1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Key setup facility for FS encryption support. 4 * 5 * Copyright (C) 2015, Google, Inc. 6 * 7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. 8 * Heavily modified since then. 9 */ 10 11#include <crypto/skcipher.h> 12#include <linux/random.h> 13 14#include "fscrypt_private.h" 15 16struct fscrypt_mode fscrypt_modes[] = { 17 [FSCRYPT_MODE_AES_256_XTS] = { 18 .friendly_name = "AES-256-XTS", 19 .cipher_str = "xts(aes)", 20 .keysize = 64, 21 .security_strength = 32, 22 .ivsize = 16, 23 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS, 24 }, 25 [FSCRYPT_MODE_AES_256_CTS] = { 26 .friendly_name = "AES-256-CTS-CBC", 27 .cipher_str = "cts(cbc(aes))", 28 .keysize = 32, 29 .security_strength = 32, 30 .ivsize = 16, 31 }, 32 [FSCRYPT_MODE_AES_128_CBC] = { 33 .friendly_name = "AES-128-CBC-ESSIV", 34 .cipher_str = "essiv(cbc(aes),sha256)", 35 .keysize = 16, 36 .security_strength = 16, 37 .ivsize = 16, 38 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV, 39 }, 40 [FSCRYPT_MODE_AES_128_CTS] = { 41 .friendly_name = "AES-128-CTS-CBC", 42 .cipher_str = "cts(cbc(aes))", 43 .keysize = 16, 44 .security_strength = 16, 45 .ivsize = 16, 46 }, 47 [FSCRYPT_MODE_ADIANTUM] = { 48 .friendly_name = "Adiantum", 49 .cipher_str = "adiantum(xchacha12,aes)", 50 .keysize = 32, 51 .security_strength = 32, 52 .ivsize = 32, 53 .blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM, 54 }, 55}; 56 57static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex); 58 59static struct fscrypt_mode * 60select_encryption_mode(const union fscrypt_policy *policy, 61 const struct inode *inode) 62{ 63 BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1); 64 65 if (S_ISREG(inode->i_mode)) 66 return &fscrypt_modes[fscrypt_policy_contents_mode(policy)]; 67 68 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 69 return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)]; 70 71 WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n", 72 inode->i_ino, (inode->i_mode & S_IFMT)); 73 return ERR_PTR(-EINVAL); 74} 75 76/* Create a symmetric cipher object for the given encryption mode and key */ 77static struct crypto_skcipher * 78fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key, 79 const struct inode *inode) 80{ 81 struct crypto_skcipher *tfm; 82 int err; 83 84 tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0); 85 if (IS_ERR(tfm)) { 86 if (PTR_ERR(tfm) == -ENOENT) { 87 fscrypt_warn(inode, 88 "Missing crypto API support for %s (API name: \"%s\")", 89 mode->friendly_name, mode->cipher_str); 90 return ERR_PTR(-ENOPKG); 91 } 92 fscrypt_err(inode, "Error allocating '%s' transform: %ld", 93 mode->cipher_str, PTR_ERR(tfm)); 94 return tfm; 95 } 96 if (!xchg(&mode->logged_impl_name, 1)) { 97 /* 98 * fscrypt performance can vary greatly depending on which 99 * crypto algorithm implementation is used. Help people debug 100 * performance problems by logging the ->cra_driver_name the 101 * first time a mode is used. 102 */ 103 pr_info("fscrypt: %s using implementation \"%s\"\n", 104 mode->friendly_name, crypto_skcipher_driver_name(tfm)); 105 } 106 if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) { 107 err = -EINVAL; 108 goto err_free_tfm; 109 } 110 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 111 err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize); 112 if (err) 113 goto err_free_tfm; 114 115 return tfm; 116 117err_free_tfm: 118 crypto_free_skcipher(tfm); 119 return ERR_PTR(err); 120} 121 122/* 123 * Prepare the crypto transform object or blk-crypto key in @prep_key, given the 124 * raw key, encryption mode, and flag indicating which encryption implementation 125 * (fs-layer or blk-crypto) will be used. 126 */ 127int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, 128 const u8 *raw_key, const struct fscrypt_info *ci) 129{ 130 struct crypto_skcipher *tfm; 131 132 if (fscrypt_using_inline_encryption(ci)) 133 return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci); 134 135 tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode); 136 if (IS_ERR(tfm)) 137 return PTR_ERR(tfm); 138 /* 139 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared(). 