1// SPDX-License-Identifier: GPL-2.0-only 2/****************************************************************************** 3******************************************************************************* 4** 5** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 6** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved. 7** 8** 9******************************************************************************* 10******************************************************************************/ 11 12/* 13 * lowcomms.c 14 * 15 * This is the "low-level" comms layer. 16 * 17 * It is responsible for sending/receiving messages 18 * from other nodes in the cluster. 19 * 20 * Cluster nodes are referred to by their nodeids. nodeids are 21 * simply 32 bit numbers to the locking module - if they need to 22 * be expanded for the cluster infrastructure then that is its 23 * responsibility. It is this layer's 24 * responsibility to resolve these into IP address or 25 * whatever it needs for inter-node communication. 26 * 27 * The comms level is two kernel threads that deal mainly with 28 * the receiving of messages from other nodes and passing them 29 * up to the mid-level comms layer (which understands the 30 * message format) for execution by the locking core, and 31 * a send thread which does all the setting up of connections 32 * to remote nodes and the sending of data. Threads are not allowed 33 * to send their own data because it may cause them to wait in times 34 * of high load. Also, this way, the sending thread can collect together 35 * messages bound for one node and send them in one block. 36 * 37 * lowcomms will choose to use either TCP or SCTP as its transport layer 38 * depending on the configuration variable 'protocol'. This should be set 39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a 40 * cluster-wide mechanism as it must be the same on all nodes of the cluster 41 * for the DLM to function. 42 * 43 */ 44 45#include <asm/ioctls.h> 46#include <net/sock.h> 47#include <net/tcp.h> 48#include <linux/pagemap.h> 49#include <linux/file.h> 50#include <linux/mutex.h> 51#include <linux/sctp.h> 52#include <linux/slab.h> 53#include <net/sctp/sctp.h> 54#include <net/ipv6.h> 55 56#include "dlm_internal.h" 57#include "lowcomms.h" 58#include "midcomms.h" 59#include "config.h" 60 61#define NEEDED_RMEM (4*1024*1024) 62#define CONN_HASH_SIZE 32 63 64/* Number of messages to send before rescheduling */ 65#define MAX_SEND_MSG_COUNT 25 66#define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000) 67 68struct connection { 69 struct socket *sock; /* NULL if not connected */ 70 uint32_t nodeid; /* So we know who we are in the list */ 71 struct mutex sock_mutex; 72 unsigned long flags; 73#define CF_READ_PENDING 1 74#define CF_WRITE_PENDING 2 75#define CF_INIT_PENDING 4 76#define CF_IS_OTHERCON 5 77#define CF_CLOSE 6 78#define CF_APP_LIMITED 7 79#define CF_CLOSING 8 80#define CF_SHUTDOWN 9 81 struct list_head writequeue; /* List of outgoing writequeue_entries */ 82 spinlock_t writequeue_lock; 83 int (*rx_action) (struct connection *); /* What to do when active */ 84 void (*connect_action) (struct connection *); /* What to do to connect */ 85 void (*shutdown_action)(struct connection *con); /* What to do to shutdown */ 86 int retries; 87#define MAX_CONNECT_RETRIES 3 88 struct hlist_node list; 89 struct connection *othercon; 90 struct work_struct rwork; /* Receive workqueue */ 91 struct work_struct swork; /* Send workqueue */ 92 wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */ 93 unsigned char *rx_buf; 94 int rx_buflen; 95 int rx_leftover; 96 struct rcu_head rcu; 97}; 98#define sock2con(x) ((struct connection *)(x)->sk_user_data) 99 100/* An entry waiting to be sent */ 101struct writequeue_entry { 102 struct list_head list; 103 struct page *page; 104 int offset; 105 int len; 106 int end; 107 int users; 108 struct connection *con; 109}; 110 111struct dlm_node_addr { 112 struct list_head list; 113 int nodeid; 114 int addr_count; 115 int curr_addr_index; 116 struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT]; 117}; 118 119static struct listen_sock_callbacks { 120 void (*sk_error_report)(struct sock *); 121 void (*sk_data_ready)(struct sock *); 122 void (*sk_state_change)(struct sock *); 123 void (*sk_write_space)(struct sock *); 124} listen_sock; 125 126static LIST_HEAD(dlm_node_addrs); 127static DEFINE_SPINLOCK(dlm_node_addrs_spin); 128 129static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT]; 130static int dlm_local_count; 131static int dlm_allow_conn; 132 133/* Work queues */ 134static struct workqueue_struct *recv_workqueue; 135static struct workqueue_struct *send_workqueue; 136 137static struct hlist_head connection_hash[CONN_HASH_SIZE]; 138static DEFINE_SPINLOCK(connections_lock); 139DEFINE_STATIC_SRCU(connections_srcu); 140 141static void process_recv_sockets(struct work_struct *work); 142static void process_send_sockets(struct work_struct *work); 143 144 145/* This is deliberately very simple because most clusters have simple 146 sequential nodeids, so we should be able to go straight to a connection 147 struct in the array */ 148static inline int nodeid_hash(int nodeid) 149{ 150 return nodeid & (CONN_HASH_SIZE-1); 151} 152 153static struct connection *__find_con(int nodeid) 154{ 155 int r, idx; 156 struct connection *con; 157 158 r = nodeid_hash(nodeid); 159 160 idx = srcu_read_lock(&connections_srcu); 161 hlist_for_each_entry_rcu(con, &connection_hash[r], list) { 162 if (con->nodeid == nodeid) { 163 srcu_read_unlock(&connections_srcu, idx); 164 return con; 165 } 166 } 167 srcu_read_unlock(&connections_srcu, idx); 168 169 return NULL; 170} 171 172/* 173 * If 'allocation' is zero then we don't attempt to create a new 174 * connection structure for this node. 175 */ 176static struct connection *nodeid2con(int nodeid, gfp_t alloc) 177{ 178 struct connection *con, *tmp; 179 int r; 180 181 