xref: /kernel/linux/linux-5.10/fs/ecryptfs/keystore.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/**
3 * eCryptfs: Linux filesystem encryption layer
4 * In-kernel key management code.  Includes functions to parse and
5 * write authentication token-related packets with the underlying
6 * file.
7 *
8 * Copyright (C) 2004-2006 International Business Machines Corp.
9 *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
10 *              Michael C. Thompson <mcthomps@us.ibm.com>
11 *              Trevor S. Highland <trevor.highland@gmail.com>
12 */
13
14#include <crypto/hash.h>
15#include <crypto/skcipher.h>
16#include <linux/string.h>
17#include <linux/pagemap.h>
18#include <linux/key.h>
19#include <linux/random.h>
20#include <linux/scatterlist.h>
21#include <linux/slab.h>
22#include "ecryptfs_kernel.h"
23
24/**
25 * request_key returned an error instead of a valid key address;
26 * determine the type of error, make appropriate log entries, and
27 * return an error code.
28 */
29static int process_request_key_err(long err_code)
30{
31	int rc = 0;
32
33	switch (err_code) {
34	case -ENOKEY:
35		ecryptfs_printk(KERN_WARNING, "No key\n");
36		rc = -ENOENT;
37		break;
38	case -EKEYEXPIRED:
39		ecryptfs_printk(KERN_WARNING, "Key expired\n");
40		rc = -ETIME;
41		break;
42	case -EKEYREVOKED:
43		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
44		rc = -EINVAL;
45		break;
46	default:
47		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
48				"[0x%.16lx]\n", err_code);
49		rc = -EINVAL;
50	}
51	return rc;
52}
53
54static int process_find_global_auth_tok_for_sig_err(int err_code)
55{
56	int rc = err_code;
57
58	switch (err_code) {
59	case -ENOENT:
60		ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
61		break;
62	case -EINVAL:
63		ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
64		break;
65	default:
66		rc = process_request_key_err(err_code);
67		break;
68	}
69	return rc;
70}
71
72/**
73 * ecryptfs_parse_packet_length
74 * @data: Pointer to memory containing length at offset
75 * @size: This function writes the decoded size to this memory
76 *        address; zero on error
77 * @length_size: The number of bytes occupied by the encoded length
78 *
79 * Returns zero on success; non-zero on error
80 */
81int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
82				 size_t *length_size)
83{
84	int rc = 0;
85
86	(*length_size) = 0;
87	(*size) = 0;
88	if (data[0] < 192) {
89		/* One-byte length */
90		(*size) = data[0];
91		(*length_size) = 1;
92	} else if (data[0] < 224) {
93		/* Two-byte length */
94		(*size) = (data[0] - 192) * 256;
95		(*size) += data[1] + 192;
96		(*length_size) = 2;
97	} else if (data[0] == 255) {
98		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
99		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
100				"supported\n");
101		rc = -EINVAL;
102		goto out;
103	} else {
104		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
105		rc = -EINVAL;
106		goto out;
107	}
108out:
109	return rc;
110}
111
112/**
113 * ecryptfs_write_packet_length
114 * @dest: The byte array target into which to write the length. Must
115 *        have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
116 * @size: The length to write.
117 * @packet_size_length: The number of bytes used to encode the packet
118 *                      length is written to this address.
119 *
120 * Returns zero on success; non-zero on error.
121 */
122int ecryptfs_write_packet_length(char *dest, size_t size,
123				 size_t *packet_size_length)
124{
125	int rc = 0;
126
127	if (size < 192) {
128		dest[0] = size;
129		(*packet_size_length) = 1;
130	} else if (size < 65536) {
131		dest[0] = (((size - 192) / 256) + 192);
132		dest[1] = ((size - 192) % 256);
133		(*packet_size_length) = 2;
134	} else {
135		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
136		rc = -EINVAL;
137		ecryptfs_printk(KERN_WARNING,
138				"Unsupported packet size: [%zd]\n", size);
139	}
140	return rc;
141}
142
143static int
144write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
145		    char **packet, size_t *packet_len)
146{
147	size_t i = 0;
148	size_t data_len;
149	size_t packet_size_len;
150	char *message;
151	int rc;
152
153	/*
154	 *              ***** TAG 64 Packet Format *****
155	 *    | Content Type                       | 1 byte       |
156	 *    | Key Identifier Size                | 1 or 2 bytes |
157	 *    | Key Identifier                     | arbitrary    |
158	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
159	 *    | Encrypted File Encryption Key      | arbitrary    |
160	 */
161	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
162		    + session_key->encrypted_key_size);
163	*packet = kmalloc(data_len, GFP_KERNEL);
164	message = *packet;
165	if (!message) {
166		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
167		rc = -ENOMEM;
168		goto out;
169	}
170	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
171	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
172					  &packet_size_len);
173	if (rc) {
174		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
175				"header; cannot generate packet length\n");
176		goto out;
177	}
178	i += packet_size_len;
179	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
180	i += ECRYPTFS_SIG_SIZE_HEX;
181	rc = ecryptfs_write_packet_length(&message[i],
182					  session_key->encrypted_key_size,
183					  &packet_size_len);
184	if (rc) {
185		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
186				"header; cannot generate packet length\n");
187		goto out;
188	}
189	i += packet_size_len;
190	memcpy(&message[i], session_key->encrypted_key,
191	       session_key->encrypted_key_size);
192	i += session_key->encrypted_key_size;
193	*packet_len = i;
194out:
195	return rc;
196}
197
198static int
199parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
200		    struct ecryptfs_message *msg)
201{
202	size_t i = 0;
203	char *data;
204	size_t data_len;
205	size_t m_size;
206	size_t message_len;
207	u16 checksum = 0;
208	u16 expected_checksum = 0;
209	int rc;
210
211	/*
212	 *              ***** TAG 65 Packet Format *****
213	 *         | Content Type             | 1 byte       |
214	 *         | Status Indicator         | 1 byte       |
215	 *         | File Encryption Key Size | 1 or 2 bytes |
216	 *         | File Encryption Key      | arbitrary    |
217	 */
218	message_len = msg->data_len;
219	data = msg->data;
220	if (message_len < 4) {
221		rc = -EIO;
222		goto out;
223	}
224	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
225		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
226		rc = -EIO;
227		goto out;
228	}
229	if (data[i++]) {
230		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
231				"[%d]\n", data[i-1]);
232		rc = -EIO;
233		goto out;
234	}
235	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
236	if (rc) {
237		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
238				"rc = [%d]\n", rc);
239		goto out;
240	}
241	i += data_len;
242	if (message_len < (i + m_size)) {
243		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
244				"is shorter than expected\n");
245		rc = -EIO;
246		goto out;
247	}
248	if (m_size < 3) {
249		ecryptfs_printk(KERN_ERR,
250				"The decrypted key is not long enough to "
251				"include a cipher code and checksum\n");
252		rc = -EIO;
253		goto out;
254	}
255	*cipher_code = data[i++];
256	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
257	session_key->decrypted_key_size = m_size - 3;
258	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
259		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
260				"the maximum key size [%d]\n",
261				session_key->decrypted_key_size,
262				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
263		rc = -EIO;
264		goto out;
265	}
266	memcpy(session_key->decrypted_key, &data[i],
267	       session_key->decrypted_key_size);
268	i += session_key->decrypted_key_size;
269	expected_checksum += (unsigned char)(data[i++]) << 8;
270	expected_checksum += (unsigned char)(data[i++]);
271	for (i = 0; i < session_key->decrypted_key_size; i++)
272		checksum += session_key->decrypted_key[i];
273	if (expected_checksum != checksum) {
274		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
275				"encryption  key; expected [%x]; calculated "
276				"[%x]\n", expected_checksum, checksum);
277		rc = -EIO;
278	}
279out:
280	return rc;
281}
282
283
284static int
285write_tag_66_packet(char *signature, u8 cipher_code,
286		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
287		    size_t *packet_len)
288{
289	size_t i = 0;
290	size_t j;
291	size_t data_len;
292	size_t checksum = 0;
293	size_t packet_size_len;
294	char *message;
295	int rc;
296
297	/*
298	 *              ***** TAG 66 Packet Format *****
299	 *         | Content Type             | 1 byte       |
300	 *         | Key Identifier Size      | 1 or 2 bytes |
301	 *         | Key Identifier           | arbitrary    |
302	 *         | File Encryption Key Size | 1 or 2 bytes |
303	 *         | File Encryption Key      | arbitrary    |
304	 */
305	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
306	*packet = kmalloc(data_len, GFP_KERNEL);
307	message = *packet;
308	if (!message) {
309		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
310		rc = -ENOMEM;
311		goto out;
312	}
313	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
314	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
315					  &packet_size_len);
316	if (rc) {
317		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
318				"header; cannot generate packet length\n");
319		goto out;
320	}
321	i += packet_size_len;
322	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
323	i += ECRYPTFS_SIG_SIZE_HEX;
324	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
325	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
326					  &packet_size_len);
327	if (rc) {
328		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
329				"header; cannot generate packet length\n");
330		goto out;
331	}
332	i += packet_size_len;
333	message[i++] = cipher_code;
334	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
335	i += crypt_stat->key_size;
336	for (j = 0; j < crypt_stat->key_size; j++)
337		checksum += crypt_stat->key[j];
338	message[i++] = (checksum / 256) % 256;
339	message[i++] = (checksum % 256);
340	*packet_len = i;
341out:
342	return rc;
343}
344
345static int
346parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
347		    struct ecryptfs_message *msg)
348{
349	size_t i = 0;
350	char *data;
351	size_t data_len;
352	size_t message_len;
353	int rc;
354
355	/*
356	 *              ***** TAG 65 Packet Format *****
357	 *    | Content Type                       | 1 byte       |
358	 *    | Status Indicator                   | 1 byte       |
359	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
360	 *    | Encrypted File Encryption Key      | arbitrary    |
361	 */
362	message_len = msg->data_len;
363	data = msg->data;
364	/* verify that everything through the encrypted FEK size is present */
365	if (message_len < 4) {
366		rc = -EIO;
367		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
368		       "message length is [%d]\n", __func__, message_len, 4);
369		goto out;
370	}
371	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
372		rc = -EIO;
373		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
374		       __func__);
375		goto out;
376	}
377	if (data[i++]) {
378		rc = -EIO;
379		printk(KERN_ERR "%s: Status indicator has non zero "
380		       "value [%d]\n", __func__, data[i-1]);
381
382		goto out;
383	}
384	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
385					  &data_len);
386	if (rc) {
387		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
388				"rc = [%d]\n", rc);
389		goto out;
390	}
391	i += data_len;
392	if (message_len < (i + key_rec->enc_key_size)) {
393		rc = -EIO;
394		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
395		       __func__, message_len, (i + key_rec->enc_key_size));
396		goto out;
397	}
398	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
399		rc = -EIO;
400		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
401		       "the maximum key size [%d]\n", __func__,
402		       key_rec->enc_key_size,
403		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
404		goto out;
405	}
406	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
407out:
408	return rc;
409}
410
411/**
412 * ecryptfs_verify_version
413 * @version: The version number to confirm
414 *
415 * Returns zero on good version; non-zero otherwise
416 */
417static int ecryptfs_verify_version(u16 version)
418{
419	int rc = 0;
420	unsigned char major;
421	unsigned char minor;
422
423	major = ((version >> 8) & 0xFF);
424	minor = (version & 0xFF);
425	if (major != ECRYPTFS_VERSION_MAJOR) {
426		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
427				"Expected [%d]; got [%d]\n",
428				ECRYPTFS_VERSION_MAJOR, major);
429		rc = -EINVAL;
430		goto out;
431	}
432	if (minor != ECRYPTFS_VERSION_MINOR) {
433		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
434				"Expected [%d]; got [%d]\n",
435				ECRYPTFS_VERSION_MINOR, minor);
436		rc = -EINVAL;
437		goto out;
438	}
439out:
440	return rc;
441}
442
443/**
444 * ecryptfs_verify_auth_tok_from_key
445 * @auth_tok_key: key containing the authentication token
446 * @auth_tok: authentication token
447 *
448 * Returns zero on valid auth tok; -EINVAL if the payload is invalid; or
449 * -EKEYREVOKED if the key was revoked before we acquired its semaphore.
