncate to 0 */
93		inode->i_size = 0;
94		if (inode->i_blocks)
95			ext2_truncate_blocks(inode, 0);
96		ext2_xattr_delete_inode(inode);
97	}
98
99	invalidate_inode_buffers(inode);
100	clear_inode(inode);
101
102	ext2_discard_reservation(inode);
103	rsv = EXT2_I(inode)->i_block_alloc_info;
104	EXT2_I(inode)->i_block_alloc_info = NULL;
105	if (unlikely(rsv))
106		kfree(rsv);
107
108	if (want_delete) {
109		ext2_free_inode(inode);
110		sb_end_intwrite(inode->i_sb);
111	}
112}
113
114typedef struct {
115	__le32	*p;
116	__le32	key;
117	struct buffer_head *bh;
118} Indirect;
119
120static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
121{
122	p->key = *(p->p = v);
123	p->bh = bh;
124}
125
126static inline int verify_chain(Indirect *from, Indirect *to)
127{
128	while (from <= to && from->key == *from->p)
129		from++;
130	return (from > to);
131}
132
133/**
134 *	ext2_block_to_path - parse the block number into array of offsets
135 *	@inode: inode in question (we are only interested in its superblock)
136 *	@i_block: block number to be parsed
137 *	@offsets: array to store the offsets in
138 *      @boundary: set this non-zero if the referred-to block is likely to be
139 *             followed (on disk) by an indirect block.
140 *	To store the locations of file's data ext2 uses a data structure common
141 *	for UNIX filesystems - tree of pointers anchored in the inode, with
142 *	data blocks at leaves and indirect blocks in intermediate nodes.
143 *	This function translates the block number into path in that tree -
144 *	return value is the path length and @offsets[n] is the offset of
145 *	pointer to (n+1)th node in the nth one. If @block is out of range
146 *	(negative or too large) warning is printed and zero returned.
147 *
148 *	Note: function doesn't find node addresses, so no IO is needed. All
149 *	we need to know is the capacity of indirect blocks (taken from the
150 *	inode->i_sb).
151 */
152
153/*
154 * Portability note: the last comparison (check that we fit into triple
155 * indirect block) is spelled differently, because otherwise on an
156 * architecture with 32-bit longs and 8Kb pages we might get into trouble
157 * if our filesystem had 8Kb blocks. We might use long long, but that would
158 * kill us on x86. Oh, well, at least the sign propagation does not matter -
159 * i_block would have to be negative in the very beginning, so we would not
160 * get there at all.
161 */
162
163static int ext2_block_to_path(struct inode *inode,
164			long i_block, int offsets[4], int *boundary)
165{
166	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
167	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
168	const long direct_blocks = EXT2_NDIR_BLOCKS,
169		indirect_blocks = ptrs,
170		double_blocks = (1 << (ptrs_bits * 2));
171	int n = 0;
172	int final = 0;
173
174	if (i_block < 0) {
175		ext2_msg(inode->i_sb, KERN_WARNING,
176			"warning: %s: block < 0", __func__);
177	} else if (i_block < direct_blocks) {
178		offsets[n++] = i_block;
179		final = direct_blocks;
180	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
181		offsets[n++] = EXT2_IND_BLOCK;
182		offsets[n++] = i_block;
183		final = ptrs;
184	} else if ((i_block -= indirect_blocks) < double_blocks) {
185		offsets[n++] = EXT2_DIND_BLOCK;
186		offsets[n++] = i_block >> ptrs_bits;
187		offsets[n++] = i_block & (ptrs - 1);
188		final = ptrs;
189	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
190		offsets[n++] = EXT2_TIND_BLOCK;
191		offsets[n++] = i_block >> (ptrs_bits * 2);
192		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
193		offsets[n++] = i_block & (ptrs - 1);
194		final = ptrs;
195	} else {
196		ext2_msg(inode->i_sb, KERN_WARNING,
197			"warning: %s: block is too big", __func__);
198	}
199	if (boundary)
200		*boundary = final - 1 - (i_block & (ptrs - 1));
201
202	return n;
203}
204
205/**
206 *	ext2_get_branch - read the chain of indirect blocks leading to data
207 *	@inode: inode in question
208 *	@depth: depth of the chain (1 - direct pointer, etc.)
209 *	@offsets: offsets of pointers in inode/indirect blocks
210 *	@chain: place to store the result
211 *	@err: here we store the error value
212 *
213 *	Function fills the array of triples <key, p, bh> and returns %NULL
214 *	if everything went OK or the pointer to the last filled triple
215 *	(incomplete one) otherwise. Upon the return chain[i].key contains
216 *	the number of (i+1)-th block in the chain (as it is stored in memory,
217 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
218 *	number (it points into struct inode for i==0 and into the bh->b_data
219 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
220 *	block for i>0 and NULL for i==0. In other words, it holds the block
221 *	numbers of the chain, addresses they were taken from (and where we can
222 *	verify that chain did not change) and buffer_heads hosting these
223 *	numbers.
224 *
225 *	Function stops when it stumbles upon zero pointer (absent block)
226 *		(pointer to last triple returned, *@err == 0)
227 *	or when it gets an IO error reading an indirect block
228 *		(ditto, *@err == -EIO)
229 *	or when it notices that chain had been changed while it was reading
230 *		(ditto, *@err == -EAGAIN)
231 *	or when it reads all @depth-1 indirect blocks successfully and finds
232 *	the whole chain, all way to the data (returns %NULL, *err == 0).
233 */
234static Indirect *ext2_get_branch(struct inode *inode,
235				 int depth,
236				 int *offsets,
237				 Indirect chain[4],
238				 int *err)
239{
240	struct super_block *sb = inode->i_sb;
241	Indirect *p = chain;
242	struct buffer_head *bh;
243
244	*err = 0;
245	/* i_data is not going away, no lock needed */
246	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
247	if (!p->key)
248		goto no_block;
249	while (--depth) {
250		bh = sb_bread(sb, le32_to_cpu(p->key));
251		if (!bh)
252			goto failure;
253		read_lock(&EXT2_I(inode)->i_meta_lock);
254		if (!verify_chain(chain, p))
255			goto changed;
256		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
257		read_unlock(&EXT2_I(inode)->i_meta_lock);
258		if (!p->key)
259			goto no_block;
260	}
261	return NULL;
262
263changed:
264	read_unlock(&EXT2_I(inode)->i_meta_lock);
265	brelse(bh);
266	*err = -EAGAIN;
267	goto no_block;
268failure:
269	*err = -EIO;
270no_block:
271	return p;
272}
273
274/**
275 *	ext2_find_near - find a place for allocation with sufficient locality
276 *	@inode: owner
277 *	@ind: descriptor of indirect block.
