1// SPDX-License-Identifier: GPL-2.0-or-later 2/** 3 * eCryptfs: Linux filesystem encryption layer 4 * 5 * Copyright (C) 1997-2004 Erez Zadok 6 * Copyright (C) 2001-2004 Stony Brook University 7 * Copyright (C) 2004-2007 International Business Machines Corp. 8 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 9 * Michael C. Thompson <mcthomps@us.ibm.com> 10 */ 11 12#include <crypto/hash.h> 13#include <crypto/skcipher.h> 14#include <linux/fs.h> 15#include <linux/mount.h> 16#include <linux/pagemap.h> 17#include <linux/random.h> 18#include <linux/compiler.h> 19#include <linux/key.h> 20#include <linux/namei.h> 21#include <linux/file.h> 22#include <linux/scatterlist.h> 23#include <linux/slab.h> 24#include <asm/unaligned.h> 25#include <linux/kernel.h> 26#include <linux/xattr.h> 27#include "ecryptfs_kernel.h" 28 29#define DECRYPT 0 30#define ENCRYPT 1 31 32/** 33 * ecryptfs_from_hex 34 * @dst: Buffer to take the bytes from src hex; must be at least of 35 * size (src_size / 2) 36 * @src: Buffer to be converted from a hex string representation to raw value 37 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 38 */ 39void ecryptfs_from_hex(char *dst, char *src, int dst_size) 40{ 41 int x; 42 char tmp[3] = { 0, }; 43 44 for (x = 0; x < dst_size; x++) { 45 tmp[0] = src[x * 2]; 46 tmp[1] = src[x * 2 + 1]; 47 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 48 } 49} 50 51/** 52 * ecryptfs_calculate_md5 - calculates the md5 of @src 53 * @dst: Pointer to 16 bytes of allocated memory 54 * @crypt_stat: Pointer to crypt_stat struct for the current inode 55 * @src: Data to be md5'd 56 * @len: Length of @src 57 * 58 * Uses the allocated crypto context that crypt_stat references to 59 * generate the MD5 sum of the contents of src. 60 */ 61static int ecryptfs_calculate_md5(char *dst, 62 struct ecryptfs_crypt_stat *crypt_stat, 63 char *src, int len) 64{ 65 int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst); 66 67 if (rc) { 68 printk(KERN_ERR 69 "%s: Error computing crypto hash; rc = [%d]\n", 70 __func__, rc); 71 goto out; 72 } 73out: 74 return rc; 75} 76 77static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 78 char *cipher_name, 79 char *chaining_modifier) 80{ 81 int cipher_name_len = strlen(cipher_name); 82 int chaining_modifier_len = strlen(chaining_modifier); 83 int algified_name_len; 84 int rc; 85 86 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 87 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 88 if (!(*algified_name)) { 89 rc = -ENOMEM; 90 goto out; 91 } 92 snprintf((*algified_name), algified_name_len, "%s(%s)", 93 chaining_modifier, cipher_name); 94 rc = 0; 95out: 96 return rc; 97} 98 99/** 100 * ecryptfs_derive_iv 101 * @iv: destination for the derived iv vale 102 * @crypt_stat: Pointer to crypt_stat struct for the current inode 103 * @offset: Offset of the extent whose IV we are to derive 104 * 105 * Generate the initialization vector from the given root IV and page 106 * offset. 107 * 108 * Returns zero on success; non-zero on error. 109 */ 110int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 111 loff_t offset) 112{ 113 int rc = 0; 114 char dst[MD5_DIGEST_SIZE]; 115 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 116 117 if (unlikely(ecryptfs_verbosity > 0)) { 118 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 119 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 120 } 121 /* TODO: It is probably secure to just cast the least 122 * significant bits of the root IV into an unsigned long and 123 * add the offset to that rather than go through all this 124 * hashing business. -Halcrow */ 125 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 126 memset((src + crypt_stat->iv_bytes), 0, 16); 127 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 128 if (unlikely(ecryptfs_verbosity > 0)) { 129 ecryptfs_printk(KERN_DEBUG, "source:\n"); 130 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 131 } 132 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 133 (crypt_stat->iv_bytes + 16)); 134 if (rc) { 135 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 136 "MD5 while generating IV for a page\n"); 137 goto out; 138 } 139 memcpy(iv, dst, crypt_stat->iv_bytes); 140 if (unlikely(ecryptfs_verbosity > 0)) { 141 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 142 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 143 } 144out: 145 return rc; 146} 147 148/** 149 * ecryptfs_init_crypt_stat 150 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 151 * 152 * Initialize the crypt_stat structure. 153 */ 154int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 155{ 156 struct crypto_shash *tfm; 157 int rc; 158 159 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0); 160 if (IS_ERR(tfm)) { 161 rc = PTR_ERR(tfm); 162 ecryptfs_printk(KERN_ERR, "Error attempting to " 163 "allocate crypto context; rc = [%d]\n", 164 rc); 165 return rc; 166 } 167 168 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 169 INIT_LIST_HEAD(&crypt_stat->keysig_list); 170 mutex_init(&crypt_stat->keysig_list_mutex); 171 mutex_init(&crypt_stat->cs_mutex); 172 mutex_init(&crypt_stat->cs_tfm_mutex); 173 crypt_stat->hash_tfm = tfm; 174 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 175 176 return 0; 177} 178 179/** 180 * ecryptfs_destroy_crypt_stat 181 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 182 * 183 * Releases all memory associated with a crypt_stat struct. 184 */ 185void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 186{ 187 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 188 189 crypto_free_skcipher(crypt_stat->tfm); 190 crypto_free_shash(crypt_stat->hash_tfm); 191 list_for_each_entry_safe(key_sig, key_sig_tmp, 192 &crypt_stat->keysig_list, crypt_stat_list) { 193 list_del(&key_sig->crypt_stat_list); 194 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 195 } 196 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 197} 198 199void ecryptfs_destroy_mount_crypt_stat( 200 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 201{ 202 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 203 204 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 205 return; 206 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 207 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 208 &mount_crypt_stat->global_auth_tok_list, 209 mount_crypt_stat_list) { 210 list_del(&auth_tok->mount_crypt_stat_list); 211 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 212 key_put(auth_tok->global_auth_tok_key); 213 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 214 } 215 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 216 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 217} 218 219/** 220 * virt_to_scatterlist 221 * @addr: Virtual address 222 * @size: Size of data; should be an even multiple of the block size 223 * @sg: Pointer to scatterlist array; set to NULL to obtain only 224 * the number of scatterlist structs required in array 225 * @sg_size: Max array size 226 * 227 * Fills in a scatterlist array with page references for a passed 228 * virtual address. 229 * 230 * Returns the number of scatterlist structs in array used 231 */ 232int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 233 int sg_size) 234{ 235 int i = 0; 236 struct page *pg; 237 int offset; 238 int remainder_of_page; 239 240 sg_init_table(sg, sg_size); 241 242 while (size > 0 && i < sg_size) { 243 pg = virt_to_page(addr); 244 offset = offset_in_page(addr); 245 sg_set_page(&sg[i], pg, 0, offset); 246 remainder_of_page = PAGE_SIZE - offset; 247 if (size >= remainder_of_page) { 248 sg[i].length = remainder_of_page; 249 addr += remainder_of_page; 250 size -= remainder_of_page; 251 } else { 252 sg[i].length = size; 253 addr += size; 254 size = 0; 255 } 256 i++; 257 } 258 if (size > 0) 259 return -ENOMEM; 260 return i; 261} 262 263struct extent_crypt_result { 264 struct completion completion; 265 int rc; 266}; 267 268static void extent_crypt_complete(struct crypto_async_request *req, int rc) 269{ 270 struct extent_crypt_result *ecr = req->data; 271 272 if (rc == -EINPROGRESS) 273 return; 274 275 ecr->rc = rc; 276 complete(&ecr->completion); 277} 278 279/** 280 * crypt_scatterlist 281 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 282 * @dst_sg: Destination of the data after performing the crypto operation 283 * @src_sg: Data to be encrypted or decrypted 284 * @size: Length of data 285 * @iv: IV to use 286 * @op: ENCRYPT or DECRYPT to indicate the desired operation 287 * 288 * Returns the number of bytes encrypted or decrypted; negative value on error 289 */ 290static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 291 struct scatterlist *dst_sg, 292 struct scatterlist *src_sg, int size, 293 unsigned char *iv, int op) 294{ 295 struct skcipher_request *req = NULL; 296 struct extent_crypt_result ecr; 297 int rc = 0; 298 299 BUG_ON(!crypt_stat || !crypt_stat->tfm 300 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 301 if (unlikely(ecryptfs_verbosity > 0)) { 302 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 303 crypt_stat->key_size); 304 ecryptfs_dump_hex(crypt_stat->key, 305 crypt_stat->key_size); 306 } 307 308 init_completion(&ecr.completion); 309 310 mutex_lock(&crypt_stat->cs_tfm_mutex); 311 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS); 312 if (!req) { 313 mutex_unlock(&crypt_stat->cs_tfm_mutex); 314 rc = -ENOMEM; 315 goto out; 316 } 317 318 skcipher_request_set_callback(req, 319 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 320 extent_crypt_complete, &ecr); 321 /* Consider doing this once, when the file is opened */ 322 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 323 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key, 324 crypt_stat->key_size); 325 if (rc) { 326 ecryptfs_printk(KERN_ERR, 327 "Error setting key; rc = [%d]\n", 328 rc); 329 mutex_unlock(&crypt_stat->cs_tfm_mutex); 330 rc = -EINVAL; 331 goto out; 332 } 333 crypt_stat->flags |= ECRYPTFS_KEY_SET; 334 } 335 mutex_unlock(&crypt_stat->cs_tfm_mutex); 336 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv); 337 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) : 338 crypto_skcipher_decrypt(req); 339 if (rc == -EINPROGRESS || rc == -EBUSY) { 340 struct extent_crypt_result *ecr = req->base.data; 341 342 wait_for_completion(&ecr->completion); 343 rc = ecr->rc; 344 reinit_completion(&ecr->completion); 345 } 346out: 347 skcipher_request_free(req); 348 return rc; 349} 350 351/** 352 * lower_offset_for_page 353 * 354 * Convert an eCryptfs page index into a lower byte offset 355 */ 356static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat, 357 struct page *page) 358{ 359 return ecryptfs_lower_header_size(crypt_stat) + 360 ((loff_t)page->index << PAGE_SHIFT); 361} 362 363/** 364 * crypt_extent 365 * @crypt_stat: crypt_stat containing cryptographic context for the 366 * encryption operation 367 * @dst_page: The page to write the result into 368 * @src_page: The page to read from 369 * @extent_offset: Page extent offset for use in generating IV 370 * @op: ENCRYPT or DECRYPT to indicate the desired operation 371 * 372 * Encrypts or decrypts one extent of data. 373 * 374 * Return zero on success; non-zero otherwise 375 */ 376static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat, 377 struct page *dst_page, 378 struct page *src_page, 379 unsigned long extent_offset, int op) 380{ 381 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index; 382 loff_t extent_base; 383 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 384 struct scatterlist src_sg, dst_sg; 385 size_t extent_size = crypt_stat->extent_size; 386 int rc; 387 388 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size)); 389 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 390 (extent_base + extent_offset)); 391 if (rc) { 392 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 393 "extent [0x%.16llx]; rc = [%d]\n", 394 (unsigned long long)(extent_base + extent_offset), rc); 395 goto out; 396 } 397 398 sg_init_table(&src_sg, 1); 399 sg_init_table(&dst_sg, 1); 400 401 sg_set_page(&src_sg, src_page, extent_size, 402 extent_offset * extent_size); 403 sg_set_page(&dst_sg, dst_page, extent_size, 404 extent_offset * extent_size); 405 406 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size, 407 extent_iv, op); 408 if (rc < 0) { 409 printk(KERN_ERR "%s: Error attempting to crypt page with " 410 "page_index = [%ld], extent_offset = [%ld]; " 411 "rc = [%d]\n", __func__, page_index, extent_offset, rc); 412 goto out; 413 } 414 rc = 0; 415out: 416 return rc; 417} 418 419/** 420 * ecryptfs_encrypt_page 421 * @page: Page mapped from the eCryptfs inode for the file; contains 422 * decrypted content that needs to be encrypted (to a temporary 423 * page; not in place) and written out to the lower file 424 * 425 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 426 * that eCryptfs pages may straddle the lower pages -- for instance, 427 * if the file was created on a machine with an 8K page size 428 * (resulting in an 8K header), and then the file is copied onto a 429 * host with a 32K page size, then when reading page 0 of the eCryptfs 430 * file, 24K of page 0 of the lower file will be read and decrypted, 431 * and then 8K of page 1 of the lower file will be read and decrypted. 432 * 433 * Returns zero on success; negative on error 434 */ 435int ecryptfs_encrypt_page(struct page *page) 436{ 437 struct inode *ecryptfs_inode; 438 struct ecryptfs_crypt_stat *crypt_stat; 439 char *enc_extent_virt; 440 struct page *enc_extent_page = NULL; 441 loff_t extent_offset; 442 loff_t lower_offset; 443 int rc = 0; 444 445 ecryptfs_inode = page->mapping->host; 446 crypt_stat = 447 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 448 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 449 enc_extent_page = alloc_page(GFP_USER); 450 if (!enc_extent_page) { 451 rc = -ENOMEM; 452 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 453 "encrypted extent\n"); 454 goto out; 455 } 456 457 for (extent_offset = 0; 458 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 459 extent_offset++) { 460 rc = crypt_extent(crypt_stat, enc_extent_page, page, 461 extent_offset, ENCRYPT); 462 if (rc) { 463 printk(KERN_ERR "%s: Error encrypting extent; " 464 "rc = [%d]\n", __func__, rc); 465 goto out; 466 } 467 } 468 469 lower_offset = lower_offset_for_page(crypt_stat, page); 470 enc_extent_virt = kmap(enc_extent_page); 471 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset, 472 PAGE_SIZE); 473 kunmap(enc_extent_page); 474 if (rc < 0) { 475 ecryptfs_printk(KERN_ERR, 476 "Error attempting to write lower page; rc = [%d]\n", 477 rc); 478 goto out; 479 } 480 rc = 0; 481out: 482 if (enc_extent_page) { 483 __free_page(enc_extent_page); 484 } 485 return rc; 486} 487 488/** 489 * ecryptfs_decrypt_page 490 * @page: Page mapped from the eCryptfs inode for the file; data read 491 * and decrypted from the lower file will be written into this 492 * page 493 * 494 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 495 * that eCryptfs pages may straddle the lower pages -- for instance, 496 * if the file was created on a machine with an 8K page size 497 * (resulting in an 8K header), and then the file is copied onto a 498 * host with a 32K page size, then when reading page 0 of the eCryptfs 499 * file, 24K of page 0 of the lower file will be read and decrypted, 500 * and then 8K of page 1 of the lower file will be read and decrypted. 501 * 502 * Returns zero on success; negative on error 503 */ 504int ecryptfs_decrypt_page(struct page *page) 505{ 506 struct inode *ecryptfs_inode; 507 struct ecryptfs_crypt_stat *crypt_stat; 508 char *page_virt; 509 unsigned long extent_offset; 510 loff_t lower_offset; 511 int rc = 0; 512 513 ecryptfs_inode = page->mapping->host; 514 crypt_stat = 515 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 516 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 517 518 lower_offset = lower_offset_for_page(crypt_stat, page); 519 page_virt = kmap(page); 520 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE, 521 ecryptfs_inode); 522 kunmap(page); 523 if (rc < 0) { 524 ecryptfs_printk(KERN_ERR, 525 "Error attempting to read lower page; rc = [%d]\n", 526 rc); 527 goto out; 528 } 529 530 for (extent_offset = 0; 531 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 532 extent_offset++) { 533 rc = crypt_extent(crypt_stat, page, page, 534 extent_offset, DECRYPT); 535 if (rc) { 536 printk(KERN_ERR "%s: Error encrypting extent; " 537 "rc = [%d]\n", __func__, rc); 538 goto out; 539 } 540 } 541out: 542 return rc; 543} 544 545#define ECRYPTFS_MAX_SCATTERLIST_LEN 4 546 547/** 548 * ecryptfs_init_crypt_ctx 549 * @crypt_stat: Uninitialized crypt stats structure 550 * 551 * Initialize the crypto context. 