140 * I.e., here we publish ->tfm with a RELEASE barrier so that 141 * concurrent tasks can ACQUIRE it. Note that this concurrency is only 142 * possible for per-mode keys, not for per-file keys. 143 */ 144 smp_store_release(&prep_key->tfm, tfm); 145 return 0; 146} 147 148/* Destroy a crypto transform object and/or blk-crypto key. */ 149void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key) 150{ 151 crypto_free_skcipher(prep_key->tfm); 152 fscrypt_destroy_inline_crypt_key(prep_key); 153 memzero_explicit(prep_key, sizeof(*prep_key)); 154} 155 156/* Given a per-file encryption key, set up the file's crypto transform object */ 157int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key) 158{ 159 ci->ci_owns_key = true; 160 return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci); 161} 162 163static int setup_per_mode_enc_key(struct fscrypt_info *ci, 164 struct fscrypt_master_key *mk, 165 struct fscrypt_prepared_key *keys, 166 u8 hkdf_context, bool include_fs_uuid) 167{ 168 const struct inode *inode = ci->ci_inode; 169 const struct super_block *sb = inode->i_sb; 170 struct fscrypt_mode *mode = ci->ci_mode; 171 const u8 mode_num = mode - fscrypt_modes; 172 struct fscrypt_prepared_key *prep_key; 173 u8 mode_key[FSCRYPT_MAX_KEY_SIZE]; 174 u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)]; 175 unsigned int hkdf_infolen = 0; 176 int err; 177 178 if (WARN_ON(mode_num > FSCRYPT_MODE_MAX)) 179 return -EINVAL; 180 181 prep_key = &keys[mode_num]; 182 if (fscrypt_is_key_prepared(prep_key, ci)) { 183 ci->ci_enc_key = *prep_key; 184 return 0; 185 } 186 187 mutex_lock(&fscrypt_mode_key_setup_mutex); 188 189 if (fscrypt_is_key_prepared(prep_key, ci)) 190 goto done_unlock; 191 192 BUILD_BUG_ON(sizeof(mode_num) != 1); 193 BUILD_BUG_ON(sizeof(sb->s_uuid) != 16); 194 BUILD_BUG_ON(sizeof(hkdf_info) != 17); 195 hkdf_info[hkdf_infolen++] = mode_num; 196 if (include_fs_uuid) { 197 memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid, 198 sizeof(sb->s_uuid)); 199 hkdf_infolen += sizeof(sb->s_uuid); 200 } 201 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 202 hkdf_context, hkdf_info, hkdf_infolen, 203 mode_key, mode->keysize); 204 if (err) 205 goto out_unlock; 206 err = fscrypt_prepare_key(prep_key, mode_key, ci); 207 memzero_explicit(mode_key, mode->keysize); 208 if (err) 209 goto out_unlock; 210done_unlock: 211 ci->ci_enc_key = *prep_key; 212 err = 0; 213out_unlock: 214 mutex_unlock(&fscrypt_mode_key_setup_mutex); 215 return err; 216} 217 218/* 219 * Derive a SipHash key from the given fscrypt master key and the given 220 * application-specific information string. 221 * 222 * Note that the KDF produces a byte array, but the SipHash APIs expect the key 223 * as a pair of 64-bit words. Therefore, on big endian CPUs we have to do an 224 * endianness swap in order to get the same results as on little endian CPUs. 225 */ 226static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk, 227 u8 context, const u8 *info, 228 unsigned int infolen, siphash_key_t *key) 229{ 230 int err; 231 232 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen, 233 (u8 *)key, sizeof(*key)); 234 if (err) 235 return err; 236 237 BUILD_BUG_ON(sizeof(*key) != 16); 238 BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2); 239 le64_to_cpus(&key->key[0]); 240 le64_to_cpus(&key->key[1]); 241 return 0; 242} 243 244int fscrypt_derive_dirhash_key(struct fscrypt_info *ci, 245 const struct fscrypt_master_key *mk) 246{ 247 int err; 248 249 err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY, 250 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, 251 &ci->ci_dirhash_key); 252 if (err) 253 return err; 254 ci->ci_dirhash_key_initialized = true; 255 return 0; 256} 257 258void fscrypt_hash_inode_number(struct fscrypt_info *ci, 259 const struct fscrypt_master_key *mk) 260{ 261 WARN_ON(ci->ci_inode->i_ino == 0); 262 WARN_ON(!mk->mk_ino_hash_key_initialized); 263 264 ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino, 265 &mk->mk_ino_hash_key); 266} 267 