278 *
279 *	This function returns the preferred place for block allocation.
280 *	It is used when heuristic for sequential allocation fails.
281 *	Rules are:
282 *	  + if there is a block to the left of our position - allocate near it.
283 *	  + if pointer will live in indirect block - allocate near that block.
284 *	  + if pointer will live in inode - allocate in the same cylinder group.
285 *
286 * In the latter case we colour the starting block by the callers PID to
287 * prevent it from clashing with concurrent allocations for a different inode
288 * in the same block group.   The PID is used here so that functionally related
289 * files will be close-by on-disk.
290 *
291 *	Caller must make sure that @ind is valid and will stay that way.
292 */
293
294static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
295{
296	struct ext2_inode_info *ei = EXT2_I(inode);
297	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
298	__le32 *p;
299	ext2_fsblk_t bg_start;
300	ext2_fsblk_t colour;
301
302	/* Try to find previous block */
303	for (p = ind->p - 1; p >= start; p--)
304		if (*p)
305			return le32_to_cpu(*p);
306
307	/* No such thing, so let's try location of indirect block */
308	if (ind->bh)
309		return ind->bh->b_blocknr;
310
311	/*
312	 * It is going to be referred from inode itself? OK, just put it into
313	 * the same cylinder group then.
314	 */
315	bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
316	colour = (current->pid % 16) *
317			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
318	return bg_start + colour;
319}
320
321/**
322 *	ext2_find_goal - find a preferred place for allocation.
323 *	@inode: owner
324 *	@block:  block we want
325 *	@partial: pointer to the last triple within a chain
326 *
327 *	Returns preferred place for a block (the goal).
328 */
329
330static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
331					  Indirect *partial)
332{
333	struct ext2_block_alloc_info *block_i;
334
335	block_i = EXT2_I(inode)->i_block_alloc_info;
336
337	/*
338	 * try the heuristic for sequential allocation,
339	 * failing that at least try to get decent locality.
340	 */
341	if (block_i && (block == block_i->last_alloc_logical_block + 1)
342		&& (block_i->last_alloc_physical_block != 0)) {
343		return block_i->last_alloc_physical_block + 1;
344	}
345
346	return ext2_find_near(inode, partial);
347}
348
349/**
350 *	ext2_blks_to_allocate: Look up the block map and count the number
351 *	of direct blocks need to be allocated for the given branch.
352 *
353 * 	@branch: chain of indirect blocks
354 *	@k: number of blocks need for indirect blocks
355 *	@blks: number of data blocks to be mapped.
356 *	@blocks_to_boundary:  the offset in the indirect block
357 *
358 *	return the number of direct blocks to allocate.
359 */
360static int
361ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
362		int blocks_to_boundary)
363{
364	unsigned long count = 0;
365
366	/*
367	 * Simple case, [t,d]Indirect block(s) has not allocated yet
368	 * then it's clear blocks on that path have not allocated
369	 */
370	if (k > 0) {
371		/* right now don't hanel cross boundary allocation */
372		if (blks < blocks_to_boundary + 1)
373			count += blks;
374		else
375			count += blocks_to_boundary + 1;
376		return count;
377	}
378
379	count++;
380	while (count < blks && count <= blocks_to_boundary
381		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
382		count++;
383	}
384	return count;
385}
386
387/**
388 *	ext2_alloc_blocks: multiple allocate blocks needed for a branch
389 *	@indirect_blks: the number of blocks need to allocate for indirect
390 *			blocks
391 *	@blks: the number of blocks need to allocate for direct blocks
392 *	@new_blocks: on return it will store the new block numbers for
393 *	the indirect blocks(if needed) and the first direct block,
394 */
395static int ext2_alloc_blocks(struct inode *inode,
396			ext2_fsblk_t goal, int indirect_blks, int blks,
397			ext2_fsblk_t new_blocks[4], int *err)
398{
399	int target, i;
400	unsigned long count = 0;
401	int index = 0;
402	ext2_fsblk_t current_block = 0;
403	int ret = 0;
404
405	/*
406	 * Here we try to allocate the requested multiple blocks at once,
407	 * on a best-effort basis.
408	 * To build a branch, we should allocate blocks for
409	 * the indirect blocks(if not allocated yet), and at least
410	 * the first direct block of this branch.  That's the
411	 * minimum number of blocks need to allocate(required)
412	 */
413	target = blks + indirect_blks;
414
415	while (1) {
416		count = target;
417		/* allocating blocks for indirect blocks and direct blocks */
418		current_block = ext2_new_blocks(inode,goal,&count,err);
419		if (*err)
420			goto failed_out;
421
422		target -= count;
423		/* allocate blocks for indirect blocks */
424		while (index < indirect_blks && count) {
425			new_blocks[index++] = current_block++;
426			count--;
427		}
428
429		if (count > 0)
430			break;
431	}
432
433	/* save the new block number for the first direct block */
434	new_blocks[index] = current_block;
435
436	/* total number of blocks allocated for direct blocks */
437	ret = count;
438	*err = 0;
439	return ret;
440failed_out:
441	for (i = 0; i <index; i++)
442		ext2_free_blocks(inode, new_blocks[i], 1);
443	if (index)
444		mark_inode_dirty(inode);
445	return ret;
446}
447
448/**
449 *	ext2_alloc_branch - allocate and set up a chain of blocks.
450 *	@inode: owner
451 *	@indirect_blks: depth of the chain (number of blocks to allocate)
452 *	@blks: number of allocated direct blocks
453 *	@goal: preferred place for allocation
454 *	@offsets: offsets (in the blocks) to store the pointers to next.
455 *	@branch: place to store the chain in.
456 *
457 *	This function allocates @num blocks, zeroes out all but the last one,
458 *	links them into chain and (if we are synchronous) writes them to disk.
459 *	In other words, it prepares a branch that can be spliced onto the
460 *	inode. It stores the information about that chain in the branch[], in
461 *	the same format as ext2_get_branch() would do. We are calling it after
462 *	we had read the existing part of chain and partial points to the last
463 *	triple of that (one with zero ->key). Upon the exit we have the same
464 *	picture as after the successful ext2_get_block(), except that in one
465 *	place chain is disconnected - *branch->p is still zero (we did not
466 *	set the last link), but branch->key contains the number that should
467 *	be placed into *branch->p to fill that gap.
468 *
469 *	If allocation fails we free all blocks we've allocated (and forget
470 *	their buffer_heads) and return the error value the from failed
471 *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
472 *	as described above and return 0.
