xref: /kernel/linux/linux-5.10/fs/btrfs/transaction.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/sched.h>
9#include <linux/writeback.h>
10#include <linux/pagemap.h>
11#include <linux/blkdev.h>
12#include <linux/uuid.h>
13#include "misc.h"
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
17#include "locking.h"
18#include "tree-log.h"
19#include "inode-map.h"
20#include "volumes.h"
21#include "dev-replace.h"
22#include "qgroup.h"
23#include "block-group.h"
24#include "space-info.h"
25
26#define BTRFS_ROOT_TRANS_TAG 0
27
28/*
29 * Transaction states and transitions
30 *
31 * No running transaction (fs tree blocks are not modified)
32 * |
33 * | To next stage:
34 * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * V
36 * Transaction N [[TRANS_STATE_RUNNING]]
37 * |
38 * | New trans handles can be attached to transaction N by calling all
39 * | start_transaction() variants.
40 * |
41 * | To next stage:
42 * |  Call btrfs_commit_transaction() on any trans handle attached to
43 * |  transaction N
44 * V
45 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * |
47 * | Will wait for previous running transaction to completely finish if there
48 * | is one
49 * |
50 * | Then one of the following happes:
51 * | - Wait for all other trans handle holders to release.
52 * |   The btrfs_commit_transaction() caller will do the commit work.
53 * | - Wait for current transaction to be committed by others.
54 * |   Other btrfs_commit_transaction() caller will do the commit work.
55 * |
56 * | At this stage, only btrfs_join_transaction*() variants can attach
57 * | to this running transaction.
58 * | All other variants will wait for current one to finish and attach to
59 * | transaction N+1.
60 * |
61 * | To next stage:
62 * |  Caller is chosen to commit transaction N, and all other trans handle
63 * |  haven been released.
64 * V
65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * |
67 * | The heavy lifting transaction work is started.
68 * | From running delayed refs (modifying extent tree) to creating pending
69 * | snapshots, running qgroups.
70 * | In short, modify supporting trees to reflect modifications of subvolume
71 * | trees.
72 * |
73 * | At this stage, all start_transaction() calls will wait for this
74 * | transaction to finish and attach to transaction N+1.
75 * |
76 * | To next stage:
77 * |  Until all supporting trees are updated.
78 * V
79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * |						    Transaction N+1
81 * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82 * | need to write them back to disk and update	    |
83 * | super blocks.				    |
84 * |						    |
85 * | At this stage, new transaction is allowed to   |
86 * | start.					    |
87 * | All new start_transaction() calls will be	    |
88 * | attached to transid N+1.			    |
89 * |						    |
90 * | To next stage:				    |
91 * |  Until all tree blocks are super blocks are    |
92 * |  written to block devices			    |
93 * V						    |
94 * Transaction N [[TRANS_STATE_COMPLETED]]	    V
95 *   All tree blocks and super blocks are written.  Transaction N+1
96 *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
97 *   data structures will be cleaned up.	    | Life goes on
98 */
99static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100	[TRANS_STATE_RUNNING]		= 0U,
101	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
102	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
103					   __TRANS_ATTACH |
104					   __TRANS_JOIN |
105					   __TRANS_JOIN_NOSTART),
106	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
107					   __TRANS_ATTACH |
108					   __TRANS_JOIN |
109					   __TRANS_JOIN_NOLOCK |
110					   __TRANS_JOIN_NOSTART),
111	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
112					   __TRANS_ATTACH |
113					   __TRANS_JOIN |
114					   __TRANS_JOIN_NOLOCK |
115					   __TRANS_JOIN_NOSTART),
116};
117
118void btrfs_put_transaction(struct btrfs_transaction *transaction)
119{
120	WARN_ON(refcount_read(&transaction->use_count) == 0);
121	if (refcount_dec_and_test(&transaction->use_count)) {
122		BUG_ON(!list_empty(&transaction->list));
123		WARN_ON(!RB_EMPTY_ROOT(
124				&transaction->delayed_refs.href_root.rb_root));
125		WARN_ON(!RB_EMPTY_ROOT(
126				&transaction->delayed_refs.dirty_extent_root));
127		if (transaction->delayed_refs.pending_csums)
128			btrfs_err(transaction->fs_info,
129				  "pending csums is %llu",
130				  transaction->delayed_refs.pending_csums);
131		/*
132		 * If any block groups are found in ->deleted_bgs then it's
133		 * because the transaction was aborted and a commit did not
134		 * happen (things failed before writing the new superblock
135		 * and calling btrfs_finish_extent_commit()), so we can not
136		 * discard the physical locations of the block groups.
137		 */
138		while (!list_empty(&transaction->deleted_bgs)) {
139			struct btrfs_block_group *cache;
140
141			cache = list_first_entry(&transaction->deleted_bgs,
142						 struct btrfs_block_group,
143						 bg_list);
144			list_del_init(&cache->bg_list);
145			btrfs_unfreeze_block_group(cache);
146			btrfs_put_block_group(cache);
147		}
148		WARN_ON(!list_empty(&transaction->dev_update_list));
149		kfree(transaction);
150	}
151}
152
153static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
154{
155	struct btrfs_transaction *cur_trans = trans->transaction;
156	struct btrfs_fs_info *fs_info = trans->fs_info;
157	struct btrfs_root *root, *tmp;
158	struct btrfs_caching_control *caching_ctl, *next;
159
160	down_write(&fs_info->commit_root_sem);
161	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
162				 dirty_list) {
163		list_del_init(&root->dirty_list);
164		free_extent_buffer(root->commit_root);
165		root->commit_root = btrfs_root_node(root);
166		if (is_fstree(root->root_key.objectid))
167			btrfs_unpin_free_ino(root);
168		extent_io_tree_release(&root->dirty_log_pages);
169		btrfs_qgroup_clean_swapped_blocks(root);
170	}
171
172	/* We can free old roots now. */
173	spin_lock(&cur_trans->dropped_roots_lock);
174	while (!list_empty(&cur_trans->dropped_roots)) {
175		root = list_first_entry(&cur_trans->dropped_roots,
176					struct btrfs_root, root_list);
177		list_del_init(&root->root_list);
178		spin_unlock(&cur_trans->dropped_roots_lock);
179		btrfs_free_log(trans, root);
180		btrfs_drop_and_free_fs_root(fs_info, root);
181		spin_lock(&cur_trans->dropped_roots_lock);
182	}
183	spin_unlock(&cur_trans->dropped_roots_lock);
184
185	/*
186	 * We have to update the last_byte_to_unpin under the commit_root_sem,
187	 * at the same time we swap out the commit roots.
188	 *
189	 * This is because we must have a real view of the last spot the caching
190	 * kthreads were while caching.  Consider the following views of the
191	 * extent tree for a block group
192	 *
193	 * commit root
194	 * +----+----+----+----+----+----+----+
195	 * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
196	 * +----+----+----+----+----+----+----+
197	 * 0    1    2    3    4    5    6    7
198	 *
199	 * new commit root
200	 * +----+----+----+----+----+----+----+
201	 * |    |    |    |\\\\|    |    |\\\\|
202	 * +----+----+----+----+----+----+----+
203	 * 0    1    2    3    4    5    6    7
204	 *
205	 * If the cache_ctl->progress was at 3, then we are only allowed to
206	 * unpin [0,1) and [2,3], because the caching thread has already
207	 * processed those extents.  We are not allowed to unpin [5,6), because
208	 * the caching thread will re-start it's search from 3, and thus find
209	 * the hole from [4,6) to add to the free space cache.
210	 */
211	list_for_each_entry_safe(caching_ctl, next,
212				 &fs_info->caching_block_groups, list) {
213		struct btrfs_block_group *cache = caching_ctl->block_group;
214
215		if (btrfs_block_group_done(cache)) {
216			cache->last_byte_to_unpin = (u64)-1;
217			list_del_init(&caching_ctl->list);
218			btrfs_put_caching_control(caching_ctl);
219		} else {
220			cache->last_byte_to_unpin = caching_ctl->progress;
221		}
222	}
223	up_write(&fs_info->commit_root_sem);
224}
225
226static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
227					 unsigned int type)
228{
229	if (type & TRANS_EXTWRITERS)
230		atomic_inc(&trans->num_extwriters);
231}
232
233static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
234					 unsigned int type)
235{
236	if (type & TRANS_EXTWRITERS)
237		atomic_dec(&trans->num_extwriters);
238}
239
240static inline void extwriter_counter_init(struct btrfs_transaction *trans,
241					  unsigned int type)
242{
243	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
244}
245
246static inline int extwriter_counter_read(struct btrfs_transaction *trans)
247{
248	return atomic_read(&trans->num_extwriters);
249}
250
251/*
252 * To be called after all the new block groups attached to the transaction
253 * handle have been created (btrfs_create_pending_block_groups()).
254 */
255void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
256{
257	struct btrfs_fs_info *fs_info = trans->fs_info;
258
259	if (!trans->chunk_bytes_reserved)
260		return;
261
262	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
263
264	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
265				trans->chunk_bytes_reserved, NULL);
266	trans->chunk_bytes_reserved = 0;
267}
268
269/*
270 * either allocate a new transaction or hop into the existing one
271 */
272static noinline int join_transaction(struct btrfs_fs_info *fs_info,
273				     unsigned int type)
274{
275	struct btrfs_transaction *cur_trans;
276
277	spin_lock(&fs_info->trans_lock);
278loop:
279	/* The file system has been taken offline. No new transactions. */
280	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
281		spin_unlock(&fs_info->trans_lock);
282		return -EROFS;
283	}
284
285	cur_trans = fs_info->running_transaction;
286	if (cur_trans) {
287		if (TRANS_ABORTED(cur_trans)) {
288			spin_unlock(&fs_info->trans_lock);
289			return cur_trans->aborted;
290		}
291		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
292			spin_unlock(&fs_info->trans_lock);
293			return -EBUSY;
294		}
295		refcount_inc(&cur_trans->use_count);
296		atomic_inc(&cur_trans->num_writers);
297		extwriter_counter_inc(cur_trans, type);
298		spin_unlock(&fs_info->trans_lock);
299		return 0;
300	}
301	spin_unlock(&fs_info->trans_lock);
302
303	/*
304	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
305	 * current transaction, and commit it. If there is no transaction, just
306	 * return ENOENT.
