xref: /kernel/linux/linux-5.10/fs/btrfs/volumes.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/bio.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/ratelimit.h>
12#include <linux/kthread.h>
13#include <linux/raid/pq.h>
14#include <linux/semaphore.h>
15#include <linux/uuid.h>
16#include <linux/list_sort.h>
17#include <linux/namei.h>
18#include "misc.h"
19#include "ctree.h"
20#include "extent_map.h"
21#include "disk-io.h"
22#include "transaction.h"
23#include "print-tree.h"
24#include "volumes.h"
25#include "raid56.h"
26#include "async-thread.h"
27#include "check-integrity.h"
28#include "rcu-string.h"
29#include "dev-replace.h"
30#include "sysfs.h"
31#include "tree-checker.h"
32#include "space-info.h"
33#include "block-group.h"
34#include "discard.h"
35
36const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37	[BTRFS_RAID_RAID10] = {
38		.sub_stripes	= 2,
39		.dev_stripes	= 1,
40		.devs_max	= 0,	/* 0 == as many as possible */
41		.devs_min	= 4,
42		.tolerated_failures = 1,
43		.devs_increment	= 2,
44		.ncopies	= 2,
45		.nparity        = 0,
46		.raid_name	= "raid10",
47		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
48		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49	},
50	[BTRFS_RAID_RAID1] = {
51		.sub_stripes	= 1,
52		.dev_stripes	= 1,
53		.devs_max	= 2,
54		.devs_min	= 2,
55		.tolerated_failures = 1,
56		.devs_increment	= 2,
57		.ncopies	= 2,
58		.nparity        = 0,
59		.raid_name	= "raid1",
60		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
61		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62	},
63	[BTRFS_RAID_RAID1C3] = {
64		.sub_stripes	= 1,
65		.dev_stripes	= 1,
66		.devs_max	= 3,
67		.devs_min	= 3,
68		.tolerated_failures = 2,
69		.devs_increment	= 3,
70		.ncopies	= 3,
71		.nparity        = 0,
72		.raid_name	= "raid1c3",
73		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
74		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75	},
76	[BTRFS_RAID_RAID1C4] = {
77		.sub_stripes	= 1,
78		.dev_stripes	= 1,
79		.devs_max	= 4,
80		.devs_min	= 4,
81		.tolerated_failures = 3,
82		.devs_increment	= 4,
83		.ncopies	= 4,
84		.nparity        = 0,
85		.raid_name	= "raid1c4",
86		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
87		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88	},
89	[BTRFS_RAID_DUP] = {
90		.sub_stripes	= 1,
91		.dev_stripes	= 2,
92		.devs_max	= 1,
93		.devs_min	= 1,
94		.tolerated_failures = 0,
95		.devs_increment	= 1,
96		.ncopies	= 2,
97		.nparity        = 0,
98		.raid_name	= "dup",
99		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
100		.mindev_error	= 0,
101	},
102	[BTRFS_RAID_RAID0] = {
103		.sub_stripes	= 1,
104		.dev_stripes	= 1,
105		.devs_max	= 0,
106		.devs_min	= 2,
107		.tolerated_failures = 0,
108		.devs_increment	= 1,
109		.ncopies	= 1,
110		.nparity        = 0,
111		.raid_name	= "raid0",
112		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
113		.mindev_error	= 0,
114	},
115	[BTRFS_RAID_SINGLE] = {
116		.sub_stripes	= 1,
117		.dev_stripes	= 1,
118		.devs_max	= 1,
119		.devs_min	= 1,
120		.tolerated_failures = 0,
121		.devs_increment	= 1,
122		.ncopies	= 1,
123		.nparity        = 0,
124		.raid_name	= "single",
125		.bg_flag	= 0,
126		.mindev_error	= 0,
127	},
128	[BTRFS_RAID_RAID5] = {
129		.sub_stripes	= 1,
130		.dev_stripes	= 1,
131		.devs_max	= 0,
132		.devs_min	= 2,
133		.tolerated_failures = 1,
134		.devs_increment	= 1,
135		.ncopies	= 1,
136		.nparity        = 1,
137		.raid_name	= "raid5",
138		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
139		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140	},
141	[BTRFS_RAID_RAID6] = {
142		.sub_stripes	= 1,
143		.dev_stripes	= 1,
144		.devs_max	= 0,
145		.devs_min	= 3,
146		.tolerated_failures = 2,
147		.devs_increment	= 1,
148		.ncopies	= 1,
149		.nparity        = 2,
150		.raid_name	= "raid6",
151		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
152		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153	},
154};
155
156const char *btrfs_bg_type_to_raid_name(u64 flags)
157{
158	const int index = btrfs_bg_flags_to_raid_index(flags);
159
160	if (index >= BTRFS_NR_RAID_TYPES)
161		return NULL;
162
163	return btrfs_raid_array[index].raid_name;
164}
165
166/*
167 * Fill @buf with textual description of @bg_flags, no more than @size_buf
168 * bytes including terminating null byte.
169 */
170void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
171{
172	int i;
173	int ret;
174	char *bp = buf;
175	u64 flags = bg_flags;
176	u32 size_bp = size_buf;
177
178	if (!flags) {
179		strcpy(bp, "NONE");
180		return;
181	}
182
183#define DESCRIBE_FLAG(flag, desc)						\
184	do {								\
185		if (flags & (flag)) {					\
186			ret = snprintf(bp, size_bp, "%s|", (desc));	\
187			if (ret < 0 || ret >= size_bp)			\
188				goto out_overflow;			\
189			size_bp -= ret;					\
190			bp += ret;					\
191			flags &= ~(flag);				\
192		}							\
193	} while (0)
194
195	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
196	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
197	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
198
199	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
200	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
202			      btrfs_raid_array[i].raid_name);
203#undef DESCRIBE_FLAG
204
205	if (flags) {
206		ret = snprintf(bp, size_bp, "0x%llx|", flags);
207		size_bp -= ret;
208	}
209
210	if (size_bp < size_buf)
211		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
212
213	/*
214	 * The text is trimmed, it's up to the caller to provide sufficiently
215	 * large buffer
216	 */
217out_overflow:;
218}
219
220static int init_first_rw_device(struct btrfs_trans_handle *trans);
221static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
222static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
223static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
224static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
225			     enum btrfs_map_op op,
226			     u64 logical, u64 *length,
227			     struct btrfs_bio **bbio_ret,
228			     int mirror_num, int need_raid_map);
229
230/*
231 * Device locking
232 * ==============
233 *
234 * There are several mutexes that protect manipulation of devices and low-level
235 * structures like chunks but not block groups, extents or files
236 *
237 * uuid_mutex (global lock)
238 * ------------------------
239 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
240 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
241 * device) or requested by the device= mount option
242 *
243 * the mutex can be very coarse and can cover long-running operations
244 *
245 * protects: updates to fs_devices counters like missing devices, rw devices,
246 * seeding, structure cloning, opening/closing devices at mount/umount time
247 *
248 * global::fs_devs - add, remove, updates to the global list
249 *
250 * does not protect: manipulation of the fs_devices::devices list in general
251 * but in mount context it could be used to exclude list modifications by eg.
252 * scan ioctl
253 *
254 * btrfs_device::name - renames (write side), read is RCU
255 *
256 * fs_devices::device_list_mutex (per-fs, with RCU)
257 * ------------------------------------------------
258 * protects updates to fs_devices::devices, ie. adding and deleting
259 *
260 * simple list traversal with read-only actions can be done with RCU protection
261 *
262 * may be used to exclude some operations from running concurrently without any
263 * modifications to the list (see write_all_supers)
264 *
265 * Is not required at mount and close times, because our device list is
266 * protected by the uuid_mutex at that point.
267 *
268 * balance_mutex
269 * -------------
270 * protects balance structures (status, state) and context accessed from
271 * several places (internally, ioctl)
272 *
273 * chunk_mutex
274 * -----------
275 * protects chunks, adding or removing during allocation, trim or when a new
276 * device is added/removed. Additionally it also protects post_commit_list of
277 * individual devices, since they can be added to the transaction's
278 * post_commit_list only with chunk_mutex held.
279 *
280 * cleaner_mutex
281 * -------------
282 * a big lock that is held by the cleaner thread and prevents running subvolume
283 * cleaning together with relocation or delayed iputs
284 *
285 *
286 * Lock nesting
287 * ============
288 *
289 * uuid_mutex
290 *   device_list_mutex
291 *     chunk_mutex
292 *   balance_mutex
293 *
294 *
295 * Exclusive operations
296 * ====================
297 *
298 * Maintains the exclusivity of the following operations that apply to the
299 * whole filesystem and cannot run in parallel.
300 *
301 * - Balance (*)
302 * - Device add
303 * - Device remove
304 * - Device replace (*)
305 * - Resize
306 *
307 * The device operations (as above) can be in one of the following states:
308 *
309 * - Running state
310 * - Paused state
311 * - Completed state
312 *
313 * Only device operations marked with (*) can go into the Paused state for the
314 * following reasons:
315 *
316 * - ioctl (only Balance can be Paused through ioctl)
317 * - filesystem remounted as read-only
318 * - filesystem unmounted and mounted as read-only
319 * - system power-cycle and filesystem mounted as read-only
320 * - filesystem or device errors leading to forced read-only
321 *
322 * The status of exclusive operation is set and cleared atomically.
323 * During the course of Paused state, fs_info::exclusive_operation remains set.
324 * A device operation in Paused or Running state can be canceled or resumed
325 * either by ioctl (Balance only) or when remounted as read-write.
326 * The exclusive status is cleared when the device operation is canceled or
327 * completed.
328 */
329
330DEFINE_MUTEX(uuid_mutex);
331static LIST_HEAD(fs_uuids);
332struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
333{
334	return &fs_uuids;
335}
336
337/*
338 * alloc_fs_devices - allocate struct btrfs_fs_devices
339 * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
340 * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
341 *
342 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
343 * The returned struct is not linked onto any lists and can be destroyed with
344 * kfree() right away.
345 */
346static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
347						 const u8 *metadata_fsid)
348{
349	struct btrfs_fs_devices *fs_devs;
350
351	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
352	if (!fs_devs)
353		return ERR_PTR(-ENOMEM);
354
355	mutex_init(&fs_devs->device_list_mutex);
356
357	INIT_LIST_HEAD(&fs_devs->devices);
358	INIT_LIST_HEAD(&fs_devs->alloc_list);
359	INIT_LIST_HEAD(&fs_devs->fs_list);
360	INIT_LIST_HEAD(&fs_devs->seed_list);
361	if (fsid)
362		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
363
364	if (metadata_fsid)
365		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
366	else if (fsid)
367		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
368
369	return fs_devs;
370}
371
372void btrfs_free_device(struct btrfs_device *device)
373{
374	WARN_ON(!list_empty(&device->post_commit_list));
375	rcu_string_free(device->name);
376	extent_io_tree_release(&device->alloc_state);
377	bio_put(device->flush_bio);
378	kfree(device);
379}
380
381static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
382{
383	struct btrfs_device *device;
384
385	WARN_ON(fs_devices->opened);
386	while (!list_empty(&fs_devices->devices)) {
387		device = list_entry(fs_devices->devices.next,
388				    struct btrfs_device, dev_list);
389		list_del(&device->dev_list);
390		btrfs_free_device(device);
391	}
392	kfree(fs_devices);
393}
394
395void __exit btrfs_cleanup_fs_uuids(void)
396{
397	struct btrfs_fs_devices *fs_devices;
398
399	while (!list_empty(&fs_uuids)) {
400		fs_devices = list_entry(fs_uuids.next,
401					struct btrfs_fs_devices, fs_list);
402		list_del(&fs_devices->fs_list);
403		free_fs_devices(fs_devices);
404	}
405}
406
407/*
408 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
409 * Returned struct is not linked onto any lists and must be destroyed using
410 * btrfs_free_device.
411 */
412static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
413{
414	struct btrfs_device *dev;
415
416	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
417	if (!dev)
418		return ERR_PTR(-ENOMEM);
419
420	/*
421	 * Preallocate a bio that's always going to be used for flushing device
422	 * barriers and matches the device lifespan
423	 */
424	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
425	if (!dev->flush_bio) {
426		kfree(dev);
427		return ERR_PTR(-ENOMEM);
428	}
429
430	INIT_LIST_HEAD(&dev->dev_list);
431	INIT_LIST_HEAD(&dev->dev_alloc_list);
432	INIT_LIST_HEAD(&dev->post_commit_list);
433
434	atomic_set(&dev->reada_in_flight, 0);
435	atomic_set(&dev->dev_stats_ccnt, 0);
436	btrfs_device_data_ordered_init(dev);
437	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
438	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
439	extent_io_tree_init(fs_info, &dev->alloc_state,
440			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
441
442	return dev;
443}
444
445static noinline struct btrfs_fs_devices *find_fsid(
446		const u8 *fsid, const u8 *metadata_fsid)
447{
448	struct btrfs_fs_devices *fs_devices;
449
450	ASSERT(fsid);
451
452	/* Handle non-split brain cases */
453	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454		if (metadata_fsid) {
455			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457				      BTRFS_FSID_SIZE) == 0)
458				return fs_devices;
459		} else {
460			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
461				return fs_devices;
462		}
463	}
464	return NULL;
465}
466
467static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
468				struct btrfs_super_block *disk_super)
469{
470
471	struct btrfs_fs_devices *fs_devices;
472
473	/*
474	 * Handle scanned device having completed its fsid change but
475	 * belonging to a fs_devices that was created by first scanning
476	 * a device which didn't have its fsid/metadata_uuid changed
477	 * at all and the CHANGING_FSID_V2 flag set.
478	 */
479	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
480		if (fs_devices->fsid_change &&
481		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
482			   BTRFS_FSID_SIZE) == 0 &&
483		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
484			   BTRFS_FSID_SIZE) == 0) {
485			return fs_devices;
486		}
487	}
488	/*
489	 * Handle scanned device having completed its fsid change but
490	 * belonging to a fs_devices that was created by a device that
491	 * has an outdated pair of fsid/metadata_uuid and
492	 * CHANGING_FSID_V2 flag set.
493	 */
494	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
495		if (fs_devices->fsid_change &&
496		    memcmp(fs_devices->metadata_uuid,
497			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
498		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
499			   BTRFS_FSID_SIZE) == 0) {
500			return fs_devices;
501		}
502	}
503
504	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
505}
506
507
508static int
509btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
510		      int flush, struct block_device **bdev,
511		      struct btrfs_super_block **disk_super)
512{
513	int ret;
514
515	*bdev = blkdev_get_by_path(device_path, flags, holder);
516
517	if (IS_ERR(*bdev)) {
518		ret = PTR_ERR(*bdev);
519		goto error;
520	}
521
522	if (flush)
523		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
524	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
525	if (ret) {
526		blkdev_put(*bdev, flags);
527		goto error;
528	}
529	invalidate_bdev(*bdev);
530	*disk_super = btrfs_read_dev_super(*bdev);
531	if (IS_ERR(*disk_super)) {
532		ret = PTR_ERR(*disk_super);
533		blkdev_put(*bdev, flags);
534		goto error;
535	}
536
537	return 0;
538
539error:
540	*bdev = NULL;
541	return ret;
542}
543
544/*
545 * Check if the device in the path matches the device in the given struct device.
546 *
547 * Returns:
548 *   true  If it is the same device.
549 *   false If it is not the same device or on error.
550 */
551static bool device_matched(const struct btrfs_device *device, const char *path)
552{
553	char *device_name;
554	struct block_device *bdev_old;
555	struct block_device *bdev_new;
556
557	/*
558	 * If we are looking for a device with the matching dev_t, then skip
559	 * device without a name (a missing device).
560	 */
561	if (!device->name)
562		return false;
563
564	device_name = kzalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
565	if (!device_name)
566		return false;
567
568	rcu_read_lock();
569	scnprintf(device_name, BTRFS_PATH_NAME_MAX, "%s", rcu_str_deref(device->name));
570	rcu_read_unlock();
571
572	bdev_old = lookup_bdev(device_name);
573	kfree(device_name);
574	if (IS_ERR(bdev_old))
575		return false;
576
577	bdev_new = lookup_bdev(path);
578	if (IS_ERR(bdev_new))
579		return false;
580
581	if (bdev_old == bdev_new)
582		return true;
583
584	return false;
585}
586
587/*
588 *  Search and remove all stale (devices which are not mounted) devices.
589 *  When both inputs are NULL, it will search and release all stale devices.
590 *  path:	Optional. When provided will it release all unmounted devices
591 *		matching this path only.
592 *  skip_dev:	Optional. Will skip this device when searching for the stale
593 *		devices.
594 *  Return:	0 for success or if @path is NULL.
595 * 		-EBUSY if @path is a mounted device.
596 * 		-ENOENT if @path does not match any device in the list.
597 */
598static int btrfs_free_stale_devices(const char *path,
599				     struct btrfs_device *skip_device)
600{
601	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
602	struct btrfs_device *device, *tmp_device;
603	int ret = 0;
604
605	lockdep_assert_held(&uuid_mutex);
606
607	if (path)
608		ret = -ENOENT;
609
610	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
611
612		mutex_lock(&fs_devices->device_list_mutex);
613		list_for_each_entry_safe(device, tmp_device,
614					 &fs_devices->devices, dev_list) {
615			if (skip_device && skip_device == device)
616				continue;
617			if (path && !device_matched(device, path))
618				continue;
619			if (fs_devices->opened) {
620				/* for an already deleted device return 0 */
621				if (path && ret != 0)
622					ret = -EBUSY;
623				break;
624			}
625
626			/* delete the stale device */
627			fs_devices->num_devices--;
628			list_del(&device->dev_list);
629			btrfs_free_device(device);
630
631			ret = 0;
632		}
633		mutex_unlock(&fs_devices->device_list_mutex);
634
635		if (fs_devices->num_devices == 0) {
636			btrfs_sysfs_remove_fsid(fs_devices);
637			list_del(&fs_devices->fs_list);
638			free_fs_devices(fs_devices);
639		}
640	}
641
642	return ret;
643}
644
645/*
646 * This is only used on mount, and we are protected from competing things
647 * messing with our fs_devices by the uuid_mutex, thus we do not need the
648 * fs_devices->device_list_mutex here.
649 */
650static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
651			struct btrfs_device *device, fmode_t flags,
652			void *holder)
653{
654	struct request_queue *q;
655	struct block_device *bdev;
656	struct btrfs_super_block *disk_super;
657	u64 devid;
658	int ret;
659
660	if (device->bdev)
661		return -EINVAL;
662	if (!device->name)
663		return -EINVAL;
664
665	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
666				    &bdev, &disk_super);
667	if (ret)
668		return ret;
669
670	devid = btrfs_stack_device_id(&disk_super->dev_item);
671	if (devid != device->devid)
672		goto error_free_page;
673
674	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
675		goto error_free_page;
676
677	device->generation = btrfs_super_generation(disk_super);
678
679	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
680		if (btrfs_super_incompat_flags(disk_super) &
681		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
682			pr_err(
683		"BTRFS: Invalid seeding and uuid-changed device detected\n");
684			goto error_free_page;
685		}
686
687		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
688		fs_devices->seeding = true;
689	} else {
690		if (bdev_read_only(bdev))
691			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
692		else
693			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
694	}
695
696	q = bdev_get_queue(bdev);
697	if (!blk_queue_nonrot(q))
698		fs_devices->rotating = true;
699
700	device->bdev = bdev;
701	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
702	device->mode = flags;
703
704	fs_devices->open_devices++;
705	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
706	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
707		fs_devices->rw_devices++;
708		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
709	}
710	btrfs_release_disk_super(disk_super);
711
712	return 0;
713
714error_free_page:
715	btrfs_release_disk_super(disk_super);
716	blkdev_put(bdev, flags);
717
718	return -EINVAL;
719}
720
721u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
722{
723	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
724				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
725
726	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
727}
728
729/*
730 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
731 * being created with a disk that has already completed its fsid change. Such
732 * disk can belong to an fs which has its FSID changed or to one which doesn't.
733 * Handle both cases here.
734 */
735static struct btrfs_fs_devices *find_fsid_inprogress(
736					struct btrfs_super_block *disk_super)
737{
738	struct btrfs_fs_devices *fs_devices;
739
740	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
741		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
742			   BTRFS_FSID_SIZE) != 0 &&
743		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
744			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
745			return fs_devices;
746		}
747	}
748
749	return find_fsid(disk_super->fsid, NULL);
750}
751
752
753static struct btrfs_fs_devices *find_fsid_changed(
754					struct btrfs_super_block *disk_super)
755{
756	struct btrfs_fs_devices *fs_devices;
757
758	/*
759	 * Handles the case where scanned device is part of an fs that had
760	 * multiple successful changes of FSID but curently device didn't
761	 * observe it. Meaning our fsid will be different than theirs. We need
762	 * to handle two subcases :
763	 *  1 - The fs still continues to have different METADATA/FSID uuids.
764	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
765	 *  are equal).
766	 */
767	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
768		/* Changed UUIDs */
769		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
770			   BTRFS_FSID_SIZE) != 0 &&
771		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
772			   BTRFS_FSID_SIZE) == 0 &&
773		    memcmp(fs_devices->fsid, disk_super->fsid,
774			   BTRFS_FSID_SIZE) != 0)
775			return fs_devices;
776
777		/* Unchanged UUIDs */
778		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
779			   BTRFS_FSID_SIZE) == 0 &&
780		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
781			   BTRFS_FSID_SIZE) == 0)
782			return fs_devices;
783	}
784
785	return NULL;
786}
787
788static struct btrfs_fs_devices *find_fsid_reverted_metadata(
789				struct btrfs_super_block *disk_super)
790{
791	struct btrfs_fs_devices *fs_devices;
792
793	/*
794	 * Handle the case where the scanned device is part of an fs whose last
795	 * metadata UUID change reverted it to the original FSID. At the same
796	 * time * fs_devices was first created by another constitutent device
797	 * which didn't fully observe the operation. This results in an
798	 * btrfs_fs_devices created with metadata/fsid different AND
799	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
800	 * fs_devices equal to the FSID of the disk.
801	 */
802	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
803		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
804			   BTRFS_FSID_SIZE) != 0 &&
805		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
806			   BTRFS_FSID_SIZE) == 0 &&
807		    fs_devices->fsid_change)
808			return fs_devices;
809	}
810
811	return NULL;
812}
813/*
814 * Add new device to list of registered devices
815 *
816 * Returns:
817 * device pointer which was just added or updated when successful
818 * error pointer when failed
819 */
820static noinline struct btrfs_device *device_list_add(const char *path,
821			   struct btrfs_super_block *disk_super,
822			   bool *new_device_added)
823{
824	struct btrfs_device *device;
825	struct btrfs_fs_devices *fs_devices = NULL;
826	struct rcu_string *name;
827	u64 found_transid = btrfs_super_generation(disk_super);
828	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
829	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
830		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
831	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
832					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
833
834	if (fsid_change_in_progress) {
835		if (!has_metadata_uuid)
836			fs_devices = find_fsid_inprogress(disk_super);
837		else
838			fs_devices = find_fsid_changed(disk_super);
839	} else if (has_metadata_uuid) {
840		fs_devices = find_fsid_with_metadata_uuid(disk_super);
841	} else {
842		fs_devices = find_fsid_reverted_metadata(disk_super);
843		if (!fs_devices)
844			fs_devices = find_fsid(disk_super->fsid, NULL);
845	}
846
847
848	if (!fs_devices) {
849		if (has_metadata_uuid)
850			fs_devices = alloc_fs_devices(disk_super->fsid,
851						      disk_super->metadata_uuid);
852		else
853			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
854
855		if (IS_ERR(fs_devices))
856			return ERR_CAST(fs_devices);
857
858		fs_devices->fsid_change = fsid_change_in_progress;
859
860		mutex_lock(&fs_devices->device_list_mutex);
861		list_add(&fs_devices->fs_list, &fs_uuids);
862
863		device = NULL;
864	} else {
865		mutex_lock(&fs_devices->device_list_mutex);
866		device = btrfs_find_device(fs_devices, devid,
867				disk_super->dev_item.uuid, NULL, false);
868
869		/*
870		 * If this disk has been pulled into an fs devices created by
871		 * a device which had the CHANGING_FSID_V2 flag then replace the
872		 * metadata_uuid/fsid values of the fs_devices.
873		 */
874		if (fs_devices->fsid_change &&
875		    found_transid > fs_devices->latest_generation) {
876			memcpy(fs_devices->fsid, disk_super->fsid,
877					BTRFS_FSID_SIZE);
878
879			if (has_metadata_uuid)
880				memcpy(fs_devices->metadata_uuid,
881				       disk_super->metadata_uuid,
882				       BTRFS_FSID_SIZE);
883			else
884				memcpy(fs_devices->metadata_uuid,
885				       disk_super->fsid, BTRFS_FSID_SIZE);
886
887			fs_devices->fsid_change = false;
888		}
889	}
890
891	if (!device) {
892		if (fs_devices->opened) {
893			mutex_unlock(&fs_devices->device_list_mutex);
894			return ERR_PTR(-EBUSY);
895		}
896
897		device = btrfs_alloc_device(NULL, &devid,
898					    disk_super->dev_item.uuid);
899		if (IS_ERR(device)) {
900			mutex_unlock(&fs_devices->device_list_mutex);
901			/* we can safely leave the fs_devices entry around */
902			return device;
903		}
904
905		name = rcu_string_strdup(path, GFP_NOFS);
906		if (!name) {
907			btrfs_free_device(device);
908			mutex_unlock(&fs_devices->device_list_mutex);
909			return ERR_PTR(-ENOMEM);
910		}
911		rcu_assign_pointer(device->name, name);
912
913		list_add_rcu(&device->dev_list, &fs_devices->devices);
914		fs_devices->num_devices++;
915
916		device->fs_devices = fs_devices;
917		*new_device_added = true;
918
919		if (disk_super->label[0])
920			pr_info(
921	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
922				disk_super->label, devid, found_transid, path,
923				current->comm, task_pid_nr(current));
924		else
925			pr_info(
926	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
927				disk_super->fsid, devid, found_transid, path,
928				current->comm, task_pid_nr(current));
929
930	} else if (!device->name || strcmp(device->name->str, path)) {
931		/*
932		 * When FS is already mounted.
933		 * 1. If you are here and if the device->name is NULL that
934		 *    means this device was missing at time of FS mount.
935		 * 2. If you are here and if the device->name is different
936		 *    from 'path' that means either
937		 *      a. The same device disappeared and reappeared with
938		 *         different name. or
939		 *      b. The missing-disk-which-was-replaced, has
940		 *         reappeared now.
941		 *
942		 * We must allow 1 and 2a above. But 2b would be a spurious
943		 * and unintentional.
944		 *
945		 * Further in case of 1 and 2a above, the disk at 'path'
946		 * would have missed some transaction when it was away and
947		 * in case of 2a the stale bdev has to be updated as well.
948		 * 2b must not be allowed at all time.
949		 */
950
951		/*
952		 * For now, we do allow update to btrfs_fs_device through the
953		 * btrfs dev scan cli after FS has been mounted.  We're still
954		 * tracking a problem where systems fail mount by subvolume id
955		 * when we reject replacement on a mounted FS.
956		 */
957		if (!fs_devices->opened && found_transid < device->generation) {
958			/*
959			 * That is if the FS is _not_ mounted and if you
960			 * are here, that means there is more than one
961			 * disk with same uuid and devid.We keep the one
962			 * with larger generation number or the last-in if
963			 * generation are equal.
964			 */
965			mutex_unlock(&fs_devices->device_list_mutex);
966			return ERR_PTR(-EEXIST);
967		}
968
969		/*
970		 * We are going to replace the device path for a given devid,
971		 * make sure it's the same device if the device is mounted
972		 */
973		if (device->bdev) {
974			struct block_device *path_bdev;
975
976			path_bdev = lookup_bdev(path);
977			if (IS_ERR(path_bdev)) {
978				mutex_unlock(&fs_devices->device_list_mutex);
979				return ERR_CAST(path_bdev);
980			}
981
982			if (device->bdev != path_bdev) {
983				bdput(path_bdev);
984				mutex_unlock(&fs_devices->device_list_mutex);
985				/*
986				 * device->fs_info may not be reliable here, so
987				 * pass in a NULL instead. This avoids a
988				 * possible use-after-free when the fs_info and
989				 * fs_info->sb are already torn down.
990				 */
991				btrfs_warn_in_rcu(NULL,
992	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
993						  path, devid, found_transid,
994						  current->comm,
995						  task_pid_nr(current));
996				return ERR_PTR(-EEXIST);
997			}
998			bdput(path_bdev);
999			btrfs_info_in_rcu(device->fs_info,
1000	"devid %llu device path %s changed to %s scanned by %s (%d)",
1001					  devid, rcu_str_deref(device->name),
1002					  path, current->comm,
1003					  task_pid_nr(current));
1004		}
1005
1006		name = rcu_string_strdup(path, GFP_NOFS);
1007		if (!name) {
1008			mutex_unlock(&fs_devices->device_list_mutex);
1009			return ERR_PTR(-ENOMEM);
1010		}
1011		rcu_string_free(device->name);
1012		rcu_assign_pointer(device->name, name);
1013		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1014			fs_devices->missing_devices--;
1015			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1016		}
1017	}
1018
1019	/*
1020	 * Unmount does not free the btrfs_device struct but would zero
1021	 * generation along with most of the other members. So just update
1022	 * it back. We need it to pick the disk with largest generation
1023	 * (as above).
