1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Filesystem-level keyring for fscrypt 4 * 5 * Copyright 2019 Google LLC 6 */ 7 8/* 9 * This file implements management of fscrypt master keys in the 10 * filesystem-level keyring, including the ioctls: 11 * 12 * - FS_IOC_ADD_ENCRYPTION_KEY 13 * - FS_IOC_REMOVE_ENCRYPTION_KEY 14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS 15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS 16 * 17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more 18 * information about these ioctls. 19 */ 20 21#include <asm/unaligned.h> 22#include <crypto/skcipher.h> 23#include <linux/key-type.h> 24#include <linux/random.h> 25#include <linux/seq_file.h> 26 27#include "fscrypt_private.h" 28 29/* The master encryption keys for a filesystem (->s_master_keys) */ 30struct fscrypt_keyring { 31 /* 32 * Lock that protects ->key_hashtable. It does *not* protect the 33 * fscrypt_master_key structs themselves. 34 */ 35 spinlock_t lock; 36 37 /* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */ 38 struct hlist_head key_hashtable[128]; 39}; 40 41static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) 42{ 43 fscrypt_destroy_hkdf(&secret->hkdf); 44 memzero_explicit(secret, sizeof(*secret)); 45} 46 47static void move_master_key_secret(struct fscrypt_master_key_secret *dst, 48 struct fscrypt_master_key_secret *src) 49{ 50 memcpy(dst, src, sizeof(*dst)); 51 memzero_explicit(src, sizeof(*src)); 52} 53 54static void fscrypt_free_master_key(struct rcu_head *head) 55{ 56 struct fscrypt_master_key *mk = 57 container_of(head, struct fscrypt_master_key, mk_rcu_head); 58 /* 59 * The master key secret and any embedded subkeys should have already 60 * been wiped when the last active reference to the fscrypt_master_key 61 * struct was dropped; doing it here would be unnecessarily late. 62 * Nevertheless, use kfree_sensitive() in case anything was missed. 63 */ 64 kfree_sensitive(mk); 65} 66 67void fscrypt_put_master_key(struct fscrypt_master_key *mk) 68{ 69 if (!refcount_dec_and_test(&mk->mk_struct_refs)) 70 return; 71 /* 72 * No structural references left, so free ->mk_users, and also free the 73 * fscrypt_master_key struct itself after an RCU grace period ensures 74 * that concurrent keyring lookups can no longer find it. 75 */ 76 WARN_ON(refcount_read(&mk->mk_active_refs) != 0); 77 key_put(mk->mk_users); 78 mk->mk_users = NULL; 79 call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key); 80} 81 82void fscrypt_put_master_key_activeref(struct fscrypt_master_key *mk) 83{ 84 struct super_block *sb = mk->mk_sb; 85 struct fscrypt_keyring *keyring = sb->s_master_keys; 86 size_t i; 87 88 if (!refcount_dec_and_test(&mk->mk_active_refs)) 89 return; 90 /* 91 * No active references left, so complete the full removal of this 92 * fscrypt_master_key struct by removing it from the keyring and 93 * destroying any subkeys embedded in it. 94 */ 95 96 spin_lock(&keyring->lock); 97 hlist_del_rcu(&mk->mk_node); 98 spin_unlock(&keyring->lock); 99 100 /* 101 * ->mk_active_refs == 0 implies that ->mk_secret is not present and 102 * that ->mk_decrypted_inodes is empty. 103 */ 104 WARN_ON(is_master_key_secret_present(&mk->mk_secret)); 105 WARN_ON(!list_empty(&mk->mk_decrypted_inodes)); 106 107 for (i = 0; i <= FSCRYPT_MODE_MAX; i++) { 108 fscrypt_destroy_prepared_key(&mk->mk_direct_keys[i]); 109 fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_64_keys[i]); 110 fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_32_keys[i]); 111 } 112 memzero_explicit(&mk->mk_ino_hash_key, 113 sizeof(mk->mk_ino_hash_key)); 114 mk->mk_ino_hash_key_initialized = false; 115 116 /* Drop the structural ref associated with the active refs. */ 117 fscrypt_put_master_key(mk); 118} 119 120static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) 121{ 122 if (spec->__reserved) 123 return false; 124 return master_key_spec_len(spec) != 0; 125} 126 127static int fscrypt_user_key_instantiate(struct key *key, 128 struct key_preparsed_payload *prep) 129{ 130 /* 131 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for 132 * each key, regardless of the exact key size. The amount of memory 133 * actually used is greater than the size of the raw key anyway. 134 */ 135 return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE); 136} 137 138static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) 139{ 140 seq_puts(m, key->description); 141} 142 143/* 144 * Type of key in ->mk_users. Each key of this type represents a particular 145 * user who has added a particular master key. 146 * 147 * Note that the name of this key type really should be something like 148 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen 149 * mainly for simplicity of presentation in /proc/keys when read by a non-root 150 * user. And it is expected to be rare that a key is actually added by multiple 151 * users, since users should keep their encryption keys confidential. 