con = __find_con(nodeid); 182 if (con || !alloc) 183 return con; 184 185 con = kzalloc(sizeof(*con), alloc); 186 if (!con) 187 return NULL; 188 189 con->rx_buflen = dlm_config.ci_buffer_size; 190 con->rx_buf = kmalloc(con->rx_buflen, GFP_NOFS); 191 if (!con->rx_buf) { 192 kfree(con); 193 return NULL; 194 } 195 196 con->nodeid = nodeid; 197 mutex_init(&con->sock_mutex); 198 INIT_LIST_HEAD(&con->writequeue); 199 spin_lock_init(&con->writequeue_lock); 200 INIT_WORK(&con->swork, process_send_sockets); 201 INIT_WORK(&con->rwork, process_recv_sockets); 202 init_waitqueue_head(&con->shutdown_wait); 203 204 /* Setup action pointers for child sockets */ 205 if (con->nodeid) { 206 struct connection *zerocon = __find_con(0); 207 208 con->connect_action = zerocon->connect_action; 209 if (!con->rx_action) 210 con->rx_action = zerocon->rx_action; 211 } 212 213 r = nodeid_hash(nodeid); 214 215 spin_lock(&connections_lock); 216 /* Because multiple workqueues/threads calls this function it can 217 * race on multiple cpu's. Instead of locking hot path __find_con() 218 * we just check in rare cases of recently added nodes again 219 * under protection of connections_lock. If this is the case we 220 * abort our connection creation and return the existing connection. 221 */ 222 tmp = __find_con(nodeid); 223 if (tmp) { 224 spin_unlock(&connections_lock); 225 kfree(con->rx_buf); 226 kfree(con); 227 return tmp; 228 } 229 230 hlist_add_head_rcu(&con->list, &connection_hash[r]); 231 spin_unlock(&connections_lock); 232 233 return con; 234} 235 236/* Loop round all connections */ 237static void foreach_conn(void (*conn_func)(struct connection *c)) 238{ 239 int i, idx; 240 struct connection *con; 241 242 idx = srcu_read_lock(&connections_srcu); 243 for (i = 0; i < CONN_HASH_SIZE; i++) { 244 hlist_for_each_entry_rcu(con, &connection_hash[i], list) 245 conn_func(con); 246 } 247 srcu_read_unlock(&connections_srcu, idx); 248} 249 250static struct dlm_node_addr *find_node_addr(int nodeid) 251{ 252 struct dlm_node_addr *na; 253 254 list_for_each_entry(na, &dlm_node_addrs, list) { 255 if (na->nodeid == nodeid) 256 return na; 257 } 258 return NULL; 259} 260 261static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y) 262{ 263 switch (x->ss_family) { 264 case AF_INET: { 265 struct sockaddr_in *sinx = (struct sockaddr_in *)x; 266 struct sockaddr_in *siny = (struct sockaddr_in *)y; 267 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr) 268 return 0; 269 if (sinx->sin_port != siny->sin_port) 270 return 0; 271 break; 272 } 273 case AF_INET6: { 274 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x; 275 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y; 276 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr)) 277 return 0; 278 if (sinx->sin6_port != siny->sin6_port) 279 return 0; 280 break; 281 } 282 default: 283 return 0; 284 } 285 return 1; 286} 287 288static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out, 289 struct sockaddr *sa_out, bool try_new_addr) 290{ 291 struct sockaddr_storage sas; 292 struct dlm_node_addr *na; 293 294 if (!dlm_local_count) 295 return -1; 296 297 spin_lock(&dlm_node_addrs_spin); 298 na = find_node_addr(nodeid); 299 if (na && na->addr_count) { 300 memcpy(&sas, na->addr[na->curr_addr_index], 301 sizeof(struct sockaddr_storage)); 302 303 if (try_new_addr) { 304 na->curr_addr_index++; 305 if (na->curr_addr_index == na->addr_count) 306 na->curr_addr_index = 0; 307 } 308 } 309 spin_unlock(&dlm_node_addrs_spin); 310 311 if (!na) 312 return -EEXIST; 313 314 if (!na->addr_count) 315 return -ENOENT; 316 317 if (sas_out) 318 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage)); 319 320 if (!sa_out) 321 return 0; 322 323 if (dlm_local_addr[0]->ss_family == AF_INET) { 324 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas; 325 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out; 326 ret4->sin_addr.s_addr = in4->sin_addr.s_addr; 327 } else { 328 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas; 329 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out; 330 ret6->sin6_addr = in6->sin6_addr; 331 } 332 333 return 0; 334} 335 336static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid) 337{ 338 struct dlm_node_addr *na; 339 int rv = -EEXIST; 340 int addr_i; 341 342 spin_lock(&dlm_node_addrs_spin); 343 list_for_each_entry(na, &dlm_node_addrs, list) { 344 if (!na->addr_count) 345 continue; 346 347 for (addr_i = 0; addr_i < na->addr_count; addr_i++) { 348 if (addr_compare(na->addr[addr_i], addr)) { 349 *nodeid = na->nodeid; 350 rv = 0; 351 goto unlock; 352 } 353 } 354 } 355unlock: 356 spin_unlock(&dlm_node_addrs_spin); 357 return rv; 358} 359 360int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len) 361{ 362 struct sockaddr_storage *new_addr; 363 struct dlm_node_addr *new_node, *na; 364 365 new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS); 366 if (!new_node) 367 return -ENOMEM; 368 369 new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS); 370 if (!new_addr) { 371 kfree(new_node); 372 return -ENOMEM; 373 } 374 375 memcpy(new_addr, addr, len); 376 377 spin_lock(&dlm_node_addrs_spin); 378 na = find_node_addr(nodeid); 379 if (!na) { 380 new_node->nodeid = nodeid; 381 new_node->addr[0] = new_addr; 382 new_node->addr_count = 1; 383 list_add(&new_node->list, &dlm_node_addrs); 384 spin_unlock(&dlm_node_addrs_spin); 385 return 0; 386 } 387 388 if (na->addr_count >= DLM_MAX_ADDR_COUNT) { 389 spin_unlock(&dlm_node_addrs_spin); 390 kfree(new_addr); 391 kfree(new_node); 392 return -ENOSPC; 393 } 394 395 na->addr[na->addr_count++] = new_addr; 396 spin_unlock(&dlm_node_addrs_spin); 397 kfree(new_node); 398 return 0; 399} 400 401/* Data available on socket or listen socket received a connect */ 402static void lowcomms_data_ready(struct sock *sk) 403{ 404 struct connection *con; 405 406 read_lock_bh(&sk->sk_callback_lock); 407 con = sock2con(sk); 408 