473 */
474
475static int ext2_alloc_branch(struct inode *inode,
476			int indirect_blks, int *blks, ext2_fsblk_t goal,
477			int *offsets, Indirect *branch)
478{
479	int blocksize = inode->i_sb->s_blocksize;
480	int i, n = 0;
481	int err = 0;
482	struct buffer_head *bh;
483	int num;
484	ext2_fsblk_t new_blocks[4];
485	ext2_fsblk_t current_block;
486
487	num = ext2_alloc_blocks(inode, goal, indirect_blks,
488				*blks, new_blocks, &err);
489	if (err)
490		return err;
491
492	branch[0].key = cpu_to_le32(new_blocks[0]);
493	/*
494	 * metadata blocks and data blocks are allocated.
495	 */
496	for (n = 1; n <= indirect_blks;  n++) {
497		/*
498		 * Get buffer_head for parent block, zero it out
499		 * and set the pointer to new one, then send
500		 * parent to disk.
501		 */
502		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
503		if (unlikely(!bh)) {
504			err = -ENOMEM;
505			goto failed;
506		}
507		branch[n].bh = bh;
508		lock_buffer(bh);
509		memset(bh->b_data, 0, blocksize);
510		branch[n].p = (__le32 *) bh->b_data + offsets[n];
511		branch[n].key = cpu_to_le32(new_blocks[n]);
512		*branch[n].p = branch[n].key;
513		if ( n == indirect_blks) {
514			current_block = new_blocks[n];
515			/*
516			 * End of chain, update the last new metablock of
517			 * the chain to point to the new allocated
518			 * data blocks numbers
519			 */
520			for (i=1; i < num; i++)
521				*(branch[n].p + i) = cpu_to_le32(++current_block);
522		}
523		set_buffer_uptodate(bh);
524		unlock_buffer(bh);
525		mark_buffer_dirty_inode(bh, inode);
526		/* We used to sync bh here if IS_SYNC(inode).
527		 * But we now rely upon generic_write_sync()
528		 * and b_inode_buffers.  But not for directories.
529		 */
530		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
531			sync_dirty_buffer(bh);
532	}
533	*blks = num;
534	return err;
535
536failed:
537	for (i = 1; i < n; i++)
538		bforget(branch[i].bh);
539	for (i = 0; i < indirect_blks; i++)
540		ext2_free_blocks(inode, new_blocks[i], 1);
541	ext2_free_blocks(inode, new_blocks[i], num);
542	return err;
543}
544
545/**
546 * ext2_splice_branch - splice the allocated branch onto inode.
547 * @inode: owner
548 * @block: (logical) number of block we are adding
549 * @where: location of missing link
550 * @num:   number of indirect blocks we are adding
551 * @blks:  number of direct blocks we are adding
552 *
553 * This function fills the missing link and does all housekeeping needed in
554 * inode (->i_blocks, etc.). In case of success we end up with the full
555 * chain to new block and return 0.
556 */
557static void ext2_splice_branch(struct inode *inode,
558			long block, Indirect *where, int num, int blks)
559{
560	int i;
561	struct ext2_block_alloc_info *block_i;
562	ext2_fsblk_t current_block;
563
564	block_i = EXT2_I(inode)->i_block_alloc_info;
565
566	/* XXX LOCKING probably should have i_meta_lock ?*/
567	/* That's it */
568
569	*where->p = where->key;
570
571	/*
572	 * Update the host buffer_head or inode to point to more just allocated
573	 * direct blocks blocks
574	 */
575	if (num == 0 && blks > 1) {
576		current_block = le32_to_cpu(where->key) + 1;
577		for (i = 1; i < blks; i++)
578			*(where->p + i ) = cpu_to_le32(current_block++);
579	}
580
581	/*
582	 * update the most recently allocated logical & physical block
583	 * in i_block_alloc_info, to assist find the proper goal block for next
584	 * allocation
585	 */
586	if (block_i) {
587		block_i->last_alloc_logical_block = block + blks - 1;
588		block_i->last_alloc_physical_block =
589				le32_to_cpu(where[num].key) + blks - 1;
590	}
591
592	/* We are done with atomic stuff, now do the rest of housekeeping */
593
594	/* had we spliced it onto indirect block? */
595	if (where->bh)
596		mark_buffer_dirty_inode(where->bh, inode);
597
598	inode->i_ctime = current_time(inode);
599	mark_inode_dirty(inode);
600}
601
602/*
603 * Allocation strategy is simple: if we have to allocate something, we will
604 * have to go the whole way to leaf. So let's do it before attaching anything
605 * to tree, set linkage between the newborn blocks, write them if sync is
606 * required, recheck the path, free and repeat if check fails, otherwise
607 * set the last missing link (that will protect us from any truncate-generated
608 * removals - all blocks on the path are immune now) and possibly force the
609 * write on the parent block.
610 * That has a nice additional property: no special recovery from the failed
611 * allocations is needed - we simply release blocks and do not touch anything
612 * reachable from inode.
613 *
614 * `handle' can be NULL if create == 0.
615 *
616 * return > 0, # of blocks mapped or allocated.
617 * return = 0, if plain lookup failed.
618 * return < 0, error case.
619 */
620static int ext2_get_blocks(struct inode *inode,
621			   sector_t iblock, unsigned long maxblocks,
622			   u32 *bno, bool *new, bool *boundary,
623			   int create)
624{
625	int err;
626	int offsets[4];
627	Indirect chain[4];
628	Indirect *partial;
629	ext2_fsblk_t goal;
630	int indirect_blks;
631	int blocks_to_boundary = 0;
632	int depth;
633	struct ext2_inode_info *ei = EXT2_I(inode);
634	int count = 0;
635	ext2_fsblk_t first_block = 0;
636
637	BUG_ON(maxblocks == 0);
638
639	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
640
641	if (depth == 0)
642		return -EIO;
643
644	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
645	/* Simplest case - block found, no allocation needed */
646	if (!partial) {
647		first_block = le32_to_cpu(chain[depth - 1].key);
648		count++;
649		/*map more blocks*/
650		while (count < maxblocks && count <= blocks_to_boundary) {
651			ext2_fsblk_t blk;
652
653			if (!verify_chain(chain, chain + depth - 1)) {
654				/*
655				 * Indirect block might be removed by
656				 * truncate while we were reading it.
657				 * Handling of that case: forget what we've
658				 * got now, go to reread.
659				 */
660				err = -EAGAIN;
661				count = 0;
662				partial = chain + depth - 1;
663				break;
664			}
665			blk = le32_to_cpu(*(chain[depth-1].p + count));
666			if (blk == first_block + count)
667				count++;
668			else
669				break;
670		}
671		if (err != -EAGAIN)
672			goto got_it;
673	}
674
675	/* Next simple case - plain lookup or failed read of indirect block */
676	if (!create || err == -EIO)
677		goto cleanup;
678
679	mutex_lock(&ei->truncate_mutex);
680	/*
681	 * If the indirect block is missing while we are reading
682	 * the chain(ext2_get_branch() returns -EAGAIN err), or
683	 * if the chain has been changed after we grab the semaphore,
684	 * (either because another process truncated this branch, or
685	 * another get_block allocated this branch) re-grab the chain to see if
686	 * the request block has been allocated or not.
