1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6#include <linux/blkdev.h> 7#include <linux/module.h> 8#include <linux/fs.h> 9#include <linux/pagemap.h> 10#include <linux/highmem.h> 11#include <linux/time.h> 12#include <linux/init.h> 13#include <linux/seq_file.h> 14#include <linux/string.h> 15#include <linux/backing-dev.h> 16#include <linux/mount.h> 17#include <linux/writeback.h> 18#include <linux/statfs.h> 19#include <linux/compat.h> 20#include <linux/parser.h> 21#include <linux/ctype.h> 22#include <linux/namei.h> 23#include <linux/miscdevice.h> 24#include <linux/magic.h> 25#include <linux/slab.h> 26#include <linux/cleancache.h> 27#include <linux/ratelimit.h> 28#include <linux/crc32c.h> 29#include <linux/btrfs.h> 30#include "delayed-inode.h" 31#include "ctree.h" 32#include "disk-io.h" 33#include "transaction.h" 34#include "btrfs_inode.h" 35#include "print-tree.h" 36#include "props.h" 37#include "xattr.h" 38#include "volumes.h" 39#include "export.h" 40#include "compression.h" 41#include "rcu-string.h" 42#include "dev-replace.h" 43#include "free-space-cache.h" 44#include "backref.h" 45#include "space-info.h" 46#include "sysfs.h" 47#include "tests/btrfs-tests.h" 48#include "block-group.h" 49#include "discard.h" 50 51#include "qgroup.h" 52#define CREATE_TRACE_POINTS 53#include <trace/events/btrfs.h> 54 55static const struct super_operations btrfs_super_ops; 56 57/* 58 * Types for mounting the default subvolume and a subvolume explicitly 59 * requested by subvol=/path. That way the callchain is straightforward and we 60 * don't have to play tricks with the mount options and recursive calls to 61 * btrfs_mount. 62 * 63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 64 */ 65static struct file_system_type btrfs_fs_type; 66static struct file_system_type btrfs_root_fs_type; 67 68static int btrfs_remount(struct super_block *sb, int *flags, char *data); 69 70/* 71 * Generally the error codes correspond to their respective errors, but there 72 * are a few special cases. 73 * 74 * EUCLEAN: Any sort of corruption that we encounter. The tree-checker for 75 * instance will return EUCLEAN if any of the blocks are corrupted in 76 * a way that is problematic. We want to reserve EUCLEAN for these 77 * sort of corruptions. 78 * 79 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we 80 * need to use EROFS for this case. We will have no idea of the 81 * original failure, that will have been reported at the time we tripped 82 * over the error. Each subsequent error that doesn't have any context 83 * of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR. 84 */ 85const char * __attribute_const__ btrfs_decode_error(int errno) 86{ 87 char *errstr = "unknown"; 88 89 switch (errno) { 90 case -ENOENT: /* -2 */ 91 errstr = "No such entry"; 92 break; 93 case -EIO: /* -5 */ 94 errstr = "IO failure"; 95 break; 96 case -ENOMEM: /* -12*/ 97 errstr = "Out of memory"; 98 break; 99 case -EEXIST: /* -17 */ 100 errstr = "Object already exists"; 101 break; 102 case -ENOSPC: /* -28 */ 103 errstr = "No space left"; 104 break; 105 case -EROFS: /* -30 */ 106 errstr = "Readonly filesystem"; 107 break; 108 case -EOPNOTSUPP: /* -95 */ 109 errstr = "Operation not supported"; 110 break; 111 case -EUCLEAN: /* -117 */ 112 errstr = "Filesystem corrupted"; 113 break; 114 case -EDQUOT: /* -122 */ 115 errstr = "Quota exceeded"; 116 break; 117 } 118 119 return errstr; 120} 121 122/* 123 * __btrfs_handle_fs_error decodes expected errors from the caller and 124 * invokes the appropriate error response. 125 */ 126__cold 127void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 128 unsigned int line, int errno, const char *fmt, ...) 129{ 130 struct super_block *sb = fs_info->sb; 131#ifdef CONFIG_PRINTK 132 const char *errstr; 133#endif 134 135 /* 136 * Special case: if the error is EROFS, and we're already 137 * under SB_RDONLY, then it is safe here. 138 */ 139 if (errno == -EROFS && sb_rdonly(sb)) 140 return; 141 142#ifdef CONFIG_PRINTK 143 errstr = btrfs_decode_error(errno); 144 if (fmt) { 145 struct va_format vaf; 146 va_list args; 147 148 va_start(args, fmt); 149 vaf.fmt = fmt; 150 vaf.va = &args; 151 152 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 153 sb->s_id, function, line, errno, errstr, &vaf); 154 va_end(args); 155 } else { 156 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 157 sb->s_id, function, line, errno, errstr); 158 } 159#endif 160 161 /* 162 * Today we only save the error info to memory. Long term we'll 163 * also send it down to the disk 164 */ 165 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 166 167 /* Don't go through full error handling during mount */ 168 if (!(sb->s_flags & SB_BORN)) 169 return; 170 171 if (sb_rdonly(sb)) 172 return; 173 174 btrfs_discard_stop(fs_info); 175 176 /* btrfs handle error by forcing the filesystem readonly */ 177 sb->s_flags |= SB_RDONLY; 178 btrfs_info(fs_info, "forced readonly"); 179 /* 180 * Note that a running device replace operation is not canceled here 181 * although there is no way to update the progress. It would add the 182 * risk of a deadlock, therefore the canceling is omitted. The only 183 * penalty is that some I/O remains active until the procedure 184 * completes. The next time when the filesystem is mounted writable 185 * again, the device replace operation continues. 186 */ 187} 188 189#ifdef CONFIG_PRINTK 190static const char * const logtypes[] = { 191 "emergency", 192 "alert", 193 "critical", 194 "error", 195 "warning", 196 "notice", 197 "info", 198 "debug", 199}; 200 201 202/* 203 * Use one ratelimit state per log level so that a flood of less important 204 * messages doesn't cause more important ones to be dropped. 205 */ 206static struct ratelimit_state printk_limits[] = { 207 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 208 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 209 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 210 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 211 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 212 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 213 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 214 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 215}; 216 217void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 218{ 219 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 220 struct va_format vaf; 221 va_list args; 222 int kern_level; 223 const char *type = logtypes[4]; 224 struct ratelimit_state *ratelimit = &printk_limits[4]; 225 226 va_start(args, fmt); 227 228 while ((kern_level = printk_get_level(fmt)) != 0) { 229 size_t size = printk_skip_level(fmt) - fmt; 230 231 if (kern_level >= '0' && kern_level <= '7') { 232 memcpy(lvl, fmt, size); 233 lvl[size] = '\0'; 234 type = logtypes[kern_level - '0']; 235 ratelimit = &printk_limits[kern_level - '0']; 236 } 237 fmt += size; 238 } 239 240 vaf.fmt = fmt; 241 vaf.va = &args; 242 243 if (__ratelimit(ratelimit)) 244 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 245 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf); 246 247 va_end(args); 248} 249#endif 250 251/* 252 * We only mark the transaction aborted and then set the file system read-only. 253 * This will prevent new transactions from starting or trying to join this 254 * one. 255 * 256 * This means that error recovery at the call site is limited to freeing 257 * any local memory allocations and passing the error code up without 258 * further cleanup. The transaction should complete as it normally would 259 * in the call path but will return -EIO. 260 * 261 * We'll complete the cleanup in btrfs_end_transaction and 262 * btrfs_commit_transaction. 263 */ 264__cold 265void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 266 const char *function, 267 unsigned int line, int errno) 268{ 269 struct btrfs_fs_info *fs_info = trans->fs_info; 270 271 WRITE_ONCE(trans->aborted, errno); 272 /* Nothing used. The other threads that have joined this 273 * transaction may be able to continue. */ 274 if (!trans->dirty && list_empty(&trans->new_bgs)) { 275 const char *errstr; 276 277 errstr = btrfs_decode_error(errno); 278 btrfs_warn(fs_info, 279 "%s:%d: Aborting unused transaction(%s).", 280 function, line, errstr); 281 return; 282 } 283 WRITE_ONCE(trans->transaction->aborted, errno); 284 /* Wake up anybody who may be waiting on this transaction */ 285 wake_up(&fs_info->transaction_wait); 286 wake_up(&fs_info->transaction_blocked_wait); 287 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 288} 289/* 290 * __btrfs_panic decodes unexpected, fatal errors from the caller, 291 * issues an alert, and either panics or BUGs, depending on mount options. 292 */ 293__cold 294void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 295 unsigned int line, int errno, const char *fmt, ...) 