1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6#include <linux/sched.h> 7#include <linux/sched/mm.h> 8#include <linux/bio.h> 9#include <linux/slab.h> 10#include <linux/blkdev.h> 11#include <linux/ratelimit.h> 12#include <linux/kthread.h> 13#include <linux/raid/pq.h> 14#include <linux/semaphore.h> 15#include <linux/uuid.h> 16#include <linux/list_sort.h> 17#include <linux/namei.h> 18#include "misc.h" 19#include "ctree.h" 20#include "extent_map.h" 21#include "disk-io.h" 22#include "transaction.h" 23#include "print-tree.h" 24#include "volumes.h" 25#include "raid56.h" 26#include "async-thread.h" 27#include "check-integrity.h" 28#include "rcu-string.h" 29#include "dev-replace.h" 30#include "sysfs.h" 31#include "tree-checker.h" 32#include "space-info.h" 33#include "block-group.h" 34#include "discard.h" 35 36const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 37 [BTRFS_RAID_RAID10] = { 38 .sub_stripes = 2, 39 .dev_stripes = 1, 40 .devs_max = 0, /* 0 == as many as possible */ 41 .devs_min = 4, 42 .tolerated_failures = 1, 43 .devs_increment = 2, 44 .ncopies = 2, 45 .nparity = 0, 46 .raid_name = "raid10", 47 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 48 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 49 }, 50 [BTRFS_RAID_RAID1] = { 51 .sub_stripes = 1, 52 .dev_stripes = 1, 53 .devs_max = 2, 54 .devs_min = 2, 55 .tolerated_failures = 1, 56 .devs_increment = 2, 57 .ncopies = 2, 58 .nparity = 0, 59 .raid_name = "raid1", 60 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 61 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 62 }, 63 [BTRFS_RAID_RAID1C3] = { 64 .sub_stripes = 1, 65 .dev_stripes = 1, 66 .devs_max = 3, 67 .devs_min = 3, 68 .tolerated_failures = 2, 69 .devs_increment = 3, 70 .ncopies = 3, 71 .nparity = 0, 72 .raid_name = "raid1c3", 73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 74 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 75 }, 76 [BTRFS_RAID_RAID1C4] = { 77 .sub_stripes = 1, 78 .dev_stripes = 1, 79 .devs_max = 4, 80 .devs_min = 4, 81 .tolerated_failures = 3, 82 .devs_increment = 4, 83 .ncopies = 4, 84 .nparity = 0, 85 .raid_name = "raid1c4", 86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 87 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 88 }, 89 [BTRFS_RAID_DUP] = { 90 .sub_stripes = 1, 91 .dev_stripes = 2, 92 .devs_max = 1, 93 .devs_min = 1, 94 .tolerated_failures = 0, 95 .devs_increment = 1, 96 .ncopies = 2, 97 .nparity = 0, 98 .raid_name = "dup", 99 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 100 .mindev_error = 0, 101 }, 102 [BTRFS_RAID_RAID0] = { 103 .sub_stripes = 1, 104 .dev_stripes = 1, 105 .devs_max = 0, 106 .devs_min = 2, 107 .tolerated_failures = 0, 108 .devs_increment = 1, 109 .ncopies = 1, 110 .nparity = 0, 111 .raid_name = "raid0", 112 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 113 .mindev_error = 0, 114 }, 115 [BTRFS_RAID_SINGLE] = { 116 .sub_stripes = 1, 117 .dev_stripes = 1, 118 .devs_max = 1, 119 .devs_min = 1, 120 .tolerated_failures = 0, 121 .devs_increment = 1, 122 .ncopies = 1, 123 .nparity = 0, 124 .raid_name = "single", 125 .bg_flag = 0, 126 .mindev_error = 0, 127 }, 128 [BTRFS_RAID_RAID5] = { 129 .sub_stripes = 1, 130 .dev_stripes = 1, 131 .devs_max = 0, 132 .devs_min = 2, 133 .tolerated_failures = 1, 134 .devs_increment = 1, 135 .ncopies = 1, 136 .nparity = 1, 137 .raid_name = "raid5", 138 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 139 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 140 }, 141 [BTRFS_RAID_RAID6] = { 142 .sub_stripes = 1, 143 .dev_stripes = 1, 144 .devs_max = 0, 145 .devs_min = 3, 146 .tolerated_failures = 2, 147 .devs_increment = 1, 148 .ncopies = 1, 149 .nparity = 2, 150 .raid_name = "raid6", 151 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 152 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 153 }, 154}; 155 156const char *btrfs_bg_type_to_raid_name(u64 flags) 157{ 158 const int index = btrfs_bg_flags_to_raid_index(flags); 159 160 if (index >= BTRFS_NR_RAID_TYPES) 161 return NULL; 162 163 return btrfs_raid_array[index].raid_name; 164} 165 166/* 167 * Fill @buf with textual description of @bg_flags, no more than @size_buf 168 * bytes including terminating null byte. 169 */ 170void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 171{ 172 int i; 173 int ret; 174 char *bp = buf; 175 u64 flags = bg_flags; 176 u32 size_bp = size_buf; 177 178 if (!flags) { 179 strcpy(bp, "NONE"); 180 return; 181 } 182 183#define DESCRIBE_FLAG(flag, desc) \ 184 do { \ 185 if (flags & (flag)) { \ 186 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 187 if (ret < 0 || ret >= size_bp) \ 188 goto out_overflow; \ 189 size_bp -= ret; \ 190 bp += ret; \ 191 flags &= ~(flag); \ 192 } \ 193 } while (0) 194 195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 197 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 198 199 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 201 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 202 btrfs_raid_array[i].raid_name); 203#undef DESCRIBE_FLAG 204 205 if (flags) { 206 ret = snprintf(bp, size_bp, "0x%llx|", flags); 207 size_bp -= ret; 208 } 209 210 if (size_bp < size_buf) 211 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 212 213 /* 214 * The text is trimmed, it's up to the caller to provide sufficiently 215 * large buffer 216 */ 217out_overflow:; 218} 219 220static int init_first_rw_device(struct btrfs_trans_handle *trans); 221static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 222static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 223static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 224static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 225 enum btrfs_map_op op, 226 u64 logical, u64 *length, 227 struct btrfs_bio **bbio_ret, 228 int mirror_num, int need_raid_map); 229 230/* 231 * Device locking 232 * ============== 233 * 234 * There are several mutexes that protect manipulation of devices and low-level 235 * structures like chunks but not block groups, extents or files 236 * 237 * uuid_mutex (global lock) 238 * ------------------------ 239 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 240 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 241 * device) or requested by the device= mount option 242 * 243 * the mutex can be very coarse and can cover long-running operations 244 * 245 * protects: updates to fs_devices counters like missing devices, rw devices, 246 * seeding, structure cloning, opening/closing devices at mount/umount time 247 * 248 * global::fs_devs - add, remove, updates to the global list 249 * 250 * does not protect: manipulation of the fs_devices::devices list in general 251 * but in mount context it could be used to exclude list modifications by eg. 252 * scan ioctl 253 * 254 * btrfs_device::name - renames (write side), read is RCU 255 * 256 * fs_devices::device_list_mutex (per-fs, with RCU) 257 * ------------------------------------------------ 258 * protects updates to fs_devices::devices, ie. adding and deleting 259 * 260 * simple list traversal with read-only actions can be done with RCU protection 261 * 262 * may be used to exclude some operations from running concurrently without any 263 * modifications to the list (see write_all_supers) 264 * 265 * Is not required at mount and close times, because our device list is 266 * protected by the uuid_mutex at that point. 267 * 268 * balance_mutex 269 * ------------- 270 * protects balance structures (status, state) and context accessed from 271 * several places (internally, ioctl) 272 * 273 * chunk_mutex 274 * ----------- 275 * protects chunks, adding or removing during allocation, trim or when a new 276 * device is added/removed. Additionally it also protects post_commit_list of 277 * individual devices, since they can be added to the transaction's 278 * post_commit_list only with chunk_mutex held. 279 * 280 * cleaner_mutex 281 * ------------- 282 * a big lock that is held by the cleaner thread and prevents running subvolume 283 * cleaning together with relocation or delayed iputs 284 * 285 * 286 * Lock nesting 287 * ============ 288 * 289 * uuid_mutex 290 * device_list_mutex 291 * chunk_mutex 292 * balance_mutex 293 * 294 * 295 * Exclusive operations 296 * ==================== 297 * 298 * Maintains the exclusivity of the following operations that apply to the 299 * whole filesystem and cannot run in parallel. 300 * 301 * - Balance (*) 302 * - Device add 303 * - Device remove 304 * - Device replace (*) 305 * - Resize 306 * 307 * The device operations (as above) can be in one of the following states: 308 * 309 * - Running state 310 * - Paused state 311 * - Completed state 312 * 313 * Only device operations marked with (*) can go into the Paused state for the 314 * following reasons: 315 * 316 * - ioctl (only Balance can be Paused through ioctl) 317 * - filesystem remounted as read-only 318 * - filesystem unmounted and mounted as read-only 319 * - system power-cycle and filesystem mounted as read-only 320 * - filesystem or device errors leading to forced read-only 321 * 322 * The status of exclusive operation is set and cleared atomically. 323 * During the course of Paused state, fs_info::exclusive_operation remains set. 324 * A device operation in Paused or Running state can be canceled or resumed 325 * either by ioctl (Balance only) or when remounted as read-write. 326 * The exclusive status is cleared when the device operation is canceled or 327 * completed. 328 */ 329 330DEFINE_MUTEX(uuid_mutex); 331static LIST_HEAD(fs_uuids); 332struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 333{ 334 return &fs_uuids; 335} 336 337/* 338 * alloc_fs_devices - allocate struct btrfs_fs_devices 339 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 340 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 341 * 342 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 343 * The returned struct is not linked onto any lists and can be destroyed with 344 * kfree() right away. 345 */ 346static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 347 const u8 *metadata_fsid) 348{ 349 struct btrfs_fs_devices *fs_devs; 350 351 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 352 if (!fs_devs) 353 return ERR_PTR(-ENOMEM); 354 355 mutex_init(&fs_devs->device_list_mutex); 356 357 INIT_LIST_HEAD(&fs_devs->devices); 358 INIT_LIST_HEAD(&fs_devs->alloc_list); 359 INIT_LIST_HEAD(&fs_devs->fs_list); 360 INIT_LIST_HEAD(&fs_devs->seed_list); 361 if (fsid) 362 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 363 364 if (metadata_fsid) 365 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 366 else if (fsid) 367 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 368 369 return fs_devs; 370} 371 372void btrfs_free_device(struct btrfs_device *device) 373{ 374 WARN_ON(!list_empty(&device->post_commit_list)); 375 rcu_string_free(device->name); 376 extent_io_tree_release(&device->alloc_state); 377 bio_put(device->flush_bio); 378 kfree(device); 379} 380 381static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 382{ 383 struct btrfs_device *device; 384 385 WARN_ON(fs_devices->opened); 386 while (!list_empty(&fs_devices->devices)) { 387 device = list_entry(fs_devices->devices.next, 388 struct btrfs_device, dev_list); 389 list_del(&device->dev_list); 390 btrfs_free_device(device); 391 } 392 kfree(fs_devices); 393} 394 395void __exit btrfs_cleanup_fs_uuids(void) 396{ 397 struct btrfs_fs_devices *fs_devices; 398 399 while (!list_empty(&fs_uuids)) { 400 fs_devices = list_entry(fs_uuids.next, 401 struct btrfs_fs_devices, fs_list); 402 list_del(&fs_devices->fs_list); 403 free_fs_devices(fs_devices); 404 } 405} 406 407/* 408 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 409 * Returned struct is not linked onto any lists and must be destroyed using 410 * btrfs_free_device. 411 */ 412static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info) 413{ 414 struct btrfs_device *dev; 415 416 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 417 if (!dev) 418 return ERR_PTR(-ENOMEM); 419 420 /* 421 * Preallocate a bio that's always going to be used for flushing device 422 * barriers and matches the device lifespan 423 */ 424 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 425 if (!dev->flush_bio) { 426 kfree(dev); 427 return ERR_PTR(-ENOMEM); 428 } 429 430 INIT_LIST_HEAD(&dev->dev_list); 431 INIT_LIST_HEAD(&dev->dev_alloc_list); 432 INIT_LIST_HEAD(&dev->post_commit_list); 433 434 atomic_set(&dev->reada_in_flight, 0); 435 atomic_set(&dev->dev_stats_ccnt, 0); 436 btrfs_device_data_ordered_init(dev); 437 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 438 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 439 extent_io_tree_init(fs_info, &dev->alloc_state, 440 IO_TREE_DEVICE_ALLOC_STATE, NULL); 441 442 return dev; 443} 444 445static noinline struct btrfs_fs_devices *find_fsid( 446 const u8 *fsid, const u8 *metadata_fsid) 447{ 448 struct btrfs_fs_devices *fs_devices; 449 450 ASSERT(fsid); 451 452 /* Handle non-split brain cases */ 453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 454 if (metadata_fsid) { 455 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 456 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 457 BTRFS_FSID_SIZE) == 0) 458 return fs_devices; 459 } else { 460 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 461 return fs_devices; 462 } 463 } 464 return NULL; 465} 466 467static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 468 struct btrfs_super_block *disk_super) 469{ 470 471 struct btrfs_fs_devices *fs_devices; 472 473 /* 474 * Handle scanned device having completed its fsid change but 475 * belonging to a fs_devices that was created by first scanning 476 * a device which didn't have its fsid/metadata_uuid changed 477 * at all and the CHANGING_FSID_V2 flag set. 478 */ 479 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 480 if (fs_devices->fsid_change && 481 memcmp(disk_super->metadata_uuid, fs_devices->fsid, 482 BTRFS_FSID_SIZE) == 0 && 483 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 484 BTRFS_FSID_SIZE) == 0) { 485 return fs_devices; 486 } 487 } 488 /* 489 * Handle scanned device having completed its fsid change but 490 * belonging to a fs_devices that was created by a device that 491 * has an outdated pair of fsid/metadata_uuid and 492 * CHANGING_FSID_V2 flag set. 493 */ 494 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 495 if (fs_devices->fsid_change && 496 memcmp(fs_devices->metadata_uuid, 497 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 498 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, 499 BTRFS_FSID_SIZE) == 0) { 500 return fs_devices; 501 } 502 } 503 504 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 505} 506 507 508static int 509btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 510 int flush, struct block_device **bdev, 511 struct btrfs_super_block **disk_super) 512{ 513 int ret; 514 515 *bdev = blkdev_get_by_path(device_path, flags, holder); 516 517 if (IS_ERR(*bdev)) { 518 ret = PTR_ERR(*bdev); 519 goto error; 520 } 521 522 if (flush) 523 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 524 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 525 if (ret) { 526 blkdev_put(*bdev, flags); 527 goto error; 528 } 529 invalidate_bdev(*bdev); 530 *disk_super = btrfs_read_dev_super(*bdev); 531 if (IS_ERR(*disk_super)) { 532 ret = PTR_ERR(*disk_super); 533 blkdev_put(*bdev, flags); 534 goto error; 535 } 536 537 return 0; 538 539error: 540 *bdev = NULL; 541 return ret; 542} 543 544/* 545 * Check if the device in the path matches the device in the given struct device. 546 * 547 * Returns: 548 * true If it is the same device. 549 * false If it is not the same device or on error. 550 */ 551static bool device_matched(const struct btrfs_device *device, const char *path) 552{ 553 char *device_name; 554 struct block_device *bdev_old; 555 struct block_device *bdev_new; 556 557 /* 558 * If we are looking for a device with the matching dev_t, then skip 559 * device without a name (a missing device). 560 */ 561 if (!device->name) 562 return false; 563 564 device_name = kzalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 565 if (!device_name) 566 return false; 567 568 rcu_read_lock(); 569 scnprintf(device_name, BTRFS_PATH_NAME_MAX, "%s", rcu_str_deref(device->name)); 570 rcu_read_unlock(); 571 572 bdev_old = lookup_bdev(device_name); 573 kfree(device_name); 574 if (IS_ERR(bdev_old)) 575 return false; 576 577 bdev_new = lookup_bdev(path); 578 if (IS_ERR(bdev_new)) 579 return false; 580 581 if (bdev_old == bdev_new) 582 return true; 583 584 return false; 585} 586 587/* 588 * Search and remove all stale (devices which are not mounted) devices. 589 * When both inputs are NULL, it will search and release all stale devices. 590 * path: Optional. When provided will it release all unmounted devices 591 * matching this path only. 592 * skip_dev: Optional. Will skip this device when searching for the stale 593 * devices. 594 * Return: 0 for success or if @path is NULL. 595 * -EBUSY if @path is a mounted device. 596 * -ENOENT if @path does not match any device in the list. 597 */ 598static int btrfs_free_stale_devices(const char *path, 599 struct btrfs_device *skip_device) 600{ 601 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 602 struct btrfs_device *device, *tmp_device; 603 int ret = 0; 604 605 lockdep_assert_held(&uuid_mutex); 606 607 if (path) 608 ret = -ENOENT; 609 610 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 611 612 mutex_lock(&fs_devices->device_list_mutex); 613 list_for_each_entry_safe(device, tmp_device, 614 &fs_devices->devices, dev_list) { 615 if (skip_device && skip_device == device) 616 continue; 617 if (path && !device_matched(device, path)) 618 continue; 619 if (fs_devices->opened) { 620 /* for an already deleted device return 0 */ 621 if (path && ret != 0) 622 ret = -EBUSY; 623 break; 624 } 625 626 /* delete the stale device */ 627 fs_devices->num_devices--; 628 list_del(&device->dev_list); 629 btrfs_free_device(device); 630 631 ret = 0; 632 } 633 mutex_unlock(&fs_devices->device_list_mutex); 634 635 if (fs_devices->num_devices == 0) { 636 btrfs_sysfs_remove_fsid(fs_devices); 637 list_del(&fs_devices->fs_list); 638 free_fs_devices(fs_devices); 639 } 640 } 641 642 return ret; 643} 644 645/* 646 * This is only used on mount, and we are protected from competing things 647 * messing with our fs_devices by the uuid_mutex, thus we do not need the 648 * fs_devices->device_list_mutex here. 649 */ 650static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 651 struct btrfs_device *device, fmode_t flags, 652 void *holder) 653{ 654 struct request_queue *q; 655 struct block_device *bdev; 656 struct btrfs_super_block *disk_super; 657 u64 devid; 658 int ret; 659 660 if (device->bdev) 661 return -EINVAL; 662 if (!device->name) 663 return -EINVAL; 664 665 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 666 &bdev, &disk_super); 667 if (ret) 668 return ret; 669 670 devid = btrfs_stack_device_id(&disk_super->dev_item); 671 if (devid != device->devid) 672 goto error_free_page; 673 674 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 675 goto error_free_page; 676 677 device->generation = btrfs_super_generation(disk_super); 678 679 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 680 if (btrfs_super_incompat_flags(disk_super) & 681 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 682 pr_err( 683 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 684 goto error_free_page; 685 } 686 687 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 688 fs_devices->seeding = true; 689 } else { 690 if (bdev_read_only(bdev)) 691 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 692 else 693 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 694 } 695 696 q = bdev_get_queue(bdev); 697 if (!blk_queue_nonrot(q)) 698 fs_devices->rotating = true; 699 700 device->bdev = bdev; 701 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 702 device->mode = flags; 703 704 fs_devices->open_devices++; 705 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 706 device->devid != BTRFS_DEV_REPLACE_DEVID) { 707 fs_devices->rw_devices++; 708 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 709 } 710 btrfs_release_disk_super(disk_super); 711 712 return 0; 713 714error_free_page: 715 btrfs_release_disk_super(disk_super); 716 blkdev_put(bdev, flags); 717 718 return -EINVAL; 719} 720 721u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb) 722{ 723 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 724 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 725 726 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 727} 728 729/* 730 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 731 * being created with a disk that has already completed its fsid change. Such 732 * disk can belong to an fs which has its FSID changed or to one which doesn't. 733 * Handle both cases here. 734 */ 735static struct btrfs_fs_devices *find_fsid_inprogress( 736 struct btrfs_super_block *disk_super) 737{ 738 struct btrfs_fs_devices *fs_devices; 739 740 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 741 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 742 BTRFS_FSID_SIZE) != 0 && 743 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 744 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 745 return fs_devices; 746 } 747 } 748 749 return find_fsid(disk_super->fsid, NULL); 750} 751 752 753static struct btrfs_fs_devices *find_fsid_changed( 754 struct btrfs_super_block *disk_super) 755{ 756 struct btrfs_fs_devices *fs_devices; 757 758 /* 759 * Handles the case where scanned device is part of an fs that had 760 * multiple successful changes of FSID but curently device didn't 761 * observe it. Meaning our fsid will be different than theirs. We need 762 * to handle two subcases : 763 * 1 - The fs still continues to have different METADATA/FSID uuids. 764 * 2 - The fs is switched back to its original FSID (METADATA/FSID 765 * are equal). 766 */ 767 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 768 /* Changed UUIDs */ 769 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 770 BTRFS_FSID_SIZE) != 0 && 771 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 772 BTRFS_FSID_SIZE) == 0 && 773 memcmp(fs_devices->fsid, disk_super->fsid, 774 BTRFS_FSID_SIZE) != 0) 775 return fs_devices; 776 777 /* Unchanged UUIDs */ 778 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 779 BTRFS_FSID_SIZE) == 0 && 780 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 781 BTRFS_FSID_SIZE) == 0) 782 return fs_devices; 783 } 784 785 return NULL; 786} 787 788static struct btrfs_fs_devices *find_fsid_reverted_metadata( 789 struct btrfs_super_block *disk_super) 790{ 791 struct btrfs_fs_devices *fs_devices; 792 793 /* 794 * Handle the case where the scanned device is part of an fs whose last 795 * metadata UUID change reverted it to the original FSID. At the same 796 * time * fs_devices was first created by another constitutent device 797 * which didn't fully observe the operation. This results in an 798 * btrfs_fs_devices created with metadata/fsid different AND 799 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 800 * fs_devices equal to the FSID of the disk. 801 */ 802 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 803 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 804 BTRFS_FSID_SIZE) != 0 && 805 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 806 BTRFS_FSID_SIZE) == 0 && 807 fs_devices->fsid_change) 808 return fs_devices; 809 } 810 811 return NULL; 812} 813/* 814 * Add new device to list of registered devices 815 * 816 * Returns: 817 * device pointer which was just added or updated when successful 818 * error pointer when failed 819 */ 820static noinline struct btrfs_device *device_list_add(const char *path, 821 struct btrfs_super_block *disk_super, 822 bool *new_device_added) 823{ 824 struct btrfs_device *device; 825 struct btrfs_fs_devices *fs_devices = NULL; 826 struct rcu_string *name; 827 u64 found_transid = btrfs_super_generation(disk_super); 828 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 829 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 830 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 831 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 832 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 833 834 if (fsid_change_in_progress) { 835 if (!has_metadata_uuid) 836 fs_devices = find_fsid_inprogress(disk_super); 837 else 838 fs_devices = find_fsid_changed(disk_super); 839 } else if (has_metadata_uuid) { 840 fs_devices = find_fsid_with_metadata_uuid(disk_super); 841 } else { 842 fs_devices = find_fsid_reverted_metadata(disk_super); 843 if (!fs_devices) 844 fs_devices = find_fsid(disk_super->fsid, NULL); 845 } 846 847 848 if (!fs_devices) { 849 if (has_metadata_uuid) 850 fs_devices = alloc_fs_devices(disk_super->fsid, 851 disk_super->metadata_uuid); 852 else 853 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 854 855 if (IS_ERR(fs_devices)) 856 return ERR_CAST(fs_devices); 857 858 fs_devices->fsid_change = fsid_change_in_progress; 859 860 mutex_lock(&fs_devices->device_list_mutex); 861 list_add(&fs_devices->fs_list, &fs_uuids); 862 863 device = NULL; 864 } else { 865 mutex_lock(&fs_devices->device_list_mutex); 866 device = btrfs_find_device(fs_devices, devid, 867 disk_super->dev_item.uuid, NULL, false); 868 869 /* 870 * If this disk has been pulled into an fs devices created by 871 * a device which had the CHANGING_FSID_V2 flag then replace the 872 * metadata_uuid/fsid values of the fs_devices. 873 */ 874 if (fs_devices->fsid_change && 875 found_transid > fs_devices->latest_generation) { 876 memcpy(fs_devices->fsid, disk_super->fsid, 877 BTRFS_FSID_SIZE); 878 879 if (has_metadata_uuid) 880 memcpy(fs_devices->metadata_uuid, 881 disk_super->metadata_uuid, 882 BTRFS_FSID_SIZE); 883 else 884 memcpy(fs_devices->metadata_uuid, 885 disk_super->fsid, BTRFS_FSID_SIZE); 886 887 fs_devices->fsid_change = false; 888 } 889 } 890 891 if (!device) { 892 if (fs_devices->opened) { 893 mutex_unlock(&fs_devices->device_list_mutex); 894 return ERR_PTR(-EBUSY); 895 } 896 897 device = btrfs_alloc_device(NULL, &devid, 898 disk_super->dev_item.uuid); 899 if (IS_ERR(device)) { 900 mutex_unlock(&fs_devices->device_list_mutex); 901 /* we can safely leave the fs_devices entry around */ 902 return device; 903 } 904 905 name = rcu_string_strdup(path, GFP_NOFS); 906 if (!name) { 907 btrfs_free_device(device); 908 mutex_unlock(&fs_devices->device_list_mutex); 909 return ERR_PTR(-ENOMEM); 910 } 911 rcu_assign_pointer(device->name, name); 912 913 list_add_rcu(&device->dev_list, &fs_devices->devices); 914 fs_devices->num_devices++; 915 916 device->fs_devices = fs_devices; 917 *new_device_added = true; 918 919 if (disk_super->label[0]) 920 pr_info( 921 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 922 disk_super->label, devid, found_transid, path, 923 current->comm, task_pid_nr(current)); 924 else 925 pr_info( 926 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 927 disk_super->fsid, devid, found_transid, path, 928 current->comm, task_pid_nr(current)); 929 930 } else if (!device->name || strcmp(device->name->str, path)) { 931 /* 932 * When FS is already mounted. 933 * 1. If you are here and if the device->name is NULL that 934 * means this device was missing at time of FS mount. 935 * 2. If you are here and if the device->name is different 936 * from 'path' that means either 937 * a. The same device disappeared and reappeared with 938 * different name. or 939 * b. The missing-disk-which-was-replaced, has 940 * reappeared now. 941 * 942 * We must allow 1 and 2a above. But 2b would be a spurious 943 * and unintentional. 944 * 945 * Further in case of 1 and 2a above, the disk at 'path' 946 * would have missed some transaction when it was away and 947 * in case of 2a the stale bdev has to be updated as well. 948 * 2b must not be allowed at all time. 949 */ 950 951 /* 952 * For now, we do allow update to btrfs_fs_device through the 953 * btrfs dev scan cli after FS has been mounted. We're still 954 * tracking a problem where systems fail mount by subvolume id 955 * when we reject replacement on a mounted FS. 956 */ 957 if (!fs_devices->opened && found_transid < device->generation) { 958 /* 959 * That is if the FS is _not_ mounted and if you 960 * are here, that means there is more than one 961 * disk with same uuid and devid.We keep the one 962 * with larger generation number or the last-in if 963 * generation are equal. 