1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6#include <linux/fs.h> 7#include <linux/slab.h> 8#include <linux/sched.h> 9#include <linux/writeback.h> 10#include <linux/pagemap.h> 11#include <linux/blkdev.h> 12#include <linux/uuid.h> 13#include "misc.h" 14#include "ctree.h" 15#include "disk-io.h" 16#include "transaction.h" 17#include "locking.h" 18#include "tree-log.h" 19#include "inode-map.h" 20#include "volumes.h" 21#include "dev-replace.h" 22#include "qgroup.h" 23#include "block-group.h" 24#include "space-info.h" 25 26#define BTRFS_ROOT_TRANS_TAG 0 27 28/* 29 * Transaction states and transitions 30 * 31 * No running transaction (fs tree blocks are not modified) 32 * | 33 * | To next stage: 34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 35 * V 36 * Transaction N [[TRANS_STATE_RUNNING]] 37 * | 38 * | New trans handles can be attached to transaction N by calling all 39 * | start_transaction() variants. 40 * | 41 * | To next stage: 42 * | Call btrfs_commit_transaction() on any trans handle attached to 43 * | transaction N 44 * V 45 * Transaction N [[TRANS_STATE_COMMIT_START]] 46 * | 47 * | Will wait for previous running transaction to completely finish if there 48 * | is one 49 * | 50 * | Then one of the following happes: 51 * | - Wait for all other trans handle holders to release. 52 * | The btrfs_commit_transaction() caller will do the commit work. 53 * | - Wait for current transaction to be committed by others. 54 * | Other btrfs_commit_transaction() caller will do the commit work. 55 * | 56 * | At this stage, only btrfs_join_transaction*() variants can attach 57 * | to this running transaction. 58 * | All other variants will wait for current one to finish and attach to 59 * | transaction N+1. 60 * | 61 * | To next stage: 62 * | Caller is chosen to commit transaction N, and all other trans handle 63 * | haven been released. 64 * V 65 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 66 * | 67 * | The heavy lifting transaction work is started. 68 * | From running delayed refs (modifying extent tree) to creating pending 69 * | snapshots, running qgroups. 70 * | In short, modify supporting trees to reflect modifications of subvolume 71 * | trees. 72 * | 73 * | At this stage, all start_transaction() calls will wait for this 74 * | transaction to finish and attach to transaction N+1. 75 * | 76 * | To next stage: 77 * | Until all supporting trees are updated. 78 * V 79 * Transaction N [[TRANS_STATE_UNBLOCKED]] 80 * | Transaction N+1 81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 82 * | need to write them back to disk and update | 83 * | super blocks. | 84 * | | 85 * | At this stage, new transaction is allowed to | 86 * | start. | 87 * | All new start_transaction() calls will be | 88 * | attached to transid N+1. | 89 * | | 90 * | To next stage: | 91 * | Until all tree blocks are super blocks are | 92 * | written to block devices | 93 * V | 94 * Transaction N [[TRANS_STATE_COMPLETED]] V 95 * All tree blocks and super blocks are written. Transaction N+1 96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 97 * data structures will be cleaned up. | Life goes on 98 */ 99static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 100 [TRANS_STATE_RUNNING] = 0U, 101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 103 __TRANS_ATTACH | 104 __TRANS_JOIN | 105 __TRANS_JOIN_NOSTART), 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 107 __TRANS_ATTACH | 108 __TRANS_JOIN | 109 __TRANS_JOIN_NOLOCK | 110 __TRANS_JOIN_NOSTART), 111 [TRANS_STATE_COMPLETED] = (__TRANS_START | 112 __TRANS_ATTACH | 113 __TRANS_JOIN | 114 __TRANS_JOIN_NOLOCK | 115 __TRANS_JOIN_NOSTART), 116}; 117 118void btrfs_put_transaction(struct btrfs_transaction *transaction) 119{ 120 WARN_ON(refcount_read(&transaction->use_count) == 0); 121 if (refcount_dec_and_test(&transaction->use_count)) { 122 BUG_ON(!list_empty(&transaction->list)); 123 WARN_ON(!RB_EMPTY_ROOT( 124 &transaction->delayed_refs.href_root.rb_root)); 125 WARN_ON(!RB_EMPTY_ROOT( 126 &transaction->delayed_refs.dirty_extent_root)); 127 if (transaction->delayed_refs.pending_csums) 128 btrfs_err(transaction->fs_info, 129 "pending csums is %llu", 130 transaction->delayed_refs.pending_csums); 131 /* 132 * If any block groups are found in ->deleted_bgs then it's 133 * because the transaction was aborted and a commit did not 134 * happen (things failed before writing the new superblock 135 * and calling btrfs_finish_extent_commit()), so we can not 136 * discard the physical locations of the block groups. 137 */ 138 while (!list_empty(&transaction->deleted_bgs)) { 139 struct btrfs_block_group *cache; 140 141 cache = list_first_entry(&transaction->deleted_bgs, 142 struct btrfs_block_group, 143 bg_list); 144 list_del_init(&cache->bg_list); 145 btrfs_unfreeze_block_group(cache); 146 btrfs_put_block_group(cache); 147 } 148 WARN_ON(!list_empty(&transaction->dev_update_list)); 149 kfree(transaction); 150 } 151} 152 153static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 154{ 155 struct btrfs_transaction *cur_trans = trans->transaction; 156 struct btrfs_fs_info *fs_info = trans->fs_info; 157 struct btrfs_root *root, *tmp; 158 struct btrfs_caching_control *caching_ctl, *next; 159 160 down_write(&fs_info->commit_root_sem); 161 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 162 dirty_list) { 163 list_del_init(&root->dirty_list); 164 free_extent_buffer(root->commit_root); 165 root->commit_root = btrfs_root_node(root); 166 if (is_fstree(root->root_key.objectid)) 167 btrfs_unpin_free_ino(root); 168 extent_io_tree_release(&root->dirty_log_pages); 169 btrfs_qgroup_clean_swapped_blocks(root); 170 } 171 172 /* We can free old roots now. */ 173 spin_lock(&cur_trans->dropped_roots_lock); 174 while (!list_empty(&cur_trans->dropped_roots)) { 175 root = list_first_entry(&cur_trans->dropped_roots, 176 struct btrfs_root, root_list); 177 list_del_init(&root->root_list); 178 spin_unlock(&cur_trans->dropped_roots_lock); 179 btrfs_free_log(trans, root); 180 btrfs_drop_and_free_fs_root(fs_info, root); 181 spin_lock(&cur_trans->dropped_roots_lock); 182 } 183 spin_unlock(&cur_trans->dropped_roots_lock); 184 185 /* 186 * We have to update the last_byte_to_unpin under the commit_root_sem, 187 * at the same time we swap out the commit roots. 188 * 189 * This is because we must have a real view of the last spot the caching 190 * kthreads were while caching. Consider the following views of the 191 * extent tree for a block group 192 * 193 * commit root 194 * +----+----+----+----+----+----+----+ 195 * |\\\\| |\\\\|\\\\| |\\\\|\\\\| 196 * +----+----+----+----+----+----+----+ 197 * 0 1 2 3 4 5 6 7 198 * 199 * new commit root 200 * +----+----+----+----+----+----+----+ 201 * | | | |\\\\| | |\\\\| 202 * +----+----+----+----+----+----+----+ 203 * 0 1 2 3 4 5 6 7 204 * 205 * If the cache_ctl->progress was at 3, then we are only allowed to 206 * unpin [0,1) and [2,3], because the caching thread has already 207 * processed those extents. We are not allowed to unpin [5,6), because 208 * the caching thread will re-start it's search from 3, and thus find 209 * the hole from [4,6) to add to the free space cache. 210 */ 211 list_for_each_entry_safe(caching_ctl, next, 212 &fs_info->caching_block_groups, list) { 213 struct btrfs_block_group *cache = caching_ctl->block_group; 214 215 if (btrfs_block_group_done(cache)) { 216 cache->last_byte_to_unpin = (u64)-1; 217 list_del_init(&caching_ctl->list); 218 btrfs_put_caching_control(caching_ctl); 219 } else { 220 cache->last_byte_to_unpin = caching_ctl->progress; 221 } 222 } 223 up_write(&fs_info->commit_root_sem); 224} 225 226static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 227 unsigned int type) 228{ 229 if (type & TRANS_EXTWRITERS) 230 atomic_inc(&trans->num_extwriters); 231} 232 233static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 234 unsigned int type) 235{ 236 if (type & TRANS_EXTWRITERS) 237 atomic_dec(&trans->num_extwriters); 238} 239 240static inline void extwriter_counter_init(struct btrfs_transaction *trans, 241 unsigned int type) 242{ 243 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 244} 245 246static inline int extwriter_counter_read(struct btrfs_transaction *trans) 247{ 248 return atomic_read(&trans->num_extwriters); 249} 250 251/* 252 * To be called after all the new block groups attached to the transaction 253 * handle have been created (btrfs_create_pending_block_groups()). 254 */ 255void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 256{ 257 struct btrfs_fs_info *fs_info = trans->fs_info; 258 259 if (!trans->chunk_bytes_reserved) 260 return; 261 262 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 263 264 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 265 trans->chunk_bytes_reserved, NULL); 266 trans->chunk_bytes_reserved = 0; 267} 268 269/* 270 * either allocate a new transaction or hop into the existing one 271 */ 272static noinline int join_transaction(struct btrfs_fs_info *fs_info, 273 unsigned int type) 274{ 275 struct btrfs_transaction *cur_trans; 276 277 spin_lock(&fs_info->trans_lock); 278loop: 279 /* The file system has been taken offline. No new transactions. */ 280 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 281 spin_unlock(&fs_info->trans_lock); 282 return -EROFS; 283 } 284 285 cur_trans = fs_info->running_transaction; 286 if (cur_trans) { 287 if (TRANS_ABORTED(cur_trans)) { 288 spin_unlock(&fs_info->trans_lock); 289 return cur_trans->aborted; 290 } 291 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 292 spin_unlock(&fs_info->trans_lock); 293 return -EBUSY; 294 } 295 refcount_inc(&cur_trans->use_count); 296 atomic_inc(&cur_trans->num_writers); 297 extwriter_counter_inc(cur_trans, type); 298 spin_unlock(&fs_info->trans_lock); 299 return 0; 300 } 301 spin_unlock(&fs_info->trans_lock); 302 303 /* 304 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the 305 * current transaction, and commit it. If there is no transaction, just 306 * return ENOENT. 