296{ 297 char *s_id = "<unknown>"; 298 const char *errstr; 299 struct va_format vaf = { .fmt = fmt }; 300 va_list args; 301 302 if (fs_info) 303 s_id = fs_info->sb->s_id; 304 305 va_start(args, fmt); 306 vaf.va = &args; 307 308 errstr = btrfs_decode_error(errno); 309 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 310 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 311 s_id, function, line, &vaf, errno, errstr); 312 313 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 314 function, line, &vaf, errno, errstr); 315 va_end(args); 316 /* Caller calls BUG() */ 317} 318 319static void btrfs_put_super(struct super_block *sb) 320{ 321 close_ctree(btrfs_sb(sb)); 322} 323 324enum { 325 Opt_acl, Opt_noacl, 326 Opt_clear_cache, 327 Opt_commit_interval, 328 Opt_compress, 329 Opt_compress_force, 330 Opt_compress_force_type, 331 Opt_compress_type, 332 Opt_degraded, 333 Opt_device, 334 Opt_fatal_errors, 335 Opt_flushoncommit, Opt_noflushoncommit, 336 Opt_inode_cache, Opt_noinode_cache, 337 Opt_max_inline, 338 Opt_barrier, Opt_nobarrier, 339 Opt_datacow, Opt_nodatacow, 340 Opt_datasum, Opt_nodatasum, 341 Opt_defrag, Opt_nodefrag, 342 Opt_discard, Opt_nodiscard, 343 Opt_discard_mode, 344 Opt_norecovery, 345 Opt_ratio, 346 Opt_rescan_uuid_tree, 347 Opt_skip_balance, 348 Opt_space_cache, Opt_no_space_cache, 349 Opt_space_cache_version, 350 Opt_ssd, Opt_nossd, 351 Opt_ssd_spread, Opt_nossd_spread, 352 Opt_subvol, 353 Opt_subvol_empty, 354 Opt_subvolid, 355 Opt_thread_pool, 356 Opt_treelog, Opt_notreelog, 357 Opt_user_subvol_rm_allowed, 358 359 /* Rescue options */ 360 Opt_rescue, 361 Opt_usebackuproot, 362 Opt_nologreplay, 363 364 /* Deprecated options */ 365 Opt_recovery, 366 367 /* Debugging options */ 368 Opt_check_integrity, 369 Opt_check_integrity_including_extent_data, 370 Opt_check_integrity_print_mask, 371 Opt_enospc_debug, Opt_noenospc_debug, 372#ifdef CONFIG_BTRFS_DEBUG 373 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 374#endif 375#ifdef CONFIG_BTRFS_FS_REF_VERIFY 376 Opt_ref_verify, 377#endif 378 Opt_err, 379}; 380 381static const match_table_t tokens = { 382 {Opt_acl, "acl"}, 383 {Opt_noacl, "noacl"}, 384 {Opt_clear_cache, "clear_cache"}, 385 {Opt_commit_interval, "commit=%u"}, 386 {Opt_compress, "compress"}, 387 {Opt_compress_type, "compress=%s"}, 388 {Opt_compress_force, "compress-force"}, 389 {Opt_compress_force_type, "compress-force=%s"}, 390 {Opt_degraded, "degraded"}, 391 {Opt_device, "device=%s"}, 392 {Opt_fatal_errors, "fatal_errors=%s"}, 393 {Opt_flushoncommit, "flushoncommit"}, 394 {Opt_noflushoncommit, "noflushoncommit"}, 395 {Opt_inode_cache, "inode_cache"}, 396 {Opt_noinode_cache, "noinode_cache"}, 397 {Opt_max_inline, "max_inline=%s"}, 398 {Opt_barrier, "barrier"}, 399 {Opt_nobarrier, "nobarrier"}, 400 {Opt_datacow, "datacow"}, 401 {Opt_nodatacow, "nodatacow"}, 402 {Opt_datasum, "datasum"}, 403 {Opt_nodatasum, "nodatasum"}, 404 {Opt_defrag, "autodefrag"}, 405 {Opt_nodefrag, "noautodefrag"}, 406 {Opt_discard, "discard"}, 407 {Opt_discard_mode, "discard=%s"}, 408 {Opt_nodiscard, "nodiscard"}, 409 {Opt_norecovery, "norecovery"}, 410 {Opt_ratio, "metadata_ratio=%u"}, 411 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 412 {Opt_skip_balance, "skip_balance"}, 413 {Opt_space_cache, "space_cache"}, 414 {Opt_no_space_cache, "nospace_cache"}, 415 {Opt_space_cache_version, "space_cache=%s"}, 416 {Opt_ssd, "ssd"}, 417 {Opt_nossd, "nossd"}, 418 {Opt_ssd_spread, "ssd_spread"}, 419 {Opt_nossd_spread, "nossd_spread"}, 420 {Opt_subvol, "subvol=%s"}, 421 {Opt_subvol_empty, "subvol="}, 422 {Opt_subvolid, "subvolid=%s"}, 423 {Opt_thread_pool, "thread_pool=%u"}, 424 {Opt_treelog, "treelog"}, 425 {Opt_notreelog, "notreelog"}, 426 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 427 428 /* Rescue options */ 429 {Opt_rescue, "rescue=%s"}, 430 /* Deprecated, with alias rescue=nologreplay */ 431 {Opt_nologreplay, "nologreplay"}, 432 /* Deprecated, with alias rescue=usebackuproot */ 433 {Opt_usebackuproot, "usebackuproot"}, 434 435 /* Deprecated options */ 436 {Opt_recovery, "recovery"}, 437 438 /* Debugging options */ 439 {Opt_check_integrity, "check_int"}, 440 {Opt_check_integrity_including_extent_data, "check_int_data"}, 441 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 442 {Opt_enospc_debug, "enospc_debug"}, 443 {Opt_noenospc_debug, "noenospc_debug"}, 444#ifdef CONFIG_BTRFS_DEBUG 445 {Opt_fragment_data, "fragment=data"}, 446 {Opt_fragment_metadata, "fragment=metadata"}, 447 {Opt_fragment_all, "fragment=all"}, 448#endif 449#ifdef CONFIG_BTRFS_FS_REF_VERIFY 450 {Opt_ref_verify, "ref_verify"}, 451#endif 452 {Opt_err, NULL}, 453}; 454 455static const match_table_t rescue_tokens = { 456 {Opt_usebackuproot, "usebackuproot"}, 457 {Opt_nologreplay, "nologreplay"}, 458 {Opt_err, NULL}, 459}; 460 461static int parse_rescue_options(struct btrfs_fs_info *info, const char *options) 462{ 463 char *opts; 464 char *orig; 465 char *p; 466 substring_t args[MAX_OPT_ARGS]; 467 int ret = 0; 468 469 opts = kstrdup(options, GFP_KERNEL); 470 if (!opts) 471 return -ENOMEM; 472 orig = opts; 473 474 while ((p = strsep(&opts, ":")) != NULL) { 475 int token; 476 477 if (!*p) 478 continue; 479 token = match_token(p, rescue_tokens, args); 480 switch (token){ 481 case Opt_usebackuproot: 482 btrfs_info(info, 483 "trying to use backup root at mount time"); 484 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 485 break; 486 case Opt_nologreplay: 487 btrfs_set_and_info(info, NOLOGREPLAY, 488 "disabling log replay at mount time"); 489 break; 490 case Opt_err: 491 btrfs_info(info, "unrecognized rescue option '%s'", p); 492 ret = -EINVAL; 493 goto out; 494 default: 495 break; 496 } 497 498 } 499out: 500 kfree(orig); 501 return ret; 502} 503 504/* 505 * Regular mount options parser. Everything that is needed only when 506 * reading in a new superblock is parsed here. 507 * XXX JDM: This needs to be cleaned up for remount. 508 */ 509int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 510 unsigned long new_flags) 511{ 512 substring_t args[MAX_OPT_ARGS]; 513 char *p, *num; 514 u64 cache_gen; 515 int intarg; 516 int ret = 0; 517 char *compress_type; 518 bool compress_force = false; 519 enum btrfs_compression_type saved_compress_type; 520 int saved_compress_level; 521 bool saved_compress_force; 522 int no_compress = 0; 523 524 cache_gen = btrfs_super_cache_generation(info->super_copy); 525 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 526 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 527 else if (cache_gen) 528 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 529 530 /* 531 * Even the options are empty, we still need to do extra check 532 * against new flags 533 */ 534 if (!options) 535 goto check; 536 537 while ((p = strsep(&options, ",")) != NULL) { 538 int token; 539 if (!*p) 540 continue; 541 542 token = match_token(p, tokens, args); 543 switch (token) { 544 case Opt_degraded: 545 btrfs_info(info, "allowing degraded mounts"); 546 btrfs_set_opt(info->mount_opt, DEGRADED); 547 break; 548 case Opt_subvol: 549 case Opt_subvol_empty: 550 case Opt_subvolid: 551 case Opt_device: 552 /* 553 * These are parsed by btrfs_parse_subvol_options or 554 * btrfs_parse_device_options and can be ignored here. 555 */ 556 break; 557 case Opt_nodatasum: 558 btrfs_set_and_info(info, NODATASUM, 559 "setting nodatasum"); 560 break; 561 case Opt_datasum: 562 if (btrfs_test_opt(info, NODATASUM)) { 563 if (btrfs_test_opt(info, NODATACOW)) 564 btrfs_info(info, 565 "setting datasum, datacow enabled"); 566 else 567 btrfs_info(info, "setting datasum"); 568 } 569 btrfs_clear_opt(info->mount_opt, NODATACOW); 570 btrfs_clear_opt(info->mount_opt, NODATASUM); 571 break; 572 case Opt_nodatacow: 573 if (!btrfs_test_opt(info, NODATACOW)) { 574 if (!btrfs_test_opt(info, COMPRESS) || 575 !btrfs_test_opt(info, FORCE_COMPRESS)) { 576 btrfs_info(info, 577 "setting nodatacow, compression disabled"); 578 } else { 579 btrfs_info(info, "setting nodatacow"); 580 } 581 } 582 btrfs_clear_opt(info->mount_opt, COMPRESS); 583 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 584 btrfs_set_opt(info->mount_opt, NODATACOW); 585 btrfs_set_opt(info->mount_opt, NODATASUM); 586 break; 587 case Opt_datacow: 588 btrfs_clear_and_info(info, NODATACOW, 589 "setting datacow"); 590 break; 591 case Opt_compress_force: 592 case Opt_compress_force_type: 593 compress_force = true; 594 fallthrough; 595 case Opt_compress: 596 case Opt_compress_type: 597 saved_compress_type = btrfs_test_opt(info, 598 COMPRESS) ? 599 info->compress_type : BTRFS_COMPRESS_NONE; 600 saved_compress_force = 601 btrfs_test_opt(info, FORCE_COMPRESS); 602 saved_compress_level = info->compress_level; 603 if (token == Opt_compress || 604 token == Opt_compress_force || 605 strncmp(args[0].from, "zlib", 4) == 0) { 606 compress_type = "zlib"; 607 608 info->compress_type = BTRFS_COMPRESS_ZLIB; 609 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 610 /* 611 * args[0] contains uninitialized data since 612 * for these tokens we don't expect any 613 * parameter. 614 */ 615 if (token != Opt_compress && 616 token != Opt_compress_force) 617 info->compress_level = 618 btrfs_compress_str2level( 619 BTRFS_COMPRESS_ZLIB, 620 args[0].from + 4); 621 btrfs_set_opt(info->mount_opt, COMPRESS); 622 btrfs_clear_opt(info->mount_opt, NODATACOW); 623 btrfs_clear_opt(info->mount_opt, NODATASUM); 624 no_compress = 0; 625 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 626 compress_type = "lzo"; 627 info->compress_type = BTRFS_COMPRESS_LZO; 628 info->compress_level = 0; 629 btrfs_set_opt(info->mount_opt, COMPRESS); 630 btrfs_clear_opt(info->mount_opt, NODATACOW); 631 btrfs_clear_opt(info->mount_opt, NODATASUM); 632 btrfs_set_fs_incompat(info, COMPRESS_LZO); 633 no_compress = 0; 634 } else if (strncmp(args[0].from, "zstd", 4) == 0) { 635 compress_type = "zstd"; 636 info->compress_type = BTRFS_COMPRESS_ZSTD; 637 info->compress_level = 638 btrfs_compress_str2level( 639 BTRFS_COMPRESS_ZSTD, 640 args[0].from + 4); 641 btrfs_set_opt(info->mount_opt, COMPRESS); 642 btrfs_clear_opt(info->mount_opt, NODATACOW); 643 btrfs_clear_opt(info->mount_opt, NODATASUM); 644 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 645 no_compress = 0; 646 } else if (strncmp(args[0].from, "no", 2) == 0) { 647 compress_type = "no"; 648 info->compress_level = 0; 649 info->compress_type = 0; 650 btrfs_clear_opt(info->mount_opt, COMPRESS); 651 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 652 compress_force = false; 653 no_compress++; 654 } else { 655 btrfs_err(info, "unrecognized compression value %s", 656 args[0].from); 657 ret = -EINVAL; 658 goto out; 659 } 660 661 if (compress_force) { 662 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 663 } else { 664 /* 665 * If we remount from compress-force=xxx to 666 * compress=xxx, we need clear FORCE_COMPRESS 667 * flag, otherwise, there is no way for users 668 * to disable forcible compression separately. 