1024	 */
1025	if (!fs_devices->opened) {
1026		device->generation = found_transid;
1027		fs_devices->latest_generation = max_t(u64, found_transid,
1028						fs_devices->latest_generation);
1029	}
1030
1031	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1032
1033	mutex_unlock(&fs_devices->device_list_mutex);
1034	return device;
1035}
1036
1037static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1038{
1039	struct btrfs_fs_devices *fs_devices;
1040	struct btrfs_device *device;
1041	struct btrfs_device *orig_dev;
1042	int ret = 0;
1043
1044	lockdep_assert_held(&uuid_mutex);
1045
1046	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1047	if (IS_ERR(fs_devices))
1048		return fs_devices;
1049
1050	fs_devices->total_devices = orig->total_devices;
1051
1052	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1053		struct rcu_string *name;
1054
1055		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1056					    orig_dev->uuid);
1057		if (IS_ERR(device)) {
1058			ret = PTR_ERR(device);
1059			goto error;
1060		}
1061
1062		/*
1063		 * This is ok to do without rcu read locked because we hold the
1064		 * uuid mutex so nothing we touch in here is going to disappear.
1065		 */
1066		if (orig_dev->name) {
1067			name = rcu_string_strdup(orig_dev->name->str,
1068					GFP_KERNEL);
1069			if (!name) {
1070				btrfs_free_device(device);
1071				ret = -ENOMEM;
1072				goto error;
1073			}
1074			rcu_assign_pointer(device->name, name);
1075		}
1076
1077		list_add(&device->dev_list, &fs_devices->devices);
1078		device->fs_devices = fs_devices;
1079		fs_devices->num_devices++;
1080	}
1081	return fs_devices;
1082error:
1083	free_fs_devices(fs_devices);
1084	return ERR_PTR(ret);
1085}
1086
1087static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1088				      int step, struct btrfs_device **latest_dev)
1089{
1090	struct btrfs_device *device, *next;
1091
1092	/* This is the initialized path, it is safe to release the devices. */
1093	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1094		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1095			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1096				      &device->dev_state) &&
1097			    !test_bit(BTRFS_DEV_STATE_MISSING,
1098				      &device->dev_state) &&
1099			    (!*latest_dev ||
1100			     device->generation > (*latest_dev)->generation)) {
1101				*latest_dev = device;
1102			}
1103			continue;
1104		}
1105
1106		/*
1107		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1108		 * in btrfs_init_dev_replace() so just continue.
1109		 */
1110		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1111			continue;
1112
1113		if (device->bdev) {
1114			blkdev_put(device->bdev, device->mode);
1115			device->bdev = NULL;
1116			fs_devices->open_devices--;
1117		}
1118		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1119			list_del_init(&device->dev_alloc_list);
1120			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1121			fs_devices->rw_devices--;
1122		}
1123		list_del_init(&device->dev_list);
1124		fs_devices->num_devices--;
1125		btrfs_free_device(device);
1126	}
1127
1128}
1129
1130/*
1131 * After we have read the system tree and know devids belonging to this
1132 * filesystem, remove the device which does not belong there.
1133 */
1134void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1135{
1136	struct btrfs_device *latest_dev = NULL;
1137	struct btrfs_fs_devices *seed_dev;
1138
1139	mutex_lock(&uuid_mutex);
1140	__btrfs_free_extra_devids(fs_devices, step, &latest_dev);
1141
1142	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1143		__btrfs_free_extra_devids(seed_dev, step, &latest_dev);
1144
1145	fs_devices->latest_bdev = latest_dev->bdev;
1146
1147	mutex_unlock(&uuid_mutex);
1148}
1149
1150static void btrfs_close_bdev(struct btrfs_device *device)
1151{
1152	if (!device->bdev)
1153		return;
1154
1155	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1156		sync_blockdev(device->bdev);
1157		invalidate_bdev(device->bdev);
1158	}
1159
1160	blkdev_put(device->bdev, device->mode);
1161}
1162
1163static void btrfs_close_one_device(struct btrfs_device *device)
1164{
1165	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1166
1167	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1168	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1169		list_del_init(&device->dev_alloc_list);
1170		fs_devices->rw_devices--;
1171	}
1172
1173	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1174		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1175
1176	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1177		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1178		fs_devices->missing_devices--;
1179	}
1180
1181	btrfs_close_bdev(device);
1182	if (device->bdev) {
1183		fs_devices->open_devices--;
1184		device->bdev = NULL;
1185	}
1186	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1187
1188	device->fs_info = NULL;
1189	atomic_set(&device->dev_stats_ccnt, 0);
1190	extent_io_tree_release(&device->alloc_state);
1191
1192	/*
1193	 * Reset the flush error record. We might have a transient flush error
1194	 * in this mount, and if so we aborted the current transaction and set
1195	 * the fs to an error state, guaranteeing no super blocks can be further
1196	 * committed. However that error might be transient and if we unmount the
1197	 * filesystem and mount it again, we should allow the mount to succeed
1198	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1199	 * filesystem again we still get flush errors, then we will again abort
1200	 * any transaction and set the error state, guaranteeing no commits of
1201	 * unsafe super blocks.
1202	 */
1203	device->last_flush_error = 0;
1204
1205	/* Verify the device is back in a pristine state  */
1206	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1207	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1208	ASSERT(list_empty(&device->dev_alloc_list));
1209	ASSERT(list_empty(&device->post_commit_list));
1210	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1211}
1212
1213static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1214{
1215	struct btrfs_device *device, *tmp;
1216
1217	lockdep_assert_held(&uuid_mutex);
1218
1219	if (--fs_devices->opened > 0)
1220		return;
1221
1222	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1223		btrfs_close_one_device(device);
1224
1225	WARN_ON(fs_devices->open_devices);
1226	WARN_ON(fs_devices->rw_devices);
1227	fs_devices->opened = 0;
1228	fs_devices->seeding = false;
1229	fs_devices->fs_info = NULL;
1230}
1231
1232void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1233{
1234	LIST_HEAD(list);
1235	struct btrfs_fs_devices *tmp;
1236
1237	mutex_lock(&uuid_mutex);
1238	close_fs_devices(fs_devices);
1239	if (!fs_devices->opened) {
1240		list_splice_init(&fs_devices->seed_list, &list);
1241
1242		/*
1243		 * If the struct btrfs_fs_devices is not assembled with any
1244		 * other device, it can be re-initialized during the next mount
1245		 * without the needing device-scan step. Therefore, it can be
1246		 * fully freed.
1247		 */
1248		if (fs_devices->num_devices == 1) {
1249			list_del(&fs_devices->fs_list);
1250			free_fs_devices(fs_devices);
1251		}
1252	}
1253
1254
1255	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1256		close_fs_devices(fs_devices);
1257		list_del(&fs_devices->seed_list);
1258		free_fs_devices(fs_devices);
1259	}
1260	mutex_unlock(&uuid_mutex);
1261}
1262
1263static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1264				fmode_t flags, void *holder)
1265{
1266	struct btrfs_device *device;
1267	struct btrfs_device *latest_dev = NULL;
1268	struct btrfs_device *tmp_device;
1269
1270	flags |= FMODE_EXCL;
1271
1272	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1273				 dev_list) {
1274		int ret;
1275
1276		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1277		if (ret == 0 &&
1278		    (!latest_dev || device->generation > latest_dev->generation)) {
1279			latest_dev = device;
1280		} else if (ret == -ENODATA) {
1281			fs_devices->num_devices--;
1282			list_del(&device->dev_list);
1283			btrfs_free_device(device);
1284		}
1285	}
1286	if (fs_devices->open_devices == 0)
1287		return -EINVAL;
1288
1289	fs_devices->opened = 1;
1290	fs_devices->latest_bdev = latest_dev->bdev;
1291	fs_devices->total_rw_bytes = 0;
1292	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1293
1294	return 0;
1295}
1296
1297static int devid_cmp(void *priv, const struct list_head *a,
1298		     const struct list_head *b)
1299{
1300	struct btrfs_device *dev1, *dev2;
1301
1302	dev1 = list_entry(a, struct btrfs_device, dev_list);
1303	dev2 = list_entry(b, struct btrfs_device, dev_list);
1304
1305	if (dev1->devid < dev2->devid)
1306		return -1;
1307	else if (dev1->devid > dev2->devid)
1308		return 1;
1309	return 0;
1310}
1311
1312int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1313		       fmode_t flags, void *holder)
1314{
1315	int ret;
1316
1317	lockdep_assert_held(&uuid_mutex);
1318	/*
1319	 * The device_list_mutex cannot be taken here in case opening the
1320	 * underlying device takes further locks like bd_mutex.
1321	 *
1322	 * We also don't need the lock here as this is called during mount and
1323	 * exclusion is provided by uuid_mutex
1324	 */
1325
1326	if (fs_devices->opened) {
1327		fs_devices->opened++;
1328		ret = 0;
1329	} else {
1330		list_sort(NULL, &fs_devices->devices, devid_cmp);
1331		ret = open_fs_devices(fs_devices, flags, holder);
1332	}
1333
1334	return ret;
1335}
1336
1337void btrfs_release_disk_super(struct btrfs_super_block *super)
1338{
1339	struct page *page = virt_to_page(super);
1340
1341	put_page(page);
1342}
1343
1344static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1345						       u64 bytenr)
1346{
1347	struct btrfs_super_block *disk_super;
1348	struct page *page;
1349	void *p;
1350	pgoff_t index;
1351
1352	/* make sure our super fits in the device */
1353	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1354		return ERR_PTR(-EINVAL);
1355
1356	/* make sure our super fits in the page */
1357	if (sizeof(*disk_super) > PAGE_SIZE)
1358		return ERR_PTR(-EINVAL);
1359
1360	/* make sure our super doesn't straddle pages on disk */
1361	index = bytenr >> PAGE_SHIFT;
1362	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1363		return ERR_PTR(-EINVAL);
1364
1365	/* pull in the page with our super */
1366	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1367
1368	if (IS_ERR(page))
1369		return ERR_CAST(page);
1370
1371	p = page_address(page);
1372
1373	/* align our pointer to the offset of the super block */
1374	disk_super = p + offset_in_page(bytenr);
1375
1376	if (btrfs_super_bytenr(disk_super) != bytenr ||
1377	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1378		btrfs_release_disk_super(p);
1379		return ERR_PTR(-EINVAL);
1380	}
1381
1382	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1383		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1384
1385	return disk_super;
1386}
1387
1388int btrfs_forget_devices(const char *path)
1389{
1390	int ret;
1391
1392	mutex_lock(&uuid_mutex);
1393	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1394	mutex_unlock(&uuid_mutex);
1395
1396	return ret;
1397}
1398
1399/*
1400 * Look for a btrfs signature on a device. This may be called out of the mount path
1401 * and we are not allowed to call set_blocksize during the scan. The superblock
1402 * is read via pagecache
1403 */
1404struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1405					   void *holder)
1406{
1407	struct btrfs_super_block *disk_super;
1408	bool new_device_added = false;
1409	struct btrfs_device *device = NULL;
1410	struct block_device *bdev;
1411	u64 bytenr;
1412
1413	lockdep_assert_held(&uuid_mutex);
1414
1415	/*
1416	 * we would like to check all the supers, but that would make
1417	 * a btrfs mount succeed after a mkfs from a different FS.
1418	 * So, we need to add a special mount option to scan for
1419	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1420	 */
1421	bytenr = btrfs_sb_offset(0);
1422
1423	/*
1424	 * Avoid using flag |= FMODE_EXCL here, as the systemd-udev may
1425	 * initiate the device scan which may race with the user's mount
1426	 * or mkfs command, resulting in failure.
1427	 * Since the device scan is solely for reading purposes, there is
1428	 * no need for FMODE_EXCL. Additionally, the devices are read again
1429	 * during the mount process. It is ok to get some inconsistent
1430	 * values temporarily, as the device paths of the fsid are the only
1431	 * required information for assembling the volume.
1432	 */
1433	bdev = blkdev_get_by_path(path, flags, holder);
1434	if (IS_ERR(bdev))
1435		return ERR_CAST(bdev);
1436
1437	disk_super = btrfs_read_disk_super(bdev, bytenr);
1438	if (IS_ERR(disk_super)) {
1439		device = ERR_CAST(disk_super);
1440		goto error_bdev_put;
1441	}
1442
1443	device = device_list_add(path, disk_super, &new_device_added);
1444	if (!IS_ERR(device)) {
1445		if (new_device_added)
1446			btrfs_free_stale_devices(path, device);
1447	}
1448
1449	btrfs_release_disk_super(disk_super);
1450
1451error_bdev_put:
1452	blkdev_put(bdev, flags);
1453
1454	return device;
1455}
1456
1457/*
1458 * Try to find a chunk that intersects [start, start + len] range and when one
1459 * such is found, record the end of it in *start
1460 */
1461static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1462				    u64 len)
1463{
1464	u64 physical_start, physical_end;
1465
1466	lockdep_assert_held(&device->fs_info->chunk_mutex);
1467
1468	if (!find_first_extent_bit(&device->alloc_state, *start,
1469				   &physical_start, &physical_end,
1470				   CHUNK_ALLOCATED, NULL)) {
1471
1472		if (in_range(physical_start, *start, len) ||
1473		    in_range(*start, physical_start,
1474			     physical_end - physical_start)) {
1475			*start = physical_end + 1;
1476			return true;
1477		}
1478	}
1479	return false;
1480}
1481
1482static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1483{
1484	switch (device->fs_devices->chunk_alloc_policy) {
1485	case BTRFS_CHUNK_ALLOC_REGULAR:
1486		/*
1487		 * We don't want to overwrite the superblock on the drive nor
1488		 * any area used by the boot loader (grub for example), so we
1489		 * make sure to start at an offset of at least 1MB.
1490		 */
1491		return max_t(u64, start, SZ_1M);
1492	default:
1493		BUG();
1494	}
1495}
1496
1497/**
1498 * dev_extent_hole_check - check if specified hole is suitable for allocation
1499 * @device:	the device which we have the hole
1500 * @hole_start: starting position of the hole
1501 * @hole_size:	the size of the hole
1502 * @num_bytes:	the size of the free space that we need
1503 *
1504 * This function may modify @hole_start and @hole_end to reflect the suitable
1505 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1506 */
1507static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1508				  u64 *hole_size, u64 num_bytes)
1509{
1510	bool changed = false;
1511	u64 hole_end = *hole_start + *hole_size;
1512
1513	/*
1514	 * Check before we set max_hole_start, otherwise we could end up
1515	 * sending back this offset anyway.
1516	 */
1517	if (contains_pending_extent(device, hole_start, *hole_size)) {
1518		if (hole_end >= *hole_start)
1519			*hole_size = hole_end - *hole_start;
1520		else
1521			*hole_size = 0;
1522		changed = true;
1523	}
1524
1525	switch (device->fs_devices->chunk_alloc_policy) {
1526	case BTRFS_CHUNK_ALLOC_REGULAR:
1527		/* No extra check */
1528		break;
1529	default:
1530		BUG();
1531	}
1532
1533	return changed;
1534}
1535
1536/*
1537 * find_free_dev_extent_start - find free space in the specified device
1538 * @device:	  the device which we search the free space in
1539 * @num_bytes:	  the size of the free space that we need
1540 * @search_start: the position from which to begin the search
1541 * @start:	  store the start of the free space.
1542 * @len:	  the size of the free space. that we find, or the size
1543 *		  of the max free space if we don't find suitable free space
1544 *
1545 * this uses a pretty simple search, the expectation is that it is
1546 * called very infrequently and that a given device has a small number
1547 * of extents
1548 *
1549 * @start is used to store the start of the free space if we find. But if we
1550 * don't find suitable free space, it will be used to store the start position
1551 * of the max free space.
1552 *
1553 * @len is used to store the size of the free space that we find.
1554 * But if we don't find suitable free space, it is used to store the size of
1555 * the max free space.
1556 *
1557 * NOTE: This function will search *commit* root of device tree, and does extra
1558 * check to ensure dev extents are not double allocated.
1559 * This makes the function safe to allocate dev extents but may not report
1560 * correct usable device space, as device extent freed in current transaction
1561 * is not reported as avaiable.
1562 */
1563static int find_free_dev_extent_start(struct btrfs_device *device,
1564				u64 num_bytes, u64 search_start, u64 *start,
1565				u64 *len)
1566{
1567	struct btrfs_fs_info *fs_info = device->fs_info;
1568	struct btrfs_root *root = fs_info->dev_root;
1569	struct btrfs_key key;
1570	struct btrfs_dev_extent *dev_extent;
1571	struct btrfs_path *path;
1572	u64 hole_size;
1573	u64 max_hole_start;
1574	u64 max_hole_size;
1575	u64 extent_end;
1576	u64 search_end = device->total_bytes;
1577	int ret;
1578	int slot;
1579	struct extent_buffer *l;
1580
1581	search_start = dev_extent_search_start(device, search_start);
1582
1583	path = btrfs_alloc_path();
1584	if (!path)
1585		return -ENOMEM;
1586
1587	max_hole_start = search_start;
1588	max_hole_size = 0;
1589
1590again:
1591	if (search_start >= search_end ||
1592		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1593		ret = -ENOSPC;
1594		goto out;
1595	}
1596
1597	path->reada = READA_FORWARD;
1598	path->search_commit_root = 1;
1599	path->skip_locking = 1;
1600
1601	key.objectid = device->devid;
1602	key.offset = search_start;
1603	key.type = BTRFS_DEV_EXTENT_KEY;
1604
1605	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1606	if (ret < 0)
1607		goto out;
1608	if (ret > 0) {
1609		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1610		if (ret < 0)
1611			goto out;
1612	}
1613
1614	while (search_start < search_end) {
1615		l = path->nodes[0];
1616		slot = path->slots[0];
1617		if (slot >= btrfs_header_nritems(l)) {
1618			ret = btrfs_next_leaf(root, path);
1619			if (ret == 0)
1620				continue;
1621			if (ret < 0)
1622				goto out;
1623
1624			break;
1625		}
1626		btrfs_item_key_to_cpu(l, &key, slot);
1627
1628		if (key.objectid < device->devid)
1629			goto next;
1630
1631		if (key.objectid > device->devid)
1632			break;
1633
1634		if (key.type != BTRFS_DEV_EXTENT_KEY)
1635			goto next;
1636
1637		if (key.offset > search_end)
1638			break;
1639
1640		if (key.offset > search_start) {
1641			hole_size = key.offset - search_start;
1642			dev_extent_hole_check(device, &search_start, &hole_size,
1643					      num_bytes);
1644
1645			if (hole_size > max_hole_size) {
1646				max_hole_start = search_start;
1647				max_hole_size = hole_size;
1648			}
1649
1650			/*
1651			 * If this free space is greater than which we need,
1652			 * it must be the max free space that we have found
1653			 * until now, so max_hole_start must point to the start
1654			 * of this free space and the length of this free space
1655			 * is stored in max_hole_size. Thus, we return
1656			 * max_hole_start and max_hole_size and go back to the
1657			 * caller.
1658			 */
1659			if (hole_size >= num_bytes) {
1660				ret = 0;
1661				goto out;
1662			}
1663		}
1664
1665		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1666		extent_end = key.offset + btrfs_dev_extent_length(l,
1667								  dev_extent);
1668		if (extent_end > search_start)
1669			search_start = extent_end;
1670next:
1671		path->slots[0]++;
1672		cond_resched();
1673	}
1674
1675	/*
1676	 * At this point, search_start should be the end of
1677	 * allocated dev extents, and when shrinking the device,
1678	 * search_end may be smaller than search_start.
1679	 */
1680	if (search_end > search_start) {
1681		hole_size = search_end - search_start;
1682		if (dev_extent_hole_check(device, &search_start, &hole_size,
1683					  num_bytes)) {
1684			btrfs_release_path(path);
1685			goto again;
1686		}
1687
1688		if (hole_size > max_hole_size) {
1689			max_hole_start = search_start;
1690			max_hole_size = hole_size;
1691		}
1692	}
1693
1694	/* See above. */
1695	if (max_hole_size < num_bytes)
1696		ret = -ENOSPC;
1697	else
1698		ret = 0;
1699
1700	ASSERT(max_hole_start + max_hole_size <= search_end);
1701out:
1702	btrfs_free_path(path);
1703	*start = max_hole_start;
1704	if (len)
1705		*len = max_hole_size;
1706	return ret;
1707}
1708
1709int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1710			 u64 *start, u64 *len)
1711{
1712	/* FIXME use last free of some kind */
1713	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1714}
1715
1716static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1717			  struct btrfs_device *device,
1718			  u64 start, u64 *dev_extent_len)
1719{
1720	struct btrfs_fs_info *fs_info = device->fs_info;
1721	struct btrfs_root *root = fs_info->dev_root;
1722	int ret;
1723	struct btrfs_path *path;
1724	struct btrfs_key key;
1725	struct btrfs_key found_key;
1726	struct extent_buffer *leaf = NULL;
1727	struct btrfs_dev_extent *extent = NULL;
1728
1729	path = btrfs_alloc_path();
1730	if (!path)
1731		return -ENOMEM;
1732
1733	key.objectid = device->devid;
1734	key.offset = start;
1735	key.type = BTRFS_DEV_EXTENT_KEY;
1736again:
1737	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1738	if (ret > 0) {
1739		ret = btrfs_previous_item(root, path, key.objectid,
1740					  BTRFS_DEV_EXTENT_KEY);
1741		if (ret)
1742			goto out;
1743		leaf = path->nodes[0];
1744		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1745		extent = btrfs_item_ptr(leaf, path->slots[0],
1746					struct btrfs_dev_extent);
1747		BUG_ON(found_key.offset > start || found_key.offset +
1748		       btrfs_dev_extent_length(leaf, extent) < start);
1749		key = found_key;
1750		btrfs_release_path(path);
1751		goto again;
1752	} else if (ret == 0) {
1753		leaf = path->nodes[0];
1754		extent = btrfs_item_ptr(leaf, path->slots[0],
1755					struct btrfs_dev_extent);
1756	} else {
1757		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1758		goto out;
1759	}
1760
1761	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1762
1763	ret = btrfs_del_item(trans, root, path);
1764	if (ret) {
1765		btrfs_handle_fs_error(fs_info, ret,
1766				      "Failed to remove dev extent item");
1767	} else {
1768		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1769	}
1770out:
1771	btrfs_free_path(path);
1772	return ret;
1773}
1774
1775static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1776				  struct btrfs_device *device,
1777				  u64 chunk_offset, u64 start, u64 num_bytes)
1778{
1779	int ret;
1780	struct btrfs_path *path;
1781	struct btrfs_fs_info *fs_info = device->fs_info;
1782	struct btrfs_root *root = fs_info->dev_root;
1783	struct btrfs_dev_extent *extent;
1784	struct extent_buffer *leaf;
1785	struct btrfs_key key;
1786
1787	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1788	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1789	path = btrfs_alloc_path();
1790	if (!path)
1791		return -ENOMEM;
1792
1793	key.objectid = device->devid;
1794	key.offset = start;
1795	key.type = BTRFS_DEV_EXTENT_KEY;
1796	ret = btrfs_insert_empty_item(trans, root, path, &key,
1797				      sizeof(*extent));
1798	if (ret)
1799		goto out;
1800
1801	leaf = path->nodes[0];
1802	extent = btrfs_item_ptr(leaf, path->slots[0],
1803				struct btrfs_dev_extent);
1804	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1805					BTRFS_CHUNK_TREE_OBJECTID);
1806	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1807					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1808	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1809
1810	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1811	btrfs_mark_buffer_dirty(leaf);
1812out:
1813	btrfs_free_path(path);
1814	return ret;
1815}
1816
1817static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1818{
1819	struct extent_map_tree *em_tree;
1820	struct extent_map *em;
1821	struct rb_node *n;
1822	u64 ret = 0;
1823
1824	em_tree = &fs_info->mapping_tree;
1825	read_lock(&em_tree->lock);
1826	n = rb_last(&em_tree->map.rb_root);
1827	if (n) {
1828		em = rb_entry(n, struct extent_map, rb_node);
1829		ret = em->start + em->len;
1830	}
1831	read_unlock(&em_tree->lock);
1832
1833	return ret;
1834}
1835
1836static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1837				    u64 *devid_ret)
1838{
1839	int ret;
1840	struct btrfs_key key;
1841	struct btrfs_key found_key;
1842	struct btrfs_path *path;
1843
1844	path = btrfs_alloc_path();
1845	if (!path)
1846		return -ENOMEM;
1847
1848	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1849	key.type = BTRFS_DEV_ITEM_KEY;
1850	key.offset = (u64)-1;
1851
1852	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1853	if (ret < 0)
1854		goto error;
1855
1856	if (ret == 0) {
1857		/* Corruption */
1858		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1859		ret = -EUCLEAN;
1860		goto error;
1861	}
1862
1863	ret = btrfs_previous_item(fs_info->chunk_root, path,
1864				  BTRFS_DEV_ITEMS_OBJECTID,
1865				  BTRFS_DEV_ITEM_KEY);
1866	if (ret) {
1867		*devid_ret = 1;
1868	} else {
1869		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1870				      path->slots[0]);
1871		*devid_ret = found_key.offset + 1;
1872	}
1873	ret = 0;
1874error:
1875	btrfs_free_path(path);
1876	return ret;
1877}
1878
1879/*
1880 * the device information is stored in the chunk root
1881 * the btrfs_device struct should be fully filled in
1882 */
1883static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1884			    struct btrfs_device *device)
1885{
1886	int ret;
1887	struct btrfs_path *path;
1888	struct btrfs_dev_item *dev_item;
1889	struct extent_buffer *leaf;
1890	struct btrfs_key key;
1891	unsigned long ptr;
1892
1893	path = btrfs_alloc_path();
1894	if (!path)
1895		return -ENOMEM;
1896
1897	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1898	key.type = BTRFS_DEV_ITEM_KEY;
1899	key.offset = device->devid;
1900
1901	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1902				      &key, sizeof(*dev_item));
1903	if (ret)
1904		goto out;
1905
1906	leaf = path->nodes[0];
1907	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1908
1909	btrfs_set_device_id(leaf, dev_item, device->devid);
1910	btrfs_set_device_generation(leaf, dev_item, 0);
1911	btrfs_set_device_type(leaf, dev_item, device->type);
1912	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1913	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1914	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1915	btrfs_set_device_total_bytes(leaf, dev_item,
1916				     btrfs_device_get_disk_total_bytes(device));
1917	btrfs_set_device_bytes_used(leaf, dev_item,
1918				    btrfs_device_get_bytes_used(device));
1919	btrfs_set_device_group(leaf, dev_item, 0);
1920	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1921	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1922	btrfs_set_device_start_offset(leaf, dev_item, 0);
1923
1924	ptr = btrfs_device_uuid(dev_item);
1925	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1926	ptr = btrfs_device_fsid(dev_item);
1927	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1928			    ptr, BTRFS_FSID_SIZE);
1929	btrfs_mark_buffer_dirty(leaf);
1930
1931	ret = 0;
1932out:
1933	btrfs_free_path(path);
1934	return ret;
1935}
1936
1937/*
1938 * Function to update ctime/mtime for a given device path.
1939 * Mainly used for ctime/mtime based probe like libblkid.
1940 *
1941 * We don't care about errors here, this is just to be kind to userspace.
1942 */
1943static void update_dev_time(const char *device_path)
1944{
1945	struct path path;
1946	struct timespec64 now;
1947	int ret;
1948
1949	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1950	if (ret)
1951		return;
1952
1953	now = current_time(d_inode(path.dentry));
1954	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1955	path_put(&path);
1956}
1957
1958static int btrfs_rm_dev_item(struct btrfs_device *device)
1959{
1960	struct btrfs_root *root = device->fs_info->chunk_root;
1961	int ret;
1962	struct btrfs_path *path;
1963	struct btrfs_key key;
1964	struct btrfs_trans_handle *trans;
1965
1966	path = btrfs_alloc_path();
1967	if (!path)
1968		return -ENOMEM;
1969
1970	trans = btrfs_start_transaction(root, 0);
1971	if (IS_ERR(trans)) {
1972		btrfs_free_path(path);
1973		return PTR_ERR(trans);
1974	}
1975	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1976	key.type = BTRFS_DEV_ITEM_KEY;
1977	key.offset = device->devid;
1978
1979	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1980	if (ret) {
1981		if (ret > 0)
1982			ret = -ENOENT;
1983		btrfs_abort_transaction(trans, ret);
1984		btrfs_end_transaction(trans);
1985		goto out;
1986	}
1987
1988	ret = btrfs_del_item(trans, root, path);
1989	if (ret) {
1990		btrfs_abort_transaction(trans, ret);
1991		btrfs_end_transaction(trans);
1992	}
1993
1994out:
1995	btrfs_free_path(path);
1996	if (!ret)
1997		ret = btrfs_commit_transaction(trans);
1998	return ret;
1999}
2000
2001/*
2002 * Verify that @num_devices satisfies the RAID profile constraints in the whole
2003 * filesystem. It's up to the caller to adjust that number regarding eg. device
2004 * replace.