307 */ 308 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART) 309 return -ENOENT; 310 311 /* 312 * JOIN_NOLOCK only happens during the transaction commit, so 313 * it is impossible that ->running_transaction is NULL 314 */ 315 BUG_ON(type == TRANS_JOIN_NOLOCK); 316 317 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 318 if (!cur_trans) 319 return -ENOMEM; 320 321 spin_lock(&fs_info->trans_lock); 322 if (fs_info->running_transaction) { 323 /* 324 * someone started a transaction after we unlocked. Make sure 325 * to redo the checks above 326 */ 327 kfree(cur_trans); 328 goto loop; 329 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 330 spin_unlock(&fs_info->trans_lock); 331 kfree(cur_trans); 332 return -EROFS; 333 } 334 335 cur_trans->fs_info = fs_info; 336 atomic_set(&cur_trans->pending_ordered, 0); 337 init_waitqueue_head(&cur_trans->pending_wait); 338 atomic_set(&cur_trans->num_writers, 1); 339 extwriter_counter_init(cur_trans, type); 340 init_waitqueue_head(&cur_trans->writer_wait); 341 init_waitqueue_head(&cur_trans->commit_wait); 342 cur_trans->state = TRANS_STATE_RUNNING; 343 /* 344 * One for this trans handle, one so it will live on until we 345 * commit the transaction. 346 */ 347 refcount_set(&cur_trans->use_count, 2); 348 cur_trans->flags = 0; 349 cur_trans->start_time = ktime_get_seconds(); 350 351 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 352 353 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 354 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 355 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 356 357 /* 358 * although the tree mod log is per file system and not per transaction, 359 * the log must never go across transaction boundaries. 360 */ 361 smp_mb(); 362 if (!list_empty(&fs_info->tree_mod_seq_list)) 363 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 364 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 365 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 366 atomic64_set(&fs_info->tree_mod_seq, 0); 367 368 spin_lock_init(&cur_trans->delayed_refs.lock); 369 370 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 371 INIT_LIST_HEAD(&cur_trans->dev_update_list); 372 INIT_LIST_HEAD(&cur_trans->switch_commits); 373 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 374 INIT_LIST_HEAD(&cur_trans->io_bgs); 375 INIT_LIST_HEAD(&cur_trans->dropped_roots); 376 mutex_init(&cur_trans->cache_write_mutex); 377 spin_lock_init(&cur_trans->dirty_bgs_lock); 378 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 379 spin_lock_init(&cur_trans->dropped_roots_lock); 380 list_add_tail(&cur_trans->list, &fs_info->trans_list); 381 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 382 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 383 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 384 IO_TREE_FS_PINNED_EXTENTS, NULL); 385 fs_info->generation++; 386 cur_trans->transid = fs_info->generation; 387 fs_info->running_transaction = cur_trans; 388 cur_trans->aborted = 0; 389 spin_unlock(&fs_info->trans_lock); 390 391 return 0; 392} 393 394/* 395 * This does all the record keeping required to make sure that a shareable root 396 * is properly recorded in a given transaction. This is required to make sure 397 * the old root from before we joined the transaction is deleted when the 398 * transaction commits. 399 */ 400static int record_root_in_trans(struct btrfs_trans_handle *trans, 401 struct btrfs_root *root, 402 int force) 403{ 404 struct btrfs_fs_info *fs_info = root->fs_info; 405 406 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 407 root->last_trans < trans->transid) || force) { 408 WARN_ON(root == fs_info->extent_root); 409 WARN_ON(!force && root->commit_root != root->node); 410 411 /* 412 * see below for IN_TRANS_SETUP usage rules 413 * we have the reloc mutex held now, so there 414 * is only one writer in this function 415 */ 416 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 417 418 /* make sure readers find IN_TRANS_SETUP before 419 * they find our root->last_trans update 420 */ 421 smp_wmb(); 422 423 spin_lock(&fs_info->fs_roots_radix_lock); 424 if (root->last_trans == trans->transid && !force) { 425 spin_unlock(&fs_info->fs_roots_radix_lock); 426 return 0; 427 } 428 radix_tree_tag_set(&fs_info->fs_roots_radix, 429 (unsigned long)root->root_key.objectid, 430 BTRFS_ROOT_TRANS_TAG); 431 spin_unlock(&fs_info->fs_roots_radix_lock); 432 root->last_trans = trans->transid; 433 434 /* this is pretty tricky. We don't want to 435 * take the relocation lock in btrfs_record_root_in_trans 436 * unless we're really doing the first setup for this root in 437 * this transaction. 438 * 439 * Normally we'd use root->last_trans as a flag to decide 440 * if we want to take the expensive mutex. 441 * 442 * But, we have to set root->last_trans before we 443 * init the relocation root, otherwise, we trip over warnings 444 * in ctree.c. The solution used here is to flag ourselves 445 * with root IN_TRANS_SETUP. When this is 1, we're still 446 * fixing up the reloc trees and everyone must wait. 447 * 448 * When this is zero, they can trust root->last_trans and fly 449 * through btrfs_record_root_in_trans without having to take the 450 * lock. smp_wmb() makes sure that all the writes above are 451 * done before we pop in the zero below 452 */ 453 btrfs_init_reloc_root(trans, root); 454 smp_mb__before_atomic(); 455 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 456 } 457 return 0; 458} 459 460 461void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 462 struct btrfs_root *root) 463{ 464 struct btrfs_fs_info *fs_info = root->fs_info; 465 struct btrfs_transaction *cur_trans = trans->transaction; 466 467 /* Add ourselves to the transaction dropped list */ 468 spin_lock(&cur_trans->dropped_roots_lock); 469 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 470 spin_unlock(&cur_trans->dropped_roots_lock); 471 472 /* Make sure we don't try to update the root at commit time */ 473 spin_lock(&fs_info->fs_roots_radix_lock); 474 radix_tree_tag_clear(&fs_info->fs_roots_radix, 475 (unsigned long)root->root_key.objectid, 476 BTRFS_ROOT_TRANS_TAG); 477 spin_unlock(&fs_info->fs_roots_radix_lock); 478} 479 480int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 481 struct btrfs_root *root) 482{ 483 struct btrfs_fs_info *fs_info = root->fs_info; 484 485 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 486 return 0; 487 488 /* 489 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 490 * and barriers 491 */ 492 smp_rmb(); 493 if (root->last_trans == trans->transid && 494 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 495 return 0; 496 497 mutex_lock(&fs_info->reloc_mutex); 498 record_root_in_trans(trans, root, 0); 499 mutex_unlock(&fs_info->reloc_mutex); 500 501 return 0; 502} 503 504static inline int is_transaction_blocked(struct btrfs_transaction *trans) 505{ 506 return (trans->state >= TRANS_STATE_COMMIT_START && 507 trans->state < TRANS_STATE_UNBLOCKED && 508 !TRANS_ABORTED(trans)); 509} 510 511/* wait for commit against the current transaction to become unblocked 512 * when this is done, it is safe to start a new transaction, but the current 513 * transaction might not be fully on disk. 514 */ 515static void wait_current_trans(struct btrfs_fs_info *fs_info) 516{ 517 struct btrfs_transaction *cur_trans; 518 519 spin_lock(&fs_info->trans_lock); 520 cur_trans = fs_info->running_transaction; 521 if (cur_trans && is_transaction_blocked(cur_trans)) { 522 refcount_inc(&cur_trans->use_count); 523 spin_unlock(&fs_info->trans_lock); 524 525 wait_event(fs_info->transaction_wait, 526 cur_trans->state >= TRANS_STATE_UNBLOCKED || 527 TRANS_ABORTED(cur_trans)); 528 btrfs_put_transaction(cur_trans); 529 } else { 530 spin_unlock(&fs_info->trans_lock); 531 } 532} 533 534static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 535{ 536 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 537 return 0; 538 539 if (type == TRANS_START) 540 return 1; 541 542 return 0; 543} 544 545static inline bool need_reserve_reloc_root(struct btrfs_root *root) 546{ 547 struct btrfs_fs_info *fs_info = root->fs_info; 548 549 if (!fs_info->reloc_ctl || 550 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 551 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 552 root->reloc_root) 553 return false; 554 555 return true; 556} 557 558static struct btrfs_trans_handle * 559start_transaction(struct btrfs_root *root, unsigned int num_items, 560 unsigned int type, enum btrfs_reserve_flush_enum flush, 561 bool enforce_qgroups) 562{ 563 struct btrfs_fs_info *fs_info = root->fs_info; 564 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 565 struct btrfs_trans_handle *h; 566 struct btrfs_transaction *cur_trans; 567 u64 num_bytes = 0; 568 u64 qgroup_reserved = 0; 569 bool reloc_reserved = false; 570 bool do_chunk_alloc = false; 571 int ret; 572 573 /* Send isn't supposed to start transactions. */ 574 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 575 576 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 577 return ERR_PTR(-EROFS); 578 579 if (current->journal_info) { 580 WARN_ON(type & TRANS_EXTWRITERS); 581 h = current->journal_info; 582 refcount_inc(&h->use_count); 583 WARN_ON(refcount_read(&h->use_count) > 2); 584 h->orig_rsv = h->block_rsv; 585 h->block_rsv = NULL; 586 goto got_it; 587 } 588 589 /* 590 * Do the reservation before we join the transaction so we can do all 591 * the appropriate flushing if need be. 592 */ 593 if (num_items && root != fs_info->chunk_root) { 594 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 595 u64 delayed_refs_bytes = 0; 596 597 qgroup_reserved = num_items * fs_info->nodesize; 598 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 599 enforce_qgroups); 600 if (ret) 601 return ERR_PTR(ret); 602 603 /* 604 * We want to reserve all the bytes we may need all at once, so 605 * we only do 1 enospc flushing cycle per transaction start. We 606 * accomplish this by simply assuming we'll do 2 x num_items 607 * worth of delayed refs updates in this trans handle, and 608 * refill that amount for whatever is missing in the reserve. 