450 */
451static int
452ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
453				  struct ecryptfs_auth_tok **auth_tok)
454{
455	int rc = 0;
456
457	(*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
458	if (IS_ERR(*auth_tok)) {
459		rc = PTR_ERR(*auth_tok);
460		*auth_tok = NULL;
461		goto out;
462	}
463
464	if (ecryptfs_verify_version((*auth_tok)->version)) {
465		printk(KERN_ERR "Data structure version mismatch. Userspace "
466		       "tools must match eCryptfs kernel module with major "
467		       "version [%d] and minor version [%d]\n",
468		       ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
469		rc = -EINVAL;
470		goto out;
471	}
472	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
473	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
474		printk(KERN_ERR "Invalid auth_tok structure "
475		       "returned from key query\n");
476		rc = -EINVAL;
477		goto out;
478	}
479out:
480	return rc;
481}
482
483static int
484ecryptfs_find_global_auth_tok_for_sig(
485	struct key **auth_tok_key,
486	struct ecryptfs_auth_tok **auth_tok,
487	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
488{
489	struct ecryptfs_global_auth_tok *walker;
490	int rc = 0;
491
492	(*auth_tok_key) = NULL;
493	(*auth_tok) = NULL;
494	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
495	list_for_each_entry(walker,
496			    &mount_crypt_stat->global_auth_tok_list,
497			    mount_crypt_stat_list) {
498		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
499			continue;
500
501		if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
502			rc = -EINVAL;
503			goto out;
504		}
505
506		rc = key_validate(walker->global_auth_tok_key);
507		if (rc) {
508			if (rc == -EKEYEXPIRED)
509				goto out;
510			goto out_invalid_auth_tok;
511		}
512
513		down_write(&(walker->global_auth_tok_key->sem));
514		rc = ecryptfs_verify_auth_tok_from_key(
515				walker->global_auth_tok_key, auth_tok);
516		if (rc)
517			goto out_invalid_auth_tok_unlock;
518
519		(*auth_tok_key) = walker->global_auth_tok_key;
520		key_get(*auth_tok_key);
521		goto out;
522	}
523	rc = -ENOENT;
524	goto out;
525out_invalid_auth_tok_unlock:
526	up_write(&(walker->global_auth_tok_key->sem));
527out_invalid_auth_tok:
528	printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
529	walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
530	key_put(walker->global_auth_tok_key);
531	walker->global_auth_tok_key = NULL;
532out:
533	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
534	return rc;
535}
536
537/**
538 * ecryptfs_find_auth_tok_for_sig
539 * @auth_tok: Set to the matching auth_tok; NULL if not found
540 * @crypt_stat: inode crypt_stat crypto context
541 * @sig: Sig of auth_tok to find
542 *
543 * For now, this function simply looks at the registered auth_tok's
544 * linked off the mount_crypt_stat, so all the auth_toks that can be
545 * used must be registered at mount time. This function could
546 * potentially try a lot harder to find auth_tok's (e.g., by calling
547 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
548 * that static registration of auth_tok's will no longer be necessary.
549 *
550 * Returns zero on no error; non-zero on error
551 */
552static int
553ecryptfs_find_auth_tok_for_sig(
554	struct key **auth_tok_key,
555	struct ecryptfs_auth_tok **auth_tok,
556	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
557	char *sig)
558{
559	int rc = 0;
560
561	rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
562						   mount_crypt_stat, sig);
563	if (rc == -ENOENT) {
564		/* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
565		 * mount_crypt_stat structure, we prevent to use auth toks that
566		 * are not inserted through the ecryptfs_add_global_auth_tok
567		 * function.
568		 */
569		if (mount_crypt_stat->flags
570				& ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
571			return -EINVAL;
572
573		rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
574						       sig);
575	}
576	return rc;
577}
578
579/**
580 * write_tag_70_packet can gobble a lot of stack space. We stuff most
581 * of the function's parameters in a kmalloc'd struct to help reduce
582 * eCryptfs' overall stack usage.
583 */
584struct ecryptfs_write_tag_70_packet_silly_stack {
585	u8 cipher_code;
586	size_t max_packet_size;
587	size_t packet_size_len;
588	size_t block_aligned_filename_size;
589	size_t block_size;
590	size_t i;
591	size_t j;
592	size_t num_rand_bytes;
593	struct mutex *tfm_mutex;
594	char *block_aligned_filename;
595	struct ecryptfs_auth_tok *auth_tok;
596	struct scatterlist src_sg[2];
597	struct scatterlist dst_sg[2];
598	struct crypto_skcipher *skcipher_tfm;
599	struct skcipher_request *skcipher_req;
600	char iv[ECRYPTFS_MAX_IV_BYTES];
601	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
602	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
603	struct crypto_shash *hash_tfm;
604	struct shash_desc *hash_desc;
605};
606
607/**
608 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
609 * @filename: NULL-terminated filename string
610 *
611 * This is the simplest mechanism for achieving filename encryption in
612 * eCryptfs. It encrypts the given filename with the mount-wide
613 * filename encryption key (FNEK) and stores it in a packet to @dest,
614 * which the callee will encode and write directly into the dentry
615 * name.
616 */
617int
618ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
619			     size_t *packet_size,
620			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
621			     char *filename, size_t filename_size)
622{
623	struct ecryptfs_write_tag_70_packet_silly_stack *s;
624	struct key *auth_tok_key = NULL;
625	int rc = 0;
626
627	s = kzalloc(sizeof(*s), GFP_KERNEL);
628	if (!s)
629		return -ENOMEM;
630
631	(*packet_size) = 0;
632	rc = ecryptfs_find_auth_tok_for_sig(
633		&auth_tok_key,
634		&s->auth_tok, mount_crypt_stat,
635		mount_crypt_stat->global_default_fnek_sig);
636	if (rc) {
637		printk(KERN_ERR "%s: Error attempting to find auth tok for "
638		       "fnek sig [%s]; rc = [%d]\n", __func__,
639		       mount_crypt_stat->global_default_fnek_sig, rc);
640		goto out;
641	}
642	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
643		&s->skcipher_tfm,
644		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
645	if (unlikely(rc)) {
646		printk(KERN_ERR "Internal error whilst attempting to get "
647		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
648		       mount_crypt_stat->global_default_fn_cipher_name, rc);
649		goto out;
650	}
651	mutex_lock(s->tfm_mutex);
652	s->block_size = crypto_skcipher_blocksize(s->skcipher_tfm);
653	/* Plus one for the \0 separator between the random prefix
654	 * and the plaintext filename */
655	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
656	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
657	if ((s->block_aligned_filename_size % s->block_size) != 0) {
658		s->num_rand_bytes += (s->block_size
659				      - (s->block_aligned_filename_size
660					 % s->block_size));
661		s->block_aligned_filename_size = (s->num_rand_bytes
662						  + filename_size);
663	}
664	/* Octet 0: Tag 70 identifier
665	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
666	 *              and block-aligned encrypted filename size)
667	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
668	 * Octet N2-N3: Cipher identifier (1 octet)
669	 * Octets N3-N4: Block-aligned encrypted filename
670	 *  - Consists of a minimum number of random characters, a \0
671	 *    separator, and then the filename */
672	s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
673			      + s->block_aligned_filename_size);
674	if (!dest) {
675		(*packet_size) = s->max_packet_size;
676		goto out_unlock;
677	}
678	if (s->max_packet_size > (*remaining_bytes)) {
679		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
680		       "[%zd] available\n", __func__, s->max_packet_size,
681		       (*remaining_bytes));
682		rc = -EINVAL;
683		goto out_unlock;
684	}
685
686	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
687	if (!s->skcipher_req) {
688		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
689		       "skcipher_request_alloc for %s\n", __func__,
690		       crypto_skcipher_driver_name(s->skcipher_tfm));
691		rc = -ENOMEM;
692		goto out_unlock;
693	}
694
695	skcipher_request_set_callback(s->skcipher_req,
696				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
697
698	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
699					    GFP_KERNEL);
700	if (!s->block_aligned_filename) {
701		rc = -ENOMEM;
702		goto out_unlock;
703	}
704	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
705	rc = ecryptfs_write_packet_length(&dest[s->i],
706					  (ECRYPTFS_SIG_SIZE
707					   + 1 /* Cipher code */
708					   + s->block_aligned_filename_size),
709					  &s->packet_size_len);
710	if (rc) {
711		printk(KERN_ERR "%s: Error generating tag 70 packet "
712		       "header; cannot generate packet length; rc = [%d]\n",
713		       __func__, rc);
714		goto out_free_unlock;
715	}
716	s->i += s->packet_size_len;
717	ecryptfs_from_hex(&dest[s->i],
718			  mount_crypt_stat->global_default_fnek_sig,
719			  ECRYPTFS_SIG_SIZE);
720	s->i += ECRYPTFS_SIG_SIZE;
721	s->cipher_code = ecryptfs_code_for_cipher_string(
722		mount_crypt_stat->global_default_fn_cipher_name,
723		mount_crypt_stat->global_default_fn_cipher_key_bytes);
724	if (s->cipher_code == 0) {
725		printk(KERN_WARNING "%s: Unable to generate code for "
726		       "cipher [%s] with key bytes [%zd]\n", __func__,
727		       mount_crypt_stat->global_default_fn_cipher_name,
728		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
729		rc = -EINVAL;
730		goto out_free_unlock;
731	}
732	dest[s->i++] = s->cipher_code;
733	/* TODO: Support other key modules than passphrase for
734	 * filename encryption */
735	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
736		rc = -EOPNOTSUPP;
737		printk(KERN_INFO "%s: Filename encryption only supports "
738		       "password tokens\n", __func__);
739		goto out_free_unlock;
740	}
741	s->hash_tfm = crypto_alloc_shash(ECRYPTFS_TAG_70_DIGEST, 0, 0);
742	if (IS_ERR(s->hash_tfm)) {
743			rc = PTR_ERR(s->hash_tfm);
744			printk(KERN_ERR "%s: Error attempting to "
745			       "allocate hash crypto context; rc = [%d]\n",
746			       __func__, rc);
747			goto out_free_unlock;
748	}
749
750	s->hash_desc = kmalloc(sizeof(*s->hash_desc) +
751			       crypto_shash_descsize(s->hash_tfm), GFP_KERNEL);
752	if (!s->hash_desc) {
753		rc = -ENOMEM;
754		goto out_release_free_unlock;