268static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci, 269 struct fscrypt_master_key *mk) 270{ 271 int err; 272 273 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys, 274 HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true); 275 if (err) 276 return err; 277 278 /* pairs with smp_store_release() below */ 279 if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) { 280 281 mutex_lock(&fscrypt_mode_key_setup_mutex); 282 283 if (mk->mk_ino_hash_key_initialized) 284 goto unlock; 285 286 err = fscrypt_derive_siphash_key(mk, 287 HKDF_CONTEXT_INODE_HASH_KEY, 288 NULL, 0, &mk->mk_ino_hash_key); 289 if (err) 290 goto unlock; 291 /* pairs with smp_load_acquire() above */ 292 smp_store_release(&mk->mk_ino_hash_key_initialized, true); 293unlock: 294 mutex_unlock(&fscrypt_mode_key_setup_mutex); 295 if (err) 296 return err; 297 } 298 299 /* 300 * New inodes may not have an inode number assigned yet. 301 * Hashing their inode number is delayed until later. 302 */ 303 if (ci->ci_inode->i_ino) 304 fscrypt_hash_inode_number(ci, mk); 305 return 0; 306} 307 308static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci, 309 struct fscrypt_master_key *mk, 310 bool need_dirhash_key) 311{ 312 int err; 313 314 if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) { 315 /* 316 * DIRECT_KEY: instead of deriving per-file encryption keys, the 317 * per-file nonce will be included in all the IVs. But unlike 318 * v1 policies, for v2 policies in this case we don't encrypt 319 * with the master key directly but rather derive a per-mode 320 * encryption key. This ensures that the master key is 321 * consistently used only for HKDF, avoiding key reuse issues. 322 */ 323 err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys, 324 HKDF_CONTEXT_DIRECT_KEY, false); 325 } else if (ci->ci_policy.v2.flags & 326 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) { 327 /* 328 * IV_INO_LBLK_64: encryption keys are derived from (master_key, 329 * mode_num, filesystem_uuid), and inode number is included in 330 * the IVs. This format is optimized for use with inline 331 * encryption hardware compliant with the UFS standard. 332 */ 333 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys, 334 HKDF_CONTEXT_IV_INO_LBLK_64_KEY, 335 true); 336 } else if (ci->ci_policy.v2.flags & 337 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) { 338 err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk); 339 } else { 340 u8 derived_key[FSCRYPT_MAX_KEY_SIZE]; 341 342 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 343 HKDF_CONTEXT_PER_FILE_ENC_KEY, 344 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, 345 derived_key, ci->ci_mode->keysize); 346 if (err) 347 return err; 348 349 err = fscrypt_set_per_file_enc_key(ci, derived_key); 350 memzero_explicit(derived_key, ci->ci_mode->keysize); 351 } 352 if (err) 353 return err; 354 355 /* Derive a secret dirhash key for directories that need it. */ 356 if (need_dirhash_key) { 357 err = fscrypt_derive_dirhash_key(ci, mk); 358 if (err) 359 return err; 360 } 361 362 return 0; 363} 364 365/* 366 * Check whether the size of the given master key (@mk) is appropriate for the 367 * encryption settings which a particular file will use (@ci). 368 * 369 * If the file uses a v1 encryption policy, then the master key must be at least 370 * as long as the derived key, as this is a requirement of the v1 KDF. 371 * 372 * Otherwise, the KDF can accept any size key, so we enforce a slightly looser 373 * requirement: we require that the size of the master key be at least the 374 * maximum security strength of any algorithm whose key will be derived from it 375 * (but in practice we only need to consider @ci->ci_mode, since any other 376 * possible subkeys such as DIRHASH and INODE_HASH will never increase the 377 * required key size over @ci->ci_mode). This allows AES-256-XTS keys to be 378 * derived from a 256-bit master key, which is cryptographically sufficient, 379 * rather than requiring a 512-bit master key which is unnecessarily long. (We 380 * still allow 512-bit master keys if the user chooses to use them, though.) 