964 */ 965 mutex_unlock(&fs_devices->device_list_mutex); 966 return ERR_PTR(-EEXIST); 967 } 968 969 /* 970 * We are going to replace the device path for a given devid, 971 * make sure it's the same device if the device is mounted 972 */ 973 if (device->bdev) { 974 struct block_device *path_bdev; 975 976 path_bdev = lookup_bdev(path); 977 if (IS_ERR(path_bdev)) { 978 mutex_unlock(&fs_devices->device_list_mutex); 979 return ERR_CAST(path_bdev); 980 } 981 982 if (device->bdev != path_bdev) { 983 bdput(path_bdev); 984 mutex_unlock(&fs_devices->device_list_mutex); 985 /* 986 * device->fs_info may not be reliable here, so 987 * pass in a NULL instead. This avoids a 988 * possible use-after-free when the fs_info and 989 * fs_info->sb are already torn down. 990 */ 991 btrfs_warn_in_rcu(NULL, 992 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 993 path, devid, found_transid, 994 current->comm, 995 task_pid_nr(current)); 996 return ERR_PTR(-EEXIST); 997 } 998 bdput(path_bdev); 999 btrfs_info_in_rcu(device->fs_info, 1000 "devid %llu device path %s changed to %s scanned by %s (%d)", 1001 devid, rcu_str_deref(device->name), 1002 path, current->comm, 1003 task_pid_nr(current)); 1004 } 1005 1006 name = rcu_string_strdup(path, GFP_NOFS); 1007 if (!name) { 1008 mutex_unlock(&fs_devices->device_list_mutex); 1009 return ERR_PTR(-ENOMEM); 1010 } 1011 rcu_string_free(device->name); 1012 rcu_assign_pointer(device->name, name); 1013 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1014 fs_devices->missing_devices--; 1015 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1016 } 1017 } 1018 1019 /* 1020 * Unmount does not free the btrfs_device struct but would zero 1021 * generation along with most of the other members. So just update 1022 * it back. We need it to pick the disk with largest generation 1023 * (as above). 1024 */ 1025 if (!fs_devices->opened) { 1026 device->generation = found_transid; 1027 fs_devices->latest_generation = max_t(u64, found_transid, 1028 fs_devices->latest_generation); 1029 } 1030 1031 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 1032 1033 mutex_unlock(&fs_devices->device_list_mutex); 1034 return device; 1035} 1036 1037static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 1038{ 1039 struct btrfs_fs_devices *fs_devices; 1040 struct btrfs_device *device; 1041 struct btrfs_device *orig_dev; 1042 int ret = 0; 1043 1044 lockdep_assert_held(&uuid_mutex); 1045 1046 fs_devices = alloc_fs_devices(orig->fsid, NULL); 1047 if (IS_ERR(fs_devices)) 1048 return fs_devices; 1049 1050 fs_devices->total_devices = orig->total_devices; 1051 1052 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1053 struct rcu_string *name; 1054 1055 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1056 orig_dev->uuid); 1057 if (IS_ERR(device)) { 1058 ret = PTR_ERR(device); 1059 goto error; 1060 } 1061 1062 /* 1063 * This is ok to do without rcu read locked because we hold the 1064 * uuid mutex so nothing we touch in here is going to disappear. 1065 */ 1066 if (orig_dev->name) { 1067 name = rcu_string_strdup(orig_dev->name->str, 1068 GFP_KERNEL); 1069 if (!name) { 1070 btrfs_free_device(device); 1071 ret = -ENOMEM; 1072 goto error; 1073 } 1074 rcu_assign_pointer(device->name, name); 1075 } 1076 1077 list_add(&device->dev_list, &fs_devices->devices); 1078 device->fs_devices = fs_devices; 1079 fs_devices->num_devices++; 1080 } 1081 return fs_devices; 1082error: 1083 free_fs_devices(fs_devices); 1084 return ERR_PTR(ret); 1085} 1086 1087static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1088 int step, struct btrfs_device **latest_dev) 1089{ 1090 struct btrfs_device *device, *next; 1091 1092 /* This is the initialized path, it is safe to release the devices. */ 1093 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1094 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1095 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1096 &device->dev_state) && 1097 !test_bit(BTRFS_DEV_STATE_MISSING, 1098 &device->dev_state) && 1099 (!*latest_dev || 1100 device->generation > (*latest_dev)->generation)) { 1101 *latest_dev = device; 1102 } 1103 continue; 1104 } 1105 1106 /* 1107 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1108 * in btrfs_init_dev_replace() so just continue. 1109 */ 1110 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1111 continue; 1112 1113 if (device->bdev) { 1114 blkdev_put(device->bdev, device->mode); 1115 device->bdev = NULL; 1116 fs_devices->open_devices--; 1117 } 1118 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1119 list_del_init(&device->dev_alloc_list); 1120 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1121 fs_devices->rw_devices--; 1122 } 1123 list_del_init(&device->dev_list); 1124 fs_devices->num_devices--; 1125 btrfs_free_device(device); 1126 } 1127 1128} 1129 1130/* 1131 * After we have read the system tree and know devids belonging to this 1132 * filesystem, remove the device which does not belong there. 1133 */ 1134void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) 1135{ 1136 struct btrfs_device *latest_dev = NULL; 1137 struct btrfs_fs_devices *seed_dev; 1138 1139 mutex_lock(&uuid_mutex); 1140 __btrfs_free_extra_devids(fs_devices, step, &latest_dev); 1141 1142 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1143 __btrfs_free_extra_devids(seed_dev, step, &latest_dev); 1144 1145 fs_devices->latest_bdev = latest_dev->bdev; 1146 1147 mutex_unlock(&uuid_mutex); 1148} 1149 1150static void btrfs_close_bdev(struct btrfs_device *device) 1151{ 1152 if (!device->bdev) 1153 return; 1154 1155 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1156 sync_blockdev(device->bdev); 1157 invalidate_bdev(device->bdev); 1158 } 1159 1160 blkdev_put(device->bdev, device->mode); 1161} 1162 1163static void btrfs_close_one_device(struct btrfs_device *device) 1164{ 1165 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1166 1167 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1168 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1169 list_del_init(&device->dev_alloc_list); 1170 fs_devices->rw_devices--; 1171 } 1172 1173 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1174 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1175 1176 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1177 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1178 fs_devices->missing_devices--; 1179 } 1180 1181 btrfs_close_bdev(device); 1182 if (device->bdev) { 1183 fs_devices->open_devices--; 1184 device->bdev = NULL; 1185 } 1186 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1187 1188 device->fs_info = NULL; 1189 atomic_set(&device->dev_stats_ccnt, 0); 1190 extent_io_tree_release(&device->alloc_state); 1191 1192 /* 1193 * Reset the flush error record. We might have a transient flush error 1194 * in this mount, and if so we aborted the current transaction and set 1195 * the fs to an error state, guaranteeing no super blocks can be further 1196 * committed. However that error might be transient and if we unmount the 1197 * filesystem and mount it again, we should allow the mount to succeed 1198 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1199 * filesystem again we still get flush errors, then we will again abort 1200 * any transaction and set the error state, guaranteeing no commits of 1201 * unsafe super blocks. 1202 */ 1203 device->last_flush_error = 0; 1204 1205 /* Verify the device is back in a pristine state */ 1206 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1207 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1208 ASSERT(list_empty(&device->dev_alloc_list)); 1209 ASSERT(list_empty(&device->post_commit_list)); 1210 ASSERT(atomic_read(&device->reada_in_flight) == 0); 1211} 1212 1213static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1214{ 1215 struct btrfs_device *device, *tmp; 1216 1217 lockdep_assert_held(&uuid_mutex); 1218 1219 if (--fs_devices->opened > 0) 1220 return; 1221 1222 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1223 btrfs_close_one_device(device); 1224 1225 WARN_ON(fs_devices->open_devices); 1226 WARN_ON(fs_devices->rw_devices); 1227 fs_devices->opened = 0; 1228 fs_devices->seeding = false; 1229 fs_devices->fs_info = NULL; 1230} 1231 1232void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1233{ 1234 LIST_HEAD(list); 1235 struct btrfs_fs_devices *tmp; 1236 1237 mutex_lock(&uuid_mutex); 1238 close_fs_devices(fs_devices); 1239 if (!fs_devices->opened) { 1240 list_splice_init(&fs_devices->seed_list, &list); 1241 1242 /* 1243 * If the struct btrfs_fs_devices is not assembled with any 1244 * other device, it can be re-initialized during the next mount 1245 * without the needing device-scan step. Therefore, it can be 1246 * fully freed. 1247 */ 1248 if (fs_devices->num_devices == 1) { 1249 list_del(&fs_devices->fs_list); 1250 free_fs_devices(fs_devices); 1251 } 1252 } 1253 1254 1255 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1256 close_fs_devices(fs_devices); 1257 list_del(&fs_devices->seed_list); 1258 free_fs_devices(fs_devices); 1259 } 1260 mutex_unlock(&uuid_mutex); 1261} 1262 1263static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1264 fmode_t flags, void *holder) 1265{ 1266 struct btrfs_device *device; 1267 struct btrfs_device *latest_dev = NULL; 1268 struct btrfs_device *tmp_device; 1269 1270 flags |= FMODE_EXCL; 1271 1272 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1273 dev_list) { 1274 int ret; 1275 1276 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1277 if (ret == 0 && 1278 (!latest_dev || device->generation > latest_dev->generation)) { 1279 latest_dev = device; 1280 } else if (ret == -ENODATA) { 1281 fs_devices->num_devices--; 1282 list_del(&device->dev_list); 1283 btrfs_free_device(device); 1284 } 1285 } 1286 if (fs_devices->open_devices == 0) 1287 return -EINVAL; 1288 1289 fs_devices->opened = 1; 1290 fs_devices->latest_bdev = latest_dev->bdev; 1291 fs_devices->total_rw_bytes = 0; 1292 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1293 1294 return 0; 1295} 1296 1297static int devid_cmp(void *priv, const struct list_head *a, 1298 const struct list_head *b) 1299{ 1300 struct btrfs_device *dev1, *dev2; 1301 1302 dev1 = list_entry(a, struct btrfs_device, dev_list); 1303 dev2 = list_entry(b, struct btrfs_device, dev_list); 1304 1305 if (dev1->devid < dev2->devid) 1306 return -1; 1307 else if (dev1->devid > dev2->devid) 1308 return 1; 1309 return 0; 1310} 1311 1312int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1313 fmode_t flags, void *holder) 1314{ 1315 int ret; 1316 1317 lockdep_assert_held(&uuid_mutex); 1318 /* 1319 * The device_list_mutex cannot be taken here in case opening the 1320 * underlying device takes further locks like bd_mutex. 1321 * 1322 * We also don't need the lock here as this is called during mount and 1323 * exclusion is provided by uuid_mutex 1324 */ 1325 1326 if (fs_devices->opened) { 1327 fs_devices->opened++; 1328 ret = 0; 1329 } else { 1330 list_sort(NULL, &fs_devices->devices, devid_cmp); 1331 ret = open_fs_devices(fs_devices, flags, holder); 1332 } 1333 1334 return ret; 1335} 1336 1337void btrfs_release_disk_super(struct btrfs_super_block *super) 1338{ 1339 struct page *page = virt_to_page(super); 1340 1341 put_page(page); 1342} 1343 1344static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1345 u64 bytenr) 1346{ 1347 struct btrfs_super_block *disk_super; 1348 struct page *page; 1349 void *p; 1350 pgoff_t index; 1351 1352 /* make sure our super fits in the device */ 1353 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1354 return ERR_PTR(-EINVAL); 1355 1356 /* make sure our super fits in the page */ 1357 if (sizeof(*disk_super) > PAGE_SIZE) 1358 return ERR_PTR(-EINVAL); 1359 1360 /* make sure our super doesn't straddle pages on disk */ 1361 index = bytenr >> PAGE_SHIFT; 1362 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1363 return ERR_PTR(-EINVAL); 1364 1365 /* pull in the page with our super */ 1366 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1367 1368 if (IS_ERR(page)) 1369 return ERR_CAST(page); 1370 1371 p = page_address(page); 1372 1373 /* align our pointer to the offset of the super block */ 1374 disk_super = p + offset_in_page(bytenr); 1375 1376 if (btrfs_super_bytenr(disk_super) != bytenr || 1377 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1378 btrfs_release_disk_super(p); 1379 return ERR_PTR(-EINVAL); 1380 } 1381 1382 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1383 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1384 1385 return disk_super; 1386} 1387 1388int btrfs_forget_devices(const char *path) 1389{ 1390 int ret; 1391 1392 mutex_lock(&uuid_mutex); 1393 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1394 mutex_unlock(&uuid_mutex); 1395 1396 return ret; 1397} 1398 1399/* 1400 * Look for a btrfs signature on a device. This may be called out of the mount path 1401 * and we are not allowed to call set_blocksize during the scan. The superblock 1402 * is read via pagecache 1403 */ 1404struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1405 void *holder) 1406{ 1407 struct btrfs_super_block *disk_super; 1408 bool new_device_added = false; 1409 struct btrfs_device *device = NULL; 1410 struct block_device *bdev; 1411 u64 bytenr; 1412 1413 lockdep_assert_held(&uuid_mutex); 1414 1415 /* 1416 * we would like to check all the supers, but that would make 1417 * a btrfs mount succeed after a mkfs from a different FS. 1418 * So, we need to add a special mount option to scan for 1419 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1420 */ 1421 bytenr = btrfs_sb_offset(0); 1422 1423 /* 1424 * Avoid using flag |= FMODE_EXCL here, as the systemd-udev may 1425 * initiate the device scan which may race with the user's mount 1426 * or mkfs command, resulting in failure. 1427 * Since the device scan is solely for reading purposes, there is 1428 * no need for FMODE_EXCL. Additionally, the devices are read again 1429 * during the mount process. It is ok to get some inconsistent 1430 * values temporarily, as the device paths of the fsid are the only 1431 * required information for assembling the volume. 1432 */ 1433 bdev = blkdev_get_by_path(path, flags, holder); 1434 if (IS_ERR(bdev)) 1435 return ERR_CAST(bdev); 1436 1437 disk_super = btrfs_read_disk_super(bdev, bytenr); 1438 if (IS_ERR(disk_super)) { 1439 device = ERR_CAST(disk_super); 1440 goto error_bdev_put; 1441 } 1442 1443 device = device_list_add(path, disk_super, &new_device_added); 1444 if (!IS_ERR(device)) { 1445 if (new_device_added) 1446 btrfs_free_stale_devices(path, device); 1447 } 1448 1449 btrfs_release_disk_super(disk_super); 1450 1451error_bdev_put: 1452 blkdev_put(bdev, flags); 1453 1454 return device; 1455} 1456 1457/* 1458 * Try to find a chunk that intersects [start, start + len] range and when one 1459 * such is found, record the end of it in *start 1460 */ 1461static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1462 u64 len) 1463{ 1464 u64 physical_start, physical_end; 1465 1466 lockdep_assert_held(&device->fs_info->chunk_mutex); 1467 1468 if (!find_first_extent_bit(&device->alloc_state, *start, 1469 &physical_start, &physical_end, 1470 CHUNK_ALLOCATED, NULL)) { 1471 1472 if (in_range(physical_start, *start, len) || 1473 in_range(*start, physical_start, 1474 physical_end - physical_start)) { 1475 *start = physical_end + 1; 1476 return true; 1477 } 1478 } 1479 return false; 1480} 1481 1482static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1483{ 1484 switch (device->fs_devices->chunk_alloc_policy) { 1485 case BTRFS_CHUNK_ALLOC_REGULAR: 1486 /* 1487 * We don't want to overwrite the superblock on the drive nor 1488 * any area used by the boot loader (grub for example), so we 1489 * make sure to start at an offset of at least 1MB. 1490 */ 1491 return max_t(u64, start, SZ_1M); 1492 default: 1493 BUG(); 1494 } 1495} 1496 1497/** 1498 * dev_extent_hole_check - check if specified hole is suitable for allocation 1499 * @device: the device which we have the hole 1500 * @hole_start: starting position of the hole 1501 * @hole_size: the size of the hole 1502 * @num_bytes: the size of the free space that we need 1503 * 1504 * This function may modify @hole_start and @hole_end to reflect the suitable 1505 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1506 */ 1507static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1508 u64 *hole_size, u64 num_bytes) 1509{ 1510 bool changed = false; 1511 u64 hole_end = *hole_start + *hole_size; 1512 1513 /* 1514 * Check before we set max_hole_start, otherwise we could end up 1515 * sending back this offset anyway. 1516 */ 1517 if (contains_pending_extent(device, hole_start, *hole_size)) { 1518 if (hole_end >= *hole_start) 1519 *hole_size = hole_end - *hole_start; 1520 else 1521 *hole_size = 0; 1522 changed = true; 1523 } 1524 1525 switch (device->fs_devices->chunk_alloc_policy) { 1526 case BTRFS_CHUNK_ALLOC_REGULAR: 1527 /* No extra check */ 1528 break; 1529 default: 1530 BUG(); 1531 } 1532 1533 return changed; 1534} 1535 1536/* 1537 * find_free_dev_extent_start - find free space in the specified device 1538 * @device: the device which we search the free space in 1539 * @num_bytes: the size of the free space that we need 1540 * @search_start: the position from which to begin the search 1541 * @start: store the start of the free space. 1542 * @len: the size of the free space. that we find, or the size 1543 * of the max free space if we don't find suitable free space 1544 * 1545 * this uses a pretty simple search, the expectation is that it is 1546 * called very infrequently and that a given device has a small number 1547 * of extents 1548 * 1549 * @start is used to store the start of the free space if we find. But if we 1550 * don't find suitable free space, it will be used to store the start position 1551 * of the max free space. 1552 * 1553 * @len is used to store the size of the free space that we find. 1554 * But if we don't find suitable free space, it is used to store the size of 1555 * the max free space. 1556 * 1557 * NOTE: This function will search *commit* root of device tree, and does extra 1558 * check to ensure dev extents are not double allocated. 1559 * This makes the function safe to allocate dev extents but may not report 1560 * correct usable device space, as device extent freed in current transaction 1561 * is not reported as avaiable. 1562 */ 1563static int find_free_dev_extent_start(struct btrfs_device *device, 1564 u64 num_bytes, u64 search_start, u64 *start, 1565 u64 *len) 1566{ 1567 struct btrfs_fs_info *fs_info = device->fs_info; 1568 struct btrfs_root *root = fs_info->dev_root; 1569 struct btrfs_key key; 1570 struct btrfs_dev_extent *dev_extent; 1571 struct btrfs_path *path; 1572 u64 hole_size; 1573 u64 max_hole_start; 1574 u64 max_hole_size; 1575 u64 extent_end; 1576 u64 search_end = device->total_bytes; 1577 int ret; 1578 int slot; 1579 struct extent_buffer *l; 1580 1581 search_start = dev_extent_search_start(device, search_start); 1582 1583 path = btrfs_alloc_path(); 1584 if (!path) 1585 return -ENOMEM; 1586 1587 max_hole_start = search_start; 1588 max_hole_size = 0; 1589 1590again: 1591 if (search_start >= search_end || 1592 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1593 ret = -ENOSPC; 1594 goto out; 1595 } 1596 1597 path->reada = READA_FORWARD; 1598 path->search_commit_root = 1; 1599 path->skip_locking = 1; 1600 1601 key.objectid = device->devid; 1602 key.offset = search_start; 1603 key.type = BTRFS_DEV_EXTENT_KEY; 1604 1605 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1606 if (ret < 0) 1607 goto out; 1608 if (ret > 0) { 1609 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1610 if (ret < 0) 1611 goto out; 1612 } 1613 1614 while (search_start < search_end) { 1615 l = path->nodes[0]; 1616 slot = path->slots[0]; 1617 if (slot >= btrfs_header_nritems(l)) { 1618 ret = btrfs_next_leaf(root, path); 1619 if (ret == 0) 1620 continue; 1621 if (ret < 0) 1622 goto out; 1623 1624 break; 1625 } 1626 btrfs_item_key_to_cpu(l, &key, slot); 1627 1628 if (key.objectid < device->devid) 1629 goto next; 1630 1631 if (key.objectid > device->devid) 1632 break; 1633 1634 if (key.type != BTRFS_DEV_EXTENT_KEY) 1635 goto next; 1636 1637 if (key.offset > search_end) 1638 break; 1639 1640 if (key.offset > search_start) { 1641 hole_size = key.offset - search_start; 1642 dev_extent_hole_check(device, &search_start, &hole_size, 1643 num_bytes); 1644 1645 if (hole_size > max_hole_size) { 1646 max_hole_start = search_start; 1647 max_hole_size = hole_size; 1648 } 1649 1650 /* 1651 * If this free space is greater than which we need, 1652 * it must be the max free space that we have found 1653 * until now, so max_hole_start must point to the start 1654 * of this free space and the length of this free space 1655 * is stored in max_hole_size. Thus, we return 1656 * max_hole_start and max_hole_size and go back to the 1657 * caller. 1658 */ 1659 if (hole_size >= num_bytes) { 1660 ret = 0; 1661 goto out; 1662 } 1663 } 1664 1665 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1666 extent_end = key.offset + btrfs_dev_extent_length(l, 1667 dev_extent); 1668 if (extent_end > search_start) 1669 search_start = extent_end; 1670next: 1671 path->slots[0]++; 1672 cond_resched(); 1673 } 1674 1675 /* 1676 * At this point, search_start should be the end of 1677 * allocated dev extents, and when shrinking the device, 1678 * search_end may be smaller than search_start. 1679 */ 1680 if (search_end > search_start) { 1681 hole_size = search_end - search_start; 1682 if (dev_extent_hole_check(device, &search_start, &hole_size, 1683 num_bytes)) { 1684 btrfs_release_path(path); 1685 goto again; 1686 } 1687 1688 if (hole_size > max_hole_size) { 1689 max_hole_start = search_start; 1690 max_hole_size = hole_size; 1691 } 1692 } 1693 1694 /* See above. */ 1695 if (max_hole_size < num_bytes) 1696 ret = -ENOSPC; 1697 else 1698 ret = 0; 1699 1700 ASSERT(max_hole_start + max_hole_size <= search_end); 1701out: 1702 btrfs_free_path(path); 1703 *start = max_hole_start; 1704 if (len) 1705 *len = max_hole_size; 1706 return ret; 1707} 1708 1709int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1710 u64 *start, u64 *len) 1711{ 1712 /* FIXME use last free of some kind */ 1713 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1714} 1715 1716static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1717 struct btrfs_device *device, 1718 u64 start, u64 *dev_extent_len) 1719{ 1720 struct btrfs_fs_info *fs_info = device->fs_info; 1721 struct btrfs_root *root = fs_info->dev_root; 1722 int ret; 1723 struct btrfs_path *path; 1724 struct btrfs_key key; 1725 struct btrfs_key found_key; 1726 struct extent_buffer *leaf = NULL; 1727 struct btrfs_dev_extent *extent = NULL; 1728 1729 path = btrfs_alloc_path(); 1730 if (!path) 1731 return -ENOMEM; 1732 1733 key.objectid = device->devid; 1734 key.offset = start; 1735 key.type = BTRFS_DEV_EXTENT_KEY; 1736again: 1737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1738 if (ret > 0) { 1739 ret = btrfs_previous_item(root, path, key.objectid, 1740 BTRFS_DEV_EXTENT_KEY); 1741 if (ret) 1742 goto out; 1743 leaf = path->nodes[0]; 1744 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1745 extent = btrfs_item_ptr(leaf, path->slots[0], 1746 struct btrfs_dev_extent); 1747 BUG_ON(found_key.offset > start || found_key.offset + 1748 btrfs_dev_extent_length(leaf, extent) < start); 1749 key = found_key; 1750 btrfs_release_path(path); 1751 goto again; 1752 } else if (ret == 0) { 1753 leaf = path->nodes[0]; 1754 extent = btrfs_item_ptr(leaf, path->slots[0], 1755 struct btrfs_dev_extent); 1756 } else { 1757 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1758 goto out; 1759 } 1760 1761 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1762 1763 ret = btrfs_del_item(trans, root, path); 1764 if (ret) { 1765 btrfs_handle_fs_error(fs_info, ret, 1766 "Failed to remove dev extent item"); 1767 } else { 1768 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1769 } 1770out: 1771 btrfs_free_path(path); 1772 return ret; 1773} 1774 1775static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1776 struct btrfs_device *device, 1777 u64 chunk_offset, u64 start, u64 num_bytes) 1778{ 1779 int ret; 1780 struct btrfs_path *path; 1781 struct btrfs_fs_info *fs_info = device->fs_info; 1782 struct btrfs_root *root = fs_info->dev_root; 1783 struct btrfs_dev_extent *extent; 1784 struct extent_buffer *leaf; 1785 struct btrfs_key key; 1786 1787 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1788 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1789 path = btrfs_alloc_path(); 1790 if (!path) 1791 return -ENOMEM; 1792 1793 key.objectid = device->devid; 1794 key.offset = start; 1795 key.type = BTRFS_DEV_EXTENT_KEY; 1796 ret = btrfs_insert_empty_item(trans, root, path, &key, 1797 sizeof(*extent)); 1798 if (ret) 1799 goto out; 1800 1801 leaf = path->nodes[0]; 1802 extent = btrfs_item_ptr(leaf, path->slots[0], 1803 struct btrfs_dev_extent); 1804 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1805 BTRFS_CHUNK_TREE_OBJECTID); 1806 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1807 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1808 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1809 1810 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1811 btrfs_mark_buffer_dirty(leaf); 1812out: 1813 btrfs_free_path(path); 1814 return ret; 1815} 1816 1817static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1818{ 1819 struct extent_map_tree *em_tree; 1820 struct extent_map *em; 1821 struct rb_node *n; 1822 u64 ret = 0; 1823 1824 em_tree = &fs_info->mapping_tree; 1825 read_lock(&em_tree->lock); 1826 n = rb_last(&em_tree->map.rb_root); 1827 if (n) { 1828 em = rb_entry(n, struct extent_map, rb_node); 1829 ret = em->start + em->len; 1830 } 1831 read_unlock(&em_tree->lock); 1832 1833 return ret; 1834} 1835 1836static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1837 u64 *devid_ret) 1838{ 1839 int ret; 1840 struct btrfs_key key; 1841 struct btrfs_key found_key; 1842 struct btrfs_path *path; 1843 1844 path = btrfs_alloc_path(); 1845 if (!path) 1846 return -ENOMEM; 1847 1848 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1849 key.type = BTRFS_DEV_ITEM_KEY; 1850 key.offset = (u64)-1; 1851 1852 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1853 if (ret < 0) 1854 goto error; 1855 1856 if (ret == 0) { 1857 /* Corruption */ 1858 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1859 ret = -EUCLEAN; 1860 goto error; 1861 } 1862 1863 ret = btrfs_previous_item(fs_info->chunk_root, path, 1864 BTRFS_DEV_ITEMS_OBJECTID, 1865 BTRFS_DEV_ITEM_KEY); 1866 if (ret) { 1867 *devid_ret = 1; 1868 } else { 1869 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1870 path->slots[0]); 1871 *devid_ret = found_key.offset + 1; 1872 } 1873 ret = 0; 1874error: 1875 btrfs_free_path(path); 1876 return ret; 1877} 1878 1879/* 1880 * the device information is stored in the chunk root 1881 * the btrfs_device struct should be fully filled in 1882 */ 1883static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1884 struct btrfs_device *device) 1885{ 1886 int ret; 1887 struct btrfs_path *path; 1888 struct btrfs_dev_item *dev_item; 1889 struct extent_buffer *leaf; 1890 struct btrfs_key key; 1891 unsigned long ptr; 1892 1893 path = btrfs_alloc_path(); 1894 if (!path) 1895 return -ENOMEM; 1896 1897 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1898 key.type = BTRFS_DEV_ITEM_KEY; 1899 key.offset = device->devid; 1900 1901 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1902 &key, sizeof(*dev_item)); 1903 if (ret) 1904 goto out; 1905 1906 leaf = path->nodes[0]; 1907 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1908 1909 btrfs_set_device_id(leaf, dev_item, device->devid); 1910 btrfs_set_device_generation(leaf, dev_item, 0); 1911 btrfs_set_device_type(leaf, dev_item, device->type); 1912 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1913 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1914 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1915 btrfs_set_device_total_bytes(leaf, dev_item, 1916 btrfs_device_get_disk_total_bytes(device)); 1917 btrfs_set_device_bytes_used(leaf, dev_item, 1918 btrfs_device_get_bytes_used(device)); 1919 btrfs_set_device_group(leaf, dev_item, 0); 1920 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1921 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1922 btrfs_set_device_start_offset(leaf, dev_item, 0); 1923 1924 ptr = btrfs_device_uuid(dev_item); 1925 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1926 ptr = btrfs_device_fsid(dev_item); 1927 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1928 ptr, BTRFS_FSID_SIZE); 1929 btrfs_mark_buffer_dirty(leaf); 1930 1931 ret = 0; 1932out: 1933 btrfs_free_path(path); 1934 return ret; 1935} 1936 1937/* 1938 * Function to update ctime/mtime for a given device path. 1939 * Mainly used for ctime/mtime based probe like libblkid. 1940 * 1941 * We don't care about errors here, this is just to be kind to userspace. 