152 */ 153static struct key_type key_type_fscrypt_user = { 154 .name = ".fscrypt", 155 .instantiate = fscrypt_user_key_instantiate, 156 .describe = fscrypt_user_key_describe, 157}; 158 159#define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \ 160 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \ 161 CONST_STRLEN("-users") + 1) 162 163#define FSCRYPT_MK_USER_DESCRIPTION_SIZE \ 164 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1) 165 166static void format_mk_users_keyring_description( 167 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE], 168 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 169{ 170 sprintf(description, "fscrypt-%*phN-users", 171 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier); 172} 173 174static void format_mk_user_description( 175 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE], 176 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 177{ 178 179 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE, 180 mk_identifier, __kuid_val(current_fsuid())); 181} 182 183/* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */ 184static int allocate_filesystem_keyring(struct super_block *sb) 185{ 186 struct fscrypt_keyring *keyring; 187 188 if (sb->s_master_keys) 189 return 0; 190 191 keyring = kzalloc(sizeof(*keyring), GFP_KERNEL); 192 if (!keyring) 193 return -ENOMEM; 194 spin_lock_init(&keyring->lock); 195 /* 196 * Pairs with the smp_load_acquire() in fscrypt_find_master_key(). 197 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that 198 * concurrent tasks can ACQUIRE it. 199 */ 200 smp_store_release(&sb->s_master_keys, keyring); 201 return 0; 202} 203 204/* 205 * Release all encryption keys that have been added to the filesystem, along 206 * with the keyring that contains them. 207 * 208 * This is called at unmount time. The filesystem's underlying block device(s) 209 * are still available at this time; this is important because after user file 210 * accesses have been allowed, this function may need to evict keys from the 211 * keyslots of an inline crypto engine, which requires the block device(s). 212 * 213 * This is also called when the super_block is being freed. This is needed to 214 * avoid a memory leak if mounting fails after the "test_dummy_encryption" 215 * option was processed, as in that case the unmount-time call isn't made. 216 */ 217void fscrypt_destroy_keyring(struct super_block *sb) 218{ 219 struct fscrypt_keyring *keyring = sb->s_master_keys; 220 size_t i; 221 222 if (!keyring) 223 return; 224 225 for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) { 226 struct hlist_head *bucket = &keyring->key_hashtable[i]; 227 struct fscrypt_master_key *mk; 228 struct hlist_node *tmp; 229 230 hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) { 231 /* 232 * Since all inodes were already evicted, every key 233 * remaining in the keyring should have an empty inode 234 * list, and should only still be in the keyring due to 235 * the single active ref associated with ->mk_secret. 236 * There should be no structural refs beyond the one 237 * associated with the active ref. 238 */ 239 WARN_ON(refcount_read(&mk->mk_active_refs) != 1); 240 WARN_ON(refcount_read(&mk->mk_struct_refs) != 1); 241 WARN_ON(!is_master_key_secret_present(&mk->mk_secret)); 242 wipe_master_key_secret(&mk->mk_secret); 243 fscrypt_put_master_key_activeref(mk); 244 } 245 } 246 kfree_sensitive(keyring); 247 sb->s_master_keys = NULL; 248} 249 250static struct hlist_head * 251fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring, 252 const struct fscrypt_key_specifier *mk_spec) 253{ 254 /* 255 * Since key specifiers should be "random" values, it is sufficient to 256 * use a trivial hash function that just takes the first several bits of 257 * the key specifier. 258 */ 259 unsigned long i = get_unaligned((unsigned long *)&mk_spec->u); 260 261 return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)]; 262} 263 264/* 265 * Find the specified master key struct in ->s_master_keys and take a structural 266 * ref to it. The structural ref guarantees that the key struct continues to 267 * exist, but it does *not* guarantee that ->s_master_keys continues to contain 268 * the key struct. The structural ref needs to be dropped by 269 * fscrypt_put_master_key(). Returns NULL if the key struct is not found. 270 */ 271struct fscrypt_master_key * 272fscrypt_find_master_key(struct super_block *sb, 273 const struct fscrypt_key_specifier *mk_spec) 274{ 275 struct fscrypt_keyring *keyring; 276 struct hlist_head *bucket; 277 struct fscrypt_master_key *mk; 278 279 /* 280 * Pairs with the smp_store_release() in allocate_filesystem_keyring(). 