307	 */
308	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
309		return -ENOENT;
310
311	/*
312	 * JOIN_NOLOCK only happens during the transaction commit, so
313	 * it is impossible that ->running_transaction is NULL
314	 */
315	BUG_ON(type == TRANS_JOIN_NOLOCK);
316
317	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
318	if (!cur_trans)
319		return -ENOMEM;
320
321	spin_lock(&fs_info->trans_lock);
322	if (fs_info->running_transaction) {
323		/*
324		 * someone started a transaction after we unlocked.  Make sure
325		 * to redo the checks above
326		 */
327		kfree(cur_trans);
328		goto loop;
329	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
330		spin_unlock(&fs_info->trans_lock);
331		kfree(cur_trans);
332		return -EROFS;
333	}
334
335	cur_trans->fs_info = fs_info;
336	atomic_set(&cur_trans->pending_ordered, 0);
337	init_waitqueue_head(&cur_trans->pending_wait);
338	atomic_set(&cur_trans->num_writers, 1);
339	extwriter_counter_init(cur_trans, type);
340	init_waitqueue_head(&cur_trans->writer_wait);
341	init_waitqueue_head(&cur_trans->commit_wait);
342	cur_trans->state = TRANS_STATE_RUNNING;
343	/*
344	 * One for this trans handle, one so it will live on until we
345	 * commit the transaction.
346	 */
347	refcount_set(&cur_trans->use_count, 2);
348	cur_trans->flags = 0;
349	cur_trans->start_time = ktime_get_seconds();
350
351	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
352
353	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
354	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
355	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
356
357	/*
358	 * although the tree mod log is per file system and not per transaction,
359	 * the log must never go across transaction boundaries.
360	 */
361	smp_mb();
362	if (!list_empty(&fs_info->tree_mod_seq_list))
363		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
364	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
365		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
366	atomic64_set(&fs_info->tree_mod_seq, 0);
367
368	spin_lock_init(&cur_trans->delayed_refs.lock);
369
370	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
371	INIT_LIST_HEAD(&cur_trans->dev_update_list);
372	INIT_LIST_HEAD(&cur_trans->switch_commits);
373	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
374	INIT_LIST_HEAD(&cur_trans->io_bgs);
375	INIT_LIST_HEAD(&cur_trans->dropped_roots);
376	mutex_init(&cur_trans->cache_write_mutex);
377	spin_lock_init(&cur_trans->dirty_bgs_lock);
378	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
379	spin_lock_init(&cur_trans->dropped_roots_lock);
380	list_add_tail(&cur_trans->list, &fs_info->trans_list);
381	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
382			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
383	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
384			IO_TREE_FS_PINNED_EXTENTS, NULL);
385	fs_info->generation++;
386	cur_trans->transid = fs_info->generation;
387	fs_info->running_transaction = cur_trans;
388	cur_trans->aborted = 0;
389	spin_unlock(&fs_info->trans_lock);
390
391	return 0;
392}
393
394/*
395 * This does all the record keeping required to make sure that a shareable root
396 * is properly recorded in a given transaction.  This is required to make sure
397 * the old root from before we joined the transaction is deleted when the
398 * transaction commits.
399 */
400static int record_root_in_trans(struct btrfs_trans_handle *trans,
401			       struct btrfs_root *root,
402			       int force)
403{
404	struct btrfs_fs_info *fs_info = root->fs_info;
405
406	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
407	    root->last_trans < trans->transid) || force) {
408		WARN_ON(root == fs_info->extent_root);
409		WARN_ON(!force && root->commit_root != root->node);
410
411		/*
412		 * see below for IN_TRANS_SETUP usage rules
413		 * we have the reloc mutex held now, so there
414		 * is only one writer in this function
415		 */
416		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
417
418		/* make sure readers find IN_TRANS_SETUP before
419		 * they find our root->last_trans update
420		 */
421		smp_wmb();
422
423		spin_lock(&fs_info->fs_roots_radix_lock);
424		if (root->last_trans == trans->transid && !force) {
425			spin_unlock(&fs_info->fs_roots_radix_lock);
426			return 0;
427		}
428		radix_tree_tag_set(&fs_info->fs_roots_radix,
429				   (unsigned long)root->root_key.objectid,
430				   BTRFS_ROOT_TRANS_TAG);
431		spin_unlock(&fs_info->fs_roots_radix_lock);
432		root->last_trans = trans->transid;
433
434		/* this is pretty tricky.  We don't want to
435		 * take the relocation lock in btrfs_record_root_in_trans
436		 * unless we're really doing the first setup for this root in
437		 * this transaction.
438		 *
439		 * Normally we'd use root->last_trans as a flag to decide
440		 * if we want to take the expensive mutex.
441		 *
442		 * But, we have to set root->last_trans before we
443		 * init the relocation root, otherwise, we trip over warnings
444		 * in ctree.c.  The solution used here is to flag ourselves
445		 * with root IN_TRANS_SETUP.  When this is 1, we're still
446		 * fixing up the reloc trees and everyone must wait.
447		 *
448		 * When this is zero, they can trust root->last_trans and fly
449		 * through btrfs_record_root_in_trans without having to take the
450		 * lock.  smp_wmb() makes sure that all the writes above are
451		 * done before we pop in the zero below
452		 */
453		btrfs_init_reloc_root(trans, root);
454		smp_mb__before_atomic();
455		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
456	}
457	return 0;
458}
459
460
461void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
462			    struct btrfs_root *root)
463{
464	struct btrfs_fs_info *fs_info = root->fs_info;
465	struct btrfs_transaction *cur_trans = trans->transaction;
466
467	/* Add ourselves to the transaction dropped list */
468	spin_lock(&cur_trans->dropped_roots_lock);
469	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
470	spin_unlock(&cur_trans->dropped_roots_lock);
471
472	/* Make sure we don't try to update the root at commit time */
473	spin_lock(&fs_info->fs_roots_radix_lock);
474	radix_tree_tag_clear(&fs_info->fs_roots_radix,
475			     (unsigned long)root->root_key.objectid,
476			     BTRFS_ROOT_TRANS_TAG);
477	spin_unlock(&fs_info->fs_roots_radix_lock);
478}
479
480int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
481			       struct btrfs_root *root)
482{
483	struct btrfs_fs_info *fs_info = root->fs_info;
484
485	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
486		return 0;
487
488	/*
489	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
490	 * and barriers
491	 */
492	smp_rmb();
493	if (root->last_trans == trans->transid &&
494	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
495		return 0;
496
497	mutex_lock(&fs_info->reloc_mutex);
498	record_root_in_trans(trans, root, 0);
499	mutex_unlock(&fs_info->reloc_mutex);
500
501	return 0;
502}
503
504static inline int is_transaction_blocked(struct btrfs_transaction *trans)
505{
506	return (trans->state >= TRANS_STATE_COMMIT_START &&
507		trans->state < TRANS_STATE_UNBLOCKED &&
508		!TRANS_ABORTED(trans));
509}
510
511/* wait for commit against the current transaction to become unblocked
512 * when this is done, it is safe to start a new transaction, but the current
513 * transaction might not be fully on disk.
514 */
515static void wait_current_trans(struct btrfs_fs_info *fs_info)
516{
517	struct btrfs_transaction *cur_trans;
518
519	spin_lock(&fs_info->trans_lock);
520	cur_trans = fs_info->running_transaction;
521	if (cur_trans && is_transaction_blocked(cur_trans)) {
522		refcount_inc(&cur_trans->use_count);
523		spin_unlock(&fs_info->trans_lock);
524
525		wait_event(fs_info->transaction_wait,
526			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
527			   TRANS_ABORTED(cur_trans));
528		btrfs_put_transaction(cur_trans);
529	} else {
530		spin_unlock(&fs_info->trans_lock);
531	}
532}
533
534static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
535{
536	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
537		return 0;
538
539	if (type == TRANS_START)
540		return 1;
541
542	return 0;
543}
544
545static inline bool need_reserve_reloc_root(struct btrfs_root *root)
546{
547	struct btrfs_fs_info *fs_info = root->fs_info;
548
549	if (!fs_info->reloc_ctl ||
550	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
551	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
552	    root->reloc_root)
553		return false;
554
555	return true;
556}
557
558static struct btrfs_trans_handle *
559start_transaction(struct btrfs_root *root, unsigned int num_items,
560		  unsigned int type, enum btrfs_reserve_flush_enum flush,
561		  bool enforce_qgroups)
562{
563	struct btrfs_fs_info *fs_info = root->fs_info;
564	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
565	struct btrfs_trans_handle *h;
566	struct btrfs_transaction *cur_trans;
567	u64 num_bytes = 0;
568	u64 qgroup_reserved = 0;
569	bool reloc_reserved = false;
570	bool do_chunk_alloc = false;
571	int ret;
572
573	/* Send isn't supposed to start transactions. */
574	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
575
576	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
577		return ERR_PTR(-EROFS);
578
579	if (current->journal_info) {
580		WARN_ON(type & TRANS_EXTWRITERS);
581		h = current->journal_info;
582		refcount_inc(&h->use_count);
583		WARN_ON(refcount_read(&h->use_count) > 2);
584		h->orig_rsv = h->block_rsv;
585		h->block_rsv = NULL;
586		goto got_it;
587	}
588
589	/*
590	 * Do the reservation before we join the transaction so we can do all
591	 * the appropriate flushing if need be.
592	 */
593	if (num_items && root != fs_info->chunk_root) {
594		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
595		u64 delayed_refs_bytes = 0;
596
597		qgroup_reserved = num_items * fs_info->nodesize;
598		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
599				enforce_qgroups);
600		if (ret)
601			return ERR_PTR(ret);
602
603		/*
604		 * We want to reserve all the bytes we may need all at once, so
605		 * we only do 1 enospc flushing cycle per transaction start.  We
606		 * accomplish this by simply assuming we'll do 2 x num_items
607		 * worth of delayed refs updates in this trans handle, and
608		 * refill that amount for whatever is missing in the reserve.