1942 */ 1943static void update_dev_time(const char *device_path) 1944{ 1945 struct path path; 1946 struct timespec64 now; 1947 int ret; 1948 1949 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1950 if (ret) 1951 return; 1952 1953 now = current_time(d_inode(path.dentry)); 1954 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME); 1955 path_put(&path); 1956} 1957 1958static int btrfs_rm_dev_item(struct btrfs_device *device) 1959{ 1960 struct btrfs_root *root = device->fs_info->chunk_root; 1961 int ret; 1962 struct btrfs_path *path; 1963 struct btrfs_key key; 1964 struct btrfs_trans_handle *trans; 1965 1966 path = btrfs_alloc_path(); 1967 if (!path) 1968 return -ENOMEM; 1969 1970 trans = btrfs_start_transaction(root, 0); 1971 if (IS_ERR(trans)) { 1972 btrfs_free_path(path); 1973 return PTR_ERR(trans); 1974 } 1975 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1976 key.type = BTRFS_DEV_ITEM_KEY; 1977 key.offset = device->devid; 1978 1979 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1980 if (ret) { 1981 if (ret > 0) 1982 ret = -ENOENT; 1983 btrfs_abort_transaction(trans, ret); 1984 btrfs_end_transaction(trans); 1985 goto out; 1986 } 1987 1988 ret = btrfs_del_item(trans, root, path); 1989 if (ret) { 1990 btrfs_abort_transaction(trans, ret); 1991 btrfs_end_transaction(trans); 1992 } 1993 1994out: 1995 btrfs_free_path(path); 1996 if (!ret) 1997 ret = btrfs_commit_transaction(trans); 1998 return ret; 1999} 2000 2001/* 2002 * Verify that @num_devices satisfies the RAID profile constraints in the whole 2003 * filesystem. It's up to the caller to adjust that number regarding eg. device 2004 * replace. 2005 */ 2006static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 2007 u64 num_devices) 2008{ 2009 u64 all_avail; 2010 unsigned seq; 2011 int i; 2012 2013 do { 2014 seq = read_seqbegin(&fs_info->profiles_lock); 2015 2016 all_avail = fs_info->avail_data_alloc_bits | 2017 fs_info->avail_system_alloc_bits | 2018 fs_info->avail_metadata_alloc_bits; 2019 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2020 2021 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2022 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2023 continue; 2024 2025 if (num_devices < btrfs_raid_array[i].devs_min) { 2026 int ret = btrfs_raid_array[i].mindev_error; 2027 2028 if (ret) 2029 return ret; 2030 } 2031 } 2032 2033 return 0; 2034} 2035 2036static struct btrfs_device * btrfs_find_next_active_device( 2037 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2038{ 2039 struct btrfs_device *next_device; 2040 2041 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2042 if (next_device != device && 2043 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2044 && next_device->bdev) 2045 return next_device; 2046 } 2047 2048 return NULL; 2049} 2050 2051/* 2052 * Helper function to check if the given device is part of s_bdev / latest_bdev 2053 * and replace it with the provided or the next active device, in the context 2054 * where this function called, there should be always be another device (or 2055 * this_dev) which is active. 2056 */ 2057void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2058 struct btrfs_device *next_device) 2059{ 2060 struct btrfs_fs_info *fs_info = device->fs_info; 2061 2062 if (!next_device) 2063 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2064 device); 2065 ASSERT(next_device); 2066 2067 if (fs_info->sb->s_bdev && 2068 (fs_info->sb->s_bdev == device->bdev)) 2069 fs_info->sb->s_bdev = next_device->bdev; 2070 2071 if (fs_info->fs_devices->latest_bdev == device->bdev) 2072 fs_info->fs_devices->latest_bdev = next_device->bdev; 2073} 2074 2075/* 2076 * Return btrfs_fs_devices::num_devices excluding the device that's being 2077 * currently replaced. 2078 */ 2079static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2080{ 2081 u64 num_devices = fs_info->fs_devices->num_devices; 2082 2083 down_read(&fs_info->dev_replace.rwsem); 2084 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2085 ASSERT(num_devices > 1); 2086 num_devices--; 2087 } 2088 up_read(&fs_info->dev_replace.rwsem); 2089 2090 return num_devices; 2091} 2092 2093void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2094 struct block_device *bdev, 2095 const char *device_path) 2096{ 2097 struct btrfs_super_block *disk_super; 2098 int copy_num; 2099 2100 if (!bdev) 2101 return; 2102 2103 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2104 struct page *page; 2105 int ret; 2106 2107 disk_super = btrfs_read_dev_one_super(bdev, copy_num); 2108 if (IS_ERR(disk_super)) 2109 continue; 2110 2111 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 2112 2113 page = virt_to_page(disk_super); 2114 set_page_dirty(page); 2115 lock_page(page); 2116 /* write_on_page() unlocks the page */ 2117 ret = write_one_page(page); 2118 if (ret) 2119 btrfs_warn(fs_info, 2120 "error clearing superblock number %d (%d)", 2121 copy_num, ret); 2122 btrfs_release_disk_super(disk_super); 2123 2124 } 2125 2126 /* Notify udev that device has changed */ 2127 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2128 2129 /* Update ctime/mtime for device path for libblkid */ 2130 update_dev_time(device_path); 2131} 2132 2133int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 2134 u64 devid) 2135{ 2136 struct btrfs_device *device; 2137 struct btrfs_fs_devices *cur_devices; 2138 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2139 u64 num_devices; 2140 int ret = 0; 2141 2142 /* 2143 * The device list in fs_devices is accessed without locks (neither 2144 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2145 * filesystem and another device rm cannot run. 2146 */ 2147 num_devices = btrfs_num_devices(fs_info); 2148 2149 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2150 if (ret) 2151 goto out; 2152 2153 device = btrfs_find_device_by_devspec(fs_info, devid, device_path); 2154 2155 if (IS_ERR(device)) { 2156 if (PTR_ERR(device) == -ENOENT && 2157 device_path && strcmp(device_path, "missing") == 0) 2158 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2159 else 2160 ret = PTR_ERR(device); 2161 goto out; 2162 } 2163 2164 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2165 btrfs_warn_in_rcu(fs_info, 2166 "cannot remove device %s (devid %llu) due to active swapfile", 2167 rcu_str_deref(device->name), device->devid); 2168 ret = -ETXTBSY; 2169 goto out; 2170 } 2171 2172 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2173 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 2174 goto out; 2175 } 2176 2177 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2178 fs_info->fs_devices->rw_devices == 1) { 2179 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 2180 goto out; 2181 } 2182 2183 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2184 mutex_lock(&fs_info->chunk_mutex); 2185 list_del_init(&device->dev_alloc_list); 2186 device->fs_devices->rw_devices--; 2187 mutex_unlock(&fs_info->chunk_mutex); 2188 } 2189 2190 ret = btrfs_shrink_device(device, 0); 2191 if (!ret) 2192 btrfs_reada_remove_dev(device); 2193 if (ret) 2194 goto error_undo; 2195 2196 /* 2197 * TODO: the superblock still includes this device in its num_devices 2198 * counter although write_all_supers() is not locked out. This 2199 * could give a filesystem state which requires a degraded mount. 2200 */ 2201 ret = btrfs_rm_dev_item(device); 2202 if (ret) 2203 goto error_undo; 2204 2205 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2206 btrfs_scrub_cancel_dev(device); 2207 2208 /* 2209 * the device list mutex makes sure that we don't change 2210 * the device list while someone else is writing out all 2211 * the device supers. Whoever is writing all supers, should 2212 * lock the device list mutex before getting the number of 2213 * devices in the super block (super_copy). Conversely, 2214 * whoever updates the number of devices in the super block 2215 * (super_copy) should hold the device list mutex. 2216 */ 2217 2218 /* 2219 * In normal cases the cur_devices == fs_devices. But in case 2220 * of deleting a seed device, the cur_devices should point to 2221 * its own fs_devices listed under the fs_devices->seed. 2222 */ 2223 cur_devices = device->fs_devices; 2224 mutex_lock(&fs_devices->device_list_mutex); 2225 list_del_rcu(&device->dev_list); 2226 2227 cur_devices->num_devices--; 2228 cur_devices->total_devices--; 2229 /* Update total_devices of the parent fs_devices if it's seed */ 2230 if (cur_devices != fs_devices) 2231 fs_devices->total_devices--; 2232 2233 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2234 cur_devices->missing_devices--; 2235 2236 btrfs_assign_next_active_device(device, NULL); 2237 2238 if (device->bdev) { 2239 cur_devices->open_devices--; 2240 /* remove sysfs entry */ 2241 btrfs_sysfs_remove_device(device); 2242 } 2243 2244 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2245 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2246 mutex_unlock(&fs_devices->device_list_mutex); 2247 2248 /* 2249 * at this point, the device is zero sized and detached from 2250 * the devices list. All that's left is to zero out the old 2251 * supers and free the device. 2252 */ 2253 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2254 btrfs_scratch_superblocks(fs_info, device->bdev, 2255 device->name->str); 2256 2257 btrfs_close_bdev(device); 2258 synchronize_rcu(); 2259 btrfs_free_device(device); 2260 2261 if (cur_devices->open_devices == 0) { 2262 list_del_init(&cur_devices->seed_list); 2263 close_fs_devices(cur_devices); 2264 free_fs_devices(cur_devices); 2265 } 2266 2267out: 2268 return ret; 2269 2270error_undo: 2271 btrfs_reada_undo_remove_dev(device); 2272 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2273 mutex_lock(&fs_info->chunk_mutex); 2274 list_add(&device->dev_alloc_list, 2275 &fs_devices->alloc_list); 2276 device->fs_devices->rw_devices++; 2277 mutex_unlock(&fs_info->chunk_mutex); 2278 } 2279 goto out; 2280} 2281 2282void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2283{ 2284 struct btrfs_fs_devices *fs_devices; 2285 2286 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2287 2288 /* 2289 * in case of fs with no seed, srcdev->fs_devices will point 2290 * to fs_devices of fs_info. However when the dev being replaced is 2291 * a seed dev it will point to the seed's local fs_devices. In short 2292 * srcdev will have its correct fs_devices in both the cases. 2293 */ 2294 fs_devices = srcdev->fs_devices; 2295 2296 list_del_rcu(&srcdev->dev_list); 2297 list_del(&srcdev->dev_alloc_list); 2298 fs_devices->num_devices--; 2299 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2300 fs_devices->missing_devices--; 2301 2302 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2303 fs_devices->rw_devices--; 2304 2305 if (srcdev->bdev) 2306 fs_devices->open_devices--; 2307} 2308 2309void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2310{ 2311 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2312 2313 mutex_lock(&uuid_mutex); 2314 2315 btrfs_close_bdev(srcdev); 2316 synchronize_rcu(); 2317 btrfs_free_device(srcdev); 2318 2319 /* if this is no devs we rather delete the fs_devices */ 2320 if (!fs_devices->num_devices) { 2321 /* 2322 * On a mounted FS, num_devices can't be zero unless it's a 2323 * seed. In case of a seed device being replaced, the replace 2324 * target added to the sprout FS, so there will be no more 2325 * device left under the seed FS. 2326 */ 2327 ASSERT(fs_devices->seeding); 2328 2329 list_del_init(&fs_devices->seed_list); 2330 close_fs_devices(fs_devices); 2331 free_fs_devices(fs_devices); 2332 } 2333 mutex_unlock(&uuid_mutex); 2334} 2335 2336void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2337{ 2338 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2339 2340 mutex_lock(&fs_devices->device_list_mutex); 2341 2342 btrfs_sysfs_remove_device(tgtdev); 2343 2344 if (tgtdev->bdev) 2345 fs_devices->open_devices--; 2346 2347 fs_devices->num_devices--; 2348 2349 btrfs_assign_next_active_device(tgtdev, NULL); 2350 2351 list_del_rcu(&tgtdev->dev_list); 2352 2353 mutex_unlock(&fs_devices->device_list_mutex); 2354 2355 /* 2356 * The update_dev_time() with in btrfs_scratch_superblocks() 2357 * may lead to a call to btrfs_show_devname() which will try 2358 * to hold device_list_mutex. And here this device 2359 * is already out of device list, so we don't have to hold 2360 * the device_list_mutex lock. 2361 */ 2362 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2363 tgtdev->name->str); 2364 2365 btrfs_close_bdev(tgtdev); 2366 synchronize_rcu(); 2367 btrfs_free_device(tgtdev); 2368} 2369 2370static struct btrfs_device *btrfs_find_device_by_path( 2371 struct btrfs_fs_info *fs_info, const char *device_path) 2372{ 2373 int ret = 0; 2374 struct btrfs_super_block *disk_super; 2375 u64 devid; 2376 u8 *dev_uuid; 2377 struct block_device *bdev; 2378 struct btrfs_device *device; 2379 2380 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2381 fs_info->bdev_holder, 0, &bdev, &disk_super); 2382 if (ret) 2383 return ERR_PTR(ret); 2384 2385 devid = btrfs_stack_device_id(&disk_super->dev_item); 2386 dev_uuid = disk_super->dev_item.uuid; 2387 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2388 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2389 disk_super->metadata_uuid, true); 2390 else 2391 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2392 disk_super->fsid, true); 2393 2394 btrfs_release_disk_super(disk_super); 2395 if (!device) 2396 device = ERR_PTR(-ENOENT); 2397 blkdev_put(bdev, FMODE_READ); 2398 return device; 2399} 2400 2401/* 2402 * Lookup a device given by device id, or the path if the id is 0. 2403 */ 2404struct btrfs_device *btrfs_find_device_by_devspec( 2405 struct btrfs_fs_info *fs_info, u64 devid, 2406 const char *device_path) 2407{ 2408 struct btrfs_device *device; 2409 2410 if (devid) { 2411 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, 2412 NULL, true); 2413 if (!device) 2414 return ERR_PTR(-ENOENT); 2415 return device; 2416 } 2417 2418 if (!device_path || !device_path[0]) 2419 return ERR_PTR(-EINVAL); 2420 2421 if (strcmp(device_path, "missing") == 0) { 2422 /* Find first missing device */ 2423 list_for_each_entry(device, &fs_info->fs_devices->devices, 2424 dev_list) { 2425 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2426 &device->dev_state) && !device->bdev) 2427 return device; 2428 } 2429 return ERR_PTR(-ENOENT); 2430 } 2431 2432 return btrfs_find_device_by_path(fs_info, device_path); 2433} 2434 2435/* 2436 * does all the dirty work required for changing file system's UUID. 2437 */ 2438static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2439{ 2440 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2441 struct btrfs_fs_devices *old_devices; 2442 struct btrfs_fs_devices *seed_devices; 2443 struct btrfs_super_block *disk_super = fs_info->super_copy; 2444 struct btrfs_device *device; 2445 u64 super_flags; 2446 2447 lockdep_assert_held(&uuid_mutex); 2448 if (!fs_devices->seeding) 2449 return -EINVAL; 2450 2451 /* 2452 * Private copy of the seed devices, anchored at 2453 * fs_info->fs_devices->seed_list 2454 */ 2455 seed_devices = alloc_fs_devices(NULL, NULL); 2456 if (IS_ERR(seed_devices)) 2457 return PTR_ERR(seed_devices); 2458 2459 /* 2460 * It's necessary to retain a copy of the original seed fs_devices in 2461 * fs_uuids so that filesystems which have been seeded can successfully 2462 * reference the seed device from open_seed_devices. This also supports 2463 * multiple fs seed. 2464 */ 2465 old_devices = clone_fs_devices(fs_devices); 2466 if (IS_ERR(old_devices)) { 2467 kfree(seed_devices); 2468 return PTR_ERR(old_devices); 2469 } 2470 2471 list_add(&old_devices->fs_list, &fs_uuids); 2472 2473 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2474 seed_devices->opened = 1; 2475 INIT_LIST_HEAD(&seed_devices->devices); 2476 INIT_LIST_HEAD(&seed_devices->alloc_list); 2477 mutex_init(&seed_devices->device_list_mutex); 2478 2479 mutex_lock(&fs_devices->device_list_mutex); 2480 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2481 synchronize_rcu); 2482 list_for_each_entry(device, &seed_devices->devices, dev_list) 2483 device->fs_devices = seed_devices; 2484 2485 fs_devices->seeding = false; 2486 fs_devices->num_devices = 0; 2487 fs_devices->open_devices = 0; 2488 fs_devices->missing_devices = 0; 2489 fs_devices->rotating = false; 2490 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2491 2492 generate_random_uuid(fs_devices->fsid); 2493 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2494 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2495 mutex_unlock(&fs_devices->device_list_mutex); 2496 2497 super_flags = btrfs_super_flags(disk_super) & 2498 ~BTRFS_SUPER_FLAG_SEEDING; 2499 btrfs_set_super_flags(disk_super, super_flags); 2500 2501 return 0; 2502} 2503 2504/* 2505 * Store the expected generation for seed devices in device items. 2506 */ 2507static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2508{ 2509 struct btrfs_fs_info *fs_info = trans->fs_info; 2510 struct btrfs_root *root = fs_info->chunk_root; 2511 struct btrfs_path *path; 2512 struct extent_buffer *leaf; 2513 struct btrfs_dev_item *dev_item; 2514 struct btrfs_device *device; 2515 struct btrfs_key key; 2516 u8 fs_uuid[BTRFS_FSID_SIZE]; 2517 u8 dev_uuid[BTRFS_UUID_SIZE]; 2518 u64 devid; 2519 int ret; 2520 2521 path = btrfs_alloc_path(); 2522 if (!path) 2523 return -ENOMEM; 2524 2525 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2526 key.offset = 0; 2527 key.type = BTRFS_DEV_ITEM_KEY; 2528 2529 while (1) { 2530 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2531 if (ret < 0) 2532 goto error; 2533 2534 leaf = path->nodes[0]; 2535next_slot: 2536 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2537 ret = btrfs_next_leaf(root, path); 2538 if (ret > 0) 2539 break; 2540 if (ret < 0) 2541 goto error; 2542 leaf = path->nodes[0]; 2543 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2544 btrfs_release_path(path); 2545 continue; 2546 } 2547 2548 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2549 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2550 key.type != BTRFS_DEV_ITEM_KEY) 2551 break; 2552 2553 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2554 struct btrfs_dev_item); 2555 devid = btrfs_device_id(leaf, dev_item); 2556 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2557 BTRFS_UUID_SIZE); 2558 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2559 BTRFS_FSID_SIZE); 2560 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2561 fs_uuid, true); 2562 BUG_ON(!device); /* Logic error */ 2563 2564 if (device->fs_devices->seeding) { 2565 btrfs_set_device_generation(leaf, dev_item, 2566 device->generation); 2567 btrfs_mark_buffer_dirty(leaf); 2568 } 2569 2570 path->slots[0]++; 2571 goto next_slot; 2572 } 2573 ret = 0; 2574error: 2575 btrfs_free_path(path); 2576 return ret; 2577} 2578 2579int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2580{ 2581 struct btrfs_root *root = fs_info->dev_root; 2582 struct request_queue *q; 2583 struct btrfs_trans_handle *trans; 2584 struct btrfs_device *device; 2585 struct block_device *bdev; 2586 struct super_block *sb = fs_info->sb; 2587 struct rcu_string *name; 2588 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2589 u64 orig_super_total_bytes; 2590 u64 orig_super_num_devices; 2591 int seeding_dev = 0; 2592 int ret = 0; 2593 bool locked = false; 2594 2595 if (sb_rdonly(sb) && !fs_devices->seeding) 2596 return -EROFS; 2597 2598 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2599 fs_info->bdev_holder); 2600 if (IS_ERR(bdev)) 2601 return PTR_ERR(bdev); 2602 2603 if (fs_devices->seeding) { 2604 seeding_dev = 1; 2605 down_write(&sb->s_umount); 2606 mutex_lock(&uuid_mutex); 2607 locked = true; 2608 } 2609 2610 sync_blockdev(bdev); 2611 2612 rcu_read_lock(); 2613 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2614 if (device->bdev == bdev) { 2615 ret = -EEXIST; 2616 rcu_read_unlock(); 2617 goto error; 2618 } 2619 } 2620 rcu_read_unlock(); 2621 2622 device = btrfs_alloc_device(fs_info, NULL, NULL); 2623 if (IS_ERR(device)) { 2624 /* we can safely leave the fs_devices entry around */ 2625 ret = PTR_ERR(device); 2626 goto error; 2627 } 2628 2629 name = rcu_string_strdup(device_path, GFP_KERNEL); 2630 if (!name) { 2631 ret = -ENOMEM; 2632 goto error_free_device; 2633 } 2634 rcu_assign_pointer(device->name, name); 2635 2636 trans = btrfs_start_transaction(root, 0); 2637 if (IS_ERR(trans)) { 2638 ret = PTR_ERR(trans); 2639 goto error_free_device; 2640 } 2641 2642 q = bdev_get_queue(bdev); 2643 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2644 device->generation = trans->transid; 2645 device->io_width = fs_info->sectorsize; 2646 device->io_align = fs_info->sectorsize; 2647 device->sector_size = fs_info->sectorsize; 2648 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2649 fs_info->sectorsize); 2650 device->disk_total_bytes = device->total_bytes; 2651 device->commit_total_bytes = device->total_bytes; 2652 device->fs_info = fs_info; 2653 device->bdev = bdev; 2654 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2655 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2656 device->mode = FMODE_EXCL; 2657 device->dev_stats_valid = 1; 2658 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2659 2660 if (seeding_dev) { 2661 sb->s_flags &= ~SB_RDONLY; 2662 ret = btrfs_prepare_sprout(fs_info); 2663 if (ret) { 2664 btrfs_abort_transaction(trans, ret); 2665 goto error_trans; 2666 } 2667 } 2668 2669 device->fs_devices = fs_devices; 2670 2671 mutex_lock(&fs_devices->device_list_mutex); 2672 mutex_lock(&fs_info->chunk_mutex); 2673 list_add_rcu(&device->dev_list, &fs_devices->devices); 2674 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2675 fs_devices->num_devices++; 2676 fs_devices->open_devices++; 2677 fs_devices->rw_devices++; 2678 fs_devices->total_devices++; 2679 fs_devices->total_rw_bytes += device->total_bytes; 2680 2681 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2682 2683 if (!blk_queue_nonrot(q)) 2684 fs_devices->rotating = true; 2685 2686 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2687 btrfs_set_super_total_bytes(fs_info->super_copy, 2688 round_down(orig_super_total_bytes + device->total_bytes, 2689 fs_info->sectorsize)); 2690 2691 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2692 btrfs_set_super_num_devices(fs_info->super_copy, 2693 orig_super_num_devices + 1); 2694 2695 /* 2696 * we've got more storage, clear any full flags on the space 2697 * infos 2698 */ 2699 btrfs_clear_space_info_full(fs_info); 2700 2701 mutex_unlock(&fs_info->chunk_mutex); 2702 2703 /* Add sysfs device entry */ 2704 btrfs_sysfs_add_device(device); 2705 2706 mutex_unlock(&fs_devices->device_list_mutex); 2707 2708 if (seeding_dev) { 2709 mutex_lock(&fs_info->chunk_mutex); 2710 ret = init_first_rw_device(trans); 2711 mutex_unlock(&fs_info->chunk_mutex); 2712 if (ret) { 2713 btrfs_abort_transaction(trans, ret); 2714 goto error_sysfs; 2715 } 2716 } 2717 2718 ret = btrfs_add_dev_item(trans, device); 2719 if (ret) { 2720 btrfs_abort_transaction(trans, ret); 2721 goto error_sysfs; 2722 } 2723 2724 if (seeding_dev) { 2725 ret = btrfs_finish_sprout(trans); 2726 if (ret) { 2727 btrfs_abort_transaction(trans, ret); 2728 goto error_sysfs; 2729 } 2730 2731 /* 2732 * fs_devices now represents the newly sprouted filesystem and 2733 * its fsid has been changed by btrfs_prepare_sprout 2734 */ 2735 btrfs_sysfs_update_sprout_fsid(fs_devices); 2736 } 2737 2738 ret = btrfs_commit_transaction(trans); 2739 2740 if (seeding_dev) { 2741 mutex_unlock(&uuid_mutex); 2742 up_write(&sb->s_umount); 2743 locked = false; 2744 2745 if (ret) /* transaction commit */ 2746 return ret; 2747 2748 ret = btrfs_relocate_sys_chunks(fs_info); 2749 if (ret < 0) 2750 btrfs_handle_fs_error(fs_info, ret, 2751 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2752 trans = btrfs_attach_transaction(root); 2753 if (IS_ERR(trans)) { 2754 if (PTR_ERR(trans) == -ENOENT) 2755 return 0; 2756 ret = PTR_ERR(trans); 2757 trans = NULL; 2758 goto error_sysfs; 2759 } 2760 ret = btrfs_commit_transaction(trans); 2761 } 2762 2763 /* 2764 * Now that we have written a new super block to this device, check all 2765 * other fs_devices list if device_path alienates any other scanned 2766 * device. 2767 * We can ignore the return value as it typically returns -EINVAL and 2768 * only succeeds if the device was an alien. 2769 */ 2770 btrfs_forget_devices(device_path); 2771 2772 /* Update ctime/mtime for blkid or udev */ 2773 update_dev_time(device_path); 2774 2775 return ret; 2776 2777error_sysfs: 2778 btrfs_sysfs_remove_device(device); 2779 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2780 mutex_lock(&fs_info->chunk_mutex); 2781 list_del_rcu(&device->dev_list); 2782 list_del(&device->dev_alloc_list); 2783 fs_info->fs_devices->num_devices--; 2784 fs_info->fs_devices->open_devices--; 2785 fs_info->fs_devices->rw_devices--; 2786 fs_info->fs_devices->total_devices--; 2787 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2788 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2789 btrfs_set_super_total_bytes(fs_info->super_copy, 2790 orig_super_total_bytes); 2791 btrfs_set_super_num_devices(fs_info->super_copy, 2792 orig_super_num_devices); 2793 mutex_unlock(&fs_info->chunk_mutex); 2794 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2795error_trans: 2796 if (seeding_dev) 2797 sb->s_flags |= SB_RDONLY; 2798 if (trans) 2799 btrfs_end_transaction(trans); 2800error_free_device: 2801 btrfs_free_device(device); 2802error: 2803 blkdev_put(bdev, FMODE_EXCL); 2804 if (locked) { 2805 mutex_unlock(&uuid_mutex); 2806 up_write(&sb->s_umount); 2807 } 2808 return ret; 2809} 2810 2811static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2812 struct btrfs_device *device) 2813{ 2814 int ret; 2815 struct btrfs_path *path; 2816 struct btrfs_root *root = device->fs_info->chunk_root; 2817 struct btrfs_dev_item *dev_item; 2818 struct extent_buffer *leaf; 2819 struct btrfs_key key; 2820 2821 path = btrfs_alloc_path(); 2822 if (!path) 2823 return -ENOMEM; 2824 2825 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2826 key.type = BTRFS_DEV_ITEM_KEY; 2827 key.offset = device->devid; 2828 2829 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2830 if (ret < 0) 2831 goto out; 2832 2833 if (ret > 0) { 2834 ret = -ENOENT; 2835 goto out; 2836 } 2837 2838 leaf = path->nodes[0]; 2839 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2840 2841 btrfs_set_device_id(leaf, dev_item, device->devid); 2842 btrfs_set_device_type(leaf, dev_item, device->type); 2843 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2844 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2845 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2846 btrfs_set_device_total_bytes(leaf, dev_item, 2847 btrfs_device_get_disk_total_bytes(device)); 2848 btrfs_set_device_bytes_used(leaf, dev_item, 2849 btrfs_device_get_bytes_used(device)); 2850 btrfs_mark_buffer_dirty(leaf); 2851 2852out: 2853 btrfs_free_path(path); 2854 return ret; 2855} 2856 2857int btrfs_grow_device(struct btrfs_trans_handle *trans, 2858 struct btrfs_device *device, u64 new_size) 2859{ 2860 struct btrfs_fs_info *fs_info = device->fs_info; 2861 struct btrfs_super_block *super_copy = fs_info->super_copy; 2862 u64 old_total; 2863 u64 diff; 2864 2865 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2866 return -EACCES; 2867 2868 new_size = round_down(new_size, fs_info->sectorsize); 2869 2870 mutex_lock(&fs_info->chunk_mutex); 2871 old_total = btrfs_super_total_bytes(super_copy); 2872 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2873 2874 if (new_size <= device->total_bytes || 2875 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2876 mutex_unlock(&fs_info->chunk_mutex); 2877 return -EINVAL; 2878 } 2879 2880 btrfs_set_super_total_bytes(super_copy, 2881 round_down(old_total + diff, fs_info->sectorsize)); 2882 device->fs_devices->total_rw_bytes += diff; 2883 2884 btrfs_device_set_total_bytes(device, new_size); 2885 btrfs_device_set_disk_total_bytes(device, new_size); 2886 btrfs_clear_space_info_full(device->fs_info); 2887 if (list_empty(&device->post_commit_list)) 2888 list_add_tail(&device->post_commit_list, 2889 &trans->transaction->dev_update_list); 2890 mutex_unlock(&fs_info->chunk_mutex); 2891 2892 return btrfs_update_device(trans, device); 2893} 2894 2895static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2896{ 2897 struct btrfs_fs_info *fs_info = trans->fs_info; 2898 struct btrfs_root *root = fs_info->chunk_root; 2899 int ret; 2900 struct btrfs_path *path; 2901 struct btrfs_key key; 2902 2903 path = btrfs_alloc_path(); 2904 if (!path) 2905 return -ENOMEM; 2906 2907 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2908 key.offset = chunk_offset; 2909 key.type = BTRFS_CHUNK_ITEM_KEY; 2910 2911 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2912 if (ret < 0) 2913 goto out; 2914 else if (ret > 0) { /* Logic error or corruption */ 2915 btrfs_handle_fs_error(fs_info, -ENOENT, 2916 "Failed lookup while freeing chunk."); 2917 ret = -ENOENT; 2918 goto out; 2919 } 2920 2921 ret = btrfs_del_item(trans, root, path); 2922 if (ret < 0) 2923 btrfs_handle_fs_error(fs_info, ret, 2924 "Failed to delete chunk item."); 2925out: 2926 btrfs_free_path(path); 2927 return ret; 2928} 2929 2930static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2931{ 2932 struct btrfs_super_block *super_copy = fs_info->super_copy; 2933 struct btrfs_disk_key *disk_key; 2934 struct btrfs_chunk *chunk; 2935 u8 *ptr; 2936 int ret = 0; 2937 u32 num_stripes; 2938 u32 array_size; 2939 u32 len = 0; 2940 u32 cur; 2941 struct btrfs_key key; 2942 2943 mutex_lock(&fs_info->chunk_mutex); 2944 array_size = btrfs_super_sys_array_size(super_copy); 2945 2946 ptr = super_copy->sys_chunk_array; 2947 cur = 0; 2948 2949 while (cur < array_size) { 2950 disk_key = (struct btrfs_disk_key *)ptr; 2951 btrfs_disk_key_to_cpu(&key, disk_key); 2952 2953 len = sizeof(*disk_key); 2954 2955 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2956 chunk = (struct btrfs_chunk *)(ptr + len); 2957 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2958 len += btrfs_chunk_item_size(num_stripes); 2959 } else { 2960 ret = -EIO; 2961 break; 2962 } 2963 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2964 key.offset == chunk_offset) { 2965 memmove(ptr, ptr + len, array_size - (cur + len)); 2966 array_size -= len; 2967 btrfs_set_super_sys_array_size(super_copy, array_size); 2968 } else { 2969 ptr += len; 2970 cur += len; 2971 } 2972 } 2973 mutex_unlock(&fs_info->chunk_mutex); 2974 return ret; 2975} 2976 2977/* 2978 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2979 * @logical: Logical block offset in bytes. 