281 * I.e., another task can publish ->s_master_keys concurrently, 282 * executing a RELEASE barrier. We need to use smp_load_acquire() here 283 * to safely ACQUIRE the memory the other task published. 284 */ 285 keyring = smp_load_acquire(&sb->s_master_keys); 286 if (keyring == NULL) 287 return NULL; /* No keyring yet, so no keys yet. */ 288 289 bucket = fscrypt_mk_hash_bucket(keyring, mk_spec); 290 rcu_read_lock(); 291 switch (mk_spec->type) { 292 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: 293 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 294 if (mk->mk_spec.type == 295 FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 296 memcmp(mk->mk_spec.u.descriptor, 297 mk_spec->u.descriptor, 298 FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 && 299 refcount_inc_not_zero(&mk->mk_struct_refs)) 300 goto out; 301 } 302 break; 303 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: 304 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 305 if (mk->mk_spec.type == 306 FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 307 memcmp(mk->mk_spec.u.identifier, 308 mk_spec->u.identifier, 309 FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 && 310 refcount_inc_not_zero(&mk->mk_struct_refs)) 311 goto out; 312 } 313 break; 314 } 315 mk = NULL; 316out: 317 rcu_read_unlock(); 318 return mk; 319} 320 321static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk) 322{ 323 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE]; 324 struct key *keyring; 325 326 format_mk_users_keyring_description(description, 327 mk->mk_spec.u.identifier); 328 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 329 current_cred(), KEY_POS_SEARCH | 330 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, 331 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 332 if (IS_ERR(keyring)) 333 return PTR_ERR(keyring); 334 335 mk->mk_users = keyring; 336 return 0; 337} 338 339/* 340 * Find the current user's "key" in the master key's ->mk_users. 341 * Returns ERR_PTR(-ENOKEY) if not found. 342 */ 343static struct key *find_master_key_user(struct fscrypt_master_key *mk) 344{ 345 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 346 key_ref_t keyref; 347 348 format_mk_user_description(description, mk->mk_spec.u.identifier); 349 350 /* 351 * We need to mark the keyring reference as "possessed" so that we 352 * acquire permission to search it, via the KEY_POS_SEARCH permission. 353 */ 354 keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/), 355 &key_type_fscrypt_user, description, false); 356 if (IS_ERR(keyref)) { 357 if (PTR_ERR(keyref) == -EAGAIN || /* not found */ 358 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ 359 keyref = ERR_PTR(-ENOKEY); 360 return ERR_CAST(keyref); 361 } 362 return key_ref_to_ptr(keyref); 363} 364 365/* 366 * Give the current user a "key" in ->mk_users. This charges the user's quota 367 * and marks the master key as added by the current user, so that it cannot be 368 * removed by another user with the key. Either ->mk_sem must be held for 369 * write, or the master key must be still undergoing initialization. 370 */ 371static int add_master_key_user(struct fscrypt_master_key *mk) 372{ 373 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 374 struct key *mk_user; 375 int err; 376 377 format_mk_user_description(description, mk->mk_spec.u.identifier); 378 mk_user = key_alloc(&key_type_fscrypt_user, description, 379 current_fsuid(), current_gid(), current_cred(), 380 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL); 381 if (IS_ERR(mk_user)) 382 return PTR_ERR(mk_user); 383 384 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL); 385 key_put(mk_user); 386 return err; 387} 388 389/* 390 * Remove the current user's "key" from ->mk_users. 391 * ->mk_sem must be held for write. 392 * 393 * Returns 0 if removed, -ENOKEY if not found, or another -errno code. 394 */ 395static int remove_master_key_user(struct fscrypt_master_key *mk) 396{ 397 struct key *mk_user; 398 int err; 399 400 mk_user = find_master_key_user(mk); 401 if (IS_ERR(mk_user)) 402 return PTR_ERR(mk_user); 403 err = key_unlink(mk->mk_users, mk_user); 404 key_put(mk_user); 405 return err; 406} 407 408/* 409 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and 410 * insert it into sb->s_master_keys. 411 */ 412static int add_new_master_key(struct super_block *sb, 413 struct fscrypt_master_key_secret *secret, 414 const struct fscrypt_key_specifier *mk_spec) 415{ 416 struct fscrypt_keyring *keyring = sb->s_master_keys; 417 struct fscrypt_master_key *mk; 418 int err; 419 420 mk = kzalloc(sizeof(*mk), GFP_KERNEL); 421 if (!mk) 422 return -ENOMEM; 423 424 mk->mk_sb = sb; 425 init_rwsem(&mk->mk_sem); 426 refcount_set(&mk->mk_struct_refs, 1); 427 mk->mk_spec = *mk_spec; 428 429 INIT_LIST_HEAD(&mk->mk_decrypted_inodes); 430 spin_lock_init(&mk->mk_decrypted_inodes_lock); 