552 * 553 * TODO: Performance: Keep a cache of initialized cipher contexts; 554 * only init if needed 555 */ 556int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 557{ 558 char *full_alg_name; 559 int rc = -EINVAL; 560 561 ecryptfs_printk(KERN_DEBUG, 562 "Initializing cipher [%s]; strlen = [%d]; " 563 "key_size_bits = [%zd]\n", 564 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 565 crypt_stat->key_size << 3); 566 mutex_lock(&crypt_stat->cs_tfm_mutex); 567 if (crypt_stat->tfm) { 568 rc = 0; 569 goto out_unlock; 570 } 571 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 572 crypt_stat->cipher, "cbc"); 573 if (rc) 574 goto out_unlock; 575 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0); 576 if (IS_ERR(crypt_stat->tfm)) { 577 rc = PTR_ERR(crypt_stat->tfm); 578 crypt_stat->tfm = NULL; 579 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 580 "Error initializing cipher [%s]\n", 581 full_alg_name); 582 goto out_free; 583 } 584 crypto_skcipher_set_flags(crypt_stat->tfm, 585 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 586 rc = 0; 587out_free: 588 kfree(full_alg_name); 589out_unlock: 590 mutex_unlock(&crypt_stat->cs_tfm_mutex); 591 return rc; 592} 593 594static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 595{ 596 int extent_size_tmp; 597 598 crypt_stat->extent_mask = 0xFFFFFFFF; 599 crypt_stat->extent_shift = 0; 600 if (crypt_stat->extent_size == 0) 601 return; 602 extent_size_tmp = crypt_stat->extent_size; 603 while ((extent_size_tmp & 0x01) == 0) { 604 extent_size_tmp >>= 1; 605 crypt_stat->extent_mask <<= 1; 606 crypt_stat->extent_shift++; 607 } 608} 609 610void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 611{ 612 /* Default values; may be overwritten as we are parsing the 613 * packets. */ 614 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 615 set_extent_mask_and_shift(crypt_stat); 616 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 617 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 618 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 619 else { 620 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 621 crypt_stat->metadata_size = 622 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 623 else 624 crypt_stat->metadata_size = PAGE_SIZE; 625 } 626} 627 628/** 629 * ecryptfs_compute_root_iv 630 * @crypt_stats 631 * 632 * On error, sets the root IV to all 0's. 633 */ 634int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 635{ 636 int rc = 0; 637 char dst[MD5_DIGEST_SIZE]; 638 639 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 640 BUG_ON(crypt_stat->iv_bytes <= 0); 641 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 642 rc = -EINVAL; 643 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 644 "cannot generate root IV\n"); 645 goto out; 646 } 647 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 648 crypt_stat->key_size); 649 if (rc) { 650 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 651 "MD5 while generating root IV\n"); 652 goto out; 653 } 654 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 655out: 656 if (rc) { 657 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 658 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 659 } 660 return rc; 661} 662 663static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 664{ 665 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 666 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 667 ecryptfs_compute_root_iv(crypt_stat); 668 if (unlikely(ecryptfs_verbosity > 0)) { 669 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 670 ecryptfs_dump_hex(crypt_stat->key, 671 crypt_stat->key_size); 672 } 673} 674 675/** 676 * ecryptfs_copy_mount_wide_flags_to_inode_flags 677 * @crypt_stat: The inode's cryptographic context 678 * @mount_crypt_stat: The mount point's cryptographic context 679 * 680 * This function propagates the mount-wide flags to individual inode 681 * flags. 682 */ 683static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 684 struct ecryptfs_crypt_stat *crypt_stat, 685 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 686{ 687 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 688 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 689 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 690 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 691 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 692 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 693 if (mount_crypt_stat->flags 694 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 695 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 696 else if (mount_crypt_stat->flags 697 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 698 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 699 } 700} 701 702static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 703 struct ecryptfs_crypt_stat *crypt_stat, 704 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 705{ 706 struct ecryptfs_global_auth_tok *global_auth_tok; 707 int rc = 0; 708 709 mutex_lock(&crypt_stat->keysig_list_mutex); 710 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 711 712 list_for_each_entry(global_auth_tok, 713 &mount_crypt_stat->global_auth_tok_list, 714 mount_crypt_stat_list) { 715 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 716 continue; 717 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 718 if (rc) { 719 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 720 goto out; 721 } 722 } 723 724out: 725 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 726 mutex_unlock(&crypt_stat->keysig_list_mutex); 727 return rc; 728} 729 730/** 731 * ecryptfs_set_default_crypt_stat_vals 732 * @crypt_stat: The inode's cryptographic context 733 * @mount_crypt_stat: The mount point's cryptographic context 734 * 735 * Default values in the event that policy does not override them. 736 */ 737static void ecryptfs_set_default_crypt_stat_vals( 738 struct ecryptfs_crypt_stat *crypt_stat, 739 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 740{ 741 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 742 mount_crypt_stat); 743 ecryptfs_set_default_sizes(crypt_stat); 744 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 745 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 746 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 747 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 748 crypt_stat->mount_crypt_stat = mount_crypt_stat; 749} 750 751/** 752 * ecryptfs_new_file_context 753 * @ecryptfs_inode: The eCryptfs inode 754 * 755 * If the crypto context for the file has not yet been established, 756 * this is where we do that. Establishing a new crypto context 757 * involves the following decisions: 758 * - What cipher to use? 759 * - What set of authentication tokens to use? 760 * Here we just worry about getting enough information into the 761 * authentication tokens so that we know that they are available. 762 * We associate the available authentication tokens with the new file 763 * via the set of signatures in the crypt_stat struct. Later, when 764 * the headers are actually written out, we may again defer to 765 * userspace to perform the encryption of the session key; for the 766 * foreseeable future, this will be the case with public key packets. 