2980 * @length: Length of extent in bytes. 2981 * 2982 * Return: Chunk mapping or ERR_PTR. 2983 */ 2984struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2985 u64 logical, u64 length) 2986{ 2987 struct extent_map_tree *em_tree; 2988 struct extent_map *em; 2989 2990 em_tree = &fs_info->mapping_tree; 2991 read_lock(&em_tree->lock); 2992 em = lookup_extent_mapping(em_tree, logical, length); 2993 read_unlock(&em_tree->lock); 2994 2995 if (!em) { 2996 btrfs_crit(fs_info, 2997 "unable to find chunk map for logical %llu length %llu", 2998 logical, length); 2999 return ERR_PTR(-EINVAL); 3000 } 3001 3002 if (em->start > logical || em->start + em->len <= logical) { 3003 btrfs_crit(fs_info, 3004 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3005 logical, logical + length, em->start, em->start + em->len); 3006 free_extent_map(em); 3007 return ERR_PTR(-EINVAL); 3008 } 3009 3010 /* callers are responsible for dropping em's ref. */ 3011 return em; 3012} 3013 3014int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3015{ 3016 struct btrfs_fs_info *fs_info = trans->fs_info; 3017 struct extent_map *em; 3018 struct map_lookup *map; 3019 u64 dev_extent_len = 0; 3020 int i, ret = 0; 3021 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3022 3023 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3024 if (IS_ERR(em)) { 3025 /* 3026 * This is a logic error, but we don't want to just rely on the 3027 * user having built with ASSERT enabled, so if ASSERT doesn't 3028 * do anything we still error out. 3029 */ 3030 ASSERT(0); 3031 return PTR_ERR(em); 3032 } 3033 map = em->map_lookup; 3034 mutex_lock(&fs_info->chunk_mutex); 3035 check_system_chunk(trans, map->type); 3036 mutex_unlock(&fs_info->chunk_mutex); 3037 3038 /* 3039 * Take the device list mutex to prevent races with the final phase of 3040 * a device replace operation that replaces the device object associated 3041 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 3042 */ 3043 mutex_lock(&fs_devices->device_list_mutex); 3044 for (i = 0; i < map->num_stripes; i++) { 3045 struct btrfs_device *device = map->stripes[i].dev; 3046 ret = btrfs_free_dev_extent(trans, device, 3047 map->stripes[i].physical, 3048 &dev_extent_len); 3049 if (ret) { 3050 mutex_unlock(&fs_devices->device_list_mutex); 3051 btrfs_abort_transaction(trans, ret); 3052 goto out; 3053 } 3054 3055 if (device->bytes_used > 0) { 3056 mutex_lock(&fs_info->chunk_mutex); 3057 btrfs_device_set_bytes_used(device, 3058 device->bytes_used - dev_extent_len); 3059 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3060 btrfs_clear_space_info_full(fs_info); 3061 mutex_unlock(&fs_info->chunk_mutex); 3062 } 3063 3064 ret = btrfs_update_device(trans, device); 3065 if (ret) { 3066 mutex_unlock(&fs_devices->device_list_mutex); 3067 btrfs_abort_transaction(trans, ret); 3068 goto out; 3069 } 3070 } 3071 mutex_unlock(&fs_devices->device_list_mutex); 3072 3073 ret = btrfs_free_chunk(trans, chunk_offset); 3074 if (ret) { 3075 btrfs_abort_transaction(trans, ret); 3076 goto out; 3077 } 3078 3079 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3080 3081 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3082 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3083 if (ret) { 3084 btrfs_abort_transaction(trans, ret); 3085 goto out; 3086 } 3087 } 3088 3089 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3090 if (ret) { 3091 btrfs_abort_transaction(trans, ret); 3092 goto out; 3093 } 3094 3095out: 3096 /* once for us */ 3097 free_extent_map(em); 3098 return ret; 3099} 3100 3101static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3102{ 3103 struct btrfs_root *root = fs_info->chunk_root; 3104 struct btrfs_trans_handle *trans; 3105 struct btrfs_block_group *block_group; 3106 int ret; 3107 3108 /* 3109 * Prevent races with automatic removal of unused block groups. 3110 * After we relocate and before we remove the chunk with offset 3111 * chunk_offset, automatic removal of the block group can kick in, 3112 * resulting in a failure when calling btrfs_remove_chunk() below. 3113 * 3114 * Make sure to acquire this mutex before doing a tree search (dev 3115 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3116 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3117 * we release the path used to search the chunk/dev tree and before 3118 * the current task acquires this mutex and calls us. 3119 */ 3120 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); 3121 3122 /* step one, relocate all the extents inside this chunk */ 3123 btrfs_scrub_pause(fs_info); 3124 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3125 btrfs_scrub_continue(fs_info); 3126 if (ret) 3127 return ret; 3128 3129 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3130 if (!block_group) 3131 return -ENOENT; 3132 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3133 btrfs_put_block_group(block_group); 3134 3135 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3136 chunk_offset); 3137 if (IS_ERR(trans)) { 3138 ret = PTR_ERR(trans); 3139 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3140 return ret; 3141 } 3142 3143 /* 3144 * step two, delete the device extents and the 3145 * chunk tree entries 3146 */ 3147 ret = btrfs_remove_chunk(trans, chunk_offset); 3148 btrfs_end_transaction(trans); 3149 return ret; 3150} 3151 3152static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3153{ 3154 struct btrfs_root *chunk_root = fs_info->chunk_root; 3155 struct btrfs_path *path; 3156 struct extent_buffer *leaf; 3157 struct btrfs_chunk *chunk; 3158 struct btrfs_key key; 3159 struct btrfs_key found_key; 3160 u64 chunk_type; 3161 bool retried = false; 3162 int failed = 0; 3163 int ret; 3164 3165 path = btrfs_alloc_path(); 3166 if (!path) 3167 return -ENOMEM; 3168 3169again: 3170 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3171 key.offset = (u64)-1; 3172 key.type = BTRFS_CHUNK_ITEM_KEY; 3173 3174 while (1) { 3175 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3176 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3177 if (ret < 0) { 3178 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3179 goto error; 3180 } 3181 BUG_ON(ret == 0); /* Corruption */ 3182 3183 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3184 key.type); 3185 if (ret) 3186 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3187 if (ret < 0) 3188 goto error; 3189 if (ret > 0) 3190 break; 3191 3192 leaf = path->nodes[0]; 3193 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3194 3195 chunk = btrfs_item_ptr(leaf, path->slots[0], 3196 struct btrfs_chunk); 3197 chunk_type = btrfs_chunk_type(leaf, chunk); 3198 btrfs_release_path(path); 3199 3200 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3201 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3202 if (ret == -ENOSPC) 3203 failed++; 3204 else 3205 BUG_ON(ret); 3206 } 3207 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3208 3209 if (found_key.offset == 0) 3210 break; 3211 key.offset = found_key.offset - 1; 3212 } 3213 ret = 0; 3214 if (failed && !retried) { 3215 failed = 0; 3216 retried = true; 3217 goto again; 3218 } else if (WARN_ON(failed && retried)) { 3219 ret = -ENOSPC; 3220 } 3221error: 3222 btrfs_free_path(path); 3223 return ret; 3224} 3225 3226/* 3227 * return 1 : allocate a data chunk successfully, 3228 * return <0: errors during allocating a data chunk, 3229 * return 0 : no need to allocate a data chunk. 3230 */ 3231static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3232 u64 chunk_offset) 3233{ 3234 struct btrfs_block_group *cache; 3235 u64 bytes_used; 3236 u64 chunk_type; 3237 3238 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3239 ASSERT(cache); 3240 chunk_type = cache->flags; 3241 btrfs_put_block_group(cache); 3242 3243 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3244 return 0; 3245 3246 spin_lock(&fs_info->data_sinfo->lock); 3247 bytes_used = fs_info->data_sinfo->bytes_used; 3248 spin_unlock(&fs_info->data_sinfo->lock); 3249 3250 if (!bytes_used) { 3251 struct btrfs_trans_handle *trans; 3252 int ret; 3253 3254 trans = btrfs_join_transaction(fs_info->tree_root); 3255 if (IS_ERR(trans)) 3256 return PTR_ERR(trans); 3257 3258 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3259 btrfs_end_transaction(trans); 3260 if (ret < 0) 3261 return ret; 3262 return 1; 3263 } 3264 3265 return 0; 3266} 3267 3268static int insert_balance_item(struct btrfs_fs_info *fs_info, 3269 struct btrfs_balance_control *bctl) 3270{ 3271 struct btrfs_root *root = fs_info->tree_root; 3272 struct btrfs_trans_handle *trans; 3273 struct btrfs_balance_item *item; 3274 struct btrfs_disk_balance_args disk_bargs; 3275 struct btrfs_path *path; 3276 struct extent_buffer *leaf; 3277 struct btrfs_key key; 3278 int ret, err; 3279 3280 path = btrfs_alloc_path(); 3281 if (!path) 3282 return -ENOMEM; 3283 3284 trans = btrfs_start_transaction(root, 0); 3285 if (IS_ERR(trans)) { 3286 btrfs_free_path(path); 3287 return PTR_ERR(trans); 3288 } 3289 3290 key.objectid = BTRFS_BALANCE_OBJECTID; 3291 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3292 key.offset = 0; 3293 3294 ret = btrfs_insert_empty_item(trans, root, path, &key, 3295 sizeof(*item)); 3296 if (ret) 3297 goto out; 3298 3299 leaf = path->nodes[0]; 3300 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3301 3302 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3303 3304 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3305 btrfs_set_balance_data(leaf, item, &disk_bargs); 3306 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3307 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3308 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3309 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3310 3311 btrfs_set_balance_flags(leaf, item, bctl->flags); 3312 3313 btrfs_mark_buffer_dirty(leaf); 3314out: 3315 btrfs_free_path(path); 3316 err = btrfs_commit_transaction(trans); 3317 if (err && !ret) 3318 ret = err; 3319 return ret; 3320} 3321 3322static int del_balance_item(struct btrfs_fs_info *fs_info) 3323{ 3324 struct btrfs_root *root = fs_info->tree_root; 3325 struct btrfs_trans_handle *trans; 3326 struct btrfs_path *path; 3327 struct btrfs_key key; 3328 int ret, err; 3329 3330 path = btrfs_alloc_path(); 3331 if (!path) 3332 return -ENOMEM; 3333 3334 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3335 if (IS_ERR(trans)) { 3336 btrfs_free_path(path); 3337 return PTR_ERR(trans); 3338 } 3339 3340 key.objectid = BTRFS_BALANCE_OBJECTID; 3341 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3342 key.offset = 0; 3343 3344 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3345 if (ret < 0) 3346 goto out; 3347 if (ret > 0) { 3348 ret = -ENOENT; 3349 goto out; 3350 } 3351 3352 ret = btrfs_del_item(trans, root, path); 3353out: 3354 btrfs_free_path(path); 3355 err = btrfs_commit_transaction(trans); 3356 if (err && !ret) 3357 ret = err; 3358 return ret; 3359} 3360 3361/* 3362 * This is a heuristic used to reduce the number of chunks balanced on 3363 * resume after balance was interrupted. 3364 */ 3365static void update_balance_args(struct btrfs_balance_control *bctl) 3366{ 3367 /* 3368 * Turn on soft mode for chunk types that were being converted. 3369 */ 3370 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3371 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3372 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3373 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3374 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3375 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3376 3377 /* 3378 * Turn on usage filter if is not already used. The idea is 3379 * that chunks that we have already balanced should be 3380 * reasonably full. Don't do it for chunks that are being 3381 * converted - that will keep us from relocating unconverted 3382 * (albeit full) chunks. 3383 */ 3384 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3385 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3386 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3387 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3388 bctl->data.usage = 90; 3389 } 3390 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3391 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3392 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3393 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3394 bctl->sys.usage = 90; 3395 } 3396 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3397 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3398 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3399 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3400 bctl->meta.usage = 90; 3401 } 3402} 3403 3404/* 3405 * Clear the balance status in fs_info and delete the balance item from disk. 3406 */ 3407static void reset_balance_state(struct btrfs_fs_info *fs_info) 3408{ 3409 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3410 int ret; 3411 3412 BUG_ON(!fs_info->balance_ctl); 3413 3414 spin_lock(&fs_info->balance_lock); 3415 fs_info->balance_ctl = NULL; 3416 spin_unlock(&fs_info->balance_lock); 3417 3418 kfree(bctl); 3419 ret = del_balance_item(fs_info); 3420 if (ret) 3421 btrfs_handle_fs_error(fs_info, ret, NULL); 3422} 3423 3424/* 3425 * Balance filters. Return 1 if chunk should be filtered out 3426 * (should not be balanced). 3427 */ 3428static int chunk_profiles_filter(u64 chunk_type, 3429 struct btrfs_balance_args *bargs) 3430{ 3431 chunk_type = chunk_to_extended(chunk_type) & 3432 BTRFS_EXTENDED_PROFILE_MASK; 3433 3434 if (bargs->profiles & chunk_type) 3435 return 0; 3436 3437 return 1; 3438} 3439 3440static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3441 struct btrfs_balance_args *bargs) 3442{ 3443 struct btrfs_block_group *cache; 3444 u64 chunk_used; 3445 u64 user_thresh_min; 3446 u64 user_thresh_max; 3447 int ret = 1; 3448 3449 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3450 chunk_used = cache->used; 3451 3452 if (bargs->usage_min == 0) 3453 user_thresh_min = 0; 3454 else 3455 user_thresh_min = div_factor_fine(cache->length, 3456 bargs->usage_min); 3457 3458 if (bargs->usage_max == 0) 3459 user_thresh_max = 1; 3460 else if (bargs->usage_max > 100) 3461 user_thresh_max = cache->length; 3462 else 3463 user_thresh_max = div_factor_fine(cache->length, 3464 bargs->usage_max); 3465 3466 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3467 ret = 0; 3468 3469 btrfs_put_block_group(cache); 3470 return ret; 3471} 3472 3473static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3474 u64 chunk_offset, struct btrfs_balance_args *bargs) 3475{ 3476 struct btrfs_block_group *cache; 3477 u64 chunk_used, user_thresh; 3478 int ret = 1; 3479 3480 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3481 chunk_used = cache->used; 3482 3483 if (bargs->usage_min == 0) 3484 user_thresh = 1; 3485 else if (bargs->usage > 100) 3486 user_thresh = cache->length; 3487 else 3488 user_thresh = div_factor_fine(cache->length, bargs->usage); 3489 3490 if (chunk_used < user_thresh) 3491 ret = 0; 3492 3493 btrfs_put_block_group(cache); 3494 return ret; 3495} 3496 3497static int chunk_devid_filter(struct extent_buffer *leaf, 3498 struct btrfs_chunk *chunk, 3499 struct btrfs_balance_args *bargs) 3500{ 3501 struct btrfs_stripe *stripe; 3502 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3503 int i; 3504 3505 for (i = 0; i < num_stripes; i++) { 3506 stripe = btrfs_stripe_nr(chunk, i); 3507 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3508 return 0; 3509 } 3510 3511 return 1; 3512} 3513 3514static u64 calc_data_stripes(u64 type, int num_stripes) 3515{ 3516 const int index = btrfs_bg_flags_to_raid_index(type); 3517 const int ncopies = btrfs_raid_array[index].ncopies; 3518 const int nparity = btrfs_raid_array[index].nparity; 3519 3520 if (nparity) 3521 return num_stripes - nparity; 3522 else 3523 return num_stripes / ncopies; 3524} 3525 3526/* [pstart, pend) */ 3527static int chunk_drange_filter(struct extent_buffer *leaf, 3528 struct btrfs_chunk *chunk, 3529 struct btrfs_balance_args *bargs) 3530{ 3531 struct btrfs_stripe *stripe; 3532 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3533 u64 stripe_offset; 3534 u64 stripe_length; 3535 u64 type; 3536 int factor; 3537 int i; 3538 3539 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3540 return 0; 3541 3542 type = btrfs_chunk_type(leaf, chunk); 3543 factor = calc_data_stripes(type, num_stripes); 3544 3545 for (i = 0; i < num_stripes; i++) { 3546 stripe = btrfs_stripe_nr(chunk, i); 3547 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3548 continue; 3549 3550 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3551 stripe_length = btrfs_chunk_length(leaf, chunk); 3552 stripe_length = div_u64(stripe_length, factor); 3553 3554 if (stripe_offset < bargs->pend && 3555 stripe_offset + stripe_length > bargs->pstart) 3556 return 0; 3557 } 3558 3559 return 1; 3560} 3561 3562/* [vstart, vend) */ 3563static int chunk_vrange_filter(struct extent_buffer *leaf, 3564 struct btrfs_chunk *chunk, 3565 u64 chunk_offset, 3566 struct btrfs_balance_args *bargs) 3567{ 3568 if (chunk_offset < bargs->vend && 3569 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3570 /* at least part of the chunk is inside this vrange */ 3571 return 0; 3572 3573 return 1; 3574} 3575 3576static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3577 struct btrfs_chunk *chunk, 3578 struct btrfs_balance_args *bargs) 3579{ 3580 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3581 3582 if (bargs->stripes_min <= num_stripes 3583 && num_stripes <= bargs->stripes_max) 3584 return 0; 3585 3586 return 1; 3587} 3588 3589static int chunk_soft_convert_filter(u64 chunk_type, 3590 struct btrfs_balance_args *bargs) 3591{ 3592 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3593 return 0; 3594 3595 chunk_type = chunk_to_extended(chunk_type) & 3596 BTRFS_EXTENDED_PROFILE_MASK; 3597 3598 if (bargs->target == chunk_type) 3599 return 1; 3600 3601 return 0; 3602} 3603 3604static int should_balance_chunk(struct extent_buffer *leaf, 3605 struct btrfs_chunk *chunk, u64 chunk_offset) 3606{ 3607 struct btrfs_fs_info *fs_info = leaf->fs_info; 3608 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3609 struct btrfs_balance_args *bargs = NULL; 3610 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3611 3612 /* type filter */ 3613 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3614 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3615 return 0; 3616 } 3617 3618 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3619 bargs = &bctl->data; 3620 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3621 bargs = &bctl->sys; 3622 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3623 bargs = &bctl->meta; 3624 3625 /* profiles filter */ 3626 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3627 chunk_profiles_filter(chunk_type, bargs)) { 3628 return 0; 3629 } 3630 3631 /* usage filter */ 3632 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3633 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3634 return 0; 3635 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3636 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3637 return 0; 3638 } 3639 3640 /* devid filter */ 3641 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3642 chunk_devid_filter(leaf, chunk, bargs)) { 3643 return 0; 3644 } 3645 3646 /* drange filter, makes sense only with devid filter */ 3647 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3648 chunk_drange_filter(leaf, chunk, bargs)) { 3649 return 0; 3650 } 3651 3652 /* vrange filter */ 3653 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3654 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3655 return 0; 3656 } 3657 3658 /* stripes filter */ 3659 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3660 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3661 return 0; 3662 } 3663 3664 /* soft profile changing mode */ 3665 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3666 chunk_soft_convert_filter(chunk_type, bargs)) { 3667 return 0; 3668 } 3669 3670 /* 3671 * limited by count, must be the last filter 3672 */ 3673 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3674 if (bargs->limit == 0) 3675 return 0; 3676 else 3677 bargs->limit--; 3678 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3679 /* 3680 * Same logic as the 'limit' filter; the minimum cannot be 3681 * determined here because we do not have the global information 3682 * about the count of all chunks that satisfy the filters. 3683 */ 3684 if (bargs->limit_max == 0) 3685 return 0; 3686 else 3687 bargs->limit_max--; 3688 } 3689 3690 return 1; 3691} 3692 3693static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3694{ 3695 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3696 struct btrfs_root *chunk_root = fs_info->chunk_root; 3697 u64 chunk_type; 3698 struct btrfs_chunk *chunk; 3699 struct btrfs_path *path = NULL; 3700 struct btrfs_key key; 3701 struct btrfs_key found_key; 3702 struct extent_buffer *leaf; 3703 int slot; 3704 int ret; 3705 int enospc_errors = 0; 3706 bool counting = true; 3707 /* The single value limit and min/max limits use the same bytes in the */ 3708 u64 limit_data = bctl->data.limit; 3709 u64 limit_meta = bctl->meta.limit; 3710 u64 limit_sys = bctl->sys.limit; 3711 u32 count_data = 0; 3712 u32 count_meta = 0; 3713 u32 count_sys = 0; 3714 int chunk_reserved = 0; 3715 3716 path = btrfs_alloc_path(); 3717 if (!path) { 3718 ret = -ENOMEM; 3719 goto error; 3720 } 3721 3722 /* zero out stat counters */ 3723 spin_lock(&fs_info->balance_lock); 3724 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3725 spin_unlock(&fs_info->balance_lock); 3726again: 3727 if (!counting) { 3728 /* 3729 * The single value limit and min/max limits use the same bytes 3730 * in the 3731 */ 3732 bctl->data.limit = limit_data; 3733 bctl->meta.limit = limit_meta; 3734 bctl->sys.limit = limit_sys; 3735 } 3736 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3737 key.offset = (u64)-1; 3738 key.type = BTRFS_CHUNK_ITEM_KEY; 3739 3740 while (1) { 3741 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3742 atomic_read(&fs_info->balance_cancel_req)) { 3743 ret = -ECANCELED; 3744 goto error; 3745 } 3746 3747 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3748 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3749 if (ret < 0) { 3750 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3751 goto error; 3752 } 3753 3754 /* 3755 * this shouldn't happen, it means the last relocate 3756 * failed 3757 */ 3758 if (ret == 0) 3759 BUG(); /* FIXME break ? */ 3760 3761 ret = btrfs_previous_item(chunk_root, path, 0, 3762 BTRFS_CHUNK_ITEM_KEY); 3763 if (ret) { 3764 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3765 ret = 0; 3766 break; 3767 } 3768 3769 leaf = path->nodes[0]; 3770 slot = path->slots[0]; 3771 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3772 3773 if (found_key.objectid != key.objectid) { 3774 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3775 break; 3776 } 3777 3778 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3779 chunk_type = btrfs_chunk_type(leaf, chunk); 3780 3781 if (!counting) { 3782 spin_lock(&fs_info->balance_lock); 3783 bctl->stat.considered++; 3784 spin_unlock(&fs_info->balance_lock); 3785 } 3786 3787 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3788 3789 btrfs_release_path(path); 3790 if (!ret) { 3791 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3792 goto loop; 3793 } 3794 3795 if (counting) { 3796 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3797 spin_lock(&fs_info->balance_lock); 3798 bctl->stat.expected++; 3799 spin_unlock(&fs_info->balance_lock); 3800 3801 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3802 count_data++; 3803 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3804 count_sys++; 3805 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3806 count_meta++; 3807 3808 goto loop; 3809 } 3810 3811 /* 3812 * Apply limit_min filter, no need to check if the LIMITS 3813 * filter is used, limit_min is 0 by default 3814 */ 3815 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3816 count_data < bctl->data.limit_min) 3817 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3818 count_meta < bctl->meta.limit_min) 3819 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3820 count_sys < bctl->sys.limit_min)) { 3821 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3822 goto loop; 3823 } 3824 3825 if (!chunk_reserved) { 3826 /* 3827 * We may be relocating the only data chunk we have, 3828 * which could potentially end up with losing data's 3829 * raid profile, so lets allocate an empty one in 3830 * advance. 3831 */ 3832 ret = btrfs_may_alloc_data_chunk(fs_info, 3833 found_key.offset); 3834 if (ret < 0) { 3835 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3836 goto error; 3837 } else if (ret == 1) { 3838 chunk_reserved = 1; 3839 } 3840 } 3841 3842 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3843 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3844 if (ret == -ENOSPC) { 3845 enospc_errors++; 3846 } else if (ret == -ETXTBSY) { 3847 btrfs_info(fs_info, 3848 "skipping relocation of block group %llu due to active swapfile", 3849 found_key.offset); 3850 ret = 0; 3851 } else if (ret) { 3852 goto error; 3853 } else { 3854 spin_lock(&fs_info->balance_lock); 3855 bctl->stat.completed++; 3856 spin_unlock(&fs_info->balance_lock); 3857 } 3858loop: 3859 if (found_key.offset == 0) 3860 break; 3861 key.offset = found_key.offset - 1; 3862 } 3863 3864 if (counting) { 3865 btrfs_release_path(path); 3866 counting = false; 3867 goto again; 3868 } 3869error: 3870 btrfs_free_path(path); 3871 if (enospc_errors) { 3872 btrfs_info(fs_info, "%d enospc errors during balance", 3873 enospc_errors); 3874 if (!ret) 3875 ret = -ENOSPC; 3876 } 3877 3878 return ret; 3879} 3880 3881/** 3882 * alloc_profile_is_valid - see if a given profile is valid and reduced 3883 * @flags: profile to validate 3884 * @extended: if true @flags is treated as an extended profile 3885 */ 3886static int alloc_profile_is_valid(u64 flags, int extended) 3887{ 3888 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3889 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3890 3891 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3892 3893 /* 1) check that all other bits are zeroed */ 3894 if (flags & ~mask) 3895 return 0; 3896 3897 /* 2) see if profile is reduced */ 3898 if (flags == 0) 3899 return !extended; /* "0" is valid for usual profiles */ 3900 3901 return has_single_bit_set(flags); 3902} 3903 3904static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3905{ 3906 /* cancel requested || normal exit path */ 3907 return atomic_read(&fs_info->balance_cancel_req) || 3908 (atomic_read(&fs_info->balance_pause_req) == 0 && 3909 atomic_read(&fs_info->balance_cancel_req) == 0); 3910} 3911 3912/* 3913 * Validate target profile against allowed profiles and return true if it's OK. 3914 * Otherwise print the error message and return false. 3915 */ 3916static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 3917 const struct btrfs_balance_args *bargs, 3918 u64 allowed, const char *type) 3919{ 3920 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3921 return true; 3922 3923 /* Profile is valid and does not have bits outside of the allowed set */ 3924 if (alloc_profile_is_valid(bargs->target, 1) && 3925 (bargs->target & ~allowed) == 0) 3926 return true; 3927 3928 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 3929 type, btrfs_bg_type_to_raid_name(bargs->target)); 3930 return false; 3931} 3932 3933/* 3934 * Fill @buf with textual description of balance filter flags @bargs, up to 3935 * @size_buf including the terminating null. The output may be trimmed if it 3936 * does not fit into the provided buffer. 