755	}
756
757	s->hash_desc->tfm = s->hash_tfm;
758
759	rc = crypto_shash_digest(s->hash_desc,
760				 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
761				 s->auth_tok->token.password.session_key_encryption_key_bytes,
762				 s->hash);
763	if (rc) {
764		printk(KERN_ERR
765		       "%s: Error computing crypto hash; rc = [%d]\n",
766		       __func__, rc);
767		goto out_release_free_unlock;
768	}
769	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
770		s->block_aligned_filename[s->j] =
771			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
772		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
773		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
774			rc = crypto_shash_digest(s->hash_desc, (u8 *)s->hash,
775						ECRYPTFS_TAG_70_DIGEST_SIZE,
776						s->tmp_hash);
777			if (rc) {
778				printk(KERN_ERR
779				       "%s: Error computing crypto hash; "
780				       "rc = [%d]\n", __func__, rc);
781				goto out_release_free_unlock;
782			}
783			memcpy(s->hash, s->tmp_hash,
784			       ECRYPTFS_TAG_70_DIGEST_SIZE);
785		}
786		if (s->block_aligned_filename[s->j] == '\0')
787			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
788	}
789	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
790	       filename_size);
791	rc = virt_to_scatterlist(s->block_aligned_filename,
792				 s->block_aligned_filename_size, s->src_sg, 2);
793	if (rc < 1) {
794		printk(KERN_ERR "%s: Internal error whilst attempting to "
795		       "convert filename memory to scatterlist; rc = [%d]. "
796		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
797		       s->block_aligned_filename_size);
798		goto out_release_free_unlock;
799	}
800	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
801				 s->dst_sg, 2);
802	if (rc < 1) {
803		printk(KERN_ERR "%s: Internal error whilst attempting to "
804		       "convert encrypted filename memory to scatterlist; "
805		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
806		       __func__, rc, s->block_aligned_filename_size);
807		goto out_release_free_unlock;
808	}
809	/* The characters in the first block effectively do the job
810	 * of the IV here, so we just use 0's for the IV. Note the
811	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
812	 * >= ECRYPTFS_MAX_IV_BYTES. */
813	rc = crypto_skcipher_setkey(
814		s->skcipher_tfm,
815		s->auth_tok->token.password.session_key_encryption_key,
816		mount_crypt_stat->global_default_fn_cipher_key_bytes);
817	if (rc < 0) {
818		printk(KERN_ERR "%s: Error setting key for crypto context; "
819		       "rc = [%d]. s->auth_tok->token.password.session_key_"
820		       "encryption_key = [0x%p]; mount_crypt_stat->"
821		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
822		       rc,
823		       s->auth_tok->token.password.session_key_encryption_key,
824		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
825		goto out_release_free_unlock;
826	}
827	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
828				   s->block_aligned_filename_size, s->iv);
829	rc = crypto_skcipher_encrypt(s->skcipher_req);
830	if (rc) {
831		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
832		       "rc = [%d]\n", __func__, rc);
833		goto out_release_free_unlock;
834	}
835	s->i += s->block_aligned_filename_size;
836	(*packet_size) = s->i;
837	(*remaining_bytes) -= (*packet_size);
838out_release_free_unlock:
839	crypto_free_shash(s->hash_tfm);
840out_free_unlock:
841	kfree_sensitive(s->block_aligned_filename);
842out_unlock:
843	mutex_unlock(s->tfm_mutex);
844out:
845	if (auth_tok_key) {
846		up_write(&(auth_tok_key->sem));
847		key_put(auth_tok_key);
848	}
849	skcipher_request_free(s->skcipher_req);
850	kfree_sensitive(s->hash_desc);
851	kfree(s);
852	return rc;
853}
854
855struct ecryptfs_parse_tag_70_packet_silly_stack {
856	u8 cipher_code;
857	size_t max_packet_size;
858	size_t packet_size_len;
859	size_t parsed_tag_70_packet_size;
860	size_t block_aligned_filename_size;
861	size_t block_size;
862	size_t i;
863	struct mutex *tfm_mutex;
864	char *decrypted_filename;
865	struct ecryptfs_auth_tok *auth_tok;
866	struct scatterlist src_sg[2];
867	struct scatterlist dst_sg[2];
868	struct crypto_skcipher *skcipher_tfm;
869	struct skcipher_request *skcipher_req;
870	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
871	char iv[ECRYPTFS_MAX_IV_BYTES];
872	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
873};
874
875/**
876 * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
877 * @filename: This function kmalloc's the memory for the filename
878 * @filename_size: This function sets this to the amount of memory
879 *                 kmalloc'd for the filename
880 * @packet_size: This function sets this to the the number of octets
881 *               in the packet parsed
882 * @mount_crypt_stat: The mount-wide cryptographic context
883 * @data: The memory location containing the start of the tag 70
884 *        packet
885 * @max_packet_size: The maximum legal size of the packet to be parsed
886 *                   from @data
887 *
888 * Returns zero on success; non-zero otherwise
889 */
890int
891ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
892			     size_t *packet_size,
893			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
894			     char *data, size_t max_packet_size)
895{
896	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
897	struct key *auth_tok_key = NULL;
898	int rc = 0;
899
900	(*packet_size) = 0;
901	(*filename_size) = 0;
902	(*filename) = NULL;
903	s = kzalloc(sizeof(*s), GFP_KERNEL);
904	if (!s)
905		return -ENOMEM;
906
907	if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
908		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
909		       "at least [%d]\n", __func__, max_packet_size,
910		       ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
911		rc = -EINVAL;
912		goto out;
913	}
914	/* Octet 0: Tag 70 identifier
915	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
916	 *              and block-aligned encrypted filename size)
917	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
918	 * Octet N2-N3: Cipher identifier (1 octet)
919	 * Octets N3-N4: Block-aligned encrypted filename
920	 *  - Consists of a minimum number of random numbers, a \0
921	 *    separator, and then the filename */
922	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
923		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
924		       "tag [0x%.2x]\n", __func__,
925		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
926		rc = -EINVAL;
927		goto out;
928	}
929	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
930					  &s->parsed_tag_70_packet_size,
931					  &s->packet_size_len);
932	if (rc) {
933		printk(KERN_WARNING "%s: Error parsing packet length; "
934		       "rc = [%d]\n", __func__, rc);
935		goto out;
936	}
937	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
938					  - ECRYPTFS_SIG_SIZE - 1);
939	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
940	    > max_packet_size) {
941		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
942		       "size is [%zd]\n", __func__, max_packet_size,
943		       (1 + s->packet_size_len + 1
944			+ s->block_aligned_filename_size));
945		rc = -EINVAL;
946		goto out;
947	}
948	(*packet_size) += s->packet_size_len;
949	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
950			ECRYPTFS_SIG_SIZE);
951	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
952	(*packet_size) += ECRYPTFS_SIG_SIZE;
953	s->cipher_code = data[(*packet_size)++];
954	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
955	if (rc) {
956		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
957		       __func__, s->cipher_code);
958		goto out;
959	}
960	rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
961					    &s->auth_tok, mount_crypt_stat,
962					    s->fnek_sig_hex);
963	if (rc) {
964		printk(KERN_ERR "%s: Error attempting to find auth tok for "
965		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
966		       rc);
967		goto out;
968	}
969	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->skcipher_tfm,
970							&s->tfm_mutex,
971							s->cipher_string);
972	if (unlikely(rc)) {
973		printk(KERN_ERR "Internal error whilst attempting to get "
974		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
975		       s->cipher_string, rc);
976		goto out;
977	}
978	mutex_lock(s->tfm_mutex);
979	rc = virt_to_scatterlist(&data[(*packet_size)],
980				 s->block_aligned_filename_size, s->src_sg, 2);
981	if (rc < 1) {
982		printk(KERN_ERR "%s: Internal error whilst attempting to "
983		       "convert encrypted filename memory to scatterlist; "
984		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
985		       __func__, rc, s->block_aligned_filename_size);
986		goto out_unlock;
987	}
988	(*packet_size) += s->block_aligned_filename_size;
989	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
990					GFP_KERNEL);
991	if (!s->decrypted_filename) {
992		rc = -ENOMEM;
993		goto out_unlock;
994	}
995	rc = virt_to_scatterlist(s->decrypted_filename,
996				 s->block_aligned_filename_size, s->dst_sg, 2);
997	if (rc < 1) {
998		printk(KERN_ERR "%s: Internal error whilst attempting to "
999		       "convert decrypted filename memory to scatterlist; "
1000		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1001		       __func__, rc, s->block_aligned_filename_size);
1002		goto out_free_unlock;
1003	}
1004
1005	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
1006	if (!s->skcipher_req) {
1007		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1008		       "skcipher_request_alloc for %s\n", __func__,
1009		       crypto_skcipher_driver_name(s->skcipher_tfm));
1010		rc = -ENOMEM;
1011		goto out_free_unlock;
1012	}
1013
1014	skcipher_request_set_callback(s->skcipher_req,
1015				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
1016
1017	/* The characters in the first block effectively do the job of
1018	 * the IV here, so we just use 0's for the IV. Note the
1019	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1020	 * >= ECRYPTFS_MAX_IV_BYTES. */
1021	/* TODO: Support other key modules than passphrase for
1022	 * filename encryption */
1023	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1024		rc = -EOPNOTSUPP;
1025		printk(KERN_INFO "%s: Filename encryption only supports "
1026		       "password tokens\n", __func__);
1027		goto out_free_unlock;
1028	}
1029	rc = crypto_skcipher_setkey(
1030		s->skcipher_tfm,
1031		s->auth_tok->token.password.session_key_encryption_key,