609 */ 610 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 611 if (flush == BTRFS_RESERVE_FLUSH_ALL && 612 delayed_refs_rsv->full == 0) { 613 delayed_refs_bytes = num_bytes; 614 num_bytes <<= 1; 615 } 616 617 /* 618 * Do the reservation for the relocation root creation 619 */ 620 if (need_reserve_reloc_root(root)) { 621 num_bytes += fs_info->nodesize; 622 reloc_reserved = true; 623 } 624 625 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 626 if (ret) 627 goto reserve_fail; 628 if (delayed_refs_bytes) { 629 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 630 delayed_refs_bytes); 631 num_bytes -= delayed_refs_bytes; 632 } 633 634 if (rsv->space_info->force_alloc) 635 do_chunk_alloc = true; 636 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 637 !delayed_refs_rsv->full) { 638 /* 639 * Some people call with btrfs_start_transaction(root, 0) 640 * because they can be throttled, but have some other mechanism 641 * for reserving space. We still want these guys to refill the 642 * delayed block_rsv so just add 1 items worth of reservation 643 * here. 644 */ 645 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 646 if (ret) 647 goto reserve_fail; 648 } 649again: 650 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 651 if (!h) { 652 ret = -ENOMEM; 653 goto alloc_fail; 654 } 655 656 /* 657 * If we are JOIN_NOLOCK we're already committing a transaction and 658 * waiting on this guy, so we don't need to do the sb_start_intwrite 659 * because we're already holding a ref. We need this because we could 660 * have raced in and did an fsync() on a file which can kick a commit 661 * and then we deadlock with somebody doing a freeze. 662 * 663 * If we are ATTACH, it means we just want to catch the current 664 * transaction and commit it, so we needn't do sb_start_intwrite(). 665 */ 666 if (type & __TRANS_FREEZABLE) 667 sb_start_intwrite(fs_info->sb); 668 669 if (may_wait_transaction(fs_info, type)) 670 wait_current_trans(fs_info); 671 672 do { 673 ret = join_transaction(fs_info, type); 674 if (ret == -EBUSY) { 675 wait_current_trans(fs_info); 676 if (unlikely(type == TRANS_ATTACH || 677 type == TRANS_JOIN_NOSTART)) 678 ret = -ENOENT; 679 } 680 } while (ret == -EBUSY); 681 682 if (ret < 0) 683 goto join_fail; 684 685 cur_trans = fs_info->running_transaction; 686 687 h->transid = cur_trans->transid; 688 h->transaction = cur_trans; 689 h->root = root; 690 refcount_set(&h->use_count, 1); 691 h->fs_info = root->fs_info; 692 693 h->type = type; 694 h->can_flush_pending_bgs = true; 695 INIT_LIST_HEAD(&h->new_bgs); 696 697 smp_mb(); 698 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 699 may_wait_transaction(fs_info, type)) { 700 current->journal_info = h; 701 btrfs_commit_transaction(h); 702 goto again; 703 } 704 705 if (num_bytes) { 706 trace_btrfs_space_reservation(fs_info, "transaction", 707 h->transid, num_bytes, 1); 708 h->block_rsv = &fs_info->trans_block_rsv; 709 h->bytes_reserved = num_bytes; 710 h->reloc_reserved = reloc_reserved; 711 } 712 713got_it: 714 if (!current->journal_info) 715 current->journal_info = h; 716 717 /* 718 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 719 * ALLOC_FORCE the first run through, and then we won't allocate for 720 * anybody else who races in later. We don't care about the return 721 * value here. 722 */ 723 if (do_chunk_alloc && num_bytes) { 724 u64 flags = h->block_rsv->space_info->flags; 725 726 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 727 CHUNK_ALLOC_NO_FORCE); 728 } 729 730 /* 731 * btrfs_record_root_in_trans() needs to alloc new extents, and may 732 * call btrfs_join_transaction() while we're also starting a 733 * transaction. 734 * 735 * Thus it need to be called after current->journal_info initialized, 736 * or we can deadlock. 737 */ 738 btrfs_record_root_in_trans(h, root); 739 740 return h; 741 742join_fail: 743 if (type & __TRANS_FREEZABLE) 744 sb_end_intwrite(fs_info->sb); 745 kmem_cache_free(btrfs_trans_handle_cachep, h); 746alloc_fail: 747 if (num_bytes) 748 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 749 num_bytes, NULL); 750reserve_fail: 751 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 752 return ERR_PTR(ret); 753} 754 755struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 756 unsigned int num_items) 757{ 758 return start_transaction(root, num_items, TRANS_START, 759 BTRFS_RESERVE_FLUSH_ALL, true); 760} 761 762struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 763 struct btrfs_root *root, 764 unsigned int num_items) 765{ 766 return start_transaction(root, num_items, TRANS_START, 767 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 768} 769 770struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 771{ 772 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 773 true); 774} 775 776struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 777{ 778 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 779 BTRFS_RESERVE_NO_FLUSH, true); 780} 781 782/* 783 * Similar to regular join but it never starts a transaction when none is 784 * running or after waiting for the current one to finish. 785 */ 786struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 787{ 788 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 789 BTRFS_RESERVE_NO_FLUSH, true); 790} 791 792/* 793 * btrfs_attach_transaction() - catch the running transaction 794 * 795 * It is used when we want to commit the current the transaction, but 796 * don't want to start a new one. 797 * 798 * Note: If this function return -ENOENT, it just means there is no 799 * running transaction. But it is possible that the inactive transaction 800 * is still in the memory, not fully on disk. If you hope there is no 801 * inactive transaction in the fs when -ENOENT is returned, you should 802 * invoke 803 * btrfs_attach_transaction_barrier() 804 */ 805struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 806{ 807 return start_transaction(root, 0, TRANS_ATTACH, 808 BTRFS_RESERVE_NO_FLUSH, true); 809} 810 811/* 812 * btrfs_attach_transaction_barrier() - catch the running transaction 813 * 814 * It is similar to the above function, the difference is this one 815 * will wait for all the inactive transactions until they fully 816 * complete. 817 */ 818struct btrfs_trans_handle * 819btrfs_attach_transaction_barrier(struct btrfs_root *root) 820{ 821 struct btrfs_trans_handle *trans; 822 823 trans = start_transaction(root, 0, TRANS_ATTACH, 824 BTRFS_RESERVE_NO_FLUSH, true); 825 if (trans == ERR_PTR(-ENOENT)) { 826 int ret; 827 828 ret = btrfs_wait_for_commit(root->fs_info, 0); 829 if (ret) 830 return ERR_PTR(ret); 831 } 832 833 return trans; 834} 835 836/* wait for a transaction commit to be fully complete */ 837static noinline void wait_for_commit(struct btrfs_transaction *commit) 838{ 839 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 840} 841 842int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 843{ 844 struct btrfs_transaction *cur_trans = NULL, *t; 845 int ret = 0; 846 847 if (transid) { 848 if (transid <= fs_info->last_trans_committed) 849 goto out; 850 851 /* find specified transaction */ 852 spin_lock(&fs_info->trans_lock); 853 list_for_each_entry(t, &fs_info->trans_list, list) { 854 if (t->transid == transid) { 855 cur_trans = t; 856 refcount_inc(&cur_trans->use_count); 857 ret = 0; 858 break; 859 } 860 if (t->transid > transid) { 861 ret = 0; 862 break; 863 } 864 } 865 spin_unlock(&fs_info->trans_lock); 866 867 /* 868 * The specified transaction doesn't exist, or we 869 * raced with btrfs_commit_transaction 870 */ 871 if (!cur_trans) { 872 if (transid > fs_info->last_trans_committed) 873 ret = -EINVAL; 874 goto out; 875 } 876 } else { 877 /* find newest transaction that is committing | committed */ 878 spin_lock(&fs_info->trans_lock); 879 list_for_each_entry_reverse(t, &fs_info->trans_list, 880 list) { 881 if (t->state >= TRANS_STATE_COMMIT_START) { 882 if (t->state == TRANS_STATE_COMPLETED) 883 break; 884 cur_trans = t; 885 refcount_inc(&cur_trans->use_count); 886 break; 887 } 888 } 889 spin_unlock(&fs_info->trans_lock); 890 if (!cur_trans) 891 goto out; /* nothing committing|committed */ 892 } 893 894 wait_for_commit(cur_trans); 895 ret = cur_trans->aborted; 896 btrfs_put_transaction(cur_trans); 897out: 898 return ret; 899} 900 901void btrfs_throttle(struct btrfs_fs_info *fs_info) 902{ 903 wait_current_trans(fs_info); 904} 905 906static int should_end_transaction(struct btrfs_trans_handle *trans) 907{ 908 struct btrfs_fs_info *fs_info = trans->fs_info; 909 910 if (btrfs_check_space_for_delayed_refs(fs_info)) 911 return 1; 912 913 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 914} 915 916int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 917{ 918 struct btrfs_transaction *cur_trans = trans->transaction; 919 920 smp_mb(); 921 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 922 cur_trans->delayed_refs.flushing) 923 return 1; 924 925 return should_end_transaction(trans); 926} 927 928static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 929 930{ 931 struct btrfs_fs_info *fs_info = trans->fs_info; 932 933 if (!trans->block_rsv) { 934 ASSERT(!trans->bytes_reserved); 935 return; 936 } 937 938 if (!trans->bytes_reserved) 939 return; 940 941 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 942 trace_btrfs_space_reservation(fs_info, "transaction", 943 trans->transid, trans->bytes_reserved, 