2005 */
2006static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2007		u64 num_devices)
2008{
2009	u64 all_avail;
2010	unsigned seq;
2011	int i;
2012
2013	do {
2014		seq = read_seqbegin(&fs_info->profiles_lock);
2015
2016		all_avail = fs_info->avail_data_alloc_bits |
2017			    fs_info->avail_system_alloc_bits |
2018			    fs_info->avail_metadata_alloc_bits;
2019	} while (read_seqretry(&fs_info->profiles_lock, seq));
2020
2021	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2022		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2023			continue;
2024
2025		if (num_devices < btrfs_raid_array[i].devs_min) {
2026			int ret = btrfs_raid_array[i].mindev_error;
2027
2028			if (ret)
2029				return ret;
2030		}
2031	}
2032
2033	return 0;
2034}
2035
2036static struct btrfs_device * btrfs_find_next_active_device(
2037		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2038{
2039	struct btrfs_device *next_device;
2040
2041	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2042		if (next_device != device &&
2043		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2044		    && next_device->bdev)
2045			return next_device;
2046	}
2047
2048	return NULL;
2049}
2050
2051/*
2052 * Helper function to check if the given device is part of s_bdev / latest_bdev
2053 * and replace it with the provided or the next active device, in the context
2054 * where this function called, there should be always be another device (or
2055 * this_dev) which is active.
2056 */
2057void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2058					    struct btrfs_device *next_device)
2059{
2060	struct btrfs_fs_info *fs_info = device->fs_info;
2061
2062	if (!next_device)
2063		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2064							    device);
2065	ASSERT(next_device);
2066
2067	if (fs_info->sb->s_bdev &&
2068			(fs_info->sb->s_bdev == device->bdev))
2069		fs_info->sb->s_bdev = next_device->bdev;
2070
2071	if (fs_info->fs_devices->latest_bdev == device->bdev)
2072		fs_info->fs_devices->latest_bdev = next_device->bdev;
2073}
2074
2075/*
2076 * Return btrfs_fs_devices::num_devices excluding the device that's being
2077 * currently replaced.
2078 */
2079static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2080{
2081	u64 num_devices = fs_info->fs_devices->num_devices;
2082
2083	down_read(&fs_info->dev_replace.rwsem);
2084	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2085		ASSERT(num_devices > 1);
2086		num_devices--;
2087	}
2088	up_read(&fs_info->dev_replace.rwsem);
2089
2090	return num_devices;
2091}
2092
2093void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2094			       struct block_device *bdev,
2095			       const char *device_path)
2096{
2097	struct btrfs_super_block *disk_super;
2098	int copy_num;
2099
2100	if (!bdev)
2101		return;
2102
2103	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2104		struct page *page;
2105		int ret;
2106
2107		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2108		if (IS_ERR(disk_super))
2109			continue;
2110
2111		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2112
2113		page = virt_to_page(disk_super);
2114		set_page_dirty(page);
2115		lock_page(page);
2116		/* write_on_page() unlocks the page */
2117		ret = write_one_page(page);
2118		if (ret)
2119			btrfs_warn(fs_info,
2120				"error clearing superblock number %d (%d)",
2121				copy_num, ret);
2122		btrfs_release_disk_super(disk_super);
2123
2124	}
2125
2126	/* Notify udev that device has changed */
2127	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2128
2129	/* Update ctime/mtime for device path for libblkid */
2130	update_dev_time(device_path);
2131}
2132
2133int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2134		    u64 devid)
2135{
2136	struct btrfs_device *device;
2137	struct btrfs_fs_devices *cur_devices;
2138	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2139	u64 num_devices;
2140	int ret = 0;
2141
2142	/*
2143	 * The device list in fs_devices is accessed without locks (neither
2144	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2145	 * filesystem and another device rm cannot run.
2146	 */
2147	num_devices = btrfs_num_devices(fs_info);
2148
2149	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2150	if (ret)
2151		goto out;
2152
2153	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2154
2155	if (IS_ERR(device)) {
2156		if (PTR_ERR(device) == -ENOENT &&
2157		    device_path && strcmp(device_path, "missing") == 0)
2158			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2159		else
2160			ret = PTR_ERR(device);
2161		goto out;
2162	}
2163
2164	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2165		btrfs_warn_in_rcu(fs_info,
2166		  "cannot remove device %s (devid %llu) due to active swapfile",
2167				  rcu_str_deref(device->name), device->devid);
2168		ret = -ETXTBSY;
2169		goto out;
2170	}
2171
2172	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2173		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2174		goto out;
2175	}
2176
2177	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2178	    fs_info->fs_devices->rw_devices == 1) {
2179		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2180		goto out;
2181	}
2182
2183	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2184		mutex_lock(&fs_info->chunk_mutex);
2185		list_del_init(&device->dev_alloc_list);
2186		device->fs_devices->rw_devices--;
2187		mutex_unlock(&fs_info->chunk_mutex);
2188	}
2189
2190	ret = btrfs_shrink_device(device, 0);
2191	if (!ret)
2192		btrfs_reada_remove_dev(device);
2193	if (ret)
2194		goto error_undo;
2195
2196	/*
2197	 * TODO: the superblock still includes this device in its num_devices
2198	 * counter although write_all_supers() is not locked out. This
2199	 * could give a filesystem state which requires a degraded mount.
2200	 */
2201	ret = btrfs_rm_dev_item(device);
2202	if (ret)
2203		goto error_undo;
2204
2205	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2206	btrfs_scrub_cancel_dev(device);
2207
2208	/*
2209	 * the device list mutex makes sure that we don't change
2210	 * the device list while someone else is writing out all
2211	 * the device supers. Whoever is writing all supers, should
2212	 * lock the device list mutex before getting the number of
2213	 * devices in the super block (super_copy). Conversely,
2214	 * whoever updates the number of devices in the super block
2215	 * (super_copy) should hold the device list mutex.
2216	 */
2217
2218	/*
2219	 * In normal cases the cur_devices == fs_devices. But in case
2220	 * of deleting a seed device, the cur_devices should point to
2221	 * its own fs_devices listed under the fs_devices->seed.
2222	 */
2223	cur_devices = device->fs_devices;
2224	mutex_lock(&fs_devices->device_list_mutex);
2225	list_del_rcu(&device->dev_list);
2226
2227	cur_devices->num_devices--;
2228	cur_devices->total_devices--;
2229	/* Update total_devices of the parent fs_devices if it's seed */
2230	if (cur_devices != fs_devices)
2231		fs_devices->total_devices--;
2232
2233	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2234		cur_devices->missing_devices--;
2235
2236	btrfs_assign_next_active_device(device, NULL);
2237
2238	if (device->bdev) {
2239		cur_devices->open_devices--;
2240		/* remove sysfs entry */
2241		btrfs_sysfs_remove_device(device);
2242	}
2243
2244	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2245	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2246	mutex_unlock(&fs_devices->device_list_mutex);
2247
2248	/*
2249	 * at this point, the device is zero sized and detached from
2250	 * the devices list.  All that's left is to zero out the old
2251	 * supers and free the device.
2252	 */
2253	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2254		btrfs_scratch_superblocks(fs_info, device->bdev,
2255					  device->name->str);
2256
2257	btrfs_close_bdev(device);
2258	synchronize_rcu();
2259	btrfs_free_device(device);
2260
2261	if (cur_devices->open_devices == 0) {
2262		list_del_init(&cur_devices->seed_list);
2263		close_fs_devices(cur_devices);
2264		free_fs_devices(cur_devices);
2265	}
2266
2267out:
2268	return ret;
2269
2270error_undo:
2271	btrfs_reada_undo_remove_dev(device);
2272	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2273		mutex_lock(&fs_info->chunk_mutex);
2274		list_add(&device->dev_alloc_list,
2275			 &fs_devices->alloc_list);
2276		device->fs_devices->rw_devices++;
2277		mutex_unlock(&fs_info->chunk_mutex);
2278	}
2279	goto out;
2280}
2281
2282void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2283{
2284	struct btrfs_fs_devices *fs_devices;
2285
2286	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2287
2288	/*
2289	 * in case of fs with no seed, srcdev->fs_devices will point
2290	 * to fs_devices of fs_info. However when the dev being replaced is
2291	 * a seed dev it will point to the seed's local fs_devices. In short
2292	 * srcdev will have its correct fs_devices in both the cases.
2293	 */
2294	fs_devices = srcdev->fs_devices;
2295
2296	list_del_rcu(&srcdev->dev_list);
2297	list_del(&srcdev->dev_alloc_list);
2298	fs_devices->num_devices--;
2299	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2300		fs_devices->missing_devices--;
2301
2302	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2303		fs_devices->rw_devices--;
2304
2305	if (srcdev->bdev)
2306		fs_devices->open_devices--;
2307}
2308
2309void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2310{
2311	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2312
2313	mutex_lock(&uuid_mutex);
2314
2315	btrfs_close_bdev(srcdev);
2316	synchronize_rcu();
2317	btrfs_free_device(srcdev);
2318
2319	/* if this is no devs we rather delete the fs_devices */
2320	if (!fs_devices->num_devices) {
2321		/*
2322		 * On a mounted FS, num_devices can't be zero unless it's a
2323		 * seed. In case of a seed device being replaced, the replace
2324		 * target added to the sprout FS, so there will be no more
2325		 * device left under the seed FS.
2326		 */
2327		ASSERT(fs_devices->seeding);
2328
2329		list_del_init(&fs_devices->seed_list);
2330		close_fs_devices(fs_devices);
2331		free_fs_devices(fs_devices);
2332	}
2333	mutex_unlock(&uuid_mutex);
2334}
2335
2336void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2337{
2338	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2339
2340	mutex_lock(&fs_devices->device_list_mutex);
2341
2342	btrfs_sysfs_remove_device(tgtdev);
2343
2344	if (tgtdev->bdev)
2345		fs_devices->open_devices--;
2346
2347	fs_devices->num_devices--;
2348
2349	btrfs_assign_next_active_device(tgtdev, NULL);
2350
2351	list_del_rcu(&tgtdev->dev_list);
2352
2353	mutex_unlock(&fs_devices->device_list_mutex);
2354
2355	/*
2356	 * The update_dev_time() with in btrfs_scratch_superblocks()
2357	 * may lead to a call to btrfs_show_devname() which will try
2358	 * to hold device_list_mutex. And here this device
2359	 * is already out of device list, so we don't have to hold
2360	 * the device_list_mutex lock.
2361	 */
2362	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2363				  tgtdev->name->str);
2364
2365	btrfs_close_bdev(tgtdev);
2366	synchronize_rcu();
2367	btrfs_free_device(tgtdev);
2368}
2369
2370static struct btrfs_device *btrfs_find_device_by_path(
2371		struct btrfs_fs_info *fs_info, const char *device_path)
2372{
2373	int ret = 0;
2374	struct btrfs_super_block *disk_super;
2375	u64 devid;
2376	u8 *dev_uuid;
2377	struct block_device *bdev;
2378	struct btrfs_device *device;
2379
2380	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2381				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2382	if (ret)
2383		return ERR_PTR(ret);
2384
2385	devid = btrfs_stack_device_id(&disk_super->dev_item);
2386	dev_uuid = disk_super->dev_item.uuid;
2387	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2388		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2389					   disk_super->metadata_uuid, true);
2390	else
2391		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2392					   disk_super->fsid, true);
2393
2394	btrfs_release_disk_super(disk_super);
2395	if (!device)
2396		device = ERR_PTR(-ENOENT);
2397	blkdev_put(bdev, FMODE_READ);
2398	return device;
2399}
2400
2401/*
2402 * Lookup a device given by device id, or the path if the id is 0.
2403 */
2404struct btrfs_device *btrfs_find_device_by_devspec(
2405		struct btrfs_fs_info *fs_info, u64 devid,
2406		const char *device_path)
2407{
2408	struct btrfs_device *device;
2409
2410	if (devid) {
2411		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2412					   NULL, true);
2413		if (!device)
2414			return ERR_PTR(-ENOENT);
2415		return device;
2416	}
2417
2418	if (!device_path || !device_path[0])
2419		return ERR_PTR(-EINVAL);
2420
2421	if (strcmp(device_path, "missing") == 0) {
2422		/* Find first missing device */
2423		list_for_each_entry(device, &fs_info->fs_devices->devices,
2424				    dev_list) {
2425			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2426				     &device->dev_state) && !device->bdev)
2427				return device;
2428		}
2429		return ERR_PTR(-ENOENT);
2430	}
2431
2432	return btrfs_find_device_by_path(fs_info, device_path);
2433}
2434
2435/*
2436 * does all the dirty work required for changing file system's UUID.
2437 */
2438static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2439{
2440	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2441	struct btrfs_fs_devices *old_devices;
2442	struct btrfs_fs_devices *seed_devices;
2443	struct btrfs_super_block *disk_super = fs_info->super_copy;
2444	struct btrfs_device *device;
2445	u64 super_flags;
2446
2447	lockdep_assert_held(&uuid_mutex);
2448	if (!fs_devices->seeding)
2449		return -EINVAL;
2450
2451	/*
2452	 * Private copy of the seed devices, anchored at
2453	 * fs_info->fs_devices->seed_list
2454	 */
2455	seed_devices = alloc_fs_devices(NULL, NULL);
2456	if (IS_ERR(seed_devices))
2457		return PTR_ERR(seed_devices);
2458
2459	/*
2460	 * It's necessary to retain a copy of the original seed fs_devices in
2461	 * fs_uuids so that filesystems which have been seeded can successfully
2462	 * reference the seed device from open_seed_devices. This also supports
2463	 * multiple fs seed.
2464	 */
2465	old_devices = clone_fs_devices(fs_devices);
2466	if (IS_ERR(old_devices)) {
2467		kfree(seed_devices);
2468		return PTR_ERR(old_devices);
2469	}
2470
2471	list_add(&old_devices->fs_list, &fs_uuids);
2472
2473	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2474	seed_devices->opened = 1;
2475	INIT_LIST_HEAD(&seed_devices->devices);
2476	INIT_LIST_HEAD(&seed_devices->alloc_list);
2477	mutex_init(&seed_devices->device_list_mutex);
2478
2479	mutex_lock(&fs_devices->device_list_mutex);
2480	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2481			      synchronize_rcu);
2482	list_for_each_entry(device, &seed_devices->devices, dev_list)
2483		device->fs_devices = seed_devices;
2484
2485	fs_devices->seeding = false;
2486	fs_devices->num_devices = 0;
2487	fs_devices->open_devices = 0;
2488	fs_devices->missing_devices = 0;
2489	fs_devices->rotating = false;
2490	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2491
2492	generate_random_uuid(fs_devices->fsid);
2493	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2494	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2495	mutex_unlock(&fs_devices->device_list_mutex);
2496
2497	super_flags = btrfs_super_flags(disk_super) &
2498		      ~BTRFS_SUPER_FLAG_SEEDING;
2499	btrfs_set_super_flags(disk_super, super_flags);
2500
2501	return 0;
2502}
2503
2504/*
2505 * Store the expected generation for seed devices in device items.
2506 */
2507static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2508{
2509	struct btrfs_fs_info *fs_info = trans->fs_info;
2510	struct btrfs_root *root = fs_info->chunk_root;
2511	struct btrfs_path *path;
2512	struct extent_buffer *leaf;
2513	struct btrfs_dev_item *dev_item;
2514	struct btrfs_device *device;
2515	struct btrfs_key key;
2516	u8 fs_uuid[BTRFS_FSID_SIZE];
2517	u8 dev_uuid[BTRFS_UUID_SIZE];
2518	u64 devid;
2519	int ret;
2520
2521	path = btrfs_alloc_path();
2522	if (!path)
2523		return -ENOMEM;
2524
2525	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2526	key.offset = 0;
2527	key.type = BTRFS_DEV_ITEM_KEY;
2528
2529	while (1) {
2530		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2531		if (ret < 0)
2532			goto error;
2533
2534		leaf = path->nodes[0];
2535next_slot:
2536		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2537			ret = btrfs_next_leaf(root, path);
2538			if (ret > 0)
2539				break;
2540			if (ret < 0)
2541				goto error;
2542			leaf = path->nodes[0];
2543			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2544			btrfs_release_path(path);
2545			continue;
2546		}
2547
2548		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2549		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2550		    key.type != BTRFS_DEV_ITEM_KEY)
2551			break;
2552
2553		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2554					  struct btrfs_dev_item);
2555		devid = btrfs_device_id(leaf, dev_item);
2556		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2557				   BTRFS_UUID_SIZE);
2558		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2559				   BTRFS_FSID_SIZE);
2560		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2561					   fs_uuid, true);
2562		BUG_ON(!device); /* Logic error */
2563
2564		if (device->fs_devices->seeding) {
2565			btrfs_set_device_generation(leaf, dev_item,
2566						    device->generation);
2567			btrfs_mark_buffer_dirty(leaf);
2568		}
2569
2570		path->slots[0]++;
2571		goto next_slot;
2572	}
2573	ret = 0;
2574error:
2575	btrfs_free_path(path);
2576	return ret;
2577}
2578
2579int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2580{
2581	struct btrfs_root *root = fs_info->dev_root;
2582	struct request_queue *q;
2583	struct btrfs_trans_handle *trans;
2584	struct btrfs_device *device;
2585	struct block_device *bdev;
2586	struct super_block *sb = fs_info->sb;
2587	struct rcu_string *name;
2588	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2589	u64 orig_super_total_bytes;
2590	u64 orig_super_num_devices;
2591	int seeding_dev = 0;
2592	int ret = 0;
2593	bool locked = false;
2594
2595	if (sb_rdonly(sb) && !fs_devices->seeding)
2596		return -EROFS;
2597
2598	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2599				  fs_info->bdev_holder);
2600	if (IS_ERR(bdev))
2601		return PTR_ERR(bdev);
2602
2603	if (fs_devices->seeding) {
2604		seeding_dev = 1;
2605		down_write(&sb->s_umount);
2606		mutex_lock(&uuid_mutex);
2607		locked = true;
2608	}
2609
2610	sync_blockdev(bdev);
2611
2612	rcu_read_lock();
2613	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2614		if (device->bdev == bdev) {
2615			ret = -EEXIST;
2616			rcu_read_unlock();
2617			goto error;
2618		}
2619	}
2620	rcu_read_unlock();
2621
2622	device = btrfs_alloc_device(fs_info, NULL, NULL);
2623	if (IS_ERR(device)) {
2624		/* we can safely leave the fs_devices entry around */
2625		ret = PTR_ERR(device);
2626		goto error;
2627	}
2628
2629	name = rcu_string_strdup(device_path, GFP_KERNEL);
2630	if (!name) {
2631		ret = -ENOMEM;
2632		goto error_free_device;
2633	}
2634	rcu_assign_pointer(device->name, name);
2635
2636	trans = btrfs_start_transaction(root, 0);
2637	if (IS_ERR(trans)) {
2638		ret = PTR_ERR(trans);
2639		goto error_free_device;
2640	}
2641
2642	q = bdev_get_queue(bdev);
2643	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2644	device->generation = trans->transid;
2645	device->io_width = fs_info->sectorsize;
2646	device->io_align = fs_info->sectorsize;
2647	device->sector_size = fs_info->sectorsize;
2648	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2649					 fs_info->sectorsize);
2650	device->disk_total_bytes = device->total_bytes;
2651	device->commit_total_bytes = device->total_bytes;
2652	device->fs_info = fs_info;
2653	device->bdev = bdev;
2654	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2655	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2656	device->mode = FMODE_EXCL;
2657	device->dev_stats_valid = 1;
2658	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2659
2660	if (seeding_dev) {
2661		sb->s_flags &= ~SB_RDONLY;
2662		ret = btrfs_prepare_sprout(fs_info);
2663		if (ret) {
2664			btrfs_abort_transaction(trans, ret);
2665			goto error_trans;
2666		}
2667	}
2668
2669	device->fs_devices = fs_devices;
2670
2671	mutex_lock(&fs_devices->device_list_mutex);
2672	mutex_lock(&fs_info->chunk_mutex);
2673	list_add_rcu(&device->dev_list, &fs_devices->devices);
2674	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2675	fs_devices->num_devices++;
2676	fs_devices->open_devices++;
2677	fs_devices->rw_devices++;
2678	fs_devices->total_devices++;
2679	fs_devices->total_rw_bytes += device->total_bytes;
2680
2681	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2682
2683	if (!blk_queue_nonrot(q))
2684		fs_devices->rotating = true;
2685
2686	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2687	btrfs_set_super_total_bytes(fs_info->super_copy,
2688		round_down(orig_super_total_bytes + device->total_bytes,
2689			   fs_info->sectorsize));
2690
2691	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2692	btrfs_set_super_num_devices(fs_info->super_copy,
2693				    orig_super_num_devices + 1);
2694
2695	/*
2696	 * we've got more storage, clear any full flags on the space
2697	 * infos
2698	 */
2699	btrfs_clear_space_info_full(fs_info);
2700
2701	mutex_unlock(&fs_info->chunk_mutex);
2702
2703	/* Add sysfs device entry */
2704	btrfs_sysfs_add_device(device);
2705
2706	mutex_unlock(&fs_devices->device_list_mutex);
2707
2708	if (seeding_dev) {
2709		mutex_lock(&fs_info->chunk_mutex);
2710		ret = init_first_rw_device(trans);
2711		mutex_unlock(&fs_info->chunk_mutex);
2712		if (ret) {
2713			btrfs_abort_transaction(trans, ret);
2714			goto error_sysfs;
2715		}
2716	}
2717
2718	ret = btrfs_add_dev_item(trans, device);
2719	if (ret) {
2720		btrfs_abort_transaction(trans, ret);
2721		goto error_sysfs;
2722	}
2723
2724	if (seeding_dev) {
2725		ret = btrfs_finish_sprout(trans);
2726		if (ret) {
2727			btrfs_abort_transaction(trans, ret);
2728			goto error_sysfs;
2729		}
2730
2731		/*
2732		 * fs_devices now represents the newly sprouted filesystem and
2733		 * its fsid has been changed by btrfs_prepare_sprout
2734		 */
2735		btrfs_sysfs_update_sprout_fsid(fs_devices);
2736	}
2737
2738	ret = btrfs_commit_transaction(trans);
2739
2740	if (seeding_dev) {
2741		mutex_unlock(&uuid_mutex);
2742		up_write(&sb->s_umount);
2743		locked = false;
2744
2745		if (ret) /* transaction commit */
2746			return ret;
2747
2748		ret = btrfs_relocate_sys_chunks(fs_info);
2749		if (ret < 0)
2750			btrfs_handle_fs_error(fs_info, ret,
2751				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2752		trans = btrfs_attach_transaction(root);
2753		if (IS_ERR(trans)) {
2754			if (PTR_ERR(trans) == -ENOENT)
2755				return 0;
2756			ret = PTR_ERR(trans);
2757			trans = NULL;
2758			goto error_sysfs;
2759		}
2760		ret = btrfs_commit_transaction(trans);
2761	}
2762
2763	/*
2764	 * Now that we have written a new super block to this device, check all
2765	 * other fs_devices list if device_path alienates any other scanned
2766	 * device.
2767	 * We can ignore the return value as it typically returns -EINVAL and
2768	 * only succeeds if the device was an alien.
2769	 */
2770	btrfs_forget_devices(device_path);
2771
2772	/* Update ctime/mtime for blkid or udev */
2773	update_dev_time(device_path);
2774
2775	return ret;
2776
2777error_sysfs:
2778	btrfs_sysfs_remove_device(device);
2779	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2780	mutex_lock(&fs_info->chunk_mutex);
2781	list_del_rcu(&device->dev_list);
2782	list_del(&device->dev_alloc_list);
2783	fs_info->fs_devices->num_devices--;
2784	fs_info->fs_devices->open_devices--;
2785	fs_info->fs_devices->rw_devices--;
2786	fs_info->fs_devices->total_devices--;
2787	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2788	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2789	btrfs_set_super_total_bytes(fs_info->super_copy,
2790				    orig_super_total_bytes);
2791	btrfs_set_super_num_devices(fs_info->super_copy,
2792				    orig_super_num_devices);
2793	mutex_unlock(&fs_info->chunk_mutex);
2794	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2795error_trans:
2796	if (seeding_dev)
2797		sb->s_flags |= SB_RDONLY;
2798	if (trans)
2799		btrfs_end_transaction(trans);
2800error_free_device:
2801	btrfs_free_device(device);
2802error:
2803	blkdev_put(bdev, FMODE_EXCL);
2804	if (locked) {
2805		mutex_unlock(&uuid_mutex);
2806		up_write(&sb->s_umount);
2807	}
2808	return ret;
2809}
2810
2811static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2812					struct btrfs_device *device)
2813{
2814	int ret;
2815	struct btrfs_path *path;
2816	struct btrfs_root *root = device->fs_info->chunk_root;
2817	struct btrfs_dev_item *dev_item;
2818	struct extent_buffer *leaf;
2819	struct btrfs_key key;
2820
2821	path = btrfs_alloc_path();
2822	if (!path)
2823		return -ENOMEM;
2824
2825	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2826	key.type = BTRFS_DEV_ITEM_KEY;
2827	key.offset = device->devid;
2828
2829	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2830	if (ret < 0)
2831		goto out;
2832
2833	if (ret > 0) {
2834		ret = -ENOENT;
2835		goto out;
2836	}
2837
2838	leaf = path->nodes[0];
2839	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2840
2841	btrfs_set_device_id(leaf, dev_item, device->devid);
2842	btrfs_set_device_type(leaf, dev_item, device->type);
2843	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2844	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2845	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2846	btrfs_set_device_total_bytes(leaf, dev_item,
2847				     btrfs_device_get_disk_total_bytes(device));
2848	btrfs_set_device_bytes_used(leaf, dev_item,
2849				    btrfs_device_get_bytes_used(device));
2850	btrfs_mark_buffer_dirty(leaf);
2851
2852out:
2853	btrfs_free_path(path);
2854	return ret;
2855}
2856
2857int btrfs_grow_device(struct btrfs_trans_handle *trans,
2858		      struct btrfs_device *device, u64 new_size)
2859{
2860	struct btrfs_fs_info *fs_info = device->fs_info;
2861	struct btrfs_super_block *super_copy = fs_info->super_copy;
2862	u64 old_total;
2863	u64 diff;
2864
2865	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2866		return -EACCES;
2867
2868	new_size = round_down(new_size, fs_info->sectorsize);
2869
2870	mutex_lock(&fs_info->chunk_mutex);
2871	old_total = btrfs_super_total_bytes(super_copy);
2872	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2873
2874	if (new_size <= device->total_bytes ||
2875	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2876		mutex_unlock(&fs_info->chunk_mutex);
2877		return -EINVAL;
2878	}
2879
2880	btrfs_set_super_total_bytes(super_copy,
2881			round_down(old_total + diff, fs_info->sectorsize));
2882	device->fs_devices->total_rw_bytes += diff;
2883
2884	btrfs_device_set_total_bytes(device, new_size);
2885	btrfs_device_set_disk_total_bytes(device, new_size);
2886	btrfs_clear_space_info_full(device->fs_info);
2887	if (list_empty(&device->post_commit_list))
2888		list_add_tail(&device->post_commit_list,
2889			      &trans->transaction->dev_update_list);
2890	mutex_unlock(&fs_info->chunk_mutex);
2891
2892	return btrfs_update_device(trans, device);
2893}
2894
2895static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2896{
2897	struct btrfs_fs_info *fs_info = trans->fs_info;
2898	struct btrfs_root *root = fs_info->chunk_root;
2899	int ret;
2900	struct btrfs_path *path;
2901	struct btrfs_key key;
2902
2903	path = btrfs_alloc_path();
2904	if (!path)
2905		return -ENOMEM;
2906
2907	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2908	key.offset = chunk_offset;
2909	key.type = BTRFS_CHUNK_ITEM_KEY;
2910
2911	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2912	if (ret < 0)
2913		goto out;
2914	else if (ret > 0) { /* Logic error or corruption */
2915		btrfs_handle_fs_error(fs_info, -ENOENT,
2916				      "Failed lookup while freeing chunk.");
2917		ret = -ENOENT;
2918		goto out;
2919	}
2920
2921	ret = btrfs_del_item(trans, root, path);
2922	if (ret < 0)
2923		btrfs_handle_fs_error(fs_info, ret,
2924				      "Failed to delete chunk item.");
2925out:
2926	btrfs_free_path(path);
2927	return ret;
2928}
2929
2930static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2931{
2932	struct btrfs_super_block *super_copy = fs_info->super_copy;
2933	struct btrfs_disk_key *disk_key;
2934	struct btrfs_chunk *chunk;
2935	u8 *ptr;
2936	int ret = 0;
2937	u32 num_stripes;
2938	u32 array_size;
2939	u32 len = 0;
2940	u32 cur;
2941	struct btrfs_key key;
2942
2943	mutex_lock(&fs_info->chunk_mutex);
2944	array_size = btrfs_super_sys_array_size(super_copy);
2945
2946	ptr = super_copy->sys_chunk_array;
2947	cur = 0;
2948
2949	while (cur < array_size) {
2950		disk_key = (struct btrfs_disk_key *)ptr;
2951		btrfs_disk_key_to_cpu(&key, disk_key);
2952
2953		len = sizeof(*disk_key);
2954
2955		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2956			chunk = (struct btrfs_chunk *)(ptr + len);
2957			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2958			len += btrfs_chunk_item_size(num_stripes);
2959		} else {
2960			ret = -EIO;
2961			break;
2962		}
2963		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2964		    key.offset == chunk_offset) {
2965			memmove(ptr, ptr + len, array_size - (cur + len));
2966			array_size -= len;
2967			btrfs_set_super_sys_array_size(super_copy, array_size);
2968		} else {
2969			ptr += len;
2970			cur += len;
2971		}
2972	}
2973	mutex_unlock(&fs_info->chunk_mutex);
2974	return ret;
2975}
2976
2977/*
2978 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2979 * @logical: Logical block offset in bytes.