1032		mount_crypt_stat->global_default_fn_cipher_key_bytes);
1033	if (rc < 0) {
1034		printk(KERN_ERR "%s: Error setting key for crypto context; "
1035		       "rc = [%d]. s->auth_tok->token.password.session_key_"
1036		       "encryption_key = [0x%p]; mount_crypt_stat->"
1037		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1038		       rc,
1039		       s->auth_tok->token.password.session_key_encryption_key,
1040		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
1041		goto out_free_unlock;
1042	}
1043	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
1044				   s->block_aligned_filename_size, s->iv);
1045	rc = crypto_skcipher_decrypt(s->skcipher_req);
1046	if (rc) {
1047		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1048		       "rc = [%d]\n", __func__, rc);
1049		goto out_free_unlock;
1050	}
1051
1052	while (s->i < s->block_aligned_filename_size &&
1053	       s->decrypted_filename[s->i] != '\0')
1054		s->i++;
1055	if (s->i == s->block_aligned_filename_size) {
1056		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1057		       "find valid separator between random characters and "
1058		       "the filename\n", __func__);
1059		rc = -EINVAL;
1060		goto out_free_unlock;
1061	}
1062	s->i++;
1063	(*filename_size) = (s->block_aligned_filename_size - s->i);
1064	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1065		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1066		       "invalid\n", __func__, (*filename_size));
1067		rc = -EINVAL;
1068		goto out_free_unlock;
1069	}
1070	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1071	if (!(*filename)) {
1072		rc = -ENOMEM;
1073		goto out_free_unlock;
1074	}
1075	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1076	(*filename)[(*filename_size)] = '\0';
1077out_free_unlock:
1078	kfree(s->decrypted_filename);
1079out_unlock:
1080	mutex_unlock(s->tfm_mutex);
1081out:
1082	if (rc) {
1083		(*packet_size) = 0;
1084		(*filename_size) = 0;
1085		(*filename) = NULL;
1086	}
1087	if (auth_tok_key) {
1088		up_write(&(auth_tok_key->sem));
1089		key_put(auth_tok_key);
1090	}
1091	skcipher_request_free(s->skcipher_req);
1092	kfree(s);
1093	return rc;
1094}
1095
1096static int
1097ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1098{
1099	int rc = 0;
1100
1101	(*sig) = NULL;
1102	switch (auth_tok->token_type) {
1103	case ECRYPTFS_PASSWORD:
1104		(*sig) = auth_tok->token.password.signature;
1105		break;
1106	case ECRYPTFS_PRIVATE_KEY:
1107		(*sig) = auth_tok->token.private_key.signature;
1108		break;
1109	default:
1110		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1111		       auth_tok->token_type);
1112		rc = -EINVAL;
1113	}
1114	return rc;
1115}
1116
1117/**
1118 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1119 * @auth_tok: The key authentication token used to decrypt the session key
1120 * @crypt_stat: The cryptographic context
1121 *
1122 * Returns zero on success; non-zero error otherwise.
1123 */
1124static int
1125decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1126				  struct ecryptfs_crypt_stat *crypt_stat)
1127{
1128	u8 cipher_code = 0;
1129	struct ecryptfs_msg_ctx *msg_ctx;
1130	struct ecryptfs_message *msg = NULL;
1131	char *auth_tok_sig;
1132	char *payload = NULL;
1133	size_t payload_len = 0;
1134	int rc;
1135
1136	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1137	if (rc) {
1138		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1139		       auth_tok->token_type);
1140		goto out;
1141	}
1142	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1143				 &payload, &payload_len);
1144	if (rc) {
1145		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1146		goto out;
1147	}
1148	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1149	if (rc) {
1150		ecryptfs_printk(KERN_ERR, "Error sending message to "
1151				"ecryptfsd: %d\n", rc);
1152		goto out;
1153	}
1154	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1155	if (rc) {
1156		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1157				"from the user space daemon\n");
1158		rc = -EIO;
1159		goto out;
1160	}
1161	rc = parse_tag_65_packet(&(auth_tok->session_key),
1162				 &cipher_code, msg);
1163	if (rc) {
1164		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1165		       rc);
1166		goto out;
1167	}
1168	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1169	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1170	       auth_tok->session_key.decrypted_key_size);
1171	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1172	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1173	if (rc) {
1174		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1175				cipher_code)
1176		goto out;
1177	}
1178	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1179	if (ecryptfs_verbosity > 0) {
1180		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1181		ecryptfs_dump_hex(crypt_stat->key,
1182				  crypt_stat->key_size);
1183	}
1184out:
1185	kfree(msg);
1186	kfree(payload);
1187	return rc;
1188}
1189
1190static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1191{
1192	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1193	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1194
1195	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1196				 auth_tok_list_head, list) {
1197		list_del(&auth_tok_list_item->list);
1198		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1199				auth_tok_list_item);
1200	}
1201}
1202
1203struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1204
1205/**
1206 * parse_tag_1_packet
1207 * @crypt_stat: The cryptographic context to modify based on packet contents
1208 * @data: The raw bytes of the packet.
1209 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1210 *                 a new authentication token will be placed at the
1211 *                 end of this list for this packet.
1212 * @new_auth_tok: Pointer to a pointer to memory that this function
1213 *                allocates; sets the memory address of the pointer to
1214 *                NULL on error. This object is added to the
1215 *                auth_tok_list.
1216 * @packet_size: This function writes the size of the parsed packet
1217 *               into this memory location; zero on error.
1218 * @max_packet_size: The maximum allowable packet size
1219 *
1220 * Returns zero on success; non-zero on error.
1221 */
1222static int
1223parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1224		   unsigned char *data, struct list_head *auth_tok_list,
1225		   struct ecryptfs_auth_tok **new_auth_tok,
1226		   size_t *packet_size, size_t max_packet_size)
1227{
1228	size_t body_size;
1229	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1230	size_t length_size;
1231	int rc = 0;
1232
1233	(*packet_size) = 0;
1234	(*new_auth_tok) = NULL;
1235	/**
1236	 * This format is inspired by OpenPGP; see RFC 2440
1237	 * packet tag 1
1238	 *
1239	 * Tag 1 identifier (1 byte)
1240	 * Max Tag 1 packet size (max 3 bytes)
1241	 * Version (1 byte)
1242	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1243	 * Cipher identifier (1 byte)
1244	 * Encrypted key size (arbitrary)
1245	 *
1246	 * 12 bytes minimum packet size
1247	 */
1248	if (unlikely(max_packet_size < 12)) {
1249		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1250		rc = -EINVAL;
1251		goto out;
1252	}
1253	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1254		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1255		       ECRYPTFS_TAG_1_PACKET_TYPE);
1256		rc = -EINVAL;
1257		goto out;
1258	}
1259	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1260	 * at end of function upon failure */
1261	auth_tok_list_item =
1262		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1263				  GFP_KERNEL);
1264	if (!auth_tok_list_item) {
1265		printk(KERN_ERR "Unable to allocate memory\n");
1266		rc = -ENOMEM;
1267		goto out;
1268	}
1269	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1270	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1271					  &length_size);
1272	if (rc) {
1273		printk(KERN_WARNING "Error parsing packet length; "
1274		       "rc = [%d]\n", rc);
1275		goto out_free;
1276	}
1277	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1278		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1279		rc = -EINVAL;
1280		goto out_free;
1281	}
1282	(*packet_size) += length_size;
1283	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1284		printk(KERN_WARNING "Packet size exceeds max\n");
1285		rc = -EINVAL;
1286		goto out_free;
1287	}
1288	if (unlikely(data[(*packet_size)++] != 0x03)) {
1289		printk(KERN_WARNING "Unknown version number [%d]\n",
1290		       data[(*packet_size) - 1]);
1291		rc = -EINVAL;
1292		goto out_free;
1293	}
1294	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1295			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1296	*packet_size += ECRYPTFS_SIG_SIZE;
1297	/* This byte is skipped because the kernel does not need to
1298	 * know which public key encryption algorithm was used */
1299	(*packet_size)++;
1300	(*new_auth_tok)->session_key.encrypted_key_size =
1301		body_size - (ECRYPTFS_SIG_SIZE + 2);
1302	if ((*new_auth_tok)->session_key.encrypted_key_size
1303	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1304		printk(KERN_WARNING "Tag 1 packet contains key larger "
1305		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1306		rc = -EINVAL;
1307		goto out_free;
1308	}
1309	memcpy((*new_auth_tok)->session_key.encrypted_key,
1310	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1311	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1312	(*new_auth_tok)->session_key.flags &=
1313		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1314	(*new_auth_tok)->session_key.flags |=
1315		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1316	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1317	(*new_auth_tok)->flags = 0;
1318	(*new_auth_tok)->session_key.flags &=
1319		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1320	(*new_auth_tok)->session_key.flags &=
1321		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1322	list_add(&auth_tok_list_item->list, auth_tok_list);
1323	goto out;
1324out_free:
1325	(*new_auth_tok) = NULL;
1326	memset(auth_tok_list_item, 0,
1327	       sizeof(struct ecryptfs_auth_tok_list_item));
1328	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1329			auth_tok_list_item);
1330out:
1331	if (rc)
1332		(*packet_size) = 0;
1333	return rc;
1334}
1335
1336/**
1337 * parse_tag_3_packet
1338 * @crypt_stat: The cryptographic context to modify based on packet
1339 *              contents.
