xref: /kernel/linux/linux-5.10/fs/btrfs/super.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/blkdev.h>
7#include <linux/module.h>
8#include <linux/fs.h>
9#include <linux/pagemap.h>
10#include <linux/highmem.h>
11#include <linux/time.h>
12#include <linux/init.h>
13#include <linux/seq_file.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/mount.h>
17#include <linux/writeback.h>
18#include <linux/statfs.h>
19#include <linux/compat.h>
20#include <linux/parser.h>
21#include <linux/ctype.h>
22#include <linux/namei.h>
23#include <linux/miscdevice.h>
24#include <linux/magic.h>
25#include <linux/slab.h>
26#include <linux/cleancache.h>
27#include <linux/ratelimit.h>
28#include <linux/crc32c.h>
29#include <linux/btrfs.h>
30#include "delayed-inode.h"
31#include "ctree.h"
32#include "disk-io.h"
33#include "transaction.h"
34#include "btrfs_inode.h"
35#include "print-tree.h"
36#include "props.h"
37#include "xattr.h"
38#include "volumes.h"
39#include "export.h"
40#include "compression.h"
41#include "rcu-string.h"
42#include "dev-replace.h"
43#include "free-space-cache.h"
44#include "backref.h"
45#include "space-info.h"
46#include "sysfs.h"
47#include "tests/btrfs-tests.h"
48#include "block-group.h"
49#include "discard.h"
50
51#include "qgroup.h"
52#define CREATE_TRACE_POINTS
53#include <trace/events/btrfs.h>
54
55static const struct super_operations btrfs_super_ops;
56
57/*
58 * Types for mounting the default subvolume and a subvolume explicitly
59 * requested by subvol=/path. That way the callchain is straightforward and we
60 * don't have to play tricks with the mount options and recursive calls to
61 * btrfs_mount.
62 *
63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
64 */
65static struct file_system_type btrfs_fs_type;
66static struct file_system_type btrfs_root_fs_type;
67
68static int btrfs_remount(struct super_block *sb, int *flags, char *data);
69
70/*
71 * Generally the error codes correspond to their respective errors, but there
72 * are a few special cases.
73 *
74 * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
75 *          instance will return EUCLEAN if any of the blocks are corrupted in
76 *          a way that is problematic.  We want to reserve EUCLEAN for these
77 *          sort of corruptions.
78 *
79 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
80 *        need to use EROFS for this case.  We will have no idea of the
81 *        original failure, that will have been reported at the time we tripped
82 *        over the error.  Each subsequent error that doesn't have any context
83 *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
84 */
85const char * __attribute_const__ btrfs_decode_error(int errno)
86{
87	char *errstr = "unknown";
88
89	switch (errno) {
90	case -ENOENT:		/* -2 */
91		errstr = "No such entry";
92		break;
93	case -EIO:		/* -5 */
94		errstr = "IO failure";
95		break;
96	case -ENOMEM:		/* -12*/
97		errstr = "Out of memory";
98		break;
99	case -EEXIST:		/* -17 */
100		errstr = "Object already exists";
101		break;
102	case -ENOSPC:		/* -28 */
103		errstr = "No space left";
104		break;
105	case -EROFS:		/* -30 */
106		errstr = "Readonly filesystem";
107		break;
108	case -EOPNOTSUPP:	/* -95 */
109		errstr = "Operation not supported";
110		break;
111	case -EUCLEAN:		/* -117 */
112		errstr = "Filesystem corrupted";
113		break;
114	case -EDQUOT:		/* -122 */
115		errstr = "Quota exceeded";
116		break;
117	}
118
119	return errstr;
120}
121
122/*
123 * __btrfs_handle_fs_error decodes expected errors from the caller and
124 * invokes the appropriate error response.
125 */
126__cold
127void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
128		       unsigned int line, int errno, const char *fmt, ...)
129{
130	struct super_block *sb = fs_info->sb;
131#ifdef CONFIG_PRINTK
132	const char *errstr;
133#endif
134
135	/*
136	 * Special case: if the error is EROFS, and we're already
137	 * under SB_RDONLY, then it is safe here.
138	 */
139	if (errno == -EROFS && sb_rdonly(sb))
140  		return;
141
142#ifdef CONFIG_PRINTK
143	errstr = btrfs_decode_error(errno);
144	if (fmt) {
145		struct va_format vaf;
146		va_list args;
147
148		va_start(args, fmt);
149		vaf.fmt = fmt;
150		vaf.va = &args;
151
152		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
153			sb->s_id, function, line, errno, errstr, &vaf);
154		va_end(args);
155	} else {
156		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
157			sb->s_id, function, line, errno, errstr);
158	}
159#endif
160
161	/*
162	 * Today we only save the error info to memory.  Long term we'll
163	 * also send it down to the disk
164	 */
165	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
166
167	/* Don't go through full error handling during mount */
168	if (!(sb->s_flags & SB_BORN))
169		return;
170
171	if (sb_rdonly(sb))
172		return;
173
174	btrfs_discard_stop(fs_info);
175
176	/* btrfs handle error by forcing the filesystem readonly */
177	sb->s_flags |= SB_RDONLY;
178	btrfs_info(fs_info, "forced readonly");
179	/*
180	 * Note that a running device replace operation is not canceled here
181	 * although there is no way to update the progress. It would add the
182	 * risk of a deadlock, therefore the canceling is omitted. The only
183	 * penalty is that some I/O remains active until the procedure
184	 * completes. The next time when the filesystem is mounted writable
185	 * again, the device replace operation continues.
186	 */
187}
188
189#ifdef CONFIG_PRINTK
190static const char * const logtypes[] = {
191	"emergency",
192	"alert",
193	"critical",
194	"error",
195	"warning",
196	"notice",
197	"info",
198	"debug",
199};
200
201
202/*
203 * Use one ratelimit state per log level so that a flood of less important
204 * messages doesn't cause more important ones to be dropped.
205 */
206static struct ratelimit_state printk_limits[] = {
207	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
208	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
209	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
210	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
211	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
212	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
213	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
214	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
215};
216
217void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
218{
219	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
220	struct va_format vaf;
221	va_list args;
222	int kern_level;
223	const char *type = logtypes[4];
224	struct ratelimit_state *ratelimit = &printk_limits[4];
225
226	va_start(args, fmt);
227
228	while ((kern_level = printk_get_level(fmt)) != 0) {
229		size_t size = printk_skip_level(fmt) - fmt;
230
231		if (kern_level >= '0' && kern_level <= '7') {
232			memcpy(lvl, fmt,  size);
233			lvl[size] = '\0';
234			type = logtypes[kern_level - '0'];
235			ratelimit = &printk_limits[kern_level - '0'];
236		}
237		fmt += size;
238	}
239
240	vaf.fmt = fmt;
241	vaf.va = &args;
242
243	if (__ratelimit(ratelimit))
244		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
245			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
246
247	va_end(args);
248}
249#endif
250
251/*
252 * We only mark the transaction aborted and then set the file system read-only.
253 * This will prevent new transactions from starting or trying to join this
254 * one.
255 *
256 * This means that error recovery at the call site is limited to freeing
257 * any local memory allocations and passing the error code up without
258 * further cleanup. The transaction should complete as it normally would
259 * in the call path but will return -EIO.
260 *
261 * We'll complete the cleanup in btrfs_end_transaction and
262 * btrfs_commit_transaction.
263 */
264__cold
265void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
266			       const char *function,
267			       unsigned int line, int errno)
268{
269	struct btrfs_fs_info *fs_info = trans->fs_info;
270
271	WRITE_ONCE(trans->aborted, errno);
272	/* Nothing used. The other threads that have joined this
273	 * transaction may be able to continue. */
274	if (!trans->dirty && list_empty(&trans->new_bgs)) {
275		const char *errstr;
276
277		errstr = btrfs_decode_error(errno);
278		btrfs_warn(fs_info,
279		           "%s:%d: Aborting unused transaction(%s).",
280		           function, line, errstr);
281		return;
282	}
283	WRITE_ONCE(trans->transaction->aborted, errno);
284	/* Wake up anybody who may be waiting on this transaction */
285	wake_up(&fs_info->transaction_wait);
286	wake_up(&fs_info->transaction_blocked_wait);
287	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
288}
289/*
290 * __btrfs_panic decodes unexpected, fatal errors from the caller,
291 * issues an alert, and either panics or BUGs, depending on mount options.
292 */
293__cold
294void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
295		   unsigned int line, int errno, const char *fmt, ...)