767 * 768 * Returns zero on success; non-zero otherwise 769 */ 770int ecryptfs_new_file_context(struct inode *ecryptfs_inode) 771{ 772 struct ecryptfs_crypt_stat *crypt_stat = 773 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 774 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 775 &ecryptfs_superblock_to_private( 776 ecryptfs_inode->i_sb)->mount_crypt_stat; 777 int cipher_name_len; 778 int rc = 0; 779 780 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 781 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 782 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 783 mount_crypt_stat); 784 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 785 mount_crypt_stat); 786 if (rc) { 787 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 788 "to the inode key sigs; rc = [%d]\n", rc); 789 goto out; 790 } 791 cipher_name_len = 792 strlen(mount_crypt_stat->global_default_cipher_name); 793 memcpy(crypt_stat->cipher, 794 mount_crypt_stat->global_default_cipher_name, 795 cipher_name_len); 796 crypt_stat->cipher[cipher_name_len] = '\0'; 797 crypt_stat->key_size = 798 mount_crypt_stat->global_default_cipher_key_size; 799 ecryptfs_generate_new_key(crypt_stat); 800 rc = ecryptfs_init_crypt_ctx(crypt_stat); 801 if (rc) 802 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 803 "context for cipher [%s]: rc = [%d]\n", 804 crypt_stat->cipher, rc); 805out: 806 return rc; 807} 808 809/** 810 * ecryptfs_validate_marker - check for the ecryptfs marker 811 * @data: The data block in which to check 812 * 813 * Returns zero if marker found; -EINVAL if not found 814 */ 815static int ecryptfs_validate_marker(char *data) 816{ 817 u32 m_1, m_2; 818 819 m_1 = get_unaligned_be32(data); 820 m_2 = get_unaligned_be32(data + 4); 821 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 822 return 0; 823 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 824 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 825 MAGIC_ECRYPTFS_MARKER); 826 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 827 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 828 return -EINVAL; 829} 830 831struct ecryptfs_flag_map_elem { 832 u32 file_flag; 833 u32 local_flag; 834}; 835 836/* Add support for additional flags by adding elements here. */ 837static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 838 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 839 {0x00000002, ECRYPTFS_ENCRYPTED}, 840 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 841 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 842}; 843 844/** 845 * ecryptfs_process_flags 846 * @crypt_stat: The cryptographic context 847 * @page_virt: Source data to be parsed 848 * @bytes_read: Updated with the number of bytes read 849 */ 850static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 851 char *page_virt, int *bytes_read) 852{ 853 int i; 854 u32 flags; 855 856 flags = get_unaligned_be32(page_virt); 857 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 858 if (flags & ecryptfs_flag_map[i].file_flag) { 859 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 860 } else 861 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 862 /* Version is in top 8 bits of the 32-bit flag vector */ 863 crypt_stat->file_version = ((flags >> 24) & 0xFF); 864 (*bytes_read) = 4; 865} 866 867/** 868 * write_ecryptfs_marker 869 * @page_virt: The pointer to in a page to begin writing the marker 870 * @written: Number of bytes written 871 * 872 * Marker = 0x3c81b7f5 873 */ 874static void write_ecryptfs_marker(char *page_virt, size_t *written) 875{ 876 u32 m_1, m_2; 877 878 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 879 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 880 put_unaligned_be32(m_1, page_virt); 881 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 882 put_unaligned_be32(m_2, page_virt); 883 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 884} 885 886void ecryptfs_write_crypt_stat_flags(char *page_virt, 887 struct ecryptfs_crypt_stat *crypt_stat, 888 size_t *written) 889{ 890 u32 flags = 0; 891 int i; 892 893 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 894 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 895 flags |= ecryptfs_flag_map[i].file_flag; 896 /* Version is in top 8 bits of the 32-bit flag vector */ 897 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 898 put_unaligned_be32(flags, page_virt); 899 (*written) = 4; 900} 901 902struct ecryptfs_cipher_code_str_map_elem { 903 char cipher_str[16]; 904 u8 cipher_code; 905}; 906 907/* Add support for additional ciphers by adding elements here. The 908 * cipher_code is whatever OpenPGP applications use to identify the 909 * ciphers. List in order of probability. */ 910static struct ecryptfs_cipher_code_str_map_elem 911ecryptfs_cipher_code_str_map[] = { 912 {"aes",RFC2440_CIPHER_AES_128 }, 913 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 914 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 915 {"cast5", RFC2440_CIPHER_CAST_5}, 916 {"twofish", RFC2440_CIPHER_TWOFISH}, 917 {"cast6", RFC2440_CIPHER_CAST_6}, 918 {"aes", RFC2440_CIPHER_AES_192}, 919 {"aes", RFC2440_CIPHER_AES_256} 920}; 921 922/** 923 * ecryptfs_code_for_cipher_string 924 * @cipher_name: The string alias for the cipher 925 * @key_bytes: Length of key in bytes; used for AES code selection 926 * 927 * Returns zero on no match, or the cipher code on match 928 */ 929u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 930{ 931 int i; 932 u8 code = 0; 933 struct ecryptfs_cipher_code_str_map_elem *map = 934 ecryptfs_cipher_code_str_map; 935 936 if (strcmp(cipher_name, "aes") == 0) { 937 switch (key_bytes) { 938 case 16: 939 code = RFC2440_CIPHER_AES_128; 940 break; 941 case 24: 942 code = RFC2440_CIPHER_AES_192; 943 break; 944 case 32: 945 code = RFC2440_CIPHER_AES_256; 946 } 947 } else { 948 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 949 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 950 code = map[i].cipher_code; 951 break; 952 } 953 } 954 return code; 955} 956 957/** 958 * ecryptfs_cipher_code_to_string 959 * @str: Destination to write out the cipher name 960 * @cipher_code: The code to convert to cipher name string 961 * 962 * Returns zero on success 963 */ 964int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 965{ 966 int rc = 0; 967 int i; 968 969 str[0] = '\0'; 970 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 971 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 972 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 973 if (str[0] == '\0') { 974 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 975 "[%d]\n", cipher_code); 976 rc = -EINVAL; 977 } 978 return rc; 979} 980 981int ecryptfs_read_and_validate_header_region(struct inode *inode) 982{ 983 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 984 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 985 int rc; 986 987 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, 988 inode); 989 if (rc < 0) 990 return rc; 991 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 992 return -EINVAL; 993 rc = ecryptfs_validate_marker(marker); 994 if (!rc) 995 ecryptfs_i_size_init(file_size, inode); 996 return rc; 997} 998 999void 1000ecryptfs_write_header_metadata(char *virt, 1001 struct ecryptfs_crypt_stat *crypt_stat, 1002 size_t *written) 1003{ 1004 u32 header_extent_size; 1005 u16 num_header_extents_at_front; 1006 1007 header_extent_size = (u32)crypt_stat->extent_size; 1008 num_header_extents_at_front = 1009 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 1010 put_unaligned_be32(header_extent_size, virt); 1011 virt += 4; 1012 put_unaligned_be16(num_header_extents_at_front, virt); 1013 (*written) = 6; 1014} 1015 1016struct kmem_cache *ecryptfs_header_cache; 1017 1018/** 1019 * ecryptfs_write_headers_virt 1020 * @page_virt: The virtual address to write the headers to 1021 * @max: The size of memory allocated at page_virt 1022 * @size: Set to the number of bytes written by this function 1023 * @crypt_stat: The cryptographic context 1024 * @ecryptfs_dentry: The eCryptfs dentry 1025 * 1026 * Format version: 1 1027 * 1028 * Header Extent: 1029 * Octets 0-7: Unencrypted file size (big-endian) 1030 * Octets 8-15: eCryptfs special marker 1031 * Octets 16-19: Flags 1032 * Octet 16: File format version number (between 0 and 255) 1033 * Octets 17-18: Reserved 1034 * Octet 19: Bit 1 (lsb): Reserved 1035 * Bit 2: Encrypted? 1036 * Bits 3-8: Reserved 1037 * Octets 20-23: Header extent size (big-endian) 1038 * Octets 24-25: Number of header extents at front of file 1039 * (big-endian) 1040 * Octet 26: Begin RFC 2440 authentication token packet set 1041 * Data Extent 0: 1042 * Lower data (CBC encrypted) 1043 * Data Extent 1: 1044 * Lower data (CBC encrypted) 1045 * ... 