687	 *
688	 * Since we already block the truncate/other get_block
689	 * at this point, we will have the current copy of the chain when we
690	 * splice the branch into the tree.
691	 */
692	if (err == -EAGAIN || !verify_chain(chain, partial)) {
693		while (partial > chain) {
694			brelse(partial->bh);
695			partial--;
696		}
697		partial = ext2_get_branch(inode, depth, offsets, chain, &err);
698		if (!partial) {
699			count++;
700			mutex_unlock(&ei->truncate_mutex);
701			goto got_it;
702		}
703
704		if (err) {
705			mutex_unlock(&ei->truncate_mutex);
706			goto cleanup;
707		}
708	}
709
710	/*
711	 * Okay, we need to do block allocation.  Lazily initialize the block
712	 * allocation info here if necessary
713	*/
714	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
715		ext2_init_block_alloc_info(inode);
716
717	goal = ext2_find_goal(inode, iblock, partial);
718
719	/* the number of blocks need to allocate for [d,t]indirect blocks */
720	indirect_blks = (chain + depth) - partial - 1;
721	/*
722	 * Next look up the indirect map to count the total number of
723	 * direct blocks to allocate for this branch.
724	 */
725	count = ext2_blks_to_allocate(partial, indirect_blks,
726					maxblocks, blocks_to_boundary);
727	/*
728	 * XXX ???? Block out ext2_truncate while we alter the tree
729	 */
730	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
731				offsets + (partial - chain), partial);
732
733	if (err) {
734		mutex_unlock(&ei->truncate_mutex);
735		goto cleanup;
736	}
737
738	if (IS_DAX(inode)) {
739		/*
740		 * We must unmap blocks before zeroing so that writeback cannot
741		 * overwrite zeros with stale data from block device page cache.
742		 */
743		clean_bdev_aliases(inode->i_sb->s_bdev,
744				   le32_to_cpu(chain[depth-1].key),
745				   count);
746		/*
747		 * block must be initialised before we put it in the tree
748		 * so that it's not found by another thread before it's
749		 * initialised
750		 */
751		err = sb_issue_zeroout(inode->i_sb,
752				le32_to_cpu(chain[depth-1].key), count,
753				GFP_NOFS);
754		if (err) {
755			mutex_unlock(&ei->truncate_mutex);
756			goto cleanup;
757		}
758	}
759	*new = true;
760
761	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
762	mutex_unlock(&ei->truncate_mutex);
763got_it:
764	if (count > blocks_to_boundary)
765		*boundary = true;
766	err = count;
767	/* Clean up and exit */
768	partial = chain + depth - 1;	/* the whole chain */
769cleanup:
770	while (partial > chain) {
771		brelse(partial->bh);
772		partial--;
773	}
774	if (err > 0)
775		*bno = le32_to_cpu(chain[depth-1].key);
776	return err;
777}
778
779int ext2_get_block(struct inode *inode, sector_t iblock,
780		struct buffer_head *bh_result, int create)
781{
782	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
783	bool new = false, boundary = false;
784	u32 bno;
785	int ret;
786
787	ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
788			create);
789	if (ret <= 0)
790		return ret;
791
792	map_bh(bh_result, inode->i_sb, bno);
793	bh_result->b_size = (ret << inode->i_blkbits);
794	if (new)
795		set_buffer_new(bh_result);
796	if (boundary)
797		set_buffer_boundary(bh_result);
798	return 0;
799
800}
801
802#ifdef CONFIG_FS_DAX
803static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
804		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
805{
806	unsigned int blkbits = inode->i_blkbits;
807	unsigned long first_block = offset >> blkbits;
808	unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
809	struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
810	bool new = false, boundary = false;
811	u32 bno;
812	int ret;
813
814	ret = ext2_get_blocks(inode, first_block, max_blocks,
815			&bno, &new, &boundary, flags & IOMAP_WRITE);
816	if (ret < 0)
817		return ret;
818
819	iomap->flags = 0;
820	iomap->bdev = inode->i_sb->s_bdev;
821	iomap->offset = (u64)first_block << blkbits;
822	iomap->dax_dev = sbi->s_daxdev;
823
824	if (ret == 0) {
825		iomap->type = IOMAP_HOLE;
826		iomap->addr = IOMAP_NULL_ADDR;
827		iomap->length = 1 << blkbits;
828	} else {
829		iomap->type = IOMAP_MAPPED;
830		iomap->addr = (u64)bno << blkbits;
831		iomap->length = (u64)ret << blkbits;
832		iomap->flags |= IOMAP_F_MERGED;
833	}
834
835	if (new)
836		iomap->flags |= IOMAP_F_NEW;
837	return 0;
838}
839
840static int
841ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
842		ssize_t written, unsigned flags, struct iomap *iomap)
843{
844	if (iomap->type == IOMAP_MAPPED &&
845	    written < length &&
846	    (flags & IOMAP_WRITE))
847		ext2_write_failed(inode->i_mapping, offset + length);
848	return 0;
849}
850
851const struct iomap_ops ext2_iomap_ops = {
852	.iomap_begin		= ext2_iomap_begin,
853	.iomap_end		= ext2_iomap_end,
854};
855#else
856/* Define empty ops for !CONFIG_FS_DAX case to avoid ugly ifdefs */
857const struct iomap_ops ext2_iomap_ops;
858#endif /* CONFIG_FS_DAX */
859
860int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
861		u64 start, u64 len)
862{
863	return generic_block_fiemap(inode, fieinfo, start, len,
864				    ext2_get_block);
865}
866
867static int ext2_writepage(struct page *page, struct writeback_control *wbc)
868{
869	return block_write_full_page(page, ext2_get_block, wbc);
870}
871
872static int ext2_readpage(struct file *file, struct page *page)
873{
874	return mpage_readpage(page, ext2_get_block);
875}
876
877static void ext2_readahead(struct readahead_control *rac)
878{
879	mpage_readahead(rac, ext2_get_block);
880}
881
882static int
883ext2_write_begin(struct file *file, struct address_space *mapping,
884		loff_t pos, unsigned len, unsigned flags,
885		struct page **pagep, void **fsdata)
886{
887	int ret;
888
889	ret = block_write_begin(mapping, pos, len, flags, pagep,
890				ext2_get_block);
891	if (ret < 0)
892		ext2_write_failed(mapping, pos + len);
893	return ret;
894}
895
896static int ext2_write_end(struct file *file, struct address_space *mapping,
897			loff_t pos, unsigned len, unsigned copied,
898			struct page *page, void *fsdata)
899{
900	int ret;
901
902	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
903	if (ret < len)
904		ext2_write_failed(mapping, pos + len);
905	return ret;
906}
907
908static int
909ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
910		loff_t pos, unsigned len, unsigned flags,
911		struct page **pagep, void **fsdata)
912{
913	int ret;