296{
297	char *s_id = "<unknown>";
298	const char *errstr;
299	struct va_format vaf = { .fmt = fmt };
300	va_list args;
301
302	if (fs_info)
303		s_id = fs_info->sb->s_id;
304
305	va_start(args, fmt);
306	vaf.va = &args;
307
308	errstr = btrfs_decode_error(errno);
309	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
310		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
311			s_id, function, line, &vaf, errno, errstr);
312
313	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
314		   function, line, &vaf, errno, errstr);
315	va_end(args);
316	/* Caller calls BUG() */
317}
318
319static void btrfs_put_super(struct super_block *sb)
320{
321	close_ctree(btrfs_sb(sb));
322}
323
324enum {
325	Opt_acl, Opt_noacl,
326	Opt_clear_cache,
327	Opt_commit_interval,
328	Opt_compress,
329	Opt_compress_force,
330	Opt_compress_force_type,
331	Opt_compress_type,
332	Opt_degraded,
333	Opt_device,
334	Opt_fatal_errors,
335	Opt_flushoncommit, Opt_noflushoncommit,
336	Opt_inode_cache, Opt_noinode_cache,
337	Opt_max_inline,
338	Opt_barrier, Opt_nobarrier,
339	Opt_datacow, Opt_nodatacow,
340	Opt_datasum, Opt_nodatasum,
341	Opt_defrag, Opt_nodefrag,
342	Opt_discard, Opt_nodiscard,
343	Opt_discard_mode,
344	Opt_norecovery,
345	Opt_ratio,
346	Opt_rescan_uuid_tree,
347	Opt_skip_balance,
348	Opt_space_cache, Opt_no_space_cache,
349	Opt_space_cache_version,
350	Opt_ssd, Opt_nossd,
351	Opt_ssd_spread, Opt_nossd_spread,
352	Opt_subvol,
353	Opt_subvol_empty,
354	Opt_subvolid,
355	Opt_thread_pool,
356	Opt_treelog, Opt_notreelog,
357	Opt_user_subvol_rm_allowed,
358
359	/* Rescue options */
360	Opt_rescue,
361	Opt_usebackuproot,
362	Opt_nologreplay,
363
364	/* Deprecated options */
365	Opt_recovery,
366
367	/* Debugging options */
368	Opt_check_integrity,
369	Opt_check_integrity_including_extent_data,
370	Opt_check_integrity_print_mask,
371	Opt_enospc_debug, Opt_noenospc_debug,
372#ifdef CONFIG_BTRFS_DEBUG
373	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
374#endif
375#ifdef CONFIG_BTRFS_FS_REF_VERIFY
376	Opt_ref_verify,
377#endif
378	Opt_err,
379};
380
381static const match_table_t tokens = {
382	{Opt_acl, "acl"},
383	{Opt_noacl, "noacl"},
384	{Opt_clear_cache, "clear_cache"},
385	{Opt_commit_interval, "commit=%u"},
386	{Opt_compress, "compress"},
387	{Opt_compress_type, "compress=%s"},
388	{Opt_compress_force, "compress-force"},
389	{Opt_compress_force_type, "compress-force=%s"},
390	{Opt_degraded, "degraded"},
391	{Opt_device, "device=%s"},
392	{Opt_fatal_errors, "fatal_errors=%s"},
393	{Opt_flushoncommit, "flushoncommit"},
394	{Opt_noflushoncommit, "noflushoncommit"},
395	{Opt_inode_cache, "inode_cache"},
396	{Opt_noinode_cache, "noinode_cache"},
397	{Opt_max_inline, "max_inline=%s"},
398	{Opt_barrier, "barrier"},
399	{Opt_nobarrier, "nobarrier"},
400	{Opt_datacow, "datacow"},
401	{Opt_nodatacow, "nodatacow"},
402	{Opt_datasum, "datasum"},
403	{Opt_nodatasum, "nodatasum"},
404	{Opt_defrag, "autodefrag"},
405	{Opt_nodefrag, "noautodefrag"},
406	{Opt_discard, "discard"},
407	{Opt_discard_mode, "discard=%s"},
408	{Opt_nodiscard, "nodiscard"},
409	{Opt_norecovery, "norecovery"},
410	{Opt_ratio, "metadata_ratio=%u"},
411	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
412	{Opt_skip_balance, "skip_balance"},
413	{Opt_space_cache, "space_cache"},
414	{Opt_no_space_cache, "nospace_cache"},
415	{Opt_space_cache_version, "space_cache=%s"},
416	{Opt_ssd, "ssd"},
417	{Opt_nossd, "nossd"},
418	{Opt_ssd_spread, "ssd_spread"},
419	{Opt_nossd_spread, "nossd_spread"},
420	{Opt_subvol, "subvol=%s"},
421	{Opt_subvol_empty, "subvol="},
422	{Opt_subvolid, "subvolid=%s"},
423	{Opt_thread_pool, "thread_pool=%u"},
424	{Opt_treelog, "treelog"},
425	{Opt_notreelog, "notreelog"},
426	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
427
428	/* Rescue options */
429	{Opt_rescue, "rescue=%s"},
430	/* Deprecated, with alias rescue=nologreplay */
431	{Opt_nologreplay, "nologreplay"},
432	/* Deprecated, with alias rescue=usebackuproot */
433	{Opt_usebackuproot, "usebackuproot"},
434
435	/* Deprecated options */
436	{Opt_recovery, "recovery"},
437
438	/* Debugging options */
439	{Opt_check_integrity, "check_int"},
440	{Opt_check_integrity_including_extent_data, "check_int_data"},
441	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
442	{Opt_enospc_debug, "enospc_debug"},
443	{Opt_noenospc_debug, "noenospc_debug"},
444#ifdef CONFIG_BTRFS_DEBUG
445	{Opt_fragment_data, "fragment=data"},
446	{Opt_fragment_metadata, "fragment=metadata"},
447	{Opt_fragment_all, "fragment=all"},
448#endif
449#ifdef CONFIG_BTRFS_FS_REF_VERIFY
450	{Opt_ref_verify, "ref_verify"},
451#endif
452	{Opt_err, NULL},
453};
454
455static const match_table_t rescue_tokens = {
456	{Opt_usebackuproot, "usebackuproot"},
457	{Opt_nologreplay, "nologreplay"},
458	{Opt_err, NULL},
459};
460
461static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
462{
463	char *opts;
464	char *orig;
465	char *p;
466	substring_t args[MAX_OPT_ARGS];
467	int ret = 0;
468
469	opts = kstrdup(options, GFP_KERNEL);
470	if (!opts)
471		return -ENOMEM;
472	orig = opts;
473
474	while ((p = strsep(&opts, ":")) != NULL) {
475		int token;
476
477		if (!*p)
478			continue;
479		token = match_token(p, rescue_tokens, args);
480		switch (token){
481		case Opt_usebackuproot:
482			btrfs_info(info,
483				   "trying to use backup root at mount time");
484			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
485			break;
486		case Opt_nologreplay:
487			btrfs_set_and_info(info, NOLOGREPLAY,
488					   "disabling log replay at mount time");
489			break;
490		case Opt_err:
491			btrfs_info(info, "unrecognized rescue option '%s'", p);
492			ret = -EINVAL;
493			goto out;
494		default:
495			break;
496		}
497
498	}
499out:
500	kfree(orig);
501	return ret;
502}
503
504/*
505 * Regular mount options parser.  Everything that is needed only when
506 * reading in a new superblock is parsed here.
507 * XXX JDM: This needs to be cleaned up for remount.
508 */
509int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
510			unsigned long new_flags)
511{
512	substring_t args[MAX_OPT_ARGS];
513	char *p, *num;
514	u64 cache_gen;
515	int intarg;
516	int ret = 0;
517	char *compress_type;
518	bool compress_force = false;
519	enum btrfs_compression_type saved_compress_type;
520	int saved_compress_level;
521	bool saved_compress_force;
522	int no_compress = 0;
523
524	cache_gen = btrfs_super_cache_generation(info->super_copy);
525	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
526		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
527	else if (cache_gen)
528		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
529
530	/*
531	 * Even the options are empty, we still need to do extra check
532	 * against new flags
533	 */
534	if (!options)
535		goto check;
536
537	while ((p = strsep(&options, ",")) != NULL) {
538		int token;
539		if (!*p)
540			continue;
541
542		token = match_token(p, tokens, args);
543		switch (token) {
544		case Opt_degraded:
545			btrfs_info(info, "allowing degraded mounts");
546			btrfs_set_opt(info->mount_opt, DEGRADED);
547			break;
548		case Opt_subvol:
549		case Opt_subvol_empty:
550		case Opt_subvolid:
551		case Opt_device:
552			/*
553			 * These are parsed by btrfs_parse_subvol_options or
554			 * btrfs_parse_device_options and can be ignored here.
555			 */
556			break;
557		case Opt_nodatasum:
558			btrfs_set_and_info(info, NODATASUM,
559					   "setting nodatasum");
560			break;
561		case Opt_datasum:
562			if (btrfs_test_opt(info, NODATASUM)) {
563				if (btrfs_test_opt(info, NODATACOW))
564					btrfs_info(info,
565						   "setting datasum, datacow enabled");
566				else
567					btrfs_info(info, "setting datasum");
568			}
569			btrfs_clear_opt(info->mount_opt, NODATACOW);
570			btrfs_clear_opt(info->mount_opt, NODATASUM);
571			break;
572		case Opt_nodatacow:
573			if (!btrfs_test_opt(info, NODATACOW)) {
574				if (!btrfs_test_opt(info, COMPRESS) ||
575				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
576					btrfs_info(info,
577						   "setting nodatacow, compression disabled");
578				} else {
579					btrfs_info(info, "setting nodatacow");
580				}
581			}
582			btrfs_clear_opt(info->mount_opt, COMPRESS);
583			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
584			btrfs_set_opt(info->mount_opt, NODATACOW);
585			btrfs_set_opt(info->mount_opt, NODATASUM);
586			break;
587		case Opt_datacow:
588			btrfs_clear_and_info(info, NODATACOW,
589					     "setting datacow");
590			break;
591		case Opt_compress_force:
592		case Opt_compress_force_type:
593			compress_force = true;
594			fallthrough;
595		case Opt_compress:
596		case Opt_compress_type:
597			saved_compress_type = btrfs_test_opt(info,
598							     COMPRESS) ?
599				info->compress_type : BTRFS_COMPRESS_NONE;
600			saved_compress_force =
601				btrfs_test_opt(info, FORCE_COMPRESS);
602			saved_compress_level = info->compress_level;
603			if (token == Opt_compress ||
604			    token == Opt_compress_force ||
605			    strncmp(args[0].from, "zlib", 4) == 0) {
606				compress_type = "zlib";
607
608				info->compress_type = BTRFS_COMPRESS_ZLIB;
609				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
610				/*
611				 * args[0] contains uninitialized data since
612				 * for these tokens we don't expect any
613				 * parameter.
614				 */
615				if (token != Opt_compress &&
616				    token != Opt_compress_force)
617					info->compress_level =
618					  btrfs_compress_str2level(
619							BTRFS_COMPRESS_ZLIB,
620							args[0].from + 4);
621				btrfs_set_opt(info->mount_opt, COMPRESS);
622				btrfs_clear_opt(info->mount_opt, NODATACOW);
623				btrfs_clear_opt(info->mount_opt, NODATASUM);
624				no_compress = 0;
625			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
626				compress_type = "lzo";
627				info->compress_type = BTRFS_COMPRESS_LZO;
628				info->compress_level = 0;
629				btrfs_set_opt(info->mount_opt, COMPRESS);
630				btrfs_clear_opt(info->mount_opt, NODATACOW);
631				btrfs_clear_opt(info->mount_opt, NODATASUM);
632				btrfs_set_fs_incompat(info, COMPRESS_LZO);
633				no_compress = 0;
634			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
635				compress_type = "zstd";
636				info->compress_type = BTRFS_COMPRESS_ZSTD;
637				info->compress_level =
638					btrfs_compress_str2level(
639							 BTRFS_COMPRESS_ZSTD,
640							 args[0].from + 4);
641				btrfs_set_opt(info->mount_opt, COMPRESS);
642				btrfs_clear_opt(info->mount_opt, NODATACOW);
643				btrfs_clear_opt(info->mount_opt, NODATASUM);
644				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
645				no_compress = 0;
646			} else if (strncmp(args[0].from, "no", 2) == 0) {
647				compress_type = "no";
648				info->compress_level = 0;
649				info->compress_type = 0;
650				btrfs_clear_opt(info->mount_opt, COMPRESS);
651				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
652				compress_force = false;
653				no_compress++;
654			} else {
655				btrfs_err(info, "unrecognized compression value %s",
656					  args[0].from);
657				ret = -EINVAL;
658				goto out;
659			}
660
661			if (compress_force) {
662				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
663			} else {
664				/*
665				 * If we remount from compress-force=xxx to
666				 * compress=xxx, we need clear FORCE_COMPRESS
667				 * flag, otherwise, there is no way for users
668				 * to disable forcible compression separately.