669 */ 670 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 671 } 672 if (no_compress == 1) { 673 btrfs_info(info, "use no compression"); 674 } else if ((info->compress_type != saved_compress_type) || 675 (compress_force != saved_compress_force) || 676 (info->compress_level != saved_compress_level)) { 677 btrfs_info(info, "%s %s compression, level %d", 678 (compress_force) ? "force" : "use", 679 compress_type, info->compress_level); 680 } 681 compress_force = false; 682 break; 683 case Opt_ssd: 684 btrfs_set_and_info(info, SSD, 685 "enabling ssd optimizations"); 686 btrfs_clear_opt(info->mount_opt, NOSSD); 687 break; 688 case Opt_ssd_spread: 689 btrfs_set_and_info(info, SSD, 690 "enabling ssd optimizations"); 691 btrfs_set_and_info(info, SSD_SPREAD, 692 "using spread ssd allocation scheme"); 693 btrfs_clear_opt(info->mount_opt, NOSSD); 694 break; 695 case Opt_nossd: 696 btrfs_set_opt(info->mount_opt, NOSSD); 697 btrfs_clear_and_info(info, SSD, 698 "not using ssd optimizations"); 699 fallthrough; 700 case Opt_nossd_spread: 701 btrfs_clear_and_info(info, SSD_SPREAD, 702 "not using spread ssd allocation scheme"); 703 break; 704 case Opt_barrier: 705 btrfs_clear_and_info(info, NOBARRIER, 706 "turning on barriers"); 707 break; 708 case Opt_nobarrier: 709 btrfs_set_and_info(info, NOBARRIER, 710 "turning off barriers"); 711 break; 712 case Opt_thread_pool: 713 ret = match_int(&args[0], &intarg); 714 if (ret) { 715 btrfs_err(info, "unrecognized thread_pool value %s", 716 args[0].from); 717 goto out; 718 } else if (intarg == 0) { 719 btrfs_err(info, "invalid value 0 for thread_pool"); 720 ret = -EINVAL; 721 goto out; 722 } 723 info->thread_pool_size = intarg; 724 break; 725 case Opt_max_inline: 726 num = match_strdup(&args[0]); 727 if (num) { 728 info->max_inline = memparse(num, NULL); 729 kfree(num); 730 731 if (info->max_inline) { 732 info->max_inline = min_t(u64, 733 info->max_inline, 734 info->sectorsize); 735 } 736 btrfs_info(info, "max_inline at %llu", 737 info->max_inline); 738 } else { 739 ret = -ENOMEM; 740 goto out; 741 } 742 break; 743 case Opt_acl: 744#ifdef CONFIG_BTRFS_FS_POSIX_ACL 745 info->sb->s_flags |= SB_POSIXACL; 746 break; 747#else 748 btrfs_err(info, "support for ACL not compiled in!"); 749 ret = -EINVAL; 750 goto out; 751#endif 752 case Opt_noacl: 753 info->sb->s_flags &= ~SB_POSIXACL; 754 break; 755 case Opt_notreelog: 756 btrfs_set_and_info(info, NOTREELOG, 757 "disabling tree log"); 758 break; 759 case Opt_treelog: 760 btrfs_clear_and_info(info, NOTREELOG, 761 "enabling tree log"); 762 break; 763 case Opt_norecovery: 764 case Opt_nologreplay: 765 btrfs_warn(info, 766 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 767 btrfs_set_and_info(info, NOLOGREPLAY, 768 "disabling log replay at mount time"); 769 break; 770 case Opt_flushoncommit: 771 btrfs_set_and_info(info, FLUSHONCOMMIT, 772 "turning on flush-on-commit"); 773 break; 774 case Opt_noflushoncommit: 775 btrfs_clear_and_info(info, FLUSHONCOMMIT, 776 "turning off flush-on-commit"); 777 break; 778 case Opt_ratio: 779 ret = match_int(&args[0], &intarg); 780 if (ret) { 781 btrfs_err(info, "unrecognized metadata_ratio value %s", 782 args[0].from); 783 goto out; 784 } 785 info->metadata_ratio = intarg; 786 btrfs_info(info, "metadata ratio %u", 787 info->metadata_ratio); 788 break; 789 case Opt_discard: 790 case Opt_discard_mode: 791 if (token == Opt_discard || 792 strcmp(args[0].from, "sync") == 0) { 793 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC); 794 btrfs_set_and_info(info, DISCARD_SYNC, 795 "turning on sync discard"); 796 } else if (strcmp(args[0].from, "async") == 0) { 797 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC); 798 btrfs_set_and_info(info, DISCARD_ASYNC, 799 "turning on async discard"); 800 } else { 801 btrfs_err(info, "unrecognized discard mode value %s", 802 args[0].from); 803 ret = -EINVAL; 804 goto out; 805 } 806 break; 807 case Opt_nodiscard: 808 btrfs_clear_and_info(info, DISCARD_SYNC, 809 "turning off discard"); 810 btrfs_clear_and_info(info, DISCARD_ASYNC, 811 "turning off async discard"); 812 break; 813 case Opt_space_cache: 814 case Opt_space_cache_version: 815 if (token == Opt_space_cache || 816 strcmp(args[0].from, "v1") == 0) { 817 btrfs_clear_opt(info->mount_opt, 818 FREE_SPACE_TREE); 819 btrfs_set_and_info(info, SPACE_CACHE, 820 "enabling disk space caching"); 821 } else if (strcmp(args[0].from, "v2") == 0) { 822 btrfs_clear_opt(info->mount_opt, 823 SPACE_CACHE); 824 btrfs_set_and_info(info, FREE_SPACE_TREE, 825 "enabling free space tree"); 826 } else { 827 btrfs_err(info, "unrecognized space_cache value %s", 828 args[0].from); 829 ret = -EINVAL; 830 goto out; 831 } 832 break; 833 case Opt_rescan_uuid_tree: 834 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 835 break; 836 case Opt_no_space_cache: 837 if (btrfs_test_opt(info, SPACE_CACHE)) { 838 btrfs_clear_and_info(info, SPACE_CACHE, 839 "disabling disk space caching"); 840 } 841 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 842 btrfs_clear_and_info(info, FREE_SPACE_TREE, 843 "disabling free space tree"); 844 } 845 break; 846 case Opt_inode_cache: 847 btrfs_warn(info, 848 "the 'inode_cache' option is deprecated and will have no effect from 5.11"); 849 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 850 "enabling inode map caching"); 851 break; 852 case Opt_noinode_cache: 853 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 854 "disabling inode map caching"); 855 break; 856 case Opt_clear_cache: 857 btrfs_set_and_info(info, CLEAR_CACHE, 858 "force clearing of disk cache"); 859 break; 860 case Opt_user_subvol_rm_allowed: 861 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 862 break; 863 case Opt_enospc_debug: 864 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 865 break; 866 case Opt_noenospc_debug: 867 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 868 break; 869 case Opt_defrag: 870 btrfs_set_and_info(info, AUTO_DEFRAG, 871 "enabling auto defrag"); 872 break; 873 case Opt_nodefrag: 874 btrfs_clear_and_info(info, AUTO_DEFRAG, 875 "disabling auto defrag"); 876 break; 877 case Opt_recovery: 878 case Opt_usebackuproot: 879 btrfs_warn(info, 880 "'%s' is deprecated, use 'rescue=usebackuproot' instead", 881 token == Opt_recovery ? "recovery" : 882 "usebackuproot"); 883 btrfs_info(info, 884 "trying to use backup root at mount time"); 885 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 886 break; 887 case Opt_skip_balance: 888 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 889 break; 890#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 891 case Opt_check_integrity_including_extent_data: 892 btrfs_info(info, 893 "enabling check integrity including extent data"); 894 btrfs_set_opt(info->mount_opt, 895 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 896 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 897 break; 898 case Opt_check_integrity: 899 btrfs_info(info, "enabling check integrity"); 900 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 901 break; 902 case Opt_check_integrity_print_mask: 903 ret = match_int(&args[0], &intarg); 904 if (ret) { 905 btrfs_err(info, 906 "unrecognized check_integrity_print_mask value %s", 907 args[0].from); 908 goto out; 909 } 910 info->check_integrity_print_mask = intarg; 911 btrfs_info(info, "check_integrity_print_mask 0x%x", 912 info->check_integrity_print_mask); 913 break; 914#else 915 case Opt_check_integrity_including_extent_data: 916 case Opt_check_integrity: 917 case Opt_check_integrity_print_mask: 918 btrfs_err(info, 919 "support for check_integrity* not compiled in!"); 920 ret = -EINVAL; 921 goto out; 922#endif 923 case Opt_fatal_errors: 924 if (strcmp(args[0].from, "panic") == 0) { 925 btrfs_set_opt(info->mount_opt, 926 PANIC_ON_FATAL_ERROR); 927 } else if (strcmp(args[0].from, "bug") == 0) { 928 btrfs_clear_opt(info->mount_opt, 929 PANIC_ON_FATAL_ERROR); 930 } else { 931 btrfs_err(info, "unrecognized fatal_errors value %s", 932 args[0].from); 933 ret = -EINVAL; 934 goto out; 935 } 936 break; 937 case Opt_commit_interval: 938 intarg = 0; 939 ret = match_int(&args[0], &intarg); 940 if (ret) { 941 btrfs_err(info, "unrecognized commit_interval value %s", 942 args[0].from); 943 ret = -EINVAL; 944 goto out; 945 } 946 if (intarg == 0) { 947 btrfs_info(info, 948 "using default commit interval %us", 949 BTRFS_DEFAULT_COMMIT_INTERVAL); 950 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 951 } else if (intarg > 300) { 952 btrfs_warn(info, "excessive commit interval %d", 953 intarg); 954 } 955 info->commit_interval = intarg; 956 break; 957 case Opt_rescue: 958 ret = parse_rescue_options(info, args[0].from); 959 if (ret < 0) { 960 btrfs_err(info, "unrecognized rescue value %s", 961 args[0].from); 962 goto out; 963 } 964 break; 965#ifdef CONFIG_BTRFS_DEBUG 966 case Opt_fragment_all: 967 btrfs_info(info, "fragmenting all space"); 968 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 969 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 970 break; 971 case Opt_fragment_metadata: 972 btrfs_info(info, "fragmenting metadata"); 973 btrfs_set_opt(info->mount_opt, 974 FRAGMENT_METADATA); 975 break; 976 case Opt_fragment_data: 977 btrfs_info(info, "fragmenting data"); 978 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 979 break; 980#endif 981#ifdef CONFIG_BTRFS_FS_REF_VERIFY 982 case Opt_ref_verify: 983 btrfs_info(info, "doing ref verification"); 984 btrfs_set_opt(info->mount_opt, REF_VERIFY); 985 break; 986#endif 987 case Opt_err: 988 btrfs_err(info, "unrecognized mount option '%s'", p); 989 ret = -EINVAL; 990 goto out; 991 default: 992 break; 993 } 994 } 995check: 996 /* 997 * Extra check for current option against current flag 998 */ 999 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) { 1000 btrfs_err(info, 1001 "nologreplay must be used with ro mount option"); 1002 ret = -EINVAL; 1003 } 1004out: 1005 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 1006 !btrfs_test_opt(info, FREE_SPACE_TREE) && 1007 !btrfs_test_opt(info, CLEAR_CACHE)) { 1008 btrfs_err(info, "cannot disable free space tree"); 1009 ret = -EINVAL; 1010 1011 } 1012 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 1013 btrfs_info(info, "disk space caching is enabled"); 1014 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 1015 btrfs_info(info, "using free space tree"); 1016 return ret; 1017} 1018 1019/* 1020 * Parse mount options that are required early in the mount process. 