914
915	ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
916			       ext2_get_block);
917	if (ret < 0)
918		ext2_write_failed(mapping, pos + len);
919	return ret;
920}
921
922static int ext2_nobh_writepage(struct page *page,
923			struct writeback_control *wbc)
924{
925	return nobh_writepage(page, ext2_get_block, wbc);
926}
927
928static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
929{
930	return generic_block_bmap(mapping,block,ext2_get_block);
931}
932
933static ssize_t
934ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
935{
936	struct file *file = iocb->ki_filp;
937	struct address_space *mapping = file->f_mapping;
938	struct inode *inode = mapping->host;
939	size_t count = iov_iter_count(iter);
940	loff_t offset = iocb->ki_pos;
941	ssize_t ret;
942
943	ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
944	if (ret < 0 && iov_iter_rw(iter) == WRITE)
945		ext2_write_failed(mapping, offset + count);
946	return ret;
947}
948
949static int
950ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
951{
952	return mpage_writepages(mapping, wbc, ext2_get_block);
953}
954
955static int
956ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
957{
958	struct ext2_sb_info *sbi = EXT2_SB(mapping->host->i_sb);
959
960	return dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
961}
962
963const struct address_space_operations ext2_aops = {
964	.readpage		= ext2_readpage,
965	.readahead		= ext2_readahead,
966	.writepage		= ext2_writepage,
967	.write_begin		= ext2_write_begin,
968	.write_end		= ext2_write_end,
969	.bmap			= ext2_bmap,
970	.direct_IO		= ext2_direct_IO,
971	.writepages		= ext2_writepages,
972	.migratepage		= buffer_migrate_page,
973	.is_partially_uptodate	= block_is_partially_uptodate,
974	.error_remove_page	= generic_error_remove_page,
975};
976
977const struct address_space_operations ext2_nobh_aops = {
978	.readpage		= ext2_readpage,
979	.readahead		= ext2_readahead,
980	.writepage		= ext2_nobh_writepage,
981	.write_begin		= ext2_nobh_write_begin,
982	.write_end		= nobh_write_end,
983	.bmap			= ext2_bmap,
984	.direct_IO		= ext2_direct_IO,
985	.writepages		= ext2_writepages,
986	.migratepage		= buffer_migrate_page,
987	.error_remove_page	= generic_error_remove_page,
988};
989
990static const struct address_space_operations ext2_dax_aops = {
991	.writepages		= ext2_dax_writepages,
992	.direct_IO		= noop_direct_IO,
993	.set_page_dirty		= noop_set_page_dirty,
994	.invalidatepage		= noop_invalidatepage,
995};
996
997/*
998 * Probably it should be a library function... search for first non-zero word
999 * or memcmp with zero_page, whatever is better for particular architecture.
1000 * Linus?
1001 */
1002static inline int all_zeroes(__le32 *p, __le32 *q)
1003{
1004	while (p < q)
1005		if (*p++)
1006			return 0;
1007	return 1;
1008}
1009
1010/**
1011 *	ext2_find_shared - find the indirect blocks for partial truncation.
1012 *	@inode:	  inode in question
1013 *	@depth:	  depth of the affected branch
1014 *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
1015 *	@chain:	  place to store the pointers to partial indirect blocks
1016 *	@top:	  place to the (detached) top of branch
1017 *
1018 *	This is a helper function used by ext2_truncate().
1019 *
1020 *	When we do truncate() we may have to clean the ends of several indirect
1021 *	blocks but leave the blocks themselves alive. Block is partially
1022 *	truncated if some data below the new i_size is referred from it (and
1023 *	it is on the path to the first completely truncated data block, indeed).
1024 *	We have to free the top of that path along with everything to the right
1025 *	of the path. Since no allocation past the truncation point is possible
1026 *	until ext2_truncate() finishes, we may safely do the latter, but top
1027 *	of branch may require special attention - pageout below the truncation
1028 *	point might try to populate it.
1029 *
1030 *	We atomically detach the top of branch from the tree, store the block
1031 *	number of its root in *@top, pointers to buffer_heads of partially
1032 *	truncated blocks - in @chain[].bh and pointers to their last elements
1033 *	that should not be removed - in @chain[].p. Return value is the pointer
1034 *	to last filled element of @chain.
1035 *
1036 *	The work left to caller to do the actual freeing of subtrees:
1037 *		a) free the subtree starting from *@top
1038 *		b) free the subtrees whose roots are stored in
1039 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
1040 *		c) free the subtrees growing from the inode past the @chain[0].p
1041 *			(no partially truncated stuff there).
1042 */
1043
1044static Indirect *ext2_find_shared(struct inode *inode,
1045				int depth,
1046				int offsets[4],
1047				Indirect chain[4],
1048				__le32 *top)
1049{
1050	Indirect *partial, *p;
1051	int k, err;
1052
1053	*top = 0;
1054	for (k = depth; k > 1 && !offsets[k-1]; k--)
1055		;
1056	partial = ext2_get_branch(inode, k, offsets, chain, &err);
1057	if (!partial)
1058		partial = chain + k-1;
1059	/*
1060	 * If the branch acquired continuation since we've looked at it -
1061	 * fine, it should all survive and (new) top doesn't belong to us.
1062	 */
1063	write_lock(&EXT2_I(inode)->i_meta_lock);
1064	if (!partial->key && *partial->p) {
1065		write_unlock(&EXT2_I(inode)->i_meta_lock);
1066		goto no_top;
1067	}
1068	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1069		;
1070	/*
1071	 * OK, we've found the last block that must survive. The rest of our
1072	 * branch should be detached before unlocking. However, if that rest
1073	 * of branch is all ours and does not grow immediately from the inode
1074	 * it's easier to cheat and just decrement partial->p.
1075	 */
1076	if (p == chain + k - 1 && p > chain) {
1077		p->p--;
1078	} else {
1079		*top = *p->p;
1080		*p->p = 0;
1081	}
1082	write_unlock(&EXT2_I(inode)->i_meta_lock);
1083
1084	while(partial > p)
1085	{
1086		brelse(partial->bh);
1087		partial--;
1088	}
1089no_top:
1090	return partial;
1091}
1092
1093/**
1094 *	ext2_free_data - free a list of data blocks
1095 *	@inode:	inode we are dealing with
1096 *	@p:	array of block numbers
1097 *	@q:	points immediately past the end of array
1098 *
1099 *	We are freeing all blocks referred from that array (numbers are
1100 *	stored as little-endian 32-bit) and updating @inode->i_blocks
1101 *	appropriately.