669				 */
670				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
671			}
672			if (no_compress == 1) {
673				btrfs_info(info, "use no compression");
674			} else if ((info->compress_type != saved_compress_type) ||
675				   (compress_force != saved_compress_force) ||
676				   (info->compress_level != saved_compress_level)) {
677				btrfs_info(info, "%s %s compression, level %d",
678					   (compress_force) ? "force" : "use",
679					   compress_type, info->compress_level);
680			}
681			compress_force = false;
682			break;
683		case Opt_ssd:
684			btrfs_set_and_info(info, SSD,
685					   "enabling ssd optimizations");
686			btrfs_clear_opt(info->mount_opt, NOSSD);
687			break;
688		case Opt_ssd_spread:
689			btrfs_set_and_info(info, SSD,
690					   "enabling ssd optimizations");
691			btrfs_set_and_info(info, SSD_SPREAD,
692					   "using spread ssd allocation scheme");
693			btrfs_clear_opt(info->mount_opt, NOSSD);
694			break;
695		case Opt_nossd:
696			btrfs_set_opt(info->mount_opt, NOSSD);
697			btrfs_clear_and_info(info, SSD,
698					     "not using ssd optimizations");
699			fallthrough;
700		case Opt_nossd_spread:
701			btrfs_clear_and_info(info, SSD_SPREAD,
702					     "not using spread ssd allocation scheme");
703			break;
704		case Opt_barrier:
705			btrfs_clear_and_info(info, NOBARRIER,
706					     "turning on barriers");
707			break;
708		case Opt_nobarrier:
709			btrfs_set_and_info(info, NOBARRIER,
710					   "turning off barriers");
711			break;
712		case Opt_thread_pool:
713			ret = match_int(&args[0], &intarg);
714			if (ret) {
715				btrfs_err(info, "unrecognized thread_pool value %s",
716					  args[0].from);
717				goto out;
718			} else if (intarg == 0) {
719				btrfs_err(info, "invalid value 0 for thread_pool");
720				ret = -EINVAL;
721				goto out;
722			}
723			info->thread_pool_size = intarg;
724			break;
725		case Opt_max_inline:
726			num = match_strdup(&args[0]);
727			if (num) {
728				info->max_inline = memparse(num, NULL);
729				kfree(num);
730
731				if (info->max_inline) {
732					info->max_inline = min_t(u64,
733						info->max_inline,
734						info->sectorsize);
735				}
736				btrfs_info(info, "max_inline at %llu",
737					   info->max_inline);
738			} else {
739				ret = -ENOMEM;
740				goto out;
741			}
742			break;
743		case Opt_acl:
744#ifdef CONFIG_BTRFS_FS_POSIX_ACL
745			info->sb->s_flags |= SB_POSIXACL;
746			break;
747#else
748			btrfs_err(info, "support for ACL not compiled in!");
749			ret = -EINVAL;
750			goto out;
751#endif
752		case Opt_noacl:
753			info->sb->s_flags &= ~SB_POSIXACL;
754			break;
755		case Opt_notreelog:
756			btrfs_set_and_info(info, NOTREELOG,
757					   "disabling tree log");
758			break;
759		case Opt_treelog:
760			btrfs_clear_and_info(info, NOTREELOG,
761					     "enabling tree log");
762			break;
763		case Opt_norecovery:
764		case Opt_nologreplay:
765			btrfs_warn(info,
766		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
767			btrfs_set_and_info(info, NOLOGREPLAY,
768					   "disabling log replay at mount time");
769			break;
770		case Opt_flushoncommit:
771			btrfs_set_and_info(info, FLUSHONCOMMIT,
772					   "turning on flush-on-commit");
773			break;
774		case Opt_noflushoncommit:
775			btrfs_clear_and_info(info, FLUSHONCOMMIT,
776					     "turning off flush-on-commit");
777			break;
778		case Opt_ratio:
779			ret = match_int(&args[0], &intarg);
780			if (ret) {
781				btrfs_err(info, "unrecognized metadata_ratio value %s",
782					  args[0].from);
783				goto out;
784			}
785			info->metadata_ratio = intarg;
786			btrfs_info(info, "metadata ratio %u",
787				   info->metadata_ratio);
788			break;
789		case Opt_discard:
790		case Opt_discard_mode:
791			if (token == Opt_discard ||
792			    strcmp(args[0].from, "sync") == 0) {
793				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
794				btrfs_set_and_info(info, DISCARD_SYNC,
795						   "turning on sync discard");
796			} else if (strcmp(args[0].from, "async") == 0) {
797				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
798				btrfs_set_and_info(info, DISCARD_ASYNC,
799						   "turning on async discard");
800			} else {
801				btrfs_err(info, "unrecognized discard mode value %s",
802					  args[0].from);
803				ret = -EINVAL;
804				goto out;
805			}
806			break;
807		case Opt_nodiscard:
808			btrfs_clear_and_info(info, DISCARD_SYNC,
809					     "turning off discard");
810			btrfs_clear_and_info(info, DISCARD_ASYNC,
811					     "turning off async discard");
812			break;
813		case Opt_space_cache:
814		case Opt_space_cache_version:
815			if (token == Opt_space_cache ||
816			    strcmp(args[0].from, "v1") == 0) {
817				btrfs_clear_opt(info->mount_opt,
818						FREE_SPACE_TREE);
819				btrfs_set_and_info(info, SPACE_CACHE,
820					   "enabling disk space caching");
821			} else if (strcmp(args[0].from, "v2") == 0) {
822				btrfs_clear_opt(info->mount_opt,
823						SPACE_CACHE);
824				btrfs_set_and_info(info, FREE_SPACE_TREE,
825						   "enabling free space tree");
826			} else {
827				btrfs_err(info, "unrecognized space_cache value %s",
828					  args[0].from);
829				ret = -EINVAL;
830				goto out;
831			}
832			break;
833		case Opt_rescan_uuid_tree:
834			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
835			break;
836		case Opt_no_space_cache:
837			if (btrfs_test_opt(info, SPACE_CACHE)) {
838				btrfs_clear_and_info(info, SPACE_CACHE,
839					     "disabling disk space caching");
840			}
841			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
842				btrfs_clear_and_info(info, FREE_SPACE_TREE,
843					     "disabling free space tree");
844			}
845			break;
846		case Opt_inode_cache:
847			btrfs_warn(info,
848	"the 'inode_cache' option is deprecated and will have no effect from 5.11");
849			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
850					   "enabling inode map caching");
851			break;
852		case Opt_noinode_cache:
853			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
854					     "disabling inode map caching");
855			break;
856		case Opt_clear_cache:
857			btrfs_set_and_info(info, CLEAR_CACHE,
858					   "force clearing of disk cache");
859			break;
860		case Opt_user_subvol_rm_allowed:
861			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
862			break;
863		case Opt_enospc_debug:
864			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
865			break;
866		case Opt_noenospc_debug:
867			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
868			break;
869		case Opt_defrag:
870			btrfs_set_and_info(info, AUTO_DEFRAG,
871					   "enabling auto defrag");
872			break;
873		case Opt_nodefrag:
874			btrfs_clear_and_info(info, AUTO_DEFRAG,
875					     "disabling auto defrag");
876			break;
877		case Opt_recovery:
878		case Opt_usebackuproot:
879			btrfs_warn(info,
880			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
881				   token == Opt_recovery ? "recovery" :
882				   "usebackuproot");
883			btrfs_info(info,
884				   "trying to use backup root at mount time");
885			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
886			break;
887		case Opt_skip_balance:
888			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
889			break;
890#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
891		case Opt_check_integrity_including_extent_data:
892			btrfs_info(info,
893				   "enabling check integrity including extent data");
894			btrfs_set_opt(info->mount_opt,
895				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
896			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
897			break;
898		case Opt_check_integrity:
899			btrfs_info(info, "enabling check integrity");
900			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
901			break;
902		case Opt_check_integrity_print_mask:
903			ret = match_int(&args[0], &intarg);
904			if (ret) {
905				btrfs_err(info,
906				"unrecognized check_integrity_print_mask value %s",
907					args[0].from);
908				goto out;
909			}
910			info->check_integrity_print_mask = intarg;
911			btrfs_info(info, "check_integrity_print_mask 0x%x",
912				   info->check_integrity_print_mask);
913			break;
914#else
915		case Opt_check_integrity_including_extent_data:
916		case Opt_check_integrity:
917		case Opt_check_integrity_print_mask:
918			btrfs_err(info,
919				  "support for check_integrity* not compiled in!");
920			ret = -EINVAL;
921			goto out;
922#endif
923		case Opt_fatal_errors:
924			if (strcmp(args[0].from, "panic") == 0) {
925				btrfs_set_opt(info->mount_opt,
926					      PANIC_ON_FATAL_ERROR);
927			} else if (strcmp(args[0].from, "bug") == 0) {
928				btrfs_clear_opt(info->mount_opt,
929					      PANIC_ON_FATAL_ERROR);
930			} else {
931				btrfs_err(info, "unrecognized fatal_errors value %s",
932					  args[0].from);
933				ret = -EINVAL;
934				goto out;
935			}
936			break;
937		case Opt_commit_interval:
938			intarg = 0;
939			ret = match_int(&args[0], &intarg);
940			if (ret) {
941				btrfs_err(info, "unrecognized commit_interval value %s",
942					  args[0].from);
943				ret = -EINVAL;
944				goto out;
945			}
946			if (intarg == 0) {
947				btrfs_info(info,
948					   "using default commit interval %us",
949					   BTRFS_DEFAULT_COMMIT_INTERVAL);
950				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
951			} else if (intarg > 300) {
952				btrfs_warn(info, "excessive commit interval %d",
953					   intarg);
954			}
955			info->commit_interval = intarg;
956			break;
957		case Opt_rescue:
958			ret = parse_rescue_options(info, args[0].from);
959			if (ret < 0) {
960				btrfs_err(info, "unrecognized rescue value %s",
961					  args[0].from);
962				goto out;
963			}
964			break;
965#ifdef CONFIG_BTRFS_DEBUG
966		case Opt_fragment_all:
967			btrfs_info(info, "fragmenting all space");
968			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
969			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
970			break;
971		case Opt_fragment_metadata:
972			btrfs_info(info, "fragmenting metadata");
973			btrfs_set_opt(info->mount_opt,
974				      FRAGMENT_METADATA);
975			break;
976		case Opt_fragment_data:
977			btrfs_info(info, "fragmenting data");
978			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
979			break;
980#endif
981#ifdef CONFIG_BTRFS_FS_REF_VERIFY
982		case Opt_ref_verify:
983			btrfs_info(info, "doing ref verification");
984			btrfs_set_opt(info->mount_opt, REF_VERIFY);
985			break;
986#endif
987		case Opt_err:
988			btrfs_err(info, "unrecognized mount option '%s'", p);
989			ret = -EINVAL;
990			goto out;
991		default:
992			break;
993		}
994	}
995check:
996	/*
997	 * Extra check for current option against current flag
998	 */
999	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
1000		btrfs_err(info,
1001			  "nologreplay must be used with ro mount option");
1002		ret = -EINVAL;
1003	}
1004out:
1005	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
1006	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
1007	    !btrfs_test_opt(info, CLEAR_CACHE)) {
1008		btrfs_err(info, "cannot disable free space tree");
1009		ret = -EINVAL;
1010
1011	}
1012	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
1013		btrfs_info(info, "disk space caching is enabled");
1014	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
1015		btrfs_info(info, "using free space tree");
1016	return ret;
1017}
1018
1019/*
1020 * Parse mount options that are required early in the mount process.