2980 * @length: Length of extent in bytes.
2981 *
2982 * Return: Chunk mapping or ERR_PTR.
2983 */
2984struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2985				       u64 logical, u64 length)
2986{
2987	struct extent_map_tree *em_tree;
2988	struct extent_map *em;
2989
2990	em_tree = &fs_info->mapping_tree;
2991	read_lock(&em_tree->lock);
2992	em = lookup_extent_mapping(em_tree, logical, length);
2993	read_unlock(&em_tree->lock);
2994
2995	if (!em) {
2996		btrfs_crit(fs_info,
2997			   "unable to find chunk map for logical %llu length %llu",
2998			   logical, length);
2999		return ERR_PTR(-EINVAL);
3000	}
3001
3002	if (em->start > logical || em->start + em->len <= logical) {
3003		btrfs_crit(fs_info,
3004			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3005			   logical, logical + length, em->start, em->start + em->len);
3006		free_extent_map(em);
3007		return ERR_PTR(-EINVAL);
3008	}
3009
3010	/* callers are responsible for dropping em's ref. */
3011	return em;
3012}
3013
3014int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3015{
3016	struct btrfs_fs_info *fs_info = trans->fs_info;
3017	struct extent_map *em;
3018	struct map_lookup *map;
3019	u64 dev_extent_len = 0;
3020	int i, ret = 0;
3021	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3022
3023	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3024	if (IS_ERR(em)) {
3025		/*
3026		 * This is a logic error, but we don't want to just rely on the
3027		 * user having built with ASSERT enabled, so if ASSERT doesn't
3028		 * do anything we still error out.
3029		 */
3030		ASSERT(0);
3031		return PTR_ERR(em);
3032	}
3033	map = em->map_lookup;
3034	mutex_lock(&fs_info->chunk_mutex);
3035	check_system_chunk(trans, map->type);
3036	mutex_unlock(&fs_info->chunk_mutex);
3037
3038	/*
3039	 * Take the device list mutex to prevent races with the final phase of
3040	 * a device replace operation that replaces the device object associated
3041	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3042	 */
3043	mutex_lock(&fs_devices->device_list_mutex);
3044	for (i = 0; i < map->num_stripes; i++) {
3045		struct btrfs_device *device = map->stripes[i].dev;
3046		ret = btrfs_free_dev_extent(trans, device,
3047					    map->stripes[i].physical,
3048					    &dev_extent_len);
3049		if (ret) {
3050			mutex_unlock(&fs_devices->device_list_mutex);
3051			btrfs_abort_transaction(trans, ret);
3052			goto out;
3053		}
3054
3055		if (device->bytes_used > 0) {
3056			mutex_lock(&fs_info->chunk_mutex);
3057			btrfs_device_set_bytes_used(device,
3058					device->bytes_used - dev_extent_len);
3059			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3060			btrfs_clear_space_info_full(fs_info);
3061			mutex_unlock(&fs_info->chunk_mutex);
3062		}
3063
3064		ret = btrfs_update_device(trans, device);
3065		if (ret) {
3066			mutex_unlock(&fs_devices->device_list_mutex);
3067			btrfs_abort_transaction(trans, ret);
3068			goto out;
3069		}
3070	}
3071	mutex_unlock(&fs_devices->device_list_mutex);
3072
3073	ret = btrfs_free_chunk(trans, chunk_offset);
3074	if (ret) {
3075		btrfs_abort_transaction(trans, ret);
3076		goto out;
3077	}
3078
3079	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3080
3081	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3082		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3083		if (ret) {
3084			btrfs_abort_transaction(trans, ret);
3085			goto out;
3086		}
3087	}
3088
3089	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3090	if (ret) {
3091		btrfs_abort_transaction(trans, ret);
3092		goto out;
3093	}
3094
3095out:
3096	/* once for us */
3097	free_extent_map(em);
3098	return ret;
3099}
3100
3101static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3102{
3103	struct btrfs_root *root = fs_info->chunk_root;
3104	struct btrfs_trans_handle *trans;
3105	struct btrfs_block_group *block_group;
3106	int ret;
3107
3108	/*
3109	 * Prevent races with automatic removal of unused block groups.
3110	 * After we relocate and before we remove the chunk with offset
3111	 * chunk_offset, automatic removal of the block group can kick in,
3112	 * resulting in a failure when calling btrfs_remove_chunk() below.
3113	 *
3114	 * Make sure to acquire this mutex before doing a tree search (dev
3115	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3116	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3117	 * we release the path used to search the chunk/dev tree and before
3118	 * the current task acquires this mutex and calls us.
3119	 */
3120	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3121
3122	/* step one, relocate all the extents inside this chunk */
3123	btrfs_scrub_pause(fs_info);
3124	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3125	btrfs_scrub_continue(fs_info);
3126	if (ret)
3127		return ret;
3128
3129	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3130	if (!block_group)
3131		return -ENOENT;
3132	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3133	btrfs_put_block_group(block_group);
3134
3135	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3136						     chunk_offset);
3137	if (IS_ERR(trans)) {
3138		ret = PTR_ERR(trans);
3139		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3140		return ret;
3141	}
3142
3143	/*
3144	 * step two, delete the device extents and the
3145	 * chunk tree entries
3146	 */
3147	ret = btrfs_remove_chunk(trans, chunk_offset);
3148	btrfs_end_transaction(trans);
3149	return ret;
3150}
3151
3152static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3153{
3154	struct btrfs_root *chunk_root = fs_info->chunk_root;
3155	struct btrfs_path *path;
3156	struct extent_buffer *leaf;
3157	struct btrfs_chunk *chunk;
3158	struct btrfs_key key;
3159	struct btrfs_key found_key;
3160	u64 chunk_type;
3161	bool retried = false;
3162	int failed = 0;
3163	int ret;
3164
3165	path = btrfs_alloc_path();
3166	if (!path)
3167		return -ENOMEM;
3168
3169again:
3170	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3171	key.offset = (u64)-1;
3172	key.type = BTRFS_CHUNK_ITEM_KEY;
3173
3174	while (1) {
3175		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3176		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3177		if (ret < 0) {
3178			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3179			goto error;
3180		}
3181		BUG_ON(ret == 0); /* Corruption */
3182
3183		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3184					  key.type);
3185		if (ret)
3186			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3187		if (ret < 0)
3188			goto error;
3189		if (ret > 0)
3190			break;
3191
3192		leaf = path->nodes[0];
3193		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3194
3195		chunk = btrfs_item_ptr(leaf, path->slots[0],
3196				       struct btrfs_chunk);
3197		chunk_type = btrfs_chunk_type(leaf, chunk);
3198		btrfs_release_path(path);
3199
3200		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3201			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3202			if (ret == -ENOSPC)
3203				failed++;
3204			else
3205				BUG_ON(ret);
3206		}
3207		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3208
3209		if (found_key.offset == 0)
3210			break;
3211		key.offset = found_key.offset - 1;
3212	}
3213	ret = 0;
3214	if (failed && !retried) {
3215		failed = 0;
3216		retried = true;
3217		goto again;
3218	} else if (WARN_ON(failed && retried)) {
3219		ret = -ENOSPC;
3220	}
3221error:
3222	btrfs_free_path(path);
3223	return ret;
3224}
3225
3226/*
3227 * return 1 : allocate a data chunk successfully,
3228 * return <0: errors during allocating a data chunk,
3229 * return 0 : no need to allocate a data chunk.
3230 */
3231static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3232				      u64 chunk_offset)
3233{
3234	struct btrfs_block_group *cache;
3235	u64 bytes_used;
3236	u64 chunk_type;
3237
3238	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3239	ASSERT(cache);
3240	chunk_type = cache->flags;
3241	btrfs_put_block_group(cache);
3242
3243	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3244		return 0;
3245
3246	spin_lock(&fs_info->data_sinfo->lock);
3247	bytes_used = fs_info->data_sinfo->bytes_used;
3248	spin_unlock(&fs_info->data_sinfo->lock);
3249
3250	if (!bytes_used) {
3251		struct btrfs_trans_handle *trans;
3252		int ret;
3253
3254		trans =	btrfs_join_transaction(fs_info->tree_root);
3255		if (IS_ERR(trans))
3256			return PTR_ERR(trans);
3257
3258		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3259		btrfs_end_transaction(trans);
3260		if (ret < 0)
3261			return ret;
3262		return 1;
3263	}
3264
3265	return 0;
3266}
3267
3268static int insert_balance_item(struct btrfs_fs_info *fs_info,
3269			       struct btrfs_balance_control *bctl)
3270{
3271	struct btrfs_root *root = fs_info->tree_root;
3272	struct btrfs_trans_handle *trans;
3273	struct btrfs_balance_item *item;
3274	struct btrfs_disk_balance_args disk_bargs;
3275	struct btrfs_path *path;
3276	struct extent_buffer *leaf;
3277	struct btrfs_key key;
3278	int ret, err;
3279
3280	path = btrfs_alloc_path();
3281	if (!path)
3282		return -ENOMEM;
3283
3284	trans = btrfs_start_transaction(root, 0);
3285	if (IS_ERR(trans)) {
3286		btrfs_free_path(path);
3287		return PTR_ERR(trans);
3288	}
3289
3290	key.objectid = BTRFS_BALANCE_OBJECTID;
3291	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3292	key.offset = 0;
3293
3294	ret = btrfs_insert_empty_item(trans, root, path, &key,
3295				      sizeof(*item));
3296	if (ret)
3297		goto out;
3298
3299	leaf = path->nodes[0];
3300	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3301
3302	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3303
3304	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3305	btrfs_set_balance_data(leaf, item, &disk_bargs);
3306	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3307	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3308	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3309	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3310
3311	btrfs_set_balance_flags(leaf, item, bctl->flags);
3312
3313	btrfs_mark_buffer_dirty(leaf);
3314out:
3315	btrfs_free_path(path);
3316	err = btrfs_commit_transaction(trans);
3317	if (err && !ret)
3318		ret = err;
3319	return ret;
3320}
3321
3322static int del_balance_item(struct btrfs_fs_info *fs_info)
3323{
3324	struct btrfs_root *root = fs_info->tree_root;
3325	struct btrfs_trans_handle *trans;
3326	struct btrfs_path *path;
3327	struct btrfs_key key;
3328	int ret, err;
3329
3330	path = btrfs_alloc_path();
3331	if (!path)
3332		return -ENOMEM;
3333
3334	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3335	if (IS_ERR(trans)) {
3336		btrfs_free_path(path);
3337		return PTR_ERR(trans);
3338	}
3339
3340	key.objectid = BTRFS_BALANCE_OBJECTID;
3341	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3342	key.offset = 0;
3343
3344	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3345	if (ret < 0)
3346		goto out;
3347	if (ret > 0) {
3348		ret = -ENOENT;
3349		goto out;
3350	}
3351
3352	ret = btrfs_del_item(trans, root, path);
3353out:
3354	btrfs_free_path(path);
3355	err = btrfs_commit_transaction(trans);
3356	if (err && !ret)
3357		ret = err;
3358	return ret;
3359}
3360
3361/*
3362 * This is a heuristic used to reduce the number of chunks balanced on
3363 * resume after balance was interrupted.
3364 */
3365static void update_balance_args(struct btrfs_balance_control *bctl)
3366{
3367	/*
3368	 * Turn on soft mode for chunk types that were being converted.
3369	 */
3370	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3371		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3372	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3373		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3374	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3375		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3376
3377	/*
3378	 * Turn on usage filter if is not already used.  The idea is
3379	 * that chunks that we have already balanced should be
3380	 * reasonably full.  Don't do it for chunks that are being
3381	 * converted - that will keep us from relocating unconverted
3382	 * (albeit full) chunks.
3383	 */
3384	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3385	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3386	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3387		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3388		bctl->data.usage = 90;
3389	}
3390	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3391	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3392	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3393		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3394		bctl->sys.usage = 90;
3395	}
3396	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3397	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3398	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3399		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3400		bctl->meta.usage = 90;
3401	}
3402}
3403
3404/*
3405 * Clear the balance status in fs_info and delete the balance item from disk.
3406 */
3407static void reset_balance_state(struct btrfs_fs_info *fs_info)
3408{
3409	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3410	int ret;
3411
3412	BUG_ON(!fs_info->balance_ctl);
3413
3414	spin_lock(&fs_info->balance_lock);
3415	fs_info->balance_ctl = NULL;
3416	spin_unlock(&fs_info->balance_lock);
3417
3418	kfree(bctl);
3419	ret = del_balance_item(fs_info);
3420	if (ret)
3421		btrfs_handle_fs_error(fs_info, ret, NULL);
3422}
3423
3424/*
3425 * Balance filters.  Return 1 if chunk should be filtered out
3426 * (should not be balanced).
3427 */
3428static int chunk_profiles_filter(u64 chunk_type,
3429				 struct btrfs_balance_args *bargs)
3430{
3431	chunk_type = chunk_to_extended(chunk_type) &
3432				BTRFS_EXTENDED_PROFILE_MASK;
3433
3434	if (bargs->profiles & chunk_type)
3435		return 0;
3436
3437	return 1;
3438}
3439
3440static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3441			      struct btrfs_balance_args *bargs)
3442{
3443	struct btrfs_block_group *cache;
3444	u64 chunk_used;
3445	u64 user_thresh_min;
3446	u64 user_thresh_max;
3447	int ret = 1;
3448
3449	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3450	chunk_used = cache->used;
3451
3452	if (bargs->usage_min == 0)
3453		user_thresh_min = 0;
3454	else
3455		user_thresh_min = div_factor_fine(cache->length,
3456						  bargs->usage_min);
3457
3458	if (bargs->usage_max == 0)
3459		user_thresh_max = 1;
3460	else if (bargs->usage_max > 100)
3461		user_thresh_max = cache->length;
3462	else
3463		user_thresh_max = div_factor_fine(cache->length,
3464						  bargs->usage_max);
3465
3466	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3467		ret = 0;
3468
3469	btrfs_put_block_group(cache);
3470	return ret;
3471}
3472
3473static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3474		u64 chunk_offset, struct btrfs_balance_args *bargs)
3475{
3476	struct btrfs_block_group *cache;
3477	u64 chunk_used, user_thresh;
3478	int ret = 1;
3479
3480	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3481	chunk_used = cache->used;
3482
3483	if (bargs->usage_min == 0)
3484		user_thresh = 1;
3485	else if (bargs->usage > 100)
3486		user_thresh = cache->length;
3487	else
3488		user_thresh = div_factor_fine(cache->length, bargs->usage);
3489
3490	if (chunk_used < user_thresh)
3491		ret = 0;
3492
3493	btrfs_put_block_group(cache);
3494	return ret;
3495}
3496
3497static int chunk_devid_filter(struct extent_buffer *leaf,
3498			      struct btrfs_chunk *chunk,
3499			      struct btrfs_balance_args *bargs)
3500{
3501	struct btrfs_stripe *stripe;
3502	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3503	int i;
3504
3505	for (i = 0; i < num_stripes; i++) {
3506		stripe = btrfs_stripe_nr(chunk, i);
3507		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3508			return 0;
3509	}
3510
3511	return 1;
3512}
3513
3514static u64 calc_data_stripes(u64 type, int num_stripes)
3515{
3516	const int index = btrfs_bg_flags_to_raid_index(type);
3517	const int ncopies = btrfs_raid_array[index].ncopies;
3518	const int nparity = btrfs_raid_array[index].nparity;
3519
3520	if (nparity)
3521		return num_stripes - nparity;
3522	else
3523		return num_stripes / ncopies;
3524}
3525
3526/* [pstart, pend) */
3527static int chunk_drange_filter(struct extent_buffer *leaf,
3528			       struct btrfs_chunk *chunk,
3529			       struct btrfs_balance_args *bargs)
3530{
3531	struct btrfs_stripe *stripe;
3532	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3533	u64 stripe_offset;
3534	u64 stripe_length;
3535	u64 type;
3536	int factor;
3537	int i;
3538
3539	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3540		return 0;
3541
3542	type = btrfs_chunk_type(leaf, chunk);
3543	factor = calc_data_stripes(type, num_stripes);
3544
3545	for (i = 0; i < num_stripes; i++) {
3546		stripe = btrfs_stripe_nr(chunk, i);
3547		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3548			continue;
3549
3550		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3551		stripe_length = btrfs_chunk_length(leaf, chunk);
3552		stripe_length = div_u64(stripe_length, factor);
3553
3554		if (stripe_offset < bargs->pend &&
3555		    stripe_offset + stripe_length > bargs->pstart)
3556			return 0;
3557	}
3558
3559	return 1;
3560}
3561
3562/* [vstart, vend) */
3563static int chunk_vrange_filter(struct extent_buffer *leaf,
3564			       struct btrfs_chunk *chunk,
3565			       u64 chunk_offset,
3566			       struct btrfs_balance_args *bargs)
3567{
3568	if (chunk_offset < bargs->vend &&
3569	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3570		/* at least part of the chunk is inside this vrange */
3571		return 0;
3572
3573	return 1;
3574}
3575
3576static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3577			       struct btrfs_chunk *chunk,
3578			       struct btrfs_balance_args *bargs)
3579{
3580	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3581
3582	if (bargs->stripes_min <= num_stripes
3583			&& num_stripes <= bargs->stripes_max)
3584		return 0;
3585
3586	return 1;
3587}
3588
3589static int chunk_soft_convert_filter(u64 chunk_type,
3590				     struct btrfs_balance_args *bargs)
3591{
3592	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3593		return 0;
3594
3595	chunk_type = chunk_to_extended(chunk_type) &
3596				BTRFS_EXTENDED_PROFILE_MASK;
3597
3598	if (bargs->target == chunk_type)
3599		return 1;
3600
3601	return 0;
3602}
3603
3604static int should_balance_chunk(struct extent_buffer *leaf,
3605				struct btrfs_chunk *chunk, u64 chunk_offset)
3606{
3607	struct btrfs_fs_info *fs_info = leaf->fs_info;
3608	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3609	struct btrfs_balance_args *bargs = NULL;
3610	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3611
3612	/* type filter */
3613	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3614	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3615		return 0;
3616	}
3617
3618	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3619		bargs = &bctl->data;
3620	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3621		bargs = &bctl->sys;
3622	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3623		bargs = &bctl->meta;
3624
3625	/* profiles filter */
3626	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3627	    chunk_profiles_filter(chunk_type, bargs)) {
3628		return 0;
3629	}
3630
3631	/* usage filter */
3632	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3633	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3634		return 0;
3635	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3636	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3637		return 0;
3638	}
3639
3640	/* devid filter */
3641	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3642	    chunk_devid_filter(leaf, chunk, bargs)) {
3643		return 0;
3644	}
3645
3646	/* drange filter, makes sense only with devid filter */
3647	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3648	    chunk_drange_filter(leaf, chunk, bargs)) {
3649		return 0;
3650	}
3651
3652	/* vrange filter */
3653	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3654	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3655		return 0;
3656	}
3657
3658	/* stripes filter */
3659	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3660	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3661		return 0;
3662	}
3663
3664	/* soft profile changing mode */
3665	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3666	    chunk_soft_convert_filter(chunk_type, bargs)) {
3667		return 0;
3668	}
3669
3670	/*
3671	 * limited by count, must be the last filter
3672	 */
3673	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3674		if (bargs->limit == 0)
3675			return 0;
3676		else
3677			bargs->limit--;
3678	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3679		/*
3680		 * Same logic as the 'limit' filter; the minimum cannot be
3681		 * determined here because we do not have the global information
3682		 * about the count of all chunks that satisfy the filters.
3683		 */
3684		if (bargs->limit_max == 0)
3685			return 0;
3686		else
3687			bargs->limit_max--;
3688	}
3689
3690	return 1;
3691}
3692
3693static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3694{
3695	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3696	struct btrfs_root *chunk_root = fs_info->chunk_root;
3697	u64 chunk_type;
3698	struct btrfs_chunk *chunk;
3699	struct btrfs_path *path = NULL;
3700	struct btrfs_key key;
3701	struct btrfs_key found_key;
3702	struct extent_buffer *leaf;
3703	int slot;
3704	int ret;
3705	int enospc_errors = 0;
3706	bool counting = true;
3707	/* The single value limit and min/max limits use the same bytes in the */
3708	u64 limit_data = bctl->data.limit;
3709	u64 limit_meta = bctl->meta.limit;
3710	u64 limit_sys = bctl->sys.limit;
3711	u32 count_data = 0;
3712	u32 count_meta = 0;
3713	u32 count_sys = 0;
3714	int chunk_reserved = 0;
3715
3716	path = btrfs_alloc_path();
3717	if (!path) {
3718		ret = -ENOMEM;
3719		goto error;
3720	}
3721
3722	/* zero out stat counters */
3723	spin_lock(&fs_info->balance_lock);
3724	memset(&bctl->stat, 0, sizeof(bctl->stat));
3725	spin_unlock(&fs_info->balance_lock);
3726again:
3727	if (!counting) {
3728		/*
3729		 * The single value limit and min/max limits use the same bytes
3730		 * in the
3731		 */
3732		bctl->data.limit = limit_data;
3733		bctl->meta.limit = limit_meta;
3734		bctl->sys.limit = limit_sys;
3735	}
3736	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3737	key.offset = (u64)-1;
3738	key.type = BTRFS_CHUNK_ITEM_KEY;
3739
3740	while (1) {
3741		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3742		    atomic_read(&fs_info->balance_cancel_req)) {
3743			ret = -ECANCELED;
3744			goto error;
3745		}
3746
3747		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3748		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3749		if (ret < 0) {
3750			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3751			goto error;
3752		}
3753
3754		/*
3755		 * this shouldn't happen, it means the last relocate
3756		 * failed
3757		 */
3758		if (ret == 0)
3759			BUG(); /* FIXME break ? */
3760
3761		ret = btrfs_previous_item(chunk_root, path, 0,
3762					  BTRFS_CHUNK_ITEM_KEY);
3763		if (ret) {
3764			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3765			ret = 0;
3766			break;
3767		}
3768
3769		leaf = path->nodes[0];
3770		slot = path->slots[0];
3771		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3772
3773		if (found_key.objectid != key.objectid) {
3774			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3775			break;
3776		}
3777
3778		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3779		chunk_type = btrfs_chunk_type(leaf, chunk);
3780
3781		if (!counting) {
3782			spin_lock(&fs_info->balance_lock);
3783			bctl->stat.considered++;
3784			spin_unlock(&fs_info->balance_lock);
3785		}
3786
3787		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3788
3789		btrfs_release_path(path);
3790		if (!ret) {
3791			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3792			goto loop;
3793		}
3794
3795		if (counting) {
3796			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3797			spin_lock(&fs_info->balance_lock);
3798			bctl->stat.expected++;
3799			spin_unlock(&fs_info->balance_lock);
3800
3801			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3802				count_data++;
3803			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3804				count_sys++;
3805			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3806				count_meta++;
3807
3808			goto loop;
3809		}
3810
3811		/*
3812		 * Apply limit_min filter, no need to check if the LIMITS
3813		 * filter is used, limit_min is 0 by default
3814		 */
3815		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3816					count_data < bctl->data.limit_min)
3817				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3818					count_meta < bctl->meta.limit_min)
3819				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3820					count_sys < bctl->sys.limit_min)) {
3821			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3822			goto loop;
3823		}
3824
3825		if (!chunk_reserved) {
3826			/*
3827			 * We may be relocating the only data chunk we have,
3828			 * which could potentially end up with losing data's
3829			 * raid profile, so lets allocate an empty one in
3830			 * advance.
3831			 */
3832			ret = btrfs_may_alloc_data_chunk(fs_info,
3833							 found_key.offset);
3834			if (ret < 0) {
3835				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3836				goto error;
3837			} else if (ret == 1) {
3838				chunk_reserved = 1;
3839			}
3840		}
3841
3842		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3843		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3844		if (ret == -ENOSPC) {
3845			enospc_errors++;
3846		} else if (ret == -ETXTBSY) {
3847			btrfs_info(fs_info,
3848	   "skipping relocation of block group %llu due to active swapfile",
3849				   found_key.offset);
3850			ret = 0;
3851		} else if (ret) {
3852			goto error;
3853		} else {
3854			spin_lock(&fs_info->balance_lock);
3855			bctl->stat.completed++;
3856			spin_unlock(&fs_info->balance_lock);
3857		}
3858loop:
3859		if (found_key.offset == 0)
3860			break;
3861		key.offset = found_key.offset - 1;
3862	}
3863
3864	if (counting) {
3865		btrfs_release_path(path);
3866		counting = false;
3867		goto again;
3868	}
3869error:
3870	btrfs_free_path(path);
3871	if (enospc_errors) {
3872		btrfs_info(fs_info, "%d enospc errors during balance",
3873			   enospc_errors);
3874		if (!ret)
3875			ret = -ENOSPC;
3876	}
3877
3878	return ret;
3879}
3880
3881/**
3882 * alloc_profile_is_valid - see if a given profile is valid and reduced
3883 * @flags: profile to validate
3884 * @extended: if true @flags is treated as an extended profile
3885 */
3886static int alloc_profile_is_valid(u64 flags, int extended)
3887{
3888	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3889			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3890
3891	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3892
3893	/* 1) check that all other bits are zeroed */
3894	if (flags & ~mask)
3895		return 0;
3896
3897	/* 2) see if profile is reduced */
3898	if (flags == 0)
3899		return !extended; /* "0" is valid for usual profiles */
3900
3901	return has_single_bit_set(flags);
3902}
3903
3904static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3905{
3906	/* cancel requested || normal exit path */
3907	return atomic_read(&fs_info->balance_cancel_req) ||
3908		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3909		 atomic_read(&fs_info->balance_cancel_req) == 0);
3910}
3911
3912/*
3913 * Validate target profile against allowed profiles and return true if it's OK.
3914 * Otherwise print the error message and return false.
3915 */
3916static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3917		const struct btrfs_balance_args *bargs,
3918		u64 allowed, const char *type)
3919{
3920	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3921		return true;
3922
3923	/* Profile is valid and does not have bits outside of the allowed set */
3924	if (alloc_profile_is_valid(bargs->target, 1) &&
3925	    (bargs->target & ~allowed) == 0)
3926		return true;
3927
3928	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3929			type, btrfs_bg_type_to_raid_name(bargs->target));
3930	return false;
3931}
3932
3933/*
3934 * Fill @buf with textual description of balance filter flags @bargs, up to
3935 * @size_buf including the terminating null. The output may be trimmed if it
3936 * does not fit into the provided buffer.