431 432 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 433 err = allocate_master_key_users_keyring(mk); 434 if (err) 435 goto out_put; 436 err = add_master_key_user(mk); 437 if (err) 438 goto out_put; 439 } 440 441 move_master_key_secret(&mk->mk_secret, secret); 442 refcount_set(&mk->mk_active_refs, 1); /* ->mk_secret is present */ 443 444 spin_lock(&keyring->lock); 445 hlist_add_head_rcu(&mk->mk_node, 446 fscrypt_mk_hash_bucket(keyring, mk_spec)); 447 spin_unlock(&keyring->lock); 448 return 0; 449 450out_put: 451 fscrypt_put_master_key(mk); 452 return err; 453} 454 455#define KEY_DEAD 1 456 457static int add_existing_master_key(struct fscrypt_master_key *mk, 458 struct fscrypt_master_key_secret *secret) 459{ 460 int err; 461 462 /* 463 * If the current user is already in ->mk_users, then there's nothing to 464 * do. Otherwise, we need to add the user to ->mk_users. (Neither is 465 * applicable for v1 policy keys, which have NULL ->mk_users.) 466 */ 467 if (mk->mk_users) { 468 struct key *mk_user = find_master_key_user(mk); 469 470 if (mk_user != ERR_PTR(-ENOKEY)) { 471 if (IS_ERR(mk_user)) 472 return PTR_ERR(mk_user); 473 key_put(mk_user); 474 return 0; 475 } 476 err = add_master_key_user(mk); 477 if (err) 478 return err; 479 } 480 481 /* Re-add the secret if needed. */ 482 if (!is_master_key_secret_present(&mk->mk_secret)) { 483 if (!refcount_inc_not_zero(&mk->mk_active_refs)) 484 return KEY_DEAD; 485 move_master_key_secret(&mk->mk_secret, secret); 486 } 487 488 return 0; 489} 490 491static int do_add_master_key(struct super_block *sb, 492 struct fscrypt_master_key_secret *secret, 493 const struct fscrypt_key_specifier *mk_spec) 494{ 495 static DEFINE_MUTEX(fscrypt_add_key_mutex); 496 struct fscrypt_master_key *mk; 497 int err; 498 499 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ 500 501 mk = fscrypt_find_master_key(sb, mk_spec); 502 if (!mk) { 503 /* Didn't find the key in ->s_master_keys. Add it. */ 504 err = allocate_filesystem_keyring(sb); 505 if (!err) 506 err = add_new_master_key(sb, secret, mk_spec); 507 } else { 508 /* 509 * Found the key in ->s_master_keys. Re-add the secret if 510 * needed, and add the user to ->mk_users if needed. 511 */ 512 down_write(&mk->mk_sem); 513 err = add_existing_master_key(mk, secret); 514 up_write(&mk->mk_sem); 515 if (err == KEY_DEAD) { 516 /* 517 * We found a key struct, but it's already been fully 518 * removed. Ignore the old struct and add a new one. 519 * fscrypt_add_key_mutex means we don't need to worry 520 * about concurrent adds. 521 */ 522 err = add_new_master_key(sb, secret, mk_spec); 523 } 524 fscrypt_put_master_key(mk); 525 } 526 mutex_unlock(&fscrypt_add_key_mutex); 527 return err; 528} 529 530static int add_master_key(struct super_block *sb, 531 struct fscrypt_master_key_secret *secret, 532 struct fscrypt_key_specifier *key_spec) 533{ 534 int err; 535 536 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 537 err = fscrypt_init_hkdf(&secret->hkdf, secret->raw, 538 secret->size); 539 if (err) 540 return err; 541 542 /* 543 * Now that the HKDF context is initialized, the raw key is no 544 * longer needed. 545 */ 546 memzero_explicit(secret->raw, secret->size); 547 548 /* Calculate the key identifier */ 549 err = fscrypt_hkdf_expand(&secret->hkdf, 550 HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0, 551 key_spec->u.identifier, 552 FSCRYPT_KEY_IDENTIFIER_SIZE); 553 if (err) 554 return err; 555 } 556 return do_add_master_key(sb, secret, key_spec); 557} 558 559static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep) 560{ 561 const struct fscrypt_provisioning_key_payload *payload = prep->data; 562 563 if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE || 564 prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE) 565 return -EINVAL; 566 567 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 568 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) 569 return -EINVAL; 570 571 if (payload->__reserved) 572 return -EINVAL; 573 574 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL); 575 if (!prep->payload.data[0]) 576 return -ENOMEM; 577 578 prep->quotalen = prep->datalen; 579 return 0; 580} 581 582static void fscrypt_provisioning_key_free_preparse( 583 struct key_preparsed_payload *prep) 584{ 585 kfree_sensitive(prep->payload.data[0]); 586} 587 588static void fscrypt_provisioning_key_describe(const struct key *key, 589 struct seq_file *m) 590{ 591 seq_puts(m, key->description); 592 if (key_is_positive(key)) { 593 const struct fscrypt_provisioning_key_payload *payload = 594 key->payload.data[0]; 595 596 seq_printf(m, ": %u [%u]", key->datalen, payload->type); 597 } 598} 599 600static void fscrypt_provisioning_key_destroy(struct key *key) 601{ 602 kfree_sensitive(key->payload.data[0]); 603} 604 605static struct key_type key_type_fscrypt_provisioning = { 606 .name = "fscrypt-provisioning", 607 .preparse = fscrypt_provisioning_key_preparse, 608 .free_preparse = fscrypt_provisioning_key_free_preparse, 609 .instantiate = generic_key_instantiate, 610 .describe = fscrypt_provisioning_key_describe, 611 .destroy = fscrypt_provisioning_key_destroy, 612}; 613 614/* 615 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and 616 * store it into 'secret'. 