609		 */
610		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
611		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
612		    delayed_refs_rsv->full == 0) {
613			delayed_refs_bytes = num_bytes;
614			num_bytes <<= 1;
615		}
616
617		/*
618		 * Do the reservation for the relocation root creation
619		 */
620		if (need_reserve_reloc_root(root)) {
621			num_bytes += fs_info->nodesize;
622			reloc_reserved = true;
623		}
624
625		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
626		if (ret)
627			goto reserve_fail;
628		if (delayed_refs_bytes) {
629			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
630							  delayed_refs_bytes);
631			num_bytes -= delayed_refs_bytes;
632		}
633
634		if (rsv->space_info->force_alloc)
635			do_chunk_alloc = true;
636	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
637		   !delayed_refs_rsv->full) {
638		/*
639		 * Some people call with btrfs_start_transaction(root, 0)
640		 * because they can be throttled, but have some other mechanism
641		 * for reserving space.  We still want these guys to refill the
642		 * delayed block_rsv so just add 1 items worth of reservation
643		 * here.
644		 */
645		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
646		if (ret)
647			goto reserve_fail;
648	}
649again:
650	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
651	if (!h) {
652		ret = -ENOMEM;
653		goto alloc_fail;
654	}
655
656	/*
657	 * If we are JOIN_NOLOCK we're already committing a transaction and
658	 * waiting on this guy, so we don't need to do the sb_start_intwrite
659	 * because we're already holding a ref.  We need this because we could
660	 * have raced in and did an fsync() on a file which can kick a commit
661	 * and then we deadlock with somebody doing a freeze.
662	 *
663	 * If we are ATTACH, it means we just want to catch the current
664	 * transaction and commit it, so we needn't do sb_start_intwrite().
665	 */
666	if (type & __TRANS_FREEZABLE)
667		sb_start_intwrite(fs_info->sb);
668
669	if (may_wait_transaction(fs_info, type))
670		wait_current_trans(fs_info);
671
672	do {
673		ret = join_transaction(fs_info, type);
674		if (ret == -EBUSY) {
675			wait_current_trans(fs_info);
676			if (unlikely(type == TRANS_ATTACH ||
677				     type == TRANS_JOIN_NOSTART))
678				ret = -ENOENT;
679		}
680	} while (ret == -EBUSY);
681
682	if (ret < 0)
683		goto join_fail;
684
685	cur_trans = fs_info->running_transaction;
686
687	h->transid = cur_trans->transid;
688	h->transaction = cur_trans;
689	h->root = root;
690	refcount_set(&h->use_count, 1);
691	h->fs_info = root->fs_info;
692
693	h->type = type;
694	h->can_flush_pending_bgs = true;
695	INIT_LIST_HEAD(&h->new_bgs);
696
697	smp_mb();
698	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
699	    may_wait_transaction(fs_info, type)) {
700		current->journal_info = h;
701		btrfs_commit_transaction(h);
702		goto again;
703	}
704
705	if (num_bytes) {
706		trace_btrfs_space_reservation(fs_info, "transaction",
707					      h->transid, num_bytes, 1);
708		h->block_rsv = &fs_info->trans_block_rsv;
709		h->bytes_reserved = num_bytes;
710		h->reloc_reserved = reloc_reserved;
711	}
712
713got_it:
714	if (!current->journal_info)
715		current->journal_info = h;
716
717	/*
718	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
719	 * ALLOC_FORCE the first run through, and then we won't allocate for
720	 * anybody else who races in later.  We don't care about the return
721	 * value here.
722	 */
723	if (do_chunk_alloc && num_bytes) {
724		u64 flags = h->block_rsv->space_info->flags;
725
726		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
727				  CHUNK_ALLOC_NO_FORCE);
728	}
729
730	/*
731	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
732	 * call btrfs_join_transaction() while we're also starting a
733	 * transaction.
734	 *
735	 * Thus it need to be called after current->journal_info initialized,
736	 * or we can deadlock.
737	 */
738	btrfs_record_root_in_trans(h, root);
739
740	return h;
741
742join_fail:
743	if (type & __TRANS_FREEZABLE)
744		sb_end_intwrite(fs_info->sb);
745	kmem_cache_free(btrfs_trans_handle_cachep, h);
746alloc_fail:
747	if (num_bytes)
748		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
749					num_bytes, NULL);
750reserve_fail:
751	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
752	return ERR_PTR(ret);
753}
754
755struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
756						   unsigned int num_items)
757{
758	return start_transaction(root, num_items, TRANS_START,
759				 BTRFS_RESERVE_FLUSH_ALL, true);
760}
761
762struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
763					struct btrfs_root *root,
764					unsigned int num_items)
765{
766	return start_transaction(root, num_items, TRANS_START,
767				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
768}
769
770struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
771{
772	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
773				 true);
774}
775
776struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
777{
778	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
779				 BTRFS_RESERVE_NO_FLUSH, true);
780}
781
782/*
783 * Similar to regular join but it never starts a transaction when none is
784 * running or after waiting for the current one to finish.
785 */
786struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
787{
788	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
789				 BTRFS_RESERVE_NO_FLUSH, true);
790}
791
792/*
793 * btrfs_attach_transaction() - catch the running transaction
794 *
795 * It is used when we want to commit the current the transaction, but
796 * don't want to start a new one.
797 *
798 * Note: If this function return -ENOENT, it just means there is no
799 * running transaction. But it is possible that the inactive transaction
800 * is still in the memory, not fully on disk. If you hope there is no
801 * inactive transaction in the fs when -ENOENT is returned, you should
802 * invoke
803 *     btrfs_attach_transaction_barrier()
804 */
805struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
806{
807	return start_transaction(root, 0, TRANS_ATTACH,
808				 BTRFS_RESERVE_NO_FLUSH, true);
809}
810
811/*
812 * btrfs_attach_transaction_barrier() - catch the running transaction
813 *
814 * It is similar to the above function, the difference is this one
815 * will wait for all the inactive transactions until they fully
816 * complete.
817 */
818struct btrfs_trans_handle *
819btrfs_attach_transaction_barrier(struct btrfs_root *root)
820{
821	struct btrfs_trans_handle *trans;
822
823	trans = start_transaction(root, 0, TRANS_ATTACH,
824				  BTRFS_RESERVE_NO_FLUSH, true);
825	if (trans == ERR_PTR(-ENOENT)) {
826		int ret;
827
828		ret = btrfs_wait_for_commit(root->fs_info, 0);
829		if (ret)
830			return ERR_PTR(ret);
831	}
832
833	return trans;
834}
835
836/* wait for a transaction commit to be fully complete */
837static noinline void wait_for_commit(struct btrfs_transaction *commit)
838{
839	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
840}
841
842int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
843{
844	struct btrfs_transaction *cur_trans = NULL, *t;
845	int ret = 0;
846
847	if (transid) {
848		if (transid <= fs_info->last_trans_committed)
849			goto out;
850
851		/* find specified transaction */
852		spin_lock(&fs_info->trans_lock);
853		list_for_each_entry(t, &fs_info->trans_list, list) {
854			if (t->transid == transid) {
855				cur_trans = t;
856				refcount_inc(&cur_trans->use_count);
857				ret = 0;
858				break;
859			}
860			if (t->transid > transid) {
861				ret = 0;
862				break;
863			}
864		}
865		spin_unlock(&fs_info->trans_lock);
866
867		/*
868		 * The specified transaction doesn't exist, or we
869		 * raced with btrfs_commit_transaction
870		 */
871		if (!cur_trans) {
872			if (transid > fs_info->last_trans_committed)
873				ret = -EINVAL;
874			goto out;
875		}
876	} else {
877		/* find newest transaction that is committing | committed */
878		spin_lock(&fs_info->trans_lock);
879		list_for_each_entry_reverse(t, &fs_info->trans_list,
880					    list) {
881			if (t->state >= TRANS_STATE_COMMIT_START) {
882				if (t->state == TRANS_STATE_COMPLETED)
883					break;
884				cur_trans = t;
885				refcount_inc(&cur_trans->use_count);
886				break;
887			}
888		}
889		spin_unlock(&fs_info->trans_lock);
890		if (!cur_trans)
891			goto out;  /* nothing committing|committed */
892	}
893
894	wait_for_commit(cur_trans);
895	ret = cur_trans->aborted;
896	btrfs_put_transaction(cur_trans);
897out:
898	return ret;
899}
900
901void btrfs_throttle(struct btrfs_fs_info *fs_info)
902{
903	wait_current_trans(fs_info);
904}
905
906static int should_end_transaction(struct btrfs_trans_handle *trans)
907{
908	struct btrfs_fs_info *fs_info = trans->fs_info;
909
910	if (btrfs_check_space_for_delayed_refs(fs_info))
911		return 1;
912
913	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
914}
915
916int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
917{
918	struct btrfs_transaction *cur_trans = trans->transaction;
919
920	smp_mb();
921	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
922	    cur_trans->delayed_refs.flushing)
923		return 1;
924
925	return should_end_transaction(trans);
926}
927
928static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
929
930{
931	struct btrfs_fs_info *fs_info = trans->fs_info;
932
933	if (!trans->block_rsv) {
934		ASSERT(!trans->bytes_reserved);
935		return;
936	}
937
938	if (!trans->bytes_reserved)
939		return;
940
941	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
942	trace_btrfs_space_reservation(fs_info, "transaction",
943				      trans->transid, trans->bytes_reserved, 0);
944	btrfs_block_rsv_release(fs_info, trans->block_rsv,
945				trans->bytes_reserved, NULL);
946	trans->bytes_reserved = 0;
947}
948
949static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
950				   int throttle)
951{
952	struct btrfs_fs_info *info = trans->fs_info;
953	struct btrfs_transaction *cur_trans = trans->transaction;
954	int err = 0;
955
956	if (refcount_read(&trans->use_count) > 1) {
957		refcount_dec(&trans->use_count);
958		trans->block_rsv = trans->orig_rsv;
959		return 0;
960	}
961
962	btrfs_trans_release_metadata(trans);
963	trans->block_rsv = NULL;
964
965	btrfs_create_pending_block_groups(trans);
966
967	btrfs_trans_release_chunk_metadata(trans);
968
969	if (trans->type & __TRANS_FREEZABLE)
970		sb_end_intwrite(info->sb);
971
972	WARN_ON(cur_trans != info->running_transaction);
973	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
974	atomic_dec(&cur_trans->num_writers);
975	extwriter_counter_dec(cur_trans, trans->type);
976
977	cond_wake_up(&cur_trans->writer_wait);
978	btrfs_put_transaction(cur_trans);
979
980	if (current->journal_info == trans)
981		current->journal_info = NULL;
982
983	if (throttle)
984		btrfs_run_delayed_iputs(info);
985
986	if (TRANS_ABORTED(trans) ||
987	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
988		wake_up_process(info->transaction_kthread);
989		if (TRANS_ABORTED(trans))
990			err = trans->aborted;
991		else
992			err = -EROFS;
993	}
994
995	kmem_cache_free(btrfs_trans_handle_cachep, trans);
996	return err;
997}
998
999int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1000{
1001	return __btrfs_end_transaction(trans, 0);
1002}
1003
1004int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1005{
1006	return __btrfs_end_transaction(trans, 1);
1007}
1008
1009/*
1010 * when btree blocks are allocated, they have some corresponding bits set for
1011 * them in one of two extent_io trees.  This is used to make sure all of
1012 * those extents are sent to disk but does not wait on them
1013 */
1014int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1015			       struct extent_io_tree *dirty_pages, int mark)
1016{
1017	int err = 0;
1018	int werr = 0;
1019	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1020	struct extent_state *cached_state = NULL;
1021	u64 start = 0;
1022	u64 end;
1023
1024	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1025	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1026				      mark, &cached_state)) {
1027		bool wait_writeback = false;
1028
1029		err = convert_extent_bit(dirty_pages, start, end,
1030					 EXTENT_NEED_WAIT,
1031					 mark, &cached_state);
1032		/*
1033		 * convert_extent_bit can return -ENOMEM, which is most of the
1034		 * time a temporary error. So when it happens, ignore the error
1035		 * and wait for writeback of this range to finish - because we
1036		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1037		 * to __btrfs_wait_marked_extents() would not know that
1038		 * writeback for this range started and therefore wouldn't
1039		 * wait for it to finish - we don't want to commit a
1040		 * superblock that points to btree nodes/leafs for which
1041		 * writeback hasn't finished yet (and without errors).