1340 * @data: The raw bytes of the packet.
1341 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1342 *                 a new authentication token will be placed at the end
1343 *                 of this list for this packet.
1344 * @new_auth_tok: Pointer to a pointer to memory that this function
1345 *                allocates; sets the memory address of the pointer to
1346 *                NULL on error. This object is added to the
1347 *                auth_tok_list.
1348 * @packet_size: This function writes the size of the parsed packet
1349 *               into this memory location; zero on error.
1350 * @max_packet_size: maximum number of bytes to parse
1351 *
1352 * Returns zero on success; non-zero on error.
1353 */
1354static int
1355parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1356		   unsigned char *data, struct list_head *auth_tok_list,
1357		   struct ecryptfs_auth_tok **new_auth_tok,
1358		   size_t *packet_size, size_t max_packet_size)
1359{
1360	size_t body_size;
1361	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1362	size_t length_size;
1363	int rc = 0;
1364
1365	(*packet_size) = 0;
1366	(*new_auth_tok) = NULL;
1367	/**
1368	 *This format is inspired by OpenPGP; see RFC 2440
1369	 * packet tag 3
1370	 *
1371	 * Tag 3 identifier (1 byte)
1372	 * Max Tag 3 packet size (max 3 bytes)
1373	 * Version (1 byte)
1374	 * Cipher code (1 byte)
1375	 * S2K specifier (1 byte)
1376	 * Hash identifier (1 byte)
1377	 * Salt (ECRYPTFS_SALT_SIZE)
1378	 * Hash iterations (1 byte)
1379	 * Encrypted key (arbitrary)
1380	 *
1381	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1382	 */
1383	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1384		printk(KERN_ERR "Max packet size too large\n");
1385		rc = -EINVAL;
1386		goto out;
1387	}
1388	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1389		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1390		       ECRYPTFS_TAG_3_PACKET_TYPE);
1391		rc = -EINVAL;
1392		goto out;
1393	}
1394	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1395	 * at end of function upon failure */
1396	auth_tok_list_item =
1397	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1398	if (!auth_tok_list_item) {
1399		printk(KERN_ERR "Unable to allocate memory\n");
1400		rc = -ENOMEM;
1401		goto out;
1402	}
1403	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1404	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1405					  &length_size);
1406	if (rc) {
1407		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1408		       rc);
1409		goto out_free;
1410	}
1411	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1412		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1413		rc = -EINVAL;
1414		goto out_free;
1415	}
1416	(*packet_size) += length_size;
1417	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1418		printk(KERN_ERR "Packet size exceeds max\n");
1419		rc = -EINVAL;
1420		goto out_free;
1421	}
1422	(*new_auth_tok)->session_key.encrypted_key_size =
1423		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1424	if ((*new_auth_tok)->session_key.encrypted_key_size
1425	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1426		printk(KERN_WARNING "Tag 3 packet contains key larger "
1427		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1428		rc = -EINVAL;
1429		goto out_free;
1430	}
1431	if (unlikely(data[(*packet_size)++] != 0x04)) {
1432		printk(KERN_WARNING "Unknown version number [%d]\n",
1433		       data[(*packet_size) - 1]);
1434		rc = -EINVAL;
1435		goto out_free;
1436	}
1437	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1438					    (u16)data[(*packet_size)]);
1439	if (rc)
1440		goto out_free;
1441	/* A little extra work to differentiate among the AES key
1442	 * sizes; see RFC2440 */
1443	switch(data[(*packet_size)++]) {
1444	case RFC2440_CIPHER_AES_192:
1445		crypt_stat->key_size = 24;
1446		break;
1447	default:
1448		crypt_stat->key_size =
1449			(*new_auth_tok)->session_key.encrypted_key_size;
1450	}
1451	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1452	if (rc)
1453		goto out_free;
1454	if (unlikely(data[(*packet_size)++] != 0x03)) {
1455		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1456		rc = -ENOSYS;
1457		goto out_free;
1458	}
1459	/* TODO: finish the hash mapping */
1460	switch (data[(*packet_size)++]) {
1461	case 0x01: /* See RFC2440 for these numbers and their mappings */
1462		/* Choose MD5 */
1463		memcpy((*new_auth_tok)->token.password.salt,
1464		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1465		(*packet_size) += ECRYPTFS_SALT_SIZE;
1466		/* This conversion was taken straight from RFC2440 */
1467		(*new_auth_tok)->token.password.hash_iterations =
1468			((u32) 16 + (data[(*packet_size)] & 15))
1469				<< ((data[(*packet_size)] >> 4) + 6);
1470		(*packet_size)++;
1471		/* Friendly reminder:
1472		 * (*new_auth_tok)->session_key.encrypted_key_size =
1473		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1474		memcpy((*new_auth_tok)->session_key.encrypted_key,
1475		       &data[(*packet_size)],
1476		       (*new_auth_tok)->session_key.encrypted_key_size);
1477		(*packet_size) +=
1478			(*new_auth_tok)->session_key.encrypted_key_size;
1479		(*new_auth_tok)->session_key.flags &=
1480			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1481		(*new_auth_tok)->session_key.flags |=
1482			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1483		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1484		break;
1485	default:
1486		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1487				"[%d]\n", data[(*packet_size) - 1]);
1488		rc = -ENOSYS;
1489		goto out_free;
1490	}
1491	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1492	/* TODO: Parametarize; we might actually want userspace to
1493	 * decrypt the session key. */
1494	(*new_auth_tok)->session_key.flags &=
1495			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1496	(*new_auth_tok)->session_key.flags &=
1497			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1498	list_add(&auth_tok_list_item->list, auth_tok_list);
1499	goto out;
1500out_free:
1501	(*new_auth_tok) = NULL;
1502	memset(auth_tok_list_item, 0,
1503	       sizeof(struct ecryptfs_auth_tok_list_item));
1504	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1505			auth_tok_list_item);
1506out:
1507	if (rc)
1508		(*packet_size) = 0;
1509	return rc;
1510}
1511
1512/**
1513 * parse_tag_11_packet
1514 * @data: The raw bytes of the packet
1515 * @contents: This function writes the data contents of the literal
1516 *            packet into this memory location
1517 * @max_contents_bytes: The maximum number of bytes that this function
1518 *                      is allowed to write into contents
1519 * @tag_11_contents_size: This function writes the size of the parsed
1520 *                        contents into this memory location; zero on
1521 *                        error
1522 * @packet_size: This function writes the size of the parsed packet
1523 *               into this memory location; zero on error
1524 * @max_packet_size: maximum number of bytes to parse
1525 *
1526 * Returns zero on success; non-zero on error.
1527 */
1528static int
1529parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1530		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1531		    size_t *packet_size, size_t max_packet_size)
1532{
1533	size_t body_size;
1534	size_t length_size;
1535	int rc = 0;
1536
1537	(*packet_size) = 0;
1538	(*tag_11_contents_size) = 0;
1539	/* This format is inspired by OpenPGP; see RFC 2440
1540	 * packet tag 11
1541	 *
1542	 * Tag 11 identifier (1 byte)
1543	 * Max Tag 11 packet size (max 3 bytes)
1544	 * Binary format specifier (1 byte)
1545	 * Filename length (1 byte)
1546	 * Filename ("_CONSOLE") (8 bytes)
1547	 * Modification date (4 bytes)
1548	 * Literal data (arbitrary)
1549	 *
1550	 * We need at least 16 bytes of data for the packet to even be
1551	 * valid.