1021 *
1022 * All other options will be parsed on much later in the mount process and
1023 * only when we need to allocate a new super block.
1024 */
1025static int btrfs_parse_device_options(const char *options, fmode_t flags,
1026				      void *holder)
1027{
1028	substring_t args[MAX_OPT_ARGS];
1029	char *device_name, *opts, *orig, *p;
1030	struct btrfs_device *device = NULL;
1031	int error = 0;
1032
1033	lockdep_assert_held(&uuid_mutex);
1034
1035	if (!options)
1036		return 0;
1037
1038	/*
1039	 * strsep changes the string, duplicate it because btrfs_parse_options
1040	 * gets called later
1041	 */
1042	opts = kstrdup(options, GFP_KERNEL);
1043	if (!opts)
1044		return -ENOMEM;
1045	orig = opts;
1046
1047	while ((p = strsep(&opts, ",")) != NULL) {
1048		int token;
1049
1050		if (!*p)
1051			continue;
1052
1053		token = match_token(p, tokens, args);
1054		if (token == Opt_device) {
1055			device_name = match_strdup(&args[0]);
1056			if (!device_name) {
1057				error = -ENOMEM;
1058				goto out;
1059			}
1060			device = btrfs_scan_one_device(device_name, flags,
1061					holder);
1062			kfree(device_name);
1063			if (IS_ERR(device)) {
1064				error = PTR_ERR(device);
1065				goto out;
1066			}
1067		}
1068	}
1069
1070out:
1071	kfree(orig);
1072	return error;
1073}
1074
1075/*
1076 * Parse mount options that are related to subvolume id
1077 *
1078 * The value is later passed to mount_subvol()
1079 */
1080static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1081		u64 *subvol_objectid)
1082{
1083	substring_t args[MAX_OPT_ARGS];
1084	char *opts, *orig, *p;
1085	int error = 0;
1086	u64 subvolid;
1087
1088	if (!options)
1089		return 0;
1090
1091	/*
1092	 * strsep changes the string, duplicate it because
1093	 * btrfs_parse_device_options gets called later
1094	 */
1095	opts = kstrdup(options, GFP_KERNEL);
1096	if (!opts)
1097		return -ENOMEM;
1098	orig = opts;
1099
1100	while ((p = strsep(&opts, ",")) != NULL) {
1101		int token;
1102		if (!*p)
1103			continue;
1104
1105		token = match_token(p, tokens, args);
1106		switch (token) {
1107		case Opt_subvol:
1108			kfree(*subvol_name);
1109			*subvol_name = match_strdup(&args[0]);
1110			if (!*subvol_name) {
1111				error = -ENOMEM;
1112				goto out;
1113			}
1114			break;
1115		case Opt_subvolid:
1116			error = match_u64(&args[0], &subvolid);
1117			if (error)
1118				goto out;
1119
1120			/* we want the original fs_tree */
1121			if (subvolid == 0)
1122				subvolid = BTRFS_FS_TREE_OBJECTID;
1123
1124			*subvol_objectid = subvolid;
1125			break;
1126		default:
1127			break;
1128		}
1129	}
1130
1131out:
1132	kfree(orig);
1133	return error;
1134}
1135
1136char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1137					  u64 subvol_objectid)
1138{
1139	struct btrfs_root *root = fs_info->tree_root;
1140	struct btrfs_root *fs_root = NULL;
1141	struct btrfs_root_ref *root_ref;
1142	struct btrfs_inode_ref *inode_ref;
1143	struct btrfs_key key;
1144	struct btrfs_path *path = NULL;
1145	char *name = NULL, *ptr;
1146	u64 dirid;
1147	int len;
1148	int ret;
1149
1150	path = btrfs_alloc_path();
1151	if (!path) {
1152		ret = -ENOMEM;
1153		goto err;
1154	}
1155	path->leave_spinning = 1;
1156
1157	name = kmalloc(PATH_MAX, GFP_KERNEL);
1158	if (!name) {
1159		ret = -ENOMEM;
1160		goto err;
1161	}
1162	ptr = name + PATH_MAX - 1;
1163	ptr[0] = '\0';
1164
1165	/*
1166	 * Walk up the subvolume trees in the tree of tree roots by root
1167	 * backrefs until we hit the top-level subvolume.
1168	 */
1169	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1170		key.objectid = subvol_objectid;
1171		key.type = BTRFS_ROOT_BACKREF_KEY;
1172		key.offset = (u64)-1;
1173
1174		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1175		if (ret < 0) {
1176			goto err;
1177		} else if (ret > 0) {
1178			ret = btrfs_previous_item(root, path, subvol_objectid,
1179						  BTRFS_ROOT_BACKREF_KEY);
1180			if (ret < 0) {
1181				goto err;
1182			} else if (ret > 0) {
1183				ret = -ENOENT;
1184				goto err;
1185			}
1186		}
1187
1188		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1189		subvol_objectid = key.offset;
1190
1191		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1192					  struct btrfs_root_ref);
1193		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1194		ptr -= len + 1;
1195		if (ptr < name) {
1196			ret = -ENAMETOOLONG;
1197			goto err;
1198		}
1199		read_extent_buffer(path->nodes[0], ptr + 1,
1200				   (unsigned long)(root_ref + 1), len);
1201		ptr[0] = '/';
1202		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1203		btrfs_release_path(path);
1204
1205		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1206		if (IS_ERR(fs_root)) {
1207			ret = PTR_ERR(fs_root);
1208			fs_root = NULL;
1209			goto err;
1210		}
1211
1212		/*
1213		 * Walk up the filesystem tree by inode refs until we hit the
1214		 * root directory.
1215		 */
1216		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1217			key.objectid = dirid;
1218			key.type = BTRFS_INODE_REF_KEY;
1219			key.offset = (u64)-1;
1220
1221			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1222			if (ret < 0) {
1223				goto err;
1224			} else if (ret > 0) {
1225				ret = btrfs_previous_item(fs_root, path, dirid,
1226							  BTRFS_INODE_REF_KEY);
1227				if (ret < 0) {
1228					goto err;
1229				} else if (ret > 0) {
1230					ret = -ENOENT;
1231					goto err;
1232				}
1233			}
1234
1235			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1236			dirid = key.offset;
1237
1238			inode_ref = btrfs_item_ptr(path->nodes[0],
1239						   path->slots[0],
1240						   struct btrfs_inode_ref);
1241			len = btrfs_inode_ref_name_len(path->nodes[0],
1242						       inode_ref);
1243			ptr -= len + 1;
1244			if (ptr < name) {
1245				ret = -ENAMETOOLONG;
1246				goto err;
1247			}
1248			read_extent_buffer(path->nodes[0], ptr + 1,
1249					   (unsigned long)(inode_ref + 1), len);
1250			ptr[0] = '/';
1251			btrfs_release_path(path);
1252		}
1253		btrfs_put_root(fs_root);
1254		fs_root = NULL;
1255	}
1256
1257	btrfs_free_path(path);
1258	if (ptr == name + PATH_MAX - 1) {
1259		name[0] = '/';
1260		name[1] = '\0';
1261	} else {
1262		memmove(name, ptr, name + PATH_MAX - ptr);
1263	}
1264	return name;
1265
1266err:
1267	btrfs_put_root(fs_root);
1268	btrfs_free_path(path);
1269	kfree(name);
1270	return ERR_PTR(ret);
1271}
1272
1273static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1274{
1275	struct btrfs_root *root = fs_info->tree_root;
1276	struct btrfs_dir_item *di;
1277	struct btrfs_path *path;
1278	struct btrfs_key location;
1279	u64 dir_id;
1280
1281	path = btrfs_alloc_path();
1282	if (!path)
1283		return -ENOMEM;
1284	path->leave_spinning = 1;
1285
1286	/*
1287	 * Find the "default" dir item which points to the root item that we
1288	 * will mount by default if we haven't been given a specific subvolume
1289	 * to mount.
1290	 */
1291	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1292	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1293	if (IS_ERR(di)) {
1294		btrfs_free_path(path);
1295		return PTR_ERR(di);
1296	}
1297	if (!di) {
1298		/*
1299		 * Ok the default dir item isn't there.  This is weird since
1300		 * it's always been there, but don't freak out, just try and
1301		 * mount the top-level subvolume.