1042		 * We cleanup any entries left in the io tree when committing
1043		 * the transaction (through extent_io_tree_release()).
1044		 */
1045		if (err == -ENOMEM) {
1046			err = 0;
1047			wait_writeback = true;
1048		}
1049		if (!err)
1050			err = filemap_fdatawrite_range(mapping, start, end);
1051		if (err)
1052			werr = err;
1053		else if (wait_writeback)
1054			werr = filemap_fdatawait_range(mapping, start, end);
1055		free_extent_state(cached_state);
1056		cached_state = NULL;
1057		cond_resched();
1058		start = end + 1;
1059	}
1060	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1061	return werr;
1062}
1063
1064/*
1065 * when btree blocks are allocated, they have some corresponding bits set for
1066 * them in one of two extent_io trees.  This is used to make sure all of
1067 * those extents are on disk for transaction or log commit.  We wait
1068 * on all the pages and clear them from the dirty pages state tree
1069 */
1070static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1071				       struct extent_io_tree *dirty_pages)
1072{
1073	int err = 0;
1074	int werr = 0;
1075	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1076	struct extent_state *cached_state = NULL;
1077	u64 start = 0;
1078	u64 end;
1079
1080	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1081				      EXTENT_NEED_WAIT, &cached_state)) {
1082		/*
1083		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1084		 * When committing the transaction, we'll remove any entries
1085		 * left in the io tree. For a log commit, we don't remove them
1086		 * after committing the log because the tree can be accessed
1087		 * concurrently - we do it only at transaction commit time when
1088		 * it's safe to do it (through extent_io_tree_release()).
1089		 */
1090		err = clear_extent_bit(dirty_pages, start, end,
1091				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1092		if (err == -ENOMEM)
1093			err = 0;
1094		if (!err)
1095			err = filemap_fdatawait_range(mapping, start, end);
1096		if (err)
1097			werr = err;
1098		free_extent_state(cached_state);
1099		cached_state = NULL;
1100		cond_resched();
1101		start = end + 1;
1102	}
1103	if (err)
1104		werr = err;
1105	return werr;
1106}
1107
1108static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1109		       struct extent_io_tree *dirty_pages)
1110{
1111	bool errors = false;
1112	int err;
1113
1114	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1115	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1116		errors = true;
1117
1118	if (errors && !err)
1119		err = -EIO;
1120	return err;
1121}
1122
1123int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1124{
1125	struct btrfs_fs_info *fs_info = log_root->fs_info;
1126	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1127	bool errors = false;
1128	int err;
1129
1130	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1131
1132	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1133	if ((mark & EXTENT_DIRTY) &&
1134	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1135		errors = true;
1136
1137	if ((mark & EXTENT_NEW) &&
1138	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1139		errors = true;
1140
1141	if (errors && !err)
1142		err = -EIO;
1143	return err;
1144}
1145
1146/*
1147 * When btree blocks are allocated the corresponding extents are marked dirty.
1148 * This function ensures such extents are persisted on disk for transaction or
1149 * log commit.
1150 *
1151 * @trans: transaction whose dirty pages we'd like to write
1152 */
1153static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1154{
1155	int ret;
1156	int ret2;
1157	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1158	struct btrfs_fs_info *fs_info = trans->fs_info;
1159	struct blk_plug plug;
1160
1161	blk_start_plug(&plug);
1162	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1163	blk_finish_plug(&plug);
1164	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1165
1166	extent_io_tree_release(&trans->transaction->dirty_pages);
1167
1168	if (ret)
1169		return ret;
1170	else if (ret2)
1171		return ret2;
1172	else
1173		return 0;
1174}
1175
1176/*
1177 * this is used to update the root pointer in the tree of tree roots.
1178 *
1179 * But, in the case of the extent allocation tree, updating the root
1180 * pointer may allocate blocks which may change the root of the extent
1181 * allocation tree.
1182 *
1183 * So, this loops and repeats and makes sure the cowonly root didn't
1184 * change while the root pointer was being updated in the metadata.
1185 */
1186static int update_cowonly_root(struct btrfs_trans_handle *trans,
1187			       struct btrfs_root *root)
1188{
1189	int ret;
1190	u64 old_root_bytenr;
1191	u64 old_root_used;
1192	struct btrfs_fs_info *fs_info = root->fs_info;
1193	struct btrfs_root *tree_root = fs_info->tree_root;
1194
1195	old_root_used = btrfs_root_used(&root->root_item);
1196
1197	while (1) {
1198		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1199		if (old_root_bytenr == root->node->start &&
1200		    old_root_used == btrfs_root_used(&root->root_item))
1201			break;
1202
1203		btrfs_set_root_node(&root->root_item, root->node);
1204		ret = btrfs_update_root(trans, tree_root,
1205					&root->root_key,
1206					&root->root_item);
1207		if (ret)
1208			return ret;
1209
1210		old_root_used = btrfs_root_used(&root->root_item);
1211	}
1212
1213	return 0;
1214}
1215
1216/*
1217 * update all the cowonly tree roots on disk
1218 *
1219 * The error handling in this function may not be obvious. Any of the
1220 * failures will cause the file system to go offline. We still need
1221 * to clean up the delayed refs.
1222 */
1223static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1224{
1225	struct btrfs_fs_info *fs_info = trans->fs_info;
1226	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1227	struct list_head *io_bgs = &trans->transaction->io_bgs;
1228	struct list_head *next;
1229	struct extent_buffer *eb;
1230	int ret;
1231
1232	eb = btrfs_lock_root_node(fs_info->tree_root);
1233	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1234			      0, &eb, BTRFS_NESTING_COW);
1235	btrfs_tree_unlock(eb);
1236	free_extent_buffer(eb);
1237
1238	if (ret)
1239		return ret;
1240
1241	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1242	if (ret)
1243		return ret;
1244
1245	ret = btrfs_run_dev_stats(trans);
1246	if (ret)
1247		return ret;
1248	ret = btrfs_run_dev_replace(trans);
1249	if (ret)
1250		return ret;
1251	ret = btrfs_run_qgroups(trans);
1252	if (ret)
1253		return ret;
1254
1255	ret = btrfs_setup_space_cache(trans);
1256	if (ret)
1257		return ret;
1258
1259	/* run_qgroups might have added some more refs */
1260	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1261	if (ret)
1262		return ret;
1263again:
1264	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1265		struct btrfs_root *root;
1266		next = fs_info->dirty_cowonly_roots.next;
1267		list_del_init(next);
1268		root = list_entry(next, struct btrfs_root, dirty_list);
1269		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1270
1271		if (root != fs_info->extent_root)
1272			list_add_tail(&root->dirty_list,
1273				      &trans->transaction->switch_commits);
1274		ret = update_cowonly_root(trans, root);
1275		if (ret)
1276			return ret;
1277		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1278		if (ret)
1279			return ret;
1280	}
1281
1282	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1283		ret = btrfs_write_dirty_block_groups(trans);
1284		if (ret)
1285			return ret;
1286		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1287		if (ret)
1288			return ret;
1289	}
1290
1291	if (!list_empty(&fs_info->dirty_cowonly_roots))
1292		goto again;
1293
1294	list_add_tail(&fs_info->extent_root->dirty_list,
1295		      &trans->transaction->switch_commits);
1296
1297	/* Update dev-replace pointer once everything is committed */
1298	fs_info->dev_replace.committed_cursor_left =
1299		fs_info->dev_replace.cursor_left_last_write_of_item;
1300
1301	return 0;
1302}
1303
1304/*
1305 * dead roots are old snapshots that need to be deleted.  This allocates
1306 * a dirty root struct and adds it into the list of dead roots that need to
1307 * be deleted
1308 */
1309void btrfs_add_dead_root(struct btrfs_root *root)
1310{
1311	struct btrfs_fs_info *fs_info = root->fs_info;
1312
1313	spin_lock(&fs_info->trans_lock);
1314	if (list_empty(&root->root_list)) {
1315		btrfs_grab_root(root);
1316		list_add_tail(&root->root_list, &fs_info->dead_roots);
1317	}
1318	spin_unlock(&fs_info->trans_lock);
1319}
1320
1321/*
1322 * update all the cowonly tree roots on disk
1323 */
1324static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1325{
1326	struct btrfs_fs_info *fs_info = trans->fs_info;
1327	struct btrfs_root *gang[8];
1328	int i;
1329	int ret;
1330
1331	spin_lock(&fs_info->fs_roots_radix_lock);
1332	while (1) {
1333		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1334						 (void **)gang, 0,
1335						 ARRAY_SIZE(gang),
1336						 BTRFS_ROOT_TRANS_TAG);
1337		if (ret == 0)
1338			break;
1339		for (i = 0; i < ret; i++) {
1340			struct btrfs_root *root = gang[i];
1341			int ret2;
1342
1343			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1344					(unsigned long)root->root_key.objectid,
1345					BTRFS_ROOT_TRANS_TAG);
1346			spin_unlock(&fs_info->fs_roots_radix_lock);
1347
1348			btrfs_free_log(trans, root);
1349			btrfs_update_reloc_root(trans, root);
1350
1351			btrfs_save_ino_cache(root, trans);
1352
1353			/* see comments in should_cow_block() */
1354			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1355			smp_mb__after_atomic();
1356
1357			if (root->commit_root != root->node) {
1358				list_add_tail(&root->dirty_list,
1359					&trans->transaction->switch_commits);
1360				btrfs_set_root_node(&root->root_item,
1361						    root->node);
1362			}
1363
1364			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1365						&root->root_key,
1366						&root->root_item);
1367			if (ret2)
1368				return ret2;
1369			spin_lock(&fs_info->fs_roots_radix_lock);
1370			btrfs_qgroup_free_meta_all_pertrans(root);
1371		}
1372	}
1373	spin_unlock(&fs_info->fs_roots_radix_lock);
1374	return 0;
1375}
1376
1377/*
1378 * defrag a given btree.