3937 */
3938static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3939				 u32 size_buf)
3940{
3941	int ret;
3942	u32 size_bp = size_buf;
3943	char *bp = buf;
3944	u64 flags = bargs->flags;
3945	char tmp_buf[128] = {'\0'};
3946
3947	if (!flags)
3948		return;
3949
3950#define CHECK_APPEND_NOARG(a)						\
3951	do {								\
3952		ret = snprintf(bp, size_bp, (a));			\
3953		if (ret < 0 || ret >= size_bp)				\
3954			goto out_overflow;				\
3955		size_bp -= ret;						\
3956		bp += ret;						\
3957	} while (0)
3958
3959#define CHECK_APPEND_1ARG(a, v1)					\
3960	do {								\
3961		ret = snprintf(bp, size_bp, (a), (v1));			\
3962		if (ret < 0 || ret >= size_bp)				\
3963			goto out_overflow;				\
3964		size_bp -= ret;						\
3965		bp += ret;						\
3966	} while (0)
3967
3968#define CHECK_APPEND_2ARG(a, v1, v2)					\
3969	do {								\
3970		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
3971		if (ret < 0 || ret >= size_bp)				\
3972			goto out_overflow;				\
3973		size_bp -= ret;						\
3974		bp += ret;						\
3975	} while (0)
3976
3977	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3978		CHECK_APPEND_1ARG("convert=%s,",
3979				  btrfs_bg_type_to_raid_name(bargs->target));
3980
3981	if (flags & BTRFS_BALANCE_ARGS_SOFT)
3982		CHECK_APPEND_NOARG("soft,");
3983
3984	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3985		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3986					    sizeof(tmp_buf));
3987		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3988	}
3989
3990	if (flags & BTRFS_BALANCE_ARGS_USAGE)
3991		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3992
3993	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3994		CHECK_APPEND_2ARG("usage=%u..%u,",
3995				  bargs->usage_min, bargs->usage_max);
3996
3997	if (flags & BTRFS_BALANCE_ARGS_DEVID)
3998		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3999
4000	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4001		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4002				  bargs->pstart, bargs->pend);
4003
4004	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4005		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4006				  bargs->vstart, bargs->vend);
4007
4008	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4009		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4010
4011	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4012		CHECK_APPEND_2ARG("limit=%u..%u,",
4013				bargs->limit_min, bargs->limit_max);
4014
4015	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4016		CHECK_APPEND_2ARG("stripes=%u..%u,",
4017				  bargs->stripes_min, bargs->stripes_max);
4018
4019#undef CHECK_APPEND_2ARG
4020#undef CHECK_APPEND_1ARG
4021#undef CHECK_APPEND_NOARG
4022
4023out_overflow:
4024
4025	if (size_bp < size_buf)
4026		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4027	else
4028		buf[0] = '\0';
4029}
4030
4031static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4032{
4033	u32 size_buf = 1024;
4034	char tmp_buf[192] = {'\0'};
4035	char *buf;
4036	char *bp;
4037	u32 size_bp = size_buf;
4038	int ret;
4039	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4040
4041	buf = kzalloc(size_buf, GFP_KERNEL);
4042	if (!buf)
4043		return;
4044
4045	bp = buf;
4046
4047#define CHECK_APPEND_1ARG(a, v1)					\
4048	do {								\
4049		ret = snprintf(bp, size_bp, (a), (v1));			\
4050		if (ret < 0 || ret >= size_bp)				\
4051			goto out_overflow;				\
4052		size_bp -= ret;						\
4053		bp += ret;						\
4054	} while (0)
4055
4056	if (bctl->flags & BTRFS_BALANCE_FORCE)
4057		CHECK_APPEND_1ARG("%s", "-f ");
4058
4059	if (bctl->flags & BTRFS_BALANCE_DATA) {
4060		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4061		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4062	}
4063
4064	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4065		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4066		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4067	}
4068
4069	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4070		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4071		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4072	}
4073
4074#undef CHECK_APPEND_1ARG
4075
4076out_overflow:
4077
4078	if (size_bp < size_buf)
4079		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4080	btrfs_info(fs_info, "balance: %s %s",
4081		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4082		   "resume" : "start", buf);
4083
4084	kfree(buf);
4085}
4086
4087/*
4088 * Should be called with balance mutexe held
4089 */
4090int btrfs_balance(struct btrfs_fs_info *fs_info,
4091		  struct btrfs_balance_control *bctl,
4092		  struct btrfs_ioctl_balance_args *bargs)
4093{
4094	u64 meta_target, data_target;
4095	u64 allowed;
4096	int mixed = 0;
4097	int ret;
4098	u64 num_devices;
4099	unsigned seq;
4100	bool reducing_redundancy;
4101	int i;
4102
4103	if (btrfs_fs_closing(fs_info) ||
4104	    atomic_read(&fs_info->balance_pause_req) ||
4105	    btrfs_should_cancel_balance(fs_info)) {
4106		ret = -EINVAL;
4107		goto out;
4108	}
4109
4110	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4111	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4112		mixed = 1;
4113
4114	/*
4115	 * In case of mixed groups both data and meta should be picked,
4116	 * and identical options should be given for both of them.
4117	 */
4118	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4119	if (mixed && (bctl->flags & allowed)) {
4120		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4121		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4122		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4123			btrfs_err(fs_info,
4124	  "balance: mixed groups data and metadata options must be the same");
4125			ret = -EINVAL;
4126			goto out;
4127		}
4128	}
4129
4130	/*
4131	 * rw_devices will not change at the moment, device add/delete/replace
4132	 * are exclusive
4133	 */
4134	num_devices = fs_info->fs_devices->rw_devices;
4135
4136	/*
4137	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4138	 * special bit for it, to make it easier to distinguish.  Thus we need
4139	 * to set it manually, or balance would refuse the profile.
4140	 */
4141	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4142	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4143		if (num_devices >= btrfs_raid_array[i].devs_min)
4144			allowed |= btrfs_raid_array[i].bg_flag;
4145
4146	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4147	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4148	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4149		ret = -EINVAL;
4150		goto out;
4151	}
4152
4153	/*
4154	 * Allow to reduce metadata or system integrity only if force set for
4155	 * profiles with redundancy (copies, parity)
4156	 */
4157	allowed = 0;
4158	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4159		if (btrfs_raid_array[i].ncopies >= 2 ||
4160		    btrfs_raid_array[i].tolerated_failures >= 1)
4161			allowed |= btrfs_raid_array[i].bg_flag;
4162	}
4163	do {
4164		seq = read_seqbegin(&fs_info->profiles_lock);
4165
4166		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4167		     (fs_info->avail_system_alloc_bits & allowed) &&
4168		     !(bctl->sys.target & allowed)) ||
4169		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4170		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4171		     !(bctl->meta.target & allowed)))
4172			reducing_redundancy = true;
4173		else
4174			reducing_redundancy = false;
4175
4176		/* if we're not converting, the target field is uninitialized */
4177		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4178			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4179		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4180			bctl->data.target : fs_info->avail_data_alloc_bits;
4181	} while (read_seqretry(&fs_info->profiles_lock, seq));
4182
4183	if (reducing_redundancy) {
4184		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4185			btrfs_info(fs_info,
4186			   "balance: force reducing metadata redundancy");
4187		} else {
4188			btrfs_err(fs_info,
4189	"balance: reduces metadata redundancy, use --force if you want this");
4190			ret = -EINVAL;
4191			goto out;
4192		}
4193	}
4194
4195	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4196		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4197		btrfs_warn(fs_info,
4198	"balance: metadata profile %s has lower redundancy than data profile %s",
4199				btrfs_bg_type_to_raid_name(meta_target),
4200				btrfs_bg_type_to_raid_name(data_target));
4201	}
4202
4203	if (fs_info->send_in_progress) {
4204		btrfs_warn_rl(fs_info,
4205"cannot run balance while send operations are in progress (%d in progress)",
4206			      fs_info->send_in_progress);
4207		ret = -EAGAIN;
4208		goto out;
4209	}
4210
4211	ret = insert_balance_item(fs_info, bctl);
4212	if (ret && ret != -EEXIST)
4213		goto out;
4214
4215	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4216		BUG_ON(ret == -EEXIST);
4217		BUG_ON(fs_info->balance_ctl);
4218		spin_lock(&fs_info->balance_lock);
4219		fs_info->balance_ctl = bctl;
4220		spin_unlock(&fs_info->balance_lock);
4221	} else {
4222		BUG_ON(ret != -EEXIST);
4223		spin_lock(&fs_info->balance_lock);
4224		update_balance_args(bctl);
4225		spin_unlock(&fs_info->balance_lock);
4226	}
4227
4228	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4229	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4230	describe_balance_start_or_resume(fs_info);
4231	mutex_unlock(&fs_info->balance_mutex);
4232
4233	ret = __btrfs_balance(fs_info);
4234
4235	mutex_lock(&fs_info->balance_mutex);
4236	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4237		btrfs_info(fs_info, "balance: paused");
4238	/*
4239	 * Balance can be canceled by:
4240	 *
4241	 * - Regular cancel request
4242	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4243	 *
4244	 * - Fatal signal to "btrfs" process
4245	 *   Either the signal caught by wait_reserve_ticket() and callers
4246	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4247	 *   got -ECANCELED.
4248	 *   Either way, in this case balance_cancel_req = 0, and
4249	 *   ret == -EINTR or ret == -ECANCELED.
4250	 *
4251	 * So here we only check the return value to catch canceled balance.
4252	 */
4253	else if (ret == -ECANCELED || ret == -EINTR)
4254		btrfs_info(fs_info, "balance: canceled");
4255	else
4256		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4257
4258	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4259
4260	if (bargs) {
4261		memset(bargs, 0, sizeof(*bargs));
4262		btrfs_update_ioctl_balance_args(fs_info, bargs);
4263	}
4264
4265	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4266	    balance_need_close(fs_info)) {
4267		reset_balance_state(fs_info);
4268		btrfs_exclop_finish(fs_info);
4269	}
4270
4271	wake_up(&fs_info->balance_wait_q);
4272
4273	return ret;
4274out:
4275	if (bctl->flags & BTRFS_BALANCE_RESUME)
4276		reset_balance_state(fs_info);
4277	else
4278		kfree(bctl);
4279	btrfs_exclop_finish(fs_info);
4280
4281	return ret;
4282}
4283
4284static int balance_kthread(void *data)
4285{
4286	struct btrfs_fs_info *fs_info = data;
4287	int ret = 0;
4288
4289	sb_start_write(fs_info->sb);
4290	mutex_lock(&fs_info->balance_mutex);
4291	if (fs_info->balance_ctl)
4292		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4293	mutex_unlock(&fs_info->balance_mutex);
4294	sb_end_write(fs_info->sb);
4295
4296	return ret;
4297}
4298
4299int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4300{
4301	struct task_struct *tsk;
4302
4303	mutex_lock(&fs_info->balance_mutex);
4304	if (!fs_info->balance_ctl) {
4305		mutex_unlock(&fs_info->balance_mutex);
4306		return 0;
4307	}
4308	mutex_unlock(&fs_info->balance_mutex);
4309
4310	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4311		btrfs_info(fs_info, "balance: resume skipped");
4312		return 0;
4313	}
4314
4315	/*
4316	 * A ro->rw remount sequence should continue with the paused balance
4317	 * regardless of who pauses it, system or the user as of now, so set
4318	 * the resume flag.
4319	 */
4320	spin_lock(&fs_info->balance_lock);
4321	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4322	spin_unlock(&fs_info->balance_lock);
4323
4324	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4325	return PTR_ERR_OR_ZERO(tsk);
4326}
4327
4328int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4329{
4330	struct btrfs_balance_control *bctl;
4331	struct btrfs_balance_item *item;
4332	struct btrfs_disk_balance_args disk_bargs;
4333	struct btrfs_path *path;
4334	struct extent_buffer *leaf;
4335	struct btrfs_key key;
4336	int ret;
4337
4338	path = btrfs_alloc_path();
4339	if (!path)
4340		return -ENOMEM;
4341
4342	key.objectid = BTRFS_BALANCE_OBJECTID;
4343	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4344	key.offset = 0;
4345
4346	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4347	if (ret < 0)
4348		goto out;
4349	if (ret > 0) { /* ret = -ENOENT; */
4350		ret = 0;
4351		goto out;
4352	}
4353
4354	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4355	if (!bctl) {
4356		ret = -ENOMEM;
4357		goto out;
4358	}
4359
4360	leaf = path->nodes[0];
4361	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4362
4363	bctl->flags = btrfs_balance_flags(leaf, item);
4364	bctl->flags |= BTRFS_BALANCE_RESUME;
4365
4366	btrfs_balance_data(leaf, item, &disk_bargs);
4367	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4368	btrfs_balance_meta(leaf, item, &disk_bargs);
4369	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4370	btrfs_balance_sys(leaf, item, &disk_bargs);
4371	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4372
4373	/*
4374	 * This should never happen, as the paused balance state is recovered
4375	 * during mount without any chance of other exclusive ops to collide.
4376	 *
4377	 * This gives the exclusive op status to balance and keeps in paused
4378	 * state until user intervention (cancel or umount). If the ownership
4379	 * cannot be assigned, show a message but do not fail. The balance
4380	 * is in a paused state and must have fs_info::balance_ctl properly
4381	 * set up.
4382	 */
4383	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4384		btrfs_warn(fs_info,
4385	"balance: cannot set exclusive op status, resume manually");
4386
4387	btrfs_release_path(path);
4388
4389	mutex_lock(&fs_info->balance_mutex);
4390	BUG_ON(fs_info->balance_ctl);
4391	spin_lock(&fs_info->balance_lock);
4392	fs_info->balance_ctl = bctl;
4393	spin_unlock(&fs_info->balance_lock);
4394	mutex_unlock(&fs_info->balance_mutex);
4395out:
4396	btrfs_free_path(path);
4397	return ret;
4398}
4399
4400int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4401{
4402	int ret = 0;
4403
4404	mutex_lock(&fs_info->balance_mutex);
4405	if (!fs_info->balance_ctl) {
4406		mutex_unlock(&fs_info->balance_mutex);
4407		return -ENOTCONN;
4408	}
4409
4410	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4411		atomic_inc(&fs_info->balance_pause_req);
4412		mutex_unlock(&fs_info->balance_mutex);
4413
4414		wait_event(fs_info->balance_wait_q,
4415			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4416
4417		mutex_lock(&fs_info->balance_mutex);
4418		/* we are good with balance_ctl ripped off from under us */
4419		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4420		atomic_dec(&fs_info->balance_pause_req);
4421	} else {
4422		ret = -ENOTCONN;
4423	}
4424
4425	mutex_unlock(&fs_info->balance_mutex);
4426	return ret;
4427}
4428
4429int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4430{
4431	mutex_lock(&fs_info->balance_mutex);
4432	if (!fs_info->balance_ctl) {
4433		mutex_unlock(&fs_info->balance_mutex);
4434		return -ENOTCONN;
4435	}
4436
4437	/*
4438	 * A paused balance with the item stored on disk can be resumed at
4439	 * mount time if the mount is read-write. Otherwise it's still paused
4440	 * and we must not allow cancelling as it deletes the item.
4441	 */
4442	if (sb_rdonly(fs_info->sb)) {
4443		mutex_unlock(&fs_info->balance_mutex);
4444		return -EROFS;
4445	}
4446
4447	atomic_inc(&fs_info->balance_cancel_req);
4448	/*
4449	 * if we are running just wait and return, balance item is
4450	 * deleted in btrfs_balance in this case
4451	 */
4452	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4453		mutex_unlock(&fs_info->balance_mutex);
4454		wait_event(fs_info->balance_wait_q,
4455			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4456		mutex_lock(&fs_info->balance_mutex);
4457	} else {
4458		mutex_unlock(&fs_info->balance_mutex);
4459		/*
4460		 * Lock released to allow other waiters to continue, we'll
4461		 * reexamine the status again.
4462		 */
4463		mutex_lock(&fs_info->balance_mutex);
4464
4465		if (fs_info->balance_ctl) {
4466			reset_balance_state(fs_info);
4467			btrfs_exclop_finish(fs_info);
4468			btrfs_info(fs_info, "balance: canceled");
4469		}
4470	}
4471
4472	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4473	atomic_dec(&fs_info->balance_cancel_req);
4474	mutex_unlock(&fs_info->balance_mutex);
4475	return 0;
4476}
4477
4478int btrfs_uuid_scan_kthread(void *data)
4479{
4480	struct btrfs_fs_info *fs_info = data;
4481	struct btrfs_root *root = fs_info->tree_root;
4482	struct btrfs_key key;
4483	struct btrfs_path *path = NULL;
4484	int ret = 0;
4485	struct extent_buffer *eb;
4486	int slot;
4487	struct btrfs_root_item root_item;
4488	u32 item_size;
4489	struct btrfs_trans_handle *trans = NULL;
4490	bool closing = false;
4491
4492	path = btrfs_alloc_path();
4493	if (!path) {
4494		ret = -ENOMEM;
4495		goto out;
4496	}
4497
4498	key.objectid = 0;
4499	key.type = BTRFS_ROOT_ITEM_KEY;
4500	key.offset = 0;
4501
4502	while (1) {
4503		if (btrfs_fs_closing(fs_info)) {
4504			closing = true;
4505			break;
4506		}
4507		ret = btrfs_search_forward(root, &key, path,
4508				BTRFS_OLDEST_GENERATION);
4509		if (ret) {
4510			if (ret > 0)
4511				ret = 0;
4512			break;
4513		}
4514
4515		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4516		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4517		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4518		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4519			goto skip;
4520
4521		eb = path->nodes[0];
4522		slot = path->slots[0];
4523		item_size = btrfs_item_size_nr(eb, slot);
4524		if (item_size < sizeof(root_item))
4525			goto skip;
4526
4527		read_extent_buffer(eb, &root_item,
4528				   btrfs_item_ptr_offset(eb, slot),
4529				   (int)sizeof(root_item));
4530		if (btrfs_root_refs(&root_item) == 0)
4531			goto skip;
4532
4533		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4534		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4535			if (trans)
4536				goto update_tree;
4537
4538			btrfs_release_path(path);
4539			/*
4540			 * 1 - subvol uuid item
4541			 * 1 - received_subvol uuid item
4542			 */
4543			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4544			if (IS_ERR(trans)) {
4545				ret = PTR_ERR(trans);
4546				break;
4547			}
4548			continue;
4549		} else {
4550			goto skip;
4551		}
4552update_tree:
4553		btrfs_release_path(path);
4554		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4555			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4556						  BTRFS_UUID_KEY_SUBVOL,
4557						  key.objectid);
4558			if (ret < 0) {
4559				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4560					ret);
4561				break;
4562			}
4563		}
4564
4565		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4566			ret = btrfs_uuid_tree_add(trans,
4567						  root_item.received_uuid,
4568						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4569						  key.objectid);
4570			if (ret < 0) {
4571				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4572					ret);
4573				break;
4574			}
4575		}
4576
4577skip:
4578		btrfs_release_path(path);
4579		if (trans) {
4580			ret = btrfs_end_transaction(trans);
4581			trans = NULL;
4582			if (ret)
4583				break;
4584		}
4585
4586		if (key.offset < (u64)-1) {
4587			key.offset++;
4588		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4589			key.offset = 0;
4590			key.type = BTRFS_ROOT_ITEM_KEY;
4591		} else if (key.objectid < (u64)-1) {
4592			key.offset = 0;
4593			key.type = BTRFS_ROOT_ITEM_KEY;
4594			key.objectid++;
4595		} else {
4596			break;
4597		}
4598		cond_resched();
4599	}
4600
4601out:
4602	btrfs_free_path(path);
4603	if (trans && !IS_ERR(trans))
4604		btrfs_end_transaction(trans);
4605	if (ret)
4606		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4607	else if (!closing)
4608		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4609	up(&fs_info->uuid_tree_rescan_sem);
4610	return 0;
4611}
4612
4613int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4614{
4615	struct btrfs_trans_handle *trans;
4616	struct btrfs_root *tree_root = fs_info->tree_root;
4617	struct btrfs_root *uuid_root;
4618	struct task_struct *task;
4619	int ret;
4620
4621	/*
4622	 * 1 - root node
4623	 * 1 - root item
4624	 */
4625	trans = btrfs_start_transaction(tree_root, 2);
4626	if (IS_ERR(trans))
4627		return PTR_ERR(trans);
4628
4629	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4630	if (IS_ERR(uuid_root)) {
4631		ret = PTR_ERR(uuid_root);
4632		btrfs_abort_transaction(trans, ret);
4633		btrfs_end_transaction(trans);
4634		return ret;
4635	}
4636
4637	fs_info->uuid_root = uuid_root;
4638
4639	ret = btrfs_commit_transaction(trans);
4640	if (ret)
4641		return ret;
4642
4643	down(&fs_info->uuid_tree_rescan_sem);
4644	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4645	if (IS_ERR(task)) {
4646		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4647		btrfs_warn(fs_info, "failed to start uuid_scan task");
4648		up(&fs_info->uuid_tree_rescan_sem);
4649		return PTR_ERR(task);
4650	}
4651
4652	return 0;
4653}
4654
4655/*
4656 * shrinking a device means finding all of the device extents past
4657 * the new size, and then following the back refs to the chunks.
4658 * The chunk relocation code actually frees the device extent
4659 */
4660int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4661{
4662	struct btrfs_fs_info *fs_info = device->fs_info;
4663	struct btrfs_root *root = fs_info->dev_root;
4664	struct btrfs_trans_handle *trans;
4665	struct btrfs_dev_extent *dev_extent = NULL;
4666	struct btrfs_path *path;
4667	u64 length;
4668	u64 chunk_offset;
4669	int ret;
4670	int slot;
4671	int failed = 0;
4672	bool retried = false;
4673	struct extent_buffer *l;
4674	struct btrfs_key key;
4675	struct btrfs_super_block *super_copy = fs_info->super_copy;
4676	u64 old_total = btrfs_super_total_bytes(super_copy);
4677	u64 old_size = btrfs_device_get_total_bytes(device);
4678	u64 diff;
4679	u64 start;
4680
4681	new_size = round_down(new_size, fs_info->sectorsize);
4682	start = new_size;
4683	diff = round_down(old_size - new_size, fs_info->sectorsize);
4684
4685	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4686		return -EINVAL;
4687
4688	path = btrfs_alloc_path();
4689	if (!path)
4690		return -ENOMEM;
4691
4692	path->reada = READA_BACK;
4693
4694	trans = btrfs_start_transaction(root, 0);
4695	if (IS_ERR(trans)) {
4696		btrfs_free_path(path);
4697		return PTR_ERR(trans);
4698	}
4699
4700	mutex_lock(&fs_info->chunk_mutex);
4701
4702	btrfs_device_set_total_bytes(device, new_size);
4703	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4704		device->fs_devices->total_rw_bytes -= diff;
4705		atomic64_sub(diff, &fs_info->free_chunk_space);
4706	}
4707
4708	/*
4709	 * Once the device's size has been set to the new size, ensure all
4710	 * in-memory chunks are synced to disk so that the loop below sees them
4711	 * and relocates them accordingly.
4712	 */
4713	if (contains_pending_extent(device, &start, diff)) {
4714		mutex_unlock(&fs_info->chunk_mutex);
4715		ret = btrfs_commit_transaction(trans);
4716		if (ret)
4717			goto done;
4718	} else {
4719		mutex_unlock(&fs_info->chunk_mutex);
4720		btrfs_end_transaction(trans);
4721	}
4722
4723again:
4724	key.objectid = device->devid;
4725	key.offset = (u64)-1;
4726	key.type = BTRFS_DEV_EXTENT_KEY;
4727
4728	do {
4729		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4730		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4731		if (ret < 0) {
4732			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4733			goto done;
4734		}
4735
4736		ret = btrfs_previous_item(root, path, 0, key.type);
4737		if (ret)
4738			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4739		if (ret < 0)
4740			goto done;
4741		if (ret) {
4742			ret = 0;
4743			btrfs_release_path(path);
4744			break;
4745		}
4746
4747		l = path->nodes[0];
4748		slot = path->slots[0];
4749		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4750
4751		if (key.objectid != device->devid) {
4752			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4753			btrfs_release_path(path);
4754			break;
4755		}
4756
4757		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4758		length = btrfs_dev_extent_length(l, dev_extent);
4759
4760		if (key.offset + length <= new_size) {
4761			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4762			btrfs_release_path(path);
4763			break;
4764		}
4765
4766		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4767		btrfs_release_path(path);
4768
4769		/*
4770		 * We may be relocating the only data chunk we have,
4771		 * which could potentially end up with losing data's
4772		 * raid profile, so lets allocate an empty one in
4773		 * advance.
4774		 */
4775		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4776		if (ret < 0) {
4777			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4778			goto done;
4779		}
4780
4781		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4782		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4783		if (ret == -ENOSPC) {
4784			failed++;
4785		} else if (ret) {
4786			if (ret == -ETXTBSY) {
4787				btrfs_warn(fs_info,
4788		   "could not shrink block group %llu due to active swapfile",
4789					   chunk_offset);
4790			}
4791			goto done;
4792		}
4793	} while (key.offset-- > 0);
4794
4795	if (failed && !retried) {
4796		failed = 0;
4797		retried = true;
4798		goto again;
4799	} else if (failed && retried) {
4800		ret = -ENOSPC;
4801		goto done;
4802	}
4803
4804	/* Shrinking succeeded, else we would be at "done". */
4805	trans = btrfs_start_transaction(root, 0);
4806	if (IS_ERR(trans)) {
4807		ret = PTR_ERR(trans);
4808		goto done;
4809	}
4810
4811	mutex_lock(&fs_info->chunk_mutex);
4812	/* Clear all state bits beyond the shrunk device size */
4813	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4814			  CHUNK_STATE_MASK);
4815
4816	btrfs_device_set_disk_total_bytes(device, new_size);
4817	if (list_empty(&device->post_commit_list))
4818		list_add_tail(&device->post_commit_list,
4819			      &trans->transaction->dev_update_list);
4820
4821	WARN_ON(diff > old_total);
4822	btrfs_set_super_total_bytes(super_copy,
4823			round_down(old_total - diff, fs_info->sectorsize));
4824	mutex_unlock(&fs_info->chunk_mutex);
4825
4826	/* Now btrfs_update_device() will change the on-disk size. */
4827	ret = btrfs_update_device(trans, device);
4828	if (ret < 0) {
4829		btrfs_abort_transaction(trans, ret);
4830		btrfs_end_transaction(trans);
4831	} else {
4832		ret = btrfs_commit_transaction(trans);
4833	}
4834done:
4835	btrfs_free_path(path);
4836	if (ret) {
4837		mutex_lock(&fs_info->chunk_mutex);
4838		btrfs_device_set_total_bytes(device, old_size);
4839		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4840			device->fs_devices->total_rw_bytes += diff;
4841		atomic64_add(diff, &fs_info->free_chunk_space);
4842		mutex_unlock(&fs_info->chunk_mutex);
4843	}
4844	return ret;
4845}
4846
4847static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4848			   struct btrfs_key *key,
4849			   struct btrfs_chunk *chunk, int item_size)
4850{
4851	struct btrfs_super_block *super_copy = fs_info->super_copy;
4852	struct btrfs_disk_key disk_key;
4853	u32 array_size;
4854	u8 *ptr;
4855
4856	mutex_lock(&fs_info->chunk_mutex);
4857	array_size = btrfs_super_sys_array_size(super_copy);
4858	if (array_size + item_size + sizeof(disk_key)
4859			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4860		mutex_unlock(&fs_info->chunk_mutex);
4861		return -EFBIG;
4862	}
4863
4864	ptr = super_copy->sys_chunk_array + array_size;
4865	btrfs_cpu_key_to_disk(&disk_key, key);
4866	memcpy(ptr, &disk_key, sizeof(disk_key));
4867	ptr += sizeof(disk_key);
4868	memcpy(ptr, chunk, item_size);
4869	item_size += sizeof(disk_key);
4870	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4871	mutex_unlock(&fs_info->chunk_mutex);
4872
4873	return 0;
4874}
4875
4876/*
4877 * sort the devices in descending order by max_avail, total_avail
4878 */
4879static int btrfs_cmp_device_info(const void *a, const void *b)
4880{
4881	const struct btrfs_device_info *di_a = a;
4882	const struct btrfs_device_info *di_b = b;
4883
4884	if (di_a->max_avail > di_b->max_avail)
4885		return -1;
4886	if (di_a->max_avail < di_b->max_avail)
4887		return 1;
4888	if (di_a->total_avail > di_b->total_avail)
4889		return -1;
4890	if (di_a->total_avail < di_b->total_avail)
4891		return 1;
4892	return 0;
4893}
4894
4895static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4896{
4897	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4898		return;
4899
4900	btrfs_set_fs_incompat(info, RAID56);
4901}
4902
4903static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4904{
4905	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4906		return;
4907
4908	btrfs_set_fs_incompat(info, RAID1C34);
4909}
4910
4911/*
4912 * Structure used internally for __btrfs_alloc_chunk() function.
4913 * Wraps needed parameters.