381 */ 382static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk, 383 const struct fscrypt_info *ci) 384{ 385 unsigned int min_keysize; 386 387 if (ci->ci_policy.version == FSCRYPT_POLICY_V1) 388 min_keysize = ci->ci_mode->keysize; 389 else 390 min_keysize = ci->ci_mode->security_strength; 391 392 if (mk->mk_secret.size < min_keysize) { 393 fscrypt_warn(NULL, 394 "key with %s %*phN is too short (got %u bytes, need %u+ bytes)", 395 master_key_spec_type(&mk->mk_spec), 396 master_key_spec_len(&mk->mk_spec), 397 (u8 *)&mk->mk_spec.u, 398 mk->mk_secret.size, min_keysize); 399 return false; 400 } 401 return true; 402} 403 404/* 405 * Find the master key, then set up the inode's actual encryption key. 406 * 407 * If the master key is found in the filesystem-level keyring, then it is 408 * returned in *mk_ret with its semaphore read-locked. This is needed to ensure 409 * that only one task links the fscrypt_info into ->mk_decrypted_inodes (as 410 * multiple tasks may race to create an fscrypt_info for the same inode), and to 411 * synchronize the master key being removed with a new inode starting to use it. 412 */ 413static int setup_file_encryption_key(struct fscrypt_info *ci, 414 bool need_dirhash_key, 415 struct fscrypt_master_key **mk_ret) 416{ 417 struct fscrypt_key_specifier mk_spec; 418 struct fscrypt_master_key *mk; 419 int err; 420 421 err = fscrypt_select_encryption_impl(ci); 422 if (err) 423 return err; 424 425 switch (ci->ci_policy.version) { 426 case FSCRYPT_POLICY_V1: 427 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR; 428 memcpy(mk_spec.u.descriptor, 429 ci->ci_policy.v1.master_key_descriptor, 430 FSCRYPT_KEY_DESCRIPTOR_SIZE); 431 break; 432 case FSCRYPT_POLICY_V2: 433 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 434 memcpy(mk_spec.u.identifier, 435 ci->ci_policy.v2.master_key_identifier, 436 FSCRYPT_KEY_IDENTIFIER_SIZE); 437 break; 438 default: 439 WARN_ON(1); 440 return -EINVAL; 441 } 442 443 mk = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec); 444 if (!mk) { 445 if (ci->ci_policy.version != FSCRYPT_POLICY_V1) 446 return -ENOKEY; 447 448 /* 449 * As a legacy fallback for v1 policies, search for the key in 450 * the current task's subscribed keyrings too. Don't move this 451 * to before the search of ->s_master_keys, since users 452 * shouldn't be able to override filesystem-level keys. 453 */ 454 return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci); 455 } 456 down_read(&mk->mk_sem); 457 458 /* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */ 459 if (!is_master_key_secret_present(&mk->mk_secret)) { 460 err = -ENOKEY; 461 goto out_release_key; 462 } 463 464 if (!fscrypt_valid_master_key_size(mk, ci)) { 465 err = -ENOKEY; 466 goto out_release_key; 467 } 468 469 switch (ci->ci_policy.version) { 470 case FSCRYPT_POLICY_V1: 471 err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw); 472 break; 473 case FSCRYPT_POLICY_V2: 474 err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key); 475 break; 476 default: 477 WARN_ON(1); 478 err = -EINVAL; 479 break; 480 } 481 if (err) 482 goto out_release_key; 483 484 *mk_ret = mk; 485 return 0; 486 487out_release_key: 488 up_read(&mk->mk_sem); 489 fscrypt_put_master_key(mk); 490 return err; 491} 492 493static void put_crypt_info(struct fscrypt_info *ci) 494{ 495 struct fscrypt_master_key *mk; 496 497 if (!ci) 498 return; 499 500 if (ci->ci_direct_key) 501 fscrypt_put_direct_key(ci->ci_direct_key); 502 else if (ci->ci_owns_key) 503 fscrypt_destroy_prepared_key(&ci->ci_enc_key); 504 505 mk = ci->ci_master_key; 506 if (mk) { 507 /* 508 * Remove this inode from the list of inodes that were unlocked 509 * with the master key. In addition, if we're removing the last 510 * inode from a master key struct that already had its secret 511 * removed, then complete the full removal of the struct. 