1379 * Every leaf in the btree is read and defragged.
1380 */
1381int btrfs_defrag_root(struct btrfs_root *root)
1382{
1383	struct btrfs_fs_info *info = root->fs_info;
1384	struct btrfs_trans_handle *trans;
1385	int ret;
1386
1387	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1388		return 0;
1389
1390	while (1) {
1391		trans = btrfs_start_transaction(root, 0);
1392		if (IS_ERR(trans)) {
1393			ret = PTR_ERR(trans);
1394			break;
1395		}
1396
1397		ret = btrfs_defrag_leaves(trans, root);
1398
1399		btrfs_end_transaction(trans);
1400		btrfs_btree_balance_dirty(info);
1401		cond_resched();
1402
1403		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1404			break;
1405
1406		if (btrfs_defrag_cancelled(info)) {
1407			btrfs_debug(info, "defrag_root cancelled");
1408			ret = -EAGAIN;
1409			break;
1410		}
1411	}
1412	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1413	return ret;
1414}
1415
1416/*
1417 * Do all special snapshot related qgroup dirty hack.
1418 *
1419 * Will do all needed qgroup inherit and dirty hack like switch commit
1420 * roots inside one transaction and write all btree into disk, to make
1421 * qgroup works.
1422 */
1423static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1424				   struct btrfs_root *src,
1425				   struct btrfs_root *parent,
1426				   struct btrfs_qgroup_inherit *inherit,
1427				   u64 dst_objectid)
1428{
1429	struct btrfs_fs_info *fs_info = src->fs_info;
1430	int ret;
1431
1432	/*
1433	 * Save some performance in the case that qgroups are not
1434	 * enabled. If this check races with the ioctl, rescan will
1435	 * kick in anyway.
1436	 */
1437	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1438		return 0;
1439
1440	/*
1441	 * Ensure dirty @src will be committed.  Or, after coming
1442	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1443	 * recorded root will never be updated again, causing an outdated root
1444	 * item.
1445	 */
1446	record_root_in_trans(trans, src, 1);
1447
1448	/*
1449	 * We are going to commit transaction, see btrfs_commit_transaction()
1450	 * comment for reason locking tree_log_mutex
1451	 */
1452	mutex_lock(&fs_info->tree_log_mutex);
1453
1454	ret = commit_fs_roots(trans);
1455	if (ret)
1456		goto out;
1457	ret = btrfs_qgroup_account_extents(trans);
1458	if (ret < 0)
1459		goto out;
1460
1461	/* Now qgroup are all updated, we can inherit it to new qgroups */
1462	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1463				   inherit);
1464	if (ret < 0)
1465		goto out;
1466
1467	/*
1468	 * Now we do a simplified commit transaction, which will:
1469	 * 1) commit all subvolume and extent tree
1470	 *    To ensure all subvolume and extent tree have a valid
1471	 *    commit_root to accounting later insert_dir_item()
1472	 * 2) write all btree blocks onto disk
1473	 *    This is to make sure later btree modification will be cowed
1474	 *    Or commit_root can be populated and cause wrong qgroup numbers
1475	 * In this simplified commit, we don't really care about other trees
1476	 * like chunk and root tree, as they won't affect qgroup.
1477	 * And we don't write super to avoid half committed status.
1478	 */
1479	ret = commit_cowonly_roots(trans);
1480	if (ret)
1481		goto out;
1482	switch_commit_roots(trans);
1483	ret = btrfs_write_and_wait_transaction(trans);
1484	if (ret)
1485		btrfs_handle_fs_error(fs_info, ret,
1486			"Error while writing out transaction for qgroup");
1487
1488out:
1489	mutex_unlock(&fs_info->tree_log_mutex);
1490
1491	/*
1492	 * Force parent root to be updated, as we recorded it before so its
1493	 * last_trans == cur_transid.
1494	 * Or it won't be committed again onto disk after later
1495	 * insert_dir_item()
1496	 */
1497	if (!ret)
1498		record_root_in_trans(trans, parent, 1);
1499	return ret;
1500}
1501
1502/*
1503 * new snapshots need to be created at a very specific time in the
1504 * transaction commit.  This does the actual creation.
1505 *
1506 * Note:
1507 * If the error which may affect the commitment of the current transaction
1508 * happens, we should return the error number. If the error which just affect
1509 * the creation of the pending snapshots, just return 0.
1510 */
1511static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1512				   struct btrfs_pending_snapshot *pending)
1513{
1514
1515	struct btrfs_fs_info *fs_info = trans->fs_info;
1516	struct btrfs_key key;
1517	struct btrfs_root_item *new_root_item;
1518	struct btrfs_root *tree_root = fs_info->tree_root;
1519	struct btrfs_root *root = pending->root;
1520	struct btrfs_root *parent_root;
1521	struct btrfs_block_rsv *rsv;
1522	struct inode *parent_inode;
1523	struct btrfs_path *path;
1524	struct btrfs_dir_item *dir_item;
1525	struct dentry *dentry;
1526	struct extent_buffer *tmp;
1527	struct extent_buffer *old;
1528	struct timespec64 cur_time;
1529	int ret = 0;
1530	u64 to_reserve = 0;
1531	u64 index = 0;
1532	u64 objectid;
1533	u64 root_flags;
1534
1535	ASSERT(pending->path);
1536	path = pending->path;
1537
1538	ASSERT(pending->root_item);
1539	new_root_item = pending->root_item;
1540
1541	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1542	if (pending->error)
1543		goto no_free_objectid;
1544
1545	/*
1546	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1547	 * accounted by later btrfs_qgroup_inherit().