617 * 618 * The key must be of type "fscrypt-provisioning" and must have the field 619 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's 620 * only usable with fscrypt with the particular KDF version identified by 621 * 'type'. We don't use the "logon" key type because there's no way to 622 * completely restrict the use of such keys; they can be used by any kernel API 623 * that accepts "logon" keys and doesn't require a specific service prefix. 624 * 625 * The ability to specify the key via Linux keyring key is intended for cases 626 * where userspace needs to re-add keys after the filesystem is unmounted and 627 * re-mounted. Most users should just provide the raw key directly instead. 628 */ 629static int get_keyring_key(u32 key_id, u32 type, 630 struct fscrypt_master_key_secret *secret) 631{ 632 key_ref_t ref; 633 struct key *key; 634 const struct fscrypt_provisioning_key_payload *payload; 635 int err; 636 637 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH); 638 if (IS_ERR(ref)) 639 return PTR_ERR(ref); 640 key = key_ref_to_ptr(ref); 641 642 if (key->type != &key_type_fscrypt_provisioning) 643 goto bad_key; 644 payload = key->payload.data[0]; 645 646 /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */ 647 if (payload->type != type) 648 goto bad_key; 649 650 secret->size = key->datalen - sizeof(*payload); 651 memcpy(secret->raw, payload->raw, secret->size); 652 err = 0; 653 goto out_put; 654 655bad_key: 656 err = -EKEYREJECTED; 657out_put: 658 key_ref_put(ref); 659 return err; 660} 661 662/* 663 * Add a master encryption key to the filesystem, causing all files which were 664 * encrypted with it to appear "unlocked" (decrypted) when accessed. 665 * 666 * When adding a key for use by v1 encryption policies, this ioctl is 667 * privileged, and userspace must provide the 'key_descriptor'. 668 * 669 * When adding a key for use by v2+ encryption policies, this ioctl is 670 * unprivileged. This is needed, in general, to allow non-root users to use 671 * encryption without encountering the visibility problems of process-subscribed 672 * keyrings and the inability to properly remove keys. This works by having 673 * each key identified by its cryptographically secure hash --- the 674 * 'key_identifier'. The cryptographic hash ensures that a malicious user 675 * cannot add the wrong key for a given identifier. Furthermore, each added key 676 * is charged to the appropriate user's quota for the keyrings service, which 677 * prevents a malicious user from adding too many keys. Finally, we forbid a 678 * user from removing a key while other users have added it too, which prevents 679 * a user who knows another user's key from causing a denial-of-service by 680 * removing it at an inopportune time. (We tolerate that a user who knows a key 681 * can prevent other users from removing it.) 682 * 683 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of 684 * Documentation/filesystems/fscrypt.rst. 685 */ 686int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) 687{ 688 struct super_block *sb = file_inode(filp)->i_sb; 689 struct fscrypt_add_key_arg __user *uarg = _uarg; 690 struct fscrypt_add_key_arg arg; 691 struct fscrypt_master_key_secret secret; 692 int err; 693 694 if (copy_from_user(&arg, uarg, sizeof(arg))) 695 return -EFAULT; 696 697 if (!valid_key_spec(&arg.key_spec)) 698 return -EINVAL; 699 700 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 701 return -EINVAL; 702 703 /* 704 * Only root can add keys that are identified by an arbitrary descriptor 705 * rather than by a cryptographic hash --- since otherwise a malicious 706 * user could add the wrong key. 707 */ 708 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 709 !capable(CAP_SYS_ADMIN)) 710 return -EACCES; 711 712 memset(&secret, 0, sizeof(secret)); 713 if (arg.key_id) { 714 if (arg.raw_size != 0) 715 return -EINVAL; 716 err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret); 717 if (err) 718 goto out_wipe_secret; 719 } else { 720 if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE || 721 arg.raw_size > FSCRYPT_MAX_KEY_SIZE) 722 return -EINVAL; 723 secret.size = arg.raw_size; 724 err = -EFAULT; 725 if (copy_from_user(secret.raw, uarg->raw, secret.size)) 726 goto out_wipe_secret; 727 } 728 729 err = add_master_key(sb, &secret, &arg.key_spec); 730 if (err) 731 goto out_wipe_secret; 732 733 /* Return the key identifier to userspace, if applicable */ 734 err = -EFAULT; 735 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 736 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier, 737 FSCRYPT_KEY_IDENTIFIER_SIZE)) 738 goto out_wipe_secret; 739 err = 0; 740out_wipe_secret: 741 wipe_master_key_secret(&secret); 742 return err; 743} 744EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); 745 746/* 747 * Add the key for '-o test_dummy_encryption' to the filesystem keyring. 