0); 944 btrfs_block_rsv_release(fs_info, trans->block_rsv, 945 trans->bytes_reserved, NULL); 946 trans->bytes_reserved = 0; 947} 948 949static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 950 int throttle) 951{ 952 struct btrfs_fs_info *info = trans->fs_info; 953 struct btrfs_transaction *cur_trans = trans->transaction; 954 int err = 0; 955 956 if (refcount_read(&trans->use_count) > 1) { 957 refcount_dec(&trans->use_count); 958 trans->block_rsv = trans->orig_rsv; 959 return 0; 960 } 961 962 btrfs_trans_release_metadata(trans); 963 trans->block_rsv = NULL; 964 965 btrfs_create_pending_block_groups(trans); 966 967 btrfs_trans_release_chunk_metadata(trans); 968 969 if (trans->type & __TRANS_FREEZABLE) 970 sb_end_intwrite(info->sb); 971 972 WARN_ON(cur_trans != info->running_transaction); 973 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 974 atomic_dec(&cur_trans->num_writers); 975 extwriter_counter_dec(cur_trans, trans->type); 976 977 cond_wake_up(&cur_trans->writer_wait); 978 btrfs_put_transaction(cur_trans); 979 980 if (current->journal_info == trans) 981 current->journal_info = NULL; 982 983 if (throttle) 984 btrfs_run_delayed_iputs(info); 985 986 if (TRANS_ABORTED(trans) || 987 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 988 wake_up_process(info->transaction_kthread); 989 if (TRANS_ABORTED(trans)) 990 err = trans->aborted; 991 else 992 err = -EROFS; 993 } 994 995 kmem_cache_free(btrfs_trans_handle_cachep, trans); 996 return err; 997} 998 999int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1000{ 1001 return __btrfs_end_transaction(trans, 0); 1002} 1003 1004int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1005{ 1006 return __btrfs_end_transaction(trans, 1); 1007} 1008 1009/* 1010 * when btree blocks are allocated, they have some corresponding bits set for 1011 * them in one of two extent_io trees. This is used to make sure all of 1012 * those extents are sent to disk but does not wait on them 1013 */ 1014int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1015 struct extent_io_tree *dirty_pages, int mark) 1016{ 1017 int err = 0; 1018 int werr = 0; 1019 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1020 struct extent_state *cached_state = NULL; 1021 u64 start = 0; 1022 u64 end; 1023 1024 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1025 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1026 mark, &cached_state)) { 1027 bool wait_writeback = false; 1028 1029 err = convert_extent_bit(dirty_pages, start, end, 1030 EXTENT_NEED_WAIT, 1031 mark, &cached_state); 1032 /* 1033 * convert_extent_bit can return -ENOMEM, which is most of the 1034 * time a temporary error. So when it happens, ignore the error 1035 * and wait for writeback of this range to finish - because we 1036 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1037 * to __btrfs_wait_marked_extents() would not know that 1038 * writeback for this range started and therefore wouldn't 1039 * wait for it to finish - we don't want to commit a 1040 * superblock that points to btree nodes/leafs for which 1041 * writeback hasn't finished yet (and without errors). 1042 * We cleanup any entries left in the io tree when committing 1043 * the transaction (through extent_io_tree_release()). 1044 */ 1045 if (err == -ENOMEM) { 1046 err = 0; 1047 wait_writeback = true; 1048 } 1049 if (!err) 1050 err = filemap_fdatawrite_range(mapping, start, end); 1051 if (err) 1052 werr = err; 1053 else if (wait_writeback) 1054 werr = filemap_fdatawait_range(mapping, start, end); 1055 free_extent_state(cached_state); 1056 cached_state = NULL; 1057 cond_resched(); 1058 start = end + 1; 1059 } 1060 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1061 return werr; 1062} 1063 1064/* 1065 * when btree blocks are allocated, they have some corresponding bits set for 1066 * them in one of two extent_io trees. This is used to make sure all of 1067 * those extents are on disk for transaction or log commit. We wait 1068 * on all the pages and clear them from the dirty pages state tree 1069 */ 1070static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1071 struct extent_io_tree *dirty_pages) 1072{ 1073 int err = 0; 1074 int werr = 0; 1075 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1076 struct extent_state *cached_state = NULL; 1077 u64 start = 0; 1078 u64 end; 1079 1080 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1081 EXTENT_NEED_WAIT, &cached_state)) { 1082 /* 1083 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1084 * When committing the transaction, we'll remove any entries 1085 * left in the io tree. For a log commit, we don't remove them 1086 * after committing the log because the tree can be accessed 1087 * concurrently - we do it only at transaction commit time when 1088 * it's safe to do it (through extent_io_tree_release()). 1089 */ 1090 err = clear_extent_bit(dirty_pages, start, end, 1091 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1092 if (err == -ENOMEM) 1093 err = 0; 1094 if (!err) 1095 err = filemap_fdatawait_range(mapping, start, end); 1096 if (err) 1097 werr = err; 1098 free_extent_state(cached_state); 1099 cached_state = NULL; 1100 cond_resched(); 1101 start = end + 1; 1102 } 1103 if (err) 1104 werr = err; 1105 return werr; 1106} 1107 1108static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1109 struct extent_io_tree *dirty_pages) 1110{ 1111 bool errors = false; 1112 int err; 1113 1114 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1115 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1116 errors = true; 1117 1118 if (errors && !err) 1119 err = -EIO; 1120 return err; 1121} 1122 1123int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1124{ 1125 struct btrfs_fs_info *fs_info = log_root->fs_info; 1126 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1127 bool errors = false; 1128 int err; 1129 1130 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1131 1132 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1133 if ((mark & EXTENT_DIRTY) && 1134 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1135 errors = true; 1136 1137 if ((mark & EXTENT_NEW) && 1138 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1139 errors = true; 1140 1141 if (errors && !err) 1142 err = -EIO; 1143 return err; 1144} 1145 1146/* 1147 * When btree blocks are allocated the corresponding extents are marked dirty. 1148 * This function ensures such extents are persisted on disk for transaction or 1149 * log commit. 1150 * 1151 * @trans: transaction whose dirty pages we'd like to write 1152 */ 1153static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1154{ 1155 int ret; 1156 int ret2; 1157 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1158 struct btrfs_fs_info *fs_info = trans->fs_info; 1159 struct blk_plug plug; 1160 1161 blk_start_plug(&plug); 1162 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1163 blk_finish_plug(&plug); 1164 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1165 1166 extent_io_tree_release(&trans->transaction->dirty_pages); 1167 1168 if (ret) 1169 return ret; 1170 else if (ret2) 1171 return ret2; 1172 else 1173 return 0; 1174} 1175 1176/* 1177 * this is used to update the root pointer in the tree of tree roots. 1178 * 1179 * But, in the case of the extent allocation tree, updating the root 1180 * pointer may allocate blocks which may change the root of the extent 1181 * allocation tree. 1182 * 1183 * So, this loops and repeats and makes sure the cowonly root didn't 1184 * change while the root pointer was being updated in the metadata. 1185 */ 1186static int update_cowonly_root(struct btrfs_trans_handle *trans, 1187 struct btrfs_root *root) 1188{ 1189 int ret; 1190 u64 old_root_bytenr; 1191 u64 old_root_used; 1192 struct btrfs_fs_info *fs_info = root->fs_info; 1193 struct btrfs_root *tree_root = fs_info->tree_root; 1194 1195 old_root_used = btrfs_root_used(&root->root_item); 1196 1197 while (1) { 1198 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1199 if (old_root_bytenr == root->node->start && 1200 old_root_used == btrfs_root_used(&root->root_item)) 1201 break; 1202 1203 btrfs_set_root_node(&root->root_item, root->node); 1204 ret = btrfs_update_root(trans, tree_root, 1205 &root->root_key, 1206 &root->root_item); 1207 if (ret) 1208 return ret; 1209 1210 old_root_used = btrfs_root_used(&root->root_item); 1211 } 1212 1213 return 0; 1214} 1215 1216/* 1217 * update all the cowonly tree roots on disk 1218 * 1219 * The error handling in this function may not be obvious. Any of the 1220 * failures will cause the file system to go offline. We still need 1221 * to clean up the delayed refs. 1222 */ 1223static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1224{ 1225 struct btrfs_fs_info *fs_info = trans->fs_info; 1226 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1227 struct list_head *io_bgs = &trans->transaction->io_bgs; 1228 struct list_head *next; 1229 struct extent_buffer *eb; 1230 int ret; 1231 1232 eb = btrfs_lock_root_node(fs_info->tree_root); 1233 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1234 0, &eb, BTRFS_NESTING_COW); 1235 btrfs_tree_unlock(eb); 1236 free_extent_buffer(eb); 1237 1238 if (ret) 1239 return ret; 1240 1241 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1242 if (ret) 1243 return ret; 1244 1245 ret = btrfs_run_dev_stats(trans); 1246 if (ret) 1247 return ret; 1248 ret = btrfs_run_dev_replace(trans); 1249 if (ret) 1250 return ret; 1251 ret = btrfs_run_qgroups(trans); 1252 if (ret) 1253 return ret; 1254 1255 ret = btrfs_setup_space_cache(trans); 1256 if (ret) 1257 return ret; 1258 1259 /* run_qgroups might have added some more refs */ 1260 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1261 if (ret) 1262 return ret; 1263again: 1264 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1265 struct btrfs_root *root; 