1021 * 1022 * All other options will be parsed on much later in the mount process and 1023 * only when we need to allocate a new super block. 1024 */ 1025static int btrfs_parse_device_options(const char *options, fmode_t flags, 1026 void *holder) 1027{ 1028 substring_t args[MAX_OPT_ARGS]; 1029 char *device_name, *opts, *orig, *p; 1030 struct btrfs_device *device = NULL; 1031 int error = 0; 1032 1033 lockdep_assert_held(&uuid_mutex); 1034 1035 if (!options) 1036 return 0; 1037 1038 /* 1039 * strsep changes the string, duplicate it because btrfs_parse_options 1040 * gets called later 1041 */ 1042 opts = kstrdup(options, GFP_KERNEL); 1043 if (!opts) 1044 return -ENOMEM; 1045 orig = opts; 1046 1047 while ((p = strsep(&opts, ",")) != NULL) { 1048 int token; 1049 1050 if (!*p) 1051 continue; 1052 1053 token = match_token(p, tokens, args); 1054 if (token == Opt_device) { 1055 device_name = match_strdup(&args[0]); 1056 if (!device_name) { 1057 error = -ENOMEM; 1058 goto out; 1059 } 1060 device = btrfs_scan_one_device(device_name, flags, 1061 holder); 1062 kfree(device_name); 1063 if (IS_ERR(device)) { 1064 error = PTR_ERR(device); 1065 goto out; 1066 } 1067 } 1068 } 1069 1070out: 1071 kfree(orig); 1072 return error; 1073} 1074 1075/* 1076 * Parse mount options that are related to subvolume id 1077 * 1078 * The value is later passed to mount_subvol() 1079 */ 1080static int btrfs_parse_subvol_options(const char *options, char **subvol_name, 1081 u64 *subvol_objectid) 1082{ 1083 substring_t args[MAX_OPT_ARGS]; 1084 char *opts, *orig, *p; 1085 int error = 0; 1086 u64 subvolid; 1087 1088 if (!options) 1089 return 0; 1090 1091 /* 1092 * strsep changes the string, duplicate it because 1093 * btrfs_parse_device_options gets called later 1094 */ 1095 opts = kstrdup(options, GFP_KERNEL); 1096 if (!opts) 1097 return -ENOMEM; 1098 orig = opts; 1099 1100 while ((p = strsep(&opts, ",")) != NULL) { 1101 int token; 1102 if (!*p) 1103 continue; 1104 1105 token = match_token(p, tokens, args); 1106 switch (token) { 1107 case Opt_subvol: 1108 kfree(*subvol_name); 1109 *subvol_name = match_strdup(&args[0]); 1110 if (!*subvol_name) { 1111 error = -ENOMEM; 1112 goto out; 1113 } 1114 break; 1115 case Opt_subvolid: 1116 error = match_u64(&args[0], &subvolid); 1117 if (error) 1118 goto out; 1119 1120 /* we want the original fs_tree */ 1121 if (subvolid == 0) 1122 subvolid = BTRFS_FS_TREE_OBJECTID; 1123 1124 *subvol_objectid = subvolid; 1125 break; 1126 default: 1127 break; 1128 } 1129 } 1130 1131out: 1132 kfree(orig); 1133 return error; 1134} 1135 1136char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 1137 u64 subvol_objectid) 1138{ 1139 struct btrfs_root *root = fs_info->tree_root; 1140 struct btrfs_root *fs_root = NULL; 1141 struct btrfs_root_ref *root_ref; 1142 struct btrfs_inode_ref *inode_ref; 1143 struct btrfs_key key; 1144 struct btrfs_path *path = NULL; 1145 char *name = NULL, *ptr; 1146 u64 dirid; 1147 int len; 1148 int ret; 1149 1150 path = btrfs_alloc_path(); 1151 if (!path) { 1152 ret = -ENOMEM; 1153 goto err; 1154 } 1155 path->leave_spinning = 1; 1156 1157 name = kmalloc(PATH_MAX, GFP_KERNEL); 1158 if (!name) { 1159 ret = -ENOMEM; 1160 goto err; 1161 } 1162 ptr = name + PATH_MAX - 1; 1163 ptr[0] = '\0'; 1164 1165 /* 1166 * Walk up the subvolume trees in the tree of tree roots by root 1167 * backrefs until we hit the top-level subvolume. 1168 */ 1169 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1170 key.objectid = subvol_objectid; 1171 key.type = BTRFS_ROOT_BACKREF_KEY; 1172 key.offset = (u64)-1; 1173 1174 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1175 if (ret < 0) { 1176 goto err; 1177 } else if (ret > 0) { 1178 ret = btrfs_previous_item(root, path, subvol_objectid, 1179 BTRFS_ROOT_BACKREF_KEY); 1180 if (ret < 0) { 1181 goto err; 1182 } else if (ret > 0) { 1183 ret = -ENOENT; 1184 goto err; 1185 } 1186 } 1187 1188 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1189 subvol_objectid = key.offset; 1190 1191 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1192 struct btrfs_root_ref); 1193 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1194 ptr -= len + 1; 1195 if (ptr < name) { 1196 ret = -ENAMETOOLONG; 1197 goto err; 1198 } 1199 read_extent_buffer(path->nodes[0], ptr + 1, 1200 (unsigned long)(root_ref + 1), len); 1201 ptr[0] = '/'; 1202 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1203 btrfs_release_path(path); 1204 1205 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 1206 if (IS_ERR(fs_root)) { 1207 ret = PTR_ERR(fs_root); 1208 fs_root = NULL; 1209 goto err; 1210 } 1211 1212 /* 1213 * Walk up the filesystem tree by inode refs until we hit the 1214 * root directory. 1215 */ 1216 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1217 key.objectid = dirid; 1218 key.type = BTRFS_INODE_REF_KEY; 1219 key.offset = (u64)-1; 1220 1221 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1222 if (ret < 0) { 1223 goto err; 1224 } else if (ret > 0) { 1225 ret = btrfs_previous_item(fs_root, path, dirid, 1226 BTRFS_INODE_REF_KEY); 1227 if (ret < 0) { 1228 goto err; 1229 } else if (ret > 0) { 1230 ret = -ENOENT; 1231 goto err; 1232 } 1233 } 1234 1235 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1236 dirid = key.offset; 1237 1238 inode_ref = btrfs_item_ptr(path->nodes[0], 1239 path->slots[0], 1240 struct btrfs_inode_ref); 1241 len = btrfs_inode_ref_name_len(path->nodes[0], 1242 inode_ref); 1243 ptr -= len + 1; 1244 if (ptr < name) { 1245 ret = -ENAMETOOLONG; 1246 goto err; 1247 } 1248 read_extent_buffer(path->nodes[0], ptr + 1, 1249 (unsigned long)(inode_ref + 1), len); 1250 ptr[0] = '/'; 1251 btrfs_release_path(path); 1252 } 1253 btrfs_put_root(fs_root); 1254 fs_root = NULL; 1255 } 1256 1257 btrfs_free_path(path); 1258 if (ptr == name + PATH_MAX - 1) { 1259 name[0] = '/'; 1260 name[1] = '\0'; 1261 } else { 1262 memmove(name, ptr, name + PATH_MAX - ptr); 1263 } 1264 return name; 1265 1266err: 1267 btrfs_put_root(fs_root); 1268 btrfs_free_path(path); 1269 kfree(name); 1270 return ERR_PTR(ret); 1271} 1272 1273static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1274{ 1275 struct btrfs_root *root = fs_info->tree_root; 1276 struct btrfs_dir_item *di; 1277 struct btrfs_path *path; 1278 struct btrfs_key location; 1279 u64 dir_id; 1280 1281 path = btrfs_alloc_path(); 1282 if (!path) 1283 return -ENOMEM; 1284 path->leave_spinning = 1; 1285 1286 /* 1287 * Find the "default" dir item which points to the root item that we 1288 * will mount by default if we haven't been given a specific subvolume 1289 * to mount. 1290 */ 1291 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1292 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1293 if (IS_ERR(di)) { 1294 btrfs_free_path(path); 1295 return PTR_ERR(di); 1296 } 1297 if (!di) { 1298 /* 1299 * Ok the default dir item isn't there. This is weird since 1300 * it's always been there, but don't freak out, just try and 1301 * mount the top-level subvolume. 1302 */ 1303 btrfs_free_path(path); 1304 *objectid = BTRFS_FS_TREE_OBJECTID; 1305 return 0; 1306 } 1307 1308 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1309 btrfs_free_path(path); 1310 *objectid = location.objectid; 1311 return 0; 1312} 1313 1314static int btrfs_fill_super(struct super_block *sb, 1315 struct btrfs_fs_devices *fs_devices, 1316 void *data) 1317{ 1318 struct inode *inode; 1319 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1320 int err; 1321 1322 sb->s_maxbytes = MAX_LFS_FILESIZE; 1323 sb->s_magic = BTRFS_SUPER_MAGIC; 1324 sb->s_op = &btrfs_super_ops; 1325 sb->s_d_op = &btrfs_dentry_operations; 1326 sb->s_export_op = &btrfs_export_ops; 1327 sb->s_xattr = btrfs_xattr_handlers; 1328 sb->s_time_gran = 1; 1329#ifdef CONFIG_BTRFS_FS_POSIX_ACL 1330 sb->s_flags |= SB_POSIXACL; 1331#endif 1332 sb->s_flags |= SB_I_VERSION; 1333 sb->s_iflags |= SB_I_CGROUPWB; 1334 1335 err = super_setup_bdi(sb); 1336 if (err) { 1337 btrfs_err(fs_info, "super_setup_bdi failed"); 1338 return err; 1339 } 1340 1341 err = open_ctree(sb, fs_devices, (char *)data); 1342 if (err) { 1343 btrfs_err(fs_info, "open_ctree failed"); 1344 return err; 1345 } 1346 1347 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 1348 if (IS_ERR(inode)) { 1349 err = PTR_ERR(inode); 1350 goto fail_close; 1351 } 1352 1353 sb->s_root = d_make_root(inode); 1354 if (!sb->s_root) { 1355 err = -ENOMEM; 1356 goto fail_close; 1357 } 1358 1359 cleancache_init_fs(sb); 1360 sb->s_flags |= SB_ACTIVE; 1361 return 0; 1362 1363fail_close: 1364 close_ctree(fs_info); 1365 return err; 1366} 1367 1368int btrfs_sync_fs(struct super_block *sb, int wait) 1369{ 1370 struct btrfs_trans_handle *trans; 1371 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1372 struct btrfs_root *root = fs_info->tree_root; 1373 1374 trace_btrfs_sync_fs(fs_info, wait); 1375 1376 if (!wait) { 1377 filemap_flush(fs_info->btree_inode->i_mapping); 1378 return 0; 1379 } 1380 1381 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1382 1383 trans = btrfs_attach_transaction_barrier(root); 1384 if (IS_ERR(trans)) { 1385 /* no transaction, don't bother */ 1386 if (PTR_ERR(trans) == -ENOENT) { 1387 /* 1388 * Exit unless we have some pending changes 1389 * that need to go through commit 1390 */ 1391 if (fs_info->pending_changes == 0) 1392 return 0; 1393 /* 1394 * A non-blocking test if the fs is frozen. We must not 1395 * start a new transaction here otherwise a deadlock 1396 * happens. The pending operations are delayed to the 1397 * next commit after thawing. 