3937 */ 3938static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 3939 u32 size_buf) 3940{ 3941 int ret; 3942 u32 size_bp = size_buf; 3943 char *bp = buf; 3944 u64 flags = bargs->flags; 3945 char tmp_buf[128] = {'\0'}; 3946 3947 if (!flags) 3948 return; 3949 3950#define CHECK_APPEND_NOARG(a) \ 3951 do { \ 3952 ret = snprintf(bp, size_bp, (a)); \ 3953 if (ret < 0 || ret >= size_bp) \ 3954 goto out_overflow; \ 3955 size_bp -= ret; \ 3956 bp += ret; \ 3957 } while (0) 3958 3959#define CHECK_APPEND_1ARG(a, v1) \ 3960 do { \ 3961 ret = snprintf(bp, size_bp, (a), (v1)); \ 3962 if (ret < 0 || ret >= size_bp) \ 3963 goto out_overflow; \ 3964 size_bp -= ret; \ 3965 bp += ret; \ 3966 } while (0) 3967 3968#define CHECK_APPEND_2ARG(a, v1, v2) \ 3969 do { \ 3970 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 3971 if (ret < 0 || ret >= size_bp) \ 3972 goto out_overflow; \ 3973 size_bp -= ret; \ 3974 bp += ret; \ 3975 } while (0) 3976 3977 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 3978 CHECK_APPEND_1ARG("convert=%s,", 3979 btrfs_bg_type_to_raid_name(bargs->target)); 3980 3981 if (flags & BTRFS_BALANCE_ARGS_SOFT) 3982 CHECK_APPEND_NOARG("soft,"); 3983 3984 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 3985 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 3986 sizeof(tmp_buf)); 3987 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 3988 } 3989 3990 if (flags & BTRFS_BALANCE_ARGS_USAGE) 3991 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 3992 3993 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 3994 CHECK_APPEND_2ARG("usage=%u..%u,", 3995 bargs->usage_min, bargs->usage_max); 3996 3997 if (flags & BTRFS_BALANCE_ARGS_DEVID) 3998 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 3999 4000 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4001 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4002 bargs->pstart, bargs->pend); 4003 4004 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4005 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4006 bargs->vstart, bargs->vend); 4007 4008 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4009 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4010 4011 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4012 CHECK_APPEND_2ARG("limit=%u..%u,", 4013 bargs->limit_min, bargs->limit_max); 4014 4015 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4016 CHECK_APPEND_2ARG("stripes=%u..%u,", 4017 bargs->stripes_min, bargs->stripes_max); 4018 4019#undef CHECK_APPEND_2ARG 4020#undef CHECK_APPEND_1ARG 4021#undef CHECK_APPEND_NOARG 4022 4023out_overflow: 4024 4025 if (size_bp < size_buf) 4026 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4027 else 4028 buf[0] = '\0'; 4029} 4030 4031static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4032{ 4033 u32 size_buf = 1024; 4034 char tmp_buf[192] = {'\0'}; 4035 char *buf; 4036 char *bp; 4037 u32 size_bp = size_buf; 4038 int ret; 4039 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4040 4041 buf = kzalloc(size_buf, GFP_KERNEL); 4042 if (!buf) 4043 return; 4044 4045 bp = buf; 4046 4047#define CHECK_APPEND_1ARG(a, v1) \ 4048 do { \ 4049 ret = snprintf(bp, size_bp, (a), (v1)); \ 4050 if (ret < 0 || ret >= size_bp) \ 4051 goto out_overflow; \ 4052 size_bp -= ret; \ 4053 bp += ret; \ 4054 } while (0) 4055 4056 if (bctl->flags & BTRFS_BALANCE_FORCE) 4057 CHECK_APPEND_1ARG("%s", "-f "); 4058 4059 if (bctl->flags & BTRFS_BALANCE_DATA) { 4060 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4061 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4062 } 4063 4064 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4065 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4066 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4067 } 4068 4069 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4070 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4071 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4072 } 4073 4074#undef CHECK_APPEND_1ARG 4075 4076out_overflow: 4077 4078 if (size_bp < size_buf) 4079 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4080 btrfs_info(fs_info, "balance: %s %s", 4081 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4082 "resume" : "start", buf); 4083 4084 kfree(buf); 4085} 4086 4087/* 4088 * Should be called with balance mutexe held 4089 */ 4090int btrfs_balance(struct btrfs_fs_info *fs_info, 4091 struct btrfs_balance_control *bctl, 4092 struct btrfs_ioctl_balance_args *bargs) 4093{ 4094 u64 meta_target, data_target; 4095 u64 allowed; 4096 int mixed = 0; 4097 int ret; 4098 u64 num_devices; 4099 unsigned seq; 4100 bool reducing_redundancy; 4101 int i; 4102 4103 if (btrfs_fs_closing(fs_info) || 4104 atomic_read(&fs_info->balance_pause_req) || 4105 btrfs_should_cancel_balance(fs_info)) { 4106 ret = -EINVAL; 4107 goto out; 4108 } 4109 4110 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4111 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4112 mixed = 1; 4113 4114 /* 4115 * In case of mixed groups both data and meta should be picked, 4116 * and identical options should be given for both of them. 4117 */ 4118 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4119 if (mixed && (bctl->flags & allowed)) { 4120 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4121 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4122 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4123 btrfs_err(fs_info, 4124 "balance: mixed groups data and metadata options must be the same"); 4125 ret = -EINVAL; 4126 goto out; 4127 } 4128 } 4129 4130 /* 4131 * rw_devices will not change at the moment, device add/delete/replace 4132 * are exclusive 4133 */ 4134 num_devices = fs_info->fs_devices->rw_devices; 4135 4136 /* 4137 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4138 * special bit for it, to make it easier to distinguish. Thus we need 4139 * to set it manually, or balance would refuse the profile. 4140 */ 4141 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4142 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4143 if (num_devices >= btrfs_raid_array[i].devs_min) 4144 allowed |= btrfs_raid_array[i].bg_flag; 4145 4146 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4147 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4148 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4149 ret = -EINVAL; 4150 goto out; 4151 } 4152 4153 /* 4154 * Allow to reduce metadata or system integrity only if force set for 4155 * profiles with redundancy (copies, parity) 4156 */ 4157 allowed = 0; 4158 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4159 if (btrfs_raid_array[i].ncopies >= 2 || 4160 btrfs_raid_array[i].tolerated_failures >= 1) 4161 allowed |= btrfs_raid_array[i].bg_flag; 4162 } 4163 do { 4164 seq = read_seqbegin(&fs_info->profiles_lock); 4165 4166 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4167 (fs_info->avail_system_alloc_bits & allowed) && 4168 !(bctl->sys.target & allowed)) || 4169 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4170 (fs_info->avail_metadata_alloc_bits & allowed) && 4171 !(bctl->meta.target & allowed))) 4172 reducing_redundancy = true; 4173 else 4174 reducing_redundancy = false; 4175 4176 /* if we're not converting, the target field is uninitialized */ 4177 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4178 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4179 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4180 bctl->data.target : fs_info->avail_data_alloc_bits; 4181 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4182 4183 if (reducing_redundancy) { 4184 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4185 btrfs_info(fs_info, 4186 "balance: force reducing metadata redundancy"); 4187 } else { 4188 btrfs_err(fs_info, 4189 "balance: reduces metadata redundancy, use --force if you want this"); 4190 ret = -EINVAL; 4191 goto out; 4192 } 4193 } 4194 4195 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4196 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4197 btrfs_warn(fs_info, 4198 "balance: metadata profile %s has lower redundancy than data profile %s", 4199 btrfs_bg_type_to_raid_name(meta_target), 4200 btrfs_bg_type_to_raid_name(data_target)); 4201 } 4202 4203 if (fs_info->send_in_progress) { 4204 btrfs_warn_rl(fs_info, 4205"cannot run balance while send operations are in progress (%d in progress)", 4206 fs_info->send_in_progress); 4207 ret = -EAGAIN; 4208 goto out; 4209 } 4210 4211 ret = insert_balance_item(fs_info, bctl); 4212 if (ret && ret != -EEXIST) 4213 goto out; 4214 4215 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4216 BUG_ON(ret == -EEXIST); 4217 BUG_ON(fs_info->balance_ctl); 4218 spin_lock(&fs_info->balance_lock); 4219 fs_info->balance_ctl = bctl; 4220 spin_unlock(&fs_info->balance_lock); 4221 } else { 4222 BUG_ON(ret != -EEXIST); 4223 spin_lock(&fs_info->balance_lock); 4224 update_balance_args(bctl); 4225 spin_unlock(&fs_info->balance_lock); 4226 } 4227 4228 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4229 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4230 describe_balance_start_or_resume(fs_info); 4231 mutex_unlock(&fs_info->balance_mutex); 4232 4233 ret = __btrfs_balance(fs_info); 4234 4235 mutex_lock(&fs_info->balance_mutex); 4236 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4237 btrfs_info(fs_info, "balance: paused"); 4238 /* 4239 * Balance can be canceled by: 4240 * 4241 * - Regular cancel request 4242 * Then ret == -ECANCELED and balance_cancel_req > 0 4243 * 4244 * - Fatal signal to "btrfs" process 4245 * Either the signal caught by wait_reserve_ticket() and callers 4246 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4247 * got -ECANCELED. 4248 * Either way, in this case balance_cancel_req = 0, and 4249 * ret == -EINTR or ret == -ECANCELED. 4250 * 4251 * So here we only check the return value to catch canceled balance. 4252 */ 4253 else if (ret == -ECANCELED || ret == -EINTR) 4254 btrfs_info(fs_info, "balance: canceled"); 4255 else 4256 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4257 4258 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4259 4260 if (bargs) { 4261 memset(bargs, 0, sizeof(*bargs)); 4262 btrfs_update_ioctl_balance_args(fs_info, bargs); 4263 } 4264 4265 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4266 balance_need_close(fs_info)) { 4267 reset_balance_state(fs_info); 4268 btrfs_exclop_finish(fs_info); 4269 } 4270 4271 wake_up(&fs_info->balance_wait_q); 4272 4273 return ret; 4274out: 4275 if (bctl->flags & BTRFS_BALANCE_RESUME) 4276 reset_balance_state(fs_info); 4277 else 4278 kfree(bctl); 4279 btrfs_exclop_finish(fs_info); 4280 4281 return ret; 4282} 4283 4284static int balance_kthread(void *data) 4285{ 4286 struct btrfs_fs_info *fs_info = data; 4287 int ret = 0; 4288 4289 sb_start_write(fs_info->sb); 4290 mutex_lock(&fs_info->balance_mutex); 4291 if (fs_info->balance_ctl) 4292 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4293 mutex_unlock(&fs_info->balance_mutex); 4294 sb_end_write(fs_info->sb); 4295 4296 return ret; 4297} 4298 4299int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4300{ 4301 struct task_struct *tsk; 4302 4303 mutex_lock(&fs_info->balance_mutex); 4304 if (!fs_info->balance_ctl) { 4305 mutex_unlock(&fs_info->balance_mutex); 4306 return 0; 4307 } 4308 mutex_unlock(&fs_info->balance_mutex); 4309 4310 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4311 btrfs_info(fs_info, "balance: resume skipped"); 4312 return 0; 4313 } 4314 4315 /* 4316 * A ro->rw remount sequence should continue with the paused balance 4317 * regardless of who pauses it, system or the user as of now, so set 4318 * the resume flag. 4319 */ 4320 spin_lock(&fs_info->balance_lock); 4321 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4322 spin_unlock(&fs_info->balance_lock); 4323 4324 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4325 return PTR_ERR_OR_ZERO(tsk); 4326} 4327 4328int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4329{ 4330 struct btrfs_balance_control *bctl; 4331 struct btrfs_balance_item *item; 4332 struct btrfs_disk_balance_args disk_bargs; 4333 struct btrfs_path *path; 4334 struct extent_buffer *leaf; 4335 struct btrfs_key key; 4336 int ret; 4337 4338 path = btrfs_alloc_path(); 4339 if (!path) 4340 return -ENOMEM; 4341 4342 key.objectid = BTRFS_BALANCE_OBJECTID; 4343 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4344 key.offset = 0; 4345 4346 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4347 if (ret < 0) 4348 goto out; 4349 if (ret > 0) { /* ret = -ENOENT; */ 4350 ret = 0; 4351 goto out; 4352 } 4353 4354 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4355 if (!bctl) { 4356 ret = -ENOMEM; 4357 goto out; 4358 } 4359 4360 leaf = path->nodes[0]; 4361 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4362 4363 bctl->flags = btrfs_balance_flags(leaf, item); 4364 bctl->flags |= BTRFS_BALANCE_RESUME; 4365 4366 btrfs_balance_data(leaf, item, &disk_bargs); 4367 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4368 btrfs_balance_meta(leaf, item, &disk_bargs); 4369 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4370 btrfs_balance_sys(leaf, item, &disk_bargs); 4371 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4372 4373 /* 4374 * This should never happen, as the paused balance state is recovered 4375 * during mount without any chance of other exclusive ops to collide. 4376 * 4377 * This gives the exclusive op status to balance and keeps in paused 4378 * state until user intervention (cancel or umount). If the ownership 4379 * cannot be assigned, show a message but do not fail. The balance 4380 * is in a paused state and must have fs_info::balance_ctl properly 4381 * set up. 4382 */ 4383 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) 4384 btrfs_warn(fs_info, 4385 "balance: cannot set exclusive op status, resume manually"); 4386 4387 btrfs_release_path(path); 4388 4389 mutex_lock(&fs_info->balance_mutex); 4390 BUG_ON(fs_info->balance_ctl); 4391 spin_lock(&fs_info->balance_lock); 4392 fs_info->balance_ctl = bctl; 4393 spin_unlock(&fs_info->balance_lock); 4394 mutex_unlock(&fs_info->balance_mutex); 4395out: 4396 btrfs_free_path(path); 4397 return ret; 4398} 4399 4400int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4401{ 4402 int ret = 0; 4403 4404 mutex_lock(&fs_info->balance_mutex); 4405 if (!fs_info->balance_ctl) { 4406 mutex_unlock(&fs_info->balance_mutex); 4407 return -ENOTCONN; 4408 } 4409 4410 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4411 atomic_inc(&fs_info->balance_pause_req); 4412 mutex_unlock(&fs_info->balance_mutex); 4413 4414 wait_event(fs_info->balance_wait_q, 4415 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4416 4417 mutex_lock(&fs_info->balance_mutex); 4418 /* we are good with balance_ctl ripped off from under us */ 4419 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4420 atomic_dec(&fs_info->balance_pause_req); 4421 } else { 4422 ret = -ENOTCONN; 4423 } 4424 4425 mutex_unlock(&fs_info->balance_mutex); 4426 return ret; 4427} 4428 4429int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4430{ 4431 mutex_lock(&fs_info->balance_mutex); 4432 if (!fs_info->balance_ctl) { 4433 mutex_unlock(&fs_info->balance_mutex); 4434 return -ENOTCONN; 4435 } 4436 4437 /* 4438 * A paused balance with the item stored on disk can be resumed at 4439 * mount time if the mount is read-write. Otherwise it's still paused 4440 * and we must not allow cancelling as it deletes the item. 4441 */ 4442 if (sb_rdonly(fs_info->sb)) { 4443 mutex_unlock(&fs_info->balance_mutex); 4444 return -EROFS; 4445 } 4446 4447 atomic_inc(&fs_info->balance_cancel_req); 4448 /* 4449 * if we are running just wait and return, balance item is 4450 * deleted in btrfs_balance in this case 4451 */ 4452 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4453 mutex_unlock(&fs_info->balance_mutex); 4454 wait_event(fs_info->balance_wait_q, 4455 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4456 mutex_lock(&fs_info->balance_mutex); 4457 } else { 4458 mutex_unlock(&fs_info->balance_mutex); 4459 /* 4460 * Lock released to allow other waiters to continue, we'll 4461 * reexamine the status again. 4462 */ 4463 mutex_lock(&fs_info->balance_mutex); 4464 4465 if (fs_info->balance_ctl) { 4466 reset_balance_state(fs_info); 4467 btrfs_exclop_finish(fs_info); 4468 btrfs_info(fs_info, "balance: canceled"); 4469 } 4470 } 4471 4472 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4473 atomic_dec(&fs_info->balance_cancel_req); 4474 mutex_unlock(&fs_info->balance_mutex); 4475 return 0; 4476} 4477 4478int btrfs_uuid_scan_kthread(void *data) 4479{ 4480 struct btrfs_fs_info *fs_info = data; 4481 struct btrfs_root *root = fs_info->tree_root; 4482 struct btrfs_key key; 4483 struct btrfs_path *path = NULL; 4484 int ret = 0; 4485 struct extent_buffer *eb; 4486 int slot; 4487 struct btrfs_root_item root_item; 4488 u32 item_size; 4489 struct btrfs_trans_handle *trans = NULL; 4490 bool closing = false; 4491 4492 path = btrfs_alloc_path(); 4493 if (!path) { 4494 ret = -ENOMEM; 4495 goto out; 4496 } 4497 4498 key.objectid = 0; 4499 key.type = BTRFS_ROOT_ITEM_KEY; 4500 key.offset = 0; 4501 4502 while (1) { 4503 if (btrfs_fs_closing(fs_info)) { 4504 closing = true; 4505 break; 4506 } 4507 ret = btrfs_search_forward(root, &key, path, 4508 BTRFS_OLDEST_GENERATION); 4509 if (ret) { 4510 if (ret > 0) 4511 ret = 0; 4512 break; 4513 } 4514 4515 if (key.type != BTRFS_ROOT_ITEM_KEY || 4516 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4517 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4518 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4519 goto skip; 4520 4521 eb = path->nodes[0]; 4522 slot = path->slots[0]; 4523 item_size = btrfs_item_size_nr(eb, slot); 4524 if (item_size < sizeof(root_item)) 4525 goto skip; 4526 4527 read_extent_buffer(eb, &root_item, 4528 btrfs_item_ptr_offset(eb, slot), 4529 (int)sizeof(root_item)); 4530 if (btrfs_root_refs(&root_item) == 0) 4531 goto skip; 4532 4533 if (!btrfs_is_empty_uuid(root_item.uuid) || 4534 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4535 if (trans) 4536 goto update_tree; 4537 4538 btrfs_release_path(path); 4539 /* 4540 * 1 - subvol uuid item 4541 * 1 - received_subvol uuid item 4542 */ 4543 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4544 if (IS_ERR(trans)) { 4545 ret = PTR_ERR(trans); 4546 break; 4547 } 4548 continue; 4549 } else { 4550 goto skip; 4551 } 4552update_tree: 4553 btrfs_release_path(path); 4554 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4555 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4556 BTRFS_UUID_KEY_SUBVOL, 4557 key.objectid); 4558 if (ret < 0) { 4559 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4560 ret); 4561 break; 4562 } 4563 } 4564 4565 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4566 ret = btrfs_uuid_tree_add(trans, 4567 root_item.received_uuid, 4568 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4569 key.objectid); 4570 if (ret < 0) { 4571 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4572 ret); 4573 break; 4574 } 4575 } 4576 4577skip: 4578 btrfs_release_path(path); 4579 if (trans) { 4580 ret = btrfs_end_transaction(trans); 4581 trans = NULL; 4582 if (ret) 4583 break; 4584 } 4585 4586 if (key.offset < (u64)-1) { 4587 key.offset++; 4588 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4589 key.offset = 0; 4590 key.type = BTRFS_ROOT_ITEM_KEY; 4591 } else if (key.objectid < (u64)-1) { 4592 key.offset = 0; 4593 key.type = BTRFS_ROOT_ITEM_KEY; 4594 key.objectid++; 4595 } else { 4596 break; 4597 } 4598 cond_resched(); 4599 } 4600 4601out: 4602 btrfs_free_path(path); 4603 if (trans && !IS_ERR(trans)) 4604 btrfs_end_transaction(trans); 4605 if (ret) 4606 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4607 else if (!closing) 4608 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4609 up(&fs_info->uuid_tree_rescan_sem); 4610 return 0; 4611} 4612 4613int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4614{ 4615 struct btrfs_trans_handle *trans; 4616 struct btrfs_root *tree_root = fs_info->tree_root; 4617 struct btrfs_root *uuid_root; 4618 struct task_struct *task; 4619 int ret; 4620 4621 /* 4622 * 1 - root node 4623 * 1 - root item 4624 */ 4625 trans = btrfs_start_transaction(tree_root, 2); 4626 if (IS_ERR(trans)) 4627 return PTR_ERR(trans); 4628 4629 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4630 if (IS_ERR(uuid_root)) { 4631 ret = PTR_ERR(uuid_root); 4632 btrfs_abort_transaction(trans, ret); 4633 btrfs_end_transaction(trans); 4634 return ret; 4635 } 4636 4637 fs_info->uuid_root = uuid_root; 4638 4639 ret = btrfs_commit_transaction(trans); 4640 if (ret) 4641 return ret; 4642 4643 down(&fs_info->uuid_tree_rescan_sem); 4644 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4645 if (IS_ERR(task)) { 4646 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4647 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4648 up(&fs_info->uuid_tree_rescan_sem); 4649 return PTR_ERR(task); 4650 } 4651 4652 return 0; 4653} 4654 4655/* 4656 * shrinking a device means finding all of the device extents past 4657 * the new size, and then following the back refs to the chunks. 4658 * The chunk relocation code actually frees the device extent 4659 */ 4660int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4661{ 4662 struct btrfs_fs_info *fs_info = device->fs_info; 4663 struct btrfs_root *root = fs_info->dev_root; 4664 struct btrfs_trans_handle *trans; 4665 struct btrfs_dev_extent *dev_extent = NULL; 4666 struct btrfs_path *path; 4667 u64 length; 4668 u64 chunk_offset; 4669 int ret; 4670 int slot; 4671 int failed = 0; 4672 bool retried = false; 4673 struct extent_buffer *l; 4674 struct btrfs_key key; 4675 struct btrfs_super_block *super_copy = fs_info->super_copy; 4676 u64 old_total = btrfs_super_total_bytes(super_copy); 4677 u64 old_size = btrfs_device_get_total_bytes(device); 4678 u64 diff; 4679 u64 start; 4680 4681 new_size = round_down(new_size, fs_info->sectorsize); 4682 start = new_size; 4683 diff = round_down(old_size - new_size, fs_info->sectorsize); 4684 4685 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4686 return -EINVAL; 4687 4688 path = btrfs_alloc_path(); 4689 if (!path) 4690 return -ENOMEM; 4691 4692 path->reada = READA_BACK; 4693 4694 trans = btrfs_start_transaction(root, 0); 4695 if (IS_ERR(trans)) { 4696 btrfs_free_path(path); 4697 return PTR_ERR(trans); 4698 } 4699 4700 mutex_lock(&fs_info->chunk_mutex); 4701 4702 btrfs_device_set_total_bytes(device, new_size); 4703 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4704 device->fs_devices->total_rw_bytes -= diff; 4705 atomic64_sub(diff, &fs_info->free_chunk_space); 4706 } 4707 4708 /* 4709 * Once the device's size has been set to the new size, ensure all 4710 * in-memory chunks are synced to disk so that the loop below sees them 4711 * and relocates them accordingly. 4712 */ 4713 if (contains_pending_extent(device, &start, diff)) { 4714 mutex_unlock(&fs_info->chunk_mutex); 4715 ret = btrfs_commit_transaction(trans); 4716 if (ret) 4717 goto done; 4718 } else { 4719 mutex_unlock(&fs_info->chunk_mutex); 4720 btrfs_end_transaction(trans); 4721 } 4722 4723again: 4724 key.objectid = device->devid; 4725 key.offset = (u64)-1; 4726 key.type = BTRFS_DEV_EXTENT_KEY; 4727 4728 do { 4729 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4730 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4731 if (ret < 0) { 4732 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4733 goto done; 4734 } 4735 4736 ret = btrfs_previous_item(root, path, 0, key.type); 4737 if (ret) 4738 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4739 if (ret < 0) 4740 goto done; 4741 if (ret) { 4742 ret = 0; 4743 btrfs_release_path(path); 4744 break; 4745 } 4746 4747 l = path->nodes[0]; 4748 slot = path->slots[0]; 4749 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4750 4751 if (key.objectid != device->devid) { 4752 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4753 btrfs_release_path(path); 4754 break; 4755 } 4756 4757 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4758 length = btrfs_dev_extent_length(l, dev_extent); 4759 4760 if (key.offset + length <= new_size) { 4761 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4762 btrfs_release_path(path); 4763 break; 4764 } 4765 4766 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4767 btrfs_release_path(path); 4768 4769 /* 4770 * We may be relocating the only data chunk we have, 4771 * which could potentially end up with losing data's 4772 * raid profile, so lets allocate an empty one in 4773 * advance. 4774 */ 4775 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4776 if (ret < 0) { 4777 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4778 goto done; 4779 } 4780 4781 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4782 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4783 if (ret == -ENOSPC) { 4784 failed++; 4785 } else if (ret) { 4786 if (ret == -ETXTBSY) { 4787 btrfs_warn(fs_info, 4788 "could not shrink block group %llu due to active swapfile", 4789 chunk_offset); 4790 } 4791 goto done; 4792 } 4793 } while (key.offset-- > 0); 4794 4795 if (failed && !retried) { 4796 failed = 0; 4797 retried = true; 4798 goto again; 4799 } else if (failed && retried) { 4800 ret = -ENOSPC; 4801 goto done; 4802 } 4803 4804 /* Shrinking succeeded, else we would be at "done". */ 4805 trans = btrfs_start_transaction(root, 0); 4806 if (IS_ERR(trans)) { 4807 ret = PTR_ERR(trans); 4808 goto done; 4809 } 4810 4811 mutex_lock(&fs_info->chunk_mutex); 4812 /* Clear all state bits beyond the shrunk device size */ 4813 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4814 CHUNK_STATE_MASK); 4815 4816 btrfs_device_set_disk_total_bytes(device, new_size); 4817 if (list_empty(&device->post_commit_list)) 4818 list_add_tail(&device->post_commit_list, 4819 &trans->transaction->dev_update_list); 4820 4821 WARN_ON(diff > old_total); 4822 btrfs_set_super_total_bytes(super_copy, 4823 round_down(old_total - diff, fs_info->sectorsize)); 4824 mutex_unlock(&fs_info->chunk_mutex); 4825 4826 /* Now btrfs_update_device() will change the on-disk size. */ 4827 ret = btrfs_update_device(trans, device); 4828 if (ret < 0) { 4829 btrfs_abort_transaction(trans, ret); 4830 btrfs_end_transaction(trans); 4831 } else { 4832 ret = btrfs_commit_transaction(trans); 4833 } 4834done: 4835 btrfs_free_path(path); 4836 if (ret) { 4837 mutex_lock(&fs_info->chunk_mutex); 4838 btrfs_device_set_total_bytes(device, old_size); 4839 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4840 device->fs_devices->total_rw_bytes += diff; 4841 atomic64_add(diff, &fs_info->free_chunk_space); 4842 mutex_unlock(&fs_info->chunk_mutex); 4843 } 4844 return ret; 4845} 4846 4847static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4848 struct btrfs_key *key, 4849 struct btrfs_chunk *chunk, int item_size) 4850{ 4851 struct btrfs_super_block *super_copy = fs_info->super_copy; 4852 struct btrfs_disk_key disk_key; 4853 u32 array_size; 4854 u8 *ptr; 4855 4856 mutex_lock(&fs_info->chunk_mutex); 4857 array_size = btrfs_super_sys_array_size(super_copy); 4858 if (array_size + item_size + sizeof(disk_key) 4859 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4860 mutex_unlock(&fs_info->chunk_mutex); 4861 return -EFBIG; 4862 } 4863 4864 ptr = super_copy->sys_chunk_array + array_size; 4865 btrfs_cpu_key_to_disk(&disk_key, key); 4866 memcpy(ptr, &disk_key, sizeof(disk_key)); 4867 ptr += sizeof(disk_key); 4868 memcpy(ptr, chunk, item_size); 4869 item_size += sizeof(disk_key); 4870 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4871 mutex_unlock(&fs_info->chunk_mutex); 4872 4873 return 0; 4874} 4875 4876/* 4877 * sort the devices in descending order by max_avail, total_avail 4878 */ 4879static int btrfs_cmp_device_info(const void *a, const void *b) 4880{ 4881 const struct btrfs_device_info *di_a = a; 4882 const struct btrfs_device_info *di_b = b; 4883 4884 if (di_a->max_avail > di_b->max_avail) 4885 return -1; 4886 if (di_a->max_avail < di_b->max_avail) 4887 return 1; 4888 if (di_a->total_avail > di_b->total_avail) 4889 return -1; 4890 if (di_a->total_avail < di_b->total_avail) 4891 return 1; 4892 return 0; 4893} 4894 4895static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4896{ 4897 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4898 return; 4899 4900 btrfs_set_fs_incompat(info, RAID56); 4901} 4902 4903static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 4904{ 4905 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 4906 return; 4907 4908 btrfs_set_fs_incompat(info, RAID1C34); 4909} 4910 4911/* 4912 * Structure used internally for __btrfs_alloc_chunk() function. 4913 * Wraps needed parameters. 