1266 next = fs_info->dirty_cowonly_roots.next; 1267 list_del_init(next); 1268 root = list_entry(next, struct btrfs_root, dirty_list); 1269 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1270 1271 if (root != fs_info->extent_root) 1272 list_add_tail(&root->dirty_list, 1273 &trans->transaction->switch_commits); 1274 ret = update_cowonly_root(trans, root); 1275 if (ret) 1276 return ret; 1277 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1278 if (ret) 1279 return ret; 1280 } 1281 1282 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1283 ret = btrfs_write_dirty_block_groups(trans); 1284 if (ret) 1285 return ret; 1286 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1287 if (ret) 1288 return ret; 1289 } 1290 1291 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1292 goto again; 1293 1294 list_add_tail(&fs_info->extent_root->dirty_list, 1295 &trans->transaction->switch_commits); 1296 1297 /* Update dev-replace pointer once everything is committed */ 1298 fs_info->dev_replace.committed_cursor_left = 1299 fs_info->dev_replace.cursor_left_last_write_of_item; 1300 1301 return 0; 1302} 1303 1304/* 1305 * dead roots are old snapshots that need to be deleted. This allocates 1306 * a dirty root struct and adds it into the list of dead roots that need to 1307 * be deleted 1308 */ 1309void btrfs_add_dead_root(struct btrfs_root *root) 1310{ 1311 struct btrfs_fs_info *fs_info = root->fs_info; 1312 1313 spin_lock(&fs_info->trans_lock); 1314 if (list_empty(&root->root_list)) { 1315 btrfs_grab_root(root); 1316 list_add_tail(&root->root_list, &fs_info->dead_roots); 1317 } 1318 spin_unlock(&fs_info->trans_lock); 1319} 1320 1321/* 1322 * update all the cowonly tree roots on disk 1323 */ 1324static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1325{ 1326 struct btrfs_fs_info *fs_info = trans->fs_info; 1327 struct btrfs_root *gang[8]; 1328 int i; 1329 int ret; 1330 1331 spin_lock(&fs_info->fs_roots_radix_lock); 1332 while (1) { 1333 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1334 (void **)gang, 0, 1335 ARRAY_SIZE(gang), 1336 BTRFS_ROOT_TRANS_TAG); 1337 if (ret == 0) 1338 break; 1339 for (i = 0; i < ret; i++) { 1340 struct btrfs_root *root = gang[i]; 1341 int ret2; 1342 1343 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1344 (unsigned long)root->root_key.objectid, 1345 BTRFS_ROOT_TRANS_TAG); 1346 spin_unlock(&fs_info->fs_roots_radix_lock); 1347 1348 btrfs_free_log(trans, root); 1349 btrfs_update_reloc_root(trans, root); 1350 1351 btrfs_save_ino_cache(root, trans); 1352 1353 /* see comments in should_cow_block() */ 1354 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1355 smp_mb__after_atomic(); 1356 1357 if (root->commit_root != root->node) { 1358 list_add_tail(&root->dirty_list, 1359 &trans->transaction->switch_commits); 1360 btrfs_set_root_node(&root->root_item, 1361 root->node); 1362 } 1363 1364 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1365 &root->root_key, 1366 &root->root_item); 1367 if (ret2) 1368 return ret2; 1369 spin_lock(&fs_info->fs_roots_radix_lock); 1370 btrfs_qgroup_free_meta_all_pertrans(root); 1371 } 1372 } 1373 spin_unlock(&fs_info->fs_roots_radix_lock); 1374 return 0; 1375} 1376 1377/* 1378 * defrag a given btree. 1379 * Every leaf in the btree is read and defragged. 1380 */ 1381int btrfs_defrag_root(struct btrfs_root *root) 1382{ 1383 struct btrfs_fs_info *info = root->fs_info; 1384 struct btrfs_trans_handle *trans; 1385 int ret; 1386 1387 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1388 return 0; 1389 1390 while (1) { 1391 trans = btrfs_start_transaction(root, 0); 1392 if (IS_ERR(trans)) { 1393 ret = PTR_ERR(trans); 1394 break; 1395 } 1396 1397 ret = btrfs_defrag_leaves(trans, root); 1398 1399 btrfs_end_transaction(trans); 1400 btrfs_btree_balance_dirty(info); 1401 cond_resched(); 1402 1403 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1404 break; 1405 1406 if (btrfs_defrag_cancelled(info)) { 1407 btrfs_debug(info, "defrag_root cancelled"); 1408 ret = -EAGAIN; 1409 break; 1410 } 1411 } 1412 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1413 return ret; 1414} 1415 1416/* 1417 * Do all special snapshot related qgroup dirty hack. 1418 * 1419 * Will do all needed qgroup inherit and dirty hack like switch commit 1420 * roots inside one transaction and write all btree into disk, to make 1421 * qgroup works. 1422 */ 1423static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1424 struct btrfs_root *src, 1425 struct btrfs_root *parent, 1426 struct btrfs_qgroup_inherit *inherit, 1427 u64 dst_objectid) 1428{ 1429 struct btrfs_fs_info *fs_info = src->fs_info; 1430 int ret; 1431 1432 /* 1433 * Save some performance in the case that qgroups are not 1434 * enabled. If this check races with the ioctl, rescan will 1435 * kick in anyway. 1436 */ 1437 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1438 return 0; 1439 1440 /* 1441 * Ensure dirty @src will be committed. Or, after coming 1442 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1443 * recorded root will never be updated again, causing an outdated root 1444 * item. 1445 */ 1446 record_root_in_trans(trans, src, 1); 1447 1448 /* 1449 * We are going to commit transaction, see btrfs_commit_transaction() 1450 * comment for reason locking tree_log_mutex 1451 */ 1452 mutex_lock(&fs_info->tree_log_mutex); 1453 1454 ret = commit_fs_roots(trans); 1455 if (ret) 1456 goto out; 1457 ret = btrfs_qgroup_account_extents(trans); 1458 if (ret < 0) 1459 goto out; 1460 1461 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1462 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1463 inherit); 1464 if (ret < 0) 1465 goto out; 1466 1467 /* 1468 * Now we do a simplified commit transaction, which will: 1469 * 1) commit all subvolume and extent tree 1470 * To ensure all subvolume and extent tree have a valid 1471 * commit_root to accounting later insert_dir_item() 1472 * 2) write all btree blocks onto disk 1473 * This is to make sure later btree modification will be cowed 1474 * Or commit_root can be populated and cause wrong qgroup numbers 1475 * In this simplified commit, we don't really care about other trees 1476 * like chunk and root tree, as they won't affect qgroup. 1477 * And we don't write super to avoid half committed status. 1478 */ 1479 ret = commit_cowonly_roots(trans); 1480 if (ret) 1481 goto out; 1482 switch_commit_roots(trans); 1483 ret = btrfs_write_and_wait_transaction(trans); 1484 if (ret) 1485 btrfs_handle_fs_error(fs_info, ret, 1486 "Error while writing out transaction for qgroup"); 1487 1488out: 1489 mutex_unlock(&fs_info->tree_log_mutex); 1490 1491 /* 1492 * Force parent root to be updated, as we recorded it before so its 1493 * last_trans == cur_transid. 1494 * Or it won't be committed again onto disk after later 1495 * insert_dir_item() 1496 */ 1497 if (!ret) 1498 record_root_in_trans(trans, parent, 1); 1499 return ret; 1500} 1501 1502/* 1503 * new snapshots need to be created at a very specific time in the 1504 * transaction commit. This does the actual creation. 1505 * 1506 * Note: 1507 * If the error which may affect the commitment of the current transaction 1508 * happens, we should return the error number. If the error which just affect 1509 * the creation of the pending snapshots, just return 0. 1510 */ 1511static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1512 struct btrfs_pending_snapshot *pending) 1513{ 1514 1515 struct btrfs_fs_info *fs_info = trans->fs_info; 1516 struct btrfs_key key; 1517 struct btrfs_root_item *new_root_item; 1518 struct btrfs_root *tree_root = fs_info->tree_root; 1519 struct btrfs_root *root = pending->root; 1520 struct btrfs_root *parent_root; 1521 struct btrfs_block_rsv *rsv; 1522 struct inode *parent_inode; 1523 struct btrfs_path *path; 1524 struct btrfs_dir_item *dir_item; 1525 struct dentry *dentry; 1526 struct extent_buffer *tmp; 1527 struct extent_buffer *old; 1528 struct timespec64 cur_time; 1529 int ret = 0; 1530 u64 to_reserve = 0; 1531 u64 index = 0; 1532 u64 objectid; 1533 u64 root_flags; 1534 1535 ASSERT(pending->path); 1536 path = pending->path; 1537 1538 ASSERT(pending->root_item); 1539 new_root_item = pending->root_item; 1540 1541 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1542 if (pending->error) 1543 goto no_free_objectid; 1544 1545 /* 1546 * Make qgroup to skip current new snapshot's qgroupid, as it is 1547 * accounted by later btrfs_qgroup_inherit(). 