1548	 */
1549	btrfs_set_skip_qgroup(trans, objectid);
1550
1551	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1552
1553	if (to_reserve > 0) {
1554		pending->error = btrfs_block_rsv_add(root,
1555						     &pending->block_rsv,
1556						     to_reserve,
1557						     BTRFS_RESERVE_NO_FLUSH);
1558		if (pending->error)
1559			goto clear_skip_qgroup;
1560	}
1561
1562	key.objectid = objectid;
1563	key.offset = (u64)-1;
1564	key.type = BTRFS_ROOT_ITEM_KEY;
1565
1566	rsv = trans->block_rsv;
1567	trans->block_rsv = &pending->block_rsv;
1568	trans->bytes_reserved = trans->block_rsv->reserved;
1569	trace_btrfs_space_reservation(fs_info, "transaction",
1570				      trans->transid,
1571				      trans->bytes_reserved, 1);
1572	dentry = pending->dentry;
1573	parent_inode = pending->dir;
1574	parent_root = BTRFS_I(parent_inode)->root;
1575	record_root_in_trans(trans, parent_root, 0);
1576
1577	cur_time = current_time(parent_inode);
1578
1579	/*
1580	 * insert the directory item
1581	 */
1582	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1583	BUG_ON(ret); /* -ENOMEM */
1584
1585	/* check if there is a file/dir which has the same name. */
1586	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1587					 btrfs_ino(BTRFS_I(parent_inode)),
1588					 dentry->d_name.name,
1589					 dentry->d_name.len, 0);
1590	if (dir_item != NULL && !IS_ERR(dir_item)) {
1591		pending->error = -EEXIST;
1592		goto dir_item_existed;
1593	} else if (IS_ERR(dir_item)) {
1594		ret = PTR_ERR(dir_item);
1595		btrfs_abort_transaction(trans, ret);
1596		goto fail;
1597	}
1598	btrfs_release_path(path);
1599
1600	/*
1601	 * pull in the delayed directory update
1602	 * and the delayed inode item
1603	 * otherwise we corrupt the FS during
1604	 * snapshot
1605	 */
1606	ret = btrfs_run_delayed_items(trans);
1607	if (ret) {	/* Transaction aborted */
1608		btrfs_abort_transaction(trans, ret);
1609		goto fail;
1610	}
1611
1612	record_root_in_trans(trans, root, 0);
1613	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1614	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1615	btrfs_check_and_init_root_item(new_root_item);
1616
1617	root_flags = btrfs_root_flags(new_root_item);
1618	if (pending->readonly)
1619		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1620	else
1621		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1622	btrfs_set_root_flags(new_root_item, root_flags);
1623
1624	btrfs_set_root_generation_v2(new_root_item,
1625			trans->transid);
1626	generate_random_guid(new_root_item->uuid);
1627	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1628			BTRFS_UUID_SIZE);
1629	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1630		memset(new_root_item->received_uuid, 0,
1631		       sizeof(new_root_item->received_uuid));
1632		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1633		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1634		btrfs_set_root_stransid(new_root_item, 0);
1635		btrfs_set_root_rtransid(new_root_item, 0);
1636	}
1637	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1638	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1639	btrfs_set_root_otransid(new_root_item, trans->transid);
1640
1641	old = btrfs_lock_root_node(root);
1642	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1643			      BTRFS_NESTING_COW);
1644	if (ret) {
1645		btrfs_tree_unlock(old);
1646		free_extent_buffer(old);
1647		btrfs_abort_transaction(trans, ret);
1648		goto fail;
1649	}
1650
1651	btrfs_set_lock_blocking_write(old);
1652
1653	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1654	/* clean up in any case */
1655	btrfs_tree_unlock(old);
1656	free_extent_buffer(old);
1657	if (ret) {
1658		btrfs_abort_transaction(trans, ret);
1659		goto fail;
1660	}
1661	/* see comments in should_cow_block() */
1662	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1663	smp_wmb();
1664
1665	btrfs_set_root_node(new_root_item, tmp);
1666	/* record when the snapshot was created in key.offset */
1667	key.offset = trans->transid;
1668	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1669	btrfs_tree_unlock(tmp);
1670	free_extent_buffer(tmp);
1671	if (ret) {
1672		btrfs_abort_transaction(trans, ret);
1673		goto fail;
1674	}
1675
1676	/*
1677	 * insert root back/forward references
1678	 */
1679	ret = btrfs_add_root_ref(trans, objectid,
1680				 parent_root->root_key.objectid,
1681				 btrfs_ino(BTRFS_I(parent_inode)), index,
1682				 dentry->d_name.name, dentry->d_name.len);
1683	if (ret) {
1684		btrfs_abort_transaction(trans, ret);
1685		goto fail;
1686	}
1687
1688	key.offset = (u64)-1;
1689	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1690	if (IS_ERR(pending->snap)) {
1691		ret = PTR_ERR(pending->snap);
1692		pending->snap = NULL;
1693		btrfs_abort_transaction(trans, ret);
1694		goto fail;
1695	}
1696
1697	ret = btrfs_reloc_post_snapshot(trans, pending);
1698	if (ret) {
1699		btrfs_abort_transaction(trans, ret);
1700		goto fail;
1701	}
1702
1703	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1704	if (ret) {
1705		btrfs_abort_transaction(trans, ret);
1706		goto fail;
1707	}
1708
1709	/*
1710	 * Do special qgroup accounting for snapshot, as we do some qgroup
1711	 * snapshot hack to do fast snapshot.
1712	 * To co-operate with that hack, we do hack again.
1713	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1714	 */
1715	ret = qgroup_account_snapshot(trans, root, parent_root,
1716				      pending->inherit, objectid);
1717	if (ret < 0)
1718		goto fail;
1719
1720	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1721				    dentry->d_name.len, BTRFS_I(parent_inode),
1722				    &key, BTRFS_FT_DIR, index);
1723	/* We have check then name at the beginning, so it is impossible. */
1724	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1725	if (ret) {
1726		btrfs_abort_transaction(trans, ret);
1727		goto fail;
1728	}
1729
1730	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1731					 dentry->d_name.len * 2);
1732	parent_inode->i_mtime = parent_inode->i_ctime =
1733		current_time(parent_inode);
1734	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1735	if (ret) {
1736		btrfs_abort_transaction(trans, ret);
1737		goto fail;
1738	}
1739	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1740				  BTRFS_UUID_KEY_SUBVOL,
1741				  objectid);
1742	if (ret) {
1743		btrfs_abort_transaction(trans, ret);
1744		goto fail;
1745	}
1746	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1747		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1748					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1749					  objectid);
1750		if (ret && ret != -EEXIST) {
1751			btrfs_abort_transaction(trans, ret);
1752			goto fail;
1753		}
1754	}
1755
1756	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1757	if (ret) {
1758		btrfs_abort_transaction(trans, ret);
1759		goto fail;
1760	}
1761
1762fail:
1763	pending->error = ret;
1764dir_item_existed:
1765	trans->block_rsv = rsv;
1766	trans->bytes_reserved = 0;
1767clear_skip_qgroup:
1768	btrfs_clear_skip_qgroup(trans);
1769no_free_objectid:
1770	kfree(new_root_item);
1771	pending->root_item = NULL;
1772	btrfs_free_path(path);
1773	pending->path = NULL;
1774
1775	return ret;
1776}
1777
1778/*
1779 * create all the snapshots we've scheduled for creation
1780 */
1781static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1782{
1783	struct btrfs_pending_snapshot *pending, *next;
1784	struct list_head *head = &trans->transaction->pending_snapshots;
1785	int ret = 0;
1786
1787	list_for_each_entry_safe(pending, next, head, list) {
1788		list_del(&pending->list);
1789		ret = create_pending_snapshot(trans, pending);
1790		if (ret)
1791			break;
1792	}
1793	return ret;
1794}
1795
1796static void update_super_roots(struct btrfs_fs_info *fs_info)
1797{
1798	struct btrfs_root_item *root_item;
1799	struct btrfs_super_block *super;
1800
1801	super = fs_info->super_copy;
1802
1803	root_item = &fs_info->chunk_root->root_item;
1804	super->chunk_root = root_item->bytenr;
1805	super->chunk_root_generation = root_item->generation;
1806	super->chunk_root_level = root_item->level;
1807
1808	root_item = &fs_info->tree_root->root_item;
1809	super->root = root_item->bytenr;
1810	super->generation = root_item->generation;
1811	super->root_level = root_item->level;
1812	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1813		super->cache_generation = root_item->generation;
1814	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1815		super->uuid_tree_generation = root_item->generation;
1816}
1817
1818int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1819{
1820	struct btrfs_transaction *trans;
1821	int ret = 0;
1822
1823	spin_lock(&info->trans_lock);
1824	trans = info->running_transaction;
1825	if (trans)
1826		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1827	spin_unlock(&info->trans_lock);
1828	return ret;
1829}
1830
1831int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1832{
1833	struct btrfs_transaction *trans;
1834	int ret = 0;
1835
1836	spin_lock(&info->trans_lock);
1837	trans = info->running_transaction;
1838	if (trans)
1839		ret = is_transaction_blocked(trans);
1840	spin_unlock(&info->trans_lock);
1841	return ret;
1842}
1843
1844/*
1845 * wait for the current transaction commit to start and block subsequent
1846 * transaction joins
1847 */
1848static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1849					    struct btrfs_transaction *trans)
1850{
1851	wait_event(fs_info->transaction_blocked_wait,
1852		   trans->state >= TRANS_STATE_COMMIT_START ||
1853		   TRANS_ABORTED(trans));
1854}
1855
1856/*
1857 * wait for the current transaction to start and then become unblocked.
1858 * caller holds ref.
1859 */
1860static void wait_current_trans_commit_start_and_unblock(
1861					struct btrfs_fs_info *fs_info,
1862					struct btrfs_transaction *trans)
1863{
1864	wait_event(fs_info->transaction_wait,
1865		   trans->state >= TRANS_STATE_UNBLOCKED ||
1866		   TRANS_ABORTED(trans));
1867}
1868
1869/*
1870 * commit transactions asynchronously. once btrfs_commit_transaction_async
1871 * returns, any subsequent transaction will not be allowed to join.
1872 */
1873struct btrfs_async_commit {
1874	struct btrfs_trans_handle *newtrans;
1875	struct work_struct work;
1876};
1877
1878static void do_async_commit(struct work_struct *work)
1879{
1880	struct btrfs_async_commit *ac =
1881		container_of(work, struct btrfs_async_commit, work);
1882
1883	/*
1884	 * We've got freeze protection passed with the transaction.
1885	 * Tell lockdep about it.
1886	 */
1887	if (ac->newtrans->type & __TRANS_FREEZABLE)
1888		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1889
1890	current->journal_info = ac->newtrans;
1891
1892	btrfs_commit_transaction(ac->newtrans);
1893	kfree(ac);
1894}
1895
1896int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1897				   int wait_for_unblock)
1898{
1899	struct btrfs_fs_info *fs_info = trans->fs_info;
1900	struct btrfs_async_commit *ac;
1901	struct btrfs_transaction *cur_trans;
1902
1903	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1904	if (!ac)
1905		return -ENOMEM;
1906
1907	INIT_WORK(&ac->work, do_async_commit);
1908	ac->newtrans = btrfs_join_transaction(trans->root);
1909	if (IS_ERR(ac->newtrans)) {
1910		int err = PTR_ERR(ac->newtrans);
1911		kfree(ac);
1912		return err;
1913	}
1914
1915	/* take transaction reference */
1916	cur_trans = trans->transaction;
1917	refcount_inc(&cur_trans->use_count);
1918
1919	btrfs_end_transaction(trans);
1920
1921	/*
1922	 * Tell lockdep we've released the freeze rwsem, since the
1923	 * async commit thread will be the one to unlock it.
1924	 */
1925	if (ac->newtrans->type & __TRANS_FREEZABLE)
1926		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1927
1928	schedule_work(&ac->work);
1929
1930	/* wait for transaction to start and unblock */
1931	if (wait_for_unblock)
1932		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1933	else
1934		wait_current_trans_commit_start(fs_info, cur_trans);
1935
1936	if (current->journal_info == trans)
1937		current->journal_info = NULL;
1938
1939	btrfs_put_transaction(cur_trans);
1940	return 0;
1941}
1942
1943
1944static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1945{
1946	struct btrfs_fs_info *fs_info = trans->fs_info;
1947	struct btrfs_transaction *cur_trans = trans->transaction;
1948
1949	WARN_ON(refcount_read(&trans->use_count) > 1);
1950
1951	btrfs_abort_transaction(trans, err);
1952
1953	spin_lock(&fs_info->trans_lock);
1954
1955	/*
1956	 * If the transaction is removed from the list, it means this
1957	 * transaction has been committed successfully, so it is impossible
1958	 * to call the cleanup function.