4914 */ 4915struct alloc_chunk_ctl { 4916 u64 start; 4917 u64 type; 4918 /* Total number of stripes to allocate */ 4919 int num_stripes; 4920 /* sub_stripes info for map */ 4921 int sub_stripes; 4922 /* Stripes per device */ 4923 int dev_stripes; 4924 /* Maximum number of devices to use */ 4925 int devs_max; 4926 /* Minimum number of devices to use */ 4927 int devs_min; 4928 /* ndevs has to be a multiple of this */ 4929 int devs_increment; 4930 /* Number of copies */ 4931 int ncopies; 4932 /* Number of stripes worth of bytes to store parity information */ 4933 int nparity; 4934 u64 max_stripe_size; 4935 u64 max_chunk_size; 4936 u64 dev_extent_min; 4937 u64 stripe_size; 4938 u64 chunk_size; 4939 int ndevs; 4940}; 4941 4942static void init_alloc_chunk_ctl_policy_regular( 4943 struct btrfs_fs_devices *fs_devices, 4944 struct alloc_chunk_ctl *ctl) 4945{ 4946 u64 type = ctl->type; 4947 4948 if (type & BTRFS_BLOCK_GROUP_DATA) { 4949 ctl->max_stripe_size = SZ_1G; 4950 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 4951 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4952 /* For larger filesystems, use larger metadata chunks */ 4953 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4954 ctl->max_stripe_size = SZ_1G; 4955 else 4956 ctl->max_stripe_size = SZ_256M; 4957 ctl->max_chunk_size = ctl->max_stripe_size; 4958 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4959 ctl->max_stripe_size = SZ_32M; 4960 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 4961 ctl->devs_max = min_t(int, ctl->devs_max, 4962 BTRFS_MAX_DEVS_SYS_CHUNK); 4963 } else { 4964 BUG(); 4965 } 4966 4967 /* We don't want a chunk larger than 10% of writable space */ 4968 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4969 ctl->max_chunk_size); 4970 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes; 4971} 4972 4973static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 4974 struct alloc_chunk_ctl *ctl) 4975{ 4976 int index = btrfs_bg_flags_to_raid_index(ctl->type); 4977 4978 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 4979 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 4980 ctl->devs_max = btrfs_raid_array[index].devs_max; 4981 if (!ctl->devs_max) 4982 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 4983 ctl->devs_min = btrfs_raid_array[index].devs_min; 4984 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 4985 ctl->ncopies = btrfs_raid_array[index].ncopies; 4986 ctl->nparity = btrfs_raid_array[index].nparity; 4987 ctl->ndevs = 0; 4988 4989 switch (fs_devices->chunk_alloc_policy) { 4990 case BTRFS_CHUNK_ALLOC_REGULAR: 4991 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 4992 break; 4993 default: 4994 BUG(); 4995 } 4996} 4997 4998static int gather_device_info(struct btrfs_fs_devices *fs_devices, 4999 struct alloc_chunk_ctl *ctl, 5000 struct btrfs_device_info *devices_info) 5001{ 5002 struct btrfs_fs_info *info = fs_devices->fs_info; 5003 struct btrfs_device *device; 5004 u64 total_avail; 5005 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5006 int ret; 5007 int ndevs = 0; 5008 u64 max_avail; 5009 u64 dev_offset; 5010 5011 /* 5012 * in the first pass through the devices list, we gather information 5013 * about the available holes on each device. 5014 */ 5015 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5016 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5017 WARN(1, KERN_ERR 5018 "BTRFS: read-only device in alloc_list\n"); 5019 continue; 5020 } 5021 5022 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5023 &device->dev_state) || 5024 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5025 continue; 5026 5027 if (device->total_bytes > device->bytes_used) 5028 total_avail = device->total_bytes - device->bytes_used; 5029 else 5030 total_avail = 0; 5031 5032 /* If there is no space on this device, skip it. */ 5033 if (total_avail < ctl->dev_extent_min) 5034 continue; 5035 5036 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5037 &max_avail); 5038 if (ret && ret != -ENOSPC) 5039 return ret; 5040 5041 if (ret == 0) 5042 max_avail = dev_extent_want; 5043 5044 if (max_avail < ctl->dev_extent_min) { 5045 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5046 btrfs_debug(info, 5047 "%s: devid %llu has no free space, have=%llu want=%llu", 5048 __func__, device->devid, max_avail, 5049 ctl->dev_extent_min); 5050 continue; 5051 } 5052 5053 if (ndevs == fs_devices->rw_devices) { 5054 WARN(1, "%s: found more than %llu devices\n", 5055 __func__, fs_devices->rw_devices); 5056 break; 5057 } 5058 devices_info[ndevs].dev_offset = dev_offset; 5059 devices_info[ndevs].max_avail = max_avail; 5060 devices_info[ndevs].total_avail = total_avail; 5061 devices_info[ndevs].dev = device; 5062 ++ndevs; 5063 } 5064 ctl->ndevs = ndevs; 5065 5066 /* 5067 * now sort the devices by hole size / available space 5068 */ 5069 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5070 btrfs_cmp_device_info, NULL); 5071 5072 return 0; 5073} 5074 5075static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5076 struct btrfs_device_info *devices_info) 5077{ 5078 /* Number of stripes that count for block group size */ 5079 int data_stripes; 5080 5081 /* 5082 * The primary goal is to maximize the number of stripes, so use as 5083 * many devices as possible, even if the stripes are not maximum sized. 5084 * 5085 * The DUP profile stores more than one stripe per device, the 5086 * max_avail is the total size so we have to adjust. 5087 */ 5088 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5089 ctl->dev_stripes); 5090 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5091 5092 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5093 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5094 5095 /* 5096 * Use the number of data stripes to figure out how big this chunk is 5097 * really going to be in terms of logical address space, and compare 5098 * that answer with the max chunk size. If it's higher, we try to 5099 * reduce stripe_size. 5100 */ 5101 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5102 /* 5103 * Reduce stripe_size, round it up to a 16MB boundary again and 5104 * then use it, unless it ends up being even bigger than the 5105 * previous value we had already. 5106 */ 5107 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5108 data_stripes), SZ_16M), 5109 ctl->stripe_size); 5110 } 5111 5112 /* Align to BTRFS_STRIPE_LEN */ 5113 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5114 ctl->chunk_size = ctl->stripe_size * data_stripes; 5115 5116 return 0; 5117} 5118 5119static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5120 struct alloc_chunk_ctl *ctl, 5121 struct btrfs_device_info *devices_info) 5122{ 5123 struct btrfs_fs_info *info = fs_devices->fs_info; 5124 5125 /* 5126 * Round down to number of usable stripes, devs_increment can be any 5127 * number so we can't use round_down() that requires power of 2, while 5128 * rounddown is safe. 5129 */ 5130 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5131 5132 if (ctl->ndevs < ctl->devs_min) { 5133 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5134 btrfs_debug(info, 5135 "%s: not enough devices with free space: have=%d minimum required=%d", 5136 __func__, ctl->ndevs, ctl->devs_min); 5137 } 5138 return -ENOSPC; 5139 } 5140 5141 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5142 5143 switch (fs_devices->chunk_alloc_policy) { 5144 case BTRFS_CHUNK_ALLOC_REGULAR: 5145 return decide_stripe_size_regular(ctl, devices_info); 5146 default: 5147 BUG(); 5148 } 5149} 5150 5151static int create_chunk(struct btrfs_trans_handle *trans, 5152 struct alloc_chunk_ctl *ctl, 5153 struct btrfs_device_info *devices_info) 5154{ 5155 struct btrfs_fs_info *info = trans->fs_info; 5156 struct map_lookup *map = NULL; 5157 struct extent_map_tree *em_tree; 5158 struct extent_map *em; 5159 u64 start = ctl->start; 5160 u64 type = ctl->type; 5161 int ret; 5162 int i; 5163 int j; 5164 5165 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5166 if (!map) 5167 return -ENOMEM; 5168 map->num_stripes = ctl->num_stripes; 5169 5170 for (i = 0; i < ctl->ndevs; ++i) { 5171 for (j = 0; j < ctl->dev_stripes; ++j) { 5172 int s = i * ctl->dev_stripes + j; 5173 map->stripes[s].dev = devices_info[i].dev; 5174 map->stripes[s].physical = devices_info[i].dev_offset + 5175 j * ctl->stripe_size; 5176 } 5177 } 5178 map->stripe_len = BTRFS_STRIPE_LEN; 5179 map->io_align = BTRFS_STRIPE_LEN; 5180 map->io_width = BTRFS_STRIPE_LEN; 5181 map->type = type; 5182 map->sub_stripes = ctl->sub_stripes; 5183 5184 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5185 5186 em = alloc_extent_map(); 5187 if (!em) { 5188 kfree(map); 5189 return -ENOMEM; 5190 } 5191 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5192 em->map_lookup = map; 5193 em->start = start; 5194 em->len = ctl->chunk_size; 5195 em->block_start = 0; 5196 em->block_len = em->len; 5197 em->orig_block_len = ctl->stripe_size; 5198 5199 em_tree = &info->mapping_tree; 5200 write_lock(&em_tree->lock); 5201 ret = add_extent_mapping(em_tree, em, 0); 5202 if (ret) { 5203 write_unlock(&em_tree->lock); 5204 free_extent_map(em); 5205 return ret; 5206 } 5207 write_unlock(&em_tree->lock); 5208 5209 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size); 5210 if (ret) 5211 goto error_del_extent; 5212 5213 for (i = 0; i < map->num_stripes; i++) { 5214 struct btrfs_device *dev = map->stripes[i].dev; 5215 5216 btrfs_device_set_bytes_used(dev, 5217 dev->bytes_used + ctl->stripe_size); 5218 if (list_empty(&dev->post_commit_list)) 5219 list_add_tail(&dev->post_commit_list, 5220 &trans->transaction->dev_update_list); 5221 } 5222 5223 atomic64_sub(ctl->stripe_size * map->num_stripes, 5224 &info->free_chunk_space); 5225 5226 free_extent_map(em); 5227 check_raid56_incompat_flag(info, type); 5228 check_raid1c34_incompat_flag(info, type); 5229 5230 return 0; 5231 5232error_del_extent: 5233 write_lock(&em_tree->lock); 5234 remove_extent_mapping(em_tree, em); 5235 write_unlock(&em_tree->lock); 5236 5237 /* One for our allocation */ 5238 free_extent_map(em); 5239 /* One for the tree reference */ 5240 free_extent_map(em); 5241 5242 return ret; 5243} 5244 5245int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) 5246{ 5247 struct btrfs_fs_info *info = trans->fs_info; 5248 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5249 struct btrfs_device_info *devices_info = NULL; 5250 struct alloc_chunk_ctl ctl; 5251 int ret; 5252 5253 lockdep_assert_held(&info->chunk_mutex); 5254 5255 if (!alloc_profile_is_valid(type, 0)) { 5256 ASSERT(0); 5257 return -EINVAL; 5258 } 5259 5260 if (list_empty(&fs_devices->alloc_list)) { 5261 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5262 btrfs_debug(info, "%s: no writable device", __func__); 5263 return -ENOSPC; 5264 } 5265 5266 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5267 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5268 ASSERT(0); 5269 return -EINVAL; 5270 } 5271 5272 ctl.start = find_next_chunk(info); 5273 ctl.type = type; 5274 init_alloc_chunk_ctl(fs_devices, &ctl); 5275 5276 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5277 GFP_NOFS); 5278 if (!devices_info) 5279 return -ENOMEM; 5280 5281 ret = gather_device_info(fs_devices, &ctl, devices_info); 5282 if (ret < 0) 5283 goto out; 5284 5285 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5286 if (ret < 0) 5287 goto out; 5288 5289 ret = create_chunk(trans, &ctl, devices_info); 5290 5291out: 5292 kfree(devices_info); 5293 return ret; 5294} 5295 5296/* 5297 * Chunk allocation falls into two parts. The first part does work 5298 * that makes the new allocated chunk usable, but does not do any operation 5299 * that modifies the chunk tree. The second part does the work that 5300 * requires modifying the chunk tree. This division is important for the 5301 * bootstrap process of adding storage to a seed btrfs. 5302 */ 5303int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 5304 u64 chunk_offset, u64 chunk_size) 5305{ 5306 struct btrfs_fs_info *fs_info = trans->fs_info; 5307 struct btrfs_root *extent_root = fs_info->extent_root; 5308 struct btrfs_root *chunk_root = fs_info->chunk_root; 5309 struct btrfs_key key; 5310 struct btrfs_device *device; 5311 struct btrfs_chunk *chunk; 5312 struct btrfs_stripe *stripe; 5313 struct extent_map *em; 5314 struct map_lookup *map; 5315 size_t item_size; 5316 u64 dev_offset; 5317 u64 stripe_size; 5318 int i = 0; 5319 int ret = 0; 5320 5321 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 5322 if (IS_ERR(em)) 5323 return PTR_ERR(em); 5324 5325 map = em->map_lookup; 5326 item_size = btrfs_chunk_item_size(map->num_stripes); 5327 stripe_size = em->orig_block_len; 5328 5329 chunk = kzalloc(item_size, GFP_NOFS); 5330 if (!chunk) { 5331 ret = -ENOMEM; 5332 goto out; 5333 } 5334 5335 /* 5336 * Take the device list mutex to prevent races with the final phase of 5337 * a device replace operation that replaces the device object associated 5338 * with the map's stripes, because the device object's id can change 5339 * at any time during that final phase of the device replace operation 5340 * (dev-replace.c:btrfs_dev_replace_finishing()). 5341 */ 5342 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5343 for (i = 0; i < map->num_stripes; i++) { 5344 device = map->stripes[i].dev; 5345 dev_offset = map->stripes[i].physical; 5346 5347 ret = btrfs_update_device(trans, device); 5348 if (ret) 5349 break; 5350 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5351 dev_offset, stripe_size); 5352 if (ret) 5353 break; 5354 } 5355 if (ret) { 5356 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5357 goto out; 5358 } 5359 5360 stripe = &chunk->stripe; 5361 for (i = 0; i < map->num_stripes; i++) { 5362 device = map->stripes[i].dev; 5363 dev_offset = map->stripes[i].physical; 5364 5365 btrfs_set_stack_stripe_devid(stripe, device->devid); 5366 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5367 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5368 stripe++; 5369 } 5370 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5371 5372 btrfs_set_stack_chunk_length(chunk, chunk_size); 5373 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5374 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5375 btrfs_set_stack_chunk_type(chunk, map->type); 5376 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5377 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5378 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5379 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5380 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5381 5382 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5383 key.type = BTRFS_CHUNK_ITEM_KEY; 5384 key.offset = chunk_offset; 5385 5386 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5387 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5388 /* 5389 * TODO: Cleanup of inserted chunk root in case of 5390 * failure. 5391 */ 5392 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5393 } 5394 5395out: 5396 kfree(chunk); 5397 free_extent_map(em); 5398 return ret; 5399} 5400 5401static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5402{ 5403 struct btrfs_fs_info *fs_info = trans->fs_info; 5404 u64 alloc_profile; 5405 int ret; 5406 5407 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5408 ret = btrfs_alloc_chunk(trans, alloc_profile); 5409 if (ret) 5410 return ret; 5411 5412 alloc_profile = btrfs_system_alloc_profile(fs_info); 5413 ret = btrfs_alloc_chunk(trans, alloc_profile); 5414 return ret; 5415} 5416 5417static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5418{ 5419 const int index = btrfs_bg_flags_to_raid_index(map->type); 5420 5421 return btrfs_raid_array[index].tolerated_failures; 5422} 5423 5424int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5425{ 5426 struct extent_map *em; 5427 struct map_lookup *map; 5428 int readonly = 0; 5429 int miss_ndevs = 0; 5430 int i; 5431 5432 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5433 if (IS_ERR(em)) 5434 return 1; 5435 5436 map = em->map_lookup; 5437 for (i = 0; i < map->num_stripes; i++) { 5438 if (test_bit(BTRFS_DEV_STATE_MISSING, 5439 &map->stripes[i].dev->dev_state)) { 5440 miss_ndevs++; 5441 continue; 5442 } 5443 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5444 &map->stripes[i].dev->dev_state)) { 5445 readonly = 1; 5446 goto end; 5447 } 5448 } 5449 5450 /* 5451 * If the number of missing devices is larger than max errors, 5452 * we can not write the data into that chunk successfully, so 5453 * set it readonly. 5454 */ 5455 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5456 readonly = 1; 5457end: 5458 free_extent_map(em); 5459 return readonly; 5460} 5461 5462void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5463{ 5464 struct extent_map *em; 5465 5466 while (1) { 5467 write_lock(&tree->lock); 5468 em = lookup_extent_mapping(tree, 0, (u64)-1); 5469 if (em) 5470 remove_extent_mapping(tree, em); 5471 write_unlock(&tree->lock); 5472 if (!em) 5473 break; 5474 /* once for us */ 5475 free_extent_map(em); 5476 /* once for the tree */ 5477 free_extent_map(em); 5478 } 5479} 5480 5481int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5482{ 5483 struct extent_map *em; 5484 struct map_lookup *map; 5485 int ret; 5486 5487 em = btrfs_get_chunk_map(fs_info, logical, len); 5488 if (IS_ERR(em)) 5489 /* 5490 * We could return errors for these cases, but that could get 5491 * ugly and we'd probably do the same thing which is just not do 5492 * anything else and exit, so return 1 so the callers don't try 5493 * to use other copies. 5494 */ 5495 return 1; 5496 5497 map = em->map_lookup; 5498 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5499 ret = map->num_stripes; 5500 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5501 ret = map->sub_stripes; 5502 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5503 ret = 2; 5504 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5505 /* 5506 * There could be two corrupted data stripes, we need 5507 * to loop retry in order to rebuild the correct data. 5508 * 5509 * Fail a stripe at a time on every retry except the 5510 * stripe under reconstruction. 5511 */ 5512 ret = map->num_stripes; 5513 else 5514 ret = 1; 5515 free_extent_map(em); 5516 5517 down_read(&fs_info->dev_replace.rwsem); 5518 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5519 fs_info->dev_replace.tgtdev) 5520 ret++; 5521 up_read(&fs_info->dev_replace.rwsem); 5522 5523 return ret; 5524} 5525 5526unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5527 u64 logical) 5528{ 5529 struct extent_map *em; 5530 struct map_lookup *map; 5531 unsigned long len = fs_info->sectorsize; 5532 5533 em = btrfs_get_chunk_map(fs_info, logical, len); 5534 5535 if (!WARN_ON(IS_ERR(em))) { 5536 map = em->map_lookup; 5537 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5538 len = map->stripe_len * nr_data_stripes(map); 5539 free_extent_map(em); 5540 } 5541 return len; 5542} 5543 5544int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5545{ 5546 struct extent_map *em; 5547 struct map_lookup *map; 5548 int ret = 0; 5549 5550 em = btrfs_get_chunk_map(fs_info, logical, len); 5551 5552 if(!WARN_ON(IS_ERR(em))) { 5553 map = em->map_lookup; 5554 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5555 ret = 1; 5556 free_extent_map(em); 5557 } 5558 return ret; 5559} 5560 5561static int find_live_mirror(struct btrfs_fs_info *fs_info, 5562 struct map_lookup *map, int first, 5563 int dev_replace_is_ongoing) 5564{ 5565 int i; 5566 int num_stripes; 5567 int preferred_mirror; 5568 int tolerance; 5569 struct btrfs_device *srcdev; 5570 5571 ASSERT((map->type & 5572 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5573 5574 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5575 num_stripes = map->sub_stripes; 5576 else 5577 num_stripes = map->num_stripes; 5578 5579 preferred_mirror = first + current->pid % num_stripes; 5580 5581 if (dev_replace_is_ongoing && 5582 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5583 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5584 srcdev = fs_info->dev_replace.srcdev; 5585 else 5586 srcdev = NULL; 5587 5588 /* 5589 * try to avoid the drive that is the source drive for a 5590 * dev-replace procedure, only choose it if no other non-missing 5591 * mirror is available 5592 */ 5593 for (tolerance = 0; tolerance < 2; tolerance++) { 5594 if (map->stripes[preferred_mirror].dev->bdev && 5595 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5596 return preferred_mirror; 5597 for (i = first; i < first + num_stripes; i++) { 5598 if (map->stripes[i].dev->bdev && 5599 (tolerance || map->stripes[i].dev != srcdev)) 5600 return i; 5601 } 5602 } 5603 5604 /* we couldn't find one that doesn't fail. Just return something 5605 * and the io error handling code will clean up eventually 5606 */ 5607 return preferred_mirror; 5608} 5609 5610/* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5611static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5612{ 5613 int i; 5614 int again = 1; 5615 5616 while (again) { 5617 again = 0; 5618 for (i = 0; i < num_stripes - 1; i++) { 5619 /* Swap if parity is on a smaller index */ 5620 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) { 5621 swap(bbio->stripes[i], bbio->stripes[i + 1]); 5622 swap(bbio->raid_map[i], bbio->raid_map[i + 1]); 5623 again = 1; 5624 } 5625 } 5626 } 5627} 5628 5629static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5630{ 5631 struct btrfs_bio *bbio = kzalloc( 5632 /* the size of the btrfs_bio */ 5633 sizeof(struct btrfs_bio) + 5634 /* plus the variable array for the stripes */ 5635 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5636 /* plus the variable array for the tgt dev */ 5637 sizeof(int) * (real_stripes) + 5638 /* 5639 * plus the raid_map, which includes both the tgt dev 5640 * and the stripes 5641 */ 5642 sizeof(u64) * (total_stripes), 5643 GFP_NOFS|__GFP_NOFAIL); 5644 5645 atomic_set(&bbio->error, 0); 5646 refcount_set(&bbio->refs, 1); 5647 5648 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes); 5649 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes); 5650 5651 return bbio; 5652} 5653 5654void btrfs_get_bbio(struct btrfs_bio *bbio) 5655{ 5656 WARN_ON(!refcount_read(&bbio->refs)); 5657 refcount_inc(&bbio->refs); 5658} 5659 5660void btrfs_put_bbio(struct btrfs_bio *bbio) 5661{ 5662 if (!bbio) 5663 return; 5664 if (refcount_dec_and_test(&bbio->refs)) 5665 kfree(bbio); 5666} 5667 5668/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5669/* 5670 * Please note that, discard won't be sent to target device of device 5671 * replace. 5672 */ 5673static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5674 u64 logical, u64 *length_ret, 5675 struct btrfs_bio **bbio_ret) 5676{ 5677 struct extent_map *em; 5678 struct map_lookup *map; 5679 struct btrfs_bio *bbio; 5680 u64 length = *length_ret; 5681 u64 offset; 5682 u64 stripe_nr; 5683 u64 stripe_nr_end; 5684 u64 stripe_end_offset; 5685 u64 stripe_cnt; 5686 u64 stripe_len; 5687 u64 stripe_offset; 5688 u64 num_stripes; 5689 u32 stripe_index; 5690 u32 factor = 0; 5691 u32 sub_stripes = 0; 5692 u64 stripes_per_dev = 0; 5693 u32 remaining_stripes = 0; 5694 u32 last_stripe = 0; 5695 int ret = 0; 5696 int i; 5697 5698 /* discard always return a bbio */ 5699 ASSERT(bbio_ret); 5700 5701 em = btrfs_get_chunk_map(fs_info, logical, length); 5702 if (IS_ERR(em)) 5703 return PTR_ERR(em); 5704 5705 map = em->map_lookup; 5706 /* we don't discard raid56 yet */ 5707 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5708 ret = -EOPNOTSUPP; 5709 goto out; 5710 } 5711 5712 offset = logical - em->start; 5713 length = min_t(u64, em->start + em->len - logical, length); 5714 *length_ret = length; 5715 5716 stripe_len = map->stripe_len; 5717 /* 5718 * stripe_nr counts the total number of stripes we have to stride 5719 * to get to this block 5720 */ 5721 stripe_nr = div64_u64(offset, stripe_len); 5722 5723 /* stripe_offset is the offset of this block in its stripe */ 5724 stripe_offset = offset - stripe_nr * stripe_len; 5725 5726 stripe_nr_end = round_up(offset + length, map->stripe_len); 5727 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5728 stripe_cnt = stripe_nr_end - stripe_nr; 5729 stripe_end_offset = stripe_nr_end * map->stripe_len - 5730 (offset + length); 5731 /* 5732 * after this, stripe_nr is the number of stripes on this 5733 * device we have to walk to find the data, and stripe_index is 5734 * the number of our device in the stripe array 5735 */ 5736 num_stripes = 1; 5737 stripe_index = 0; 5738 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5739 BTRFS_BLOCK_GROUP_RAID10)) { 5740 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5741 sub_stripes = 1; 5742 else 5743 sub_stripes = map->sub_stripes; 5744 5745 factor = map->num_stripes / sub_stripes; 5746 num_stripes = min_t(u64, map->num_stripes, 5747 sub_stripes * stripe_cnt); 5748 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5749 stripe_index *= sub_stripes; 5750 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5751 &remaining_stripes); 5752 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5753 last_stripe *= sub_stripes; 5754 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 5755 BTRFS_BLOCK_GROUP_DUP)) { 5756 num_stripes = map->num_stripes; 5757 } else { 5758 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5759 &stripe_index); 5760 } 5761 5762 bbio = alloc_btrfs_bio(num_stripes, 0); 5763 if (!bbio) { 5764 ret = -ENOMEM; 5765 goto out; 5766 } 5767 5768 for (i = 0; i < num_stripes; i++) { 5769 bbio->stripes[i].physical = 5770 map->stripes[stripe_index].physical + 5771 stripe_offset + stripe_nr * map->stripe_len; 5772 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5773 5774 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5775 BTRFS_BLOCK_GROUP_RAID10)) { 5776 bbio->stripes[i].length = stripes_per_dev * 5777 map->stripe_len; 5778 5779 if (i / sub_stripes < remaining_stripes) 5780 bbio->stripes[i].length += 5781 map->stripe_len; 5782 5783 /* 5784 * Special for the first stripe and 5785 * the last stripe: 5786 * 5787 * |-------|...|-------| 5788 * |----------| 5789 * off end_off 5790 */ 5791 if (i < sub_stripes) 5792 bbio->stripes[i].length -= 5793 stripe_offset; 5794 5795 if (stripe_index >= last_stripe && 5796 stripe_index <= (last_stripe + 5797 sub_stripes - 1)) 5798 bbio->stripes[i].length -= 5799 stripe_end_offset; 5800 5801 if (i == sub_stripes - 1) 5802 stripe_offset = 0; 5803 } else { 5804 bbio->stripes[i].length = length; 5805 } 5806 5807 stripe_index++; 5808 if (stripe_index == map->num_stripes) { 5809 stripe_index = 0; 5810 stripe_nr++; 5811 } 5812 } 5813 5814 *bbio_ret = bbio; 5815 bbio->map_type = map->type; 5816 bbio->num_stripes = num_stripes; 5817out: 5818 free_extent_map(em); 5819 return ret; 5820} 5821 5822/* 5823 * In dev-replace case, for repair case (that's the only case where the mirror 5824 * is selected explicitly when calling btrfs_map_block), blocks left of the 5825 * left cursor can also be read from the target drive. 5826 * 5827 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5828 * array of stripes. 5829 * For READ, it also needs to be supported using the same mirror number. 5830 * 5831 * If the requested block is not left of the left cursor, EIO is returned. This 5832 * can happen because btrfs_num_copies() returns one more in the dev-replace 5833 * case. 5834 */ 5835static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5836 u64 logical, u64 length, 5837 u64 srcdev_devid, int *mirror_num, 5838 u64 *physical) 5839{ 5840 struct btrfs_bio *bbio = NULL; 5841 int num_stripes; 5842 int index_srcdev = 0; 5843 int found = 0; 5844 u64 physical_of_found = 0; 5845 int i; 5846 int ret = 0; 5847 5848 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5849 logical, &length, &bbio, 0, 0); 5850 if (ret) { 5851 ASSERT(bbio == NULL); 5852 return ret; 5853 } 5854 5855 num_stripes = bbio->num_stripes; 5856 if (*mirror_num > num_stripes) { 5857 /* 5858 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5859 * that means that the requested area is not left of the left 5860 * cursor 5861 */ 5862 btrfs_put_bbio(bbio); 5863 return -EIO; 5864 } 5865 5866 /* 5867 * process the rest of the function using the mirror_num of the source 5868 * drive. Therefore look it up first. At the end, patch the device 5869 * pointer to the one of the target drive. 5870 */ 5871 for (i = 0; i < num_stripes; i++) { 5872 if (bbio->stripes[i].dev->devid != srcdev_devid) 5873 continue; 5874 5875 /* 5876 * In case of DUP, in order to keep it simple, only add the 5877 * mirror with the lowest physical address 5878 */ 5879 if (found && 5880 physical_of_found <= bbio->stripes[i].physical) 5881 continue; 5882 5883 index_srcdev = i; 5884 found = 1; 5885 physical_of_found = bbio->stripes[i].physical; 5886 } 5887 5888 btrfs_put_bbio(bbio); 5889 5890 ASSERT(found); 5891 if (!found) 5892 return -EIO; 5893 5894 *mirror_num = index_srcdev + 1; 5895 *physical = physical_of_found; 5896 return ret; 5897} 5898 5899static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5900 struct btrfs_bio **bbio_ret, 5901 struct btrfs_dev_replace *dev_replace, 5902 int *num_stripes_ret, int *max_errors_ret) 5903{ 5904 struct btrfs_bio *bbio = *bbio_ret; 5905 u64 srcdev_devid = dev_replace->srcdev->devid; 5906 int tgtdev_indexes = 0; 5907 int num_stripes = *num_stripes_ret; 5908 int max_errors = *max_errors_ret; 5909 int i; 5910 5911 if (op == BTRFS_MAP_WRITE) { 5912 int index_where_to_add; 5913 5914 /* 5915 * duplicate the write operations while the dev replace 5916 * procedure is running. Since the copying of the old disk to 5917 * the new disk takes place at run time while the filesystem is 5918 * mounted writable, the regular write operations to the old 5919 * disk have to be duplicated to go to the new disk as well. 5920 * 5921 * Note that device->missing is handled by the caller, and that 5922 * the write to the old disk is already set up in the stripes 5923 * array. 