1398 */ 1399 if (sb_start_write_trylock(sb)) 1400 sb_end_write(sb); 1401 else 1402 return 0; 1403 trans = btrfs_start_transaction(root, 0); 1404 } 1405 if (IS_ERR(trans)) 1406 return PTR_ERR(trans); 1407 } 1408 return btrfs_commit_transaction(trans); 1409} 1410 1411static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1412{ 1413 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1414 const char *compress_type; 1415 const char *subvol_name; 1416 1417 if (btrfs_test_opt(info, DEGRADED)) 1418 seq_puts(seq, ",degraded"); 1419 if (btrfs_test_opt(info, NODATASUM)) 1420 seq_puts(seq, ",nodatasum"); 1421 if (btrfs_test_opt(info, NODATACOW)) 1422 seq_puts(seq, ",nodatacow"); 1423 if (btrfs_test_opt(info, NOBARRIER)) 1424 seq_puts(seq, ",nobarrier"); 1425 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1426 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1427 if (info->thread_pool_size != min_t(unsigned long, 1428 num_online_cpus() + 2, 8)) 1429 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1430 if (btrfs_test_opt(info, COMPRESS)) { 1431 compress_type = btrfs_compress_type2str(info->compress_type); 1432 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1433 seq_printf(seq, ",compress-force=%s", compress_type); 1434 else 1435 seq_printf(seq, ",compress=%s", compress_type); 1436 if (info->compress_level) 1437 seq_printf(seq, ":%d", info->compress_level); 1438 } 1439 if (btrfs_test_opt(info, NOSSD)) 1440 seq_puts(seq, ",nossd"); 1441 if (btrfs_test_opt(info, SSD_SPREAD)) 1442 seq_puts(seq, ",ssd_spread"); 1443 else if (btrfs_test_opt(info, SSD)) 1444 seq_puts(seq, ",ssd"); 1445 if (btrfs_test_opt(info, NOTREELOG)) 1446 seq_puts(seq, ",notreelog"); 1447 if (btrfs_test_opt(info, NOLOGREPLAY)) 1448 seq_puts(seq, ",rescue=nologreplay"); 1449 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1450 seq_puts(seq, ",flushoncommit"); 1451 if (btrfs_test_opt(info, DISCARD_SYNC)) 1452 seq_puts(seq, ",discard"); 1453 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1454 seq_puts(seq, ",discard=async"); 1455 if (!(info->sb->s_flags & SB_POSIXACL)) 1456 seq_puts(seq, ",noacl"); 1457 if (btrfs_test_opt(info, SPACE_CACHE)) 1458 seq_puts(seq, ",space_cache"); 1459 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1460 seq_puts(seq, ",space_cache=v2"); 1461 else 1462 seq_puts(seq, ",nospace_cache"); 1463 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1464 seq_puts(seq, ",rescan_uuid_tree"); 1465 if (btrfs_test_opt(info, CLEAR_CACHE)) 1466 seq_puts(seq, ",clear_cache"); 1467 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1468 seq_puts(seq, ",user_subvol_rm_allowed"); 1469 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1470 seq_puts(seq, ",enospc_debug"); 1471 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1472 seq_puts(seq, ",autodefrag"); 1473 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1474 seq_puts(seq, ",inode_cache"); 1475 if (btrfs_test_opt(info, SKIP_BALANCE)) 1476 seq_puts(seq, ",skip_balance"); 1477#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1478 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1479 seq_puts(seq, ",check_int_data"); 1480 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1481 seq_puts(seq, ",check_int"); 1482 if (info->check_integrity_print_mask) 1483 seq_printf(seq, ",check_int_print_mask=%d", 1484 info->check_integrity_print_mask); 1485#endif 1486 if (info->metadata_ratio) 1487 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1488 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1489 seq_puts(seq, ",fatal_errors=panic"); 1490 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1491 seq_printf(seq, ",commit=%u", info->commit_interval); 1492#ifdef CONFIG_BTRFS_DEBUG 1493 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1494 seq_puts(seq, ",fragment=data"); 1495 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1496 seq_puts(seq, ",fragment=metadata"); 1497#endif 1498 if (btrfs_test_opt(info, REF_VERIFY)) 1499 seq_puts(seq, ",ref_verify"); 1500 seq_printf(seq, ",subvolid=%llu", 1501 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1502 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1503 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1504 if (!IS_ERR(subvol_name)) { 1505 seq_puts(seq, ",subvol="); 1506 seq_escape(seq, subvol_name, " \t\n\\"); 1507 kfree(subvol_name); 1508 } 1509 return 0; 1510} 1511 1512static int btrfs_test_super(struct super_block *s, void *data) 1513{ 1514 struct btrfs_fs_info *p = data; 1515 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1516 1517 return fs_info->fs_devices == p->fs_devices; 1518} 1519 1520static int btrfs_set_super(struct super_block *s, void *data) 1521{ 1522 int err = set_anon_super(s, data); 1523 if (!err) 1524 s->s_fs_info = data; 1525 return err; 1526} 1527 1528/* 1529 * subvolumes are identified by ino 256 1530 */ 1531static inline int is_subvolume_inode(struct inode *inode) 1532{ 1533 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1534 return 1; 1535 return 0; 1536} 1537 1538static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1539 struct vfsmount *mnt) 1540{ 1541 struct dentry *root; 1542 int ret; 1543 1544 if (!subvol_name) { 1545 if (!subvol_objectid) { 1546 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1547 &subvol_objectid); 1548 if (ret) { 1549 root = ERR_PTR(ret); 1550 goto out; 1551 } 1552 } 1553 subvol_name = btrfs_get_subvol_name_from_objectid( 1554 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1555 if (IS_ERR(subvol_name)) { 1556 root = ERR_CAST(subvol_name); 1557 subvol_name = NULL; 1558 goto out; 1559 } 1560 1561 } 1562 1563 root = mount_subtree(mnt, subvol_name); 1564 /* mount_subtree() drops our reference on the vfsmount. */ 1565 mnt = NULL; 1566 1567 if (!IS_ERR(root)) { 1568 struct super_block *s = root->d_sb; 1569 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1570 struct inode *root_inode = d_inode(root); 1571 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1572 1573 ret = 0; 1574 if (!is_subvolume_inode(root_inode)) { 1575 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1576 subvol_name); 1577 ret = -EINVAL; 1578 } 1579 if (subvol_objectid && root_objectid != subvol_objectid) { 1580 /* 1581 * This will also catch a race condition where a 1582 * subvolume which was passed by ID is renamed and 1583 * another subvolume is renamed over the old location. 1584 */ 1585 btrfs_err(fs_info, 1586 "subvol '%s' does not match subvolid %llu", 1587 subvol_name, subvol_objectid); 1588 ret = -EINVAL; 1589 } 1590 if (ret) { 1591 dput(root); 1592 root = ERR_PTR(ret); 1593 deactivate_locked_super(s); 1594 } 1595 } 1596 1597out: 1598 mntput(mnt); 1599 kfree(subvol_name); 1600 return root; 1601} 1602 1603/* 1604 * Find a superblock for the given device / mount point. 1605 * 1606 * Note: This is based on mount_bdev from fs/super.c with a few additions 1607 * for multiple device setup. Make sure to keep it in sync. 1608 */ 1609static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1610 int flags, const char *device_name, void *data) 1611{ 1612 struct block_device *bdev = NULL; 1613 struct super_block *s; 1614 struct btrfs_device *device = NULL; 1615 struct btrfs_fs_devices *fs_devices = NULL; 1616 struct btrfs_fs_info *fs_info = NULL; 1617 void *new_sec_opts = NULL; 1618 fmode_t mode = FMODE_READ; 1619 int error = 0; 1620 1621 if (!