1552	 */
1553	if (max_packet_size < 16) {
1554		printk(KERN_ERR "Maximum packet size too small\n");
1555		rc = -EINVAL;
1556		goto out;
1557	}
1558	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1559		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1560		rc = -EINVAL;
1561		goto out;
1562	}
1563	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1564					  &length_size);
1565	if (rc) {
1566		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1567		goto out;
1568	}
1569	if (body_size < 14) {
1570		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1571		rc = -EINVAL;
1572		goto out;
1573	}
1574	(*packet_size) += length_size;
1575	(*tag_11_contents_size) = (body_size - 14);
1576	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1577		printk(KERN_ERR "Packet size exceeds max\n");
1578		rc = -EINVAL;
1579		goto out;
1580	}
1581	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1582		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1583		       "expected size\n");
1584		rc = -EINVAL;
1585		goto out;
1586	}
1587	if (data[(*packet_size)++] != 0x62) {
1588		printk(KERN_WARNING "Unrecognizable packet\n");
1589		rc = -EINVAL;
1590		goto out;
1591	}
1592	if (data[(*packet_size)++] != 0x08) {
1593		printk(KERN_WARNING "Unrecognizable packet\n");
1594		rc = -EINVAL;
1595		goto out;
1596	}
1597	(*packet_size) += 12; /* Ignore filename and modification date */
1598	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1599	(*packet_size) += (*tag_11_contents_size);
1600out:
1601	if (rc) {
1602		(*packet_size) = 0;
1603		(*tag_11_contents_size) = 0;
1604	}
1605	return rc;
1606}
1607
1608int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1609				      struct ecryptfs_auth_tok **auth_tok,
1610				      char *sig)
1611{
1612	int rc = 0;
1613
1614	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1615	if (IS_ERR(*auth_tok_key)) {
1616		(*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1617		if (IS_ERR(*auth_tok_key)) {
1618			printk(KERN_ERR "Could not find key with description: [%s]\n",
1619			      sig);
1620			rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1621			(*auth_tok_key) = NULL;
1622			goto out;
1623		}
1624	}
1625	down_write(&(*auth_tok_key)->sem);
1626	rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1627	if (rc) {
1628		up_write(&(*auth_tok_key)->sem);
1629		key_put(*auth_tok_key);
1630		(*auth_tok_key) = NULL;
1631		goto out;
1632	}
1633out:
1634	return rc;
1635}
1636
1637/**
1638 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1639 * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1640 * @crypt_stat: The cryptographic context
1641 *
1642 * Returns zero on success; non-zero error otherwise
1643 */
1644static int
1645decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1646					 struct ecryptfs_crypt_stat *crypt_stat)
1647{
1648	struct scatterlist dst_sg[2];
1649	struct scatterlist src_sg[2];
1650	struct mutex *tfm_mutex;
1651	struct crypto_skcipher *tfm;
1652	struct skcipher_request *req = NULL;
1653	int rc = 0;
1654
1655	if (unlikely(ecryptfs_verbosity > 0)) {
1656		ecryptfs_printk(
1657			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1658			auth_tok->token.password.session_key_encryption_key_bytes);
1659		ecryptfs_dump_hex(
1660			auth_tok->token.password.session_key_encryption_key,
1661			auth_tok->token.password.session_key_encryption_key_bytes);
1662	}
1663	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1664							crypt_stat->cipher);
1665	if (unlikely(rc)) {
1666		printk(KERN_ERR "Internal error whilst attempting to get "
1667		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1668		       crypt_stat->cipher, rc);
1669		goto out;
1670	}
1671	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1672				 auth_tok->session_key.encrypted_key_size,
1673				 src_sg, 2);
1674	if (rc < 1 || rc > 2) {
1675		printk(KERN_ERR "Internal error whilst attempting to convert "
1676			"auth_tok->session_key.encrypted_key to scatterlist; "
1677			"expected rc = 1; got rc = [%d]. "
1678		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1679			auth_tok->session_key.encrypted_key_size);
1680		goto out;
1681	}
1682	auth_tok->session_key.decrypted_key_size =
1683		auth_tok->session_key.encrypted_key_size;
1684	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1685				 auth_tok->session_key.decrypted_key_size,
1686				 dst_sg, 2);
1687	if (rc < 1 || rc > 2) {
1688		printk(KERN_ERR "Internal error whilst attempting to convert "
1689			"auth_tok->session_key.decrypted_key to scatterlist; "
1690			"expected rc = 1; got rc = [%d]\n", rc);
1691		goto out;
1692	}
1693	mutex_lock(tfm_mutex);
1694	req = skcipher_request_alloc(tfm, GFP_KERNEL);
1695	if (!req) {
1696		mutex_unlock(tfm_mutex);
1697		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1698		       "skcipher_request_alloc for %s\n", __func__,
1699		       crypto_skcipher_driver_name(tfm));
1700		rc = -ENOMEM;
1701		goto out;
1702	}
1703
1704	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
1705				      NULL, NULL);
1706	rc = crypto_skcipher_setkey(
1707		tfm, auth_tok->token.password.session_key_encryption_key,
1708		crypt_stat->key_size);
1709	if (unlikely(rc < 0)) {
1710		mutex_unlock(tfm_mutex);
1711		printk(KERN_ERR "Error setting key for crypto context\n");
1712		rc = -EINVAL;
1713		goto out;
1714	}
1715	skcipher_request_set_crypt(req, src_sg, dst_sg,
1716				   auth_tok->session_key.encrypted_key_size,
1717				   NULL);
1718	rc = crypto_skcipher_decrypt(req);
1719	mutex_unlock(tfm_mutex);
1720	if (unlikely(rc)) {
1721		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1722		goto out;
1723	}
1724	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1725	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1726	       auth_tok->session_key.decrypted_key_size);
1727	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1728	if (unlikely(ecryptfs_verbosity > 0)) {
1729		ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1730				crypt_stat->key_size);
1731		ecryptfs_dump_hex(crypt_stat->key,
1732				  crypt_stat->key_size);
1733	}
1734out:
1735	skcipher_request_free(req);
1736	return rc;
1737}
1738
1739/**
1740 * ecryptfs_parse_packet_set
1741 * @crypt_stat: The cryptographic context
1742 * @src: Virtual address of region of memory containing the packets
1743 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1744 *
1745 * Get crypt_stat to have the file's session key if the requisite key
1746 * is available to decrypt the session key.
1747 *
1748 * Returns Zero if a valid authentication token was retrieved and
1749 * processed; negative value for file not encrypted or for error
1750 * conditions.
1751 */
1752int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1753			      unsigned char *src,
1754			      struct dentry *ecryptfs_dentry)
1755{
1756	size_t i = 0;
1757	size_t found_auth_tok;
1758	size_t next_packet_is_auth_tok_packet;
1759	struct list_head auth_tok_list;
1760	struct ecryptfs_auth_tok *matching_auth_tok;
1761	struct ecryptfs_auth_tok *candidate_auth_tok;
1762	char *candidate_auth_tok_sig;
1763	size_t packet_size;
1764	struct ecryptfs_auth_tok *new_auth_tok;
1765	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1766	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1767	size_t tag_11_contents_size;
1768	size_t tag_11_packet_size;
1769	struct key *auth_tok_key = NULL;
1770	int rc = 0;
1771
1772	INIT_LIST_HEAD(&auth_tok_list);
1773	/* Parse the header to find as many packets as we can; these will be
1774	 * added the our &auth_tok_list */
1775	next_packet_is_auth_tok_packet = 1;
1776	while (next_packet_is_auth_tok_packet) {
1777		size_t max_packet_size = ((PAGE_SIZE - 8) - i);
1778
1779		switch (src[i]) {
1780		case ECRYPTFS_TAG_3_PACKET_TYPE:
1781			rc = parse_tag_3_packet(crypt_stat,
1782						(unsigned char *)&src[i],
1783						&auth_tok_list, &new_auth_tok,
1784						&packet_size, max_packet_size);
1785			if (rc) {
1786				ecryptfs_printk(KERN_ERR, "Error parsing "
1787						"tag 3 packet\n");
1788				rc = -EIO;
1789				goto out_wipe_list;
1790			}
1791			i += packet_size;
1792			rc = parse_tag_11_packet((unsigned char *)&src[i],
1793						 sig_tmp_space,
1794						 ECRYPTFS_SIG_SIZE,
1795						 &tag_11_contents_size,
1796						 &tag_11_packet_size,
1797						 max_packet_size);
1798			if (rc) {
1799				ecryptfs_printk(KERN_ERR, "No valid "
1800						"(ecryptfs-specific) literal "
1801						"packet containing "
1802						"authentication token "
1803						"signature found after "
1804						"tag 3 packet\n");
1805				rc = -EIO;
1806				goto out_wipe_list;
1807			}
1808			i += tag_11_packet_size;
1809			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1810				ecryptfs_printk(KERN_ERR, "Expected "
1811						"signature of size [%d]; "
1812						"read size [%zd]\n",
1813						ECRYPTFS_SIG_SIZE,
1814						tag_11_contents_size);
1815				rc = -EIO;
1816				goto out_wipe_list;
1817			}
1818			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1819					sig_tmp_space, tag_11_contents_size);
1820			new_auth_tok->token.password.signature[
1821				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1822			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1823			break;
1824		case ECRYPTFS_TAG_1_PACKET_TYPE:
1825			rc = parse_tag_1_packet(crypt_stat,
1826						(unsigned char *)&src[i],
1827						&auth_tok_list, &new_auth_tok,
1828						&packet_size, max_packet_size);
1829			if (rc) {
1830				ecryptfs_printk(KERN_ERR, "Error parsing "
1831						"tag 1 packet\n");
1832				rc = -EIO;
1833				goto out_wipe_list;
1834			}
1835			i += packet_size;
1836			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1837			break;
1838		case ECRYPTFS_TAG_11_PACKET_TYPE:
1839			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1840					"(Tag 11 not allowed by itself)\n");
1841			rc = -EIO;
1842			goto out_wipe_list;
1843		default:
1844			ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1845					"of the file header; hex value of "
1846					"character is [0x%.2x]\n", i, src[i]);
1847			next_packet_is_auth_tok_packet = 0;
1848		}
1849	}
1850	if (list_empty(&auth_tok_list)) {
1851		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1852		       "eCryptfs file; this is not supported in this version "
1853		       "of the eCryptfs kernel module\n");
1854		rc = -EINVAL;
1855		goto out;
1856	}
1857	/* auth_tok_list contains the set of authentication tokens
1858	 * parsed from the metadata. We need to find a matching
1859	 * authentication token that has the secret component(s)
1860	 * necessary to decrypt the EFEK in the auth_tok parsed from
1861	 * the metadata. There may be several potential matches, but
1862	 * just one will be sufficient to decrypt to get the FEK. */
1863find_next_matching_auth_tok:
1864	found_auth_tok = 0;
1865	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1866		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1867		if (unlikely(ecryptfs_verbosity > 0)) {
1868			ecryptfs_printk(KERN_DEBUG,
1869					"Considering candidate auth tok:\n");
1870			ecryptfs_dump_auth_tok(candidate_auth_tok);
1871		}
1872		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1873					       candidate_auth_tok);
1874		if (rc) {
1875			printk(KERN_ERR
1876			       "Unrecognized candidate auth tok type: [%d]\n",
1877			       candidate_auth_tok->token_type);
1878			rc = -EINVAL;
1879			goto out_wipe_list;
1880		}
1881		rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1882					       &matching_auth_tok,
1883					       crypt_stat->mount_crypt_stat,
1884					       candidate_auth_tok_sig);
1885		if (!rc) {
1886			found_auth_tok = 1;
1887			goto found_matching_auth_tok;
1888		}
1889	}
1890	if (!found_auth_tok) {
1891		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1892				"authentication token\n");
1893		rc = -EIO;
1894		goto out_wipe_list;
1895	}
1896found_matching_auth_tok:
1897	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1898		memcpy(&(candidate_auth_tok->token.private_key),
1899		       &(matching_auth_tok->token.private_key),
1900		       sizeof(struct ecryptfs_private_key));
1901		up_write(&(auth_tok_key->sem));
1902		key_put(auth_tok_key);
1903		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1904						       crypt_stat);
1905	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1906		memcpy(&(candidate_auth_tok->token.password),
1907		       &(matching_auth_tok->token.password),
1908		       sizeof(struct ecryptfs_password));
1909		up_write(&(auth_tok_key->sem));
1910		key_put(auth_tok_key);
1911		rc = decrypt_passphrase_encrypted_session_key(
1912			candidate_auth_tok, crypt_stat);
1913	} else {
1914		up_write(&(auth_tok_key->sem));
1915		key_put(auth_tok_key);
1916		rc = -EINVAL;
1917	}
1918	if (rc) {
1919		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1920
1921		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1922				"session key for authentication token with sig "
1923				"[%.*s]; rc = [%d]. Removing auth tok "
1924				"candidate from the list and searching for "
1925				"the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1926				candidate_auth_tok_sig,	rc);
1927		list_for_each_entry_safe(auth_tok_list_item,
1928					 auth_tok_list_item_tmp,
1929					 &auth_tok_list, list) {
1930			if (candidate_auth_tok
1931			    == &auth_tok_list_item->auth_tok) {
1932				list_del(&auth_tok_list_item->list);
1933				kmem_cache_free(
1934					ecryptfs_auth_tok_list_item_cache,
1935					auth_tok_list_item);
1936				goto find_next_matching_auth_tok;
1937			}
1938		}
1939		BUG();
1940	}
1941	rc = ecryptfs_compute_root_iv(crypt_stat);
1942	if (rc) {
1943		ecryptfs_printk(KERN_ERR, "Error computing "
1944				"the root IV\n");
1945		goto out_wipe_list;
1946	}
1947	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1948	if (rc) {
1949		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1950				"context for cipher [%s]; rc = [%d]\n",
1951				crypt_stat->cipher, rc);
1952	}
1953out_wipe_list:
1954	wipe_auth_tok_list(&auth_tok_list);
1955out:
1956	return rc;
1957}
1958
1959static int
1960pki_encrypt_session_key(struct key *auth_tok_key,
1961			struct ecryptfs_auth_tok *auth_tok,
1962			struct ecryptfs_crypt_stat *crypt_stat,
1963			struct ecryptfs_key_record *key_rec)
1964{
1965	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1966	char *payload = NULL;
1967	size_t payload_len = 0;
1968	struct ecryptfs_message *msg;
1969	int rc;
1970
1971	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1972				 ecryptfs_code_for_cipher_string(
1973					 crypt_stat->cipher,
1974					 crypt_stat->key_size),
1975				 crypt_stat, &payload, &payload_len);
1976	up_write(&(auth_tok_key->sem));
1977	key_put(auth_tok_key);
1978	if (rc) {
1979		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1980		goto out;
1981	}
1982	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1983	if (rc) {
1984		ecryptfs_printk(KERN_ERR, "Error sending message to "
1985				"ecryptfsd: %d\n", rc);
1986		goto out;
1987	}
1988	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1989	if (rc) {
1990		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1991				"from the user space daemon\n");
1992		rc = -EIO;
1993		goto out;
1994	}
1995	rc = parse_tag_67_packet(key_rec, msg);
1996	if (rc)
1997		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1998	kfree(msg);
1999out:
2000	kfree(payload);
2001	return rc;
2002}
2003/**
2004 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2005 * @dest: Buffer into which to write the packet
2006 * @remaining_bytes: Maximum number of bytes that can be writtn
2007 * @auth_tok_key: The authentication token key to unlock and put when done with
2008 *                @auth_tok
2009 * @auth_tok: The authentication token used for generating the tag 1 packet
2010 * @crypt_stat: The cryptographic context
2011 * @key_rec: The key record struct for the tag 1 packet
2012 * @packet_size: This function will write the number of bytes that end
2013 *               up constituting the packet; set to zero on error
2014 *
2015 * Returns zero on success; non-zero on error.