5924 */ 5925 index_where_to_add = num_stripes; 5926 for (i = 0; i < num_stripes; i++) { 5927 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5928 /* write to new disk, too */ 5929 struct btrfs_bio_stripe *new = 5930 bbio->stripes + index_where_to_add; 5931 struct btrfs_bio_stripe *old = 5932 bbio->stripes + i; 5933 5934 new->physical = old->physical; 5935 new->length = old->length; 5936 new->dev = dev_replace->tgtdev; 5937 bbio->tgtdev_map[i] = index_where_to_add; 5938 index_where_to_add++; 5939 max_errors++; 5940 tgtdev_indexes++; 5941 } 5942 } 5943 num_stripes = index_where_to_add; 5944 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5945 int index_srcdev = 0; 5946 int found = 0; 5947 u64 physical_of_found = 0; 5948 5949 /* 5950 * During the dev-replace procedure, the target drive can also 5951 * be used to read data in case it is needed to repair a corrupt 5952 * block elsewhere. This is possible if the requested area is 5953 * left of the left cursor. In this area, the target drive is a 5954 * full copy of the source drive. 5955 */ 5956 for (i = 0; i < num_stripes; i++) { 5957 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5958 /* 5959 * In case of DUP, in order to keep it simple, 5960 * only add the mirror with the lowest physical 5961 * address 5962 */ 5963 if (found && 5964 physical_of_found <= 5965 bbio->stripes[i].physical) 5966 continue; 5967 index_srcdev = i; 5968 found = 1; 5969 physical_of_found = bbio->stripes[i].physical; 5970 } 5971 } 5972 if (found) { 5973 struct btrfs_bio_stripe *tgtdev_stripe = 5974 bbio->stripes + num_stripes; 5975 5976 tgtdev_stripe->physical = physical_of_found; 5977 tgtdev_stripe->length = 5978 bbio->stripes[index_srcdev].length; 5979 tgtdev_stripe->dev = dev_replace->tgtdev; 5980 bbio->tgtdev_map[index_srcdev] = num_stripes; 5981 5982 tgtdev_indexes++; 5983 num_stripes++; 5984 } 5985 } 5986 5987 *num_stripes_ret = num_stripes; 5988 *max_errors_ret = max_errors; 5989 bbio->num_tgtdevs = tgtdev_indexes; 5990 *bbio_ret = bbio; 5991} 5992 5993static bool need_full_stripe(enum btrfs_map_op op) 5994{ 5995 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5996} 5997 5998/* 5999 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len) 6000 * tuple. This information is used to calculate how big a 6001 * particular bio can get before it straddles a stripe. 6002 * 6003 * @fs_info - the filesystem 6004 * @logical - address that we want to figure out the geometry of 6005 * @len - the length of IO we are going to perform, starting at @logical 6006 * @op - type of operation - write or read 6007 * @io_geom - pointer used to return values 6008 * 6009 * Returns < 0 in case a chunk for the given logical address cannot be found, 6010 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 6011 */ 6012int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6013 u64 logical, u64 len, struct btrfs_io_geometry *io_geom) 6014{ 6015 struct extent_map *em; 6016 struct map_lookup *map; 6017 u64 offset; 6018 u64 stripe_offset; 6019 u64 stripe_nr; 6020 u64 stripe_len; 6021 u64 raid56_full_stripe_start = (u64)-1; 6022 int data_stripes; 6023 int ret = 0; 6024 6025 ASSERT(op != BTRFS_MAP_DISCARD); 6026 6027 em = btrfs_get_chunk_map(fs_info, logical, len); 6028 if (IS_ERR(em)) 6029 return PTR_ERR(em); 6030 6031 map = em->map_lookup; 6032 /* Offset of this logical address in the chunk */ 6033 offset = logical - em->start; 6034 /* Len of a stripe in a chunk */ 6035 stripe_len = map->stripe_len; 6036 /* Stripe wher this block falls in */ 6037 stripe_nr = div64_u64(offset, stripe_len); 6038 /* Offset of stripe in the chunk */ 6039 stripe_offset = stripe_nr * stripe_len; 6040 if (offset < stripe_offset) { 6041 btrfs_crit(fs_info, 6042"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 6043 stripe_offset, offset, em->start, logical, stripe_len); 6044 ret = -EINVAL; 6045 goto out; 6046 } 6047 6048 /* stripe_offset is the offset of this block in its stripe */ 6049 stripe_offset = offset - stripe_offset; 6050 data_stripes = nr_data_stripes(map); 6051 6052 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6053 u64 max_len = stripe_len - stripe_offset; 6054 6055 /* 6056 * In case of raid56, we need to know the stripe aligned start 6057 */ 6058 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6059 unsigned long full_stripe_len = stripe_len * data_stripes; 6060 raid56_full_stripe_start = offset; 6061 6062 /* 6063 * Allow a write of a full stripe, but make sure we 6064 * don't allow straddling of stripes 6065 */ 6066 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 6067 full_stripe_len); 6068 raid56_full_stripe_start *= full_stripe_len; 6069 6070 /* 6071 * For writes to RAID[56], allow a full stripeset across 6072 * all disks. For other RAID types and for RAID[56] 6073 * reads, just allow a single stripe (on a single disk). 6074 */ 6075 if (op == BTRFS_MAP_WRITE) { 6076 max_len = stripe_len * data_stripes - 6077 (offset - raid56_full_stripe_start); 6078 } 6079 } 6080 len = min_t(u64, em->len - offset, max_len); 6081 } else { 6082 len = em->len - offset; 6083 } 6084 6085 io_geom->len = len; 6086 io_geom->offset = offset; 6087 io_geom->stripe_len = stripe_len; 6088 io_geom->stripe_nr = stripe_nr; 6089 io_geom->stripe_offset = stripe_offset; 6090 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 6091 6092out: 6093 /* once for us */ 6094 free_extent_map(em); 6095 return ret; 6096} 6097 6098static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 6099 enum btrfs_map_op op, 6100 u64 logical, u64 *length, 6101 struct btrfs_bio **bbio_ret, 6102 int mirror_num, int need_raid_map) 6103{ 6104 struct extent_map *em; 6105 struct map_lookup *map; 6106 u64 stripe_offset; 6107 u64 stripe_nr; 6108 u64 stripe_len; 6109 u32 stripe_index; 6110 int data_stripes; 6111 int i; 6112 int ret = 0; 6113 int num_stripes; 6114 int max_errors = 0; 6115 int tgtdev_indexes = 0; 6116 struct btrfs_bio *bbio = NULL; 6117 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6118 int dev_replace_is_ongoing = 0; 6119 int num_alloc_stripes; 6120 int patch_the_first_stripe_for_dev_replace = 0; 6121 u64 physical_to_patch_in_first_stripe = 0; 6122 u64 raid56_full_stripe_start = (u64)-1; 6123 struct btrfs_io_geometry geom; 6124 6125 ASSERT(bbio_ret); 6126 ASSERT(op != BTRFS_MAP_DISCARD); 6127 6128 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom); 6129 if (ret < 0) 6130 return ret; 6131 6132 em = btrfs_get_chunk_map(fs_info, logical, *length); 6133 ASSERT(!IS_ERR(em)); 6134 map = em->map_lookup; 6135 6136 *length = geom.len; 6137 stripe_len = geom.stripe_len; 6138 stripe_nr = geom.stripe_nr; 6139 stripe_offset = geom.stripe_offset; 6140 raid56_full_stripe_start = geom.raid56_stripe_offset; 6141 data_stripes = nr_data_stripes(map); 6142 6143 down_read(&dev_replace->rwsem); 6144 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6145 /* 6146 * Hold the semaphore for read during the whole operation, write is 6147 * requested at commit time but must wait. 6148 */ 6149 if (!dev_replace_is_ongoing) 6150 up_read(&dev_replace->rwsem); 6151 6152 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6153 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6154 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6155 dev_replace->srcdev->devid, 6156 &mirror_num, 6157 &physical_to_patch_in_first_stripe); 6158 if (ret) 6159 goto out; 6160 else 6161 patch_the_first_stripe_for_dev_replace = 1; 6162 } else if (mirror_num > map->num_stripes) { 6163 mirror_num = 0; 6164 } 6165 6166 num_stripes = 1; 6167 stripe_index = 0; 6168 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6169 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6170 &stripe_index); 6171 if (!need_full_stripe(op)) 6172 mirror_num = 1; 6173 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6174 if (need_full_stripe(op)) 6175 num_stripes = map->num_stripes; 6176 else if (mirror_num) 6177 stripe_index = mirror_num - 1; 6178 else { 6179 stripe_index = find_live_mirror(fs_info, map, 0, 6180 dev_replace_is_ongoing); 6181 mirror_num = stripe_index + 1; 6182 } 6183 6184 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6185 if (need_full_stripe(op)) { 6186 num_stripes = map->num_stripes; 6187 } else if (mirror_num) { 6188 stripe_index = mirror_num - 1; 6189 } else { 6190 mirror_num = 1; 6191 } 6192 6193 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6194 u32 factor = map->num_stripes / map->sub_stripes; 6195 6196 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6197 stripe_index *= map->sub_stripes; 6198 6199 if (need_full_stripe(op)) 6200 num_stripes = map->sub_stripes; 6201 else if (mirror_num) 6202 stripe_index += mirror_num - 1; 6203 else { 6204 int old_stripe_index = stripe_index; 6205 stripe_index = find_live_mirror(fs_info, map, 6206 stripe_index, 6207 dev_replace_is_ongoing); 6208 mirror_num = stripe_index - old_stripe_index + 1; 6209 } 6210 6211 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6212 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6213 /* push stripe_nr back to the start of the full stripe */ 6214 stripe_nr = div64_u64(raid56_full_stripe_start, 6215 stripe_len * data_stripes); 6216 6217 /* RAID[56] write or recovery. Return all stripes */ 6218 num_stripes = map->num_stripes; 6219 max_errors = nr_parity_stripes(map); 6220 6221 *length = map->stripe_len; 6222 stripe_index = 0; 6223 stripe_offset = 0; 6224 } else { 6225 /* 6226 * Mirror #0 or #1 means the original data block. 6227 * Mirror #2 is RAID5 parity block. 6228 * Mirror #3 is RAID6 Q block. 6229 */ 6230 stripe_nr = div_u64_rem(stripe_nr, 6231 data_stripes, &stripe_index); 6232 if (mirror_num > 1) 6233 stripe_index = data_stripes + mirror_num - 2; 6234 6235 /* We distribute the parity blocks across stripes */ 6236 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6237 &stripe_index); 6238 if (!need_full_stripe(op) && mirror_num <= 1) 6239 mirror_num = 1; 6240 } 6241 } else { 6242 /* 6243 * after this, stripe_nr is the number of stripes on this 6244 * device we have to walk to find the data, and stripe_index is 6245 * the number of our device in the stripe array 6246 */ 6247 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6248 &stripe_index); 6249 mirror_num = stripe_index + 1; 6250 } 6251 if (stripe_index >= map->num_stripes) { 6252 btrfs_crit(fs_info, 6253 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6254 stripe_index, map->num_stripes); 6255 ret = -EINVAL; 6256 goto out; 6257 } 6258 6259 num_alloc_stripes = num_stripes; 6260 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6261 if (op == BTRFS_MAP_WRITE) 6262 num_alloc_stripes <<= 1; 6263 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6264 num_alloc_stripes++; 6265 tgtdev_indexes = num_stripes; 6266 } 6267 6268 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 6269 if (!bbio) { 6270 ret = -ENOMEM; 6271 goto out; 6272 } 6273 6274 for (i = 0; i < num_stripes; i++) { 6275 bbio->stripes[i].physical = map->stripes[stripe_index].physical + 6276 stripe_offset + stripe_nr * map->stripe_len; 6277 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 6278 stripe_index++; 6279 } 6280 6281 /* build raid_map */ 6282 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6283 (need_full_stripe(op) || mirror_num > 1)) { 6284 u64 tmp; 6285 unsigned rot; 6286 6287 /* Work out the disk rotation on this stripe-set */ 6288 div_u64_rem(stripe_nr, num_stripes, &rot); 6289 6290 /* Fill in the logical address of each stripe */ 6291 tmp = stripe_nr * data_stripes; 6292 for (i = 0; i < data_stripes; i++) 6293 bbio->raid_map[(i+rot) % num_stripes] = 6294 em->start + (tmp + i) * map->stripe_len; 6295 6296 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 6297 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6298 bbio->raid_map[(i+rot+1) % num_stripes] = 6299 RAID6_Q_STRIPE; 6300 6301 sort_parity_stripes(bbio, num_stripes); 6302 } 6303 6304 if (need_full_stripe(op)) 6305 max_errors = btrfs_chunk_max_errors(map); 6306 6307 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6308 need_full_stripe(op)) { 6309 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 6310 &max_errors); 6311 } 6312 6313 *bbio_ret = bbio; 6314 bbio->map_type = map->type; 6315 bbio->num_stripes = num_stripes; 6316 bbio->max_errors = max_errors; 6317 bbio->mirror_num = mirror_num; 6318 6319 /* 6320 * this is the case that REQ_READ && dev_replace_is_ongoing && 6321 * mirror_num == num_stripes + 1 && dev_replace target drive is 6322 * available as a mirror 6323 */ 6324 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6325 WARN_ON(num_stripes > 1); 6326 bbio->stripes[0].dev = dev_replace->tgtdev; 6327 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 6328 bbio->mirror_num = map->num_stripes + 1; 6329 } 6330out: 6331 if (dev_replace_is_ongoing) { 6332 lockdep_assert_held(&dev_replace->rwsem); 6333 /* Unlock and let waiting writers proceed */ 6334 up_read(&dev_replace->rwsem); 6335 } 6336 free_extent_map(em); 6337 return ret; 6338} 6339 6340int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6341 u64 logical, u64 *length, 6342 struct btrfs_bio **bbio_ret, int mirror_num) 6343{ 6344 if (op == BTRFS_MAP_DISCARD) 6345 return __btrfs_map_block_for_discard(fs_info, logical, 6346 length, bbio_ret); 6347 6348 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 6349 mirror_num, 0); 6350} 6351 6352/* For Scrub/replace */ 6353int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6354 u64 logical, u64 *length, 6355 struct btrfs_bio **bbio_ret) 6356{ 6357 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6358} 6359 6360static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6361{ 6362 bio->bi_private = bbio->private; 6363 bio->bi_end_io = bbio->end_io; 6364 bio_endio(bio); 6365 6366 btrfs_put_bbio(bbio); 6367} 6368 6369static void btrfs_end_bio(struct bio *bio) 6370{ 6371 struct btrfs_bio *bbio = bio->bi_private; 6372 int is_orig_bio = 0; 6373 6374 if (bio->bi_status) { 6375 atomic_inc(&bbio->error); 6376 if (bio->bi_status == BLK_STS_IOERR || 6377 bio->bi_status == BLK_STS_TARGET) { 6378 struct btrfs_device *dev = btrfs_io_bio(bio)->device; 6379 6380 ASSERT(dev->bdev); 6381 if (bio_op(bio) == REQ_OP_WRITE) 6382 btrfs_dev_stat_inc_and_print(dev, 6383 BTRFS_DEV_STAT_WRITE_ERRS); 6384 else if (!(bio->bi_opf & REQ_RAHEAD)) 6385 btrfs_dev_stat_inc_and_print(dev, 6386 BTRFS_DEV_STAT_READ_ERRS); 6387 if (bio->bi_opf & REQ_PREFLUSH) 6388 btrfs_dev_stat_inc_and_print(dev, 6389 BTRFS_DEV_STAT_FLUSH_ERRS); 6390 } 6391 } 6392 6393 if (bio == bbio->orig_bio) 6394 is_orig_bio = 1; 6395 6396 btrfs_bio_counter_dec(bbio->fs_info); 6397 6398 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6399 if (!is_orig_bio) { 6400 bio_put(bio); 6401 bio = bbio->orig_bio; 6402 } 6403 6404 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6405 /* only send an error to the higher layers if it is 6406 * beyond the tolerance of the btrfs bio 6407 */ 6408 if (atomic_read(&bbio->error) > bbio->max_errors) { 6409 bio->bi_status = BLK_STS_IOERR; 6410 } else { 6411 /* 6412 * this bio is actually up to date, we didn't 6413 * go over the max number of errors 6414 */ 6415 bio->bi_status = BLK_STS_OK; 6416 } 6417 6418 btrfs_end_bbio(bbio, bio); 6419 } else if (!is_orig_bio) { 6420 bio_put(bio); 6421 } 6422} 6423 6424static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6425 u64 physical, struct btrfs_device *dev) 6426{ 6427 struct btrfs_fs_info *fs_info = bbio->fs_info; 6428 6429 bio->bi_private = bbio; 6430 btrfs_io_bio(bio)->device = dev; 6431 bio->bi_end_io = btrfs_end_bio; 6432 bio->bi_iter.bi_sector = physical >> 9; 6433 btrfs_debug_in_rcu(fs_info, 6434 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6435 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector, 6436 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name), 6437 dev->devid, bio->bi_iter.bi_size); 6438 bio_set_dev(bio, dev->bdev); 6439 6440 btrfs_bio_counter_inc_noblocked(fs_info); 6441 6442 btrfsic_submit_bio(bio); 6443} 6444 6445static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6446{ 6447 atomic_inc(&bbio->error); 6448 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6449 /* Should be the original bio. */ 6450 WARN_ON(bio != bbio->orig_bio); 6451 6452 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6453 bio->bi_iter.bi_sector = logical >> 9; 6454 if (atomic_read(&bbio->error) > bbio->max_errors) 6455 bio->bi_status = BLK_STS_IOERR; 6456 else 6457 bio->bi_status = BLK_STS_OK; 6458 btrfs_end_bbio(bbio, bio); 6459 } 6460} 6461 6462blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6463 int mirror_num) 6464{ 6465 struct btrfs_device *dev; 6466 struct bio *first_bio = bio; 6467 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6468 u64 length = 0; 6469 u64 map_length; 6470 int ret; 6471 int dev_nr; 6472 int total_devs; 6473 struct btrfs_bio *bbio = NULL; 6474 6475 length = bio->bi_iter.bi_size; 6476 map_length = length; 6477 6478 btrfs_bio_counter_inc_blocked(fs_info); 6479 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6480 &map_length, &bbio, mirror_num, 1); 6481 if (ret) { 6482 btrfs_bio_counter_dec(fs_info); 6483 return errno_to_blk_status(ret); 6484 } 6485 6486 total_devs = bbio->num_stripes; 6487 bbio->orig_bio = first_bio; 6488 bbio->private = first_bio->bi_private; 6489 bbio->end_io = first_bio->bi_end_io; 6490 bbio->fs_info = fs_info; 6491 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6492 6493 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6494 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6495 /* In this case, map_length has been set to the length of 6496 a single stripe; not the whole write */ 6497 if (bio_op(bio) == REQ_OP_WRITE) { 6498 ret = raid56_parity_write(fs_info, bio, bbio, 6499 map_length); 6500 } else { 6501 ret = raid56_parity_recover(fs_info, bio, bbio, 6502 map_length, mirror_num, 1); 6503 } 6504 6505 btrfs_bio_counter_dec(fs_info); 6506 return errno_to_blk_status(ret); 6507 } 6508 6509 if (map_length < length) { 6510 btrfs_crit(fs_info, 6511 "mapping failed logical %llu bio len %llu len %llu", 6512 logical, length, map_length); 6513 BUG(); 6514 } 6515 6516 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6517 dev = bbio->stripes[dev_nr].dev; 6518 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6519 &dev->dev_state) || 6520 (bio_op(first_bio) == REQ_OP_WRITE && 6521 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6522 bbio_error(bbio, first_bio, logical); 6523 continue; 6524 } 6525 6526 if (dev_nr < total_devs - 1) 6527 bio = btrfs_bio_clone(first_bio); 6528 else 6529 bio = first_bio; 6530 6531 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev); 6532 } 6533 btrfs_bio_counter_dec(fs_info); 6534 return BLK_STS_OK; 6535} 6536 6537/* 6538 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6539 * return NULL. 6540 * 6541 * If devid and uuid are both specified, the match must be exact, otherwise 6542 * only devid is used. 6543 * 6544 * If @seed is true, traverse through the seed devices. 6545 */ 6546struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 6547 u64 devid, u8 *uuid, u8 *fsid, 6548 bool seed) 6549{ 6550 struct btrfs_device *device; 6551 struct btrfs_fs_devices *seed_devs; 6552 6553 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6554 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6555 if (device->devid == devid && 6556 (!uuid || memcmp(device->uuid, uuid, 6557 BTRFS_UUID_SIZE) == 0)) 6558 return device; 6559 } 6560 } 6561 6562 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6563 if (!fsid || 6564 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6565 list_for_each_entry(device, &seed_devs->devices, 6566 dev_list) { 6567 if (device->devid == devid && 6568 (!uuid || memcmp(device->uuid, uuid, 6569 BTRFS_UUID_SIZE) == 0)) 6570 return device; 6571 } 6572 } 6573 } 6574 6575 return NULL; 6576} 6577 6578static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6579 u64 devid, u8 *dev_uuid) 6580{ 6581 struct btrfs_device *device; 6582 unsigned int nofs_flag; 6583 6584 /* 6585 * We call this under the chunk_mutex, so we want to use NOFS for this 6586 * allocation, however we don't want to change btrfs_alloc_device() to 6587 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6588 * places. 6589 */ 6590 nofs_flag = memalloc_nofs_save(); 6591 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6592 memalloc_nofs_restore(nofs_flag); 6593 if (IS_ERR(device)) 6594 return device; 6595 6596 list_add(&device->dev_list, &fs_devices->devices); 6597 device->fs_devices = fs_devices; 6598 fs_devices->num_devices++; 6599 6600 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6601 fs_devices->missing_devices++; 6602 6603 return device; 6604} 6605 6606/** 6607 * btrfs_alloc_device - allocate struct btrfs_device 6608 * @fs_info: used only for generating a new devid, can be NULL if 6609 * devid is provided (i.e. @devid != NULL). 6610 * @devid: a pointer to devid for this device. If NULL a new devid 6611 * is generated. 6612 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6613 * is generated. 6614 * 6615 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6616 * on error. Returned struct is not linked onto any lists and must be 6617 * destroyed with btrfs_free_device. 6618 */ 6619struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6620 const u64 *devid, 6621 const u8 *uuid) 6622{ 6623 struct btrfs_device *dev; 6624 u64 tmp; 6625 6626 if (WARN_ON(!devid && !fs_info)) 6627 return ERR_PTR(-EINVAL); 6628 6629 dev = __alloc_device(fs_info); 6630 if (IS_ERR(dev)) 6631 return dev; 6632 6633 if (devid) 6634 tmp = *devid; 6635 else { 6636 int ret; 6637 6638 ret = find_next_devid(fs_info, &tmp); 6639 if (ret) { 6640 btrfs_free_device(dev); 6641 return ERR_PTR(ret); 6642 } 6643 } 6644 dev->devid = tmp; 6645 6646 if (uuid) 6647 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6648 else 6649 generate_random_uuid(dev->uuid); 6650 6651 return dev; 6652} 6653 6654static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6655 u64 devid, u8 *uuid, bool error) 6656{ 6657 if (error) 6658 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6659 devid, uuid); 6660 else 6661 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6662 devid, uuid); 6663} 6664 6665static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 6666{ 6667 int index = btrfs_bg_flags_to_raid_index(type); 6668 int ncopies = btrfs_raid_array[index].ncopies; 6669 const int nparity = btrfs_raid_array[index].nparity; 6670 int data_stripes; 6671 6672 if (nparity) 6673 data_stripes = num_stripes - nparity; 6674 else 6675 data_stripes = num_stripes / ncopies; 6676 6677 return div_u64(chunk_len, data_stripes); 6678} 6679 6680static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6681 struct btrfs_chunk *chunk) 6682{ 6683 struct btrfs_fs_info *fs_info = leaf->fs_info; 6684 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6685 struct map_lookup *map; 6686 struct extent_map *em; 6687 u64 logical; 6688 u64 length; 6689 u64 devid; 6690 u8 uuid[BTRFS_UUID_SIZE]; 6691 int num_stripes; 6692 int ret; 6693 int i; 6694 6695 logical = key->offset; 6696 length = btrfs_chunk_length(leaf, chunk); 6697 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6698 6699 /* 6700 * Only need to verify chunk item if we're reading from sys chunk array, 6701 * as chunk item in tree block is already verified by tree-checker. 6702 */ 6703 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6704 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6705 if (ret) 6706 return ret; 6707 } 6708 6709 read_lock(&map_tree->lock); 6710 em = lookup_extent_mapping(map_tree, logical, 1); 6711 read_unlock(&map_tree->lock); 6712 6713 /* already mapped? */ 6714 if (em && em->start <= logical && em->start + em->len > logical) { 6715 free_extent_map(em); 6716 return 0; 6717 } else if (em) { 6718 free_extent_map(em); 6719 } 6720 6721 em = alloc_extent_map(); 6722 if (!em) 6723 return -ENOMEM; 6724 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6725 if (!map) { 6726 free_extent_map(em); 6727 return -ENOMEM; 6728 } 6729 6730 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6731 em->map_lookup = map; 6732 em->start = logical; 6733 em->len = length; 6734 em->orig_start = 0; 6735 em->block_start = 0; 6736 em->block_len = em->len; 6737 6738 map->num_stripes = num_stripes; 6739 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6740 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6741 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6742 map->type = btrfs_chunk_type(leaf, chunk); 6743 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6744 map->verified_stripes = 0; 6745 em->orig_block_len = calc_stripe_length(map->type, em->len, 6746 map->num_stripes); 6747 for (i = 0; i < num_stripes; i++) { 6748 map->stripes[i].physical = 6749 btrfs_stripe_offset_nr(leaf, chunk, i); 6750 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6751 read_extent_buffer(leaf, uuid, (unsigned long) 6752 btrfs_stripe_dev_uuid_nr(chunk, i), 6753 BTRFS_UUID_SIZE); 6754 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, 6755 devid, uuid, NULL, true); 6756 if (!map->stripes[i].dev && 6757 !btrfs_test_opt(fs_info, DEGRADED)) { 6758 free_extent_map(em); 6759 btrfs_report_missing_device(fs_info, devid, uuid, true); 6760 return -ENOENT; 6761 } 6762 if (!map->stripes[i].dev) { 6763 map->stripes[i].dev = 6764 add_missing_dev(fs_info->fs_devices, devid, 6765 uuid); 6766 if (IS_ERR(map->stripes[i].dev)) { 6767 free_extent_map(em); 6768 btrfs_err(fs_info, 6769 "failed to init missing dev %llu: %ld", 6770 devid, PTR_ERR(map->stripes[i].dev)); 6771 return PTR_ERR(map->stripes[i].dev); 6772 } 6773 btrfs_report_missing_device(fs_info, devid, uuid, false); 6774 } 6775 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6776 &(map->stripes[i].dev->dev_state)); 6777 6778 } 6779 6780 write_lock(&map_tree->lock); 6781 ret = add_extent_mapping(map_tree, em, 0); 6782 write_unlock(&map_tree->lock); 6783 if (ret < 0) { 6784 btrfs_err(fs_info, 6785 "failed to add chunk map, start=%llu len=%llu: %d", 6786 em->start, em->len, ret); 6787 } 6788 free_extent_map(em); 6789 6790 return ret; 6791} 6792 6793static void fill_device_from_item(struct extent_buffer *leaf, 6794 struct btrfs_dev_item *dev_item, 6795 struct btrfs_device *device) 6796{ 6797 unsigned long ptr; 6798 6799 device->devid = btrfs_device_id(leaf, dev_item); 6800 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6801 device->total_bytes = device->disk_total_bytes; 6802 device->commit_total_bytes = device->disk_total_bytes; 6803 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6804 device->commit_bytes_used = device->bytes_used; 6805 device->type = btrfs_device_type(leaf, dev_item); 6806 device->io_align = btrfs_device_io_align(leaf, dev_item); 6807 device->io_width = btrfs_device_io_width(leaf, dev_item); 6808 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6809 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6810 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6811 6812 ptr = btrfs_device_uuid(dev_item); 6813 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6814} 6815 6816static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6817 u8 *fsid) 6818{ 6819 struct btrfs_fs_devices *fs_devices; 6820 int ret; 6821 6822 lockdep_assert_held(&uuid_mutex); 6823 ASSERT(fsid); 6824 6825 /* This will match only for multi-device seed fs */ 6826 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 6827 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6828 return fs_devices; 6829 6830 6831 fs_devices = find_fsid(fsid, NULL); 6832 if (!fs_devices) { 6833 if (!btrfs_test_opt(fs_info, DEGRADED)) 6834 return ERR_PTR(-ENOENT); 6835 6836 fs_devices = alloc_fs_devices(fsid, NULL); 6837 if (IS_ERR(fs_devices)) 6838 return fs_devices; 6839 6840 fs_devices->seeding = true; 6841 fs_devices->opened = 1; 6842 return fs_devices; 6843 } 6844 6845 /* 6846 * Upon first call for a seed fs fsid, just create a private copy of the 6847 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 6848 */ 6849 fs_devices = clone_fs_devices(fs_devices); 6850 if (IS_ERR(fs_devices)) 6851 return fs_devices; 6852 6853 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 6854 if (ret) { 6855 free_fs_devices(fs_devices); 6856 return ERR_PTR(ret); 6857 } 6858 6859 if (!fs_devices->seeding) { 6860 close_fs_devices(fs_devices); 6861 free_fs_devices(fs_devices); 6862 return ERR_PTR(-EINVAL); 6863 } 6864 6865 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 6866 6867 return fs_devices; 6868} 6869 6870static int read_one_dev(struct extent_buffer *leaf, 6871 struct btrfs_dev_item *dev_item) 6872{ 6873 struct btrfs_fs_info *fs_info = leaf->fs_info; 6874 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6875 struct btrfs_device *device; 6876 u64 devid; 6877 int ret; 6878 u8 fs_uuid[BTRFS_FSID_SIZE]; 6879 u8 dev_uuid[BTRFS_UUID_SIZE]; 6880 6881 devid = btrfs_device_id(leaf, dev_item); 6882 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6883 BTRFS_UUID_SIZE); 6884 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6885 BTRFS_FSID_SIZE); 6886 6887 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6888 fs_devices = open_seed_devices(fs_info, fs_uuid); 6889 if (IS_ERR(fs_devices)) 6890 return PTR_ERR(fs_devices); 6891 } 6892 6893 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 6894 fs_uuid, true); 6895 if (!device) { 6896 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6897 btrfs_report_missing_device(fs_info, devid, 6898 dev_uuid, true); 6899 return -ENOENT; 6900 } 6901 6902 device = add_missing_dev(fs_devices, devid, dev_uuid); 6903 if (IS_ERR(device)) { 6904 btrfs_err(fs_info, 6905 "failed to add missing dev %llu: %ld", 6906 devid, PTR_ERR(device)); 6907 return PTR_ERR(device); 6908 } 6909 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6910 } else { 6911 if (!device->bdev) { 6912 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6913 btrfs_report_missing_device(fs_info, 6914 devid, dev_uuid, true); 6915 return -ENOENT; 6916 } 6917 btrfs_report_missing_device(fs_info, devid, 6918 dev_uuid, false); 6919 } 6920 6921 if (!device->bdev && 6922 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6923 /* 6924 * this happens when a device that was properly setup 6925 * in the device info lists suddenly goes bad. 6926 * device->bdev is NULL, and so we have to set 6927 * device->missing to one here 6928 */ 6929 device->fs_devices->missing_devices++; 6930 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6931 } 6932 6933 /* Move the device to its own fs_devices */ 6934 if (device->fs_devices != fs_devices) { 6935 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 6936 &device->dev_state)); 6937 6938 list_move(&device->dev_list, &fs_devices->devices); 6939 device->fs_devices->num_devices--; 6940 fs_devices->num_devices++; 6941 6942 device->fs_devices->missing_devices--; 6943 fs_devices->missing_devices++; 6944 6945 device->fs_devices = fs_devices; 6946 } 6947 } 6948 6949 if (device->fs_devices != fs_info->fs_devices) { 6950 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 6951 if (device->generation != 6952 btrfs_device_generation(leaf, dev_item)) 6953 return -EINVAL; 6954 } 6955 6956 fill_device_from_item(leaf, dev_item, device); 6957 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 6958 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 6959 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 6960 device->fs_devices->total_rw_bytes += device->total_bytes; 6961 atomic64_add(device->total_bytes - device->bytes_used, 6962 &fs_info->free_chunk_space); 6963 } 6964 ret = 0; 6965 return ret; 6966} 6967 6968int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 6969{ 6970 struct btrfs_root *root = fs_info->tree_root; 6971 struct btrfs_super_block *super_copy = fs_info->super_copy; 6972 struct extent_buffer *sb; 6973 struct btrfs_disk_key *disk_key; 6974 struct btrfs_chunk *chunk; 6975 u8 *array_ptr; 6976 unsigned long sb_array_offset; 6977 int ret = 0; 6978 u32 num_stripes; 6979 u32 array_size; 6980 u32 len = 0; 6981 u32 cur_offset; 6982 u64 type; 6983 struct btrfs_key key; 6984 6985 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 6986 /* 6987 * This will create extent buffer of nodesize, superblock size is 6988 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6989 * overallocate but we can keep it as-is, only the first page is used. 6990 */ 6991 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 6992 if (IS_ERR(sb)) 6993 return PTR_ERR(sb); 6994 set_extent_buffer_uptodate(sb); 6995 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6996 /* 6997 * The sb extent buffer is artificial and just used to read the system array. 