xref: /kernel/linux/linux-5.10/fs/crypto/keyring.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Filesystem-level keyring for fscrypt
4 *
5 * Copyright 2019 Google LLC
6 */
7
8/*
9 * This file implements management of fscrypt master keys in the
10 * filesystem-level keyring, including the ioctls:
11 *
12 * - FS_IOC_ADD_ENCRYPTION_KEY
13 * - FS_IOC_REMOVE_ENCRYPTION_KEY
14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16 *
17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18 * information about these ioctls.
19 */
20
21#include <asm/unaligned.h>
22#include <crypto/skcipher.h>
23#include <linux/key-type.h>
24#include <linux/random.h>
25#include <linux/seq_file.h>
26
27#include "fscrypt_private.h"
28
29/* The master encryption keys for a filesystem (->s_master_keys) */
30struct fscrypt_keyring {
31	/*
32	 * Lock that protects ->key_hashtable.  It does *not* protect the
33	 * fscrypt_master_key structs themselves.
34	 */
35	spinlock_t lock;
36
37	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
38	struct hlist_head key_hashtable[128];
39};
40
41static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
42{
43	fscrypt_destroy_hkdf(&secret->hkdf);
44	memzero_explicit(secret, sizeof(*secret));
45}
46
47static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
48				   struct fscrypt_master_key_secret *src)
49{
50	memcpy(dst, src, sizeof(*dst));
51	memzero_explicit(src, sizeof(*src));
52}
53
54static void fscrypt_free_master_key(struct rcu_head *head)
55{
56	struct fscrypt_master_key *mk =
57		container_of(head, struct fscrypt_master_key, mk_rcu_head);
58	/*
59	 * The master key secret and any embedded subkeys should have already
60	 * been wiped when the last active reference to the fscrypt_master_key
61	 * struct was dropped; doing it here would be unnecessarily late.
62	 * Nevertheless, use kfree_sensitive() in case anything was missed.
63	 */
64	kfree_sensitive(mk);
65}
66
67void fscrypt_put_master_key(struct fscrypt_master_key *mk)
68{
69	if (!refcount_dec_and_test(&mk->mk_struct_refs))
70		return;
71	/*
72	 * No structural references left, so free ->mk_users, and also free the
73	 * fscrypt_master_key struct itself after an RCU grace period ensures
74	 * that concurrent keyring lookups can no longer find it.
75	 */
76	WARN_ON(refcount_read(&mk->mk_active_refs) != 0);
77	key_put(mk->mk_users);
78	mk->mk_users = NULL;
79	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
80}
81
82void fscrypt_put_master_key_activeref(struct fscrypt_master_key *mk)
83{
84	struct super_block *sb = mk->mk_sb;
85	struct fscrypt_keyring *keyring = sb->s_master_keys;
86	size_t i;
87
88	if (!refcount_dec_and_test(&mk->mk_active_refs))
89		return;
90	/*
91	 * No active references left, so complete the full removal of this
92	 * fscrypt_master_key struct by removing it from the keyring and
93	 * destroying any subkeys embedded in it.
94	 */
95
96	spin_lock(&keyring->lock);
97	hlist_del_rcu(&mk->mk_node);
98	spin_unlock(&keyring->lock);
99
100	/*
101	 * ->mk_active_refs == 0 implies that ->mk_secret is not present and
102	 * that ->mk_decrypted_inodes is empty.
103	 */
104	WARN_ON(is_master_key_secret_present(&mk->mk_secret));
105	WARN_ON(!list_empty(&mk->mk_decrypted_inodes));
106
107	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
108		fscrypt_destroy_prepared_key(&mk->mk_direct_keys[i]);
109		fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_64_keys[i]);
110		fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_32_keys[i]);
111	}
112	memzero_explicit(&mk->mk_ino_hash_key,
113			 sizeof(mk->mk_ino_hash_key));
114	mk->mk_ino_hash_key_initialized = false;
115
116	/* Drop the structural ref associated with the active refs. */
117	fscrypt_put_master_key(mk);
118}
119
120static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
121{
122	if (spec->__reserved)
123		return false;
124	return master_key_spec_len(spec) != 0;
125}
126
127static int fscrypt_user_key_instantiate(struct key *key,
128					struct key_preparsed_payload *prep)
129{
130	/*
131	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
132	 * each key, regardless of the exact key size.  The amount of memory
133	 * actually used is greater than the size of the raw key anyway.
134	 */
135	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
136}
137
138static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
139{
140	seq_puts(m, key->description);
141}
142
143/*
144 * Type of key in ->mk_users.  Each key of this type represents a particular
145 * user who has added a particular master key.