748 * 749 * Use a per-boot random key to prevent people from misusing this option. 750 */ 751int fscrypt_add_test_dummy_key(struct super_block *sb, 752 struct fscrypt_key_specifier *key_spec) 753{ 754 static u8 test_key[FSCRYPT_MAX_KEY_SIZE]; 755 struct fscrypt_master_key_secret secret; 756 int err; 757 758 get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE); 759 760 memset(&secret, 0, sizeof(secret)); 761 secret.size = FSCRYPT_MAX_KEY_SIZE; 762 memcpy(secret.raw, test_key, FSCRYPT_MAX_KEY_SIZE); 763 764 err = add_master_key(sb, &secret, key_spec); 765 wipe_master_key_secret(&secret); 766 return err; 767} 768 769/* 770 * Verify that the current user has added a master key with the given identifier 771 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting 772 * their files using some other user's key which they don't actually know. 773 * Cryptographically this isn't much of a problem, but the semantics of this 774 * would be a bit weird, so it's best to just forbid it. 775 * 776 * The system administrator (CAP_FOWNER) can override this, which should be 777 * enough for any use cases where encryption policies are being set using keys 778 * that were chosen ahead of time but aren't available at the moment. 779 * 780 * Note that the key may have already removed by the time this returns, but 781 * that's okay; we just care whether the key was there at some point. 782 * 783 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code 784 */ 785int fscrypt_verify_key_added(struct super_block *sb, 786 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 787{ 788 struct fscrypt_key_specifier mk_spec; 789 struct fscrypt_master_key *mk; 790 struct key *mk_user; 791 int err; 792 793 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 794 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); 795 796 mk = fscrypt_find_master_key(sb, &mk_spec); 797 if (!mk) { 798 err = -ENOKEY; 799 goto out; 800 } 801 down_read(&mk->mk_sem); 802 mk_user = find_master_key_user(mk); 803 if (IS_ERR(mk_user)) { 804 err = PTR_ERR(mk_user); 805 } else { 806 key_put(mk_user); 807 err = 0; 808 } 809 up_read(&mk->mk_sem); 810 fscrypt_put_master_key(mk); 811out: 812 if (err == -ENOKEY && capable(CAP_FOWNER)) 813 err = 0; 814 return err; 815} 816 817/* 818 * Try to evict the inode's dentries from the dentry cache. If the inode is a 819 * directory, then it can have at most one dentry; however, that dentry may be 820 * pinned by child dentries, so first try to evict the children too. 821 */ 822static void shrink_dcache_inode(struct inode *inode) 823{ 824 struct dentry *dentry; 825 826 if (S_ISDIR(inode->i_mode)) { 827 dentry = d_find_any_alias(inode); 828 if (dentry) { 829 shrink_dcache_parent(dentry); 830 dput(dentry); 831 } 832 } 833 d_prune_aliases(inode); 834} 835 836static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) 837{ 838 struct fscrypt_info *ci; 839 struct inode *inode; 840 struct inode *toput_inode = NULL; 841 842 spin_lock(&mk->mk_decrypted_inodes_lock); 843 844 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { 845 inode = ci->ci_inode; 846 spin_lock(&inode->i_lock); 847 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 848 spin_unlock(&inode->i_lock); 849 continue; 850 } 851 __iget(inode); 852 spin_unlock(&inode->i_lock); 853 spin_unlock(&mk->mk_decrypted_inodes_lock); 854 855 shrink_dcache_inode(inode); 856 iput(toput_inode); 857 toput_inode = inode; 858 859 spin_lock(&mk->mk_decrypted_inodes_lock); 860 } 861 862 spin_unlock(&mk->mk_decrypted_inodes_lock); 863 iput(toput_inode); 864} 865 866static int check_for_busy_inodes(struct super_block *sb, 867 struct fscrypt_master_key *mk) 868{ 869 struct list_head *pos; 870 size_t busy_count = 0; 871 unsigned long ino; 872 char ino_str[50] = ""; 873 874 spin_lock(&mk->mk_decrypted_inodes_lock); 875 876 list_for_each(pos, &mk->mk_decrypted_inodes) 877 busy_count++; 878 879 if (busy_count == 0) { 880 spin_unlock(&mk->mk_decrypted_inodes_lock); 881 return 0; 882 } 883 884 { 885 /* select an example file to show for debugging purposes */ 886 struct inode *inode = 887 list_first_entry(&mk->mk_decrypted_inodes, 888 struct fscrypt_info, 889 ci_master_key_link)->ci_inode; 890 ino = inode->i_ino; 891 } 892 spin_unlock(&mk->mk_decrypted_inodes_lock); 893 894 /* If the inode is currently being created, ino may still be 0. */ 895 if (ino) 896 snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino); 897 898 fscrypt_warn(NULL, 899 "%s: %zu inode(s) still busy after removing key with %s %*phN%s", 900 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), 901 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, 902 ino_str); 903 return -EBUSY; 904} 905 906static int try_to_lock_encrypted_files(struct super_block *sb, 907 struct fscrypt_master_key *mk) 908{ 909 int err1; 910 int err2; 911 912 /* 913 * An inode can't be evicted while it is dirty or has dirty pages. 