1302		 */
1303		btrfs_free_path(path);
1304		*objectid = BTRFS_FS_TREE_OBJECTID;
1305		return 0;
1306	}
1307
1308	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1309	btrfs_free_path(path);
1310	*objectid = location.objectid;
1311	return 0;
1312}
1313
1314static int btrfs_fill_super(struct super_block *sb,
1315			    struct btrfs_fs_devices *fs_devices,
1316			    void *data)
1317{
1318	struct inode *inode;
1319	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1320	int err;
1321
1322	sb->s_maxbytes = MAX_LFS_FILESIZE;
1323	sb->s_magic = BTRFS_SUPER_MAGIC;
1324	sb->s_op = &btrfs_super_ops;
1325	sb->s_d_op = &btrfs_dentry_operations;
1326	sb->s_export_op = &btrfs_export_ops;
1327	sb->s_xattr = btrfs_xattr_handlers;
1328	sb->s_time_gran = 1;
1329#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1330	sb->s_flags |= SB_POSIXACL;
1331#endif
1332	sb->s_flags |= SB_I_VERSION;
1333	sb->s_iflags |= SB_I_CGROUPWB;
1334
1335	err = super_setup_bdi(sb);
1336	if (err) {
1337		btrfs_err(fs_info, "super_setup_bdi failed");
1338		return err;
1339	}
1340
1341	err = open_ctree(sb, fs_devices, (char *)data);
1342	if (err) {
1343		btrfs_err(fs_info, "open_ctree failed");
1344		return err;
1345	}
1346
1347	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1348	if (IS_ERR(inode)) {
1349		err = PTR_ERR(inode);
1350		goto fail_close;
1351	}
1352
1353	sb->s_root = d_make_root(inode);
1354	if (!sb->s_root) {
1355		err = -ENOMEM;
1356		goto fail_close;
1357	}
1358
1359	cleancache_init_fs(sb);
1360	sb->s_flags |= SB_ACTIVE;
1361	return 0;
1362
1363fail_close:
1364	close_ctree(fs_info);
1365	return err;
1366}
1367
1368int btrfs_sync_fs(struct super_block *sb, int wait)
1369{
1370	struct btrfs_trans_handle *trans;
1371	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1372	struct btrfs_root *root = fs_info->tree_root;
1373
1374	trace_btrfs_sync_fs(fs_info, wait);
1375
1376	if (!wait) {
1377		filemap_flush(fs_info->btree_inode->i_mapping);
1378		return 0;
1379	}
1380
1381	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1382
1383	trans = btrfs_attach_transaction_barrier(root);
1384	if (IS_ERR(trans)) {
1385		/* no transaction, don't bother */
1386		if (PTR_ERR(trans) == -ENOENT) {
1387			/*
1388			 * Exit unless we have some pending changes
1389			 * that need to go through commit
1390			 */
1391			if (fs_info->pending_changes == 0)
1392				return 0;
1393			/*
1394			 * A non-blocking test if the fs is frozen. We must not
1395			 * start a new transaction here otherwise a deadlock
1396			 * happens. The pending operations are delayed to the
1397			 * next commit after thawing.
1398			 */
1399			if (sb_start_write_trylock(sb))
1400				sb_end_write(sb);
1401			else
1402				return 0;
1403			trans = btrfs_start_transaction(root, 0);
1404		}
1405		if (IS_ERR(trans))
1406			return PTR_ERR(trans);
1407	}
1408	return btrfs_commit_transaction(trans);
1409}
1410
1411static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1412{
1413	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1414	const char *compress_type;
1415	const char *subvol_name;
1416
1417	if (btrfs_test_opt(info, DEGRADED))
1418		seq_puts(seq, ",degraded");
1419	if (btrfs_test_opt(info, NODATASUM))
1420		seq_puts(seq, ",nodatasum");
1421	if (btrfs_test_opt(info, NODATACOW))
1422		seq_puts(seq, ",nodatacow");
1423	if (btrfs_test_opt(info, NOBARRIER))
1424		seq_puts(seq, ",nobarrier");
1425	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1426		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1427	if (info->thread_pool_size !=  min_t(unsigned long,
1428					     num_online_cpus() + 2, 8))
1429		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1430	if (btrfs_test_opt(info, COMPRESS)) {
1431		compress_type = btrfs_compress_type2str(info->compress_type);
1432		if (btrfs_test_opt(info, FORCE_COMPRESS))
1433			seq_printf(seq, ",compress-force=%s", compress_type);
1434		else
1435			seq_printf(seq, ",compress=%s", compress_type);
1436		if (info->compress_level)
1437			seq_printf(seq, ":%d", info->compress_level);
1438	}
1439	if (btrfs_test_opt(info, NOSSD))
1440		seq_puts(seq, ",nossd");
1441	if (btrfs_test_opt(info, SSD_SPREAD))
1442		seq_puts(seq, ",ssd_spread");
1443	else if (btrfs_test_opt(info, SSD))
1444		seq_puts(seq, ",ssd");
1445	if (btrfs_test_opt(info, NOTREELOG))
1446		seq_puts(seq, ",notreelog");
1447	if (btrfs_test_opt(info, NOLOGREPLAY))
1448		seq_puts(seq, ",rescue=nologreplay");
1449	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1450		seq_puts(seq, ",flushoncommit");
1451	if (btrfs_test_opt(info, DISCARD_SYNC))
1452		seq_puts(seq, ",discard");
1453	if (btrfs_test_opt(info, DISCARD_ASYNC))
1454		seq_puts(seq, ",discard=async");
1455	if (!(info->sb->s_flags & SB_POSIXACL))
1456		seq_puts(seq, ",noacl");
1457	if (btrfs_test_opt(info, SPACE_CACHE))
1458		seq_puts(seq, ",space_cache");
1459	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1460		seq_puts(seq, ",space_cache=v2");
1461	else
1462		seq_puts(seq, ",nospace_cache");
1463	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1464		seq_puts(seq, ",rescan_uuid_tree");
1465	if (btrfs_test_opt(info, CLEAR_CACHE))
1466		seq_puts(seq, ",clear_cache");
1467	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1468		seq_puts(seq, ",user_subvol_rm_allowed");
1469	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1470		seq_puts(seq, ",enospc_debug");
1471	if (btrfs_test_opt(info, AUTO_DEFRAG))
1472		seq_puts(seq, ",autodefrag");
1473	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1474		seq_puts(seq, ",inode_cache");
1475	if (btrfs_test_opt(info, SKIP_BALANCE))
1476		seq_puts(seq, ",skip_balance");
1477#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1478	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1479		seq_puts(seq, ",check_int_data");
1480	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1481		seq_puts(seq, ",check_int");
1482	if (info->check_integrity_print_mask)
1483		seq_printf(seq, ",check_int_print_mask=%d",
1484				info->check_integrity_print_mask);
1485#endif
1486	if (info->metadata_ratio)
1487		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1488	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1489		seq_puts(seq, ",fatal_errors=panic");
1490	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1491		seq_printf(seq, ",commit=%u", info->commit_interval);
1492#ifdef CONFIG_BTRFS_DEBUG
1493	if (btrfs_test_opt(info, FRAGMENT_DATA))
1494		seq_puts(seq, ",fragment=data");
1495	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1496		seq_puts(seq, ",fragment=metadata");
1497#endif
1498	if (btrfs_test_opt(info, REF_VERIFY))
1499		seq_puts(seq, ",ref_verify");
1500	seq_printf(seq, ",subvolid=%llu",
1501		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1502	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1503			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1504	if (!IS_ERR(subvol_name)) {
1505		seq_puts(seq, ",subvol=");
1506		seq_escape(seq, subvol_name, " \t\n\\");
1507		kfree(subvol_name);
1508	}
1509	return 0;
1510}
1511
1512static int btrfs_test_super(struct super_block *s, void *data)
1513{
1514	struct btrfs_fs_info *p = data;
1515	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1516
1517	return fs_info->fs_devices == p->fs_devices;
1518}
1519
1520static int btrfs_set_super(struct super_block *s, void *data)
1521{
1522	int err = set_anon_super(s, data);
1523	if (!err)
1524		s->s_fs_info = data;
1525	return err;
1526}
1527
1528/*
1529 * subvolumes are identified by ino 256
1530 */
1531static inline int is_subvolume_inode(struct inode *inode)
1532{
1533	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1534		return 1;
1535	return 0;
1536}
1537
1538static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1539				   struct vfsmount *mnt)
1540{
1541	struct dentry *root;
1542	int ret;
1543
1544	if (!subvol_name) {
1545		if (!subvol_objectid) {
1546			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1547							  &subvol_objectid);
1548			if (ret) {
1549				root = ERR_PTR(ret);
1550				goto out;
1551			}
1552		}
1553		subvol_name = btrfs_get_subvol_name_from_objectid(
1554					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1555		if (IS_ERR(subvol_name)) {
1556			root = ERR_CAST(subvol_name);
1557			subvol_name = NULL;
1558			goto out;
1559		}
1560
1561	}
1562
1563	root = mount_subtree(mnt, subvol_name);
1564	/* mount_subtree() drops our reference on the vfsmount. */
1565	mnt = NULL;
1566
1567	if (!IS_ERR(root)) {
1568		struct super_block *s = root->d_sb;
1569		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1570		struct inode *root_inode = d_inode(root);
1571		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1572
1573		ret = 0;
1574		if (!is_subvolume_inode(root_inode)) {
1575			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1576			       subvol_name);
1577			ret = -EINVAL;
1578		}
1579		if (subvol_objectid && root_objectid != subvol_objectid) {
1580			/*
1581			 * This will also catch a race condition where a
1582			 * subvolume which was passed by ID is renamed and
1583			 * another subvolume is renamed over the old location.
1584			 */
1585			btrfs_err(fs_info,
1586				  "subvol '%s' does not match subvolid %llu",
1587				  subvol_name, subvol_objectid);
1588			ret = -EINVAL;
1589		}
1590		if (ret) {
1591			dput(root);
1592			root = ERR_PTR(ret);
1593			deactivate_locked_super(s);
1594		}
1595	}
1596
1597out:
1598	mntput(mnt);
1599	kfree(subvol_name);
1600	return root;
1601}
1602
1603/*
1604 * Find a superblock for the given device / mount point.
1605 *
1606 * Note: This is based on mount_bdev from fs/super.c with a few additions
1607 *       for multiple device setup.  Make sure to keep it in sync.