146 *
147 * Note that the name of this key type really should be something like
148 * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
149 * mainly for simplicity of presentation in /proc/keys when read by a non-root
150 * user.  And it is expected to be rare that a key is actually added by multiple
151 * users, since users should keep their encryption keys confidential.
152 */
153static struct key_type key_type_fscrypt_user = {
154	.name			= ".fscrypt",
155	.instantiate		= fscrypt_user_key_instantiate,
156	.describe		= fscrypt_user_key_describe,
157};
158
159#define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
160	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
161	 CONST_STRLEN("-users") + 1)
162
163#define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
164	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
165
166static void format_mk_users_keyring_description(
167			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
168			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
169{
170	sprintf(description, "fscrypt-%*phN-users",
171		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
172}
173
174static void format_mk_user_description(
175			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
176			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
177{
178
179	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
180		mk_identifier, __kuid_val(current_fsuid()));
181}
182
183/* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
184static int allocate_filesystem_keyring(struct super_block *sb)
185{
186	struct fscrypt_keyring *keyring;
187
188	if (sb->s_master_keys)
189		return 0;
190
191	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
192	if (!keyring)
193		return -ENOMEM;
194	spin_lock_init(&keyring->lock);
195	/*
196	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
197	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
198	 * concurrent tasks can ACQUIRE it.
199	 */
200	smp_store_release(&sb->s_master_keys, keyring);
201	return 0;
202}
203
204/*
205 * Release all encryption keys that have been added to the filesystem, along
206 * with the keyring that contains them.
207 *
208 * This is called at unmount time.  The filesystem's underlying block device(s)
209 * are still available at this time; this is important because after user file
210 * accesses have been allowed, this function may need to evict keys from the
211 * keyslots of an inline crypto engine, which requires the block device(s).
212 *
213 * This is also called when the super_block is being freed.  This is needed to
214 * avoid a memory leak if mounting fails after the "test_dummy_encryption"
215 * option was processed, as in that case the unmount-time call isn't made.
216 */
217void fscrypt_destroy_keyring(struct super_block *sb)
218{
219	struct fscrypt_keyring *keyring = sb->s_master_keys;
220	size_t i;
221
222	if (!keyring)
223		return;
224
225	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
226		struct hlist_head *bucket = &keyring->key_hashtable[i];
227		struct fscrypt_master_key *mk;
228		struct hlist_node *tmp;
229
230		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
231			/*
232			 * Since all inodes were already evicted, every key
233			 * remaining in the keyring should have an empty inode
234			 * list, and should only still be in the keyring due to
235			 * the single active ref associated with ->mk_secret.
236			 * There should be no structural refs beyond the one
237			 * associated with the active ref.
238			 */
239			WARN_ON(refcount_read(&mk->mk_active_refs) != 1);
240			WARN_ON(refcount_read(&mk->mk_struct_refs) != 1);
241			WARN_ON(!is_master_key_secret_present(&mk->mk_secret));
242			wipe_master_key_secret(&mk->mk_secret);
243			fscrypt_put_master_key_activeref(mk);
244		}
245	}
246	kfree_sensitive(keyring);
247	sb->s_master_keys = NULL;
248}
249
250static struct hlist_head *
251fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
252		       const struct fscrypt_key_specifier *mk_spec)
253{
254	/*
255	 * Since key specifiers should be "random" values, it is sufficient to
256	 * use a trivial hash function that just takes the first several bits of
257	 * the key specifier.
258	 */
259	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
260
261	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
262}
263
264/*
265 * Find the specified master key struct in ->s_master_keys and take a structural
266 * ref to it.  The structural ref guarantees that the key struct continues to
267 * exist, but it does *not* guarantee that ->s_master_keys continues to contain
268 * the key struct.  The structural ref needs to be dropped by
269 * fscrypt_put_master_key().  Returns NULL if the key struct is not found.
270 */
271struct fscrypt_master_key *
272fscrypt_find_master_key(struct super_block *sb,
273			const struct fscrypt_key_specifier *mk_spec)
274{
275	struct fscrypt_keyring *keyring;
276	struct hlist_head *bucket;
277	struct fscrypt_master_key *mk;
278
279	/*
280	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
281	 * I.e., another task can publish ->s_master_keys concurrently,
282	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
283	 * to safely ACQUIRE the memory the other task published.