1046 * 1047 * Returns zero on success 1048 */ 1049static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1050 size_t *size, 1051 struct ecryptfs_crypt_stat *crypt_stat, 1052 struct dentry *ecryptfs_dentry) 1053{ 1054 int rc; 1055 size_t written; 1056 size_t offset; 1057 1058 offset = ECRYPTFS_FILE_SIZE_BYTES; 1059 write_ecryptfs_marker((page_virt + offset), &written); 1060 offset += written; 1061 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 1062 &written); 1063 offset += written; 1064 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1065 &written); 1066 offset += written; 1067 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1068 ecryptfs_dentry, &written, 1069 max - offset); 1070 if (rc) 1071 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1072 "set; rc = [%d]\n", rc); 1073 if (size) { 1074 offset += written; 1075 *size = offset; 1076 } 1077 return rc; 1078} 1079 1080static int 1081ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, 1082 char *virt, size_t virt_len) 1083{ 1084 int rc; 1085 1086 rc = ecryptfs_write_lower(ecryptfs_inode, virt, 1087 0, virt_len); 1088 if (rc < 0) 1089 printk(KERN_ERR "%s: Error attempting to write header " 1090 "information to lower file; rc = [%d]\n", __func__, rc); 1091 else 1092 rc = 0; 1093 return rc; 1094} 1095 1096static int 1097ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1098 struct inode *ecryptfs_inode, 1099 char *page_virt, size_t size) 1100{ 1101 int rc; 1102 struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry); 1103 struct inode *lower_inode = d_inode(lower_dentry); 1104 1105 if (!(lower_inode->i_opflags & IOP_XATTR)) { 1106 rc = -EOPNOTSUPP; 1107 goto out; 1108 } 1109 1110 inode_lock(lower_inode); 1111 rc = __vfs_setxattr(lower_dentry, lower_inode, ECRYPTFS_XATTR_NAME, 1112 page_virt, size, 0); 1113 if (!rc && ecryptfs_inode) 1114 fsstack_copy_attr_all(ecryptfs_inode, lower_inode); 1115 inode_unlock(lower_inode); 1116out: 1117 return rc; 1118} 1119 1120static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1121 unsigned int order) 1122{ 1123 struct page *page; 1124 1125 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1126 if (page) 1127 return (unsigned long) page_address(page); 1128 return 0; 1129} 1130 1131/** 1132 * ecryptfs_write_metadata 1133 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative 1134 * @ecryptfs_inode: The newly created eCryptfs inode 1135 * 1136 * Write the file headers out. This will likely involve a userspace 1137 * callout, in which the session key is encrypted with one or more 1138 * public keys and/or the passphrase necessary to do the encryption is 1139 * retrieved via a prompt. Exactly what happens at this point should 1140 * be policy-dependent. 1141 * 1142 * Returns zero on success; non-zero on error 1143 */ 1144int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, 1145 struct inode *ecryptfs_inode) 1146{ 1147 struct ecryptfs_crypt_stat *crypt_stat = 1148 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1149 unsigned int order; 1150 char *virt; 1151 size_t virt_len; 1152 size_t size = 0; 1153 int rc = 0; 1154 1155 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1156 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1157 printk(KERN_ERR "Key is invalid; bailing out\n"); 1158 rc = -EINVAL; 1159 goto out; 1160 } 1161 } else { 1162 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1163 __func__); 1164 rc = -EINVAL; 1165 goto out; 1166 } 1167 virt_len = crypt_stat->metadata_size; 1168 order = get_order(virt_len); 1169 /* Released in this function */ 1170 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1171 if (!virt) { 1172 printk(KERN_ERR "%s: Out of memory\n", __func__); 1173 rc = -ENOMEM; 1174 goto out; 1175 } 1176 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ 1177 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1178 ecryptfs_dentry); 1179 if (unlikely(rc)) { 1180 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1181 __func__, rc); 1182 goto out_free; 1183 } 1184 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1185 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode, 1186 virt, size); 1187 else 1188 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, 1189 virt_len); 1190 if (rc) { 1191 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1192 "rc = [%d]\n", __func__, rc); 1193 goto out_free; 1194 } 1195out_free: 1196 free_pages((unsigned long)virt, order); 1197out: 1198 return rc; 1199} 1200 1201#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1202#define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1203static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1204 char *virt, int *bytes_read, 1205 int validate_header_size) 1206{ 1207 int rc = 0; 1208 u32 header_extent_size; 1209 u16 num_header_extents_at_front; 1210 1211 header_extent_size = get_unaligned_be32(virt); 1212 virt += sizeof(__be32); 1213 num_header_extents_at_front = get_unaligned_be16(virt); 1214 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1215 * (size_t)header_extent_size)); 1216 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1217 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1218 && (crypt_stat->metadata_size 1219 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1220 rc = -EINVAL; 1221 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1222 crypt_stat->metadata_size); 1223 } 1224 return rc; 1225} 1226 1227/** 1228 * set_default_header_data 1229 * @crypt_stat: The cryptographic context 1230 * 1231 * For version 0 file format; this function is only for backwards 1232 * compatibility for files created with the prior versions of 1233 * eCryptfs. 1234 */ 1235static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1236{ 1237 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1238} 1239 1240void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) 1241{ 1242 struct ecryptfs_mount_crypt_stat *mount_crypt_stat; 1243 struct ecryptfs_crypt_stat *crypt_stat; 1244 u64 file_size; 1245 1246 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; 1247 mount_crypt_stat = 1248 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; 1249 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { 1250 file_size = i_size_read(ecryptfs_inode_to_lower(inode)); 1251 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1252 file_size += crypt_stat->metadata_size; 1253 } else 1254 file_size = get_unaligned_be64(page_virt); 1255 i_size_write(inode, (loff_t)file_size); 1256 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; 1257} 1258 1259/** 1260 * ecryptfs_read_headers_virt 1261 * @page_virt: The virtual address into which to read the headers 1262 * @crypt_stat: The cryptographic context 1263 * @ecryptfs_dentry: The eCryptfs dentry 1264 * @validate_header_size: Whether to validate the header size while reading 1265 * 1266 * Read/parse the header data. The header format is detailed in the 1267 * comment block for the ecryptfs_write_headers_virt() function. 1268 * 1269 * Returns zero on success 1270 */ 1271static int ecryptfs_read_headers_virt(char *page_virt, 1272 struct ecryptfs_crypt_stat *crypt_stat, 1273 struct dentry *ecryptfs_dentry, 1274 int validate_header_size) 1275{ 1276 int rc = 0; 1277 int offset; 1278 int bytes_read; 1279 1280 ecryptfs_set_default_sizes(crypt_stat); 1281 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1282 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1283 offset = ECRYPTFS_FILE_SIZE_BYTES; 1284 rc = ecryptfs_validate_marker(page_virt + offset); 1285 if (rc) 1286 goto out; 1287 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) 1288 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry)); 1289 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1290 ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read); 1291 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1292 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1293 "file version [%d] is supported by this " 1294 "version of eCryptfs\n", 1295 crypt_stat->file_version, 1296 ECRYPTFS_SUPPORTED_FILE_VERSION); 1297 rc = -EINVAL; 1298 goto out; 1299 } 1300 offset += bytes_read; 1301 if (crypt_stat->file_version >= 1) { 1302 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1303 &bytes_read, validate_header_size); 1304 if (rc) { 1305 ecryptfs_printk(KERN_WARNING, "Error reading header " 1306 "metadata; rc = [%d]\n", rc); 1307 } 1308 offset += bytes_read; 1309 } else 1310 set_default_header_data(crypt_stat); 1311 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1312 ecryptfs_dentry); 1313out: 1314 return rc; 1315} 1316 1317/** 1318 * ecryptfs_read_xattr_region 1319 * @page_virt: The vitual address into which to read the xattr data 1320 * @ecryptfs_inode: The eCryptfs inode 1321 * 1322 * Attempts to read the crypto metadata from the extended attribute 1323 * region of the lower file. 1324 * 1325 * Returns