1608 */
1609static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1610		int flags, const char *device_name, void *data)
1611{
1612	struct block_device *bdev = NULL;
1613	struct super_block *s;
1614	struct btrfs_device *device = NULL;
1615	struct btrfs_fs_devices *fs_devices = NULL;
1616	struct btrfs_fs_info *fs_info = NULL;
1617	void *new_sec_opts = NULL;
1618	fmode_t mode = FMODE_READ;
1619	int error = 0;
1620
1621	if (!(flags & SB_RDONLY))
1622		mode |= FMODE_WRITE;
1623
1624	if (data) {
1625		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1626		if (error)
1627			return ERR_PTR(error);
1628	}
1629
1630	/*
1631	 * Setup a dummy root and fs_info for test/set super.  This is because
1632	 * we don't actually fill this stuff out until open_ctree, but we need
1633	 * then open_ctree will properly initialize the file system specific
1634	 * settings later.  btrfs_init_fs_info initializes the static elements
1635	 * of the fs_info (locks and such) to make cleanup easier if we find a
1636	 * superblock with our given fs_devices later on at sget() time.
1637	 */
1638	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1639	if (!fs_info) {
1640		error = -ENOMEM;
1641		goto error_sec_opts;
1642	}
1643	btrfs_init_fs_info(fs_info);
1644
1645	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1646	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1647	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1648		error = -ENOMEM;
1649		goto error_fs_info;
1650	}
1651
1652	mutex_lock(&uuid_mutex);
1653	error = btrfs_parse_device_options(data, mode, fs_type);
1654	if (error) {
1655		mutex_unlock(&uuid_mutex);
1656		goto error_fs_info;
1657	}
1658
1659	device = btrfs_scan_one_device(device_name, mode, fs_type);
1660	if (IS_ERR(device)) {
1661		mutex_unlock(&uuid_mutex);
1662		error = PTR_ERR(device);
1663		goto error_fs_info;
1664	}
1665
1666	fs_devices = device->fs_devices;
1667	fs_info->fs_devices = fs_devices;
1668
1669	error = btrfs_open_devices(fs_devices, mode, fs_type);
1670	mutex_unlock(&uuid_mutex);
1671	if (error)
1672		goto error_fs_info;
1673
1674	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1675		error = -EACCES;
1676		goto error_close_devices;
1677	}
1678
1679	bdev = fs_devices->latest_bdev;
1680	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1681		 fs_info);
1682	if (IS_ERR(s)) {
1683		error = PTR_ERR(s);
1684		goto error_close_devices;
1685	}
1686
1687	if (s->s_root) {
1688		btrfs_close_devices(fs_devices);
1689		btrfs_free_fs_info(fs_info);
1690		if ((flags ^ s->s_flags) & SB_RDONLY)
1691			error = -EBUSY;
1692	} else {
1693		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1694		btrfs_sb(s)->bdev_holder = fs_type;
1695		error = btrfs_fill_super(s, fs_devices, data);
1696	}
1697	if (!error)
1698		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1699	security_free_mnt_opts(&new_sec_opts);
1700	if (error) {
1701		deactivate_locked_super(s);
1702		return ERR_PTR(error);
1703	}
1704
1705	return dget(s->s_root);
1706
1707error_close_devices:
1708	btrfs_close_devices(fs_devices);
1709error_fs_info:
1710	btrfs_free_fs_info(fs_info);
1711error_sec_opts:
1712	security_free_mnt_opts(&new_sec_opts);
1713	return ERR_PTR(error);
1714}
1715
1716/*
1717 * Mount function which is called by VFS layer.
1718 *
1719 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1720 * which needs vfsmount* of device's root (/).  This means device's root has to
1721 * be mounted internally in any case.
1722 *
1723 * Operation flow:
1724 *   1. Parse subvol id related options for later use in mount_subvol().
1725 *
1726 *   2. Mount device's root (/) by calling vfs_kern_mount().
1727 *
1728 *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1729 *      first place. In order to avoid calling btrfs_mount() again, we use
1730 *      different file_system_type which is not registered to VFS by
1731 *      register_filesystem() (btrfs_root_fs_type). As a result,
1732 *      btrfs_mount_root() is called. The return value will be used by
1733 *      mount_subtree() in mount_subvol().
1734 *
1735 *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1736 *      "btrfs subvolume set-default", mount_subvol() is called always.
1737 */
1738static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1739		const char *device_name, void *data)
1740{
1741	struct vfsmount *mnt_root;
1742	struct dentry *root;
1743	char *subvol_name = NULL;
1744	u64 subvol_objectid = 0;
1745	int error = 0;
1746
1747	error = btrfs_parse_subvol_options(data, &subvol_name,
1748					&subvol_objectid);
1749	if (error) {
1750		kfree(subvol_name);
1751		return ERR_PTR(error);
1752	}
1753
1754	/* mount device's root (/) */
1755	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1756	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1757		if (flags & SB_RDONLY) {
1758			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1759				flags & ~SB_RDONLY, device_name, data);
1760		} else {
1761			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1762				flags | SB_RDONLY, device_name, data);
1763			if (IS_ERR(mnt_root)) {
1764				root = ERR_CAST(mnt_root);
1765				kfree(subvol_name);
1766				goto out;
1767			}
1768
1769			down_write(&mnt_root->mnt_sb->s_umount);
1770			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1771			up_write(&mnt_root->mnt_sb->s_umount);
1772			if (error < 0) {
1773				root = ERR_PTR(error);
1774				mntput(mnt_root);
1775				kfree(subvol_name);
1776				goto out;
1777			}
1778		}
1779	}
1780	if (IS_ERR(mnt_root)) {
1781		root = ERR_CAST(mnt_root);
1782		kfree(subvol_name);
1783		goto out;
1784	}
1785
1786	/* mount_subvol() will free subvol_name and mnt_root */
1787	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1788
1789out:
1790	return root;
1791}
1792
1793static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1794				     u32 new_pool_size, u32 old_pool_size)
1795{
1796	if (new_pool_size == old_pool_size)
1797		return;
1798
1799	fs_info->thread_pool_size = new_pool_size;
1800
1801	btrfs_info(fs_info, "resize thread pool %d -> %d",
1802	       old_pool_size, new_pool_size);
1803
1804	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1805	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1806	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1807	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1808	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1809	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1810				new_pool_size);
1811	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1812	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1813	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1814	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1815	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1816				new_pool_size);
1817}
1818
1819static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1820				       unsigned long old_opts, int flags)
1821{
1822	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1823	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1824	     (flags & SB_RDONLY))) {
1825		/* wait for any defraggers to finish */
1826		wait_event(fs_info->transaction_wait,
1827			   (atomic_read(&fs_info->defrag_running) == 0));
1828		if (flags & SB_RDONLY)
1829			sync_filesystem(fs_info->sb);
1830	}
1831}
1832
1833static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1834					 unsigned long old_opts)
1835{
1836	/*
1837	 * We need to cleanup all defragable inodes if the autodefragment is
1838	 * close or the filesystem is read only.
1839	 */
1840	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1841	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1842		btrfs_cleanup_defrag_inodes(fs_info);
1843	}
1844
1845	/* If we toggled discard async */
1846	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1847	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1848		btrfs_discard_resume(fs_info);
1849	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1850		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1851		btrfs_discard_cleanup(fs_info);
1852}
1853
1854static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1855{
1856	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1857	struct btrfs_root *root = fs_info->tree_root;
1858	unsigned old_flags = sb->s_flags;
1859	unsigned long old_opts = fs_info->mount_opt;
1860	unsigned long old_compress_type = fs_info->compress_type;
1861	u64 old_max_inline = fs_info->max_inline;
1862	u32 old_thread_pool_size = fs_info->thread_pool_size;
1863	u32 old_metadata_ratio = fs_info->metadata_ratio;
1864	int ret;
1865
1866	sync_filesystem(sb);
1867	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1868
1869	if (data) {
1870		void *new_sec_opts = NULL;
1871
1872		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1873		if (!ret)
1874			ret = security_sb_remount(sb, new_sec_opts);
1875		security_free_mnt_opts(&new_sec_opts);
1876		if (ret)
1877			goto restore;
1878	}
1879
1880	ret = btrfs_parse_options(fs_info, data, *flags);
1881	if (ret)
1882		goto restore;
1883
1884	btrfs_remount_begin(fs_info, old_opts, *flags);
1885	btrfs_resize_thread_pool(fs_info,
1886		fs_info->thread_pool_size, old_thread_pool_size);
1887
1888	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1889		goto out;
1890
1891	if (*flags & SB_RDONLY) {
1892		/*
1893		 * this also happens on 'umount -rf' or on shutdown, when
1894		 * the filesystem is busy.
1895		 */
1896		cancel_work_sync(&fs_info->async_reclaim_work);
1897		cancel_work_sync(&fs_info->async_data_reclaim_work);
1898
1899		btrfs_discard_cleanup(fs_info);
1900
1901		/* wait for the uuid_scan task to finish */
1902		down(&fs_info->uuid_tree_rescan_sem);
1903		/* avoid complains from lockdep et al. */
1904		up(&fs_info->uuid_tree_rescan_sem);
1905
1906		sb->s_flags |= SB_RDONLY;
1907
1908		/*
1909		 * Setting SB_RDONLY will put the cleaner thread to
1910		 * sleep at the next loop if it's already active.
1911		 * If it's already asleep, we'll leave unused block
1912		 * groups on disk until we're mounted read-write again
1913		 * unless we clean them up here.
1914		 */
1915		btrfs_delete_unused_bgs(fs_info);
1916
1917		btrfs_dev_replace_suspend_for_unmount(fs_info);
1918		btrfs_scrub_cancel(fs_info);
1919		btrfs_pause_balance(fs_info);
1920
1921		/*
1922		 * Pause the qgroup rescan worker if it is running. We don't want
1923		 * it to be still running after we are in RO mode, as after that,
1924		 * by the time we unmount, it might have left a transaction open,
1925		 * so we would leak the transaction and/or crash.