284	 */
285	keyring = smp_load_acquire(&sb->s_master_keys);
286	if (keyring == NULL)
287		return NULL; /* No keyring yet, so no keys yet. */
288
289	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
290	rcu_read_lock();
291	switch (mk_spec->type) {
292	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
293		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
294			if (mk->mk_spec.type ==
295				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
296			    memcmp(mk->mk_spec.u.descriptor,
297				   mk_spec->u.descriptor,
298				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
299			    refcount_inc_not_zero(&mk->mk_struct_refs))
300				goto out;
301		}
302		break;
303	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
304		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
305			if (mk->mk_spec.type ==
306				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
307			    memcmp(mk->mk_spec.u.identifier,
308				   mk_spec->u.identifier,
309				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
310			    refcount_inc_not_zero(&mk->mk_struct_refs))
311				goto out;
312		}
313		break;
314	}
315	mk = NULL;
316out:
317	rcu_read_unlock();
318	return mk;
319}
320
321static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
322{
323	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
324	struct key *keyring;
325
326	format_mk_users_keyring_description(description,
327					    mk->mk_spec.u.identifier);
328	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
329				current_cred(), KEY_POS_SEARCH |
330				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
331				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
332	if (IS_ERR(keyring))
333		return PTR_ERR(keyring);
334
335	mk->mk_users = keyring;
336	return 0;
337}
338
339/*
340 * Find the current user's "key" in the master key's ->mk_users.
341 * Returns ERR_PTR(-ENOKEY) if not found.
342 */
343static struct key *find_master_key_user(struct fscrypt_master_key *mk)
344{
345	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
346	key_ref_t keyref;
347
348	format_mk_user_description(description, mk->mk_spec.u.identifier);
349
350	/*
351	 * We need to mark the keyring reference as "possessed" so that we
352	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
353	 */
354	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
355				&key_type_fscrypt_user, description, false);
356	if (IS_ERR(keyref)) {
357		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
358		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
359			keyref = ERR_PTR(-ENOKEY);
360		return ERR_CAST(keyref);
361	}
362	return key_ref_to_ptr(keyref);
363}
364
365/*
366 * Give the current user a "key" in ->mk_users.  This charges the user's quota
367 * and marks the master key as added by the current user, so that it cannot be
368 * removed by another user with the key.  Either ->mk_sem must be held for
369 * write, or the master key must be still undergoing initialization.
370 */
371static int add_master_key_user(struct fscrypt_master_key *mk)
372{
373	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
374	struct key *mk_user;
375	int err;
376
377	format_mk_user_description(description, mk->mk_spec.u.identifier);
378	mk_user = key_alloc(&key_type_fscrypt_user, description,
379			    current_fsuid(), current_gid(), current_cred(),
380			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
381	if (IS_ERR(mk_user))
382		return PTR_ERR(mk_user);
383
384	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
385	key_put(mk_user);
386	return err;
387}
388
389/*
390 * Remove the current user's "key" from ->mk_users.
391 * ->mk_sem must be held for write.
392 *
393 * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
394 */
395static int remove_master_key_user(struct fscrypt_master_key *mk)
396{
397	struct key *mk_user;
398	int err;
399
400	mk_user = find_master_key_user(mk);
401	if (IS_ERR(mk_user))
402		return PTR_ERR(mk_user);
403	err = key_unlink(mk->mk_users, mk_user);
404	key_put(mk_user);
405	return err;
406}
407
408/*
409 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
410 * insert it into sb->s_master_keys.
411 */
412static int add_new_master_key(struct super_block *sb,
413			      struct fscrypt_master_key_secret *secret,
414			      const struct fscrypt_key_specifier *mk_spec)
415{
416	struct fscrypt_keyring *keyring = sb->s_master_keys;
417	struct fscrypt_master_key *mk;
418	int err;
419
420	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
421	if (!mk)
422		return -ENOMEM;
423
424	mk->mk_sb = sb;
425	init_rwsem(&mk->mk_sem);
426	refcount_set(&mk->mk_struct_refs, 1);
427	mk->mk_spec = *mk_spec;
428
429	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
430	spin_lock_init(&mk->mk_decrypted_inodes_lock);
431
432	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
433		err = allocate_master_key_users_keyring(mk);
434		if (err)
435			goto out_put;
436		err = add_master_key_user(mk);
437		if (err)
438			goto out_put;
439	}
440
441	move_master_key_secret(&mk->mk_secret, secret);
442	refcount_set(&mk->mk_active_refs, 1); /* ->mk_secret is present */
443
444	spin_lock(&keyring->lock);
445	hlist_add_head_rcu(&mk->mk_node,
446			   fscrypt_mk_hash_bucket(keyring, mk_spec));
447	spin_unlock(&keyring->lock);
448	return 0;
449
450out_put:
451	fscrypt_put_master_key(mk);
452	return err;
453}
454
455#define KEY_DEAD	1
456
457static int add_existing_master_key(struct fscrypt_master_key *mk,
458				   struct fscrypt_master_key_secret *secret)
459{
460	int err;
461
462	/*
463	 * If the current user is already in ->mk_users, then there's nothing to
464	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is
465	 * applicable for v1 policy keys, which have NULL ->mk_users.)