(flags & SB_RDONLY)) 1622 mode |= FMODE_WRITE; 1623 1624 if (data) { 1625 error = security_sb_eat_lsm_opts(data, &new_sec_opts); 1626 if (error) 1627 return ERR_PTR(error); 1628 } 1629 1630 /* 1631 * Setup a dummy root and fs_info for test/set super. This is because 1632 * we don't actually fill this stuff out until open_ctree, but we need 1633 * then open_ctree will properly initialize the file system specific 1634 * settings later. btrfs_init_fs_info initializes the static elements 1635 * of the fs_info (locks and such) to make cleanup easier if we find a 1636 * superblock with our given fs_devices later on at sget() time. 1637 */ 1638 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1639 if (!fs_info) { 1640 error = -ENOMEM; 1641 goto error_sec_opts; 1642 } 1643 btrfs_init_fs_info(fs_info); 1644 1645 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1646 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1647 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1648 error = -ENOMEM; 1649 goto error_fs_info; 1650 } 1651 1652 mutex_lock(&uuid_mutex); 1653 error = btrfs_parse_device_options(data, mode, fs_type); 1654 if (error) { 1655 mutex_unlock(&uuid_mutex); 1656 goto error_fs_info; 1657 } 1658 1659 device = btrfs_scan_one_device(device_name, mode, fs_type); 1660 if (IS_ERR(device)) { 1661 mutex_unlock(&uuid_mutex); 1662 error = PTR_ERR(device); 1663 goto error_fs_info; 1664 } 1665 1666 fs_devices = device->fs_devices; 1667 fs_info->fs_devices = fs_devices; 1668 1669 error = btrfs_open_devices(fs_devices, mode, fs_type); 1670 mutex_unlock(&uuid_mutex); 1671 if (error) 1672 goto error_fs_info; 1673 1674 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1675 error = -EACCES; 1676 goto error_close_devices; 1677 } 1678 1679 bdev = fs_devices->latest_bdev; 1680 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1681 fs_info); 1682 if (IS_ERR(s)) { 1683 error = PTR_ERR(s); 1684 goto error_close_devices; 1685 } 1686 1687 if (s->s_root) { 1688 btrfs_close_devices(fs_devices); 1689 btrfs_free_fs_info(fs_info); 1690 if ((flags ^ s->s_flags) & SB_RDONLY) 1691 error = -EBUSY; 1692 } else { 1693 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1694 btrfs_sb(s)->bdev_holder = fs_type; 1695 error = btrfs_fill_super(s, fs_devices, data); 1696 } 1697 if (!error) 1698 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); 1699 security_free_mnt_opts(&new_sec_opts); 1700 if (error) { 1701 deactivate_locked_super(s); 1702 return ERR_PTR(error); 1703 } 1704 1705 return dget(s->s_root); 1706 1707error_close_devices: 1708 btrfs_close_devices(fs_devices); 1709error_fs_info: 1710 btrfs_free_fs_info(fs_info); 1711error_sec_opts: 1712 security_free_mnt_opts(&new_sec_opts); 1713 return ERR_PTR(error); 1714} 1715 1716/* 1717 * Mount function which is called by VFS layer. 1718 * 1719 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1720 * which needs vfsmount* of device's root (/). This means device's root has to 1721 * be mounted internally in any case. 1722 * 1723 * Operation flow: 1724 * 1. Parse subvol id related options for later use in mount_subvol(). 1725 * 1726 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1727 * 1728 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1729 * first place. In order to avoid calling btrfs_mount() again, we use 1730 * different file_system_type which is not registered to VFS by 1731 * register_filesystem() (btrfs_root_fs_type). As a result, 1732 * btrfs_mount_root() is called. The return value will be used by 1733 * mount_subtree() in mount_subvol(). 1734 * 1735 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1736 * "btrfs subvolume set-default", mount_subvol() is called always. 1737 */ 1738static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1739 const char *device_name, void *data) 1740{ 1741 struct vfsmount *mnt_root; 1742 struct dentry *root; 1743 char *subvol_name = NULL; 1744 u64 subvol_objectid = 0; 1745 int error = 0; 1746 1747 error = btrfs_parse_subvol_options(data, &subvol_name, 1748 &subvol_objectid); 1749 if (error) { 1750 kfree(subvol_name); 1751 return ERR_PTR(error); 1752 } 1753 1754 /* mount device's root (/) */ 1755 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1756 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1757 if (flags & SB_RDONLY) { 1758 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1759 flags & ~SB_RDONLY, device_name, data); 1760 } else { 1761 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1762 flags | SB_RDONLY, device_name, data); 1763 if (IS_ERR(mnt_root)) { 1764 root = ERR_CAST(mnt_root); 1765 kfree(subvol_name); 1766 goto out; 1767 } 1768 1769 down_write(&mnt_root->mnt_sb->s_umount); 1770 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1771 up_write(&mnt_root->mnt_sb->s_umount); 1772 if (error < 0) { 1773 root = ERR_PTR(error); 1774 mntput(mnt_root); 1775 kfree(subvol_name); 1776 goto out; 1777 } 1778 } 1779 } 1780 if (IS_ERR(mnt_root)) { 1781 root = ERR_CAST(mnt_root); 1782 kfree(subvol_name); 1783 goto out; 1784 } 1785 1786 /* mount_subvol() will free subvol_name and mnt_root */ 1787 root = mount_subvol(subvol_name, subvol_objectid, mnt_root); 1788 1789out: 1790 return root; 1791} 1792 1793static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1794 u32 new_pool_size, u32 old_pool_size) 1795{ 1796 if (new_pool_size == old_pool_size) 1797 return; 1798 1799 fs_info->thread_pool_size = new_pool_size; 1800 1801 btrfs_info(fs_info, "resize thread pool %d -> %d", 1802 old_pool_size, new_pool_size); 1803 1804 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1805 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1806 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1807 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1808 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1809 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1810 new_pool_size); 1811 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1812 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1813 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1814 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1815 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1816 new_pool_size); 1817} 1818 1819static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1820 unsigned long old_opts, int flags) 1821{ 1822 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1823 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1824 (flags & SB_RDONLY))) { 1825 /* wait for any defraggers to finish */ 1826 wait_event(fs_info->transaction_wait, 1827 (atomic_read(&fs_info->defrag_running) == 0)); 1828 if (flags & SB_RDONLY) 1829 sync_filesystem(fs_info->sb); 1830 } 1831} 1832 1833static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1834 unsigned long old_opts) 1835{ 1836 /* 1837 * We need to cleanup all defragable inodes if the autodefragment is 1838 * close or the filesystem is read only. 1839 */ 1840 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1841 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1842 btrfs_cleanup_defrag_inodes(fs_info); 1843 } 1844 1845 /* If we toggled discard async */ 1846 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1847 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1848 btrfs_discard_resume(fs_info); 1849 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1850 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1851 btrfs_discard_cleanup(fs_info); 1852} 1853 1854static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1855{ 1856 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1857 struct btrfs_root *root = fs_info->tree_root; 1858 unsigned old_flags = sb->s_flags; 1859 unsigned long old_opts = fs_info->mount_opt; 1860 unsigned long old_compress_type = fs_info->compress_type; 1861 u64 old_max_inline = fs_info->max_inline; 1862 u32 old_thread_pool_size = fs_info->thread_pool_size; 1863 u32 old_metadata_ratio = fs_info->metadata_ratio; 1864 int ret; 1865 1866 sync_filesystem(sb); 1867 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1868 1869 if (data) { 1870 void *new_sec_opts = NULL; 1871 1872 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 1873 if (!ret) 1874 ret = security_sb_remount(sb, new_sec_opts); 1875 security_free_mnt_opts(&new_sec_opts); 1876 if (ret) 1877 goto restore; 1878 } 1879 1880 ret = btrfs_parse_options(fs_info, data, *flags); 1881 if (ret) 1882 goto restore; 1883 1884 btrfs_remount_begin(fs_info, old_opts, *flags); 1885 btrfs_resize_thread_pool(fs_info, 1886 fs_info->thread_pool_size, old_thread_pool_size); 1887 1888 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1889 goto out; 1890 1891 if (*flags & SB_RDONLY) { 1892 /* 1893 * this also happens on 'umount -rf' or on shutdown, when 1894 * the filesystem is busy. 1895 */ 1896 cancel_work_sync(&fs_info->async_reclaim_work); 1897 cancel_work_sync(&fs_info->async_data_reclaim_work); 1898 1899 btrfs_discard_cleanup(fs_info); 1900 1901 /* wait for the uuid_scan task to finish */ 1902 down(&fs_info->uuid_tree_rescan_sem); 1903 /* avoid complains from lockdep et al. */ 1904 up(&fs_info->uuid_tree_rescan_sem); 1905 1906 sb->s_flags |= SB_RDONLY; 1907 1908 /* 1909 * Setting SB_RDONLY will put the cleaner thread to 1910 * sleep at the next loop if it's already active. 1911 * If it's already asleep, we'll leave unused block 1912 * groups on disk until we're mounted read-write again 1913 * unless we clean them up here. 1914 */ 1915 btrfs_delete_unused_bgs(fs_info); 1916 1917 btrfs_dev_replace_suspend_for_unmount(fs_info); 1918 btrfs_scrub_cancel(fs_info); 1919 btrfs_pause_balance(fs_info); 1920 1921 /* 1922 * Pause the qgroup rescan worker if it is running. We don't want 1923 * it to be still running after we are in RO mode, as after that, 1924 * by the time we unmount, it might have left a transaction open, 1925 * so we would leak the transaction and/or crash. 1926 */ 1927 btrfs_qgroup_wait_for_completion(fs_info, false); 1928 1929 ret = btrfs_commit_super(fs_info); 1930 if (ret) 1931 goto restore; 1932 } else { 1933 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1934 btrfs_err(fs_info, 1935 "Remounting read-write after error is not allowed"); 1936 ret = -EINVAL; 1937 goto restore; 1938 } 1939 if (fs_info->fs_devices->rw_devices == 0) { 1940 ret = -EACCES; 1941 goto restore; 1942 } 1943 1944 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1945 btrfs_warn(fs_info, 1946 "too many missing devices, writable remount is not allowed"); 1947 ret = -EACCES; 1948 goto restore; 1949 } 1950 1951 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1952 btrfs_warn(fs_info, 1953 "mount required to replay tree-log, cannot remount read-write"); 1954 ret = -EINVAL; 1955 goto restore; 1956 } 1957 1958 ret = btrfs_cleanup_fs_roots(fs_info); 1959 if (ret) 1960 goto restore; 1961 1962 /* recover relocation */ 1963 mutex_lock(&fs_info->cleaner_mutex); 1964 ret = btrfs_recover_relocation(root); 1965 mutex_unlock(&fs_info->cleaner_mutex); 1966 if (ret) 1967 goto restore; 1968 1969 ret = btrfs_resume_balance_async(fs_info); 1970 if (ret) 1971 goto restore; 1972 1973 ret = btrfs_resume_dev_replace_async(fs_info); 1974 if (ret) { 1975 btrfs_warn(fs_info, "failed to resume dev_replace"); 1976 goto restore; 1977 } 1978 1979 btrfs_qgroup_rescan_resume(fs_info); 1980 1981 if (!fs_info->uuid_root) { 1982 btrfs_info(fs_info, "creating UUID tree"); 1983 ret = btrfs_create_uuid_tree(fs_info); 1984 if (ret) { 1985 btrfs_warn(fs_info, 1986 "failed to create the UUID tree %d", 1987 ret); 1988 goto restore; 1989 } 1990 } 1991 sb->s_flags &= ~SB_RDONLY; 1992 1993 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1994 } 1995out: 1996 /* 1997 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS, 1998 * since the absence of the flag means it can be toggled off by remount. 