1959	 */
1960	BUG_ON(list_empty(&cur_trans->list));
1961
1962	if (cur_trans == fs_info->running_transaction) {
1963		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1964		spin_unlock(&fs_info->trans_lock);
1965		wait_event(cur_trans->writer_wait,
1966			   atomic_read(&cur_trans->num_writers) == 1);
1967
1968		spin_lock(&fs_info->trans_lock);
1969	}
1970
1971	/*
1972	 * Now that we know no one else is still using the transaction we can
1973	 * remove the transaction from the list of transactions. This avoids
1974	 * the transaction kthread from cleaning up the transaction while some
1975	 * other task is still using it, which could result in a use-after-free
1976	 * on things like log trees, as it forces the transaction kthread to
1977	 * wait for this transaction to be cleaned up by us.
1978	 */
1979	list_del_init(&cur_trans->list);
1980
1981	spin_unlock(&fs_info->trans_lock);
1982
1983	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1984
1985	spin_lock(&fs_info->trans_lock);
1986	if (cur_trans == fs_info->running_transaction)
1987		fs_info->running_transaction = NULL;
1988	spin_unlock(&fs_info->trans_lock);
1989
1990	if (trans->type & __TRANS_FREEZABLE)
1991		sb_end_intwrite(fs_info->sb);
1992	btrfs_put_transaction(cur_trans);
1993	btrfs_put_transaction(cur_trans);
1994
1995	trace_btrfs_transaction_commit(trans->root);
1996
1997	if (current->journal_info == trans)
1998		current->journal_info = NULL;
1999	btrfs_scrub_cancel(fs_info);
2000
2001	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2002}
2003
2004/*
2005 * Release reserved delayed ref space of all pending block groups of the
2006 * transaction and remove them from the list
2007 */
2008static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2009{
2010       struct btrfs_fs_info *fs_info = trans->fs_info;
2011       struct btrfs_block_group *block_group, *tmp;
2012
2013       list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2014               btrfs_delayed_refs_rsv_release(fs_info, 1);
2015               list_del_init(&block_group->bg_list);
2016       }
2017}
2018
2019static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
2020{
2021	struct btrfs_fs_info *fs_info = trans->fs_info;
2022
2023	/*
2024	 * We use writeback_inodes_sb here because if we used
2025	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2026	 * Currently are holding the fs freeze lock, if we do an async flush
2027	 * we'll do btrfs_join_transaction() and deadlock because we need to
2028	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2029	 * from already being in a transaction and our join_transaction doesn't
2030	 * have to re-take the fs freeze lock.
2031	 */
2032	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
2033		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2034	} else {
2035		struct btrfs_pending_snapshot *pending;
2036		struct list_head *head = &trans->transaction->pending_snapshots;
2037
2038		/*
2039		 * Flush dellaloc for any root that is going to be snapshotted.
2040		 * This is done to avoid a corrupted version of files, in the
2041		 * snapshots, that had both buffered and direct IO writes (even
2042		 * if they were done sequentially) due to an unordered update of
2043		 * the inode's size on disk.
2044		 */
2045		list_for_each_entry(pending, head, list) {
2046			int ret;
2047
2048			ret = btrfs_start_delalloc_snapshot(pending->root);
2049			if (ret)
2050				return ret;
2051		}
2052	}
2053	return 0;
2054}
2055
2056static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
2057{
2058	struct btrfs_fs_info *fs_info = trans->fs_info;
2059
2060	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
2061		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2062	} else {
2063		struct btrfs_pending_snapshot *pending;
2064		struct list_head *head = &trans->transaction->pending_snapshots;
2065
2066		/*
2067		 * Wait for any dellaloc that we started previously for the roots
2068		 * that are going to be snapshotted. This is to avoid a corrupted
2069		 * version of files in the snapshots that had both buffered and
2070		 * direct IO writes (even if they were done sequentially).
2071		 */
2072		list_for_each_entry(pending, head, list)
2073			btrfs_wait_ordered_extents(pending->root,
2074						   U64_MAX, 0, U64_MAX);
2075	}
2076}
2077
2078int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2079{
2080	struct btrfs_fs_info *fs_info = trans->fs_info;
2081	struct btrfs_transaction *cur_trans = trans->transaction;
2082	struct btrfs_transaction *prev_trans = NULL;
2083	int ret;
2084
2085	ASSERT(refcount_read(&trans->use_count) == 1);
2086
2087	/*
2088	 * Some places just start a transaction to commit it.  We need to make
2089	 * sure that if this commit fails that the abort code actually marks the
2090	 * transaction as failed, so set trans->dirty to make the abort code do
2091	 * the right thing.
2092	 */
2093	trans->dirty = true;
2094
2095	/* Stop the commit early if ->aborted is set */
2096	if (TRANS_ABORTED(cur_trans)) {
2097		ret = cur_trans->aborted;
2098		btrfs_end_transaction(trans);
2099		return ret;
2100	}
2101
2102	btrfs_trans_release_metadata(trans);
2103	trans->block_rsv = NULL;
2104
2105	/* make a pass through all the delayed refs we have so far
2106	 * any runnings procs may add more while we are here
2107	 */
2108	ret = btrfs_run_delayed_refs(trans, 0);
2109	if (ret) {
2110		btrfs_end_transaction(trans);
2111		return ret;
2112	}
2113
2114	cur_trans = trans->transaction;
2115
2116	/*
2117	 * set the flushing flag so procs in this transaction have to
2118	 * start sending their work down.
2119	 */
2120	cur_trans->delayed_refs.flushing = 1;
2121	smp_wmb();
2122
2123	btrfs_create_pending_block_groups(trans);
2124
2125	ret = btrfs_run_delayed_refs(trans, 0);
2126	if (ret) {
2127		btrfs_end_transaction(trans);
2128		return ret;
2129	}
2130
2131	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2132		int run_it = 0;
2133
2134		/* this mutex is also taken before trying to set
2135		 * block groups readonly.  We need to make sure
2136		 * that nobody has set a block group readonly
2137		 * after a extents from that block group have been
2138		 * allocated for cache files.  btrfs_set_block_group_ro
2139		 * will wait for the transaction to commit if it
2140		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2141		 *
2142		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2143		 * only one process starts all the block group IO.  It wouldn't
2144		 * hurt to have more than one go through, but there's no
2145		 * real advantage to it either.
2146		 */
2147		mutex_lock(&fs_info->ro_block_group_mutex);
2148		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2149				      &cur_trans->flags))
2150			run_it = 1;
2151		mutex_unlock(&fs_info->ro_block_group_mutex);
2152
2153		if (run_it) {
2154			ret = btrfs_start_dirty_block_groups(trans);
2155			if (ret) {
2156				btrfs_end_transaction(trans);
2157				return ret;
2158			}
2159		}
2160	}
2161
2162	spin_lock(&fs_info->trans_lock);
2163	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2164		spin_unlock(&fs_info->trans_lock);
2165		refcount_inc(&cur_trans->use_count);
2166		ret = btrfs_end_transaction(trans);
2167
2168		wait_for_commit(cur_trans);
2169
2170		if (TRANS_ABORTED(cur_trans))
2171			ret = cur_trans->aborted;
2172
2173		btrfs_put_transaction(cur_trans);
2174
2175		return ret;
2176	}
2177
2178	cur_trans->state = TRANS_STATE_COMMIT_START;
2179	wake_up(&fs_info->transaction_blocked_wait);
2180
2181	if (cur_trans->list.prev != &fs_info->trans_list) {
2182		prev_trans = list_entry(cur_trans->list.prev,
2183					struct btrfs_transaction, list);
2184		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2185			refcount_inc(&prev_trans->use_count);
2186			spin_unlock(&fs_info->trans_lock);
2187
2188			wait_for_commit(prev_trans);
2189			ret = READ_ONCE(prev_trans->aborted);
2190
2191			btrfs_put_transaction(prev_trans);
2192			if (ret)
2193				goto cleanup_transaction;
2194		} else {
2195			spin_unlock(&fs_info->trans_lock);
2196		}
2197	} else {
2198		spin_unlock(&fs_info->trans_lock);
2199		/*
2200		 * The previous transaction was aborted and was already removed
2201		 * from the list of transactions at fs_info->trans_list. So we
2202		 * abort to prevent writing a new superblock that reflects a
2203		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2204		 */
2205		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2206			ret = -EROFS;
2207			goto cleanup_transaction;
2208		}
2209	}
2210
2211	extwriter_counter_dec(cur_trans, trans->type);
2212
2213	ret = btrfs_start_delalloc_flush(trans);
2214	if (ret)
2215		goto cleanup_transaction;
2216
2217	ret = btrfs_run_delayed_items(trans);
2218	if (ret)
2219		goto cleanup_transaction;
2220
2221	wait_event(cur_trans->writer_wait,
2222		   extwriter_counter_read(cur_trans) == 0);
2223
2224	/* some pending stuffs might be added after the previous flush. */
2225	ret = btrfs_run_delayed_items(trans);
2226	if (ret)
2227		goto cleanup_transaction;
2228
2229	btrfs_wait_delalloc_flush(trans);
2230
2231	/*
2232	 * Wait for all ordered extents started by a fast fsync that joined this
2233	 * transaction. Otherwise if this transaction commits before the ordered
2234	 * extents complete we lose logged data after a power failure.