1548 */ 1549 btrfs_set_skip_qgroup(trans, objectid); 1550 1551 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1552 1553 if (to_reserve > 0) { 1554 pending->error = btrfs_block_rsv_add(root, 1555 &pending->block_rsv, 1556 to_reserve, 1557 BTRFS_RESERVE_NO_FLUSH); 1558 if (pending->error) 1559 goto clear_skip_qgroup; 1560 } 1561 1562 key.objectid = objectid; 1563 key.offset = (u64)-1; 1564 key.type = BTRFS_ROOT_ITEM_KEY; 1565 1566 rsv = trans->block_rsv; 1567 trans->block_rsv = &pending->block_rsv; 1568 trans->bytes_reserved = trans->block_rsv->reserved; 1569 trace_btrfs_space_reservation(fs_info, "transaction", 1570 trans->transid, 1571 trans->bytes_reserved, 1); 1572 dentry = pending->dentry; 1573 parent_inode = pending->dir; 1574 parent_root = BTRFS_I(parent_inode)->root; 1575 record_root_in_trans(trans, parent_root, 0); 1576 1577 cur_time = current_time(parent_inode); 1578 1579 /* 1580 * insert the directory item 1581 */ 1582 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1583 BUG_ON(ret); /* -ENOMEM */ 1584 1585 /* check if there is a file/dir which has the same name. */ 1586 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1587 btrfs_ino(BTRFS_I(parent_inode)), 1588 dentry->d_name.name, 1589 dentry->d_name.len, 0); 1590 if (dir_item != NULL && !IS_ERR(dir_item)) { 1591 pending->error = -EEXIST; 1592 goto dir_item_existed; 1593 } else if (IS_ERR(dir_item)) { 1594 ret = PTR_ERR(dir_item); 1595 btrfs_abort_transaction(trans, ret); 1596 goto fail; 1597 } 1598 btrfs_release_path(path); 1599 1600 /* 1601 * pull in the delayed directory update 1602 * and the delayed inode item 1603 * otherwise we corrupt the FS during 1604 * snapshot 1605 */ 1606 ret = btrfs_run_delayed_items(trans); 1607 if (ret) { /* Transaction aborted */ 1608 btrfs_abort_transaction(trans, ret); 1609 goto fail; 1610 } 1611 1612 record_root_in_trans(trans, root, 0); 1613 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1614 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1615 btrfs_check_and_init_root_item(new_root_item); 1616 1617 root_flags = btrfs_root_flags(new_root_item); 1618 if (pending->readonly) 1619 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1620 else 1621 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1622 btrfs_set_root_flags(new_root_item, root_flags); 1623 1624 btrfs_set_root_generation_v2(new_root_item, 1625 trans->transid); 1626 generate_random_guid(new_root_item->uuid); 1627 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1628 BTRFS_UUID_SIZE); 1629 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1630 memset(new_root_item->received_uuid, 0, 1631 sizeof(new_root_item->received_uuid)); 1632 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1633 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1634 btrfs_set_root_stransid(new_root_item, 0); 1635 btrfs_set_root_rtransid(new_root_item, 0); 1636 } 1637 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1638 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1639 btrfs_set_root_otransid(new_root_item, trans->transid); 1640 1641 old = btrfs_lock_root_node(root); 1642 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1643 BTRFS_NESTING_COW); 1644 if (ret) { 1645 btrfs_tree_unlock(old); 1646 free_extent_buffer(old); 1647 btrfs_abort_transaction(trans, ret); 1648 goto fail; 1649 } 1650 1651 btrfs_set_lock_blocking_write(old); 1652 1653 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1654 /* clean up in any case */ 1655 btrfs_tree_unlock(old); 1656 free_extent_buffer(old); 1657 if (ret) { 1658 btrfs_abort_transaction(trans, ret); 1659 goto fail; 1660 } 1661 /* see comments in should_cow_block() */ 1662 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1663 smp_wmb(); 1664 1665 btrfs_set_root_node(new_root_item, tmp); 1666 /* record when the snapshot was created in key.offset */ 1667 key.offset = trans->transid; 1668 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1669 btrfs_tree_unlock(tmp); 1670 free_extent_buffer(tmp); 1671 if (ret) { 1672 btrfs_abort_transaction(trans, ret); 1673 goto fail; 1674 } 1675 1676 /* 1677 * insert root back/forward references 1678 */ 1679 ret = btrfs_add_root_ref(trans, objectid, 1680 parent_root->root_key.objectid, 1681 btrfs_ino(BTRFS_I(parent_inode)), index, 1682 dentry->d_name.name, dentry->d_name.len); 1683 if (ret) { 1684 btrfs_abort_transaction(trans, ret); 1685 goto fail; 1686 } 1687 1688 key.offset = (u64)-1; 1689 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1690 if (IS_ERR(pending->snap)) { 1691 ret = PTR_ERR(pending->snap); 1692 pending->snap = NULL; 1693 btrfs_abort_transaction(trans, ret); 1694 goto fail; 1695 } 1696 1697 ret = btrfs_reloc_post_snapshot(trans, pending); 1698 if (ret) { 1699 btrfs_abort_transaction(trans, ret); 1700 goto fail; 1701 } 1702 1703 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1704 if (ret) { 1705 btrfs_abort_transaction(trans, ret); 1706 goto fail; 1707 } 1708 1709 /* 1710 * Do special qgroup accounting for snapshot, as we do some qgroup 1711 * snapshot hack to do fast snapshot. 1712 * To co-operate with that hack, we do hack again. 1713 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1714 */ 1715 ret = qgroup_account_snapshot(trans, root, parent_root, 1716 pending->inherit, objectid); 1717 if (ret < 0) 1718 goto fail; 1719 1720 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1721 dentry->d_name.len, BTRFS_I(parent_inode), 1722 &key, BTRFS_FT_DIR, index); 1723 /* We have check then name at the beginning, so it is impossible. */ 1724 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1725 if (ret) { 1726 btrfs_abort_transaction(trans, ret); 1727 goto fail; 1728 } 1729 1730 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1731 dentry->d_name.len * 2); 1732 parent_inode->i_mtime = parent_inode->i_ctime = 1733 current_time(parent_inode); 1734 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1735 if (ret) { 1736 btrfs_abort_transaction(trans, ret); 1737 goto fail; 1738 } 1739 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1740 BTRFS_UUID_KEY_SUBVOL, 1741 objectid); 1742 if (ret) { 1743 btrfs_abort_transaction(trans, ret); 1744 goto fail; 1745 } 1746 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1747 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1748 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1749 objectid); 1750 if (ret && ret != -EEXIST) { 1751 btrfs_abort_transaction(trans, ret); 1752 goto fail; 1753 } 1754 } 1755 1756 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1757 if (ret) { 1758 btrfs_abort_transaction(trans, ret); 1759 goto fail; 1760 } 1761 1762fail: 1763 pending->error = ret; 1764dir_item_existed: 1765 trans->block_rsv = rsv; 1766 trans->bytes_reserved = 0; 1767clear_skip_qgroup: 1768 btrfs_clear_skip_qgroup(trans); 1769no_free_objectid: 1770 kfree(new_root_item); 1771 pending->root_item = NULL; 1772 btrfs_free_path(path); 1773 pending->path = NULL; 1774 1775 return ret; 1776} 1777 1778/* 1779 * create all the snapshots we've scheduled for creation 1780 */ 1781static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1782{ 1783 struct btrfs_pending_snapshot *pending, *next; 1784 struct list_head *head = &trans->transaction->pending_snapshots; 1785 int ret = 0; 1786 1787 list_for_each_entry_safe(pending, next, head, list) { 1788 list_del(&pending->list); 1789 ret = create_pending_snapshot(trans, pending); 1790 if (ret) 1791 break; 1792 } 1793 return ret; 1794} 1795 1796static void update_super_roots(struct btrfs_fs_info *fs_info) 1797{ 1798 struct btrfs_root_item *root_item; 1799 struct btrfs_super_block *super; 1800 1801 super = fs_info->super_copy; 1802 1803 root_item = &fs_info->chunk_root->root_item; 1804 super->chunk_root = root_item->bytenr; 1805 super->chunk_root_generation = root_item->generation; 1806 super->chunk_root_level = root_item->level; 1807 1808 root_item = &fs_info->tree_root->root_item; 1809 super->root = root_item->bytenr; 1810 super->generation = root_item->generation; 1811 super->root_level = root_item->level; 1812 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1813 super->cache_generation = root_item->generation; 1814 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1815 super->uuid_tree_generation = root_item->generation; 1816} 1817 1818int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1819{ 1820 struct btrfs_transaction *trans; 1821 int ret = 0; 1822 1823 spin_lock(&info->trans_lock); 1824 trans = info->running_transaction; 1825 if (trans) 1826 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1827 spin_unlock(&info->trans_lock); 1828 return ret; 1829} 1830 1831int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1832{ 1833 struct btrfs_transaction *trans; 1834 int ret = 0; 1835 1836 spin_lock(&info->trans_lock); 1837 trans = info->running_transaction; 1838 if (trans) 1839 ret = is_transaction_blocked(trans); 1840 spin_unlock(&info->trans_lock); 1841 return ret; 1842} 1843 1844/* 1845 * wait for the current transaction commit to start and block subsequent 1846 * transaction joins 1847 */ 1848static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1849 struct btrfs_transaction *trans) 1850{ 1851 wait_event(fs_info->transaction_blocked_wait, 1852 trans->state >= TRANS_STATE_COMMIT_START || 1853 TRANS_ABORTED(trans)); 1854} 1855 1856/* 1857 * wait for the current transaction to start and then become unblocked. 1858 * caller holds ref. 1859 */ 1860static void wait_current_trans_commit_start_and_unblock( 1861 struct btrfs_fs_info *fs_info, 1862 struct btrfs_transaction *trans) 1863{ 1864 wait_event(fs_info->transaction_wait, 1865 trans->state >= TRANS_STATE_UNBLOCKED || 1866 TRANS_ABORTED(trans)); 1867} 1868 1869/* 1870 * commit transactions asynchronously. once btrfs_commit_transaction_async 1871 * returns, any subsequent transaction will not be allowed to join. 1872 */ 1873struct btrfs_async_commit { 1874 struct btrfs_trans_handle *newtrans; 1875 struct work_struct work; 1876}; 1877 1878static void do_async_commit(struct work_struct *work) 1879{ 1880 struct btrfs_async_commit *ac = 1881 container_of(work, struct btrfs_async_commit, work); 1882 1883 /* 1884 * We've got freeze protection passed with the transaction. 