914 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. 915 * 916 * Just do it the easy way: call sync_filesystem(). It's overkill, but 917 * it works, and it's more important to minimize the amount of caches we 918 * drop than the amount of data we sync. Also, unprivileged users can 919 * already call sync_filesystem() via sys_syncfs() or sys_sync(). 920 */ 921 down_read(&sb->s_umount); 922 err1 = sync_filesystem(sb); 923 up_read(&sb->s_umount); 924 /* If a sync error occurs, still try to evict as much as possible. */ 925 926 /* 927 * Inodes are pinned by their dentries, so we have to evict their 928 * dentries. shrink_dcache_sb() would suffice, but would be overkill 929 * and inappropriate for use by unprivileged users. So instead go 930 * through the inodes' alias lists and try to evict each dentry. 931 */ 932 evict_dentries_for_decrypted_inodes(mk); 933 934 /* 935 * evict_dentries_for_decrypted_inodes() already iput() each inode in 936 * the list; any inodes for which that dropped the last reference will 937 * have been evicted due to fscrypt_drop_inode() detecting the key 938 * removal and telling the VFS to evict the inode. So to finish, we 939 * just need to check whether any inodes couldn't be evicted. 940 */ 941 err2 = check_for_busy_inodes(sb, mk); 942 943 return err1 ?: err2; 944} 945 946/* 947 * Try to remove an fscrypt master encryption key. 948 * 949 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's 950 * claim to the key, then removes the key itself if no other users have claims. 951 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the 952 * key itself. 953 * 954 * To "remove the key itself", first we wipe the actual master key secret, so 955 * that no more inodes can be unlocked with it. Then we try to evict all cached 956 * inodes that had been unlocked with the key. 957 * 958 * If all inodes were evicted, then we unlink the fscrypt_master_key from the 959 * keyring. Otherwise it remains in the keyring in the "incompletely removed" 960 * state (without the actual secret key) where it tracks the list of remaining 961 * inodes. Userspace can execute the ioctl again later to retry eviction, or 962 * alternatively can re-add the secret key again. 963 * 964 * For more details, see the "Removing keys" section of 965 * Documentation/filesystems/fscrypt.rst. 966 */ 967static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users) 968{ 969 struct super_block *sb = file_inode(filp)->i_sb; 970 struct fscrypt_remove_key_arg __user *uarg = _uarg; 971 struct fscrypt_remove_key_arg arg; 972 struct fscrypt_master_key *mk; 973 u32 status_flags = 0; 974 int err; 975 bool inodes_remain; 976 977 if (copy_from_user(&arg, uarg, sizeof(arg))) 978 return -EFAULT; 979 980 if (!valid_key_spec(&arg.key_spec)) 981 return -EINVAL; 982 983 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 984 return -EINVAL; 985 986 /* 987 * Only root can add and remove keys that are identified by an arbitrary 988 * descriptor rather than by a cryptographic hash. 989 */ 990 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 991 !capable(CAP_SYS_ADMIN)) 992 return -EACCES; 993 994 /* Find the key being removed. */ 995 mk = fscrypt_find_master_key(sb, &arg.key_spec); 996 if (!mk) 997 return -ENOKEY; 998 down_write(&mk->mk_sem); 999 1000 /* If relevant, remove current user's (or all users) claim to the key */ 1001 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) { 1002 if (all_users) 1003 err = keyring_clear(mk->mk_users); 1004 else 1005 err = remove_master_key_user(mk); 1006 if (err) { 1007 up_write(&mk->mk_sem); 1008 goto out_put_key; 1009 } 1010 if (mk->mk_users->keys.nr_leaves_on_tree != 0) { 1011 /* 1012 * Other users have still added the key too. We removed 1013 * the current user's claim to the key, but we still 1014 * can't remove the key itself. 