if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags)) 409 queue_work(recv_workqueue, &con->rwork); 410 read_unlock_bh(&sk->sk_callback_lock); 411} 412 413static void lowcomms_write_space(struct sock *sk) 414{ 415 struct connection *con; 416 417 read_lock_bh(&sk->sk_callback_lock); 418 con = sock2con(sk); 419 if (!con) 420 goto out; 421 422 clear_bit(SOCK_NOSPACE, &con->sock->flags); 423 424 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) { 425 con->sock->sk->sk_write_pending--; 426 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags); 427 } 428 429 queue_work(send_workqueue, &con->swork); 430out: 431 read_unlock_bh(&sk->sk_callback_lock); 432} 433 434static inline void lowcomms_connect_sock(struct connection *con) 435{ 436 if (test_bit(CF_CLOSE, &con->flags)) 437 return; 438 queue_work(send_workqueue, &con->swork); 439 cond_resched(); 440} 441 442static void lowcomms_state_change(struct sock *sk) 443{ 444 /* SCTP layer is not calling sk_data_ready when the connection 445 * is done, so we catch the signal through here. Also, it 446 * doesn't switch socket state when entering shutdown, so we 447 * skip the write in that case. 448 */ 449 if (sk->sk_shutdown) { 450 if (sk->sk_shutdown == RCV_SHUTDOWN) 451 lowcomms_data_ready(sk); 452 } else if (sk->sk_state == TCP_ESTABLISHED) { 453 lowcomms_write_space(sk); 454 } 455} 456 457int dlm_lowcomms_connect_node(int nodeid) 458{ 459 struct connection *con; 460 461 if (nodeid == dlm_our_nodeid()) 462 return 0; 463 464 con = nodeid2con(nodeid, GFP_NOFS); 465 if (!con) 466 return -ENOMEM; 467 lowcomms_connect_sock(con); 468 return 0; 469} 470 471static void lowcomms_error_report(struct sock *sk) 472{ 473 struct connection *con; 474 void (*orig_report)(struct sock *) = NULL; 475 struct inet_sock *inet; 476 477 read_lock_bh(&sk->sk_callback_lock); 478 con = sock2con(sk); 479 if (con == NULL) 480 goto out; 481 482 orig_report = listen_sock.sk_error_report; 483 484 inet = inet_sk(sk); 485 switch (sk->sk_family) { 486 case AF_INET: 487 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 488 "sending to node %d at %pI4, dport %d, " 489 "sk_err=%d/%d\n", dlm_our_nodeid(), 490 con->nodeid, &inet->inet_daddr, 491 ntohs(inet->inet_dport), sk->sk_err, 492 sk->sk_err_soft); 493 break; 494#if IS_ENABLED(CONFIG_IPV6) 495 case AF_INET6: 496 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 497 "sending to node %d at %pI6c, " 498 "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(), 499 con->nodeid, &sk->sk_v6_daddr, 500 ntohs(inet->inet_dport), sk->sk_err, 501 sk->sk_err_soft); 502 break; 503#endif 504 default: 505 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 506 "invalid socket family %d set, " 507 "sk_err=%d/%d\n", dlm_our_nodeid(), 508 sk->sk_family, sk->sk_err, sk->sk_err_soft); 509 goto out; 510 } 511out: 512 read_unlock_bh(&sk->sk_callback_lock); 513 if (orig_report) 514 orig_report(sk); 515} 516 517/* Note: sk_callback_lock must be locked before calling this function. */ 518static void save_listen_callbacks(struct socket *sock) 519{ 520 struct sock *sk = sock->sk; 521 522 listen_sock.sk_data_ready = sk->sk_data_ready; 523 listen_sock.sk_state_change = sk->sk_state_change; 524 listen_sock.sk_write_space = sk->sk_write_space; 525 listen_sock.sk_error_report = sk->sk_error_report; 526} 527 528static void restore_callbacks(struct socket *sock) 529{ 530 struct sock *sk = sock->sk; 531 532 write_lock_bh(&sk->sk_callback_lock); 533 sk->sk_user_data = NULL; 534 sk->sk_data_ready = listen_sock.sk_data_ready; 535 sk->sk_state_change = listen_sock.sk_state_change; 536 sk->sk_write_space = listen_sock.sk_write_space; 537 sk->sk_error_report = listen_sock.sk_error_report; 538 write_unlock_bh(&sk->sk_callback_lock); 539} 540 541/* Make a socket active */ 542static void add_sock(struct socket *sock, struct connection *con) 543{ 544 struct sock *sk = sock->sk; 545 546 write_lock_bh(&sk->sk_callback_lock); 547 con->sock = sock; 548 549 sk->sk_user_data = con; 550 /* Install a data_ready callback */ 551 sk->sk_data_ready = lowcomms_data_ready; 552 sk->sk_write_space = lowcomms_write_space; 553 sk->sk_state_change = lowcomms_state_change; 554 sk->sk_allocation = GFP_NOFS; 555 sk->sk_error_report = lowcomms_error_report; 556 write_unlock_bh(&sk->sk_callback_lock); 557} 558 559/* Add the port number to an IPv6 or 4 sockaddr and return the address 560 length */ 561static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port, 562 int *addr_len) 563{ 564 saddr->ss_family = dlm_local_addr[0]->ss_family; 565 if (saddr->ss_family == AF_INET) { 566 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr; 567 in4_addr->sin_port = cpu_to_be16(port); 568 *addr_len = sizeof(struct sockaddr_in); 569 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero)); 570 } else { 571 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr; 572 in6_addr->sin6_port = cpu_to_be16(port); 573 *addr_len = sizeof(struct sockaddr_in6); 574 } 575 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len); 576} 577 578/* Close a remote connection and tidy up */ 579static void close_connection(struct connection *con, bool and_other, 580 bool tx, bool rx) 581{ 582 bool closing = test_and_set_bit(CF_CLOSING, &con->flags); 583 584 if (tx && !closing && cancel_work_sync(&con->swork)) { 585 log_print("canceled swork for node %d", con->nodeid); 586 clear_bit(CF_WRITE_PENDING, &con->flags); 587 } 588 if (rx && !closing && cancel_work_sync(&con->rwork)) { 589 log_print("canceled rwork for node %d", con->nodeid); 590 clear_bit(CF_READ_PENDING, &con->flags); 591 } 592 593 mutex_lock(&con->sock_mutex); 594 if (con->sock) { 595 restore_callbacks(con->sock); 596 sock_release(con->sock); 597 con->sock = NULL; 598 } 599 if (con->othercon && and_other) { 600 /* Will only re-enter once. */ 601 close_connection(con->othercon, false, tx, rx); 602 } 603 604 con->rx_leftover = 0; 605 con->retries = 0; 606 mutex_unlock(&con->sock_mutex); 