zero on success; non-zero on error 1326 */ 1327int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1328{ 1329 struct dentry *lower_dentry = 1330 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry; 1331 ssize_t size; 1332 int rc = 0; 1333 1334 size = ecryptfs_getxattr_lower(lower_dentry, 1335 ecryptfs_inode_to_lower(ecryptfs_inode), 1336 ECRYPTFS_XATTR_NAME, 1337 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1338 if (size < 0) { 1339 if (unlikely(ecryptfs_verbosity > 0)) 1340 printk(KERN_INFO "Error attempting to read the [%s] " 1341 "xattr from the lower file; return value = " 1342 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1343 rc = -EINVAL; 1344 goto out; 1345 } 1346out: 1347 return rc; 1348} 1349 1350int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, 1351 struct inode *inode) 1352{ 1353 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1354 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1355 int rc; 1356 1357 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), 1358 ecryptfs_inode_to_lower(inode), 1359 ECRYPTFS_XATTR_NAME, file_size, 1360 ECRYPTFS_SIZE_AND_MARKER_BYTES); 1361 if (rc < 0) 1362 return rc; 1363 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1364 return -EINVAL; 1365 rc = ecryptfs_validate_marker(marker); 1366 if (!rc) 1367 ecryptfs_i_size_init(file_size, inode); 1368 return rc; 1369} 1370 1371/** 1372 * ecryptfs_read_metadata 1373 * 1374 * Common entry point for reading file metadata. From here, we could 1375 * retrieve the header information from the header region of the file, 1376 * the xattr region of the file, or some other repository that is 1377 * stored separately from the file itself. The current implementation 1378 * supports retrieving the metadata information from the file contents 1379 * and from the xattr region. 1380 * 1381 * Returns zero if valid headers found and parsed; non-zero otherwise 1382 */ 1383int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1384{ 1385 int rc; 1386 char *page_virt; 1387 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry); 1388 struct ecryptfs_crypt_stat *crypt_stat = 1389 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1390 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1391 &ecryptfs_superblock_to_private( 1392 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1393 1394 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1395 mount_crypt_stat); 1396 /* Read the first page from the underlying file */ 1397 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); 1398 if (!page_virt) { 1399 rc = -ENOMEM; 1400 goto out; 1401 } 1402 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1403 ecryptfs_inode); 1404 if (rc >= 0) 1405 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1406 ecryptfs_dentry, 1407 ECRYPTFS_VALIDATE_HEADER_SIZE); 1408 if (rc) { 1409 /* metadata is not in the file header, so try xattrs */ 1410 memset(page_virt, 0, PAGE_SIZE); 1411 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1412 if (rc) { 1413 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1414 "file header region or xattr region, inode %lu\n", 1415 ecryptfs_inode->i_ino); 1416 rc = -EINVAL; 1417 goto out; 1418 } 1419 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1420 ecryptfs_dentry, 1421 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1422 if (rc) { 1423 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1424 "file xattr region either, inode %lu\n", 1425 ecryptfs_inode->i_ino); 1426 rc = -EINVAL; 1427 } 1428 if (crypt_stat->mount_crypt_stat->flags 1429 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1430 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1431 } else { 1432 printk(KERN_WARNING "Attempt to access file with " 1433 "crypto metadata only in the extended attribute " 1434 "region, but eCryptfs was mounted without " 1435 "xattr support enabled. eCryptfs will not treat " 1436 "this like an encrypted file, inode %lu\n", 1437 ecryptfs_inode->i_ino); 1438 rc = -EINVAL; 1439 } 1440 } 1441out: 1442 if (page_virt) { 1443 memset(page_virt, 0, PAGE_SIZE); 1444 kmem_cache_free(ecryptfs_header_cache, page_virt); 1445 } 1446 return rc; 1447} 1448 1449/** 1450 * ecryptfs_encrypt_filename - encrypt filename 1451 * 1452 * CBC-encrypts the filename. We do not want to encrypt the same 1453 * filename with the same key and IV, which may happen with hard 1454 * links, so we prepend random bits to each filename. 1455 * 1456 * Returns zero on success; non-zero otherwise 1457 */ 1458static int 1459ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1460 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1461{ 1462 int rc = 0; 1463 1464 filename->encrypted_filename = NULL; 1465 filename->encrypted_filename_size = 0; 1466 if (mount_crypt_stat && (mount_crypt_stat->flags 1467 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1468 size_t packet_size; 1469 size_t remaining_bytes; 1470 1471 rc = ecryptfs_write_tag_70_packet( 1472 NULL, NULL, 1473 &filename->encrypted_filename_size, 1474 mount_crypt_stat, NULL, 1475 filename->filename_size); 1476 if (rc) { 1477 printk(KERN_ERR "%s: Error attempting to get packet " 1478 "size for tag 72; rc = [%d]\n", __func__, 1479 rc); 1480 filename->encrypted_filename_size = 0; 1481 goto out; 1482 } 1483 filename->encrypted_filename = 1484 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1485 if (!filename->encrypted_filename) { 1486 rc = -ENOMEM; 1487 goto out; 1488 } 1489 remaining_bytes = filename->encrypted_filename_size; 1490 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1491 &remaining_bytes, 1492 &packet_size, 1493 mount_crypt_stat, 1494 filename->filename, 1495 filename->filename_size); 1496 if (rc) { 1497 printk(KERN_ERR "%s: Error attempting to generate " 1498 "tag 70 packet; rc = [%d]\n", __func__, 1499 rc); 1500 kfree(filename->encrypted_filename); 1501 filename->encrypted_filename = NULL; 1502 filename->encrypted_filename_size = 0; 1503 goto out; 1504 } 1505 filename->encrypted_filename_size = packet_size; 1506 } else { 1507 printk(KERN_ERR "%s: No support for requested filename " 1508 "encryption method in this release\n", __func__); 1509 rc = -EOPNOTSUPP; 1510 goto out; 1511 } 1512out: 1513 return rc; 1514} 1515 1516static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1517 const char *name, size_t name_size) 1518{ 1519 int rc = 0; 1520 1521 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1522 if (!(*copied_name)) { 1523 rc = -ENOMEM; 1524 goto out; 1525 } 1526 memcpy((void *)(*copied_name), (void *)name, name_size); 1527 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1528 * in printing out the 1529 * string in debug 1530 * messages */ 1531 (*copied_name_size) = name_size; 1532out: 1533 return rc; 1534} 1535 1536/** 1537 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1538 * @key_tfm: Crypto context for key material, set by this function 1539 * @cipher_name: Name of the cipher 1540 * @key_size: Size of the key in bytes 1541 * 1542 * Returns zero on success. Any crypto_tfm structs allocated here 1543 * should be released by other functions, such as on a superblock put 1544 * event, regardless of whether this function succeeds for fails. 