6998 * set_extent_buffer_uptodate() call does not properly mark all it's 6999 * pages up-to-date when the page is larger: extent does not cover the 7000 * whole page and consequently check_page_uptodate does not find all 7001 * the page's extents up-to-date (the hole beyond sb), 7002 * write_extent_buffer then triggers a WARN_ON. 7003 * 7004 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 7005 * but sb spans only this function. Add an explicit SetPageUptodate call 7006 * to silence the warning eg. on PowerPC 64. 7007 */ 7008 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 7009 SetPageUptodate(sb->pages[0]); 7010 7011 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7012 array_size = btrfs_super_sys_array_size(super_copy); 7013 7014 array_ptr = super_copy->sys_chunk_array; 7015 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7016 cur_offset = 0; 7017 7018 while (cur_offset < array_size) { 7019 disk_key = (struct btrfs_disk_key *)array_ptr; 7020 len = sizeof(*disk_key); 7021 if (cur_offset + len > array_size) 7022 goto out_short_read; 7023 7024 btrfs_disk_key_to_cpu(&key, disk_key); 7025 7026 array_ptr += len; 7027 sb_array_offset += len; 7028 cur_offset += len; 7029 7030 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7031 btrfs_err(fs_info, 7032 "unexpected item type %u in sys_array at offset %u", 7033 (u32)key.type, cur_offset); 7034 ret = -EIO; 7035 break; 7036 } 7037 7038 chunk = (struct btrfs_chunk *)sb_array_offset; 7039 /* 7040 * At least one btrfs_chunk with one stripe must be present, 7041 * exact stripe count check comes afterwards 7042 */ 7043 len = btrfs_chunk_item_size(1); 7044 if (cur_offset + len > array_size) 7045 goto out_short_read; 7046 7047 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7048 if (!num_stripes) { 7049 btrfs_err(fs_info, 7050 "invalid number of stripes %u in sys_array at offset %u", 7051 num_stripes, cur_offset); 7052 ret = -EIO; 7053 break; 7054 } 7055 7056 type = btrfs_chunk_type(sb, chunk); 7057 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7058 btrfs_err(fs_info, 7059 "invalid chunk type %llu in sys_array at offset %u", 7060 type, cur_offset); 7061 ret = -EIO; 7062 break; 7063 } 7064 7065 len = btrfs_chunk_item_size(num_stripes); 7066 if (cur_offset + len > array_size) 7067 goto out_short_read; 7068 7069 ret = read_one_chunk(&key, sb, chunk); 7070 if (ret) 7071 break; 7072 7073 array_ptr += len; 7074 sb_array_offset += len; 7075 cur_offset += len; 7076 } 7077 clear_extent_buffer_uptodate(sb); 7078 free_extent_buffer_stale(sb); 7079 return ret; 7080 7081out_short_read: 7082 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7083 len, cur_offset); 7084 clear_extent_buffer_uptodate(sb); 7085 free_extent_buffer_stale(sb); 7086 return -EIO; 7087} 7088 7089/* 7090 * Check if all chunks in the fs are OK for read-write degraded mount 7091 * 7092 * If the @failing_dev is specified, it's accounted as missing. 7093 * 7094 * Return true if all chunks meet the minimal RW mount requirements. 7095 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7096 */ 7097bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7098 struct btrfs_device *failing_dev) 7099{ 7100 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7101 struct extent_map *em; 7102 u64 next_start = 0; 7103 bool ret = true; 7104 7105 read_lock(&map_tree->lock); 7106 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7107 read_unlock(&map_tree->lock); 7108 /* No chunk at all? Return false anyway */ 7109 if (!em) { 7110 ret = false; 7111 goto out; 7112 } 7113 while (em) { 7114 struct map_lookup *map; 7115 int missing = 0; 7116 int max_tolerated; 7117 int i; 7118 7119 map = em->map_lookup; 7120 max_tolerated = 7121 btrfs_get_num_tolerated_disk_barrier_failures( 7122 map->type); 7123 for (i = 0; i < map->num_stripes; i++) { 7124 struct btrfs_device *dev = map->stripes[i].dev; 7125 7126 if (!dev || !dev->bdev || 7127 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7128 dev->last_flush_error) 7129 missing++; 7130 else if (failing_dev && failing_dev == dev) 7131 missing++; 7132 } 7133 if (missing > max_tolerated) { 7134 if (!failing_dev) 7135 btrfs_warn(fs_info, 7136 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7137 em->start, missing, max_tolerated); 7138 free_extent_map(em); 7139 ret = false; 7140 goto out; 7141 } 7142 next_start = extent_map_end(em); 7143 free_extent_map(em); 7144 7145 read_lock(&map_tree->lock); 7146 em = lookup_extent_mapping(map_tree, next_start, 7147 (u64)(-1) - next_start); 7148 read_unlock(&map_tree->lock); 7149 } 7150out: 7151 return ret; 7152} 7153 7154static void readahead_tree_node_children(struct extent_buffer *node) 7155{ 7156 int i; 7157 const int nr_items = btrfs_header_nritems(node); 7158 7159 for (i = 0; i < nr_items; i++) { 7160 u64 start; 7161 7162 start = btrfs_node_blockptr(node, i); 7163 readahead_tree_block(node->fs_info, start); 7164 } 7165} 7166 7167int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7168{ 7169 struct btrfs_root *root = fs_info->chunk_root; 7170 struct btrfs_path *path; 7171 struct extent_buffer *leaf; 7172 struct btrfs_key key; 7173 struct btrfs_key found_key; 7174 int ret; 7175 int slot; 7176 u64 total_dev = 0; 7177 u64 last_ra_node = 0; 7178 7179 path = btrfs_alloc_path(); 7180 if (!path) 7181 return -ENOMEM; 7182 7183 /* 7184 * uuid_mutex is needed only if we are mounting a sprout FS 7185 * otherwise we don't need it. 7186 */ 7187 mutex_lock(&uuid_mutex); 7188 7189 /* 7190 * It is possible for mount and umount to race in such a way that 7191 * we execute this code path, but open_fs_devices failed to clear 7192 * total_rw_bytes. We certainly want it cleared before reading the 7193 * device items, so clear it here. 7194 */ 7195 fs_info->fs_devices->total_rw_bytes = 0; 7196 7197 /* 7198 * Read all device items, and then all the chunk items. All 7199 * device items are found before any chunk item (their object id 7200 * is smaller than the lowest possible object id for a chunk 7201 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7202 */ 7203 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7204 key.offset = 0; 7205 key.type = 0; 7206 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7207 if (ret < 0) 7208 goto error; 7209 while (1) { 7210 struct extent_buffer *node; 7211 7212 leaf = path->nodes[0]; 7213 slot = path->slots[0]; 7214 if (slot >= btrfs_header_nritems(leaf)) { 7215 ret = btrfs_next_leaf(root, path); 7216 if (ret == 0) 7217 continue; 7218 if (ret < 0) 7219 goto error; 7220 break; 7221 } 7222 /* 7223 * The nodes on level 1 are not locked but we don't need to do 7224 * that during mount time as nothing else can access the tree 7225 */ 7226 node = path->nodes[1]; 7227 if (node) { 7228 if (last_ra_node != node->start) { 7229 readahead_tree_node_children(node); 7230 last_ra_node = node->start; 7231 } 7232 } 7233 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7234 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7235 struct btrfs_dev_item *dev_item; 7236 dev_item = btrfs_item_ptr(leaf, slot, 7237 struct btrfs_dev_item); 7238 ret = read_one_dev(leaf, dev_item); 7239 if (ret) 7240 goto error; 7241 total_dev++; 7242 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7243 struct btrfs_chunk *chunk; 7244 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7245 mutex_lock(&fs_info->chunk_mutex); 7246 ret = read_one_chunk(&found_key, leaf, chunk); 7247 mutex_unlock(&fs_info->chunk_mutex); 7248 if (ret) 7249 goto error; 7250 } 7251 path->slots[0]++; 7252 } 7253 7254 /* 7255 * After loading chunk tree, we've got all device information, 7256 * do another round of validation checks. 7257 */ 7258 if (total_dev != fs_info->fs_devices->total_devices) { 7259 btrfs_warn(fs_info, 7260"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7261 btrfs_super_num_devices(fs_info->super_copy), 7262 total_dev); 7263 fs_info->fs_devices->total_devices = total_dev; 7264 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7265 } 7266 if (btrfs_super_total_bytes(fs_info->super_copy) < 7267 fs_info->fs_devices->total_rw_bytes) { 7268 btrfs_err(fs_info, 7269 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7270 btrfs_super_total_bytes(fs_info->super_copy), 7271 fs_info->fs_devices->total_rw_bytes); 7272 ret = -EINVAL; 7273 goto error; 7274 } 7275 ret = 0; 7276error: 7277 mutex_unlock(&uuid_mutex); 7278 7279 btrfs_free_path(path); 7280 return ret; 7281} 7282 7283void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7284{ 7285 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7286 struct btrfs_device *device; 7287 7288 fs_devices->fs_info = fs_info; 7289 7290 mutex_lock(&fs_devices->device_list_mutex); 7291 list_for_each_entry(device, &fs_devices->devices, dev_list) 7292 device->fs_info = fs_info; 7293 7294 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7295 list_for_each_entry(device, &seed_devs->devices, dev_list) 7296 device->fs_info = fs_info; 7297 7298 seed_devs->fs_info = fs_info; 7299 } 7300 mutex_unlock(&fs_devices->device_list_mutex); 7301} 7302 7303static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7304 const struct btrfs_dev_stats_item *ptr, 7305 int index) 7306{ 7307 u64 val; 7308 7309 read_extent_buffer(eb, &val, 7310 offsetof(struct btrfs_dev_stats_item, values) + 7311 ((unsigned long)ptr) + (index * sizeof(u64)), 7312 sizeof(val)); 7313 return val; 7314} 7315 7316static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7317 struct btrfs_dev_stats_item *ptr, 7318 int index, u64 val) 7319{ 7320 write_extent_buffer(eb, &val, 7321 offsetof(struct btrfs_dev_stats_item, values) + 7322 ((unsigned long)ptr) + (index * sizeof(u64)), 7323 sizeof(val)); 7324} 7325 7326static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7327 struct btrfs_path *path) 7328{ 7329 struct btrfs_dev_stats_item *ptr; 7330 struct extent_buffer *eb; 7331 struct btrfs_key key; 7332 int item_size; 7333 int i, ret, slot; 7334 7335 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7336 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7337 key.offset = device->devid; 7338 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7339 if (ret) { 7340 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7341 btrfs_dev_stat_set(device, i, 0); 7342 device->dev_stats_valid = 1; 7343 btrfs_release_path(path); 7344 return ret < 0 ? ret : 0; 7345 } 7346 slot = path->slots[0]; 7347 eb = path->nodes[0]; 7348 item_size = btrfs_item_size_nr(eb, slot); 7349 7350 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7351 7352 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7353 if (item_size >= (1 + i) * sizeof(__le64)) 7354 btrfs_dev_stat_set(device, i, 7355 btrfs_dev_stats_value(eb, ptr, i)); 7356 else 7357 btrfs_dev_stat_set(device, i, 0); 7358 } 7359 7360 device->dev_stats_valid = 1; 7361 btrfs_dev_stat_print_on_load(device); 7362 btrfs_release_path(path); 7363 7364 return 0; 7365} 7366 7367int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7368{ 7369 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7370 struct btrfs_device *device; 7371 struct btrfs_path *path = NULL; 7372 int ret = 0; 7373 7374 path = btrfs_alloc_path(); 7375 if (!path) 7376 return -ENOMEM; 7377 7378 mutex_lock(&fs_devices->device_list_mutex); 7379 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7380 ret = btrfs_device_init_dev_stats(device, path); 7381 if (ret) 7382 goto out; 7383 } 7384 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7385 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7386 ret = btrfs_device_init_dev_stats(device, path); 7387 if (ret) 7388 goto out; 7389 } 7390 } 7391out: 7392 mutex_unlock(&fs_devices->device_list_mutex); 7393 7394 btrfs_free_path(path); 7395 return ret; 7396} 7397 7398static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7399 struct btrfs_device *device) 7400{ 7401 struct btrfs_fs_info *fs_info = trans->fs_info; 7402 struct btrfs_root *dev_root = fs_info->dev_root; 7403 struct btrfs_path *path; 7404 struct btrfs_key key; 7405 struct extent_buffer *eb; 7406 struct btrfs_dev_stats_item *ptr; 7407 int ret; 7408 int i; 7409 7410 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7411 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7412 key.offset = device->devid; 7413 7414 path = btrfs_alloc_path(); 7415 if (!path) 7416 return -ENOMEM; 7417 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7418 if (ret < 0) { 7419 btrfs_warn_in_rcu(fs_info, 7420 "error %d while searching for dev_stats item for device %s", 7421 ret, rcu_str_deref(device->name)); 7422 goto out; 7423 } 7424 7425 if (ret == 0 && 7426 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7427 /* need to delete old one and insert a new one */ 7428 ret = btrfs_del_item(trans, dev_root, path); 7429 if (ret != 0) { 7430 btrfs_warn_in_rcu(fs_info, 7431 "delete too small dev_stats item for device %s failed %d", 7432 rcu_str_deref(device->name), ret); 7433 goto out; 7434 } 7435 ret = 1; 7436 } 7437 7438 if (ret == 1) { 7439 /* need to insert a new item */ 7440 btrfs_release_path(path); 7441 ret = btrfs_insert_empty_item(trans, dev_root, path, 7442 &key, sizeof(*ptr)); 7443 if (ret < 0) { 7444 btrfs_warn_in_rcu(fs_info, 7445 "insert dev_stats item for device %s failed %d", 7446 rcu_str_deref(device->name), ret); 7447 goto out; 7448 } 7449 } 7450 7451 eb = path->nodes[0]; 7452 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7453 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7454 btrfs_set_dev_stats_value(eb, ptr, i, 7455 btrfs_dev_stat_read(device, i)); 7456 btrfs_mark_buffer_dirty(eb); 7457 7458out: 7459 btrfs_free_path(path); 7460 return ret; 7461} 7462 7463/* 7464 * called from commit_transaction. Writes all changed device stats to disk. 7465 */ 7466int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7467{ 7468 struct btrfs_fs_info *fs_info = trans->fs_info; 7469 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7470 struct btrfs_device *device; 7471 int stats_cnt; 7472 int ret = 0; 7473 7474 mutex_lock(&fs_devices->device_list_mutex); 7475 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7476 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7477 if (!device->dev_stats_valid || stats_cnt == 0) 7478 continue; 7479 7480 7481 /* 7482 * There is a LOAD-LOAD control dependency between the value of 7483 * dev_stats_ccnt and updating the on-disk values which requires 7484 * reading the in-memory counters. Such control dependencies 7485 * require explicit read memory barriers. 7486 * 7487 * This memory barriers pairs with smp_mb__before_atomic in 7488 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7489 * barrier implied by atomic_xchg in 7490 * btrfs_dev_stats_read_and_reset 7491 */ 7492 smp_rmb(); 7493 7494 ret = update_dev_stat_item(trans, device); 7495 if (!ret) 7496 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7497 } 7498 mutex_unlock(&fs_devices->device_list_mutex); 7499 7500 return ret; 7501} 7502 7503void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7504{ 7505 btrfs_dev_stat_inc(dev, index); 7506 btrfs_dev_stat_print_on_error(dev); 7507} 7508 7509static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7510{ 7511 if (!dev->dev_stats_valid) 7512 return; 7513 btrfs_err_rl_in_rcu(dev->fs_info, 7514 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7515 rcu_str_deref(dev->name), 7516 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7517 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7518 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7519 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7520 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7521} 7522 7523static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7524{ 7525 int i; 7526 7527 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7528 if (btrfs_dev_stat_read(dev, i) != 0) 7529 break; 7530 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7531 return; /* all values == 0, suppress message */ 7532 7533 btrfs_info_in_rcu(dev->fs_info, 7534 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7535 rcu_str_deref(dev->name), 7536 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7537 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7538 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7539 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7540 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7541} 7542 7543int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7544 struct btrfs_ioctl_get_dev_stats *stats) 7545{ 7546 struct btrfs_device *dev; 7547 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7548 int i; 7549 7550 mutex_lock(&fs_devices->device_list_mutex); 7551 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL, 7552 true); 7553 mutex_unlock(&fs_devices->device_list_mutex); 7554 7555 if (!dev) { 7556 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7557 return -ENODEV; 7558 } else if (!dev->dev_stats_valid) { 7559 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7560 return -ENODEV; 7561 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7562 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7563 if (stats->nr_items > i) 7564 stats->values[i] = 7565 btrfs_dev_stat_read_and_reset(dev, i); 7566 else 7567 btrfs_dev_stat_set(dev, i, 0); 7568 } 7569 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7570 current->comm, task_pid_nr(current)); 7571 } else { 7572 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7573 if (stats->nr_items > i) 7574 stats->values[i] = btrfs_dev_stat_read(dev, i); 7575 } 7576 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7577 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7578 return 0; 7579} 7580 7581/* 7582 * Update the size and bytes used for each device where it changed. This is 7583 * delayed since we would otherwise get errors while writing out the 7584 * superblocks. 7585 * 7586 * Must be invoked during transaction commit. 7587 */ 7588void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7589{ 7590 struct btrfs_device *curr, *next; 7591 7592 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7593 7594 if (list_empty(&trans->dev_update_list)) 7595 return; 7596 7597 /* 7598 * We don't need the device_list_mutex here. This list is owned by the 7599 * transaction and the transaction must complete before the device is 7600 * released. 7601 */ 7602 mutex_lock(&trans->fs_info->chunk_mutex); 7603 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7604 post_commit_list) { 7605 list_del_init(&curr->post_commit_list); 7606 curr->commit_total_bytes = curr->disk_total_bytes; 7607 curr->commit_bytes_used = curr->bytes_used; 7608 } 7609 mutex_unlock(&trans->fs_info->chunk_mutex); 7610} 7611 7612/* 7613 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7614 */ 7615int btrfs_bg_type_to_factor(u64 flags) 7616{ 7617 const int index = btrfs_bg_flags_to_raid_index(flags); 7618 7619 return btrfs_raid_array[index].ncopies; 7620} 7621 7622 7623 7624static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7625 u64 chunk_offset, u64 devid, 7626 u64 physical_offset, u64 physical_len) 7627{ 7628 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7629 struct extent_map *em; 7630 struct map_lookup *map; 7631 struct btrfs_device *dev; 7632 u64 stripe_len; 7633 bool found = false; 7634 int ret = 0; 7635 int i; 7636 7637 read_lock(&em_tree->lock); 7638 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7639 read_unlock(&em_tree->lock); 7640 7641 if (!em) { 7642 btrfs_err(fs_info, 7643"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7644 physical_offset, devid); 7645 ret = -EUCLEAN; 7646 goto out; 7647 } 7648 7649 map = em->map_lookup; 7650 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 7651 if (physical_len != stripe_len) { 7652 btrfs_err(fs_info, 7653"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7654 physical_offset, devid, em->start, physical_len, 7655 stripe_len); 7656 ret = -EUCLEAN; 7657 goto out; 7658 } 7659 7660 for (i = 0; i < map->num_stripes; i++) { 7661 if (map->stripes[i].dev->devid == devid && 7662 map->stripes[i].physical == physical_offset) { 7663 found = true; 7664 if (map->verified_stripes >= map->num_stripes) { 7665 btrfs_err(fs_info, 7666 "too many dev extents for chunk %llu found", 7667 em->start); 7668 ret = -EUCLEAN; 7669 goto out; 7670 } 7671 map->verified_stripes++; 7672 break; 7673 } 7674 } 7675 if (!found) { 7676 btrfs_err(fs_info, 7677 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7678 physical_offset, devid); 7679 ret = -EUCLEAN; 7680 } 7681 7682 /* Make sure no dev extent is beyond device bondary */ 7683 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 7684 if (!dev) { 7685 btrfs_err(fs_info, "failed to find devid %llu", devid); 7686 ret = -EUCLEAN; 7687 goto out; 7688 } 7689 7690 /* It's possible this device is a dummy for seed device */ 7691 if (dev->disk_total_bytes == 0) { 7692 struct btrfs_fs_devices *devs; 7693 7694 devs = list_first_entry(&fs_info->fs_devices->seed_list, 7695 struct btrfs_fs_devices, seed_list); 7696 dev = btrfs_find_device(devs, devid, NULL, NULL, false); 7697 if (!dev) { 7698 btrfs_err(fs_info, "failed to find seed devid %llu", 7699 devid); 7700 ret = -EUCLEAN; 7701 goto out; 7702 } 7703 } 7704 7705 if (physical_offset + physical_len > dev->disk_total_bytes) { 7706 btrfs_err(fs_info, 7707"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7708 devid, physical_offset, physical_len, 7709 dev->disk_total_bytes); 7710 ret = -EUCLEAN; 7711 goto out; 7712 } 7713out: 7714 free_extent_map(em); 7715 return ret; 7716} 7717 7718static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7719{ 7720 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7721 struct extent_map *em; 7722 struct rb_node *node; 7723 int ret = 0; 7724 7725 read_lock(&em_tree->lock); 7726 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7727 em = rb_entry(node, struct extent_map, rb_node); 7728 if (em->map_lookup->num_stripes != 7729 em->map_lookup->verified_stripes) { 7730 btrfs_err(fs_info, 7731 "chunk %llu has missing dev extent, have %d expect %d", 7732 em->start, em->map_lookup->verified_stripes, 7733 em->map_lookup->num_stripes); 7734 ret = -EUCLEAN; 7735 goto out; 7736 } 7737 } 7738out: 7739 read_unlock(&em_tree->lock); 7740 return ret; 7741} 7742 7743/* 7744 * Ensure that all dev extents are mapped to correct chunk, otherwise 7745 * later chunk allocation/free would cause unexpected behavior. 7746 * 7747 * NOTE: This will iterate through the whole device tree, which should be of 7748 * the same size level as the chunk tree. This slightly increases mount time. 7749 */ 7750int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7751{ 7752 struct btrfs_path *path; 7753 struct btrfs_root *root = fs_info->dev_root; 7754 struct btrfs_key key; 7755 u64 prev_devid = 0; 7756 u64 prev_dev_ext_end = 0; 7757 int ret = 0; 7758 7759 key.objectid = 1; 7760 key.type = BTRFS_DEV_EXTENT_KEY; 7761 key.offset = 0; 7762 7763 path = btrfs_alloc_path(); 7764 if (!path) 7765 return -ENOMEM; 7766 7767 path->reada = READA_FORWARD; 7768 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7769 if (ret < 0) 7770 goto out; 7771 7772 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7773 ret = btrfs_next_item(root, path); 7774 if (ret < 0) 7775 goto out; 7776 /* No dev extents at all? Not good */ 7777 if (ret > 0) { 7778 ret = -EUCLEAN; 7779 goto out; 7780 } 7781 } 7782 while (1) { 7783 struct extent_buffer *leaf = path->nodes[0]; 7784 struct btrfs_dev_extent *dext; 7785 int slot = path->slots[0]; 7786 u64 chunk_offset; 7787 u64 physical_offset; 7788 u64 physical_len; 7789 u64 devid; 7790 7791 btrfs_item_key_to_cpu(leaf, &key, slot); 7792 if (key.type != BTRFS_DEV_EXTENT_KEY) 7793 break; 7794 devid = key.objectid; 7795 physical_offset = key.offset; 7796 7797 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7798 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7799 physical_len = btrfs_dev_extent_length(leaf, dext); 7800 7801 /* Check if this dev extent overlaps with the previous one */ 7802 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7803 btrfs_err(fs_info, 7804"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7805 devid, physical_offset, prev_dev_ext_end); 7806 ret = -EUCLEAN; 7807 goto out; 7808 } 7809 7810 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7811 physical_offset, physical_len); 7812 if (ret < 0) 7813 goto out; 7814 prev_devid = devid; 7815 prev_dev_ext_end = physical_offset + physical_len; 7816 7817 ret = btrfs_next_item(root, path); 7818 if (ret < 0) 7819 goto out; 7820 if (ret > 0) { 7821 ret = 0; 7822 break; 7823 } 7824 } 7825 7826 /* Ensure all chunks have corresponding dev extents */ 7827 ret = verify_chunk_dev_extent_mapping(fs_info); 7828out: 7829 btrfs_free_path(path); 7830 return ret; 7831} 7832 7833/* 7834 * Check whether the given block group or device is pinned by any inode being 7835 * used as a swapfile. 7836 */ 7837bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7838{ 7839 struct btrfs_swapfile_pin *sp; 7840 struct rb_node *node; 7841 7842 spin_lock(&fs_info->swapfile_pins_lock); 7843 node = fs_info->swapfile_pins.rb_node; 7844 while (node) { 7845 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7846 if (ptr < sp->ptr) 7847 node = node->rb_left; 7848 else if (ptr > sp->ptr) 7849 node = node->rb_right; 7850 else 7851 break; 7852 } 7853 spin_unlock(&fs_info->swapfile_pins_lock); 7854 return node != NULL; 7855} 7856