607 clear_bit(CF_CLOSING, &con->flags); 608} 609 610static void shutdown_connection(struct connection *con) 611{ 612 int ret; 613 614 flush_work(&con->swork); 615 616 mutex_lock(&con->sock_mutex); 617 /* nothing to shutdown */ 618 if (!con->sock) { 619 mutex_unlock(&con->sock_mutex); 620 return; 621 } 622 623 set_bit(CF_SHUTDOWN, &con->flags); 624 ret = kernel_sock_shutdown(con->sock, SHUT_WR); 625 mutex_unlock(&con->sock_mutex); 626 if (ret) { 627 log_print("Connection %p failed to shutdown: %d will force close", 628 con, ret); 629 goto force_close; 630 } else { 631 ret = wait_event_timeout(con->shutdown_wait, 632 !test_bit(CF_SHUTDOWN, &con->flags), 633 DLM_SHUTDOWN_WAIT_TIMEOUT); 634 if (ret == 0) { 635 log_print("Connection %p shutdown timed out, will force close", 636 con); 637 goto force_close; 638 } 639 } 640 641 return; 642 643force_close: 644 clear_bit(CF_SHUTDOWN, &con->flags); 645 close_connection(con, false, true, true); 646} 647 648static void dlm_tcp_shutdown(struct connection *con) 649{ 650 if (con->othercon) 651 shutdown_connection(con->othercon); 652 shutdown_connection(con); 653} 654 655static int con_realloc_receive_buf(struct connection *con, int newlen) 656{ 657 unsigned char *newbuf; 658 659 newbuf = kmalloc(newlen, GFP_NOFS); 660 if (!newbuf) 661 return -ENOMEM; 662 663 /* copy any leftover from last receive */ 664 if (con->rx_leftover) 665 memmove(newbuf, con->rx_buf, con->rx_leftover); 666 667 /* swap to new buffer space */ 668 kfree(con->rx_buf); 669 con->rx_buflen = newlen; 670 con->rx_buf = newbuf; 671 672 return 0; 673} 674 675/* Data received from remote end */ 676static int receive_from_sock(struct connection *con) 677{ 678 int call_again_soon = 0; 679 struct msghdr msg; 680 struct kvec iov; 681 int ret, buflen; 682 683 mutex_lock(&con->sock_mutex); 684 685 if (con->sock == NULL) { 686 ret = -EAGAIN; 687 goto out_close; 688 } 689 690 if (con->nodeid == 0) { 691 ret = -EINVAL; 692 goto out_close; 693 } 694 695 /* realloc if we get new buffer size to read out */ 696 buflen = dlm_config.ci_buffer_size; 697 if (con->rx_buflen != buflen && con->rx_leftover <= buflen) { 698 ret = con_realloc_receive_buf(con, buflen); 699 if (ret < 0) 700 goto out_resched; 701 } 702 703 /* calculate new buffer parameter regarding last receive and 704 * possible leftover bytes 705 */ 706 iov.iov_base = con->rx_buf + con->rx_leftover; 707 iov.iov_len = con->rx_buflen - con->rx_leftover; 708 709 memset(&msg, 0, sizeof(msg)); 710 msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 711 ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len, 712 msg.msg_flags); 713 if (ret <= 0) 714 goto out_close; 715 else if (ret == iov.iov_len) 716 call_again_soon = 1; 717 718 /* new buflen according readed bytes and leftover from last receive */ 719 buflen = ret + con->rx_leftover; 720 ret = dlm_process_incoming_buffer(con->nodeid, con->rx_buf, buflen); 721 if (ret < 0) 722 goto out_close; 723 724 /* calculate leftover bytes from process and put it into begin of 725 * the receive buffer, so next receive we have the full message 726 * at the start address of the receive buffer. 727 */ 728 con->rx_leftover = buflen - ret; 729 if (con->rx_leftover) { 730 memmove(con->rx_buf, con->rx_buf + ret, 731 con->rx_leftover); 732 call_again_soon = true; 733 } 734 735 if (call_again_soon) 736 goto out_resched; 737 738 mutex_unlock(&con->sock_mutex); 739 return 0; 740 741out_resched: 742 if (!test_and_set_bit(CF_READ_PENDING, &con->flags)) 743 queue_work(recv_workqueue, &con->rwork); 744 mutex_unlock(&con->sock_mutex); 745 return -EAGAIN; 746 747out_close: 748 mutex_unlock(&con->sock_mutex); 749 if (ret != -EAGAIN) { 750 /* Reconnect when there is something to send */ 751 close_connection(con, false, true, false); 752 if (ret == 0) { 753 log_print("connection %p got EOF from %d", 754 con, con->nodeid); 755 /* handling for tcp shutdown */ 756 clear_bit(CF_SHUTDOWN, &con->flags); 757 wake_up(&con->shutdown_wait); 758 /* signal to breaking receive worker */ 759 ret = -1; 760 } 761 } 762 return ret; 763} 764 765/* Listening socket is busy, accept a connection */ 766static int accept_from_sock(struct connection *con) 767{ 768 int result; 769 struct sockaddr_storage peeraddr; 770 struct socket *newsock; 771 int len; 772 int nodeid; 773 struct connection *newcon; 774 struct connection *addcon; 775 unsigned int mark; 776 777 if (!dlm_allow_conn) { 778 return -1; 779 } 780 781 mutex_lock_nested(&con->sock_mutex, 0); 782 783 if (!con->sock) { 784 mutex_unlock(&con->sock_mutex); 785 return -ENOTCONN; 786 } 787 788 result = kernel_accept(con->sock, &newsock, O_NONBLOCK); 789 if (result < 0) 790 goto accept_err; 791 792 /* Get the connected socket's peer */ 793 memset(&peeraddr, 0, sizeof(peeraddr)); 794 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2); 795 if (len < 0) { 796 result = -ECONNABORTED; 797 goto accept_err; 798 } 799 800 /* Get the new node's NODEID */ 801 make_sockaddr(&peeraddr, 0, &len); 802 if (addr_to_nodeid(&peeraddr, &nodeid)) { 803 unsigned char *b=(unsigned char *)&peeraddr; 804 log_print("connect from non cluster node"); 805 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 806 b, sizeof(struct sockaddr_storage)); 807 sock_release(newsock); 808 mutex_unlock(&con->sock_mutex); 809 return -1; 810 } 811 812 dlm_comm_mark(nodeid, &mark); 813 sock_set_mark(newsock->sk, mark); 814 815 log_print("got connection from %d", nodeid); 816 817 /* Check to see if we already have a connection to this node. This 818 * could happen if the two nodes initiate a connection at roughly 819 * the same time and the connections cross on the wire. 820 * In this case we store the incoming one in "othercon" 821 */ 822 newcon = nodeid2con(nodeid, GFP_NOFS); 823 if (!newcon) { 824 result = -ENOMEM; 825 goto accept_err; 826 } 827 mutex_lock_nested(&newcon->sock_mutex, 1); 828 if (newcon->sock) { 829 struct connection *othercon = newcon->othercon; 830 831 if (!othercon) { 832 othercon = kzalloc(sizeof(*othercon), GFP_NOFS); 833 if (!othercon) { 834 log_print("failed to allocate incoming socket"); 835 mutex_unlock(&newcon->sock_mutex); 836 result = -ENOMEM; 837 goto accept_err; 838 } 839 840 othercon->rx_buflen = dlm_config.ci_buffer_size; 841 othercon->rx_buf = kmalloc(othercon->rx_buflen, GFP_NOFS); 842 if (!othercon->rx_buf) { 843 mutex_unlock(&newcon->sock_mutex); 844 kfree(othercon); 845 log_print("failed to allocate incoming socket receive buffer"); 846 result = -ENOMEM; 847 goto accept_err; 848 } 849 850 othercon->nodeid = nodeid; 851 othercon->rx_action = receive_from_sock; 852 mutex_init(&othercon->sock_mutex); 853 INIT_LIST_HEAD(&othercon->writequeue); 854 spin_lock_init(&othercon->writequeue_lock); 855 INIT_WORK(&othercon->swork, process_send_sockets); 856 INIT_WORK(&othercon->rwork, process_recv_sockets); 857 init_waitqueue_head(&othercon->shutdown_wait); 858 set_bit(CF_IS_OTHERCON, &othercon->flags); 859 } else { 860 /* close other sock con if we have something new */ 861 close_connection(othercon, false, true, false); 862 } 863 864 mutex_lock_nested(&othercon->sock_mutex, 2); 865 newcon->othercon = othercon; 866 add_sock(newsock, othercon); 867 addcon = othercon; 868 mutex_unlock(&othercon->sock_mutex); 869 } 870 else { 871 newcon->rx_action = receive_from_sock; 872 /* accept copies the sk after we've saved the callbacks, so we 873 don't want to save them a second time or comm errors will 874 result in calling sk_error_report recursively. */ 875 add_sock(newsock, newcon); 876 addcon = newcon; 877 } 878 879 mutex_unlock(&newcon->sock_mutex); 880 881 /* 882 * Add it to the active queue in case we got data 883 * between processing the accept adding the socket 884 * to the read_sockets list 885 */ 886 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags)) 887 queue_work(recv_workqueue, &addcon->rwork); 888 mutex_unlock(&con->sock_mutex); 889 890 return 0; 891 892accept_err: 893 mutex_unlock(&con->sock_mutex); 894 if (newsock) 895 sock_release(newsock); 896 897 if (result != -EAGAIN) 898 log_print("error accepting connection from node: %d", result); 899 return result; 900} 901 902static void free_entry(struct writequeue_entry *e) 903{ 904 __free_page(e->page); 905 kfree(e); 906} 907 908/* 909 * writequeue_entry_complete - try to delete and free write queue entry 910 * @e: write queue entry to try to delete 911 * @completed: bytes completed 912 * 913 * writequeue_lock must be held. 914 */ 915static void writequeue_entry_complete(struct writequeue_entry *e, int completed) 916{ 917 e->offset += completed; 918 e->len -= completed; 919 920 if (e->len == 0 && e->users == 0) { 921 list_del(&e->list); 922 free_entry(e); 923 } 924} 925 926/* 927 * sctp_bind_addrs - bind a SCTP socket to all our addresses 928 */ 929static int sctp_bind_addrs(struct connection *con, uint16_t port) 930{ 931 struct sockaddr_storage localaddr; 932 struct sockaddr *addr = (struct sockaddr *)&localaddr; 933 int i, addr_len, result = 0; 934 935 for (i = 0; i < dlm_local_count; i++) { 936 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr)); 937 make_sockaddr(&localaddr, port, &addr_len); 938 939 if (!i) 940 result = kernel_bind(con->sock, addr, addr_len); 941 else 942 result = sock_bind_add(con->sock->sk, addr, addr_len); 943 944 if (result < 0) { 945 log_print("Can't bind to %d addr number %d, %d.\n", 946 port, i + 1, result); 947 break; 948 } 949 } 950 return result; 951} 952 953/* Initiate an SCTP association. 954 This is a special case of send_to_sock() in that we don't yet have a 955 peeled-off socket for this association, so we use the listening socket 956 and add the primary IP address of the remote node. 957 */ 958static void sctp_connect_to_sock(struct connection *con) 959{ 960 struct sockaddr_storage daddr; 961 int result; 962 int addr_len; 963 struct socket *sock; 964 unsigned int mark; 965 966 if (con->nodeid == 0) { 967 log_print("attempt to connect sock 0 foiled"); 968 return; 969 } 970 971 dlm_comm_mark(con->nodeid, &mark); 972 973 mutex_lock(&con->sock_mutex); 974 975 /* Some odd races can cause double-connects, ignore them */ 976 if (con->retries++ > MAX_CONNECT_RETRIES) 977 goto out; 978 979 if (con->sock) { 980 log_print("node %d already connected.", con->nodeid); 981 goto out; 982 } 983 984 memset(&daddr, 0, sizeof(daddr)); 985 result = nodeid_to_addr(con->nodeid, &daddr, NULL, true); 986 if (result < 0) { 987 log_print("no address for nodeid %d", con->nodeid); 988 goto out; 989 } 990 991 /* Create a socket to communicate with */ 992 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 993 SOCK_STREAM, IPPROTO_SCTP, &sock); 994 if (result < 0) 995 goto socket_err; 996 997 sock_set_mark(sock->sk, mark); 998 999 con->rx_action = receive_from_sock; 1000 con->connect_action = sctp_connect_to_sock; 1001 add_sock(sock, con); 1002 1003 /* Bind to all addresses. */ 1004 if (sctp_bind_addrs(con, 0)) 1005 goto bind_err; 1006 1007 make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len); 1008 1009 log_print("connecting to %d", con->nodeid); 1010 1011 /* Turn off Nagle's algorithm */ 1012 sctp_sock_set_nodelay(sock->sk); 1013 1014 /* 1015 * Make sock->ops->connect() function return in specified time, 1016 * since O_NONBLOCK argument in connect() function does not work here, 1017 * then, we should restore the default value of this attribute. 1018 */ 1019 sock_set_sndtimeo(sock->sk, 5); 1020 result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len, 1021 0); 1022 sock_set_sndtimeo(sock->sk, 0); 1023 1024 if (result == -EINPROGRESS) 1025 result = 0; 1026 if (result == 0) 1027 goto out; 1028 1029bind_err: 1030 con->sock = NULL; 1031 sock_release(sock); 1032 1033socket_err: 1034 /* 1035 * Some errors are fatal and this list might need adjusting. For other 1036 * errors we try again until the max number of retries is reached. 