1885 * Tell lockdep about it. 1886 */ 1887 if (ac->newtrans->type & __TRANS_FREEZABLE) 1888 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1889 1890 current->journal_info = ac->newtrans; 1891 1892 btrfs_commit_transaction(ac->newtrans); 1893 kfree(ac); 1894} 1895 1896int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1897 int wait_for_unblock) 1898{ 1899 struct btrfs_fs_info *fs_info = trans->fs_info; 1900 struct btrfs_async_commit *ac; 1901 struct btrfs_transaction *cur_trans; 1902 1903 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1904 if (!ac) 1905 return -ENOMEM; 1906 1907 INIT_WORK(&ac->work, do_async_commit); 1908 ac->newtrans = btrfs_join_transaction(trans->root); 1909 if (IS_ERR(ac->newtrans)) { 1910 int err = PTR_ERR(ac->newtrans); 1911 kfree(ac); 1912 return err; 1913 } 1914 1915 /* take transaction reference */ 1916 cur_trans = trans->transaction; 1917 refcount_inc(&cur_trans->use_count); 1918 1919 btrfs_end_transaction(trans); 1920 1921 /* 1922 * Tell lockdep we've released the freeze rwsem, since the 1923 * async commit thread will be the one to unlock it. 1924 */ 1925 if (ac->newtrans->type & __TRANS_FREEZABLE) 1926 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1927 1928 schedule_work(&ac->work); 1929 1930 /* wait for transaction to start and unblock */ 1931 if (wait_for_unblock) 1932 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1933 else 1934 wait_current_trans_commit_start(fs_info, cur_trans); 1935 1936 if (current->journal_info == trans) 1937 current->journal_info = NULL; 1938 1939 btrfs_put_transaction(cur_trans); 1940 return 0; 1941} 1942 1943 1944static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1945{ 1946 struct btrfs_fs_info *fs_info = trans->fs_info; 1947 struct btrfs_transaction *cur_trans = trans->transaction; 1948 1949 WARN_ON(refcount_read(&trans->use_count) > 1); 1950 1951 btrfs_abort_transaction(trans, err); 1952 1953 spin_lock(&fs_info->trans_lock); 1954 1955 /* 1956 * If the transaction is removed from the list, it means this 1957 * transaction has been committed successfully, so it is impossible 1958 * to call the cleanup function. 1959 */ 1960 BUG_ON(list_empty(&cur_trans->list)); 1961 1962 if (cur_trans == fs_info->running_transaction) { 1963 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1964 spin_unlock(&fs_info->trans_lock); 1965 wait_event(cur_trans->writer_wait, 1966 atomic_read(&cur_trans->num_writers) == 1); 1967 1968 spin_lock(&fs_info->trans_lock); 1969 } 1970 1971 /* 1972 * Now that we know no one else is still using the transaction we can 1973 * remove the transaction from the list of transactions. This avoids 1974 * the transaction kthread from cleaning up the transaction while some 1975 * other task is still using it, which could result in a use-after-free 1976 * on things like log trees, as it forces the transaction kthread to 1977 * wait for this transaction to be cleaned up by us. 1978 */ 1979 list_del_init(&cur_trans->list); 1980 1981 spin_unlock(&fs_info->trans_lock); 1982 1983 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1984 1985 spin_lock(&fs_info->trans_lock); 1986 if (cur_trans == fs_info->running_transaction) 1987 fs_info->running_transaction = NULL; 1988 spin_unlock(&fs_info->trans_lock); 1989 1990 if (trans->type & __TRANS_FREEZABLE) 1991 sb_end_intwrite(fs_info->sb); 1992 btrfs_put_transaction(cur_trans); 1993 btrfs_put_transaction(cur_trans); 1994 1995 trace_btrfs_transaction_commit(trans->root); 1996 1997 if (current->journal_info == trans) 1998 current->journal_info = NULL; 1999 btrfs_scrub_cancel(fs_info); 2000 2001 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2002} 2003 2004/* 2005 * Release reserved delayed ref space of all pending block groups of the 2006 * transaction and remove them from the list 2007 */ 2008static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2009{ 2010 struct btrfs_fs_info *fs_info = trans->fs_info; 2011 struct btrfs_block_group *block_group, *tmp; 2012 2013 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2014 btrfs_delayed_refs_rsv_release(fs_info, 1); 2015 list_del_init(&block_group->bg_list); 2016 } 2017} 2018 2019static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans) 2020{ 2021 struct btrfs_fs_info *fs_info = trans->fs_info; 2022 2023 /* 2024 * We use writeback_inodes_sb here because if we used 2025 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2026 * Currently are holding the fs freeze lock, if we do an async flush 2027 * we'll do btrfs_join_transaction() and deadlock because we need to 2028 * wait for the fs freeze lock. Using the direct flushing we benefit 2029 * from already being in a transaction and our join_transaction doesn't 2030 * have to re-take the fs freeze lock. 2031 */ 2032 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 2033 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2034 } else { 2035 struct btrfs_pending_snapshot *pending; 2036 struct list_head *head = &trans->transaction->pending_snapshots; 2037 2038 /* 2039 * Flush dellaloc for any root that is going to be snapshotted. 2040 * This is done to avoid a corrupted version of files, in the 2041 * snapshots, that had both buffered and direct IO writes (even 2042 * if they were done sequentially) due to an unordered update of 2043 * the inode's size on disk. 2044 */ 2045 list_for_each_entry(pending, head, list) { 2046 int ret; 2047 2048 ret = btrfs_start_delalloc_snapshot(pending->root); 2049 if (ret) 2050 return ret; 2051 } 2052 } 2053 return 0; 2054} 2055 2056static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans) 2057{ 2058 struct btrfs_fs_info *fs_info = trans->fs_info; 2059 2060 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 2061 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2062 } else { 2063 struct btrfs_pending_snapshot *pending; 2064 struct list_head *head = &trans->transaction->pending_snapshots; 2065 2066 /* 2067 * Wait for any dellaloc that we started previously for the roots 2068 * that are going to be snapshotted. This is to avoid a corrupted 2069 * version of files in the snapshots that had both buffered and 2070 * direct IO writes (even if they were done sequentially). 2071 */ 2072 list_for_each_entry(pending, head, list) 2073 btrfs_wait_ordered_extents(pending->root, 2074 U64_MAX, 0, U64_MAX); 2075 } 2076} 2077 2078int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2079{ 2080 struct btrfs_fs_info *fs_info = trans->fs_info; 2081 struct btrfs_transaction *cur_trans = trans->transaction; 2082 struct btrfs_transaction *prev_trans = NULL; 2083 int ret; 2084 2085 ASSERT(refcount_read(&trans->use_count) == 1); 2086 2087 /* 2088 * Some places just start a transaction to commit it. We need to make 2089 * sure that if this commit fails that the abort code actually marks the 2090 * transaction as failed, so set trans->dirty to make the abort code do 2091 * the right thing. 2092 */ 2093 trans->dirty = true; 2094 2095 /* Stop the commit early if ->aborted is set */ 2096 if (TRANS_ABORTED(cur_trans)) { 2097 ret = cur_trans->aborted; 2098 btrfs_end_transaction(trans); 2099 return ret; 2100 } 2101 2102 btrfs_trans_release_metadata(trans); 2103 trans->block_rsv = NULL; 2104 2105 /* make a pass through all the delayed refs we have so far 2106 * any runnings procs may add more while we are here 2107 */ 2108 ret = btrfs_run_delayed_refs(trans, 0); 2109 if (ret) { 2110 btrfs_end_transaction(trans); 2111 return ret; 2112 } 2113 2114 cur_trans = trans->transaction; 2115 2116 /* 2117 * set the flushing flag so procs in this transaction have to 2118 * start sending their work down. 2119 */ 2120 cur_trans->delayed_refs.flushing = 1; 2121 smp_wmb(); 2122 2123 btrfs_create_pending_block_groups(trans); 2124 2125 ret = btrfs_run_delayed_refs(trans, 0); 2126 if (ret) { 2127 btrfs_end_transaction(trans); 2128 return ret; 2129 } 2130 2131 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2132 int run_it = 0; 2133 2134 /* this mutex is also taken before trying to set 2135 * block groups readonly. We need to make sure 2136 * that nobody has set a block group readonly 2137 * after a extents from that block group have been 2138 * allocated for cache files. btrfs_set_block_group_ro 2139 * will wait for the transaction to commit if it 2140 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2141 * 2142 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2143 * only one process starts all the block group IO. It wouldn't 2144 * hurt to have more than one go through, but there's no 2145 * real advantage to it either. 2146 */ 2147 mutex_lock(&fs_info->ro_block_group_mutex); 2148 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2149 &cur_trans->flags)) 2150 run_it = 1; 2151 mutex_unlock(&fs_info->ro_block_group_mutex); 2152 2153 if (run_it) { 2154 ret = btrfs_start_dirty_block_groups(trans); 2155 if (ret) { 2156 btrfs_end_transaction(trans); 2157 return ret; 2158 } 2159 } 2160 } 2161 2162 spin_lock(&fs_info->trans_lock); 2163 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2164 spin_unlock(&fs_info->trans_lock); 2165 refcount_inc(&cur_trans->use_count); 2166 ret = btrfs_end_transaction(trans); 2167 2168 wait_for_commit(cur_trans); 2169 2170 if (TRANS_ABORTED(cur_trans)) 2171 ret = cur_trans->aborted; 2172 2173 btrfs_put_transaction(cur_trans); 2174 2175 return ret; 2176 } 2177 2178 cur_trans->state = TRANS_STATE_COMMIT_START; 2179 wake_up(&fs_info->transaction_blocked_wait); 2180 2181 if (cur_trans->list.prev != &fs_info->trans_list) { 2182 prev_trans = list_entry(cur_trans->list.prev, 2183 struct btrfs_transaction, list); 2184 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2185 refcount_inc(&prev_trans->use_count); 2186 spin_unlock(&fs_info->trans_lock); 2187 2188 wait_for_commit(prev_trans); 2189 ret = READ_ONCE(prev_trans->aborted); 2190 2191 btrfs_put_transaction(prev_trans); 2192 if (ret) 2193 goto cleanup_transaction; 2194 } else { 2195 spin_unlock(&fs_info->trans_lock); 2196 } 2197 } else { 2198 spin_unlock(&fs_info->trans_lock); 2199 /* 2200 * The previous transaction was aborted and was already removed 2201 * from the list of transactions at fs_info->trans_list. So we 2202 * abort to prevent writing a new superblock that reflects a 2203 * corrupt state (pointing to trees with unwritten nodes/leafs). 2204 */ 2205 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) { 2206 ret = -EROFS; 2207 goto cleanup_transaction; 2208 } 2209 } 2210 2211 extwriter_counter_dec(cur_trans, trans->type); 2212 2213 ret = btrfs_start_delalloc_flush(trans); 2214 if (ret) 2215 goto cleanup_transaction; 2216 2217 ret = btrfs_run_delayed_items(trans); 2218 if (ret) 2219 goto cleanup_transaction; 2220 2221 wait_event(cur_trans->writer_wait, 2222 extwriter_counter_read(cur_trans) == 0); 2223 2224 /* some pending stuffs might be added after the previous flush. */ 2225 ret = btrfs_run_delayed_items(trans); 2226 if (ret) 2227 goto cleanup_transaction; 2228 2229 btrfs_wait_delalloc_flush(trans); 2230 2231 /* 2232 * Wait for all ordered extents started by a fast fsync that joined this 2233 * transaction. Otherwise if this transaction commits before the ordered 2234 * extents complete we lose logged data after a power failure. 