4914 */
4915struct alloc_chunk_ctl {
4916	u64 start;
4917	u64 type;
4918	/* Total number of stripes to allocate */
4919	int num_stripes;
4920	/* sub_stripes info for map */
4921	int sub_stripes;
4922	/* Stripes per device */
4923	int dev_stripes;
4924	/* Maximum number of devices to use */
4925	int devs_max;
4926	/* Minimum number of devices to use */
4927	int devs_min;
4928	/* ndevs has to be a multiple of this */
4929	int devs_increment;
4930	/* Number of copies */
4931	int ncopies;
4932	/* Number of stripes worth of bytes to store parity information */
4933	int nparity;
4934	u64 max_stripe_size;
4935	u64 max_chunk_size;
4936	u64 dev_extent_min;
4937	u64 stripe_size;
4938	u64 chunk_size;
4939	int ndevs;
4940};
4941
4942static void init_alloc_chunk_ctl_policy_regular(
4943				struct btrfs_fs_devices *fs_devices,
4944				struct alloc_chunk_ctl *ctl)
4945{
4946	u64 type = ctl->type;
4947
4948	if (type & BTRFS_BLOCK_GROUP_DATA) {
4949		ctl->max_stripe_size = SZ_1G;
4950		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4951	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4952		/* For larger filesystems, use larger metadata chunks */
4953		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4954			ctl->max_stripe_size = SZ_1G;
4955		else
4956			ctl->max_stripe_size = SZ_256M;
4957		ctl->max_chunk_size = ctl->max_stripe_size;
4958	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4959		ctl->max_stripe_size = SZ_32M;
4960		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4961		ctl->devs_max = min_t(int, ctl->devs_max,
4962				      BTRFS_MAX_DEVS_SYS_CHUNK);
4963	} else {
4964		BUG();
4965	}
4966
4967	/* We don't want a chunk larger than 10% of writable space */
4968	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4969				  ctl->max_chunk_size);
4970	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4971}
4972
4973static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4974				 struct alloc_chunk_ctl *ctl)
4975{
4976	int index = btrfs_bg_flags_to_raid_index(ctl->type);
4977
4978	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4979	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4980	ctl->devs_max = btrfs_raid_array[index].devs_max;
4981	if (!ctl->devs_max)
4982		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4983	ctl->devs_min = btrfs_raid_array[index].devs_min;
4984	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4985	ctl->ncopies = btrfs_raid_array[index].ncopies;
4986	ctl->nparity = btrfs_raid_array[index].nparity;
4987	ctl->ndevs = 0;
4988
4989	switch (fs_devices->chunk_alloc_policy) {
4990	case BTRFS_CHUNK_ALLOC_REGULAR:
4991		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4992		break;
4993	default:
4994		BUG();
4995	}
4996}
4997
4998static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4999			      struct alloc_chunk_ctl *ctl,
5000			      struct btrfs_device_info *devices_info)
5001{
5002	struct btrfs_fs_info *info = fs_devices->fs_info;
5003	struct btrfs_device *device;
5004	u64 total_avail;
5005	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5006	int ret;
5007	int ndevs = 0;
5008	u64 max_avail;
5009	u64 dev_offset;
5010
5011	/*
5012	 * in the first pass through the devices list, we gather information
5013	 * about the available holes on each device.
5014	 */
5015	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5016		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5017			WARN(1, KERN_ERR
5018			       "BTRFS: read-only device in alloc_list\n");
5019			continue;
5020		}
5021
5022		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5023					&device->dev_state) ||
5024		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5025			continue;
5026
5027		if (device->total_bytes > device->bytes_used)
5028			total_avail = device->total_bytes - device->bytes_used;
5029		else
5030			total_avail = 0;
5031
5032		/* If there is no space on this device, skip it. */
5033		if (total_avail < ctl->dev_extent_min)
5034			continue;
5035
5036		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5037					   &max_avail);
5038		if (ret && ret != -ENOSPC)
5039			return ret;
5040
5041		if (ret == 0)
5042			max_avail = dev_extent_want;
5043
5044		if (max_avail < ctl->dev_extent_min) {
5045			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5046				btrfs_debug(info,
5047			"%s: devid %llu has no free space, have=%llu want=%llu",
5048					    __func__, device->devid, max_avail,
5049					    ctl->dev_extent_min);
5050			continue;
5051		}
5052
5053		if (ndevs == fs_devices->rw_devices) {
5054			WARN(1, "%s: found more than %llu devices\n",
5055			     __func__, fs_devices->rw_devices);
5056			break;
5057		}
5058		devices_info[ndevs].dev_offset = dev_offset;
5059		devices_info[ndevs].max_avail = max_avail;
5060		devices_info[ndevs].total_avail = total_avail;
5061		devices_info[ndevs].dev = device;
5062		++ndevs;
5063	}
5064	ctl->ndevs = ndevs;
5065
5066	/*
5067	 * now sort the devices by hole size / available space
5068	 */
5069	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5070	     btrfs_cmp_device_info, NULL);
5071
5072	return 0;
5073}
5074
5075static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5076				      struct btrfs_device_info *devices_info)
5077{
5078	/* Number of stripes that count for block group size */
5079	int data_stripes;
5080
5081	/*
5082	 * The primary goal is to maximize the number of stripes, so use as
5083	 * many devices as possible, even if the stripes are not maximum sized.
5084	 *
5085	 * The DUP profile stores more than one stripe per device, the
5086	 * max_avail is the total size so we have to adjust.
5087	 */
5088	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5089				   ctl->dev_stripes);
5090	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5091
5092	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5093	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5094
5095	/*
5096	 * Use the number of data stripes to figure out how big this chunk is
5097	 * really going to be in terms of logical address space, and compare
5098	 * that answer with the max chunk size. If it's higher, we try to
5099	 * reduce stripe_size.
5100	 */
5101	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5102		/*
5103		 * Reduce stripe_size, round it up to a 16MB boundary again and
5104		 * then use it, unless it ends up being even bigger than the
5105		 * previous value we had already.
5106		 */
5107		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5108							data_stripes), SZ_16M),
5109				       ctl->stripe_size);
5110	}
5111
5112	/* Align to BTRFS_STRIPE_LEN */
5113	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5114	ctl->chunk_size = ctl->stripe_size * data_stripes;
5115
5116	return 0;
5117}
5118
5119static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5120			      struct alloc_chunk_ctl *ctl,
5121			      struct btrfs_device_info *devices_info)
5122{
5123	struct btrfs_fs_info *info = fs_devices->fs_info;
5124
5125	/*
5126	 * Round down to number of usable stripes, devs_increment can be any
5127	 * number so we can't use round_down() that requires power of 2, while
5128	 * rounddown is safe.
5129	 */
5130	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5131
5132	if (ctl->ndevs < ctl->devs_min) {
5133		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5134			btrfs_debug(info,
5135	"%s: not enough devices with free space: have=%d minimum required=%d",
5136				    __func__, ctl->ndevs, ctl->devs_min);
5137		}
5138		return -ENOSPC;
5139	}
5140
5141	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5142
5143	switch (fs_devices->chunk_alloc_policy) {
5144	case BTRFS_CHUNK_ALLOC_REGULAR:
5145		return decide_stripe_size_regular(ctl, devices_info);
5146	default:
5147		BUG();
5148	}
5149}
5150
5151static int create_chunk(struct btrfs_trans_handle *trans,
5152			struct alloc_chunk_ctl *ctl,
5153			struct btrfs_device_info *devices_info)
5154{
5155	struct btrfs_fs_info *info = trans->fs_info;
5156	struct map_lookup *map = NULL;
5157	struct extent_map_tree *em_tree;
5158	struct extent_map *em;
5159	u64 start = ctl->start;
5160	u64 type = ctl->type;
5161	int ret;
5162	int i;
5163	int j;
5164
5165	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5166	if (!map)
5167		return -ENOMEM;
5168	map->num_stripes = ctl->num_stripes;
5169
5170	for (i = 0; i < ctl->ndevs; ++i) {
5171		for (j = 0; j < ctl->dev_stripes; ++j) {
5172			int s = i * ctl->dev_stripes + j;
5173			map->stripes[s].dev = devices_info[i].dev;
5174			map->stripes[s].physical = devices_info[i].dev_offset +
5175						   j * ctl->stripe_size;
5176		}
5177	}
5178	map->stripe_len = BTRFS_STRIPE_LEN;
5179	map->io_align = BTRFS_STRIPE_LEN;
5180	map->io_width = BTRFS_STRIPE_LEN;
5181	map->type = type;
5182	map->sub_stripes = ctl->sub_stripes;
5183
5184	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5185
5186	em = alloc_extent_map();
5187	if (!em) {
5188		kfree(map);
5189		return -ENOMEM;
5190	}
5191	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5192	em->map_lookup = map;
5193	em->start = start;
5194	em->len = ctl->chunk_size;
5195	em->block_start = 0;
5196	em->block_len = em->len;
5197	em->orig_block_len = ctl->stripe_size;
5198
5199	em_tree = &info->mapping_tree;
5200	write_lock(&em_tree->lock);
5201	ret = add_extent_mapping(em_tree, em, 0);
5202	if (ret) {
5203		write_unlock(&em_tree->lock);
5204		free_extent_map(em);
5205		return ret;
5206	}
5207	write_unlock(&em_tree->lock);
5208
5209	ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5210	if (ret)
5211		goto error_del_extent;
5212
5213	for (i = 0; i < map->num_stripes; i++) {
5214		struct btrfs_device *dev = map->stripes[i].dev;
5215
5216		btrfs_device_set_bytes_used(dev,
5217					    dev->bytes_used + ctl->stripe_size);
5218		if (list_empty(&dev->post_commit_list))
5219			list_add_tail(&dev->post_commit_list,
5220				      &trans->transaction->dev_update_list);
5221	}
5222
5223	atomic64_sub(ctl->stripe_size * map->num_stripes,
5224		     &info->free_chunk_space);
5225
5226	free_extent_map(em);
5227	check_raid56_incompat_flag(info, type);
5228	check_raid1c34_incompat_flag(info, type);
5229
5230	return 0;
5231
5232error_del_extent:
5233	write_lock(&em_tree->lock);
5234	remove_extent_mapping(em_tree, em);
5235	write_unlock(&em_tree->lock);
5236
5237	/* One for our allocation */
5238	free_extent_map(em);
5239	/* One for the tree reference */
5240	free_extent_map(em);
5241
5242	return ret;
5243}
5244
5245int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5246{
5247	struct btrfs_fs_info *info = trans->fs_info;
5248	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5249	struct btrfs_device_info *devices_info = NULL;
5250	struct alloc_chunk_ctl ctl;
5251	int ret;
5252
5253	lockdep_assert_held(&info->chunk_mutex);
5254
5255	if (!alloc_profile_is_valid(type, 0)) {
5256		ASSERT(0);
5257		return -EINVAL;
5258	}
5259
5260	if (list_empty(&fs_devices->alloc_list)) {
5261		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5262			btrfs_debug(info, "%s: no writable device", __func__);
5263		return -ENOSPC;
5264	}
5265
5266	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5267		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5268		ASSERT(0);
5269		return -EINVAL;
5270	}
5271
5272	ctl.start = find_next_chunk(info);
5273	ctl.type = type;
5274	init_alloc_chunk_ctl(fs_devices, &ctl);
5275
5276	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5277			       GFP_NOFS);
5278	if (!devices_info)
5279		return -ENOMEM;
5280
5281	ret = gather_device_info(fs_devices, &ctl, devices_info);
5282	if (ret < 0)
5283		goto out;
5284
5285	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5286	if (ret < 0)
5287		goto out;
5288
5289	ret = create_chunk(trans, &ctl, devices_info);
5290
5291out:
5292	kfree(devices_info);
5293	return ret;
5294}
5295
5296/*
5297 * Chunk allocation falls into two parts. The first part does work
5298 * that makes the new allocated chunk usable, but does not do any operation
5299 * that modifies the chunk tree. The second part does the work that
5300 * requires modifying the chunk tree. This division is important for the
5301 * bootstrap process of adding storage to a seed btrfs.
5302 */
5303int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5304			     u64 chunk_offset, u64 chunk_size)
5305{
5306	struct btrfs_fs_info *fs_info = trans->fs_info;
5307	struct btrfs_root *extent_root = fs_info->extent_root;
5308	struct btrfs_root *chunk_root = fs_info->chunk_root;
5309	struct btrfs_key key;
5310	struct btrfs_device *device;
5311	struct btrfs_chunk *chunk;
5312	struct btrfs_stripe *stripe;
5313	struct extent_map *em;
5314	struct map_lookup *map;
5315	size_t item_size;
5316	u64 dev_offset;
5317	u64 stripe_size;
5318	int i = 0;
5319	int ret = 0;
5320
5321	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5322	if (IS_ERR(em))
5323		return PTR_ERR(em);
5324
5325	map = em->map_lookup;
5326	item_size = btrfs_chunk_item_size(map->num_stripes);
5327	stripe_size = em->orig_block_len;
5328
5329	chunk = kzalloc(item_size, GFP_NOFS);
5330	if (!chunk) {
5331		ret = -ENOMEM;
5332		goto out;
5333	}
5334
5335	/*
5336	 * Take the device list mutex to prevent races with the final phase of
5337	 * a device replace operation that replaces the device object associated
5338	 * with the map's stripes, because the device object's id can change
5339	 * at any time during that final phase of the device replace operation
5340	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5341	 */
5342	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5343	for (i = 0; i < map->num_stripes; i++) {
5344		device = map->stripes[i].dev;
5345		dev_offset = map->stripes[i].physical;
5346
5347		ret = btrfs_update_device(trans, device);
5348		if (ret)
5349			break;
5350		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5351					     dev_offset, stripe_size);
5352		if (ret)
5353			break;
5354	}
5355	if (ret) {
5356		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5357		goto out;
5358	}
5359
5360	stripe = &chunk->stripe;
5361	for (i = 0; i < map->num_stripes; i++) {
5362		device = map->stripes[i].dev;
5363		dev_offset = map->stripes[i].physical;
5364
5365		btrfs_set_stack_stripe_devid(stripe, device->devid);
5366		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5367		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5368		stripe++;
5369	}
5370	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5371
5372	btrfs_set_stack_chunk_length(chunk, chunk_size);
5373	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5374	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5375	btrfs_set_stack_chunk_type(chunk, map->type);
5376	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5377	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5378	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5379	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5380	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5381
5382	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5383	key.type = BTRFS_CHUNK_ITEM_KEY;
5384	key.offset = chunk_offset;
5385
5386	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5387	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5388		/*
5389		 * TODO: Cleanup of inserted chunk root in case of
5390		 * failure.
5391		 */
5392		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5393	}
5394
5395out:
5396	kfree(chunk);
5397	free_extent_map(em);
5398	return ret;
5399}
5400
5401static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5402{
5403	struct btrfs_fs_info *fs_info = trans->fs_info;
5404	u64 alloc_profile;
5405	int ret;
5406
5407	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5408	ret = btrfs_alloc_chunk(trans, alloc_profile);
5409	if (ret)
5410		return ret;
5411
5412	alloc_profile = btrfs_system_alloc_profile(fs_info);
5413	ret = btrfs_alloc_chunk(trans, alloc_profile);
5414	return ret;
5415}
5416
5417static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5418{
5419	const int index = btrfs_bg_flags_to_raid_index(map->type);
5420
5421	return btrfs_raid_array[index].tolerated_failures;
5422}
5423
5424int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5425{
5426	struct extent_map *em;
5427	struct map_lookup *map;
5428	int readonly = 0;
5429	int miss_ndevs = 0;
5430	int i;
5431
5432	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5433	if (IS_ERR(em))
5434		return 1;
5435
5436	map = em->map_lookup;
5437	for (i = 0; i < map->num_stripes; i++) {
5438		if (test_bit(BTRFS_DEV_STATE_MISSING,
5439					&map->stripes[i].dev->dev_state)) {
5440			miss_ndevs++;
5441			continue;
5442		}
5443		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5444					&map->stripes[i].dev->dev_state)) {
5445			readonly = 1;
5446			goto end;
5447		}
5448	}
5449
5450	/*
5451	 * If the number of missing devices is larger than max errors,
5452	 * we can not write the data into that chunk successfully, so
5453	 * set it readonly.
5454	 */
5455	if (miss_ndevs > btrfs_chunk_max_errors(map))
5456		readonly = 1;
5457end:
5458	free_extent_map(em);
5459	return readonly;
5460}
5461
5462void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5463{
5464	struct extent_map *em;
5465
5466	while (1) {
5467		write_lock(&tree->lock);
5468		em = lookup_extent_mapping(tree, 0, (u64)-1);
5469		if (em)
5470			remove_extent_mapping(tree, em);
5471		write_unlock(&tree->lock);
5472		if (!em)
5473			break;
5474		/* once for us */
5475		free_extent_map(em);
5476		/* once for the tree */
5477		free_extent_map(em);
5478	}
5479}
5480
5481int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5482{
5483	struct extent_map *em;
5484	struct map_lookup *map;
5485	int ret;
5486
5487	em = btrfs_get_chunk_map(fs_info, logical, len);
5488	if (IS_ERR(em))
5489		/*
5490		 * We could return errors for these cases, but that could get
5491		 * ugly and we'd probably do the same thing which is just not do
5492		 * anything else and exit, so return 1 so the callers don't try
5493		 * to use other copies.
5494		 */
5495		return 1;
5496
5497	map = em->map_lookup;
5498	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5499		ret = map->num_stripes;
5500	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5501		ret = map->sub_stripes;
5502	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5503		ret = 2;
5504	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5505		/*
5506		 * There could be two corrupted data stripes, we need
5507		 * to loop retry in order to rebuild the correct data.
5508		 *
5509		 * Fail a stripe at a time on every retry except the
5510		 * stripe under reconstruction.
5511		 */
5512		ret = map->num_stripes;
5513	else
5514		ret = 1;
5515	free_extent_map(em);
5516
5517	down_read(&fs_info->dev_replace.rwsem);
5518	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5519	    fs_info->dev_replace.tgtdev)
5520		ret++;
5521	up_read(&fs_info->dev_replace.rwsem);
5522
5523	return ret;
5524}
5525
5526unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5527				    u64 logical)
5528{
5529	struct extent_map *em;
5530	struct map_lookup *map;
5531	unsigned long len = fs_info->sectorsize;
5532
5533	em = btrfs_get_chunk_map(fs_info, logical, len);
5534
5535	if (!WARN_ON(IS_ERR(em))) {
5536		map = em->map_lookup;
5537		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5538			len = map->stripe_len * nr_data_stripes(map);
5539		free_extent_map(em);
5540	}
5541	return len;
5542}
5543
5544int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5545{
5546	struct extent_map *em;
5547	struct map_lookup *map;
5548	int ret = 0;
5549
5550	em = btrfs_get_chunk_map(fs_info, logical, len);
5551
5552	if(!WARN_ON(IS_ERR(em))) {
5553		map = em->map_lookup;
5554		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5555			ret = 1;
5556		free_extent_map(em);
5557	}
5558	return ret;
5559}
5560
5561static int find_live_mirror(struct btrfs_fs_info *fs_info,
5562			    struct map_lookup *map, int first,
5563			    int dev_replace_is_ongoing)
5564{
5565	int i;
5566	int num_stripes;
5567	int preferred_mirror;
5568	int tolerance;
5569	struct btrfs_device *srcdev;
5570
5571	ASSERT((map->type &
5572		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5573
5574	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5575		num_stripes = map->sub_stripes;
5576	else
5577		num_stripes = map->num_stripes;
5578
5579	preferred_mirror = first + current->pid % num_stripes;
5580
5581	if (dev_replace_is_ongoing &&
5582	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5583	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5584		srcdev = fs_info->dev_replace.srcdev;
5585	else
5586		srcdev = NULL;
5587
5588	/*
5589	 * try to avoid the drive that is the source drive for a
5590	 * dev-replace procedure, only choose it if no other non-missing
5591	 * mirror is available
5592	 */
5593	for (tolerance = 0; tolerance < 2; tolerance++) {
5594		if (map->stripes[preferred_mirror].dev->bdev &&
5595		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5596			return preferred_mirror;
5597		for (i = first; i < first + num_stripes; i++) {
5598			if (map->stripes[i].dev->bdev &&
5599			    (tolerance || map->stripes[i].dev != srcdev))
5600				return i;
5601		}
5602	}
5603
5604	/* we couldn't find one that doesn't fail.  Just return something
5605	 * and the io error handling code will clean up eventually
5606	 */
5607	return preferred_mirror;
5608}
5609
5610/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5611static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5612{
5613	int i;
5614	int again = 1;
5615
5616	while (again) {
5617		again = 0;
5618		for (i = 0; i < num_stripes - 1; i++) {
5619			/* Swap if parity is on a smaller index */
5620			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5621				swap(bbio->stripes[i], bbio->stripes[i + 1]);
5622				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5623				again = 1;
5624			}
5625		}
5626	}
5627}
5628
5629static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5630{
5631	struct btrfs_bio *bbio = kzalloc(
5632		 /* the size of the btrfs_bio */
5633		sizeof(struct btrfs_bio) +
5634		/* plus the variable array for the stripes */
5635		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5636		/* plus the variable array for the tgt dev */
5637		sizeof(int) * (real_stripes) +
5638		/*
5639		 * plus the raid_map, which includes both the tgt dev
5640		 * and the stripes
5641		 */
5642		sizeof(u64) * (total_stripes),
5643		GFP_NOFS|__GFP_NOFAIL);
5644
5645	atomic_set(&bbio->error, 0);
5646	refcount_set(&bbio->refs, 1);
5647
5648	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5649	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5650
5651	return bbio;
5652}
5653
5654void btrfs_get_bbio(struct btrfs_bio *bbio)
5655{
5656	WARN_ON(!refcount_read(&bbio->refs));
5657	refcount_inc(&bbio->refs);
5658}
5659
5660void btrfs_put_bbio(struct btrfs_bio *bbio)
5661{
5662	if (!bbio)
5663		return;
5664	if (refcount_dec_and_test(&bbio->refs))
5665		kfree(bbio);
5666}
5667
5668/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5669/*
5670 * Please note that, discard won't be sent to target device of device
5671 * replace.
5672 */
5673static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5674					 u64 logical, u64 *length_ret,
5675					 struct btrfs_bio **bbio_ret)
5676{
5677	struct extent_map *em;
5678	struct map_lookup *map;
5679	struct btrfs_bio *bbio;
5680	u64 length = *length_ret;
5681	u64 offset;
5682	u64 stripe_nr;
5683	u64 stripe_nr_end;
5684	u64 stripe_end_offset;
5685	u64 stripe_cnt;
5686	u64 stripe_len;
5687	u64 stripe_offset;
5688	u64 num_stripes;
5689	u32 stripe_index;
5690	u32 factor = 0;
5691	u32 sub_stripes = 0;
5692	u64 stripes_per_dev = 0;
5693	u32 remaining_stripes = 0;
5694	u32 last_stripe = 0;
5695	int ret = 0;
5696	int i;
5697
5698	/* discard always return a bbio */
5699	ASSERT(bbio_ret);
5700
5701	em = btrfs_get_chunk_map(fs_info, logical, length);
5702	if (IS_ERR(em))
5703		return PTR_ERR(em);
5704
5705	map = em->map_lookup;
5706	/* we don't discard raid56 yet */
5707	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5708		ret = -EOPNOTSUPP;
5709		goto out;
5710	}
5711
5712	offset = logical - em->start;
5713	length = min_t(u64, em->start + em->len - logical, length);
5714	*length_ret = length;
5715
5716	stripe_len = map->stripe_len;
5717	/*
5718	 * stripe_nr counts the total number of stripes we have to stride
5719	 * to get to this block
5720	 */
5721	stripe_nr = div64_u64(offset, stripe_len);
5722
5723	/* stripe_offset is the offset of this block in its stripe */
5724	stripe_offset = offset - stripe_nr * stripe_len;
5725
5726	stripe_nr_end = round_up(offset + length, map->stripe_len);
5727	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5728	stripe_cnt = stripe_nr_end - stripe_nr;
5729	stripe_end_offset = stripe_nr_end * map->stripe_len -
5730			    (offset + length);
5731	/*
5732	 * after this, stripe_nr is the number of stripes on this
5733	 * device we have to walk to find the data, and stripe_index is
5734	 * the number of our device in the stripe array
5735	 */
5736	num_stripes = 1;
5737	stripe_index = 0;
5738	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5739			 BTRFS_BLOCK_GROUP_RAID10)) {
5740		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5741			sub_stripes = 1;
5742		else
5743			sub_stripes = map->sub_stripes;
5744
5745		factor = map->num_stripes / sub_stripes;
5746		num_stripes = min_t(u64, map->num_stripes,
5747				    sub_stripes * stripe_cnt);
5748		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5749		stripe_index *= sub_stripes;
5750		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5751					      &remaining_stripes);
5752		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5753		last_stripe *= sub_stripes;
5754	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5755				BTRFS_BLOCK_GROUP_DUP)) {
5756		num_stripes = map->num_stripes;
5757	} else {
5758		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5759					&stripe_index);
5760	}
5761
5762	bbio = alloc_btrfs_bio(num_stripes, 0);
5763	if (!bbio) {
5764		ret = -ENOMEM;
5765		goto out;
5766	}
5767
5768	for (i = 0; i < num_stripes; i++) {
5769		bbio->stripes[i].physical =
5770			map->stripes[stripe_index].physical +
5771			stripe_offset + stripe_nr * map->stripe_len;
5772		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5773
5774		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5775				 BTRFS_BLOCK_GROUP_RAID10)) {
5776			bbio->stripes[i].length = stripes_per_dev *
5777				map->stripe_len;
5778
5779			if (i / sub_stripes < remaining_stripes)
5780				bbio->stripes[i].length +=
5781					map->stripe_len;
5782
5783			/*
5784			 * Special for the first stripe and
5785			 * the last stripe:
5786			 *
5787			 * |-------|...|-------|
5788			 *     |----------|
5789			 *    off     end_off
5790			 */
5791			if (i < sub_stripes)
5792				bbio->stripes[i].length -=
5793					stripe_offset;
5794
5795			if (stripe_index >= last_stripe &&
5796			    stripe_index <= (last_stripe +
5797					     sub_stripes - 1))
5798				bbio->stripes[i].length -=
5799					stripe_end_offset;
5800
5801			if (i == sub_stripes - 1)
5802				stripe_offset = 0;
5803		} else {
5804			bbio->stripes[i].length = length;
5805		}
5806
5807		stripe_index++;
5808		if (stripe_index == map->num_stripes) {
5809			stripe_index = 0;
5810			stripe_nr++;
5811		}
5812	}
5813
5814	*bbio_ret = bbio;
5815	bbio->map_type = map->type;
5816	bbio->num_stripes = num_stripes;
5817out:
5818	free_extent_map(em);
5819	return ret;
5820}
5821
5822/*
5823 * In dev-replace case, for repair case (that's the only case where the mirror
5824 * is selected explicitly when calling btrfs_map_block), blocks left of the
5825 * left cursor can also be read from the target drive.
5826 *
5827 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5828 * array of stripes.
5829 * For READ, it also needs to be supported using the same mirror number.
5830 *
5831 * If the requested block is not left of the left cursor, EIO is returned. This
5832 * can happen because btrfs_num_copies() returns one more in the dev-replace
5833 * case.
5834 */
5835static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5836					 u64 logical, u64 length,
5837					 u64 srcdev_devid, int *mirror_num,
5838					 u64 *physical)
5839{
5840	struct btrfs_bio *bbio = NULL;
5841	int num_stripes;
5842	int index_srcdev = 0;
5843	int found = 0;
5844	u64 physical_of_found = 0;
5845	int i;
5846	int ret = 0;
5847
5848	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5849				logical, &length, &bbio, 0, 0);
5850	if (ret) {
5851		ASSERT(bbio == NULL);
5852		return ret;
5853	}
5854
5855	num_stripes = bbio->num_stripes;
5856	if (*mirror_num > num_stripes) {
5857		/*
5858		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5859		 * that means that the requested area is not left of the left
5860		 * cursor
5861		 */
5862		btrfs_put_bbio(bbio);
5863		return -EIO;
5864	}
5865
5866	/*
5867	 * process the rest of the function using the mirror_num of the source
5868	 * drive. Therefore look it up first.  At the end, patch the device
5869	 * pointer to the one of the target drive.
5870	 */
5871	for (i = 0; i < num_stripes; i++) {
5872		if (bbio->stripes[i].dev->devid != srcdev_devid)
5873			continue;
5874
5875		/*
5876		 * In case of DUP, in order to keep it simple, only add the
5877		 * mirror with the lowest physical address
5878		 */
5879		if (found &&
5880		    physical_of_found <= bbio->stripes[i].physical)
5881			continue;
5882
5883		index_srcdev = i;
5884		found = 1;
5885		physical_of_found = bbio->stripes[i].physical;
5886	}
5887
5888	btrfs_put_bbio(bbio);
5889
5890	ASSERT(found);
5891	if (!found)
5892		return -EIO;
5893
5894	*mirror_num = index_srcdev + 1;
5895	*physical = physical_of_found;
5896	return ret;
5897}
5898
5899static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5900				      struct btrfs_bio **bbio_ret,
5901				      struct btrfs_dev_replace *dev_replace,
5902				      int *num_stripes_ret, int *max_errors_ret)
5903{
5904	struct btrfs_bio *bbio = *bbio_ret;
5905	u64 srcdev_devid = dev_replace->srcdev->devid;
5906	int tgtdev_indexes = 0;
5907	int num_stripes = *num_stripes_ret;
5908	int max_errors = *max_errors_ret;
5909	int i;
5910
5911	if (op == BTRFS_MAP_WRITE) {
5912		int index_where_to_add;
5913
5914		/*
5915		 * duplicate the write operations while the dev replace
5916		 * procedure is running. Since the copying of the old disk to
5917		 * the new disk takes place at run time while the filesystem is
5918		 * mounted writable, the regular write operations to the old
5919		 * disk have to be duplicated to go to the new disk as well.
5920		 *
5921		 * Note that device->missing is handled by the caller, and that
5922		 * the write to the old disk is already set up in the stripes
5923		 * array.