512 */ 513 spin_lock(&mk->mk_decrypted_inodes_lock); 514 list_del(&ci->ci_master_key_link); 515 spin_unlock(&mk->mk_decrypted_inodes_lock); 516 fscrypt_put_master_key_activeref(mk); 517 } 518 memzero_explicit(ci, sizeof(*ci)); 519 kmem_cache_free(fscrypt_info_cachep, ci); 520} 521 522static int 523fscrypt_setup_encryption_info(struct inode *inode, 524 const union fscrypt_policy *policy, 525 const u8 nonce[FSCRYPT_FILE_NONCE_SIZE], 526 bool need_dirhash_key) 527{ 528 struct fscrypt_info *crypt_info; 529 struct fscrypt_mode *mode; 530 struct fscrypt_master_key *mk = NULL; 531 int res; 532 533 res = fscrypt_initialize(inode->i_sb->s_cop->flags); 534 if (res) 535 return res; 536 537 crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL); 538 if (!crypt_info) 539 return -ENOMEM; 540 541 crypt_info->ci_inode = inode; 542 crypt_info->ci_policy = *policy; 543 memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE); 544 545 mode = select_encryption_mode(&crypt_info->ci_policy, inode); 546 if (IS_ERR(mode)) { 547 res = PTR_ERR(mode); 548 goto out; 549 } 550 WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE); 551 crypt_info->ci_mode = mode; 552 553 res = setup_file_encryption_key(crypt_info, need_dirhash_key, &mk); 554 if (res) 555 goto out; 556 557 /* 558 * For existing inodes, multiple tasks may race to set ->i_crypt_info. 559 * So use cmpxchg_release(). This pairs with the smp_load_acquire() in 560 * fscrypt_get_info(). I.e., here we publish ->i_crypt_info with a 561 * RELEASE barrier so that other tasks can ACQUIRE it. 562 */ 563 if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) { 564 /* 565 * We won the race and set ->i_crypt_info to our crypt_info. 566 * Now link it into the master key's inode list. 567 */ 568 if (mk) { 569 crypt_info->ci_master_key = mk; 570 refcount_inc(&mk->mk_active_refs); 571 spin_lock(&mk->mk_decrypted_inodes_lock); 572 list_add(&crypt_info->ci_master_key_link, 573 &mk->mk_decrypted_inodes); 574 spin_unlock(&mk->mk_decrypted_inodes_lock); 575 } 576 crypt_info = NULL; 577 } 578 res = 0; 579out: 580 if (mk) { 581 up_read(&mk->mk_sem); 582 fscrypt_put_master_key(mk); 583 } 584 put_crypt_info(crypt_info); 585 return res; 586} 587 588/** 589 * fscrypt_get_encryption_info() - set up an inode's encryption key 590 * @inode: the inode to set up the key for. Must be encrypted. 591 * 592 * Set up ->i_crypt_info, if it hasn't already been done. 593 * 594 * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe. So 595 * generally this shouldn't be called from within a filesystem transaction. 596 * 597 * Return: 0 if ->i_crypt_info was set or was already set, *or* if the 598 * encryption key is unavailable. (Use fscrypt_has_encryption_key() to 599 * distinguish these cases.) Also can return another -errno code. 600 */ 601int fscrypt_get_encryption_info(struct inode *inode) 602{ 603 int res; 604 union fscrypt_context ctx; 605 union fscrypt_policy policy; 606 607 if (fscrypt_has_encryption_key(inode)) 608 return 0; 609 610 res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); 611 if (res < 0) { 612 fscrypt_warn(inode, "Error %d getting encryption context", res); 613 return res; 614 } 615 616 res = fscrypt_policy_from_context(&policy, &ctx, res); 617 if (res) { 618 fscrypt_warn(inode, 619 "Unrecognized or corrupt encryption context"); 620 return res; 621 } 622 623 if (!fscrypt_supported_policy(&policy, inode)) 624 return -EINVAL; 625 626 res = fscrypt_setup_encryption_info(inode, &policy, 627 fscrypt_context_nonce(&ctx), 628 IS_CASEFOLDED(inode) && 629 S_ISDIR(inode->i_mode)); 630 if (res == -ENOKEY) 631 res = 0; 632 return res; 633} 634EXPORT_SYMBOL(fscrypt_get_encryption_info); 635 636/** 637 * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory 638 * @dir: a possibly-encrypted directory 639 * @inode: the new inode. ->i_mode must be set already. 640 * ->i_ino doesn't need to be set yet. 641 * @encrypt_ret: (output) set to %true if the new inode will be encrypted 642 * 643 * If the directory is encrypted, set up its ->i_crypt_info in preparation for 644 * encrypting the name of the new file. Also, if the new inode will be 645 * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true. 646 * 647 * This isn't %GFP_NOFS-safe, and therefore it should be called before starting 648 * any filesystem transaction to create the inode. For this reason, ->i_ino 649 * isn't required to be set yet, as the filesystem may not have set it yet. 650 * 651 * This doesn't persist the new inode's encryption context. That still needs to 652 * be done later by calling fscrypt_set_context(). 