1926		 */
1927		btrfs_qgroup_wait_for_completion(fs_info, false);
1928
1929		ret = btrfs_commit_super(fs_info);
1930		if (ret)
1931			goto restore;
1932	} else {
1933		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1934			btrfs_err(fs_info,
1935				"Remounting read-write after error is not allowed");
1936			ret = -EINVAL;
1937			goto restore;
1938		}
1939		if (fs_info->fs_devices->rw_devices == 0) {
1940			ret = -EACCES;
1941			goto restore;
1942		}
1943
1944		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1945			btrfs_warn(fs_info,
1946		"too many missing devices, writable remount is not allowed");
1947			ret = -EACCES;
1948			goto restore;
1949		}
1950
1951		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1952			btrfs_warn(fs_info,
1953		"mount required to replay tree-log, cannot remount read-write");
1954			ret = -EINVAL;
1955			goto restore;
1956		}
1957
1958		ret = btrfs_cleanup_fs_roots(fs_info);
1959		if (ret)
1960			goto restore;
1961
1962		/* recover relocation */
1963		mutex_lock(&fs_info->cleaner_mutex);
1964		ret = btrfs_recover_relocation(root);
1965		mutex_unlock(&fs_info->cleaner_mutex);
1966		if (ret)
1967			goto restore;
1968
1969		ret = btrfs_resume_balance_async(fs_info);
1970		if (ret)
1971			goto restore;
1972
1973		ret = btrfs_resume_dev_replace_async(fs_info);
1974		if (ret) {
1975			btrfs_warn(fs_info, "failed to resume dev_replace");
1976			goto restore;
1977		}
1978
1979		btrfs_qgroup_rescan_resume(fs_info);
1980
1981		if (!fs_info->uuid_root) {
1982			btrfs_info(fs_info, "creating UUID tree");
1983			ret = btrfs_create_uuid_tree(fs_info);
1984			if (ret) {
1985				btrfs_warn(fs_info,
1986					   "failed to create the UUID tree %d",
1987					   ret);
1988				goto restore;
1989			}
1990		}
1991		sb->s_flags &= ~SB_RDONLY;
1992
1993		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1994	}
1995out:
1996	/*
1997	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
1998	 * since the absence of the flag means it can be toggled off by remount.
1999	 */
2000	*flags |= SB_I_VERSION;
2001
2002	wake_up_process(fs_info->transaction_kthread);
2003	btrfs_remount_cleanup(fs_info, old_opts);
2004	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2005
2006	return 0;
2007
2008restore:
2009	/* We've hit an error - don't reset SB_RDONLY */
2010	if (sb_rdonly(sb))
2011		old_flags |= SB_RDONLY;
2012	sb->s_flags = old_flags;
2013	fs_info->mount_opt = old_opts;
2014	fs_info->compress_type = old_compress_type;
2015	fs_info->max_inline = old_max_inline;
2016	btrfs_resize_thread_pool(fs_info,
2017		old_thread_pool_size, fs_info->thread_pool_size);
2018	fs_info->metadata_ratio = old_metadata_ratio;
2019	btrfs_remount_cleanup(fs_info, old_opts);
2020	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2021
2022	return ret;
2023}
2024
2025/* Used to sort the devices by max_avail(descending sort) */
2026static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
2027				       const void *dev_info2)
2028{
2029	if (((struct btrfs_device_info *)dev_info1)->max_avail >
2030	    ((struct btrfs_device_info *)dev_info2)->max_avail)
2031		return -1;
2032	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2033		 ((struct btrfs_device_info *)dev_info2)->max_avail)
2034		return 1;
2035	else
2036	return 0;
2037}
2038
2039/*
2040 * sort the devices by max_avail, in which max free extent size of each device
2041 * is stored.(Descending Sort)
2042 */
2043static inline void btrfs_descending_sort_devices(
2044					struct btrfs_device_info *devices,
2045					size_t nr_devices)
2046{
2047	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2048	     btrfs_cmp_device_free_bytes, NULL);
2049}
2050
2051/*
2052 * The helper to calc the free space on the devices that can be used to store
2053 * file data.
2054 */
2055static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2056					      u64 *free_bytes)
2057{
2058	struct btrfs_device_info *devices_info;
2059	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2060	struct btrfs_device *device;
2061	u64 type;
2062	u64 avail_space;
2063	u64 min_stripe_size;
2064	int num_stripes = 1;
2065	int i = 0, nr_devices;
2066	const struct btrfs_raid_attr *rattr;
2067
2068	/*
2069	 * We aren't under the device list lock, so this is racy-ish, but good
2070	 * enough for our purposes.
2071	 */
2072	nr_devices = fs_info->fs_devices->open_devices;
2073	if (!nr_devices) {
2074		smp_mb();
2075		nr_devices = fs_info->fs_devices->open_devices;
2076		ASSERT(nr_devices);
2077		if (!nr_devices) {
2078			*free_bytes = 0;
2079			return 0;
2080		}
2081	}
2082
2083	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2084			       GFP_KERNEL);
2085	if (!devices_info)
2086		return -ENOMEM;
2087
2088	/* calc min stripe number for data space allocation */
2089	type = btrfs_data_alloc_profile(fs_info);
2090	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2091
2092	if (type & BTRFS_BLOCK_GROUP_RAID0)
2093		num_stripes = nr_devices;
2094	else if (type & BTRFS_BLOCK_GROUP_RAID1)
2095		num_stripes = 2;
2096	else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2097		num_stripes = 3;
2098	else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2099		num_stripes = 4;
2100	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2101		num_stripes = 4;
2102
2103	/* Adjust for more than 1 stripe per device */
2104	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2105
2106	rcu_read_lock();
2107	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2108		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2109						&device->dev_state) ||
2110		    !device->bdev ||
2111		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2112			continue;
2113
2114		if (i >= nr_devices)
2115			break;
2116
2117		avail_space = device->total_bytes - device->bytes_used;
2118
2119		/* align with stripe_len */
2120		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2121
2122		/*
2123		 * In order to avoid overwriting the superblock on the drive,
2124		 * btrfs starts at an offset of at least 1MB when doing chunk
2125		 * allocation.
2126		 *
2127		 * This ensures we have at least min_stripe_size free space
2128		 * after excluding 1MB.
2129		 */
2130		if (avail_space <= SZ_1M + min_stripe_size)
2131			continue;
2132
2133		avail_space -= SZ_1M;
2134
2135		devices_info[i].dev = device;
2136		devices_info[i].max_avail = avail_space;
2137
2138		i++;
2139	}
2140	rcu_read_unlock();
2141
2142	nr_devices = i;
2143
2144	btrfs_descending_sort_devices(devices_info, nr_devices);
2145
2146	i = nr_devices - 1;
2147	avail_space = 0;
2148	while (nr_devices >= rattr->devs_min) {
2149		num_stripes = min(num_stripes, nr_devices);
2150
2151		if (devices_info[i].max_avail >= min_stripe_size) {
2152			int j;
2153			u64 alloc_size;
2154
2155			avail_space += devices_info[i].max_avail * num_stripes;
2156			alloc_size = devices_info[i].max_avail;
2157			for (j = i + 1 - num_stripes; j <= i; j++)
2158				devices_info[j].max_avail -= alloc_size;
2159		}
2160		i--;
2161		nr_devices--;
2162	}
2163
2164	kfree(devices_info);
2165	*free_bytes = avail_space;
2166	return 0;
2167}
2168
2169/*
2170 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2171 *
2172 * If there's a redundant raid level at DATA block groups, use the respective
2173 * multiplier to scale the sizes.
2174 *
2175 * Unused device space usage is based on simulating the chunk allocator
2176 * algorithm that respects the device sizes and order of allocations.  This is
2177 * a close approximation of the actual use but there are other factors that may
2178 * change the result (like a new metadata chunk).
2179 *
2180 * If metadata is exhausted, f_bavail will be 0.
2181 */
2182static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2183{
2184	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2185	struct btrfs_super_block *disk_super = fs_info->super_copy;
2186	struct btrfs_space_info *found;
2187	u64 total_used = 0;
2188	u64 total_free_data = 0;
2189	u64 total_free_meta = 0;
2190	int bits = dentry->d_sb->s_blocksize_bits;
2191	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2192	unsigned factor = 1;
2193	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2194	int ret;
2195	u64 thresh = 0;
2196	int mixed = 0;
2197
2198	list_for_each_entry(found, &fs_info->space_info, list) {
2199		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2200			int i;
2201
2202			total_free_data += found->disk_total - found->disk_used;
2203			total_free_data -=
2204				btrfs_account_ro_block_groups_free_space(found);
2205
2206			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2207				if (!list_empty(&found->block_groups[i]))
2208					factor = btrfs_bg_type_to_factor(
2209						btrfs_raid_array[i].bg_flag);
2210			}
2211		}
2212
2213		/*
2214		 * Metadata in mixed block goup profiles are accounted in data
2215		 */
2216		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2217			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2218				mixed = 1;
2219			else
2220				total_free_meta += found->disk_total -
2221					found->disk_used;
2222		}
2223
2224		total_used += found->disk_used;
2225	}
2226
2227	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2228	buf->f_blocks >>= bits;
2229	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2230
2231	/* Account global block reserve as used, it's in logical size already */
2232	spin_lock(&block_rsv->lock);
2233	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2234	if (buf->f_bfree >= block_rsv->size >> bits)
2235		buf->f_bfree -= block_rsv->size >> bits;
2236	else
2237		buf->f_bfree = 0;
2238	spin_unlock(&block_rsv->lock);
2239
2240	buf->f_bavail = div_u64(total_free_data, factor);
2241	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2242	if (ret)
2243		return ret;
2244	buf->f_bavail += div_u64(total_free_data, factor);
2245	buf->f_bavail = buf->f_bavail >> bits;
2246
2247	/*
2248	 * We calculate the remaining metadata space minus global reserve. If
2249	 * this is (supposedly) smaller than zero, there's no space. But this
2250	 * does not hold in practice, the exhausted state happens where's still
2251	 * some positive delta. So we apply some guesswork and compare the
2252	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2253	 *
2254	 * We probably cannot calculate the exact threshold value because this
2255	 * depends on the internal reservations requested by various
2256	 * operations, so some operations that consume a few metadata will
2257	 * succeed even if the Avail is zero. But this is better than the other
2258	 * way around.
2259	 */
2260	thresh = SZ_4M;
2261
2262	/*
2263	 * We only want to claim there's no available space if we can no longer
2264	 * allocate chunks for our metadata profile and our global reserve will
2265	 * not fit in the free metadata space.  If we aren't ->full then we
2266	 * still can allocate chunks and thus are fine using the currently
2267	 * calculated f_bavail.