466	 */
467	if (mk->mk_users) {
468		struct key *mk_user = find_master_key_user(mk);
469
470		if (mk_user != ERR_PTR(-ENOKEY)) {
471			if (IS_ERR(mk_user))
472				return PTR_ERR(mk_user);
473			key_put(mk_user);
474			return 0;
475		}
476		err = add_master_key_user(mk);
477		if (err)
478			return err;
479	}
480
481	/* Re-add the secret if needed. */
482	if (!is_master_key_secret_present(&mk->mk_secret)) {
483		if (!refcount_inc_not_zero(&mk->mk_active_refs))
484			return KEY_DEAD;
485		move_master_key_secret(&mk->mk_secret, secret);
486	}
487
488	return 0;
489}
490
491static int do_add_master_key(struct super_block *sb,
492			     struct fscrypt_master_key_secret *secret,
493			     const struct fscrypt_key_specifier *mk_spec)
494{
495	static DEFINE_MUTEX(fscrypt_add_key_mutex);
496	struct fscrypt_master_key *mk;
497	int err;
498
499	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
500
501	mk = fscrypt_find_master_key(sb, mk_spec);
502	if (!mk) {
503		/* Didn't find the key in ->s_master_keys.  Add it. */
504		err = allocate_filesystem_keyring(sb);
505		if (!err)
506			err = add_new_master_key(sb, secret, mk_spec);
507	} else {
508		/*
509		 * Found the key in ->s_master_keys.  Re-add the secret if
510		 * needed, and add the user to ->mk_users if needed.
511		 */
512		down_write(&mk->mk_sem);
513		err = add_existing_master_key(mk, secret);
514		up_write(&mk->mk_sem);
515		if (err == KEY_DEAD) {
516			/*
517			 * We found a key struct, but it's already been fully
518			 * removed.  Ignore the old struct and add a new one.
519			 * fscrypt_add_key_mutex means we don't need to worry
520			 * about concurrent adds.
521			 */
522			err = add_new_master_key(sb, secret, mk_spec);
523		}
524		fscrypt_put_master_key(mk);
525	}
526	mutex_unlock(&fscrypt_add_key_mutex);
527	return err;
528}
529
530static int add_master_key(struct super_block *sb,
531			  struct fscrypt_master_key_secret *secret,
532			  struct fscrypt_key_specifier *key_spec)
533{
534	int err;
535
536	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
537		err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
538					secret->size);
539		if (err)
540			return err;
541
542		/*
543		 * Now that the HKDF context is initialized, the raw key is no
544		 * longer needed.
545		 */
546		memzero_explicit(secret->raw, secret->size);
547
548		/* Calculate the key identifier */
549		err = fscrypt_hkdf_expand(&secret->hkdf,
550					  HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
551					  key_spec->u.identifier,
552					  FSCRYPT_KEY_IDENTIFIER_SIZE);
553		if (err)
554			return err;
555	}
556	return do_add_master_key(sb, secret, key_spec);
557}
558
559static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
560{
561	const struct fscrypt_provisioning_key_payload *payload = prep->data;
562
563	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
564	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
565		return -EINVAL;
566
567	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
568	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
569		return -EINVAL;
570
571	if (payload->__reserved)
572		return -EINVAL;
573
574	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
575	if (!prep->payload.data[0])
576		return -ENOMEM;
577
578	prep->quotalen = prep->datalen;
579	return 0;
580}
581
582static void fscrypt_provisioning_key_free_preparse(
583					struct key_preparsed_payload *prep)
584{
585	kfree_sensitive(prep->payload.data[0]);
586}
587
588static void fscrypt_provisioning_key_describe(const struct key *key,
589					      struct seq_file *m)
590{
591	seq_puts(m, key->description);
592	if (key_is_positive(key)) {
593		const struct fscrypt_provisioning_key_payload *payload =
594			key->payload.data[0];
595
596		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
597	}
598}
599
600static void fscrypt_provisioning_key_destroy(struct key *key)
601{
602	kfree_sensitive(key->payload.data[0]);
603}
604
605static struct key_type key_type_fscrypt_provisioning = {
606	.name			= "fscrypt-provisioning",
607	.preparse		= fscrypt_provisioning_key_preparse,
608	.free_preparse		= fscrypt_provisioning_key_free_preparse,
609	.instantiate		= generic_key_instantiate,
610	.describe		= fscrypt_provisioning_key_describe,
611	.destroy		= fscrypt_provisioning_key_destroy,
612};
613
614/*
615 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
616 * store it into 'secret'.