1999 */ 2000 *flags |= SB_I_VERSION; 2001 2002 wake_up_process(fs_info->transaction_kthread); 2003 btrfs_remount_cleanup(fs_info, old_opts); 2004 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 2005 2006 return 0; 2007 2008restore: 2009 /* We've hit an error - don't reset SB_RDONLY */ 2010 if (sb_rdonly(sb)) 2011 old_flags |= SB_RDONLY; 2012 sb->s_flags = old_flags; 2013 fs_info->mount_opt = old_opts; 2014 fs_info->compress_type = old_compress_type; 2015 fs_info->max_inline = old_max_inline; 2016 btrfs_resize_thread_pool(fs_info, 2017 old_thread_pool_size, fs_info->thread_pool_size); 2018 fs_info->metadata_ratio = old_metadata_ratio; 2019 btrfs_remount_cleanup(fs_info, old_opts); 2020 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 2021 2022 return ret; 2023} 2024 2025/* Used to sort the devices by max_avail(descending sort) */ 2026static inline int btrfs_cmp_device_free_bytes(const void *dev_info1, 2027 const void *dev_info2) 2028{ 2029 if (((struct btrfs_device_info *)dev_info1)->max_avail > 2030 ((struct btrfs_device_info *)dev_info2)->max_avail) 2031 return -1; 2032 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 2033 ((struct btrfs_device_info *)dev_info2)->max_avail) 2034 return 1; 2035 else 2036 return 0; 2037} 2038 2039/* 2040 * sort the devices by max_avail, in which max free extent size of each device 2041 * is stored.(Descending Sort) 2042 */ 2043static inline void btrfs_descending_sort_devices( 2044 struct btrfs_device_info *devices, 2045 size_t nr_devices) 2046{ 2047 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 2048 btrfs_cmp_device_free_bytes, NULL); 2049} 2050 2051/* 2052 * The helper to calc the free space on the devices that can be used to store 2053 * file data. 2054 */ 2055static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 2056 u64 *free_bytes) 2057{ 2058 struct btrfs_device_info *devices_info; 2059 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2060 struct btrfs_device *device; 2061 u64 type; 2062 u64 avail_space; 2063 u64 min_stripe_size; 2064 int num_stripes = 1; 2065 int i = 0, nr_devices; 2066 const struct btrfs_raid_attr *rattr; 2067 2068 /* 2069 * We aren't under the device list lock, so this is racy-ish, but good 2070 * enough for our purposes. 2071 */ 2072 nr_devices = fs_info->fs_devices->open_devices; 2073 if (!nr_devices) { 2074 smp_mb(); 2075 nr_devices = fs_info->fs_devices->open_devices; 2076 ASSERT(nr_devices); 2077 if (!nr_devices) { 2078 *free_bytes = 0; 2079 return 0; 2080 } 2081 } 2082 2083 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 2084 GFP_KERNEL); 2085 if (!devices_info) 2086 return -ENOMEM; 2087 2088 /* calc min stripe number for data space allocation */ 2089 type = btrfs_data_alloc_profile(fs_info); 2090 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 2091 2092 if (type & BTRFS_BLOCK_GROUP_RAID0) 2093 num_stripes = nr_devices; 2094 else if (type & BTRFS_BLOCK_GROUP_RAID1) 2095 num_stripes = 2; 2096 else if (type & BTRFS_BLOCK_GROUP_RAID1C3) 2097 num_stripes = 3; 2098 else if (type & BTRFS_BLOCK_GROUP_RAID1C4) 2099 num_stripes = 4; 2100 else if (type & BTRFS_BLOCK_GROUP_RAID10) 2101 num_stripes = 4; 2102 2103 /* Adjust for more than 1 stripe per device */ 2104 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 2105 2106 rcu_read_lock(); 2107 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2108 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2109 &device->dev_state) || 2110 !device->bdev || 2111 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2112 continue; 2113 2114 if (i >= nr_devices) 2115 break; 2116 2117 avail_space = device->total_bytes - device->bytes_used; 2118 2119 /* align with stripe_len */ 2120 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 2121 2122 /* 2123 * In order to avoid overwriting the superblock on the drive, 2124 * btrfs starts at an offset of at least 1MB when doing chunk 2125 * allocation. 2126 * 2127 * This ensures we have at least min_stripe_size free space 2128 * after excluding 1MB. 2129 */ 2130 if (avail_space <= SZ_1M + min_stripe_size) 2131 continue; 2132 2133 avail_space -= SZ_1M; 2134 2135 devices_info[i].dev = device; 2136 devices_info[i].max_avail = avail_space; 2137 2138 i++; 2139 } 2140 rcu_read_unlock(); 2141 2142 nr_devices = i; 2143 2144 btrfs_descending_sort_devices(devices_info, nr_devices); 2145 2146 i = nr_devices - 1; 2147 avail_space = 0; 2148 while (nr_devices >= rattr->devs_min) { 2149 num_stripes = min(num_stripes, nr_devices); 2150 2151 if (devices_info[i].max_avail >= min_stripe_size) { 2152 int j; 2153 u64 alloc_size; 2154 2155 avail_space += devices_info[i].max_avail * num_stripes; 2156 alloc_size = devices_info[i].max_avail; 2157 for (j = i + 1 - num_stripes; j <= i; j++) 2158 devices_info[j].max_avail -= alloc_size; 2159 } 2160 i--; 2161 nr_devices--; 2162 } 2163 2164 kfree(devices_info); 2165 *free_bytes = avail_space; 2166 return 0; 2167} 2168 2169/* 2170 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2171 * 2172 * If there's a redundant raid level at DATA block groups, use the respective 2173 * multiplier to scale the sizes. 2174 * 2175 * Unused device space usage is based on simulating the chunk allocator 2176 * algorithm that respects the device sizes and order of allocations. This is 2177 * a close approximation of the actual use but there are other factors that may 2178 * change the result (like a new metadata chunk). 2179 * 2180 * If metadata is exhausted, f_bavail will be 0. 2181 */ 2182static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2183{ 2184 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2185 struct btrfs_super_block *disk_super = fs_info->super_copy; 2186 struct btrfs_space_info *found; 2187 u64 total_used = 0; 2188 u64 total_free_data = 0; 2189 u64 total_free_meta = 0; 2190 int bits = dentry->d_sb->s_blocksize_bits; 2191 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 2192 unsigned factor = 1; 2193 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2194 int ret; 2195 u64 thresh = 0; 2196 int mixed = 0; 2197 2198 list_for_each_entry(found, &fs_info->space_info, list) { 2199 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2200 int i; 2201 2202 total_free_data += found->disk_total - found->disk_used; 2203 total_free_data -= 2204 btrfs_account_ro_block_groups_free_space(found); 2205 2206 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2207 if (!list_empty(&found->block_groups[i])) 2208 factor = btrfs_bg_type_to_factor( 2209 btrfs_raid_array[i].bg_flag); 2210 } 2211 } 2212 2213 /* 2214 * Metadata in mixed block goup profiles are accounted in data 2215 */ 2216 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2217 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2218 mixed = 1; 2219 else 2220 total_free_meta += found->disk_total - 2221 found->disk_used; 2222 } 2223 2224 total_used += found->disk_used; 2225 } 2226 2227 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2228 buf->f_blocks >>= bits; 2229 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2230 2231 /* Account global block reserve as used, it's in logical size already */ 2232 spin_lock(&block_rsv->lock); 2233 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2234 if (buf->f_bfree >= block_rsv->size >> bits) 2235 buf->f_bfree -= block_rsv->size >> bits; 2236 else 2237 buf->f_bfree = 0; 2238 spin_unlock(&block_rsv->lock); 2239 2240 buf->f_bavail = div_u64(total_free_data, factor); 2241 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2242 if (ret) 2243 return ret; 2244 buf->f_bavail += div_u64(total_free_data, factor); 2245 buf->f_bavail = buf->f_bavail >> bits; 2246 2247 /* 2248 * We calculate the remaining metadata space minus global reserve. If 2249 * this is (supposedly) smaller than zero, there's no space. But this 2250 * does not hold in practice, the exhausted state happens where's still 2251 * some positive delta. So we apply some guesswork and compare the 2252 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2253 * 2254 * We probably cannot calculate the exact threshold value because this 2255 * depends on the internal reservations requested by various 2256 * operations, so some operations that consume a few metadata will 2257 * succeed even if the Avail is zero. But this is better than the other 2258 * way around. 2259 */ 2260 thresh = SZ_4M; 2261 2262 /* 2263 * We only want to claim there's no available space if we can no longer 2264 * allocate chunks for our metadata profile and our global reserve will 2265 * not fit in the free metadata space. If we aren't ->full then we 2266 * still can allocate chunks and thus are fine using the currently 2267 * calculated f_bavail. 