2016 */
2017static int
2018write_tag_1_packet(char *dest, size_t *remaining_bytes,
2019		   struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2020		   struct ecryptfs_crypt_stat *crypt_stat,
2021		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2022{
2023	size_t i;
2024	size_t encrypted_session_key_valid = 0;
2025	size_t packet_size_length;
2026	size_t max_packet_size;
2027	int rc = 0;
2028
2029	(*packet_size) = 0;
2030	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2031			  ECRYPTFS_SIG_SIZE);
2032	encrypted_session_key_valid = 0;
2033	for (i = 0; i < crypt_stat->key_size; i++)
2034		encrypted_session_key_valid |=
2035			auth_tok->session_key.encrypted_key[i];
2036	if (encrypted_session_key_valid) {
2037		memcpy(key_rec->enc_key,
2038		       auth_tok->session_key.encrypted_key,
2039		       auth_tok->session_key.encrypted_key_size);
2040		up_write(&(auth_tok_key->sem));
2041		key_put(auth_tok_key);
2042		goto encrypted_session_key_set;
2043	}
2044	if (auth_tok->session_key.encrypted_key_size == 0)
2045		auth_tok->session_key.encrypted_key_size =
2046			auth_tok->token.private_key.key_size;
2047	rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2048				     key_rec);
2049	if (rc) {
2050		printk(KERN_ERR "Failed to encrypt session key via a key "
2051		       "module; rc = [%d]\n", rc);
2052		goto out;
2053	}
2054	if (ecryptfs_verbosity > 0) {
2055		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2056		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2057	}
2058encrypted_session_key_set:
2059	/* This format is inspired by OpenPGP; see RFC 2440
2060	 * packet tag 1 */
2061	max_packet_size = (1                         /* Tag 1 identifier */
2062			   + 3                       /* Max Tag 1 packet size */
2063			   + 1                       /* Version */
2064			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
2065			   + 1                       /* Cipher identifier */
2066			   + key_rec->enc_key_size); /* Encrypted key size */
2067	if (max_packet_size > (*remaining_bytes)) {
2068		printk(KERN_ERR "Packet length larger than maximum allowable; "
2069		       "need up to [%td] bytes, but there are only [%td] "
2070		       "available\n", max_packet_size, (*remaining_bytes));
2071		rc = -EINVAL;
2072		goto out;
2073	}
2074	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2075	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2076					  (max_packet_size - 4),
2077					  &packet_size_length);
2078	if (rc) {
2079		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2080				"header; cannot generate packet length\n");
2081		goto out;
2082	}
2083	(*packet_size) += packet_size_length;
2084	dest[(*packet_size)++] = 0x03; /* version 3 */
2085	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2086	(*packet_size) += ECRYPTFS_SIG_SIZE;
2087	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2088	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2089	       key_rec->enc_key_size);
2090	(*packet_size) += key_rec->enc_key_size;
2091out:
2092	if (rc)
2093		(*packet_size) = 0;
2094	else
2095		(*remaining_bytes) -= (*packet_size);
2096	return rc;
2097}
2098
2099/**
2100 * write_tag_11_packet
2101 * @dest: Target into which Tag 11 packet is to be written
2102 * @remaining_bytes: Maximum packet length
2103 * @contents: Byte array of contents to copy in
2104 * @contents_length: Number of bytes in contents
2105 * @packet_length: Length of the Tag 11 packet written; zero on error
2106 *
2107 * Returns zero on success; non-zero on error.
2108 */
2109static int
2110write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2111		    size_t contents_length, size_t *packet_length)
2112{
2113	size_t packet_size_length;
2114	size_t max_packet_size;
2115	int rc = 0;
2116
2117	(*packet_length) = 0;
2118	/* This format is inspired by OpenPGP; see RFC 2440
2119	 * packet tag 11 */
2120	max_packet_size = (1                   /* Tag 11 identifier */
2121			   + 3                 /* Max Tag 11 packet size */
2122			   + 1                 /* Binary format specifier */
2123			   + 1                 /* Filename length */
2124			   + 8                 /* Filename ("_CONSOLE") */
2125			   + 4                 /* Modification date */
2126			   + contents_length); /* Literal data */
2127	if (max_packet_size > (*remaining_bytes)) {
2128		printk(KERN_ERR "Packet length larger than maximum allowable; "
2129		       "need up to [%td] bytes, but there are only [%td] "
2130		       "available\n", max_packet_size, (*remaining_bytes));
2131		rc = -EINVAL;
2132		goto out;
2133	}
2134	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2135	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2136					  (max_packet_size - 4),
2137					  &packet_size_length);
2138	if (rc) {
2139		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2140		       "generate packet length. rc = [%d]\n", rc);
2141		goto out;
2142	}
2143	(*packet_length) += packet_size_length;
2144	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2145	dest[(*packet_length)++] = 8;
2146	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2147	(*packet_length) += 8;
2148	memset(&dest[(*packet_length)], 0x00, 4);
2149	(*packet_length) += 4;
2150	memcpy(&dest[(*packet_length)], contents, contents_length);
2151	(*packet_length) += contents_length;
2152 out:
2153	if (rc)
2154		(*packet_length) = 0;
2155	else
2156		(*remaining_bytes) -= (*packet_length);
2157	return rc;
2158}
2159
2160/**
2161 * write_tag_3_packet
2162 * @dest: Buffer into which to write the packet
2163 * @remaining_bytes: Maximum number of bytes that can be written
2164 * @auth_tok: Authentication token
2165 * @crypt_stat: The cryptographic context
2166 * @key_rec: encrypted key
2167 * @packet_size: This function will write the number of bytes that end
2168 *               up constituting the packet; set to zero on error
2169 *
2170 * Returns zero on success; non-zero on error.
2171 */
2172static int
2173write_tag_3_packet(char *dest, size_t *remaining_bytes,
2174		   struct ecryptfs_auth_tok *auth_tok,
2175		   struct ecryptfs_crypt_stat *crypt_stat,
2176		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2177{
2178	size_t i;
2179	size_t encrypted_session_key_valid = 0;
2180	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2181	struct scatterlist dst_sg[2];
2182	struct scatterlist src_sg[2];
2183	struct mutex *tfm_mutex = NULL;
2184	u8 cipher_code;
2185	size_t packet_size_length;
2186	size_t max_packet_size;
2187	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2188		crypt_stat->mount_crypt_stat;
2189	struct crypto_skcipher *tfm;
2190	struct skcipher_request *req;
2191	int rc = 0;
2192
2193	(*packet_size) = 0;
2194	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2195			  ECRYPTFS_SIG_SIZE);
2196	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2197							crypt_stat->cipher);
2198	if (unlikely(rc)) {
2199		printk(KERN_ERR "Internal error whilst attempting to get "
2200		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2201		       crypt_stat->cipher, rc);
2202		goto out;
2203	}
2204	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2205		printk(KERN_WARNING "No key size specified at mount; "
2206		       "defaulting to [%d]\n",
2207		       crypto_skcipher_max_keysize(tfm));
2208		mount_crypt_stat->global_default_cipher_key_size =
2209			crypto_skcipher_max_keysize(tfm);
2210	}
2211	if (crypt_stat->key_size == 0)
2212		crypt_stat->key_size =
2213			mount_crypt_stat->global_default_cipher_key_size;
2214	if (auth_tok->session_key.encrypted_key_size == 0)
2215		auth_tok->session_key.encrypted_key_size =
2216			crypt_stat->key_size;
2217	if (crypt_stat->key_size == 24
2218	    && strcmp("aes", crypt_stat->cipher) == 0) {
2219		memset((crypt_stat->key + 24), 0, 8);
2220		auth_tok->session_key.encrypted_key_size = 32;
2221	} else
2222		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2223	key_rec->enc_key_size =
2224		auth_tok->session_key.encrypted_key_size;
2225	encrypted_session_key_valid = 0;
2226	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2227		encrypted_session_key_valid |=
2228			auth_tok->session_key.encrypted_key[i];
2229	if (encrypted_session_key_valid) {
2230		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2231				"using auth_tok->session_key.encrypted_key, "
2232				"where key_rec->enc_key_size = [%zd]\n",
2233				key_rec->enc_key_size);
2234		memcpy(key_rec->enc_key,
2235		       auth_tok->session_key.encrypted_key,
2236		       key_rec->enc_key_size);
2237		goto encrypted_session_key_set;
2238	}
2239	if (auth_tok->token.password.flags &
2240	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2241		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2242				"session key encryption key of size [%d]\n",
2243				auth_tok->token.password.