617 *
618 * The key must be of type "fscrypt-provisioning" and must have the field
619 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
620 * only usable with fscrypt with the particular KDF version identified by
621 * 'type'.  We don't use the "logon" key type because there's no way to
622 * completely restrict the use of such keys; they can be used by any kernel API
623 * that accepts "logon" keys and doesn't require a specific service prefix.
624 *
625 * The ability to specify the key via Linux keyring key is intended for cases
626 * where userspace needs to re-add keys after the filesystem is unmounted and
627 * re-mounted.  Most users should just provide the raw key directly instead.
628 */
629static int get_keyring_key(u32 key_id, u32 type,
630			   struct fscrypt_master_key_secret *secret)
631{
632	key_ref_t ref;
633	struct key *key;
634	const struct fscrypt_provisioning_key_payload *payload;
635	int err;
636
637	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
638	if (IS_ERR(ref))
639		return PTR_ERR(ref);
640	key = key_ref_to_ptr(ref);
641
642	if (key->type != &key_type_fscrypt_provisioning)
643		goto bad_key;
644	payload = key->payload.data[0];
645
646	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
647	if (payload->type != type)
648		goto bad_key;
649
650	secret->size = key->datalen - sizeof(*payload);
651	memcpy(secret->raw, payload->raw, secret->size);
652	err = 0;
653	goto out_put;
654
655bad_key:
656	err = -EKEYREJECTED;
657out_put:
658	key_ref_put(ref);
659	return err;
660}
661
662/*
663 * Add a master encryption key to the filesystem, causing all files which were
664 * encrypted with it to appear "unlocked" (decrypted) when accessed.
665 *
666 * When adding a key for use by v1 encryption policies, this ioctl is
667 * privileged, and userspace must provide the 'key_descriptor'.
668 *
669 * When adding a key for use by v2+ encryption policies, this ioctl is
670 * unprivileged.  This is needed, in general, to allow non-root users to use
671 * encryption without encountering the visibility problems of process-subscribed
672 * keyrings and the inability to properly remove keys.  This works by having
673 * each key identified by its cryptographically secure hash --- the
674 * 'key_identifier'.  The cryptographic hash ensures that a malicious user
675 * cannot add the wrong key for a given identifier.  Furthermore, each added key
676 * is charged to the appropriate user's quota for the keyrings service, which
677 * prevents a malicious user from adding too many keys.  Finally, we forbid a
678 * user from removing a key while other users have added it too, which prevents
679 * a user who knows another user's key from causing a denial-of-service by
680 * removing it at an inopportune time.  (We tolerate that a user who knows a key
681 * can prevent other users from removing it.)
682 *
683 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
684 * Documentation/filesystems/fscrypt.rst.
685 */
686int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
687{
688	struct super_block *sb = file_inode(filp)->i_sb;
689	struct fscrypt_add_key_arg __user *uarg = _uarg;
690	struct fscrypt_add_key_arg arg;
691	struct fscrypt_master_key_secret secret;
692	int err;
693
694	if (copy_from_user(&arg, uarg, sizeof(arg)))
695		return -EFAULT;
696
697	if (!valid_key_spec(&arg.key_spec))
698		return -EINVAL;
699
700	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
701		return -EINVAL;
702
703	/*
704	 * Only root can add keys that are identified by an arbitrary descriptor
705	 * rather than by a cryptographic hash --- since otherwise a malicious
706	 * user could add the wrong key.
707	 */
708	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
709	    !capable(CAP_SYS_ADMIN))
710		return -EACCES;
711
712	memset(&secret, 0, sizeof(secret));
713	if (arg.key_id) {
714		if (arg.raw_size != 0)
715			return -EINVAL;
716		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
717		if (err)
718			goto out_wipe_secret;
719	} else {
720		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
721		    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
722			return -EINVAL;
723		secret.size = arg.raw_size;
724		err = -EFAULT;
725		if (copy_from_user(secret.raw, uarg->raw, secret.size))
726			goto out_wipe_secret;
727	}
728
729	err = add_master_key(sb, &secret, &arg.key_spec);
730	if (err)
731		goto out_wipe_secret;
732
733	/* Return the key identifier to userspace, if applicable */
734	err = -EFAULT;
735	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
736	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
737			 FSCRYPT_KEY_IDENTIFIER_SIZE))
738		goto out_wipe_secret;
739	err = 0;
740out_wipe_secret:
741	wipe_master_key_secret(&secret);
742	return err;
743}
744EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
745
746/*
747 * Add the key for '-o test_dummy_encryption' to the filesystem keyring.