2268	 */
2269	if (!mixed && block_rsv->space_info->full &&
2270	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
2271		buf->f_bavail = 0;
2272
2273	buf->f_type = BTRFS_SUPER_MAGIC;
2274	buf->f_bsize = dentry->d_sb->s_blocksize;
2275	buf->f_namelen = BTRFS_NAME_LEN;
2276
2277	/* We treat it as constant endianness (it doesn't matter _which_)
2278	   because we want the fsid to come out the same whether mounted
2279	   on a big-endian or little-endian host */
2280	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2281	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2282	/* Mask in the root object ID too, to disambiguate subvols */
2283	buf->f_fsid.val[0] ^=
2284		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2285	buf->f_fsid.val[1] ^=
2286		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2287
2288	return 0;
2289}
2290
2291static void btrfs_kill_super(struct super_block *sb)
2292{
2293	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2294	kill_anon_super(sb);
2295	btrfs_free_fs_info(fs_info);
2296}
2297
2298static struct file_system_type btrfs_fs_type = {
2299	.owner		= THIS_MODULE,
2300	.name		= "btrfs",
2301	.mount		= btrfs_mount,
2302	.kill_sb	= btrfs_kill_super,
2303	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2304};
2305
2306static struct file_system_type btrfs_root_fs_type = {
2307	.owner		= THIS_MODULE,
2308	.name		= "btrfs",
2309	.mount		= btrfs_mount_root,
2310	.kill_sb	= btrfs_kill_super,
2311	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2312};
2313
2314MODULE_ALIAS_FS("btrfs");
2315
2316static int btrfs_control_open(struct inode *inode, struct file *file)
2317{
2318	/*
2319	 * The control file's private_data is used to hold the
2320	 * transaction when it is started and is used to keep
2321	 * track of whether a transaction is already in progress.
2322	 */
2323	file->private_data = NULL;
2324	return 0;
2325}
2326
2327/*
2328 * Used by /dev/btrfs-control for devices ioctls.
2329 */
2330static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2331				unsigned long arg)
2332{
2333	struct btrfs_ioctl_vol_args *vol;
2334	struct btrfs_device *device = NULL;
2335	int ret = -ENOTTY;
2336
2337	if (!capable(CAP_SYS_ADMIN))
2338		return -EPERM;
2339
2340	vol = memdup_user((void __user *)arg, sizeof(*vol));
2341	if (IS_ERR(vol))
2342		return PTR_ERR(vol);
2343	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2344
2345	switch (cmd) {
2346	case BTRFS_IOC_SCAN_DEV:
2347		mutex_lock(&uuid_mutex);
2348		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2349					       &btrfs_root_fs_type);
2350		ret = PTR_ERR_OR_ZERO(device);
2351		mutex_unlock(&uuid_mutex);
2352		break;
2353	case BTRFS_IOC_FORGET_DEV:
2354		ret = btrfs_forget_devices(vol->name);
2355		break;
2356	case BTRFS_IOC_DEVICES_READY:
2357		mutex_lock(&uuid_mutex);
2358		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2359					       &btrfs_root_fs_type);
2360		if (IS_ERR(device)) {
2361			mutex_unlock(&uuid_mutex);
2362			ret = PTR_ERR(device);
2363			break;
2364		}
2365		ret = !(device->fs_devices->num_devices ==
2366			device->fs_devices->total_devices);
2367		mutex_unlock(&uuid_mutex);
2368		break;
2369	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2370		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2371		break;
2372	}
2373
2374	kfree(vol);
2375	return ret;
2376}
2377
2378static int btrfs_freeze(struct super_block *sb)
2379{
2380	struct btrfs_trans_handle *trans;
2381	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2382	struct btrfs_root *root = fs_info->tree_root;
2383
2384	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2385	/*
2386	 * We don't need a barrier here, we'll wait for any transaction that
2387	 * could be in progress on other threads (and do delayed iputs that
2388	 * we want to avoid on a frozen filesystem), or do the commit
2389	 * ourselves.
2390	 */
2391	trans = btrfs_attach_transaction_barrier(root);
2392	if (IS_ERR(trans)) {
2393		/* no transaction, don't bother */
2394		if (PTR_ERR(trans) == -ENOENT)
2395			return 0;
2396		return PTR_ERR(trans);
2397	}
2398	return btrfs_commit_transaction(trans);
2399}
2400
2401static int btrfs_unfreeze(struct super_block *sb)
2402{
2403	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2404
2405	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2406	return 0;
2407}
2408
2409static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2410{
2411	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2412	struct btrfs_device *dev, *first_dev = NULL;
2413
2414	/*
2415	 * Lightweight locking of the devices. We should not need
2416	 * device_list_mutex here as we only read the device data and the list
2417	 * is protected by RCU.  Even if a device is deleted during the list
2418	 * traversals, we'll get valid data, the freeing callback will wait at
2419	 * least until the rcu_read_unlock.
2420	 */
2421	rcu_read_lock();
2422	list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) {
2423		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2424			continue;
2425		if (!dev->name)
2426			continue;
2427		if (!first_dev || dev->devid < first_dev->devid)
2428			first_dev = dev;
2429	}
2430
2431	if (first_dev)
2432		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2433	else
2434		WARN_ON(1);
2435	rcu_read_unlock();
2436	return 0;
2437}
2438
2439static const struct super_operations btrfs_super_ops = {
2440	.drop_inode	= btrfs_drop_inode,
2441	.evict_inode	= btrfs_evict_inode,
2442	.put_super	= btrfs_put_super,
2443	.sync_fs	= btrfs_sync_fs,
2444	.show_options	= btrfs_show_options,
2445	.show_devname	= btrfs_show_devname,
2446	.alloc_inode	= btrfs_alloc_inode,
2447	.destroy_inode	= btrfs_destroy_inode,
2448	.free_inode	= btrfs_free_inode,
2449	.statfs		= btrfs_statfs,
2450	.remount_fs	= btrfs_remount,
2451	.freeze_fs	= btrfs_freeze,
2452	.unfreeze_fs	= btrfs_unfreeze,
2453};
2454
2455static const struct file_operations btrfs_ctl_fops = {
2456	.open = btrfs_control_open,
2457	.unlocked_ioctl	 = btrfs_control_ioctl,
2458	.compat_ioctl = compat_ptr_ioctl,
2459	.owner	 = THIS_MODULE,
2460	.llseek = noop_llseek,
2461};
2462
2463static struct miscdevice btrfs_misc = {
2464	.minor		= BTRFS_MINOR,
2465	.name		= "btrfs-control",
2466	.fops		= &btrfs_ctl_fops
2467};
2468
2469MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2470MODULE_ALIAS("devname:btrfs-control");
2471
2472static int __init btrfs_interface_init(void)
2473{
2474	return misc_register(&btrfs_misc);
2475}
2476
2477static __cold void btrfs_interface_exit(void)
2478{
2479	misc_deregister(&btrfs_misc);
2480}
2481
2482static void __init btrfs_print_mod_info(void)
2483{
2484	static const char options[] = ""
2485#ifdef CONFIG_BTRFS_DEBUG
2486			", debug=on"
2487#endif
2488#ifdef CONFIG_BTRFS_ASSERT
2489			", assert=on"
2490#endif
2491#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2492			", integrity-checker=on"
2493#endif
2494#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2495			", ref-verify=on"
2496#endif
2497			;
2498	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2499}
2500
2501static int __init init_btrfs_fs(void)
2502{
2503	int err;
2504
2505	btrfs_props_init();
2506
2507	err = btrfs_init_sysfs();
2508	if (err)
2509		return err;
2510
2511	btrfs_init_compress();
2512
2513	err = btrfs_init_cachep();
2514	if (err)
2515		goto free_compress;
2516
2517	err = extent_io_init();
2518	if (err)
2519		goto free_cachep;
2520
2521	err = extent_state_cache_init();
2522	if (err)
2523		goto free_extent_io;
2524
2525	err = extent_map_init();
2526	if (err)
2527		goto free_extent_state_cache;
2528
2529	err = ordered_data_init();
2530	if (err)
2531		goto free_extent_map;
2532
2533	err = btrfs_delayed_inode_init();
2534	if (err)
2535		goto free_ordered_data;
2536
2537	err = btrfs_auto_defrag_init();
2538	if (err)
2539		goto free_delayed_inode;
2540
2541	err = btrfs_delayed_ref_init();
2542	if (err)
2543		goto free_auto_defrag;
2544
2545	err = btrfs_prelim_ref_init();
2546	if (err)
2547		goto free_delayed_ref;
2548
2549	err = btrfs_end_io_wq_init();
2550	if (err)
2551		goto free_prelim_ref;
2552
2553	err = btrfs_interface_init();
2554	if (err)
2555		goto free_end_io_wq;
2556
2557	btrfs_init_lockdep();
2558
2559	btrfs_print_mod_info();
2560
2561	err = btrfs_run_sanity_tests();
2562	if (err)
2563		goto unregister_ioctl;
2564
2565	err = register_filesystem(&btrfs_fs_type);
2566	if (err)
2567		goto unregister_ioctl;
2568
2569	return 0;
2570
2571unregister_ioctl:
2572	btrfs_interface_exit();
2573free_end_io_wq:
2574	btrfs_end_io_wq_exit();
2575free_prelim_ref:
2576	btrfs_prelim_ref_exit();
2577free_delayed_ref:
2578	btrfs_delayed_ref_exit();
2579free_auto_defrag:
2580	btrfs_auto_defrag_exit();
2581free_delayed_inode:
2582	btrfs_delayed_inode_exit();
2583free_ordered_data:
2584	ordered_data_exit();
2585free_extent_map:
2586	extent_map_exit();
2587free_extent_state_cache:
2588	extent_state_cache_exit();
2589free_extent_io:
2590	extent_io_exit();
2591free_cachep:
2592	btrfs_destroy_cachep();
2593free_compress:
2594	btrfs_exit_compress();
2595	btrfs_exit_sysfs();
2596
2597	return err;
2598}
2599
2600static void __exit exit_btrfs_fs(void)
2601{
2602	btrfs_destroy_cachep();
2603	btrfs_delayed_ref_exit();
2604	btrfs_auto_defrag_exit();
2605	btrfs_delayed_inode_exit();
2606	btrfs_prelim_ref_exit();
2607	ordered_data_exit();
2608	extent_map_exit();
2609	extent_state_cache_exit();
2610	extent_io_exit();
2611	btrfs_interface_exit();
2612	btrfs_end_io_wq_exit();
2613	unregister_filesystem(&btrfs_fs_type);
2614	btrfs_exit_sysfs();
2615	btrfs_cleanup_fs_uuids();
2616	btrfs_exit_compress();
2617}
2618
2619late_initcall(init_btrfs_fs);
2620module_exit(exit_btrfs_fs)
2621
2622MODULE_LICENSE("GPL");
2623MODULE_SOFTDEP("pre: crc32c");
2624MODULE_SOFTDEP("pre: xxhash64");
2625MODULE_SOFTDEP("pre: sha256");
2626MODULE_SOFTDEP("pre: blake2b-256");
2627