1037 */ 1038 if (result != -EHOSTUNREACH && 1039 result != -ENETUNREACH && 1040 result != -ENETDOWN && 1041 result != -EINVAL && 1042 result != -EPROTONOSUPPORT) { 1043 log_print("connect %d try %d error %d", con->nodeid, 1044 con->retries, result); 1045 mutex_unlock(&con->sock_mutex); 1046 msleep(1000); 1047 lowcomms_connect_sock(con); 1048 return; 1049 } 1050 1051out: 1052 mutex_unlock(&con->sock_mutex); 1053} 1054 1055/* Connect a new socket to its peer */ 1056static void tcp_connect_to_sock(struct connection *con) 1057{ 1058 struct sockaddr_storage saddr, src_addr; 1059 int addr_len; 1060 struct socket *sock = NULL; 1061 unsigned int mark; 1062 int result; 1063 1064 if (con->nodeid == 0) { 1065 log_print("attempt to connect sock 0 foiled"); 1066 return; 1067 } 1068 1069 dlm_comm_mark(con->nodeid, &mark); 1070 1071 mutex_lock(&con->sock_mutex); 1072 if (con->retries++ > MAX_CONNECT_RETRIES) 1073 goto out; 1074 1075 /* Some odd races can cause double-connects, ignore them */ 1076 if (con->sock) 1077 goto out; 1078 1079 /* Create a socket to communicate with */ 1080 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1081 SOCK_STREAM, IPPROTO_TCP, &sock); 1082 if (result < 0) 1083 goto out_err; 1084 1085 sock_set_mark(sock->sk, mark); 1086 1087 memset(&saddr, 0, sizeof(saddr)); 1088 result = nodeid_to_addr(con->nodeid, &saddr, NULL, false); 1089 if (result < 0) { 1090 log_print("no address for nodeid %d", con->nodeid); 1091 goto out_err; 1092 } 1093 1094 con->rx_action = receive_from_sock; 1095 con->connect_action = tcp_connect_to_sock; 1096 con->shutdown_action = dlm_tcp_shutdown; 1097 add_sock(sock, con); 1098 1099 /* Bind to our cluster-known address connecting to avoid 1100 routing problems */ 1101 memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr)); 1102 make_sockaddr(&src_addr, 0, &addr_len); 1103 result = sock->ops->bind(sock, (struct sockaddr *) &src_addr, 1104 addr_len); 1105 if (result < 0) { 1106 log_print("could not bind for connect: %d", result); 1107 /* This *may* not indicate a critical error */ 1108 } 1109 1110 make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len); 1111 1112 log_print("connecting to %d", con->nodeid); 1113 1114 /* Turn off Nagle's algorithm */ 1115 tcp_sock_set_nodelay(sock->sk); 1116 1117 result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len, 1118 O_NONBLOCK); 1119 if (result == -EINPROGRESS) 1120 result = 0; 1121 if (result == 0) 1122 goto out; 1123 1124out_err: 1125 if (con->sock) { 1126 sock_release(con->sock); 1127 con->sock = NULL; 1128 } else if (sock) { 1129 sock_release(sock); 1130 } 1131 /* 1132 * Some errors are fatal and this list might need adjusting. For other 1133 * errors we try again until the max number of retries is reached. 1134 */ 1135 if (result != -EHOSTUNREACH && 1136 result != -ENETUNREACH && 1137 result != -ENETDOWN && 1138 result != -EINVAL && 1139 result != -EPROTONOSUPPORT) { 1140 log_print("connect %d try %d error %d", con->nodeid, 1141 con->retries, result); 1142 mutex_unlock(&con->sock_mutex); 1143 msleep(1000); 1144 lowcomms_connect_sock(con); 1145 return; 1146 } 1147out: 1148 mutex_unlock(&con->sock_mutex); 1149 return; 1150} 1151 1152static struct socket *tcp_create_listen_sock(struct connection *con, 1153 struct sockaddr_storage *saddr) 1154{ 1155 struct socket *sock = NULL; 1156 int result = 0; 1157 int addr_len; 1158 1159 if (dlm_local_addr[0]->ss_family == AF_INET) 1160 addr_len = sizeof(struct sockaddr_in); 1161 else 1162 addr_len = sizeof(struct sockaddr_in6); 1163 1164 /* Create a socket to communicate with */ 1165 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1166 SOCK_STREAM, IPPROTO_TCP, &sock); 1167 if (result < 0) { 1168 log_print("Can't create listening comms socket"); 1169 goto create_out; 1170 } 1171 1172 sock_set_mark(sock->sk, dlm_config.ci_mark); 1173 1174 /* Turn off Nagle's algorithm */ 1175 tcp_sock_set_nodelay(sock->sk); 1176 1177 sock_set_reuseaddr(sock->sk); 1178 1179 write_lock_bh(&sock->sk->sk_callback_lock); 1180 sock->sk->sk_user_data = con; 1181 save_listen_callbacks(sock); 1182 con->rx_action = accept_from_sock; 1183 con->connect_action = tcp_connect_to_sock; 1184 write_unlock_bh(&sock->sk->sk_callback_lock); 1185 1186 /* Bind to our port */ 1187 make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len); 1188 result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len); 1189 if (result < 0) { 1190 log_print("Can't bind to port %d", dlm_config.ci_tcp_port); 1191 sock_release(sock); 1192 sock = NULL; 1193 con->sock = NULL; 1194 goto create_out; 1195 } 1196 sock_set_keepalive(sock->sk); 1197 1198 result = sock->ops->listen(sock, 5); 1199 if (result < 0) { 1200 log_print("Can't listen on port %d", dlm_config.ci_tcp_port); 1201 sock_release(sock); 1202 sock = NULL; 1203 goto create_out; 1204 } 1205 1206create_out: 1207 return sock; 1208} 1209 1210/* Get local addresses */ 1211static void init_local(void) 1212{ 1213 struct sockaddr_storage sas, *addr; 1214 int i; 1215 1216 dlm_local_count = 0; 1217 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) { 1218 if (dlm_our_addr(&sas, i)) 1219 break; 1220 1221 addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS); 1222 if (!addr) 1223 break; 1224 dlm_local_addr[dlm_local_count++] = addr; 1225 } 1226} 1227 1228static void deinit_local(void) 1229{ 1230 int i; 1231 1232 for (i = 0; i < dlm_local_count; i++) 1233 kfree(dlm_local_addr[i]); 1234} 1235 1236/* Initialise SCTP socket and bind to all interfaces */ 1237static int sctp_listen_for_all(void) 1238{ 1239 struct socket *sock = NULL; 1240 int result = -EINVAL; 1241 struct connection *con = nodeid2con(0, GFP_NOFS); 1242 1243 if (!con) 1244 return -ENOMEM; 1245 1246 log_print("Using SCTP for communications"); 1247 1248 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1249 SOCK_STREAM, IPPROTO_SCTP, &sock); 1250 if (result < 0) { 1251 log_print("Can't create comms