5924		 */
5925		index_where_to_add = num_stripes;
5926		for (i = 0; i < num_stripes; i++) {
5927			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5928				/* write to new disk, too */
5929				struct btrfs_bio_stripe *new =
5930					bbio->stripes + index_where_to_add;
5931				struct btrfs_bio_stripe *old =
5932					bbio->stripes + i;
5933
5934				new->physical = old->physical;
5935				new->length = old->length;
5936				new->dev = dev_replace->tgtdev;
5937				bbio->tgtdev_map[i] = index_where_to_add;
5938				index_where_to_add++;
5939				max_errors++;
5940				tgtdev_indexes++;
5941			}
5942		}
5943		num_stripes = index_where_to_add;
5944	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5945		int index_srcdev = 0;
5946		int found = 0;
5947		u64 physical_of_found = 0;
5948
5949		/*
5950		 * During the dev-replace procedure, the target drive can also
5951		 * be used to read data in case it is needed to repair a corrupt
5952		 * block elsewhere. This is possible if the requested area is
5953		 * left of the left cursor. In this area, the target drive is a
5954		 * full copy of the source drive.
5955		 */
5956		for (i = 0; i < num_stripes; i++) {
5957			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5958				/*
5959				 * In case of DUP, in order to keep it simple,
5960				 * only add the mirror with the lowest physical
5961				 * address
5962				 */
5963				if (found &&
5964				    physical_of_found <=
5965				     bbio->stripes[i].physical)
5966					continue;
5967				index_srcdev = i;
5968				found = 1;
5969				physical_of_found = bbio->stripes[i].physical;
5970			}
5971		}
5972		if (found) {
5973			struct btrfs_bio_stripe *tgtdev_stripe =
5974				bbio->stripes + num_stripes;
5975
5976			tgtdev_stripe->physical = physical_of_found;
5977			tgtdev_stripe->length =
5978				bbio->stripes[index_srcdev].length;
5979			tgtdev_stripe->dev = dev_replace->tgtdev;
5980			bbio->tgtdev_map[index_srcdev] = num_stripes;
5981
5982			tgtdev_indexes++;
5983			num_stripes++;
5984		}
5985	}
5986
5987	*num_stripes_ret = num_stripes;
5988	*max_errors_ret = max_errors;
5989	bbio->num_tgtdevs = tgtdev_indexes;
5990	*bbio_ret = bbio;
5991}
5992
5993static bool need_full_stripe(enum btrfs_map_op op)
5994{
5995	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5996}
5997
5998/*
5999 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
6000 *		       tuple. This information is used to calculate how big a
6001 *		       particular bio can get before it straddles a stripe.
6002 *
6003 * @fs_info - the filesystem
6004 * @logical - address that we want to figure out the geometry of
6005 * @len	    - the length of IO we are going to perform, starting at @logical
6006 * @op      - type of operation - write or read
6007 * @io_geom - pointer used to return values
6008 *
6009 * Returns < 0 in case a chunk for the given logical address cannot be found,
6010 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6011 */
6012int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6013			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
6014{
6015	struct extent_map *em;
6016	struct map_lookup *map;
6017	u64 offset;
6018	u64 stripe_offset;
6019	u64 stripe_nr;
6020	u64 stripe_len;
6021	u64 raid56_full_stripe_start = (u64)-1;
6022	int data_stripes;
6023	int ret = 0;
6024
6025	ASSERT(op != BTRFS_MAP_DISCARD);
6026
6027	em = btrfs_get_chunk_map(fs_info, logical, len);
6028	if (IS_ERR(em))
6029		return PTR_ERR(em);
6030
6031	map = em->map_lookup;
6032	/* Offset of this logical address in the chunk */
6033	offset = logical - em->start;
6034	/* Len of a stripe in a chunk */
6035	stripe_len = map->stripe_len;
6036	/* Stripe wher this block falls in */
6037	stripe_nr = div64_u64(offset, stripe_len);
6038	/* Offset of stripe in the chunk */
6039	stripe_offset = stripe_nr * stripe_len;
6040	if (offset < stripe_offset) {
6041		btrfs_crit(fs_info,
6042"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6043			stripe_offset, offset, em->start, logical, stripe_len);
6044		ret = -EINVAL;
6045		goto out;
6046	}
6047
6048	/* stripe_offset is the offset of this block in its stripe */
6049	stripe_offset = offset - stripe_offset;
6050	data_stripes = nr_data_stripes(map);
6051
6052	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6053		u64 max_len = stripe_len - stripe_offset;
6054
6055		/*
6056		 * In case of raid56, we need to know the stripe aligned start
6057		 */
6058		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6059			unsigned long full_stripe_len = stripe_len * data_stripes;
6060			raid56_full_stripe_start = offset;
6061
6062			/*
6063			 * Allow a write of a full stripe, but make sure we
6064			 * don't allow straddling of stripes
6065			 */
6066			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6067					full_stripe_len);
6068			raid56_full_stripe_start *= full_stripe_len;
6069
6070			/*
6071			 * For writes to RAID[56], allow a full stripeset across
6072			 * all disks. For other RAID types and for RAID[56]
6073			 * reads, just allow a single stripe (on a single disk).
6074			 */
6075			if (op == BTRFS_MAP_WRITE) {
6076				max_len = stripe_len * data_stripes -
6077					  (offset - raid56_full_stripe_start);
6078			}
6079		}
6080		len = min_t(u64, em->len - offset, max_len);
6081	} else {
6082		len = em->len - offset;
6083	}
6084
6085	io_geom->len = len;
6086	io_geom->offset = offset;
6087	io_geom->stripe_len = stripe_len;
6088	io_geom->stripe_nr = stripe_nr;
6089	io_geom->stripe_offset = stripe_offset;
6090	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6091
6092out:
6093	/* once for us */
6094	free_extent_map(em);
6095	return ret;
6096}
6097
6098static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6099			     enum btrfs_map_op op,
6100			     u64 logical, u64 *length,
6101			     struct btrfs_bio **bbio_ret,
6102			     int mirror_num, int need_raid_map)
6103{
6104	struct extent_map *em;
6105	struct map_lookup *map;
6106	u64 stripe_offset;
6107	u64 stripe_nr;
6108	u64 stripe_len;
6109	u32 stripe_index;
6110	int data_stripes;
6111	int i;
6112	int ret = 0;
6113	int num_stripes;
6114	int max_errors = 0;
6115	int tgtdev_indexes = 0;
6116	struct btrfs_bio *bbio = NULL;
6117	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6118	int dev_replace_is_ongoing = 0;
6119	int num_alloc_stripes;
6120	int patch_the_first_stripe_for_dev_replace = 0;
6121	u64 physical_to_patch_in_first_stripe = 0;
6122	u64 raid56_full_stripe_start = (u64)-1;
6123	struct btrfs_io_geometry geom;
6124
6125	ASSERT(bbio_ret);
6126	ASSERT(op != BTRFS_MAP_DISCARD);
6127
6128	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6129	if (ret < 0)
6130		return ret;
6131
6132	em = btrfs_get_chunk_map(fs_info, logical, *length);
6133	ASSERT(!IS_ERR(em));
6134	map = em->map_lookup;
6135
6136	*length = geom.len;
6137	stripe_len = geom.stripe_len;
6138	stripe_nr = geom.stripe_nr;
6139	stripe_offset = geom.stripe_offset;
6140	raid56_full_stripe_start = geom.raid56_stripe_offset;
6141	data_stripes = nr_data_stripes(map);
6142
6143	down_read(&dev_replace->rwsem);
6144	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6145	/*
6146	 * Hold the semaphore for read during the whole operation, write is
6147	 * requested at commit time but must wait.
6148	 */
6149	if (!dev_replace_is_ongoing)
6150		up_read(&dev_replace->rwsem);
6151
6152	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6153	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6154		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6155						    dev_replace->srcdev->devid,
6156						    &mirror_num,
6157					    &physical_to_patch_in_first_stripe);
6158		if (ret)
6159			goto out;
6160		else
6161			patch_the_first_stripe_for_dev_replace = 1;
6162	} else if (mirror_num > map->num_stripes) {
6163		mirror_num = 0;
6164	}
6165
6166	num_stripes = 1;
6167	stripe_index = 0;
6168	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6169		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6170				&stripe_index);
6171		if (!need_full_stripe(op))
6172			mirror_num = 1;
6173	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6174		if (need_full_stripe(op))
6175			num_stripes = map->num_stripes;
6176		else if (mirror_num)
6177			stripe_index = mirror_num - 1;
6178		else {
6179			stripe_index = find_live_mirror(fs_info, map, 0,
6180					    dev_replace_is_ongoing);
6181			mirror_num = stripe_index + 1;
6182		}
6183
6184	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6185		if (need_full_stripe(op)) {
6186			num_stripes = map->num_stripes;
6187		} else if (mirror_num) {
6188			stripe_index = mirror_num - 1;
6189		} else {
6190			mirror_num = 1;
6191		}
6192
6193	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6194		u32 factor = map->num_stripes / map->sub_stripes;
6195
6196		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6197		stripe_index *= map->sub_stripes;
6198
6199		if (need_full_stripe(op))
6200			num_stripes = map->sub_stripes;
6201		else if (mirror_num)
6202			stripe_index += mirror_num - 1;
6203		else {
6204			int old_stripe_index = stripe_index;
6205			stripe_index = find_live_mirror(fs_info, map,
6206					      stripe_index,
6207					      dev_replace_is_ongoing);
6208			mirror_num = stripe_index - old_stripe_index + 1;
6209		}
6210
6211	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6212		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6213			/* push stripe_nr back to the start of the full stripe */
6214			stripe_nr = div64_u64(raid56_full_stripe_start,
6215					stripe_len * data_stripes);
6216
6217			/* RAID[56] write or recovery. Return all stripes */
6218			num_stripes = map->num_stripes;
6219			max_errors = nr_parity_stripes(map);
6220
6221			*length = map->stripe_len;
6222			stripe_index = 0;
6223			stripe_offset = 0;
6224		} else {
6225			/*
6226			 * Mirror #0 or #1 means the original data block.
6227			 * Mirror #2 is RAID5 parity block.
6228			 * Mirror #3 is RAID6 Q block.
6229			 */
6230			stripe_nr = div_u64_rem(stripe_nr,
6231					data_stripes, &stripe_index);
6232			if (mirror_num > 1)
6233				stripe_index = data_stripes + mirror_num - 2;
6234
6235			/* We distribute the parity blocks across stripes */
6236			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6237					&stripe_index);
6238			if (!need_full_stripe(op) && mirror_num <= 1)
6239				mirror_num = 1;
6240		}
6241	} else {
6242		/*
6243		 * after this, stripe_nr is the number of stripes on this
6244		 * device we have to walk to find the data, and stripe_index is
6245		 * the number of our device in the stripe array
6246		 */
6247		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6248				&stripe_index);
6249		mirror_num = stripe_index + 1;
6250	}
6251	if (stripe_index >= map->num_stripes) {
6252		btrfs_crit(fs_info,
6253			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6254			   stripe_index, map->num_stripes);
6255		ret = -EINVAL;
6256		goto out;
6257	}
6258
6259	num_alloc_stripes = num_stripes;
6260	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6261		if (op == BTRFS_MAP_WRITE)
6262			num_alloc_stripes <<= 1;
6263		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6264			num_alloc_stripes++;
6265		tgtdev_indexes = num_stripes;
6266	}
6267
6268	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6269	if (!bbio) {
6270		ret = -ENOMEM;
6271		goto out;
6272	}
6273
6274	for (i = 0; i < num_stripes; i++) {
6275		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6276			stripe_offset + stripe_nr * map->stripe_len;
6277		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6278		stripe_index++;
6279	}
6280
6281	/* build raid_map */
6282	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6283	    (need_full_stripe(op) || mirror_num > 1)) {
6284		u64 tmp;
6285		unsigned rot;
6286
6287		/* Work out the disk rotation on this stripe-set */
6288		div_u64_rem(stripe_nr, num_stripes, &rot);
6289
6290		/* Fill in the logical address of each stripe */
6291		tmp = stripe_nr * data_stripes;
6292		for (i = 0; i < data_stripes; i++)
6293			bbio->raid_map[(i+rot) % num_stripes] =
6294				em->start + (tmp + i) * map->stripe_len;
6295
6296		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6297		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6298			bbio->raid_map[(i+rot+1) % num_stripes] =
6299				RAID6_Q_STRIPE;
6300
6301		sort_parity_stripes(bbio, num_stripes);
6302	}
6303
6304	if (need_full_stripe(op))
6305		max_errors = btrfs_chunk_max_errors(map);
6306
6307	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6308	    need_full_stripe(op)) {
6309		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6310					  &max_errors);
6311	}
6312
6313	*bbio_ret = bbio;
6314	bbio->map_type = map->type;
6315	bbio->num_stripes = num_stripes;
6316	bbio->max_errors = max_errors;
6317	bbio->mirror_num = mirror_num;
6318
6319	/*
6320	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6321	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6322	 * available as a mirror
6323	 */
6324	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6325		WARN_ON(num_stripes > 1);
6326		bbio->stripes[0].dev = dev_replace->tgtdev;
6327		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6328		bbio->mirror_num = map->num_stripes + 1;
6329	}
6330out:
6331	if (dev_replace_is_ongoing) {
6332		lockdep_assert_held(&dev_replace->rwsem);
6333		/* Unlock and let waiting writers proceed */
6334		up_read(&dev_replace->rwsem);
6335	}
6336	free_extent_map(em);
6337	return ret;
6338}
6339
6340int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6341		      u64 logical, u64 *length,
6342		      struct btrfs_bio **bbio_ret, int mirror_num)
6343{
6344	if (op == BTRFS_MAP_DISCARD)
6345		return __btrfs_map_block_for_discard(fs_info, logical,
6346						     length, bbio_ret);
6347
6348	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6349				 mirror_num, 0);
6350}
6351
6352/* For Scrub/replace */
6353int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6354		     u64 logical, u64 *length,
6355		     struct btrfs_bio **bbio_ret)
6356{
6357	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6358}
6359
6360static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6361{
6362	bio->bi_private = bbio->private;
6363	bio->bi_end_io = bbio->end_io;
6364	bio_endio(bio);
6365
6366	btrfs_put_bbio(bbio);
6367}
6368
6369static void btrfs_end_bio(struct bio *bio)
6370{
6371	struct btrfs_bio *bbio = bio->bi_private;
6372	int is_orig_bio = 0;
6373
6374	if (bio->bi_status) {
6375		atomic_inc(&bbio->error);
6376		if (bio->bi_status == BLK_STS_IOERR ||
6377		    bio->bi_status == BLK_STS_TARGET) {
6378			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6379
6380			ASSERT(dev->bdev);
6381			if (bio_op(bio) == REQ_OP_WRITE)
6382				btrfs_dev_stat_inc_and_print(dev,
6383						BTRFS_DEV_STAT_WRITE_ERRS);
6384			else if (!(bio->bi_opf & REQ_RAHEAD))
6385				btrfs_dev_stat_inc_and_print(dev,
6386						BTRFS_DEV_STAT_READ_ERRS);
6387			if (bio->bi_opf & REQ_PREFLUSH)
6388				btrfs_dev_stat_inc_and_print(dev,
6389						BTRFS_DEV_STAT_FLUSH_ERRS);
6390		}
6391	}
6392
6393	if (bio == bbio->orig_bio)
6394		is_orig_bio = 1;
6395
6396	btrfs_bio_counter_dec(bbio->fs_info);
6397
6398	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6399		if (!is_orig_bio) {
6400			bio_put(bio);
6401			bio = bbio->orig_bio;
6402		}
6403
6404		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6405		/* only send an error to the higher layers if it is
6406		 * beyond the tolerance of the btrfs bio
6407		 */
6408		if (atomic_read(&bbio->error) > bbio->max_errors) {
6409			bio->bi_status = BLK_STS_IOERR;
6410		} else {
6411			/*
6412			 * this bio is actually up to date, we didn't
6413			 * go over the max number of errors
6414			 */
6415			bio->bi_status = BLK_STS_OK;
6416		}
6417
6418		btrfs_end_bbio(bbio, bio);
6419	} else if (!is_orig_bio) {
6420		bio_put(bio);
6421	}
6422}
6423
6424static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6425			      u64 physical, struct btrfs_device *dev)
6426{
6427	struct btrfs_fs_info *fs_info = bbio->fs_info;
6428
6429	bio->bi_private = bbio;
6430	btrfs_io_bio(bio)->device = dev;
6431	bio->bi_end_io = btrfs_end_bio;
6432	bio->bi_iter.bi_sector = physical >> 9;
6433	btrfs_debug_in_rcu(fs_info,
6434	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6435		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6436		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6437		dev->devid, bio->bi_iter.bi_size);
6438	bio_set_dev(bio, dev->bdev);
6439
6440	btrfs_bio_counter_inc_noblocked(fs_info);
6441
6442	btrfsic_submit_bio(bio);
6443}
6444
6445static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6446{
6447	atomic_inc(&bbio->error);
6448	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6449		/* Should be the original bio. */
6450		WARN_ON(bio != bbio->orig_bio);
6451
6452		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6453		bio->bi_iter.bi_sector = logical >> 9;
6454		if (atomic_read(&bbio->error) > bbio->max_errors)
6455			bio->bi_status = BLK_STS_IOERR;
6456		else
6457			bio->bi_status = BLK_STS_OK;
6458		btrfs_end_bbio(bbio, bio);
6459	}
6460}
6461
6462blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6463			   int mirror_num)
6464{
6465	struct btrfs_device *dev;
6466	struct bio *first_bio = bio;
6467	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6468	u64 length = 0;
6469	u64 map_length;
6470	int ret;
6471	int dev_nr;
6472	int total_devs;
6473	struct btrfs_bio *bbio = NULL;
6474
6475	length = bio->bi_iter.bi_size;
6476	map_length = length;
6477
6478	btrfs_bio_counter_inc_blocked(fs_info);
6479	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6480				&map_length, &bbio, mirror_num, 1);
6481	if (ret) {
6482		btrfs_bio_counter_dec(fs_info);
6483		return errno_to_blk_status(ret);
6484	}
6485
6486	total_devs = bbio->num_stripes;
6487	bbio->orig_bio = first_bio;
6488	bbio->private = first_bio->bi_private;
6489	bbio->end_io = first_bio->bi_end_io;
6490	bbio->fs_info = fs_info;
6491	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6492
6493	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6494	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6495		/* In this case, map_length has been set to the length of
6496		   a single stripe; not the whole write */
6497		if (bio_op(bio) == REQ_OP_WRITE) {
6498			ret = raid56_parity_write(fs_info, bio, bbio,
6499						  map_length);
6500		} else {
6501			ret = raid56_parity_recover(fs_info, bio, bbio,
6502						    map_length, mirror_num, 1);
6503		}
6504
6505		btrfs_bio_counter_dec(fs_info);
6506		return errno_to_blk_status(ret);
6507	}
6508
6509	if (map_length < length) {
6510		btrfs_crit(fs_info,
6511			   "mapping failed logical %llu bio len %llu len %llu",
6512			   logical, length, map_length);
6513		BUG();
6514	}
6515
6516	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6517		dev = bbio->stripes[dev_nr].dev;
6518		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6519						   &dev->dev_state) ||
6520		    (bio_op(first_bio) == REQ_OP_WRITE &&
6521		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6522			bbio_error(bbio, first_bio, logical);
6523			continue;
6524		}
6525
6526		if (dev_nr < total_devs - 1)
6527			bio = btrfs_bio_clone(first_bio);
6528		else
6529			bio = first_bio;
6530
6531		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6532	}
6533	btrfs_bio_counter_dec(fs_info);
6534	return BLK_STS_OK;
6535}
6536
6537/*
6538 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6539 * return NULL.
6540 *
6541 * If devid and uuid are both specified, the match must be exact, otherwise
6542 * only devid is used.
6543 *
6544 * If @seed is true, traverse through the seed devices.
6545 */
6546struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6547				       u64 devid, u8 *uuid, u8 *fsid,
6548				       bool seed)
6549{
6550	struct btrfs_device *device;
6551	struct btrfs_fs_devices *seed_devs;
6552
6553	if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6554		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6555			if (device->devid == devid &&
6556			    (!uuid || memcmp(device->uuid, uuid,
6557					     BTRFS_UUID_SIZE) == 0))
6558				return device;
6559		}
6560	}
6561
6562	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6563		if (!fsid ||
6564		    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6565			list_for_each_entry(device, &seed_devs->devices,
6566					    dev_list) {
6567				if (device->devid == devid &&
6568				    (!uuid || memcmp(device->uuid, uuid,
6569						     BTRFS_UUID_SIZE) == 0))
6570					return device;
6571			}
6572		}
6573	}
6574
6575	return NULL;
6576}
6577
6578static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6579					    u64 devid, u8 *dev_uuid)
6580{
6581	struct btrfs_device *device;
6582	unsigned int nofs_flag;
6583
6584	/*
6585	 * We call this under the chunk_mutex, so we want to use NOFS for this
6586	 * allocation, however we don't want to change btrfs_alloc_device() to
6587	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6588	 * places.
6589	 */
6590	nofs_flag = memalloc_nofs_save();
6591	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6592	memalloc_nofs_restore(nofs_flag);
6593	if (IS_ERR(device))
6594		return device;
6595
6596	list_add(&device->dev_list, &fs_devices->devices);
6597	device->fs_devices = fs_devices;
6598	fs_devices->num_devices++;
6599
6600	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6601	fs_devices->missing_devices++;
6602
6603	return device;
6604}
6605
6606/**
6607 * btrfs_alloc_device - allocate struct btrfs_device
6608 * @fs_info:	used only for generating a new devid, can be NULL if
6609 *		devid is provided (i.e. @devid != NULL).
6610 * @devid:	a pointer to devid for this device.  If NULL a new devid
6611 *		is generated.
6612 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6613 *		is generated.
6614 *
6615 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6616 * on error.  Returned struct is not linked onto any lists and must be
6617 * destroyed with btrfs_free_device.
6618 */
6619struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6620					const u64 *devid,
6621					const u8 *uuid)
6622{
6623	struct btrfs_device *dev;
6624	u64 tmp;
6625
6626	if (WARN_ON(!devid && !fs_info))
6627		return ERR_PTR(-EINVAL);
6628
6629	dev = __alloc_device(fs_info);
6630	if (IS_ERR(dev))
6631		return dev;
6632
6633	if (devid)
6634		tmp = *devid;
6635	else {
6636		int ret;
6637
6638		ret = find_next_devid(fs_info, &tmp);
6639		if (ret) {
6640			btrfs_free_device(dev);
6641			return ERR_PTR(ret);
6642		}
6643	}
6644	dev->devid = tmp;
6645
6646	if (uuid)
6647		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6648	else
6649		generate_random_uuid(dev->uuid);
6650
6651	return dev;
6652}
6653
6654static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6655					u64 devid, u8 *uuid, bool error)
6656{
6657	if (error)
6658		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6659			      devid, uuid);
6660	else
6661		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6662			      devid, uuid);
6663}
6664
6665static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6666{
6667	int index = btrfs_bg_flags_to_raid_index(type);
6668	int ncopies = btrfs_raid_array[index].ncopies;
6669	const int nparity = btrfs_raid_array[index].nparity;
6670	int data_stripes;
6671
6672	if (nparity)
6673		data_stripes = num_stripes - nparity;
6674	else
6675		data_stripes = num_stripes / ncopies;
6676
6677	return div_u64(chunk_len, data_stripes);
6678}
6679
6680static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6681			  struct btrfs_chunk *chunk)
6682{
6683	struct btrfs_fs_info *fs_info = leaf->fs_info;
6684	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6685	struct map_lookup *map;
6686	struct extent_map *em;
6687	u64 logical;
6688	u64 length;
6689	u64 devid;
6690	u8 uuid[BTRFS_UUID_SIZE];
6691	int num_stripes;
6692	int ret;
6693	int i;
6694
6695	logical = key->offset;
6696	length = btrfs_chunk_length(leaf, chunk);
6697	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6698
6699	/*
6700	 * Only need to verify chunk item if we're reading from sys chunk array,
6701	 * as chunk item in tree block is already verified by tree-checker.
6702	 */
6703	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6704		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6705		if (ret)
6706			return ret;
6707	}
6708
6709	read_lock(&map_tree->lock);
6710	em = lookup_extent_mapping(map_tree, logical, 1);
6711	read_unlock(&map_tree->lock);
6712
6713	/* already mapped? */
6714	if (em && em->start <= logical && em->start + em->len > logical) {
6715		free_extent_map(em);
6716		return 0;
6717	} else if (em) {
6718		free_extent_map(em);
6719	}
6720
6721	em = alloc_extent_map();
6722	if (!em)
6723		return -ENOMEM;
6724	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6725	if (!map) {
6726		free_extent_map(em);
6727		return -ENOMEM;
6728	}
6729
6730	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6731	em->map_lookup = map;
6732	em->start = logical;
6733	em->len = length;
6734	em->orig_start = 0;
6735	em->block_start = 0;
6736	em->block_len = em->len;
6737
6738	map->num_stripes = num_stripes;
6739	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6740	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6741	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6742	map->type = btrfs_chunk_type(leaf, chunk);
6743	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6744	map->verified_stripes = 0;
6745	em->orig_block_len = calc_stripe_length(map->type, em->len,
6746						map->num_stripes);
6747	for (i = 0; i < num_stripes; i++) {
6748		map->stripes[i].physical =
6749			btrfs_stripe_offset_nr(leaf, chunk, i);
6750		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6751		read_extent_buffer(leaf, uuid, (unsigned long)
6752				   btrfs_stripe_dev_uuid_nr(chunk, i),
6753				   BTRFS_UUID_SIZE);
6754		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6755							devid, uuid, NULL, true);
6756		if (!map->stripes[i].dev &&
6757		    !btrfs_test_opt(fs_info, DEGRADED)) {
6758			free_extent_map(em);
6759			btrfs_report_missing_device(fs_info, devid, uuid, true);
6760			return -ENOENT;
6761		}
6762		if (!map->stripes[i].dev) {
6763			map->stripes[i].dev =
6764				add_missing_dev(fs_info->fs_devices, devid,
6765						uuid);
6766			if (IS_ERR(map->stripes[i].dev)) {
6767				free_extent_map(em);
6768				btrfs_err(fs_info,
6769					"failed to init missing dev %llu: %ld",
6770					devid, PTR_ERR(map->stripes[i].dev));
6771				return PTR_ERR(map->stripes[i].dev);
6772			}
6773			btrfs_report_missing_device(fs_info, devid, uuid, false);
6774		}
6775		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6776				&(map->stripes[i].dev->dev_state));
6777
6778	}
6779
6780	write_lock(&map_tree->lock);
6781	ret = add_extent_mapping(map_tree, em, 0);
6782	write_unlock(&map_tree->lock);
6783	if (ret < 0) {
6784		btrfs_err(fs_info,
6785			  "failed to add chunk map, start=%llu len=%llu: %d",
6786			  em->start, em->len, ret);
6787	}
6788	free_extent_map(em);
6789
6790	return ret;
6791}
6792
6793static void fill_device_from_item(struct extent_buffer *leaf,
6794				 struct btrfs_dev_item *dev_item,
6795				 struct btrfs_device *device)
6796{
6797	unsigned long ptr;
6798
6799	device->devid = btrfs_device_id(leaf, dev_item);
6800	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6801	device->total_bytes = device->disk_total_bytes;
6802	device->commit_total_bytes = device->disk_total_bytes;
6803	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6804	device->commit_bytes_used = device->bytes_used;
6805	device->type = btrfs_device_type(leaf, dev_item);
6806	device->io_align = btrfs_device_io_align(leaf, dev_item);
6807	device->io_width = btrfs_device_io_width(leaf, dev_item);
6808	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6809	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6810	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6811
6812	ptr = btrfs_device_uuid(dev_item);
6813	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6814}
6815
6816static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6817						  u8 *fsid)
6818{
6819	struct btrfs_fs_devices *fs_devices;
6820	int ret;
6821
6822	lockdep_assert_held(&uuid_mutex);
6823	ASSERT(fsid);
6824
6825	/* This will match only for multi-device seed fs */
6826	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6827		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6828			return fs_devices;
6829
6830
6831	fs_devices = find_fsid(fsid, NULL);
6832	if (!fs_devices) {
6833		if (!btrfs_test_opt(fs_info, DEGRADED))
6834			return ERR_PTR(-ENOENT);
6835
6836		fs_devices = alloc_fs_devices(fsid, NULL);
6837		if (IS_ERR(fs_devices))
6838			return fs_devices;
6839
6840		fs_devices->seeding = true;
6841		fs_devices->opened = 1;
6842		return fs_devices;
6843	}
6844
6845	/*
6846	 * Upon first call for a seed fs fsid, just create a private copy of the
6847	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6848	 */
6849	fs_devices = clone_fs_devices(fs_devices);
6850	if (IS_ERR(fs_devices))
6851		return fs_devices;
6852
6853	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6854	if (ret) {
6855		free_fs_devices(fs_devices);
6856		return ERR_PTR(ret);
6857	}
6858
6859	if (!fs_devices->seeding) {
6860		close_fs_devices(fs_devices);
6861		free_fs_devices(fs_devices);
6862		return ERR_PTR(-EINVAL);
6863	}
6864
6865	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6866
6867	return fs_devices;
6868}
6869
6870static int read_one_dev(struct extent_buffer *leaf,
6871			struct btrfs_dev_item *dev_item)
6872{
6873	struct btrfs_fs_info *fs_info = leaf->fs_info;
6874	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6875	struct btrfs_device *device;
6876	u64 devid;
6877	int ret;
6878	u8 fs_uuid[BTRFS_FSID_SIZE];
6879	u8 dev_uuid[BTRFS_UUID_SIZE];
6880
6881	devid = btrfs_device_id(leaf, dev_item);
6882	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6883			   BTRFS_UUID_SIZE);
6884	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6885			   BTRFS_FSID_SIZE);
6886
6887	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6888		fs_devices = open_seed_devices(fs_info, fs_uuid);
6889		if (IS_ERR(fs_devices))
6890			return PTR_ERR(fs_devices);
6891	}
6892
6893	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6894				   fs_uuid, true);
6895	if (!device) {
6896		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6897			btrfs_report_missing_device(fs_info, devid,
6898							dev_uuid, true);
6899			return -ENOENT;
6900		}
6901
6902		device = add_missing_dev(fs_devices, devid, dev_uuid);
6903		if (IS_ERR(device)) {
6904			btrfs_err(fs_info,
6905				"failed to add missing dev %llu: %ld",
6906				devid, PTR_ERR(device));
6907			return PTR_ERR(device);
6908		}
6909		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6910	} else {
6911		if (!device->bdev) {
6912			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6913				btrfs_report_missing_device(fs_info,
6914						devid, dev_uuid, true);
6915				return -ENOENT;
6916			}
6917			btrfs_report_missing_device(fs_info, devid,
6918							dev_uuid, false);
6919		}
6920
6921		if (!device->bdev &&
6922		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6923			/*
6924			 * this happens when a device that was properly setup
6925			 * in the device info lists suddenly goes bad.