2235 */ 2236 wait_event(cur_trans->pending_wait, 2237 atomic_read(&cur_trans->pending_ordered) == 0); 2238 2239 btrfs_scrub_pause(fs_info); 2240 /* 2241 * Ok now we need to make sure to block out any other joins while we 2242 * commit the transaction. We could have started a join before setting 2243 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2244 */ 2245 spin_lock(&fs_info->trans_lock); 2246 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2247 spin_unlock(&fs_info->trans_lock); 2248 wait_event(cur_trans->writer_wait, 2249 atomic_read(&cur_trans->num_writers) == 1); 2250 2251 if (TRANS_ABORTED(cur_trans)) { 2252 ret = cur_trans->aborted; 2253 goto scrub_continue; 2254 } 2255 /* 2256 * the reloc mutex makes sure that we stop 2257 * the balancing code from coming in and moving 2258 * extents around in the middle of the commit 2259 */ 2260 mutex_lock(&fs_info->reloc_mutex); 2261 2262 /* 2263 * We needn't worry about the delayed items because we will 2264 * deal with them in create_pending_snapshot(), which is the 2265 * core function of the snapshot creation. 2266 */ 2267 ret = create_pending_snapshots(trans); 2268 if (ret) 2269 goto unlock_reloc; 2270 2271 /* 2272 * We insert the dir indexes of the snapshots and update the inode 2273 * of the snapshots' parents after the snapshot creation, so there 2274 * are some delayed items which are not dealt with. Now deal with 2275 * them. 2276 * 2277 * We needn't worry that this operation will corrupt the snapshots, 2278 * because all the tree which are snapshoted will be forced to COW 2279 * the nodes and leaves. 2280 */ 2281 ret = btrfs_run_delayed_items(trans); 2282 if (ret) 2283 goto unlock_reloc; 2284 2285 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2286 if (ret) 2287 goto unlock_reloc; 2288 2289 /* 2290 * make sure none of the code above managed to slip in a 2291 * delayed item 2292 */ 2293 btrfs_assert_delayed_root_empty(fs_info); 2294 2295 WARN_ON(cur_trans != trans->transaction); 2296 2297 /* btrfs_commit_tree_roots is responsible for getting the 2298 * various roots consistent with each other. Every pointer 2299 * in the tree of tree roots has to point to the most up to date 2300 * root for every subvolume and other tree. So, we have to keep 2301 * the tree logging code from jumping in and changing any 2302 * of the trees. 2303 * 2304 * At this point in the commit, there can't be any tree-log 2305 * writers, but a little lower down we drop the trans mutex 2306 * and let new people in. By holding the tree_log_mutex 2307 * from now until after the super is written, we avoid races 2308 * with the tree-log code. 2309 */ 2310 mutex_lock(&fs_info->tree_log_mutex); 2311 2312 ret = commit_fs_roots(trans); 2313 if (ret) 2314 goto unlock_tree_log; 2315 2316 /* 2317 * Since the transaction is done, we can apply the pending changes 2318 * before the next transaction. 2319 */ 2320 btrfs_apply_pending_changes(fs_info); 2321 2322 /* commit_fs_roots gets rid of all the tree log roots, it is now 2323 * safe to free the root of tree log roots 2324 */ 2325 btrfs_free_log_root_tree(trans, fs_info); 2326 2327 /* 2328 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2329 * new delayed refs. Must handle them or qgroup can be wrong. 2330 */ 2331 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2332 if (ret) 2333 goto unlock_tree_log; 2334 2335 /* 2336 * Since fs roots are all committed, we can get a quite accurate 2337 * new_roots. So let's do quota accounting. 2338 */ 2339 ret = btrfs_qgroup_account_extents(trans); 2340 if (ret < 0) 2341 goto unlock_tree_log; 2342 2343 ret = commit_cowonly_roots(trans); 2344 if (ret) 2345 goto unlock_tree_log; 2346 2347 /* 2348 * The tasks which save the space cache and inode cache may also 2349 * update ->aborted, check it. 2350 */ 2351 if (TRANS_ABORTED(cur_trans)) { 2352 ret = cur_trans->aborted; 2353 goto unlock_tree_log; 2354 } 2355 2356 cur_trans = fs_info->running_transaction; 2357 2358 btrfs_set_root_node(&fs_info->tree_root->root_item, 2359 fs_info->tree_root->node); 2360 list_add_tail(&fs_info->tree_root->dirty_list, 2361 &cur_trans->switch_commits); 2362 2363 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2364 fs_info->chunk_root->node); 2365 list_add_tail(&fs_info->chunk_root->dirty_list, 2366 &cur_trans->switch_commits); 2367 2368 switch_commit_roots(trans); 2369 2370 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2371 ASSERT(list_empty(&cur_trans->io_bgs)); 2372 update_super_roots(fs_info); 2373 2374 btrfs_set_super_log_root(fs_info->super_copy, 0); 2375 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2376 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2377 sizeof(*fs_info->super_copy)); 2378 2379 btrfs_commit_device_sizes(cur_trans); 2380 2381 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2382 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2383 2384 btrfs_trans_release_chunk_metadata(trans); 2385 2386 spin_lock(&fs_info->trans_lock); 2387 cur_trans->state = TRANS_STATE_UNBLOCKED; 2388 fs_info->running_transaction = NULL; 2389 spin_unlock(&fs_info->trans_lock); 2390 mutex_unlock(&fs_info->reloc_mutex); 2391 2392 wake_up(&fs_info->transaction_wait); 2393 2394 ret = btrfs_write_and_wait_transaction(trans); 2395 if (ret) { 2396 btrfs_handle_fs_error(fs_info, ret, 2397 "Error while writing out transaction"); 2398 /* 2399 * reloc_mutex has been unlocked, tree_log_mutex is still held 2400 * but we can't jump to unlock_tree_log causing double unlock 2401 */ 2402 mutex_unlock(&fs_info->tree_log_mutex); 2403 goto scrub_continue; 2404 } 2405 2406 ret = write_all_supers(fs_info, 0); 2407 /* 2408 * the super is written, we can safely allow the tree-loggers 2409 * to go about their business 2410 */ 2411 mutex_unlock(&fs_info->tree_log_mutex); 2412 if (ret) 2413 goto scrub_continue; 2414 2415 btrfs_finish_extent_commit(trans); 2416 2417 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2418 btrfs_clear_space_info_full(fs_info); 2419 2420 fs_info->last_trans_committed = cur_trans->transid; 2421 /* 2422 * We needn't acquire the lock here because there is no other task 2423 * which can change it. 2424 */ 2425 cur_trans->state = TRANS_STATE_COMPLETED; 2426 wake_up(&cur_trans->commit_wait); 2427 2428 spin_lock(&fs_info->trans_lock); 2429 list_del_init(&cur_trans->list); 2430 spin_unlock(&fs_info->trans_lock); 2431 2432 btrfs_put_transaction(cur_trans); 2433 btrfs_put_transaction(cur_trans); 2434 2435 if (trans->type & __TRANS_FREEZABLE) 2436 sb_end_intwrite(fs_info->sb); 2437 2438 trace_btrfs_transaction_commit(trans->root); 2439 2440 btrfs_scrub_continue(fs_info); 2441 2442 if (current->journal_info == trans) 2443 current->journal_info = NULL; 2444 2445 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2446 2447 return ret; 2448 2449unlock_tree_log: 2450 mutex_unlock(&fs_info->tree_log_mutex); 2451unlock_reloc: 2452 mutex_unlock(&fs_info->reloc_mutex); 2453scrub_continue: 2454 btrfs_scrub_continue(fs_info); 2455cleanup_transaction: 2456 btrfs_trans_release_metadata(trans); 2457 btrfs_cleanup_pending_block_groups(trans); 2458 btrfs_trans_release_chunk_metadata(trans); 2459 trans->block_rsv = NULL; 2460 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2461 if (current->journal_info == trans) 2462 current->journal_info = NULL; 2463 cleanup_transaction(trans, ret); 2464 2465 return ret; 2466} 2467 2468/* 2469 * return < 0 if error 2470 * 0 if there are no more dead_roots at the time of call 2471 * 1 there are more to be processed, call me again 2472 * 2473 * The return value indicates there are certainly more snapshots to delete, but 2474 * if there comes a new one during processing, it may return 0. We don't mind, 2475 * because btrfs_commit_super will poke cleaner thread and it will process it a 2476 * few seconds later. 2477 */ 2478int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2479{ 2480 int ret; 2481 struct btrfs_fs_info *fs_info = root->fs_info; 2482 2483 spin_lock(&fs_info->trans_lock); 2484 if (list_empty(&fs_info->dead_roots)) { 2485 spin_unlock(&fs_info->trans_lock); 2486 return 0; 2487 } 2488 root = list_first_entry(&fs_info->dead_roots, 2489 struct btrfs_root, root_list); 2490 list_del_init(&root->root_list); 2491 spin_unlock(&fs_info->trans_lock); 2492 2493 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2494 2495 btrfs_kill_all_delayed_nodes(root); 2496 if (root->ino_cache_inode) { 2497 iput(root->ino_cache_inode); 2498 root->ino_cache_inode = NULL; 2499 } 2500 2501 if (btrfs_header_backref_rev(root->node) < 2502 BTRFS_MIXED_BACKREF_REV) 2503 ret = btrfs_drop_snapshot(root, 0, 0); 2504 else 2505 ret = btrfs_drop_snapshot(root, 1, 0); 2506 2507 btrfs_put_root(root); 2508 return (ret < 0) ? 0 : 1; 2509} 2510 2511void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2512{ 2513 unsigned long prev; 2514 unsigned long bit; 2515 2516 prev = xchg(&fs_info->pending_changes, 0); 2517 if (!prev) 2518 return; 2519 2520 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2521 if (prev & bit) 2522 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2523 prev &= ~bit; 2524 2525 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2526 if (prev & bit) 2527 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2528 prev &= ~bit; 2529 2530 bit = 1 << BTRFS_PENDING_COMMIT; 2531 if (prev & bit) 2532 btrfs_debug(fs_info, "pending commit done"); 2533 prev &= ~bit; 2534 2535 if (prev) 2536 btrfs_warn(fs_info, 2537 "unknown pending changes left 0x%lx, ignoring", prev); 2538} 2539