1545 */ 1546static int 1547ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm, 1548 char *cipher_name, size_t *key_size) 1549{ 1550 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1551 char *full_alg_name = NULL; 1552 int rc; 1553 1554 *key_tfm = NULL; 1555 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1556 rc = -EINVAL; 1557 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1558 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1559 goto out; 1560 } 1561 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1562 "ecb"); 1563 if (rc) 1564 goto out; 1565 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1566 if (IS_ERR(*key_tfm)) { 1567 rc = PTR_ERR(*key_tfm); 1568 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1569 "[%s]; rc = [%d]\n", full_alg_name, rc); 1570 goto out; 1571 } 1572 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 1573 if (*key_size == 0) 1574 *key_size = crypto_skcipher_max_keysize(*key_tfm); 1575 get_random_bytes(dummy_key, *key_size); 1576 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size); 1577 if (rc) { 1578 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1579 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1580 rc); 1581 rc = -EINVAL; 1582 goto out; 1583 } 1584out: 1585 kfree(full_alg_name); 1586 return rc; 1587} 1588 1589struct kmem_cache *ecryptfs_key_tfm_cache; 1590static struct list_head key_tfm_list; 1591struct mutex key_tfm_list_mutex; 1592 1593int __init ecryptfs_init_crypto(void) 1594{ 1595 mutex_init(&key_tfm_list_mutex); 1596 INIT_LIST_HEAD(&key_tfm_list); 1597 return 0; 1598} 1599 1600/** 1601 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1602 * 1603 * Called only at module unload time 1604 */ 1605int ecryptfs_destroy_crypto(void) 1606{ 1607 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1608 1609 mutex_lock(&key_tfm_list_mutex); 1610 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1611 key_tfm_list) { 1612 list_del(&key_tfm->key_tfm_list); 1613 crypto_free_skcipher(key_tfm->key_tfm); 1614 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1615 } 1616 mutex_unlock(&key_tfm_list_mutex); 1617 return 0; 1618} 1619 1620int 1621ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1622 size_t key_size) 1623{ 1624 struct ecryptfs_key_tfm *tmp_tfm; 1625 int rc = 0; 1626 1627 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1628 1629 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1630 if (key_tfm) 1631 (*key_tfm) = tmp_tfm; 1632 if (!tmp_tfm) { 1633 rc = -ENOMEM; 1634 goto out; 1635 } 1636 mutex_init(&tmp_tfm->key_tfm_mutex); 1637 strncpy(tmp_tfm->cipher_name, cipher_name, 1638 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1639 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1640 tmp_tfm->key_size = key_size; 1641 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1642 tmp_tfm->cipher_name, 1643 &tmp_tfm->key_size); 1644 if (rc) { 1645 printk(KERN_ERR "Error attempting to initialize key TFM " 1646 "cipher with name = [%s]; rc = [%d]\n", 1647 tmp_tfm->cipher_name, rc); 1648 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1649 if (key_tfm) 1650 (*key_tfm) = NULL; 1651 goto out; 1652 } 1653 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1654out: 1655 return rc; 1656} 1657 1658/** 1659 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1660 * @cipher_name: the name of the cipher to search for 1661 * @key_tfm: set to corresponding tfm if found 1662 * 1663 * Searches for cached key_tfm matching @cipher_name 1664 * Must be called with &key_tfm_list_mutex held 1665 * Returns 1 if found, with @key_tfm set 1666 * Returns 0 if not found, with @key_tfm set to NULL 1667 */ 1668int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1669{ 1670 struct ecryptfs_key_tfm *tmp_key_tfm; 1671 1672 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1673 1674 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1675 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1676 if (key_tfm) 1677 (*key_tfm) = tmp_key_tfm; 1678 return 1; 1679 } 1680 } 1681 if (key_tfm) 1682 (*key_tfm) = NULL; 1683 return 0; 1684} 1685 1686/** 1687 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1688 * 1689 * @tfm: set to cached tfm found, or new tfm created 1690 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1691 * @cipher_name: the name of the cipher to search for and/or add 1692 * 1693 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1694 * Searches for cached item first, and creates new if not found. 1695 * Returns 0 on success, non-zero if adding new cipher failed 1696 */ 1697int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm, 1698 struct mutex **tfm_mutex, 1699 char *cipher_name) 1700{ 1701 struct ecryptfs_key_tfm *key_tfm; 1702 int rc = 0; 1703 1704 (*tfm) = NULL; 1705 (*tfm_mutex) = NULL; 1706 1707 mutex_lock(&key_tfm_list_mutex); 1708 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1709 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1710 if (rc) { 1711 printk(KERN_ERR "Error adding new key_tfm to list; " 1712 "rc = [%d]\n", rc); 1713 goto out; 1714 } 1715 } 1716 (*tfm) = key_tfm->key_tfm; 1717 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1718out: 1719 mutex_unlock(&key_tfm_list_mutex); 1720 return rc; 1721} 1722 1723/* 64 characters forming a 6-bit target field */ 1724static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1725 "EFGHIJKLMNOPQRST" 1726 "UVWXYZabcdefghij" 1727 "klmnopqrstuvwxyz"); 1728 1729/* We could either offset on every reverse map or just pad some 0x00's 1730 * at the front here */ 1731static const unsigned char filename_rev_map[256] = { 1732 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1733 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1734 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1735 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1736 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1737 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1738 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1739 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1740 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1741 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1742 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1743 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1744 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1745 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1746 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1747 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ 1748}; 1749 1750/** 1751 * ecryptfs_encode_for_filename 1752 * @dst: Destination location for encoded filename 1753 * @dst_size: Size of the encoded filename in bytes 1754 * @src: Source location for the filename to encode 1755 * @src_size: Size of the source in bytes 1756 */ 1757static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1758 unsigned char *src, size_t src_size) 1759{ 1760 size_t num_blocks; 1761 size_t block_num = 0; 1762 size_t dst_offset = 0; 1763 unsigned char last_block[3]; 1764 1765 if (src_size == 0) { 1766 (*dst_size) = 0; 1767 goto out; 1768 } 1769 num_blocks = (src_size / 3); 1770 if ((src_size % 3) == 0) { 1771 memcpy(last_block, (&src[src_size - 3]), 3); 1772 } else { 1773 num_blocks++; 1774 last_block[2] = 0x00; 1775 switch (src_size % 3) { 1776 case 1: 1777 last_block[0] = src[src_size - 1]; 1778 last_block[1] = 0x00; 1779 break; 1780 case 2: 1781 last_block[0] = src[src_size - 2]; 1782 last_block[1] = src[src_size - 1]; 1783 } 1784 } 1785 (*dst_size) = (num_blocks * 4); 1786 if (!dst) 1787 goto out; 1788 while (block_num < num_blocks) { 1789 unsigned char *src_block; 1790 unsigned char dst_block[4]; 1791 1792 if (block_num == (num_blocks - 1)) 1793 src_block = last_block; 1794 else 1795 src_block = &src[block_num * 3]; 1796 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 1797 dst_block[1] = (((src_block[0] << 4) & 0x30) 1798 | ((src_block[1] >> 4) & 0x0F)); 1799 dst_block[2] = (((src_block[1] << 2) & 0x3C) 1800 | ((src_block[2] >> 6) & 0x03)); 1801 dst_block[3] = (src_block[2] & 0x3F); 1802 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 1803 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 1804 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 1805 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 1806 block_num++; 1807 } 1808out: 1809 return; 1810} 1811 1812static size_t ecryptfs_max_decoded_size(size_t encoded_size) 1813{ 1814 /* Not exact; conservatively long. Every block of 4 1815 * encoded characters decodes into a block of 3 1816 * decoded characters. This segment of code provides 1817 * the caller with the maximum amount of allocated 1818 * space that @dst will need to point to in a 1819 * subsequent call. */ 1820 return ((encoded_size + 1) * 3) / 4; 1821} 1822 1823/** 1824 * ecryptfs_decode_from_filename 1825 * @dst: If NULL, this function only sets @dst_size and returns. If 1826 * non-NULL, this function decodes the encoded octets in @src 1827 * into the memory that @dst points to. 1828 * @dst_size: Set to the size of the decoded string. 1829 * @src: The encoded set of octets to decode. 1830 * @src_size: The size of the encoded set of octets to decode. 