748 *
749 * Use a per-boot random key to prevent people from misusing this option.
750 */
751int fscrypt_add_test_dummy_key(struct super_block *sb,
752			       struct fscrypt_key_specifier *key_spec)
753{
754	static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
755	struct fscrypt_master_key_secret secret;
756	int err;
757
758	get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
759
760	memset(&secret, 0, sizeof(secret));
761	secret.size = FSCRYPT_MAX_KEY_SIZE;
762	memcpy(secret.raw, test_key, FSCRYPT_MAX_KEY_SIZE);
763
764	err = add_master_key(sb, &secret, key_spec);
765	wipe_master_key_secret(&secret);
766	return err;
767}
768
769/*
770 * Verify that the current user has added a master key with the given identifier
771 * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
772 * their files using some other user's key which they don't actually know.
773 * Cryptographically this isn't much of a problem, but the semantics of this
774 * would be a bit weird, so it's best to just forbid it.
775 *
776 * The system administrator (CAP_FOWNER) can override this, which should be
777 * enough for any use cases where encryption policies are being set using keys
778 * that were chosen ahead of time but aren't available at the moment.
779 *
780 * Note that the key may have already removed by the time this returns, but
781 * that's okay; we just care whether the key was there at some point.
782 *
783 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
784 */
785int fscrypt_verify_key_added(struct super_block *sb,
786			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
787{
788	struct fscrypt_key_specifier mk_spec;
789	struct fscrypt_master_key *mk;
790	struct key *mk_user;
791	int err;
792
793	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
794	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
795
796	mk = fscrypt_find_master_key(sb, &mk_spec);
797	if (!mk) {
798		err = -ENOKEY;
799		goto out;
800	}
801	down_read(&mk->mk_sem);
802	mk_user = find_master_key_user(mk);
803	if (IS_ERR(mk_user)) {
804		err = PTR_ERR(mk_user);
805	} else {
806		key_put(mk_user);
807		err = 0;
808	}
809	up_read(&mk->mk_sem);
810	fscrypt_put_master_key(mk);
811out:
812	if (err == -ENOKEY && capable(CAP_FOWNER))
813		err = 0;
814	return err;
815}
816
817/*
818 * Try to evict the inode's dentries from the dentry cache.  If the inode is a
819 * directory, then it can have at most one dentry; however, that dentry may be
820 * pinned by child dentries, so first try to evict the children too.
821 */
822static void shrink_dcache_inode(struct inode *inode)
823{
824	struct dentry *dentry;
825
826	if (S_ISDIR(inode->i_mode)) {
827		dentry = d_find_any_alias(inode);
828		if (dentry) {
829			shrink_dcache_parent(dentry);
830			dput(dentry);
831		}
832	}
833	d_prune_aliases(inode);
834}
835
836static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
837{
838	struct fscrypt_info *ci;
839	struct inode *inode;
840	struct inode *toput_inode = NULL;
841
842	spin_lock(&mk->mk_decrypted_inodes_lock);
843
844	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
845		inode = ci->ci_inode;
846		spin_lock(&inode->i_lock);
847		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
848			spin_unlock(&inode->i_lock);
849			continue;
850		}
851		__iget(inode);
852		spin_unlock(&inode->i_lock);
853		spin_unlock(&mk->mk_decrypted_inodes_lock);
854
855		shrink_dcache_inode(inode);
856		iput(toput_inode);
857		toput_inode = inode;
858
859		spin_lock(&mk->mk_decrypted_inodes_lock);
860	}
861
862	spin_unlock(&mk->mk_decrypted_inodes_lock);
863	iput(toput_inode);
864}
865
866static int check_for_busy_inodes(struct super_block *sb,
867				 struct fscrypt_master_key *mk)
868{
869	struct list_head *pos;
870	size_t busy_count = 0;
871	unsigned long ino;
872	char ino_str[50] = "";
873
874	spin_lock(&mk->mk_decrypted_inodes_lock);
875
876	list_for_each(pos, &mk->mk_decrypted_inodes)
877		busy_count++;
878
879	if (busy_count == 0) {
880		spin_unlock(&mk->mk_decrypted_inodes_lock);
881		return 0;
882	}
883
884	{
885		/* select an example file to show for debugging purposes */
886		struct inode *inode =
887			list_first_entry(&mk->mk_decrypted_inodes,
888					 struct fscrypt_info,
889					 ci_master_key_link)->ci_inode;
890		ino = inode->i_ino;
891	}
892	spin_unlock(&mk->mk_decrypted_inodes_lock);
893
894	/* If the inode is currently being created, ino may still be 0. */
895	if (ino)
896		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
897
898	fscrypt_warn(NULL,
899		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
900		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
901		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
902		     ino_str);
903	return -EBUSY;
904}
905
906static int try_to_lock_encrypted_files(struct super_block *sb,
907				       struct fscrypt_master_key *mk)
908{
909	int err1;
910	int err2;
911
912	/*
913	 * An inode can't be evicted while it is dirty or has dirty pages.