socket, check SCTP is loaded"); 1252 goto out; 1253 } 1254 1255 sock_set_rcvbuf(sock->sk, NEEDED_RMEM); 1256 sock_set_mark(sock->sk, dlm_config.ci_mark); 1257 sctp_sock_set_nodelay(sock->sk); 1258 1259 write_lock_bh(&sock->sk->sk_callback_lock); 1260 /* Init con struct */ 1261 sock->sk->sk_user_data = con; 1262 save_listen_callbacks(sock); 1263 con->sock = sock; 1264 con->sock->sk->sk_data_ready = lowcomms_data_ready; 1265 con->rx_action = accept_from_sock; 1266 con->connect_action = sctp_connect_to_sock; 1267 1268 write_unlock_bh(&sock->sk->sk_callback_lock); 1269 1270 /* Bind to all addresses. */ 1271 if (sctp_bind_addrs(con, dlm_config.ci_tcp_port)) 1272 goto create_delsock; 1273 1274 result = sock->ops->listen(sock, 5); 1275 if (result < 0) { 1276 log_print("Can't set socket listening"); 1277 goto create_delsock; 1278 } 1279 1280 return 0; 1281 1282create_delsock: 1283 sock_release(sock); 1284 con->sock = NULL; 1285out: 1286 return result; 1287} 1288 1289static int tcp_listen_for_all(void) 1290{ 1291 struct socket *sock = NULL; 1292 struct connection *con = nodeid2con(0, GFP_NOFS); 1293 int result = -EINVAL; 1294 1295 if (!con) 1296 return -ENOMEM; 1297 1298 /* We don't support multi-homed hosts */ 1299 if (dlm_local_addr[1] != NULL) { 1300 log_print("TCP protocol can't handle multi-homed hosts, " 1301 "try SCTP"); 1302 return -EINVAL; 1303 } 1304 1305 log_print("Using TCP for communications"); 1306 1307 sock = tcp_create_listen_sock(con, dlm_local_addr[0]); 1308 if (sock) { 1309 add_sock(sock, con); 1310 result = 0; 1311 } 1312 else { 1313 result = -EADDRINUSE; 1314 } 1315 1316 return result; 1317} 1318 1319 1320 1321static struct writequeue_entry *new_writequeue_entry(struct connection *con, 1322 gfp_t allocation) 1323{ 1324 struct writequeue_entry *entry; 1325 1326 entry = kmalloc(sizeof(struct writequeue_entry), allocation); 1327 if (!entry) 1328 return NULL; 1329 1330 entry->page = alloc_page(allocation); 1331 if (!entry->page) { 1332 kfree(entry); 1333 return NULL; 1334 } 1335 1336 entry->offset = 0; 1337 entry->len = 0; 1338 entry->end = 0; 1339 entry->users = 0; 1340 entry->con = con; 1341 1342 return entry; 1343} 1344 1345void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc) 1346{ 1347 struct connection *con; 1348 struct writequeue_entry *e; 1349 int offset = 0; 1350 1351 con = nodeid2con(nodeid, allocation); 1352 if (!con) 1353 return NULL; 1354 1355 spin_lock(&con->writequeue_lock); 1356 e = list_entry(con->writequeue.prev, struct writequeue_entry, list); 1357 if ((&e->list == &con->writequeue) || 1358 (PAGE_SIZE - e->end < len)) { 1359 e = NULL; 1360 } else { 1361 offset = e->end; 1362 e->end += len; 1363 e->users++; 1364 } 1365 spin_unlock(&con->writequeue_lock); 1366 1367 if (e) { 1368 got_one: 1369 *ppc = page_address(e->page) + offset; 1370 return e; 1371 } 1372 1373 e = new_writequeue_entry(con, allocation); 1374 if (e) { 1375 spin_lock(&con->writequeue_lock); 1376 offset = e->end; 1377 e->end += len; 1378 e->users++; 1379 list_add_tail(&e->list, &con->writequeue); 1380 spin_unlock(&con->writequeue_lock); 1381 goto got_one; 1382 } 1383 return NULL; 1384} 1385 1386void dlm_lowcomms_commit_buffer(void *mh) 1387{ 1388 struct writequeue_entry *e = (struct writequeue_entry *)mh; 1389 struct connection *con = e->con; 1390 int users; 1391 1392 spin_lock(&con->writequeue_lock); 1393 users = --e->users; 1394 if (users) 1395 goto out; 1396 e->len = e->end - e->offset; 1397 spin_unlock(&con->writequeue_lock); 1398 1399 queue_work(send_workqueue, &con->swork); 1400 return; 1401 1402out: 1403 spin_unlock(&con->writequeue_lock); 1404 return; 1405} 1406 1407/* Send a message */ 1408static void send_to_sock(struct connection *con) 1409{ 1410 int ret = 0; 1411 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1412 struct writequeue_entry *e; 1413 int len, offset; 1414 int count = 0; 1415 1416 mutex_lock(&con->sock_mutex); 1417 if (con->sock == NULL) 1418 goto out_connect; 1419 1420 spin_lock(&con->writequeue_lock); 1421 for (;;) { 1422 e = list_entry(con->writequeue.next, struct writequeue_entry, 1423 list); 1424 if ((struct list_head *) e == &con->writequeue) 1425 break; 1426 1427 len = e->len; 1428 offset = e->offset; 1429 BUG_ON(len == 0 && e->users == 0); 1430 spin_unlock(&con->writequeue_lock); 1431 1432 ret = 0; 1433 if (len) { 1434 ret = kernel_sendpage(con->sock, e->page, offset, len, 1435 msg_flags); 1436 if (ret == -EAGAIN || ret == 0) { 1437 if (ret == -EAGAIN && 1438 test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) && 1439 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) { 1440 /* Notify TCP that we're limited by the 1441 * application window size. 1442 */ 1443 set_bit(SOCK_NOSPACE, &con->sock->flags); 1444 con->sock->sk->sk_write_pending++; 1445 } 1446 cond_resched(); 1447 goto out; 1448 } else if (ret < 0) 1449 goto send_error; 1450 } 1451 1452 /* Don't starve people filling buffers */ 1453 if (++count >= MAX_SEND_MSG_COUNT) { 1454 cond_resched(); 1455 count = 0; 1456 } 1457 1458 spin_lock(&con->writequeue_lock); 1459 writequeue_entry_complete(e, ret); 1460 } 1461 spin_unlock(&con->writequeue_lock); 1462out: 1463 mutex_unlock(&con->sock_mutex); 1464 return; 1465 1466send_error: 1467 mutex_unlock(&con->sock_mutex); 1468 close_connection(con, false, false, true); 1469 /* Requeue the send work. When the work daemon runs again, it will try 1470 a new connection, then call this function again. */ 1471 queue_work(send_workqueue, &con->swork); 1472 return; 1473 1474out_connect: 1475 mutex_unlock(&con->sock_mutex); 1476 queue_work(send_workqueue, &con->swork); 1477 cond_resched(); 1478} 1479 1480static void clean_one_writequeue(struct connection *con) 1481{ 1482 struct writequeue_entry *e, *safe; 1483 1484 spin_lock(&con->writequeue_lock); 1485 list_for_each_entry_safe(e, safe, &con->writequeue, list) { 1486 list_del(&e->list); 1487 free_entry(e); 1488 } 1489 