1102 */
1103static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1104{
1105	unsigned long block_to_free = 0, count = 0;
1106	unsigned long nr;
1107
1108	for ( ; p < q ; p++) {
1109		nr = le32_to_cpu(*p);
1110		if (nr) {
1111			*p = 0;
1112			/* accumulate blocks to free if they're contiguous */
1113			if (count == 0)
1114				goto free_this;
1115			else if (block_to_free == nr - count)
1116				count++;
1117			else {
1118				ext2_free_blocks (inode, block_to_free, count);
1119				mark_inode_dirty(inode);
1120			free_this:
1121				block_to_free = nr;
1122				count = 1;
1123			}
1124		}
1125	}
1126	if (count > 0) {
1127		ext2_free_blocks (inode, block_to_free, count);
1128		mark_inode_dirty(inode);
1129	}
1130}
1131
1132/**
1133 *	ext2_free_branches - free an array of branches
1134 *	@inode:	inode we are dealing with
1135 *	@p:	array of block numbers
1136 *	@q:	pointer immediately past the end of array
1137 *	@depth:	depth of the branches to free
1138 *
1139 *	We are freeing all blocks referred from these branches (numbers are
1140 *	stored as little-endian 32-bit) and updating @inode->i_blocks
1141 *	appropriately.
1142 */
1143static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1144{
1145	struct buffer_head * bh;
1146	unsigned long nr;
1147
1148	if (depth--) {
1149		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1150		for ( ; p < q ; p++) {
1151			nr = le32_to_cpu(*p);
1152			if (!nr)
1153				continue;
1154			*p = 0;
1155			bh = sb_bread(inode->i_sb, nr);
1156			/*
1157			 * A read failure? Report error and clear slot
1158			 * (should be rare).
1159			 */
1160			if (!bh) {
1161				ext2_error(inode->i_sb, "ext2_free_branches",
1162					"Read failure, inode=%ld, block=%ld",
1163					inode->i_ino, nr);
1164				continue;
1165			}
1166			ext2_free_branches(inode,
1167					   (__le32*)bh->b_data,
1168					   (__le32*)bh->b_data + addr_per_block,
1169					   depth);
1170			bforget(bh);
1171			ext2_free_blocks(inode, nr, 1);
1172			mark_inode_dirty(inode);
1173		}
1174	} else
1175		ext2_free_data(inode, p, q);
1176}
1177
1178/* dax_sem must be held when calling this function */
1179static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1180{
1181	__le32 *i_data = EXT2_I(inode)->i_data;
1182	struct ext2_inode_info *ei = EXT2_I(inode);
1183	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1184	int offsets[4];
1185	Indirect chain[4];
1186	Indirect *partial;
1187	__le32 nr = 0;
1188	int n;
1189	long iblock;
1190	unsigned blocksize;
1191	blocksize = inode->i_sb->s_blocksize;
1192	iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1193
1194#ifdef CONFIG_FS_DAX
1195	WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1196#endif
1197
1198	n = ext2_block_to_path(inode, iblock, offsets, NULL);
1199	if (n == 0)
1200		return;
1201
1202	/*
1203	 * From here we block out all ext2_get_block() callers who want to
1204	 * modify the block allocation tree.
1205	 */
1206	mutex_lock(&ei->truncate_mutex);
1207
1208	if (n == 1) {
1209		ext2_free_data(inode, i_data+offsets[0],
1210					i_data + EXT2_NDIR_BLOCKS);
1211		goto do_indirects;
1212	}
1213
1214	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1215	/* Kill the top of shared branch (already detached) */
1216	if (nr) {
1217		if (partial == chain)
1218			mark_inode_dirty(inode);
1219		else
1220			mark_buffer_dirty_inode(partial->bh, inode);
1221		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1222	}
1223	/* Clear the ends of indirect blocks on the shared branch */
1224	while (partial > chain) {
1225		ext2_free_branches(inode,
1226				   partial->p + 1,
1227				   (__le32*)partial->bh->b_data+addr_per_block,
1228				   (chain+n-1) - partial);
1229		mark_buffer_dirty_inode(partial->bh, inode);
1230		brelse (partial->bh);
1231		partial--;
1232	}
1233do_indirects:
1234	/* Kill the remaining (whole) subtrees */
1235	switch (offsets[0]) {
1236		default:
1237			nr = i_data[EXT2_IND_BLOCK];
1238			if (nr) {
1239				i_data[EXT2_IND_BLOCK] = 0;
1240				mark_inode_dirty(inode);
1241				ext2_free_branches(inode, &nr, &nr+1, 1);
1242			}
1243			fallthrough;
1244		case EXT2_IND_BLOCK:
1245			nr = i_data[EXT2_DIND_BLOCK];
1246			if (nr) {
1247				i_data[EXT2_DIND_BLOCK] = 0;
1248				mark_inode_dirty(inode);
1249				ext2_free_branches(inode, &nr, &nr+1, 2);
1250			}
1251			fallthrough;
1252		case EXT2_DIND_BLOCK:
1253			nr = i_data[EXT2_TIND_BLOCK];
1254			if (nr) {
1255				i_data[EXT2_TIND_BLOCK] = 0;
1256				mark_inode_dirty(inode);
1257				ext2_free_branches(inode, &nr, &nr+1, 3);
1258			}
1259		case EXT2_TIND_BLOCK:
1260			;
1261	}
1262
1263	ext2_discard_reservation(inode);
1264
1265	mutex_unlock(&ei->truncate_mutex);
1266}
1267
1268static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1269{
1270	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1271	    S_ISLNK(inode->i_mode)))
1272		return;
1273	if (ext2_inode_is_fast_symlink(inode))
1274		return;
1275
1276	dax_sem_down_write(EXT2_I(inode));
1277	__ext2_truncate_blocks(inode, offset);
1278	dax_sem_up_write(EXT2_I(inode));
1279}
1280
1281static int ext2_setsize(struct inode *inode, loff_t newsize)
1282{
1283	int error;
1284
1285	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1286	    S_ISLNK(inode->i_mode)))
1287		return -EINVAL;
1288	if (ext2_inode_is_fast_symlink(inode))
1289		return -EINVAL;
1290	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1291		return -EPERM;
1292
1293	inode_dio_wait(inode);
1294
1295	if (IS_DAX(inode)) {
1296		error = iomap_zero_range(inode, newsize,
1297					 PAGE_ALIGN(newsize) - newsize, NULL,
1298					 &ext2_iomap_ops);
1299	} else if (test_opt(inode->i_sb, NOBH))
1300		error = nobh_truncate_page(inode->i_mapping,
1301				newsize, ext2_get_block);
1302	else
1303		error = block_truncate_page(inode->i_mapping,
1304				newsize, ext2_get_block);
1305	if (error)
1306		return error;