1015 */ 1016 status_flags |= 1017 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS; 1018 err = 0; 1019 up_write(&mk->mk_sem); 1020 goto out_put_key; 1021 } 1022 } 1023 1024 /* No user claims remaining. Go ahead and wipe the secret. */ 1025 err = -ENOKEY; 1026 if (is_master_key_secret_present(&mk->mk_secret)) { 1027 wipe_master_key_secret(&mk->mk_secret); 1028 fscrypt_put_master_key_activeref(mk); 1029 err = 0; 1030 } 1031 inodes_remain = refcount_read(&mk->mk_active_refs) > 0; 1032 up_write(&mk->mk_sem); 1033 1034 if (inodes_remain) { 1035 /* Some inodes still reference this key; try to evict them. */ 1036 err = try_to_lock_encrypted_files(sb, mk); 1037 if (err == -EBUSY) { 1038 status_flags |= 1039 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; 1040 err = 0; 1041 } 1042 } 1043 /* 1044 * We return 0 if we successfully did something: removed a claim to the 1045 * key, wiped the secret, or tried locking the files again. Users need 1046 * to check the informational status flags if they care whether the key 1047 * has been fully removed including all files locked. 1048 */ 1049out_put_key: 1050 fscrypt_put_master_key(mk); 1051 if (err == 0) 1052 err = put_user(status_flags, &uarg->removal_status_flags); 1053 return err; 1054} 1055 1056int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg) 1057{ 1058 return do_remove_key(filp, uarg, false); 1059} 1060EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); 1061 1062int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg) 1063{ 1064 if (!capable(CAP_SYS_ADMIN)) 1065 return -EACCES; 1066 return do_remove_key(filp, uarg, true); 1067} 1068EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users); 1069 1070/* 1071 * Retrieve the status of an fscrypt master encryption key. 1072 * 1073 * We set ->status to indicate whether the key is absent, present, or 1074 * incompletely removed. "Incompletely removed" means that the master key 1075 * secret has been removed, but some files which had been unlocked with it are 1076 * still in use. This field allows applications to easily determine the state 1077 * of an encrypted directory without using a hack such as trying to open a 1078 * regular file in it (which can confuse the "incompletely removed" state with 1079 * absent or present). 1080 * 1081 * In addition, for v2 policy keys we allow applications to determine, via 1082 * ->status_flags and ->user_count, whether the key has been added by the 1083 * current user, by other users, or by both. Most applications should not need 1084 * this, since ordinarily only one user should know a given key. However, if a 1085 * secret key is shared by multiple users, applications may wish to add an 1086 * already-present key to prevent other users from removing it. This ioctl can 1087 * be used to check whether that really is the case before the work is done to 1088 * add the key --- which might e.g. require prompting the user for a passphrase. 1089 * 1090 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of 1091 * Documentation/filesystems/fscrypt.rst. 1092 */ 1093int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg) 1094{ 1095 struct super_block *sb = file_inode(filp)->i_sb; 1096 struct fscrypt_get_key_status_arg arg; 1097 struct fscrypt_master_key *mk; 1098 int err; 1099 1100 if (copy_from_user(&arg, uarg, sizeof(arg))) 1101 return -EFAULT; 1102 1103 if (!valid_key_spec(&arg.key_spec)) 1104 return -EINVAL; 1105 1106 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1107 return -EINVAL; 1108 1109 arg.status_flags = 0; 1110 arg.user_count = 0; 1111 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved)); 1112 1113 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1114 if (!mk) { 1115 arg.status = FSCRYPT_KEY_STATUS_ABSENT; 1116 err = 0; 1117 goto out; 1118 } 1119 down_read(&mk->mk_sem); 1120 1121 if (!is_master_key_secret_present(&mk->mk_secret)) { 1122 arg.status = refcount_read(&mk->mk_active_refs) > 0 ? 1123 FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED : 1124 FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */; 1125 err = 0; 1126 goto out_release_key; 1127 } 1128 1129 arg.status = FSCRYPT_KEY_STATUS_PRESENT; 1130 if (mk->mk_users) { 1131 struct key *mk_user; 1132 1133 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree; 1134 mk_user = find_master_key_user(mk); 1135 if (!IS_ERR(mk_user)) { 1136 arg.status_flags |= 1137 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF; 1138 key_put(mk_user); 1139 } else if (mk_user != ERR_PTR(-ENOKEY)) { 1140 err = PTR_ERR(mk_user); 1141 goto out_release_key; 1142 } 1143 } 1144 err = 0; 1145out_release_key: 1146 up_read(&mk->mk_sem); 1147 fscrypt_put_master_key(mk); 1148out: 1149 if (!err && copy_to_user(uarg, &arg, sizeof(arg))) 1150 err = -EFAULT; 1151 return err; 1152} 1153EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status); 1154 1155int __init fscrypt_init_keyring(void) 1156{ 1157 int err; 1158 1159 err = register_key_type(&key_type_fscrypt_user); 1160 if (err) 1161 return err; 1162 1163 err = register_key_type(&key_type_fscrypt_provisioning); 1164 if (err) 1165 goto err_unregister_fscrypt_user; 1166 1167 return 0; 1168 1169err_unregister_fscrypt_user: 1170 unregister_key_type(&key_type_fscrypt_user); 1171 return err; 1172} 1173