2244				session_key_encryption_key_bytes);
2245		memcpy(session_key_encryption_key,
2246		       auth_tok->token.password.session_key_encryption_key,
2247		       crypt_stat->key_size);
2248		ecryptfs_printk(KERN_DEBUG,
2249				"Cached session key encryption key:\n");
2250		if (ecryptfs_verbosity > 0)
2251			ecryptfs_dump_hex(session_key_encryption_key, 16);
2252	}
2253	if (unlikely(ecryptfs_verbosity > 0)) {
2254		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2255		ecryptfs_dump_hex(session_key_encryption_key, 16);
2256	}
2257	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2258				 src_sg, 2);
2259	if (rc < 1 || rc > 2) {
2260		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2261				"for crypt_stat session key; expected rc = 1; "
2262				"got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2263				rc, key_rec->enc_key_size);
2264		rc = -ENOMEM;
2265		goto out;
2266	}
2267	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2268				 dst_sg, 2);
2269	if (rc < 1 || rc > 2) {
2270		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2271				"for crypt_stat encrypted session key; "
2272				"expected rc = 1; got rc = [%d]. "
2273				"key_rec->enc_key_size = [%zd]\n", rc,
2274				key_rec->enc_key_size);
2275		rc = -ENOMEM;
2276		goto out;
2277	}
2278	mutex_lock(tfm_mutex);
2279	rc = crypto_skcipher_setkey(tfm, session_key_encryption_key,
2280				    crypt_stat->key_size);
2281	if (rc < 0) {
2282		mutex_unlock(tfm_mutex);
2283		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2284				"context; rc = [%d]\n", rc);
2285		goto out;
2286	}
2287
2288	req = skcipher_request_alloc(tfm, GFP_KERNEL);
2289	if (!req) {
2290		mutex_unlock(tfm_mutex);
2291		ecryptfs_printk(KERN_ERR, "Out of kernel memory whilst "
2292				"attempting to skcipher_request_alloc for "
2293				"%s\n", crypto_skcipher_driver_name(tfm));
2294		rc = -ENOMEM;
2295		goto out;
2296	}
2297
2298	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
2299				      NULL, NULL);
2300
2301	rc = 0;
2302	ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2303			crypt_stat->key_size);
2304	skcipher_request_set_crypt(req, src_sg, dst_sg,
2305				   (*key_rec).enc_key_size, NULL);
2306	rc = crypto_skcipher_encrypt(req);
2307	mutex_unlock(tfm_mutex);
2308	skcipher_request_free(req);
2309	if (rc) {
2310		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2311		goto out;
2312	}
2313	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2314	if (ecryptfs_verbosity > 0) {
2315		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2316				key_rec->enc_key_size);
2317		ecryptfs_dump_hex(key_rec->enc_key,
2318				  key_rec->enc_key_size);
2319	}
2320encrypted_session_key_set:
2321	/* This format is inspired by OpenPGP; see RFC 2440
2322	 * packet tag 3 */
2323	max_packet_size = (1                         /* Tag 3 identifier */
2324			   + 3                       /* Max Tag 3 packet size */
2325			   + 1                       /* Version */
2326			   + 1                       /* Cipher code */
2327			   + 1                       /* S2K specifier */
2328			   + 1                       /* Hash identifier */
2329			   + ECRYPTFS_SALT_SIZE      /* Salt */
2330			   + 1                       /* Hash iterations */
2331			   + key_rec->enc_key_size); /* Encrypted key size */
2332	if (max_packet_size > (*remaining_bytes)) {
2333		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2334		       "there are only [%td] available\n", max_packet_size,
2335		       (*remaining_bytes));
2336		rc = -EINVAL;
2337		goto out;
2338	}
2339	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2340	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2341	 * to get the number of octets in the actual Tag 3 packet */
2342	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2343					  (max_packet_size - 4),
2344					  &packet_size_length);
2345	if (rc) {
2346		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2347		       "generate packet length. rc = [%d]\n", rc);
2348		goto out;
2349	}
2350	(*packet_size) += packet_size_length;
2351	dest[(*packet_size)++] = 0x04; /* version 4 */
2352	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2353	 * specified with strings */
2354	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2355						      crypt_stat->key_size);
2356	if (cipher_code == 0) {
2357		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2358				"cipher [%s]\n", crypt_stat->cipher);
2359		rc = -EINVAL;
2360		goto out;
2361	}
2362	dest[(*packet_size)++] = cipher_code;
2363	dest[(*packet_size)++] = 0x03;	/* S2K */
2364	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2365	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2366	       ECRYPTFS_SALT_SIZE);
2367	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2368	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2369	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2370	       key_rec->enc_key_size);
2371	(*packet_size) += key_rec->enc_key_size;
2372out:
2373	if (rc)
2374		(*packet_size) = 0;
2375	else
2376		(*remaining_bytes) -= (*packet_size);
2377	return rc;
2378}
2379
2380struct kmem_cache *ecryptfs_key_record_cache;
2381
2382/**
2383 * ecryptfs_generate_key_packet_set
2384 * @dest_base: Virtual address from which to write the key record set
2385 * @crypt_stat: The cryptographic context from which the
2386 *              authentication tokens will be retrieved
2387 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2388 *                   for the global parameters
2389 * @len: The amount written
2390 * @max: The maximum amount of data allowed to be written
2391 *
2392 * Generates a key packet set and writes it to the virtual address
2393 * passed in.
2394 *
2395 * Returns zero on success; non-zero on error.
2396 */
2397int
2398ecryptfs_generate_key_packet_set(char *dest_base,
2399				 struct ecryptfs_crypt_stat *crypt_stat,
2400				 struct dentry *ecryptfs_dentry, size_t *len,
2401				 size_t max)
2402{
2403	struct ecryptfs_auth_tok *auth_tok;
2404	struct key *auth_tok_key = NULL;
2405	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2406		&ecryptfs_superblock_to_private(
2407			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2408	size_t written;
2409	struct ecryptfs_key_record *key_rec;
2410	struct ecryptfs_key_sig *key_sig;
2411	int rc = 0;
2412
2413	(*len) = 0;
2414	mutex_lock(&crypt_stat->keysig_list_mutex);
2415	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2416	if (!key_rec) {
2417		rc = -ENOMEM;
2418		goto out;
2419	}
2420	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2421			    crypt_stat_list) {
2422		memset(key_rec, 0, sizeof(*key_rec));
2423		rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2424							   &auth_tok,
2425							   mount_crypt_stat,
2426							   key_sig->keysig);
2427		if (rc) {
2428			printk(KERN_WARNING "Unable to retrieve auth tok with "
2429			       "sig = [%s]\n", key_sig->keysig);
2430			rc = process_find_global_auth_tok_for_sig_err(rc);
2431			goto out_free;
2432		}
2433		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2434			rc = write_tag_3_packet((dest_base + (*len)),
2435						&max, auth_tok,
2436						crypt_stat, key_rec,
2437						&written);
2438			up_write(&(auth_tok_key->sem));
2439			key_put(auth_tok_key);
2440			if (rc) {
2441				ecryptfs_printk(KERN_WARNING, "Error "
2442						"writing tag 3 packet\n");
2443				goto out_free;
2444			}
2445			(*len) += written;
2446			/* Write auth tok signature packet */
2447			rc = write_tag_11_packet((dest_base + (*len)), &max,
2448						 key_rec->sig,
2449						 ECRYPTFS_SIG_SIZE, &written);
2450			if (rc) {
2451				ecryptfs_printk(KERN_ERR, "Error writing "
2452						"auth tok signature packet\n");
2453				goto out_free;
2454			}
2455			(*len) += written;
2456		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2457			rc = write_tag_1_packet(dest_base + (*len), &max,
2458						auth_tok_key, auth_tok,
2459						crypt_stat, key_rec, &written);
2460			if (rc) {
2461				ecryptfs_printk(KERN_WARNING, "Error "
2462						"writing tag 1 packet\n");
2463				goto out_free;
2464			}
2465			(*len) += written;
2466		} else {
2467			up_write(&(auth_tok_key->sem));
2468			key_put(auth_tok_key);
2469			ecryptfs_printk(KERN_WARNING, "Unsupported "
2470					"authentication token type\n");
2471			rc = -EINVAL;
2472			goto out_free;
2473		}
2474	}
2475	if (likely(max > 0)) {
2476		dest_base[(*len)] = 0x00;
2477	} else {
2478		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2479		rc = -EIO;
2480	}
2481out_free:
2482	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2483out:
2484	if (rc)
2485		(*len) = 0;
2486	mutex_unlock(&crypt_stat->keysig_list_mutex);
2487	return rc;
2488}
2489
2490struct kmem_cache *ecryptfs_key_sig_cache;
2491
2492int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2493{
2494	struct ecryptfs_key_sig *new_key_sig;
2495
2496	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2497	if (!new_key_sig)
2498		return -ENOMEM;
2499
2500	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2501	new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2502	/* Caller must hold keysig_list_mutex */
2503	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2504
2505	return 0;
2506}
2507
2508struct kmem_cache *ecryptfs_global_auth_tok_cache;
2509
2510int
2511ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2512			     char *sig, u32 global_auth_tok_flags)
2513{
2514	struct ecryptfs_global_auth_tok *new_auth_tok;
2515
2516	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2517					GFP_KERNEL);
2518	if (!new_auth_tok)
2519		return -ENOMEM;
2520
2521	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2522	new_auth_tok->flags = global_auth_tok_flags;
2523	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2524	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2525	list_add(&new_auth_tok->mount_crypt_stat_list,
2526		 &mount_crypt_stat->global_auth_tok_list);
2527	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2528	return 0;
2529}
2530
2531