1307
1308	dax_sem_down_write(EXT2_I(inode));
1309	truncate_setsize(inode, newsize);
1310	__ext2_truncate_blocks(inode, newsize);
1311	dax_sem_up_write(EXT2_I(inode));
1312
1313	inode->i_mtime = inode->i_ctime = current_time(inode);
1314	if (inode_needs_sync(inode)) {
1315		sync_mapping_buffers(inode->i_mapping);
1316		sync_inode_metadata(inode, 1);
1317	} else {
1318		mark_inode_dirty(inode);
1319	}
1320
1321	return 0;
1322}
1323
1324static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1325					struct buffer_head **p)
1326{
1327	struct buffer_head * bh;
1328	unsigned long block_group;
1329	unsigned long block;
1330	unsigned long offset;
1331	struct ext2_group_desc * gdp;
1332
1333	*p = NULL;
1334	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1335	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1336		goto Einval;
1337
1338	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1339	gdp = ext2_get_group_desc(sb, block_group, NULL);
1340	if (!gdp)
1341		goto Egdp;
1342	/*
1343	 * Figure out the offset within the block group inode table
1344	 */
1345	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1346	block = le32_to_cpu(gdp->bg_inode_table) +
1347		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1348	if (!(bh = sb_bread(sb, block)))
1349		goto Eio;
1350
1351	*p = bh;
1352	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1353	return (struct ext2_inode *) (bh->b_data + offset);
1354
1355Einval:
1356	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1357		   (unsigned long) ino);
1358	return ERR_PTR(-EINVAL);
1359Eio:
1360	ext2_error(sb, "ext2_get_inode",
1361		   "unable to read inode block - inode=%lu, block=%lu",
1362		   (unsigned long) ino, block);
1363Egdp:
1364	return ERR_PTR(-EIO);
1365}
1366
1367void ext2_set_inode_flags(struct inode *inode)
1368{
1369	unsigned int flags = EXT2_I(inode)->i_flags;
1370
1371	inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1372				S_DIRSYNC | S_DAX);
1373	if (flags & EXT2_SYNC_FL)
1374		inode->i_flags |= S_SYNC;
1375	if (flags & EXT2_APPEND_FL)
1376		inode->i_flags |= S_APPEND;
1377	if (flags & EXT2_IMMUTABLE_FL)
1378		inode->i_flags |= S_IMMUTABLE;
1379	if (flags & EXT2_NOATIME_FL)
1380		inode->i_flags |= S_NOATIME;
1381	if (flags & EXT2_DIRSYNC_FL)
1382		inode->i_flags |= S_DIRSYNC;
1383	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1384		inode->i_flags |= S_DAX;
1385}
1386
1387void ext2_set_file_ops(struct inode *inode)
1388{
1389	inode->i_op = &ext2_file_inode_operations;
1390	inode->i_fop = &ext2_file_operations;
1391	if (IS_DAX(inode))
1392		inode->i_mapping->a_ops = &ext2_dax_aops;
1393	else if (test_opt(inode->i_sb, NOBH))
1394		inode->i_mapping->a_ops = &ext2_nobh_aops;
1395	else
1396		inode->i_mapping->a_ops = &ext2_aops;
1397}
1398
1399struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1400{
1401	struct ext2_inode_info *ei;
1402	struct buffer_head * bh = NULL;
1403	struct ext2_inode *raw_inode;
1404	struct inode *inode;
1405	long ret = -EIO;
1406	int n;
1407	uid_t i_uid;
1408	gid_t i_gid;
1409
1410	inode = iget_locked(sb, ino);
1411	if (!inode)
1412		return ERR_PTR(-ENOMEM);
1413	if (!(inode->i_state & I_NEW))
1414		return inode;
1415
1416	ei = EXT2_I(inode);
1417	ei->i_block_alloc_info = NULL;
1418
1419	raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1420	if (IS_ERR(raw_inode)) {
1421		ret = PTR_ERR(raw_inode);
1422 		goto bad_inode;
1423	}
1424
1425	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1426	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1427	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1428	if (!(test_opt (inode->i_sb, NO_UID32))) {
1429		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1430		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1431	}
1432	i_uid_write(inode, i_uid);
1433	i_gid_write(inode, i_gid);
1434	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1435	inode->i_size = le32_to_cpu(raw_inode->i_size);
1436	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1437	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1438	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1439	inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1440	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1441	/* We now have enough fields to check if the inode was active or not.
1442	 * This is needed because nfsd might try to access dead inodes
1443	 * the test is that same one that e2fsck uses
1444	 * NeilBrown 1999oct15
1445	 */
1446	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1447		/* this inode is deleted */
1448		ret = -ESTALE;
1449		goto bad_inode;
1450	}
1451	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1452	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1453	ext2_set_inode_flags(inode);
1454	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1455	ei->i_frag_no = raw_inode->i_frag;
1456	ei->i_frag_size = raw_inode->i_fsize;
1457	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1458	ei->i_dir_acl = 0;
1459
1460	if (ei->i_file_acl &&
1461	    !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1462		ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1463			   ei->i_file_acl);
1464		ret = -EFSCORRUPTED;
1465		goto bad_inode;
1466	}
1467
1468	if (S_ISREG(inode->i_mode))
1469		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1470	else
1471		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1472	if (i_size_read(inode) < 0) {
1473		ret = -EFSCORRUPTED;
1474		goto bad_inode;
1475	}
1476	ei->i_dtime = 0;
1477	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1478	ei->i_state = 0;
1479	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1480	ei->i_dir_start_lookup = 0;
1481
1482	/*
1483	 * NOTE! The in-memory inode i_data array is in little-endian order
1484	 * even on big-endian machines: we do NOT byteswap the block numbers!