914	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
915	 *
916	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
917	 * it works, and it's more important to minimize the amount of caches we
918	 * drop than the amount of data we sync.  Also, unprivileged users can
919	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
920	 */
921	down_read(&sb->s_umount);
922	err1 = sync_filesystem(sb);
923	up_read(&sb->s_umount);
924	/* If a sync error occurs, still try to evict as much as possible. */
925
926	/*
927	 * Inodes are pinned by their dentries, so we have to evict their
928	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
929	 * and inappropriate for use by unprivileged users.  So instead go
930	 * through the inodes' alias lists and try to evict each dentry.
931	 */
932	evict_dentries_for_decrypted_inodes(mk);
933
934	/*
935	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
936	 * the list; any inodes for which that dropped the last reference will
937	 * have been evicted due to fscrypt_drop_inode() detecting the key
938	 * removal and telling the VFS to evict the inode.  So to finish, we
939	 * just need to check whether any inodes couldn't be evicted.
940	 */
941	err2 = check_for_busy_inodes(sb, mk);
942
943	return err1 ?: err2;
944}
945
946/*
947 * Try to remove an fscrypt master encryption key.
948 *
949 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
950 * claim to the key, then removes the key itself if no other users have claims.
951 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
952 * key itself.
953 *
954 * To "remove the key itself", first we wipe the actual master key secret, so
955 * that no more inodes can be unlocked with it.  Then we try to evict all cached
956 * inodes that had been unlocked with the key.
957 *
958 * If all inodes were evicted, then we unlink the fscrypt_master_key from the
959 * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
960 * state (without the actual secret key) where it tracks the list of remaining
961 * inodes.  Userspace can execute the ioctl again later to retry eviction, or
962 * alternatively can re-add the secret key again.
963 *
964 * For more details, see the "Removing keys" section of
965 * Documentation/filesystems/fscrypt.rst.
966 */
967static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
968{
969	struct super_block *sb = file_inode(filp)->i_sb;
970	struct fscrypt_remove_key_arg __user *uarg = _uarg;
971	struct fscrypt_remove_key_arg arg;
972	struct fscrypt_master_key *mk;
973	u32 status_flags = 0;
974	int err;
975	bool inodes_remain;
976
977	if (copy_from_user(&arg, uarg, sizeof(arg)))
978		return -EFAULT;
979
980	if (!valid_key_spec(&arg.key_spec))
981		return -EINVAL;
982
983	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
984		return -EINVAL;
985
986	/*
987	 * Only root can add and remove keys that are identified by an arbitrary
988	 * descriptor rather than by a cryptographic hash.
989	 */
990	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
991	    !capable(CAP_SYS_ADMIN))
992		return -EACCES;
993
994	/* Find the key being removed. */
995	mk = fscrypt_find_master_key(sb, &arg.key_spec);
996	if (!mk)
997		return -ENOKEY;
998	down_write(&mk->mk_sem);
999
1000	/* If relevant, remove current user's (or all users) claim to the key */
1001	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1002		if (all_users)
1003			err = keyring_clear(mk->mk_users);
1004		else
1005			err = remove_master_key_user(mk);
1006		if (err) {
1007			up_write(&mk->mk_sem);
1008			goto out_put_key;
1009		}
1010		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1011			/*
1012			 * Other users have still added the key too.  We removed
1013			 * the current user's claim to the key, but we still
1014			 * can't remove the key itself.