6926			 * device->bdev is NULL, and so we have to set
6927			 * device->missing to one here
6928			 */
6929			device->fs_devices->missing_devices++;
6930			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6931		}
6932
6933		/* Move the device to its own fs_devices */
6934		if (device->fs_devices != fs_devices) {
6935			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6936							&device->dev_state));
6937
6938			list_move(&device->dev_list, &fs_devices->devices);
6939			device->fs_devices->num_devices--;
6940			fs_devices->num_devices++;
6941
6942			device->fs_devices->missing_devices--;
6943			fs_devices->missing_devices++;
6944
6945			device->fs_devices = fs_devices;
6946		}
6947	}
6948
6949	if (device->fs_devices != fs_info->fs_devices) {
6950		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6951		if (device->generation !=
6952		    btrfs_device_generation(leaf, dev_item))
6953			return -EINVAL;
6954	}
6955
6956	fill_device_from_item(leaf, dev_item, device);
6957	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6958	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6959	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6960		device->fs_devices->total_rw_bytes += device->total_bytes;
6961		atomic64_add(device->total_bytes - device->bytes_used,
6962				&fs_info->free_chunk_space);
6963	}
6964	ret = 0;
6965	return ret;
6966}
6967
6968int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6969{
6970	struct btrfs_root *root = fs_info->tree_root;
6971	struct btrfs_super_block *super_copy = fs_info->super_copy;
6972	struct extent_buffer *sb;
6973	struct btrfs_disk_key *disk_key;
6974	struct btrfs_chunk *chunk;
6975	u8 *array_ptr;
6976	unsigned long sb_array_offset;
6977	int ret = 0;
6978	u32 num_stripes;
6979	u32 array_size;
6980	u32 len = 0;
6981	u32 cur_offset;
6982	u64 type;
6983	struct btrfs_key key;
6984
6985	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6986	/*
6987	 * This will create extent buffer of nodesize, superblock size is
6988	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6989	 * overallocate but we can keep it as-is, only the first page is used.
6990	 */
6991	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6992	if (IS_ERR(sb))
6993		return PTR_ERR(sb);
6994	set_extent_buffer_uptodate(sb);
6995	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6996	/*
6997	 * The sb extent buffer is artificial and just used to read the system array.
6998	 * set_extent_buffer_uptodate() call does not properly mark all it's
6999	 * pages up-to-date when the page is larger: extent does not cover the
7000	 * whole page and consequently check_page_uptodate does not find all
7001	 * the page's extents up-to-date (the hole beyond sb),
7002	 * write_extent_buffer then triggers a WARN_ON.
7003	 *
7004	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7005	 * but sb spans only this function. Add an explicit SetPageUptodate call
7006	 * to silence the warning eg. on PowerPC 64.
7007	 */
7008	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7009		SetPageUptodate(sb->pages[0]);
7010
7011	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7012	array_size = btrfs_super_sys_array_size(super_copy);
7013
7014	array_ptr = super_copy->sys_chunk_array;
7015	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7016	cur_offset = 0;
7017
7018	while (cur_offset < array_size) {
7019		disk_key = (struct btrfs_disk_key *)array_ptr;
7020		len = sizeof(*disk_key);
7021		if (cur_offset + len > array_size)
7022			goto out_short_read;
7023
7024		btrfs_disk_key_to_cpu(&key, disk_key);
7025
7026		array_ptr += len;
7027		sb_array_offset += len;
7028		cur_offset += len;
7029
7030		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7031			btrfs_err(fs_info,
7032			    "unexpected item type %u in sys_array at offset %u",
7033				  (u32)key.type, cur_offset);
7034			ret = -EIO;
7035			break;
7036		}
7037
7038		chunk = (struct btrfs_chunk *)sb_array_offset;
7039		/*
7040		 * At least one btrfs_chunk with one stripe must be present,
7041		 * exact stripe count check comes afterwards
7042		 */
7043		len = btrfs_chunk_item_size(1);
7044		if (cur_offset + len > array_size)
7045			goto out_short_read;
7046
7047		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7048		if (!num_stripes) {
7049			btrfs_err(fs_info,
7050			"invalid number of stripes %u in sys_array at offset %u",
7051				  num_stripes, cur_offset);
7052			ret = -EIO;
7053			break;
7054		}
7055
7056		type = btrfs_chunk_type(sb, chunk);
7057		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7058			btrfs_err(fs_info,
7059			"invalid chunk type %llu in sys_array at offset %u",
7060				  type, cur_offset);
7061			ret = -EIO;
7062			break;
7063		}
7064
7065		len = btrfs_chunk_item_size(num_stripes);
7066		if (cur_offset + len > array_size)
7067			goto out_short_read;
7068
7069		ret = read_one_chunk(&key, sb, chunk);
7070		if (ret)
7071			break;
7072
7073		array_ptr += len;
7074		sb_array_offset += len;
7075		cur_offset += len;
7076	}
7077	clear_extent_buffer_uptodate(sb);
7078	free_extent_buffer_stale(sb);
7079	return ret;
7080
7081out_short_read:
7082	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7083			len, cur_offset);
7084	clear_extent_buffer_uptodate(sb);
7085	free_extent_buffer_stale(sb);
7086	return -EIO;
7087}
7088
7089/*
7090 * Check if all chunks in the fs are OK for read-write degraded mount
7091 *
7092 * If the @failing_dev is specified, it's accounted as missing.
7093 *
7094 * Return true if all chunks meet the minimal RW mount requirements.
7095 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7096 */
7097bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7098					struct btrfs_device *failing_dev)
7099{
7100	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7101	struct extent_map *em;
7102	u64 next_start = 0;
7103	bool ret = true;
7104
7105	read_lock(&map_tree->lock);
7106	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7107	read_unlock(&map_tree->lock);
7108	/* No chunk at all? Return false anyway */
7109	if (!em) {
7110		ret = false;
7111		goto out;
7112	}
7113	while (em) {
7114		struct map_lookup *map;
7115		int missing = 0;
7116		int max_tolerated;
7117		int i;
7118
7119		map = em->map_lookup;
7120		max_tolerated =
7121			btrfs_get_num_tolerated_disk_barrier_failures(
7122					map->type);
7123		for (i = 0; i < map->num_stripes; i++) {
7124			struct btrfs_device *dev = map->stripes[i].dev;
7125
7126			if (!dev || !dev->bdev ||
7127			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7128			    dev->last_flush_error)
7129				missing++;
7130			else if (failing_dev && failing_dev == dev)
7131				missing++;
7132		}
7133		if (missing > max_tolerated) {
7134			if (!failing_dev)
7135				btrfs_warn(fs_info,
7136	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7137				   em->start, missing, max_tolerated);
7138			free_extent_map(em);
7139			ret = false;
7140			goto out;
7141		}
7142		next_start = extent_map_end(em);
7143		free_extent_map(em);
7144
7145		read_lock(&map_tree->lock);
7146		em = lookup_extent_mapping(map_tree, next_start,
7147					   (u64)(-1) - next_start);
7148		read_unlock(&map_tree->lock);
7149	}
7150out:
7151	return ret;
7152}
7153
7154static void readahead_tree_node_children(struct extent_buffer *node)
7155{
7156	int i;
7157	const int nr_items = btrfs_header_nritems(node);
7158
7159	for (i = 0; i < nr_items; i++) {
7160		u64 start;
7161
7162		start = btrfs_node_blockptr(node, i);
7163		readahead_tree_block(node->fs_info, start);
7164	}
7165}
7166
7167int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7168{
7169	struct btrfs_root *root = fs_info->chunk_root;
7170	struct btrfs_path *path;
7171	struct extent_buffer *leaf;
7172	struct btrfs_key key;
7173	struct btrfs_key found_key;
7174	int ret;
7175	int slot;
7176	u64 total_dev = 0;
7177	u64 last_ra_node = 0;
7178
7179	path = btrfs_alloc_path();
7180	if (!path)
7181		return -ENOMEM;
7182
7183	/*
7184	 * uuid_mutex is needed only if we are mounting a sprout FS
7185	 * otherwise we don't need it.
7186	 */
7187	mutex_lock(&uuid_mutex);
7188
7189	/*
7190	 * It is possible for mount and umount to race in such a way that
7191	 * we execute this code path, but open_fs_devices failed to clear
7192	 * total_rw_bytes. We certainly want it cleared before reading the
7193	 * device items, so clear it here.
7194	 */
7195	fs_info->fs_devices->total_rw_bytes = 0;
7196
7197	/*
7198	 * Read all device items, and then all the chunk items. All
7199	 * device items are found before any chunk item (their object id
7200	 * is smaller than the lowest possible object id for a chunk
7201	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7202	 */
7203	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7204	key.offset = 0;
7205	key.type = 0;
7206	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7207	if (ret < 0)
7208		goto error;
7209	while (1) {
7210		struct extent_buffer *node;
7211
7212		leaf = path->nodes[0];
7213		slot = path->slots[0];
7214		if (slot >= btrfs_header_nritems(leaf)) {
7215			ret = btrfs_next_leaf(root, path);
7216			if (ret == 0)
7217				continue;
7218			if (ret < 0)
7219				goto error;
7220			break;
7221		}
7222		/*
7223		 * The nodes on level 1 are not locked but we don't need to do
7224		 * that during mount time as nothing else can access the tree
7225		 */
7226		node = path->nodes[1];
7227		if (node) {
7228			if (last_ra_node != node->start) {
7229				readahead_tree_node_children(node);
7230				last_ra_node = node->start;
7231			}
7232		}
7233		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7234		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7235			struct btrfs_dev_item *dev_item;
7236			dev_item = btrfs_item_ptr(leaf, slot,
7237						  struct btrfs_dev_item);
7238			ret = read_one_dev(leaf, dev_item);
7239			if (ret)
7240				goto error;
7241			total_dev++;
7242		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7243			struct btrfs_chunk *chunk;
7244			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7245			mutex_lock(&fs_info->chunk_mutex);
7246			ret = read_one_chunk(&found_key, leaf, chunk);
7247			mutex_unlock(&fs_info->chunk_mutex);
7248			if (ret)
7249				goto error;
7250		}
7251		path->slots[0]++;
7252	}
7253
7254	/*
7255	 * After loading chunk tree, we've got all device information,
7256	 * do another round of validation checks.
7257	 */
7258	if (total_dev != fs_info->fs_devices->total_devices) {
7259		btrfs_warn(fs_info,
7260"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7261			  btrfs_super_num_devices(fs_info->super_copy),
7262			  total_dev);
7263		fs_info->fs_devices->total_devices = total_dev;
7264		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7265	}
7266	if (btrfs_super_total_bytes(fs_info->super_copy) <
7267	    fs_info->fs_devices->total_rw_bytes) {
7268		btrfs_err(fs_info,
7269	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7270			  btrfs_super_total_bytes(fs_info->super_copy),
7271			  fs_info->fs_devices->total_rw_bytes);
7272		ret = -EINVAL;
7273		goto error;
7274	}
7275	ret = 0;
7276error:
7277	mutex_unlock(&uuid_mutex);
7278
7279	btrfs_free_path(path);
7280	return ret;
7281}
7282
7283void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7284{
7285	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7286	struct btrfs_device *device;
7287
7288	fs_devices->fs_info = fs_info;
7289
7290	mutex_lock(&fs_devices->device_list_mutex);
7291	list_for_each_entry(device, &fs_devices->devices, dev_list)
7292		device->fs_info = fs_info;
7293
7294	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7295		list_for_each_entry(device, &seed_devs->devices, dev_list)
7296			device->fs_info = fs_info;
7297
7298		seed_devs->fs_info = fs_info;
7299	}
7300	mutex_unlock(&fs_devices->device_list_mutex);
7301}
7302
7303static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7304				 const struct btrfs_dev_stats_item *ptr,
7305				 int index)
7306{
7307	u64 val;
7308
7309	read_extent_buffer(eb, &val,
7310			   offsetof(struct btrfs_dev_stats_item, values) +
7311			    ((unsigned long)ptr) + (index * sizeof(u64)),
7312			   sizeof(val));
7313	return val;
7314}
7315
7316static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7317				      struct btrfs_dev_stats_item *ptr,
7318				      int index, u64 val)
7319{
7320	write_extent_buffer(eb, &val,
7321			    offsetof(struct btrfs_dev_stats_item, values) +
7322			     ((unsigned long)ptr) + (index * sizeof(u64)),
7323			    sizeof(val));
7324}
7325
7326static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7327				       struct btrfs_path *path)
7328{
7329	struct btrfs_dev_stats_item *ptr;
7330	struct extent_buffer *eb;
7331	struct btrfs_key key;
7332	int item_size;
7333	int i, ret, slot;
7334
7335	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7336	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7337	key.offset = device->devid;
7338	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7339	if (ret) {
7340		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7341			btrfs_dev_stat_set(device, i, 0);
7342		device->dev_stats_valid = 1;
7343		btrfs_release_path(path);
7344		return ret < 0 ? ret : 0;
7345	}
7346	slot = path->slots[0];
7347	eb = path->nodes[0];
7348	item_size = btrfs_item_size_nr(eb, slot);
7349
7350	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7351
7352	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7353		if (item_size >= (1 + i) * sizeof(__le64))
7354			btrfs_dev_stat_set(device, i,
7355					   btrfs_dev_stats_value(eb, ptr, i));
7356		else
7357			btrfs_dev_stat_set(device, i, 0);
7358	}
7359
7360	device->dev_stats_valid = 1;
7361	btrfs_dev_stat_print_on_load(device);
7362	btrfs_release_path(path);
7363
7364	return 0;
7365}
7366
7367int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7368{
7369	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7370	struct btrfs_device *device;
7371	struct btrfs_path *path = NULL;
7372	int ret = 0;
7373
7374	path = btrfs_alloc_path();
7375	if (!path)
7376		return -ENOMEM;
7377
7378	mutex_lock(&fs_devices->device_list_mutex);
7379	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7380		ret = btrfs_device_init_dev_stats(device, path);
7381		if (ret)
7382			goto out;
7383	}
7384	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7385		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7386			ret = btrfs_device_init_dev_stats(device, path);
7387			if (ret)
7388				goto out;
7389		}
7390	}
7391out:
7392	mutex_unlock(&fs_devices->device_list_mutex);
7393
7394	btrfs_free_path(path);
7395	return ret;
7396}
7397
7398static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7399				struct btrfs_device *device)
7400{
7401	struct btrfs_fs_info *fs_info = trans->fs_info;
7402	struct btrfs_root *dev_root = fs_info->dev_root;
7403	struct btrfs_path *path;
7404	struct btrfs_key key;
7405	struct extent_buffer *eb;
7406	struct btrfs_dev_stats_item *ptr;
7407	int ret;
7408	int i;
7409
7410	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7411	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7412	key.offset = device->devid;
7413
7414	path = btrfs_alloc_path();
7415	if (!path)
7416		return -ENOMEM;
7417	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7418	if (ret < 0) {
7419		btrfs_warn_in_rcu(fs_info,
7420			"error %d while searching for dev_stats item for device %s",
7421			      ret, rcu_str_deref(device->name));
7422		goto out;
7423	}
7424
7425	if (ret == 0 &&
7426	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7427		/* need to delete old one and insert a new one */
7428		ret = btrfs_del_item(trans, dev_root, path);
7429		if (ret != 0) {
7430			btrfs_warn_in_rcu(fs_info,
7431				"delete too small dev_stats item for device %s failed %d",
7432				      rcu_str_deref(device->name), ret);
7433			goto out;
7434		}
7435		ret = 1;
7436	}
7437
7438	if (ret == 1) {
7439		/* need to insert a new item */
7440		btrfs_release_path(path);
7441		ret = btrfs_insert_empty_item(trans, dev_root, path,
7442					      &key, sizeof(*ptr));
7443		if (ret < 0) {
7444			btrfs_warn_in_rcu(fs_info,
7445				"insert dev_stats item for device %s failed %d",
7446				rcu_str_deref(device->name), ret);
7447			goto out;
7448		}
7449	}
7450
7451	eb = path->nodes[0];
7452	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7453	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7454		btrfs_set_dev_stats_value(eb, ptr, i,
7455					  btrfs_dev_stat_read(device, i));
7456	btrfs_mark_buffer_dirty(eb);
7457
7458out:
7459	btrfs_free_path(path);
7460	return ret;
7461}
7462
7463/*
7464 * called from commit_transaction. Writes all changed device stats to disk.
7465 */
7466int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7467{
7468	struct btrfs_fs_info *fs_info = trans->fs_info;
7469	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7470	struct btrfs_device *device;
7471	int stats_cnt;
7472	int ret = 0;
7473
7474	mutex_lock(&fs_devices->device_list_mutex);
7475	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7476		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7477		if (!device->dev_stats_valid || stats_cnt == 0)
7478			continue;
7479
7480
7481		/*
7482		 * There is a LOAD-LOAD control dependency between the value of
7483		 * dev_stats_ccnt and updating the on-disk values which requires
7484		 * reading the in-memory counters. Such control dependencies
7485		 * require explicit read memory barriers.
7486		 *
7487		 * This memory barriers pairs with smp_mb__before_atomic in
7488		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7489		 * barrier implied by atomic_xchg in
7490		 * btrfs_dev_stats_read_and_reset
7491		 */
7492		smp_rmb();
7493
7494		ret = update_dev_stat_item(trans, device);
7495		if (!ret)
7496			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7497	}
7498	mutex_unlock(&fs_devices->device_list_mutex);
7499
7500	return ret;
7501}
7502
7503void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7504{
7505	btrfs_dev_stat_inc(dev, index);
7506	btrfs_dev_stat_print_on_error(dev);
7507}
7508
7509static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7510{
7511	if (!dev->dev_stats_valid)
7512		return;
7513	btrfs_err_rl_in_rcu(dev->fs_info,
7514		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7515			   rcu_str_deref(dev->name),
7516			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7517			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7518			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7519			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7520			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7521}
7522
7523static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7524{
7525	int i;
7526
7527	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7528		if (btrfs_dev_stat_read(dev, i) != 0)
7529			break;
7530	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7531		return; /* all values == 0, suppress message */
7532
7533	btrfs_info_in_rcu(dev->fs_info,
7534		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7535	       rcu_str_deref(dev->name),
7536	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7537	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7538	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7539	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7540	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7541}
7542
7543int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7544			struct btrfs_ioctl_get_dev_stats *stats)
7545{
7546	struct btrfs_device *dev;
7547	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7548	int i;
7549
7550	mutex_lock(&fs_devices->device_list_mutex);
7551	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7552				true);
7553	mutex_unlock(&fs_devices->device_list_mutex);
7554
7555	if (!dev) {
7556		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7557		return -ENODEV;
7558	} else if (!dev->dev_stats_valid) {
7559		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7560		return -ENODEV;
7561	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7562		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7563			if (stats->nr_items > i)
7564				stats->values[i] =
7565					btrfs_dev_stat_read_and_reset(dev, i);
7566			else
7567				btrfs_dev_stat_set(dev, i, 0);
7568		}
7569		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7570			   current->comm, task_pid_nr(current));
7571	} else {
7572		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7573			if (stats->nr_items > i)
7574				stats->values[i] = btrfs_dev_stat_read(dev, i);
7575	}
7576	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7577		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7578	return 0;
7579}
7580
7581/*
7582 * Update the size and bytes used for each device where it changed.  This is
7583 * delayed since we would otherwise get errors while writing out the
7584 * superblocks.
7585 *
7586 * Must be invoked during transaction commit.
7587 */
7588void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7589{
7590	struct btrfs_device *curr, *next;
7591
7592	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7593
7594	if (list_empty(&trans->dev_update_list))
7595		return;
7596
7597	/*
7598	 * We don't need the device_list_mutex here.  This list is owned by the
7599	 * transaction and the transaction must complete before the device is
7600	 * released.
7601	 */
7602	mutex_lock(&trans->fs_info->chunk_mutex);
7603	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7604				 post_commit_list) {
7605		list_del_init(&curr->post_commit_list);
7606		curr->commit_total_bytes = curr->disk_total_bytes;
7607		curr->commit_bytes_used = curr->bytes_used;
7608	}
7609	mutex_unlock(&trans->fs_info->chunk_mutex);
7610}
7611
7612/*
7613 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7614 */
7615int btrfs_bg_type_to_factor(u64 flags)
7616{
7617	const int index = btrfs_bg_flags_to_raid_index(flags);
7618
7619	return btrfs_raid_array[index].ncopies;
7620}
7621
7622
7623
7624static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7625				 u64 chunk_offset, u64 devid,
7626				 u64 physical_offset, u64 physical_len)
7627{
7628	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7629	struct extent_map *em;
7630	struct map_lookup *map;
7631	struct btrfs_device *dev;
7632	u64 stripe_len;
7633	bool found = false;
7634	int ret = 0;
7635	int i;
7636
7637	read_lock(&em_tree->lock);
7638	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7639	read_unlock(&em_tree->lock);
7640
7641	if (!em) {
7642		btrfs_err(fs_info,
7643"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7644			  physical_offset, devid);
7645		ret = -EUCLEAN;
7646		goto out;
7647	}
7648
7649	map = em->map_lookup;
7650	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7651	if (physical_len != stripe_len) {
7652		btrfs_err(fs_info,
7653"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7654			  physical_offset, devid, em->start, physical_len,
7655			  stripe_len);
7656		ret = -EUCLEAN;
7657		goto out;
7658	}
7659
7660	for (i = 0; i < map->num_stripes; i++) {
7661		if (map->stripes[i].dev->devid == devid &&
7662		    map->stripes[i].physical == physical_offset) {
7663			found = true;
7664			if (map->verified_stripes >= map->num_stripes) {
7665				btrfs_err(fs_info,
7666				"too many dev extents for chunk %llu found",
7667					  em->start);
7668				ret = -EUCLEAN;
7669				goto out;
7670			}
7671			map->verified_stripes++;
7672			break;
7673		}
7674	}
7675	if (!found) {
7676		btrfs_err(fs_info,
7677	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7678			physical_offset, devid);
7679		ret = -EUCLEAN;
7680	}
7681
7682	/* Make sure no dev extent is beyond device bondary */
7683	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7684	if (!dev) {
7685		btrfs_err(fs_info, "failed to find devid %llu", devid);
7686		ret = -EUCLEAN;
7687		goto out;
7688	}
7689
7690	/* It's possible this device is a dummy for seed device */
7691	if (dev->disk_total_bytes == 0) {
7692		struct btrfs_fs_devices *devs;
7693
7694		devs = list_first_entry(&fs_info->fs_devices->seed_list,
7695					struct btrfs_fs_devices, seed_list);
7696		dev = btrfs_find_device(devs, devid, NULL, NULL, false);
7697		if (!dev) {
7698			btrfs_err(fs_info, "failed to find seed devid %llu",
7699				  devid);
7700			ret = -EUCLEAN;
7701			goto out;
7702		}
7703	}
7704
7705	if (physical_offset + physical_len > dev->disk_total_bytes) {
7706		btrfs_err(fs_info,
7707"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7708			  devid, physical_offset, physical_len,
7709			  dev->disk_total_bytes);
7710		ret = -EUCLEAN;
7711		goto out;
7712	}
7713out:
7714	free_extent_map(em);
7715	return ret;
7716}
7717
7718static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7719{
7720	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7721	struct extent_map *em;
7722	struct rb_node *node;
7723	int ret = 0;
7724
7725	read_lock(&em_tree->lock);
7726	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7727		em = rb_entry(node, struct extent_map, rb_node);
7728		if (em->map_lookup->num_stripes !=
7729		    em->map_lookup->verified_stripes) {
7730			btrfs_err(fs_info,
7731			"chunk %llu has missing dev extent, have %d expect %d",
7732				  em->start, em->map_lookup->verified_stripes,
7733				  em->map_lookup->num_stripes);
7734			ret = -EUCLEAN;
7735			goto out;
7736		}
7737	}
7738out:
7739	read_unlock(&em_tree->lock);
7740	return ret;
7741}
7742
7743/*
7744 * Ensure that all dev extents are mapped to correct chunk, otherwise
7745 * later chunk allocation/free would cause unexpected behavior.
7746 *
7747 * NOTE: This will iterate through the whole device tree, which should be of
7748 * the same size level as the chunk tree.  This slightly increases mount time.
7749 */
7750int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7751{
7752	struct btrfs_path *path;
7753	struct btrfs_root *root = fs_info->dev_root;
7754	struct btrfs_key key;
7755	u64 prev_devid = 0;
7756	u64 prev_dev_ext_end = 0;
7757	int ret = 0;
7758
7759	key.objectid = 1;
7760	key.type = BTRFS_DEV_EXTENT_KEY;
7761	key.offset = 0;
7762
7763	path = btrfs_alloc_path();
7764	if (!path)
7765		return -ENOMEM;
7766
7767	path->reada = READA_FORWARD;
7768	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7769	if (ret < 0)
7770		goto out;
7771
7772	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7773		ret = btrfs_next_item(root, path);
7774		if (ret < 0)
7775			goto out;
7776		/* No dev extents at all? Not good */
7777		if (ret > 0) {
7778			ret = -EUCLEAN;
7779			goto out;
7780		}
7781	}
7782	while (1) {
7783		struct extent_buffer *leaf = path->nodes[0];
7784		struct btrfs_dev_extent *dext;
7785		int slot = path->slots[0];
7786		u64 chunk_offset;
7787		u64 physical_offset;
7788		u64 physical_len;
7789		u64 devid;
7790
7791		btrfs_item_key_to_cpu(leaf, &key, slot);
7792		if (key.type != BTRFS_DEV_EXTENT_KEY)
7793			break;
7794		devid = key.objectid;
7795		physical_offset = key.offset;
7796
7797		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7798		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7799		physical_len = btrfs_dev_extent_length(leaf, dext);
7800
7801		/* Check if this dev extent overlaps with the previous one */
7802		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7803			btrfs_err(fs_info,
7804"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7805				  devid, physical_offset, prev_dev_ext_end);
7806			ret = -EUCLEAN;
7807			goto out;
7808		}
7809
7810		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7811					    physical_offset, physical_len);
7812		if (ret < 0)
7813			goto out;
7814		prev_devid = devid;
7815		prev_dev_ext_end = physical_offset + physical_len;
7816
7817		ret = btrfs_next_item(root, path);
7818		if (ret < 0)
7819			goto out;
7820		if (ret > 0) {
7821			ret = 0;
7822			break;
7823		}
7824	}
7825
7826	/* Ensure all chunks have corresponding dev extents */
7827	ret = verify_chunk_dev_extent_mapping(fs_info);
7828out:
7829	btrfs_free_path(path);
7830	return ret;
7831}
7832
7833/*
7834 * Check whether the given block group or device is pinned by any inode being
7835 * used as a swapfile.
7836 */
7837bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7838{
7839	struct btrfs_swapfile_pin *sp;
7840	struct rb_node *node;
7841
7842	spin_lock(&fs_info->swapfile_pins_lock);
7843	node = fs_info->swapfile_pins.rb_node;
7844	while (node) {
7845		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7846		if (ptr < sp->ptr)
7847			node = node->rb_left;
7848		else if (ptr > sp->ptr)
7849			node = node->rb_right;
7850		else
7851			break;
7852	}
7853	spin_unlock(&fs_info->swapfile_pins_lock);
7854	return node != NULL;
7855}
7856