1485	 */
1486	for (n = 0; n < EXT2_N_BLOCKS; n++)
1487		ei->i_data[n] = raw_inode->i_block[n];
1488
1489	if (S_ISREG(inode->i_mode)) {
1490		ext2_set_file_ops(inode);
1491	} else if (S_ISDIR(inode->i_mode)) {
1492		inode->i_op = &ext2_dir_inode_operations;
1493		inode->i_fop = &ext2_dir_operations;
1494		if (test_opt(inode->i_sb, NOBH))
1495			inode->i_mapping->a_ops = &ext2_nobh_aops;
1496		else
1497			inode->i_mapping->a_ops = &ext2_aops;
1498	} else if (S_ISLNK(inode->i_mode)) {
1499		if (ext2_inode_is_fast_symlink(inode)) {
1500			inode->i_link = (char *)ei->i_data;
1501			inode->i_op = &ext2_fast_symlink_inode_operations;
1502			nd_terminate_link(ei->i_data, inode->i_size,
1503				sizeof(ei->i_data) - 1);
1504		} else {
1505			inode->i_op = &ext2_symlink_inode_operations;
1506			inode_nohighmem(inode);
1507			if (test_opt(inode->i_sb, NOBH))
1508				inode->i_mapping->a_ops = &ext2_nobh_aops;
1509			else
1510				inode->i_mapping->a_ops = &ext2_aops;
1511		}
1512	} else {
1513		inode->i_op = &ext2_special_inode_operations;
1514		if (raw_inode->i_block[0])
1515			init_special_inode(inode, inode->i_mode,
1516			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1517		else
1518			init_special_inode(inode, inode->i_mode,
1519			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1520	}
1521	brelse (bh);
1522	unlock_new_inode(inode);
1523	return inode;
1524
1525bad_inode:
1526	brelse(bh);
1527	iget_failed(inode);
1528	return ERR_PTR(ret);
1529}
1530
1531static int __ext2_write_inode(struct inode *inode, int do_sync)
1532{
1533	struct ext2_inode_info *ei = EXT2_I(inode);
1534	struct super_block *sb = inode->i_sb;
1535	ino_t ino = inode->i_ino;
1536	uid_t uid = i_uid_read(inode);
1537	gid_t gid = i_gid_read(inode);
1538	struct buffer_head * bh;
1539	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1540	int n;
1541	int err = 0;
1542
1543	if (IS_ERR(raw_inode))
1544 		return -EIO;
1545
1546	/* For fields not not tracking in the in-memory inode,
1547	 * initialise them to zero for new inodes. */
1548	if (ei->i_state & EXT2_STATE_NEW)
1549		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1550
1551	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1552	if (!(test_opt(sb, NO_UID32))) {
1553		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1554		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1555/*
1556 * Fix up interoperability with old kernels. Otherwise, old inodes get
1557 * re-used with the upper 16 bits of the uid/gid intact
1558 */
1559		if (!ei->i_dtime) {
1560			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1561			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1562		} else {
1563			raw_inode->i_uid_high = 0;
1564			raw_inode->i_gid_high = 0;
1565		}
1566	} else {
1567		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1568		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1569		raw_inode->i_uid_high = 0;
1570		raw_inode->i_gid_high = 0;
1571	}
1572	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1573	raw_inode->i_size = cpu_to_le32(inode->i_size);
1574	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1575	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1576	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1577
1578	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1579	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1580	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1581	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1582	raw_inode->i_frag = ei->i_frag_no;
1583	raw_inode->i_fsize = ei->i_frag_size;
1584	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1585	if (!S_ISREG(inode->i_mode))
1586		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1587	else {
1588		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1589		if (inode->i_size > 0x7fffffffULL) {
1590			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1591					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1592			    EXT2_SB(sb)->s_es->s_rev_level ==
1593					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1594			       /* If this is the first large file
1595				* created, add a flag to the superblock.
1596				*/
1597				spin_lock(&EXT2_SB(sb)->s_lock);
1598				ext2_update_dynamic_rev(sb);
1599				EXT2_SET_RO_COMPAT_FEATURE(sb,
1600					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1601				spin_unlock(&EXT2_SB(sb)->s_lock);
1602				ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1603			}
1604		}
1605	}
1606
1607	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1608	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1609		if (old_valid_dev(inode->i_rdev)) {
1610			raw_inode->i_block[0] =
1611				cpu_to_le32(old_encode_dev(inode->i_rdev));
1612			raw_inode->i_block[1] = 0;
1613		} else {
1614			raw_inode->i_block[0] = 0;
1615			raw_inode->i_block[1] =
1616				cpu_to_le32(new_encode_dev(inode->i_rdev));
1617			raw_inode->i_block[2] = 0;
1618		}
1619	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1620		raw_inode->i_block[n] = ei->i_data[n];
1621	mark_buffer_dirty(bh);
1622	if (do_sync) {
1623		sync_dirty_buffer(bh);
1624		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1625			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1626				sb->s_id, (unsigned long) ino);
1627			err = -EIO;
1628		}
1629	}
1630	ei->i_state &= ~EXT2_STATE_NEW;
1631	brelse (bh);
1632	return err;
1633}
1634
1635int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1636{
1637	return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1638}
1639
1640int ext2_getattr(const struct path *path, struct kstat *stat,
1641		u32 request_mask, unsigned int query_flags)
1642{
1643	struct inode *inode = d_inode(path->dentry);
1644	struct ext2_inode_info *ei = EXT2_I(inode);
1645	unsigned int flags;
1646
1647	flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
1648	if (flags & EXT2_APPEND_FL)
1649		stat->attributes |= STATX_ATTR_APPEND;
1650	if (flags & EXT2_COMPR_FL)
1651		stat->attributes |= STATX_ATTR_COMPRESSED;
1652	if (flags & EXT2_IMMUTABLE_FL)
1653		stat->attributes |= STATX_ATTR_IMMUTABLE;
1654	if (flags & EXT2_NODUMP_FL)
1655		stat->attributes |= STATX_ATTR_NODUMP;
1656	stat->attributes_mask |= (STATX_ATTR_APPEND |
1657			STATX_ATTR_COMPRESSED |
1658			STATX_ATTR_ENCRYPTED |
1659			STATX_ATTR_IMMUTABLE |
1660			STATX_ATTR_NODUMP);
1661
1662	generic_fillattr(inode, stat);
1663	return 0;
1664}
1665
1666int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1667{
1668	struct inode *inode = d_inode(dentry);
1669	int error;
1670
1671	error = setattr_prepare(dentry, iattr);
1672	if (error)
1673		return error;
1674
1675	if (is_quota_modification(inode, iattr)) {
1676		error = dquot_initialize(inode);
1677		if (error)
1678			return error;
1679	}
1680	if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1681	    (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1682		error = dquot_transfer(inode, iattr);
1683		if (error)
1684			return error;
1685	}
1686	if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1687		error = ext2_setsize(inode, iattr->ia_size);
1688		if (error)
1689			return error;
1690	}
1691	setattr_copy(inode, iattr);
1692	if (iattr->ia_valid & ATTR_MODE)
1693		error = posix_acl_chmod(inode, inode->i_mode);
1694	mark_inode_dirty(inode);
1695
1696	return error;
1697}
1698