1831 */ 1832static void 1833ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 1834 const unsigned char *src, size_t src_size) 1835{ 1836 u8 current_bit_offset = 0; 1837 size_t src_byte_offset = 0; 1838 size_t dst_byte_offset = 0; 1839 1840 if (!dst) { 1841 (*dst_size) = ecryptfs_max_decoded_size(src_size); 1842 goto out; 1843 } 1844 while (src_byte_offset < src_size) { 1845 unsigned char src_byte = 1846 filename_rev_map[(int)src[src_byte_offset]]; 1847 1848 switch (current_bit_offset) { 1849 case 0: 1850 dst[dst_byte_offset] = (src_byte << 2); 1851 current_bit_offset = 6; 1852 break; 1853 case 6: 1854 dst[dst_byte_offset++] |= (src_byte >> 4); 1855 dst[dst_byte_offset] = ((src_byte & 0xF) 1856 << 4); 1857 current_bit_offset = 4; 1858 break; 1859 case 4: 1860 dst[dst_byte_offset++] |= (src_byte >> 2); 1861 dst[dst_byte_offset] = (src_byte << 6); 1862 current_bit_offset = 2; 1863 break; 1864 case 2: 1865 dst[dst_byte_offset++] |= (src_byte); 1866 current_bit_offset = 0; 1867 break; 1868 } 1869 src_byte_offset++; 1870 } 1871 (*dst_size) = dst_byte_offset; 1872out: 1873 return; 1874} 1875 1876/** 1877 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 1878 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 1879 * @name: The plaintext name 1880 * @length: The length of the plaintext 1881 * @encoded_name: The encypted name 1882 * 1883 * Encrypts and encodes a filename into something that constitutes a 1884 * valid filename for a filesystem, with printable characters. 1885 * 1886 * We assume that we have a properly initialized crypto context, 1887 * pointed to by crypt_stat->tfm. 1888 * 1889 * Returns zero on success; non-zero on otherwise 1890 */ 1891int ecryptfs_encrypt_and_encode_filename( 1892 char **encoded_name, 1893 size_t *encoded_name_size, 1894 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 1895 const char *name, size_t name_size) 1896{ 1897 size_t encoded_name_no_prefix_size; 1898 int rc = 0; 1899 1900 (*encoded_name) = NULL; 1901 (*encoded_name_size) = 0; 1902 if (mount_crypt_stat && (mount_crypt_stat->flags 1903 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 1904 struct ecryptfs_filename *filename; 1905 1906 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 1907 if (!filename) { 1908 rc = -ENOMEM; 1909 goto out; 1910 } 1911 filename->filename = (char *)name; 1912 filename->filename_size = name_size; 1913 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat); 1914 if (rc) { 1915 printk(KERN_ERR "%s: Error attempting to encrypt " 1916 "filename; rc = [%d]\n", __func__, rc); 1917 kfree(filename); 1918 goto out; 1919 } 1920 ecryptfs_encode_for_filename( 1921 NULL, &encoded_name_no_prefix_size, 1922 filename->encrypted_filename, 1923 filename->encrypted_filename_size); 1924 if (mount_crypt_stat 1925 && (mount_crypt_stat->flags 1926 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) 1927 (*encoded_name_size) = 1928 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1929 + encoded_name_no_prefix_size); 1930 else 1931 (*encoded_name_size) = 1932 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1933 + encoded_name_no_prefix_size); 1934 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 1935 if (!(*encoded_name)) { 1936 rc = -ENOMEM; 1937 kfree(filename->encrypted_filename); 1938 kfree(filename); 1939 goto out; 1940 } 1941 if (mount_crypt_stat 1942 && (mount_crypt_stat->flags 1943 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1944 memcpy((*encoded_name), 1945 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 1946 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 1947 ecryptfs_encode_for_filename( 1948 ((*encoded_name) 1949 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 1950 &encoded_name_no_prefix_size, 1951 filename->encrypted_filename, 1952 filename->encrypted_filename_size); 1953 (*encoded_name_size) = 1954 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1955 + encoded_name_no_prefix_size); 1956 (*encoded_name)[(*encoded_name_size)] = '\0'; 1957 } else { 1958 rc = -EOPNOTSUPP; 1959 } 1960 if (rc) { 1961 printk(KERN_ERR "%s: Error attempting to encode " 1962 "encrypted filename; rc = [%d]\n", __func__, 1963 rc); 1964 kfree((*encoded_name)); 1965 (*encoded_name) = NULL; 1966 (*encoded_name_size) = 0; 1967 } 1968 kfree(filename->encrypted_filename); 1969 kfree(filename); 1970 } else { 1971 rc = ecryptfs_copy_filename(encoded_name, 1972 encoded_name_size, 1973 name, name_size); 1974 } 1975out: 1976 return rc; 1977} 1978 1979static bool is_dot_dotdot(const char *name, size_t name_size) 1980{ 1981 if (name_size == 1 && name[0] == '.') 1982 return true; 1983 else if (name_size == 2 && name[0] == '.' && name[1] == '.') 1984 return true; 1985 1986 return false; 1987} 1988 1989/** 1990 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 1991 * @plaintext_name: The plaintext name 1992 * @plaintext_name_size: The plaintext name size 1993 * @ecryptfs_dir_dentry: eCryptfs directory dentry 1994 * @name: The filename in cipher text 1995 * @name_size: The cipher text name size 1996 * 1997 * Decrypts and decodes the filename. 1998 * 1999 * Returns zero on error; non-zero otherwise 2000 */ 2001int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2002 size_t *plaintext_name_size, 2003 struct super_block *sb, 2004 const char *name, size_t name_size) 2005{ 2006 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2007 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; 2008 char *decoded_name; 2009 size_t decoded_name_size; 2010 size_t packet_size; 2011 int rc = 0; 2012 2013 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) && 2014 !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) { 2015 if (is_dot_dotdot(name, name_size)) { 2016 rc = ecryptfs_copy_filename(plaintext_name, 2017 plaintext_name_size, 2018 name, name_size); 2019 goto out; 2020 } 2021 2022 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE || 2023 strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2024 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) { 2025 rc = -EINVAL; 2026 goto out; 2027 } 2028 2029 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2030 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2031 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2032 name, name_size); 2033 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2034 if (!decoded_name) { 2035 rc = -ENOMEM; 2036 goto out; 2037 } 2038 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2039 name, name_size); 2040 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2041 plaintext_name_size, 2042 &packet_size, 2043 mount_crypt_stat, 2044 decoded_name, 2045 decoded_name_size); 2046 if (rc) { 2047 ecryptfs_printk(KERN_DEBUG, 2048 "%s: Could not parse tag 70 packet from filename\n", 2049 __func__); 2050 goto out_free; 2051 } 2052 } else { 2053 rc = ecryptfs_copy_filename(plaintext_name, 2054 plaintext_name_size, 2055 name, name_size); 2056 goto out; 2057 } 2058out_free: 2059 kfree(decoded_name); 2060out: 2061 return rc; 2062} 2063 2064#define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143 2065 2066int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, 2067 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 2068{ 2069 struct crypto_skcipher *tfm; 2070 struct mutex *tfm_mutex; 2071 size_t cipher_blocksize; 2072 int rc; 2073 2074 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 2075 (*namelen) = lower_namelen; 2076 return 0; 2077 } 2078 2079 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex, 2080 mount_crypt_stat->global_default_fn_cipher_name); 2081 if (unlikely(rc)) { 2082 (*namelen) = 0; 2083 return rc; 2084 } 2085 2086 mutex_lock(tfm_mutex); 2087 cipher_blocksize = crypto_skcipher_blocksize(tfm); 2088 mutex_unlock(tfm_mutex); 2089 2090 /* Return an exact amount for the common cases */ 2091 if (lower_namelen == NAME_MAX 2092 && (cipher_blocksize == 8 || cipher_blocksize == 16)) { 2093 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; 2094 return 0; 2095 } 2096 2097 /* Return a safe estimate for the uncommon cases */ 2098 (*namelen) = lower_namelen; 2099 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2100 /* Since this is the max decoded size, subtract 1 "decoded block" len */ 2101 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3; 2102 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; 2103 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; 2104 /* Worst case is that the filename is padded nearly a full block size */ 2105 (*namelen) -= cipher_blocksize - 1; 2106 2107 if ((*namelen) < 0) 2108 (*namelen) = 0; 2109 2110 return 0; 2111} 2112