2235	 */
2236	wait_event(cur_trans->pending_wait,
2237		   atomic_read(&cur_trans->pending_ordered) == 0);
2238
2239	btrfs_scrub_pause(fs_info);
2240	/*
2241	 * Ok now we need to make sure to block out any other joins while we
2242	 * commit the transaction.  We could have started a join before setting
2243	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2244	 */
2245	spin_lock(&fs_info->trans_lock);
2246	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2247	spin_unlock(&fs_info->trans_lock);
2248	wait_event(cur_trans->writer_wait,
2249		   atomic_read(&cur_trans->num_writers) == 1);
2250
2251	if (TRANS_ABORTED(cur_trans)) {
2252		ret = cur_trans->aborted;
2253		goto scrub_continue;
2254	}
2255	/*
2256	 * the reloc mutex makes sure that we stop
2257	 * the balancing code from coming in and moving
2258	 * extents around in the middle of the commit
2259	 */
2260	mutex_lock(&fs_info->reloc_mutex);
2261
2262	/*
2263	 * We needn't worry about the delayed items because we will
2264	 * deal with them in create_pending_snapshot(), which is the
2265	 * core function of the snapshot creation.
2266	 */
2267	ret = create_pending_snapshots(trans);
2268	if (ret)
2269		goto unlock_reloc;
2270
2271	/*
2272	 * We insert the dir indexes of the snapshots and update the inode
2273	 * of the snapshots' parents after the snapshot creation, so there
2274	 * are some delayed items which are not dealt with. Now deal with
2275	 * them.
2276	 *
2277	 * We needn't worry that this operation will corrupt the snapshots,
2278	 * because all the tree which are snapshoted will be forced to COW
2279	 * the nodes and leaves.
2280	 */
2281	ret = btrfs_run_delayed_items(trans);
2282	if (ret)
2283		goto unlock_reloc;
2284
2285	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2286	if (ret)
2287		goto unlock_reloc;
2288
2289	/*
2290	 * make sure none of the code above managed to slip in a
2291	 * delayed item
2292	 */
2293	btrfs_assert_delayed_root_empty(fs_info);
2294
2295	WARN_ON(cur_trans != trans->transaction);
2296
2297	/* btrfs_commit_tree_roots is responsible for getting the
2298	 * various roots consistent with each other.  Every pointer
2299	 * in the tree of tree roots has to point to the most up to date
2300	 * root for every subvolume and other tree.  So, we have to keep
2301	 * the tree logging code from jumping in and changing any
2302	 * of the trees.
2303	 *
2304	 * At this point in the commit, there can't be any tree-log
2305	 * writers, but a little lower down we drop the trans mutex
2306	 * and let new people in.  By holding the tree_log_mutex
2307	 * from now until after the super is written, we avoid races
2308	 * with the tree-log code.
2309	 */
2310	mutex_lock(&fs_info->tree_log_mutex);
2311
2312	ret = commit_fs_roots(trans);
2313	if (ret)
2314		goto unlock_tree_log;
2315
2316	/*
2317	 * Since the transaction is done, we can apply the pending changes
2318	 * before the next transaction.
2319	 */
2320	btrfs_apply_pending_changes(fs_info);
2321
2322	/* commit_fs_roots gets rid of all the tree log roots, it is now
2323	 * safe to free the root of tree log roots
2324	 */
2325	btrfs_free_log_root_tree(trans, fs_info);
2326
2327	/*
2328	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2329	 * new delayed refs. Must handle them or qgroup can be wrong.
2330	 */
2331	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2332	if (ret)
2333		goto unlock_tree_log;
2334
2335	/*
2336	 * Since fs roots are all committed, we can get a quite accurate
2337	 * new_roots. So let's do quota accounting.
2338	 */
2339	ret = btrfs_qgroup_account_extents(trans);
2340	if (ret < 0)
2341		goto unlock_tree_log;
2342
2343	ret = commit_cowonly_roots(trans);
2344	if (ret)
2345		goto unlock_tree_log;
2346
2347	/*
2348	 * The tasks which save the space cache and inode cache may also
2349	 * update ->aborted, check it.
2350	 */
2351	if (TRANS_ABORTED(cur_trans)) {
2352		ret = cur_trans->aborted;
2353		goto unlock_tree_log;
2354	}
2355
2356	cur_trans = fs_info->running_transaction;
2357
2358	btrfs_set_root_node(&fs_info->tree_root->root_item,
2359			    fs_info->tree_root->node);
2360	list_add_tail(&fs_info->tree_root->dirty_list,
2361		      &cur_trans->switch_commits);
2362
2363	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2364			    fs_info->chunk_root->node);
2365	list_add_tail(&fs_info->chunk_root->dirty_list,
2366		      &cur_trans->switch_commits);
2367
2368	switch_commit_roots(trans);
2369
2370	ASSERT(list_empty(&cur_trans->dirty_bgs));
2371	ASSERT(list_empty(&cur_trans->io_bgs));
2372	update_super_roots(fs_info);
2373
2374	btrfs_set_super_log_root(fs_info->super_copy, 0);
2375	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2376	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2377	       sizeof(*fs_info->super_copy));
2378
2379	btrfs_commit_device_sizes(cur_trans);
2380
2381	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2382	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2383
2384	btrfs_trans_release_chunk_metadata(trans);
2385
2386	spin_lock(&fs_info->trans_lock);
2387	cur_trans->state = TRANS_STATE_UNBLOCKED;
2388	fs_info->running_transaction = NULL;
2389	spin_unlock(&fs_info->trans_lock);
2390	mutex_unlock(&fs_info->reloc_mutex);
2391
2392	wake_up(&fs_info->transaction_wait);
2393
2394	ret = btrfs_write_and_wait_transaction(trans);
2395	if (ret) {
2396		btrfs_handle_fs_error(fs_info, ret,
2397				      "Error while writing out transaction");
2398		/*
2399		 * reloc_mutex has been unlocked, tree_log_mutex is still held
2400		 * but we can't jump to unlock_tree_log causing double unlock
2401		 */
2402		mutex_unlock(&fs_info->tree_log_mutex);
2403		goto scrub_continue;
2404	}
2405
2406	ret = write_all_supers(fs_info, 0);
2407	/*
2408	 * the super is written, we can safely allow the tree-loggers
2409	 * to go about their business
2410	 */
2411	mutex_unlock(&fs_info->tree_log_mutex);
2412	if (ret)
2413		goto scrub_continue;
2414
2415	btrfs_finish_extent_commit(trans);
2416
2417	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2418		btrfs_clear_space_info_full(fs_info);
2419
2420	fs_info->last_trans_committed = cur_trans->transid;
2421	/*
2422	 * We needn't acquire the lock here because there is no other task
2423	 * which can change it.
2424	 */
2425	cur_trans->state = TRANS_STATE_COMPLETED;
2426	wake_up(&cur_trans->commit_wait);
2427
2428	spin_lock(&fs_info->trans_lock);
2429	list_del_init(&cur_trans->list);
2430	spin_unlock(&fs_info->trans_lock);
2431
2432	btrfs_put_transaction(cur_trans);
2433	btrfs_put_transaction(cur_trans);
2434
2435	if (trans->type & __TRANS_FREEZABLE)
2436		sb_end_intwrite(fs_info->sb);
2437
2438	trace_btrfs_transaction_commit(trans->root);
2439
2440	btrfs_scrub_continue(fs_info);
2441
2442	if (current->journal_info == trans)
2443		current->journal_info = NULL;
2444
2445	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2446
2447	return ret;
2448
2449unlock_tree_log:
2450	mutex_unlock(&fs_info->tree_log_mutex);
2451unlock_reloc:
2452	mutex_unlock(&fs_info->reloc_mutex);
2453scrub_continue:
2454	btrfs_scrub_continue(fs_info);
2455cleanup_transaction:
2456	btrfs_trans_release_metadata(trans);
2457	btrfs_cleanup_pending_block_groups(trans);
2458	btrfs_trans_release_chunk_metadata(trans);
2459	trans->block_rsv = NULL;
2460	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2461	if (current->journal_info == trans)
2462		current->journal_info = NULL;
2463	cleanup_transaction(trans, ret);
2464
2465	return ret;
2466}
2467
2468/*
2469 * return < 0 if error
2470 * 0 if there are no more dead_roots at the time of call
2471 * 1 there are more to be processed, call me again
2472 *
2473 * The return value indicates there are certainly more snapshots to delete, but
2474 * if there comes a new one during processing, it may return 0. We don't mind,
2475 * because btrfs_commit_super will poke cleaner thread and it will process it a
2476 * few seconds later.
2477 */
2478int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2479{
2480	int ret;
2481	struct btrfs_fs_info *fs_info = root->fs_info;
2482
2483	spin_lock(&fs_info->trans_lock);
2484	if (list_empty(&fs_info->dead_roots)) {
2485		spin_unlock(&fs_info->trans_lock);
2486		return 0;
2487	}
2488	root = list_first_entry(&fs_info->dead_roots,
2489			struct btrfs_root, root_list);
2490	list_del_init(&root->root_list);
2491	spin_unlock(&fs_info->trans_lock);
2492
2493	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2494
2495	btrfs_kill_all_delayed_nodes(root);
2496	if (root->ino_cache_inode) {
2497		iput(root->ino_cache_inode);
2498		root->ino_cache_inode = NULL;
2499	}
2500
2501	if (btrfs_header_backref_rev(root->node) <
2502			BTRFS_MIXED_BACKREF_REV)
2503		ret = btrfs_drop_snapshot(root, 0, 0);
2504	else
2505		ret = btrfs_drop_snapshot(root, 1, 0);
2506
2507	btrfs_put_root(root);
2508	return (ret < 0) ? 0 : 1;
2509}
2510
2511void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2512{
2513	unsigned long prev;
2514	unsigned long bit;
2515
2516	prev = xchg(&fs_info->pending_changes, 0);
2517	if (!prev)
2518		return;
2519
2520	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2521	if (prev & bit)
2522		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2523	prev &= ~bit;
2524
2525	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2526	if (prev & bit)
2527		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2528	prev &= ~bit;
2529
2530	bit = 1 << BTRFS_PENDING_COMMIT;
2531	if (prev & bit)
2532		btrfs_debug(fs_info, "pending commit done");
2533	prev &= ~bit;
2534
2535	if (prev)
2536		btrfs_warn(fs_info,
2537			"unknown pending changes left 0x%lx, ignoring", prev);
2538}
2539