2268 */ 2269 if (!mixed && block_rsv->space_info->full && 2270 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size)) 2271 buf->f_bavail = 0; 2272 2273 buf->f_type = BTRFS_SUPER_MAGIC; 2274 buf->f_bsize = dentry->d_sb->s_blocksize; 2275 buf->f_namelen = BTRFS_NAME_LEN; 2276 2277 /* We treat it as constant endianness (it doesn't matter _which_) 2278 because we want the fsid to come out the same whether mounted 2279 on a big-endian or little-endian host */ 2280 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2281 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2282 /* Mask in the root object ID too, to disambiguate subvols */ 2283 buf->f_fsid.val[0] ^= 2284 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 2285 buf->f_fsid.val[1] ^= 2286 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 2287 2288 return 0; 2289} 2290 2291static void btrfs_kill_super(struct super_block *sb) 2292{ 2293 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2294 kill_anon_super(sb); 2295 btrfs_free_fs_info(fs_info); 2296} 2297 2298static struct file_system_type btrfs_fs_type = { 2299 .owner = THIS_MODULE, 2300 .name = "btrfs", 2301 .mount = btrfs_mount, 2302 .kill_sb = btrfs_kill_super, 2303 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2304}; 2305 2306static struct file_system_type btrfs_root_fs_type = { 2307 .owner = THIS_MODULE, 2308 .name = "btrfs", 2309 .mount = btrfs_mount_root, 2310 .kill_sb = btrfs_kill_super, 2311 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2312}; 2313 2314MODULE_ALIAS_FS("btrfs"); 2315 2316static int btrfs_control_open(struct inode *inode, struct file *file) 2317{ 2318 /* 2319 * The control file's private_data is used to hold the 2320 * transaction when it is started and is used to keep 2321 * track of whether a transaction is already in progress. 2322 */ 2323 file->private_data = NULL; 2324 return 0; 2325} 2326 2327/* 2328 * Used by /dev/btrfs-control for devices ioctls. 2329 */ 2330static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2331 unsigned long arg) 2332{ 2333 struct btrfs_ioctl_vol_args *vol; 2334 struct btrfs_device *device = NULL; 2335 int ret = -ENOTTY; 2336 2337 if (!capable(CAP_SYS_ADMIN)) 2338 return -EPERM; 2339 2340 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2341 if (IS_ERR(vol)) 2342 return PTR_ERR(vol); 2343 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2344 2345 switch (cmd) { 2346 case BTRFS_IOC_SCAN_DEV: 2347 mutex_lock(&uuid_mutex); 2348 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2349 &btrfs_root_fs_type); 2350 ret = PTR_ERR_OR_ZERO(device); 2351 mutex_unlock(&uuid_mutex); 2352 break; 2353 case BTRFS_IOC_FORGET_DEV: 2354 ret = btrfs_forget_devices(vol->name); 2355 break; 2356 case BTRFS_IOC_DEVICES_READY: 2357 mutex_lock(&uuid_mutex); 2358 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2359 &btrfs_root_fs_type); 2360 if (IS_ERR(device)) { 2361 mutex_unlock(&uuid_mutex); 2362 ret = PTR_ERR(device); 2363 break; 2364 } 2365 ret = !(device->fs_devices->num_devices == 2366 device->fs_devices->total_devices); 2367 mutex_unlock(&uuid_mutex); 2368 break; 2369 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2370 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2371 break; 2372 } 2373 2374 kfree(vol); 2375 return ret; 2376} 2377 2378static int btrfs_freeze(struct super_block *sb) 2379{ 2380 struct btrfs_trans_handle *trans; 2381 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2382 struct btrfs_root *root = fs_info->tree_root; 2383 2384 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2385 /* 2386 * We don't need a barrier here, we'll wait for any transaction that 2387 * could be in progress on other threads (and do delayed iputs that 2388 * we want to avoid on a frozen filesystem), or do the commit 2389 * ourselves. 2390 */ 2391 trans = btrfs_attach_transaction_barrier(root); 2392 if (IS_ERR(trans)) { 2393 /* no transaction, don't bother */ 2394 if (PTR_ERR(trans) == -ENOENT) 2395 return 0; 2396 return PTR_ERR(trans); 2397 } 2398 return btrfs_commit_transaction(trans); 2399} 2400 2401static int btrfs_unfreeze(struct super_block *sb) 2402{ 2403 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2404 2405 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2406 return 0; 2407} 2408 2409static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2410{ 2411 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2412 struct btrfs_device *dev, *first_dev = NULL; 2413 2414 /* 2415 * Lightweight locking of the devices. We should not need 2416 * device_list_mutex here as we only read the device data and the list 2417 * is protected by RCU. Even if a device is deleted during the list 2418 * traversals, we'll get valid data, the freeing callback will wait at 2419 * least until the rcu_read_unlock. 2420 */ 2421 rcu_read_lock(); 2422 list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) { 2423 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 2424 continue; 2425 if (!dev->name) 2426 continue; 2427 if (!first_dev || dev->devid < first_dev->devid) 2428 first_dev = dev; 2429 } 2430 2431 if (first_dev) 2432 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\"); 2433 else 2434 WARN_ON(1); 2435 rcu_read_unlock(); 2436 return 0; 2437} 2438 2439static const struct super_operations btrfs_super_ops = { 2440 .drop_inode = btrfs_drop_inode, 2441 .evict_inode = btrfs_evict_inode, 2442 .put_super = btrfs_put_super, 2443 .sync_fs = btrfs_sync_fs, 2444 .show_options = btrfs_show_options, 2445 .show_devname = btrfs_show_devname, 2446 .alloc_inode = btrfs_alloc_inode, 2447 .destroy_inode = btrfs_destroy_inode, 2448 .free_inode = btrfs_free_inode, 2449 .statfs = btrfs_statfs, 2450 .remount_fs = btrfs_remount, 2451 .freeze_fs = btrfs_freeze, 2452 .unfreeze_fs = btrfs_unfreeze, 2453}; 2454 2455static const struct file_operations btrfs_ctl_fops = { 2456 .open = btrfs_control_open, 2457 .unlocked_ioctl = btrfs_control_ioctl, 2458 .compat_ioctl = compat_ptr_ioctl, 2459 .owner = THIS_MODULE, 2460 .llseek = noop_llseek, 2461}; 2462 2463static struct miscdevice btrfs_misc = { 2464 .minor = BTRFS_MINOR, 2465 .name = "btrfs-control", 2466 .fops = &btrfs_ctl_fops 2467}; 2468 2469MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2470MODULE_ALIAS("devname:btrfs-control"); 2471 2472static int __init btrfs_interface_init(void) 2473{ 2474 return misc_register(&btrfs_misc); 2475} 2476 2477static __cold void btrfs_interface_exit(void) 2478{ 2479 misc_deregister(&btrfs_misc); 2480} 2481 2482static void __init btrfs_print_mod_info(void) 2483{ 2484 static const char options[] = "" 2485#ifdef CONFIG_BTRFS_DEBUG 2486 ", debug=on" 2487#endif 2488#ifdef CONFIG_BTRFS_ASSERT 2489 ", assert=on" 2490#endif 2491#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2492 ", integrity-checker=on" 2493#endif 2494#ifdef CONFIG_BTRFS_FS_REF_VERIFY 2495 ", ref-verify=on" 2496#endif 2497 ; 2498 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2499} 2500 2501static int __init init_btrfs_fs(void) 2502{ 2503 int err; 2504 2505 btrfs_props_init(); 2506 2507 err = btrfs_init_sysfs(); 2508 if (err) 2509 return err; 2510 2511 btrfs_init_compress(); 2512 2513 err = btrfs_init_cachep(); 2514 if (err) 2515 goto free_compress; 2516 2517 err = extent_io_init(); 2518 if (err) 2519 goto free_cachep; 2520 2521 err = extent_state_cache_init(); 2522 if (err) 2523 goto free_extent_io; 2524 2525 err = extent_map_init(); 2526 if (err) 2527 goto free_extent_state_cache; 2528 2529 err = ordered_data_init(); 2530 if (err) 2531 goto free_extent_map; 2532 2533 err = btrfs_delayed_inode_init(); 2534 if (err) 2535 goto free_ordered_data; 2536 2537 err = btrfs_auto_defrag_init(); 2538 if (err) 2539 goto free_delayed_inode; 2540 2541 err = btrfs_delayed_ref_init(); 2542 if (err) 2543 goto free_auto_defrag; 2544 2545 err = btrfs_prelim_ref_init(); 2546 if (err) 2547 goto free_delayed_ref; 2548 2549 err = btrfs_end_io_wq_init(); 2550 if (err) 2551 goto free_prelim_ref; 2552 2553 err = btrfs_interface_init(); 2554 if (err) 2555 goto free_end_io_wq; 2556 2557 btrfs_init_lockdep(); 2558 2559 btrfs_print_mod_info(); 2560 2561 err = btrfs_run_sanity_tests(); 2562 if (err) 2563 goto unregister_ioctl; 2564 2565 err = register_filesystem(&btrfs_fs_type); 2566 if (err) 2567 goto unregister_ioctl; 2568 2569 return 0; 2570 2571unregister_ioctl: 2572 btrfs_interface_exit(); 2573free_end_io_wq: 2574 btrfs_end_io_wq_exit(); 2575free_prelim_ref: 2576 btrfs_prelim_ref_exit(); 2577free_delayed_ref: 2578 btrfs_delayed_ref_exit(); 2579free_auto_defrag: 2580 btrfs_auto_defrag_exit(); 2581free_delayed_inode: 2582 btrfs_delayed_inode_exit(); 2583free_ordered_data: 2584 ordered_data_exit(); 2585free_extent_map: 2586 extent_map_exit(); 2587free_extent_state_cache: 2588 extent_state_cache_exit(); 2589free_extent_io: 2590 extent_io_exit(); 2591free_cachep: 2592 btrfs_destroy_cachep(); 2593free_compress: 2594 btrfs_exit_compress(); 2595 btrfs_exit_sysfs(); 2596 2597 return err; 2598} 2599 2600static void __exit exit_btrfs_fs(void) 2601{ 2602 btrfs_destroy_cachep(); 2603 btrfs_delayed_ref_exit(); 2604 btrfs_auto_defrag_exit(); 2605 btrfs_delayed_inode_exit(); 2606 btrfs_prelim_ref_exit(); 2607 ordered_data_exit(); 2608 extent_map_exit(); 2609 extent_state_cache_exit(); 2610 extent_io_exit(); 2611 btrfs_interface_exit(); 2612 btrfs_end_io_wq_exit(); 2613 unregister_filesystem(&btrfs_fs_type); 2614 btrfs_exit_sysfs(); 2615 btrfs_cleanup_fs_uuids(); 2616 btrfs_exit_compress(); 2617} 2618 2619late_initcall(init_btrfs_fs); 2620module_exit(exit_btrfs_fs) 2621 2622MODULE_LICENSE("GPL"); 2623MODULE_SOFTDEP("pre: crc32c"); 2624MODULE_SOFTDEP("pre: xxhash64"); 2625MODULE_SOFTDEP("pre: sha256"); 2626MODULE_SOFTDEP("pre: blake2b-256"); 2627