spin_unlock(&con->writequeue_lock); 1490} 1491 1492/* Called from recovery when it knows that a node has 1493 left the cluster */ 1494int dlm_lowcomms_close(int nodeid) 1495{ 1496 struct connection *con; 1497 struct dlm_node_addr *na; 1498 1499 log_print("closing connection to node %d", nodeid); 1500 con = nodeid2con(nodeid, 0); 1501 if (con) { 1502 set_bit(CF_CLOSE, &con->flags); 1503 close_connection(con, true, true, true); 1504 clean_one_writequeue(con); 1505 } 1506 1507 spin_lock(&dlm_node_addrs_spin); 1508 na = find_node_addr(nodeid); 1509 if (na) { 1510 list_del(&na->list); 1511 while (na->addr_count--) 1512 kfree(na->addr[na->addr_count]); 1513 kfree(na); 1514 } 1515 spin_unlock(&dlm_node_addrs_spin); 1516 1517 return 0; 1518} 1519 1520/* Receive workqueue function */ 1521static void process_recv_sockets(struct work_struct *work) 1522{ 1523 struct connection *con = container_of(work, struct connection, rwork); 1524 int err; 1525 1526 clear_bit(CF_READ_PENDING, &con->flags); 1527 do { 1528 err = con->rx_action(con); 1529 } while (!err); 1530} 1531 1532/* Send workqueue function */ 1533static void process_send_sockets(struct work_struct *work) 1534{ 1535 struct connection *con = container_of(work, struct connection, swork); 1536 1537 clear_bit(CF_WRITE_PENDING, &con->flags); 1538 if (con->sock == NULL) /* not mutex protected so check it inside too */ 1539 con->connect_action(con); 1540 if (!list_empty(&con->writequeue)) 1541 send_to_sock(con); 1542} 1543 1544static void work_stop(void) 1545{ 1546 if (recv_workqueue) 1547 destroy_workqueue(recv_workqueue); 1548 if (send_workqueue) 1549 destroy_workqueue(send_workqueue); 1550} 1551 1552static int work_start(void) 1553{ 1554 recv_workqueue = alloc_workqueue("dlm_recv", 1555 WQ_UNBOUND | WQ_MEM_RECLAIM, 1); 1556 if (!recv_workqueue) { 1557 log_print("can't start dlm_recv"); 1558 return -ENOMEM; 1559 } 1560 1561 send_workqueue = alloc_workqueue("dlm_send", 1562 WQ_UNBOUND | WQ_MEM_RECLAIM, 1); 1563 if (!send_workqueue) { 1564 log_print("can't start dlm_send"); 1565 destroy_workqueue(recv_workqueue); 1566 return -ENOMEM; 1567 } 1568 1569 return 0; 1570} 1571 1572static void _stop_conn(struct connection *con, bool and_other) 1573{ 1574 mutex_lock(&con->sock_mutex); 1575 set_bit(CF_CLOSE, &con->flags); 1576 set_bit(CF_READ_PENDING, &con->flags); 1577 set_bit(CF_WRITE_PENDING, &con->flags); 1578 if (con->sock && con->sock->sk) { 1579 write_lock_bh(&con->sock->sk->sk_callback_lock); 1580 con->sock->sk->sk_user_data = NULL; 1581 write_unlock_bh(&con->sock->sk->sk_callback_lock); 1582 } 1583 if (con->othercon && and_other) 1584 _stop_conn(con->othercon, false); 1585 mutex_unlock(&con->sock_mutex); 1586} 1587 1588static void stop_conn(struct connection *con) 1589{ 1590 _stop_conn(con, true); 1591} 1592 1593static void shutdown_conn(struct connection *con) 1594{ 1595 if (con->shutdown_action) 1596 con->shutdown_action(con); 1597} 1598 1599static void connection_release(struct rcu_head *rcu) 1600{ 1601 struct connection *con = container_of(rcu, struct connection, rcu); 1602 1603 kfree(con->rx_buf); 1604 kfree(con); 1605} 1606 1607static void free_conn(struct connection *con) 1608{ 1609 close_connection(con, true, true, true); 1610 spin_lock(&connections_lock); 1611 hlist_del_rcu(&con->list); 1612 spin_unlock(&connections_lock); 1613 if (con->othercon) { 1614 clean_one_writequeue(con->othercon); 1615 call_rcu(&con->othercon->rcu, connection_release); 1616 } 1617 clean_one_writequeue(con); 1618 call_rcu(&con->rcu, connection_release); 1619} 1620 1621static void work_flush(void) 1622{ 1623 int ok, idx; 1624 int i; 1625 struct connection *con; 1626 1627 do { 1628 ok = 1; 1629 foreach_conn(stop_conn); 1630 if (recv_workqueue) 1631 flush_workqueue(recv_workqueue); 1632 if (send_workqueue) 1633 flush_workqueue(send_workqueue); 1634 idx = srcu_read_lock(&connections_srcu); 1635 for (i = 0; i < CONN_HASH_SIZE && ok; i++) { 1636 hlist_for_each_entry_rcu(con, &connection_hash[i], 1637 list) { 1638 ok &= test_bit(CF_READ_PENDING, &con->flags); 1639 ok &= test_bit(CF_WRITE_PENDING, &con->flags); 1640 if (con->othercon) { 1641 ok &= test_bit(CF_READ_PENDING, 1642 &con->othercon->flags); 1643 ok &= test_bit(CF_WRITE_PENDING, 1644 &con->othercon->flags); 1645 } 1646 } 1647 } 1648 srcu_read_unlock(&connections_srcu, idx); 1649 } while (!ok); 1650} 1651 1652void dlm_lowcomms_stop(void) 1653{ 1654 /* Set all the flags to prevent any 1655 socket activity. 1656 */ 1657 dlm_allow_conn = 0; 1658 1659 if (recv_workqueue) 1660 flush_workqueue(recv_workqueue); 1661 if (send_workqueue) 1662 flush_workqueue(send_workqueue); 1663 1664 foreach_conn(shutdown_conn); 1665 work_flush(); 1666 foreach_conn(free_conn); 1667 work_stop(); 1668 deinit_local(); 1669} 1670 1671int dlm_lowcomms_start(void) 1672{ 1673 int error = -EINVAL; 1674 struct connection *con; 1675 int i; 1676 1677 for (i = 0; i < CONN_HASH_SIZE; i++) 1678 INIT_HLIST_HEAD(&connection_hash[i]); 1679 1680 init_local(); 1681 if (!dlm_local_count) { 1682 error = -ENOTCONN; 1683 log_print("no local IP address has been set"); 1684 goto fail; 1685 } 1686 1687 error = work_start(); 1688 if (error) 1689 goto fail; 1690 1691 dlm_allow_conn = 1; 1692 1693 /* Start listening */ 1694 if (dlm_config.ci_protocol == 0) 1695 error = tcp_listen_for_all(); 1696 else 1697 error = sctp_listen_for_all(); 1698 if (error) 1699 goto fail_unlisten; 1700 1701 return 0; 1702 1703fail_unlisten: 1704 dlm_allow_conn = 0; 1705 con = nodeid2con(0,0); 1706 if (con) 1707 free_conn(con); 1708fail: 1709 return error; 1710} 1711 1712void dlm_lowcomms_exit(void) 1713{ 1714 struct dlm_node_addr *na, *safe; 1715 1716 spin_lock(&dlm_node_addrs_spin); 1717 list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) { 1718 list_del(&na->list); 1719 while (na->addr_count--) 1720 kfree(na->addr[na->addr_count]); 1721 kfree(na); 1722 } 1723 spin_unlock(&dlm_node_addrs_spin); 1724} 1725