653 * 654 * Return: 0 on success, -ENOKEY if the encryption key is missing, or another 655 * -errno code 656 */ 657int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, 658 bool *encrypt_ret) 659{ 660 const union fscrypt_policy *policy; 661 u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; 662 663 policy = fscrypt_policy_to_inherit(dir); 664 if (policy == NULL) 665 return 0; 666 if (IS_ERR(policy)) 667 return PTR_ERR(policy); 668 669 if (WARN_ON_ONCE(inode->i_mode == 0)) 670 return -EINVAL; 671 672 /* 673 * Only regular files, directories, and symlinks are encrypted. 674 * Special files like device nodes and named pipes aren't. 675 */ 676 if (!S_ISREG(inode->i_mode) && 677 !S_ISDIR(inode->i_mode) && 678 !S_ISLNK(inode->i_mode)) 679 return 0; 680 681 *encrypt_ret = true; 682 683 get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE); 684 return fscrypt_setup_encryption_info(inode, policy, nonce, 685 IS_CASEFOLDED(dir) && 686 S_ISDIR(inode->i_mode)); 687} 688EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode); 689 690/** 691 * fscrypt_put_encryption_info() - free most of an inode's fscrypt data 692 * @inode: an inode being evicted 693 * 694 * Free the inode's fscrypt_info. Filesystems must call this when the inode is 695 * being evicted. An RCU grace period need not have elapsed yet. 696 */ 697void fscrypt_put_encryption_info(struct inode *inode) 698{ 699 put_crypt_info(inode->i_crypt_info); 700 inode->i_crypt_info = NULL; 701} 702EXPORT_SYMBOL(fscrypt_put_encryption_info); 703 704/** 705 * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay 706 * @inode: an inode being freed 707 * 708 * Free the inode's cached decrypted symlink target, if any. Filesystems must 709 * call this after an RCU grace period, just before they free the inode. 710 */ 711void fscrypt_free_inode(struct inode *inode) 712{ 713 if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) { 714 kfree(inode->i_link); 715 inode->i_link = NULL; 716 } 717} 718EXPORT_SYMBOL(fscrypt_free_inode); 719 720/** 721 * fscrypt_drop_inode() - check whether the inode's master key has been removed 722 * @inode: an inode being considered for eviction 723 * 724 * Filesystems supporting fscrypt must call this from their ->drop_inode() 725 * method so that encrypted inodes are evicted as soon as they're no longer in 726 * use and their master key has been removed. 727 * 728 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0 729 */ 730int fscrypt_drop_inode(struct inode *inode) 731{ 732 const struct fscrypt_info *ci = fscrypt_get_info(inode); 733 734 /* 735 * If ci is NULL, then the inode doesn't have an encryption key set up 736 * so it's irrelevant. If ci_master_key is NULL, then the master key 737 * was provided via the legacy mechanism of the process-subscribed 738 * keyrings, so we don't know whether it's been removed or not. 739 */ 740 if (!ci || !ci->ci_master_key) 741 return 0; 742 743 /* 744 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes 745 * protected by the key were cleaned by sync_filesystem(). But if 746 * userspace is still using the files, inodes can be dirtied between 747 * then and now. We mustn't lose any writes, so skip dirty inodes here. 748 */ 749 if (inode->i_state & I_DIRTY_ALL) 750 return 0; 751 752 /* 753 * Note: since we aren't holding the key semaphore, the result here can 754 * immediately become outdated. But there's no correctness problem with 755 * unnecessarily evicting. Nor is there a correctness problem with not 756 * evicting while iput() is racing with the key being removed, since 757 * then the thread removing the key will either evict the inode itself 758 * or will correctly detect that it wasn't evicted due to the race. 759 */ 760 return !is_master_key_secret_present(&ci->ci_master_key->mk_secret); 761} 762EXPORT_SYMBOL_GPL(fscrypt_drop_inode); 763