1015			 */
1016			status_flags |=
1017				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1018			err = 0;
1019			up_write(&mk->mk_sem);
1020			goto out_put_key;
1021		}
1022	}
1023
1024	/* No user claims remaining.  Go ahead and wipe the secret. */
1025	err = -ENOKEY;
1026	if (is_master_key_secret_present(&mk->mk_secret)) {
1027		wipe_master_key_secret(&mk->mk_secret);
1028		fscrypt_put_master_key_activeref(mk);
1029		err = 0;
1030	}
1031	inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1032	up_write(&mk->mk_sem);
1033
1034	if (inodes_remain) {
1035		/* Some inodes still reference this key; try to evict them. */
1036		err = try_to_lock_encrypted_files(sb, mk);
1037		if (err == -EBUSY) {
1038			status_flags |=
1039				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1040			err = 0;
1041		}
1042	}
1043	/*
1044	 * We return 0 if we successfully did something: removed a claim to the
1045	 * key, wiped the secret, or tried locking the files again.  Users need
1046	 * to check the informational status flags if they care whether the key
1047	 * has been fully removed including all files locked.
1048	 */
1049out_put_key:
1050	fscrypt_put_master_key(mk);
1051	if (err == 0)
1052		err = put_user(status_flags, &uarg->removal_status_flags);
1053	return err;
1054}
1055
1056int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1057{
1058	return do_remove_key(filp, uarg, false);
1059}
1060EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1061
1062int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1063{
1064	if (!capable(CAP_SYS_ADMIN))
1065		return -EACCES;
1066	return do_remove_key(filp, uarg, true);
1067}
1068EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1069
1070/*
1071 * Retrieve the status of an fscrypt master encryption key.
1072 *
1073 * We set ->status to indicate whether the key is absent, present, or
1074 * incompletely removed.  "Incompletely removed" means that the master key
1075 * secret has been removed, but some files which had been unlocked with it are
1076 * still in use.  This field allows applications to easily determine the state
1077 * of an encrypted directory without using a hack such as trying to open a
1078 * regular file in it (which can confuse the "incompletely removed" state with
1079 * absent or present).
1080 *
1081 * In addition, for v2 policy keys we allow applications to determine, via
1082 * ->status_flags and ->user_count, whether the key has been added by the
1083 * current user, by other users, or by both.  Most applications should not need
1084 * this, since ordinarily only one user should know a given key.  However, if a
1085 * secret key is shared by multiple users, applications may wish to add an
1086 * already-present key to prevent other users from removing it.  This ioctl can
1087 * be used to check whether that really is the case before the work is done to
1088 * add the key --- which might e.g. require prompting the user for a passphrase.
1089 *
1090 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1091 * Documentation/filesystems/fscrypt.rst.
1092 */
1093int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1094{
1095	struct super_block *sb = file_inode(filp)->i_sb;
1096	struct fscrypt_get_key_status_arg arg;
1097	struct fscrypt_master_key *mk;
1098	int err;
1099
1100	if (copy_from_user(&arg, uarg, sizeof(arg)))
1101		return -EFAULT;
1102
1103	if (!valid_key_spec(&arg.key_spec))
1104		return -EINVAL;
1105
1106	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1107		return -EINVAL;
1108
1109	arg.status_flags = 0;
1110	arg.user_count = 0;
1111	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1112
1113	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1114	if (!mk) {
1115		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1116		err = 0;
1117		goto out;
1118	}
1119	down_read(&mk->mk_sem);
1120
1121	if (!is_master_key_secret_present(&mk->mk_secret)) {
1122		arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1123			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1124			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1125		err = 0;
1126		goto out_release_key;
1127	}
1128
1129	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1130	if (mk->mk_users) {
1131		struct key *mk_user;
1132
1133		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1134		mk_user = find_master_key_user(mk);
1135		if (!IS_ERR(mk_user)) {
1136			arg.status_flags |=
1137				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1138			key_put(mk_user);
1139		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1140			err = PTR_ERR(mk_user);
1141			goto out_release_key;
1142		}
1143	}
1144	err = 0;
1145out_release_key:
1146	up_read(&mk->mk_sem);
1147	fscrypt_put_master_key(mk);
1148out:
1149	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1150		err = -EFAULT;
1151	return err;
1152}
1153EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1154
1155int __init fscrypt_init_keyring(void)
1156{
1157	int err;
1158
1159	err = register_key_type(&key_type_fscrypt_user);
1160	if (err)
1161		return err;
1162
1163	err = register_key_type(&key_type_fscrypt_provisioning);
1164	if (err)
1165		goto err_unregister_fscrypt_user;
1166
1167	return 0;
1168
1169err_unregister_fscrypt_user:
1170	unregister_key_type(&key_type_fscrypt_user);
1171	return err;
1172}
1173