xref: /kernel/linux/linux-5.10/fs/btrfs/space-info.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2
3#include "misc.h"
4#include "ctree.h"
5#include "space-info.h"
6#include "sysfs.h"
7#include "volumes.h"
8#include "free-space-cache.h"
9#include "ordered-data.h"
10#include "transaction.h"
11#include "block-group.h"
12
13/*
14 * HOW DOES SPACE RESERVATION WORK
15 *
16 * If you want to know about delalloc specifically, there is a separate comment
17 * for that with the delalloc code.  This comment is about how the whole system
18 * works generally.
19 *
20 * BASIC CONCEPTS
21 *
22 *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23 *   There's a description of the bytes_ fields with the struct declaration,
24 *   refer to that for specifics on each field.  Suffice it to say that for
25 *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26 *   determining if there is space to make an allocation.  There is a space_info
27 *   for METADATA, SYSTEM, and DATA areas.
28 *
29 *   2) block_rsv's.  These are basically buckets for every different type of
30 *   metadata reservation we have.  You can see the comment in the block_rsv
31 *   code on the rules for each type, but generally block_rsv->reserved is how
32 *   much space is accounted for in space_info->bytes_may_use.
33 *
34 *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35 *   on the number of items we will want to modify.  We have one for changing
36 *   items, and one for inserting new items.  Generally we use these helpers to
37 *   determine the size of the block reserves, and then use the actual bytes
38 *   values to adjust the space_info counters.
39 *
40 * MAKING RESERVATIONS, THE NORMAL CASE
41 *
42 *   We call into either btrfs_reserve_data_bytes() or
43 *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44 *   num_bytes we want to reserve.
45 *
46 *   ->reserve
47 *     space_info->bytes_may_reserve += num_bytes
48 *
49 *   ->extent allocation
50 *     Call btrfs_add_reserved_bytes() which does
51 *     space_info->bytes_may_reserve -= num_bytes
52 *     space_info->bytes_reserved += extent_bytes
53 *
54 *   ->insert reference
55 *     Call btrfs_update_block_group() which does
56 *     space_info->bytes_reserved -= extent_bytes
57 *     space_info->bytes_used += extent_bytes
58 *
59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60 *
61 *   Assume we are unable to simply make the reservation because we do not have
62 *   enough space
63 *
64 *   -> __reserve_bytes
65 *     create a reserve_ticket with ->bytes set to our reservation, add it to
66 *     the tail of space_info->tickets, kick async flush thread
67 *
68 *   ->handle_reserve_ticket
69 *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70 *     on the ticket.
71 *
72 *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73 *     Flushes various things attempting to free up space.
74 *
75 *   -> btrfs_try_granting_tickets()
76 *     This is called by anything that either subtracts space from
77 *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78 *     space_info->total_bytes.  This loops through the ->priority_tickets and
79 *     then the ->tickets list checking to see if the reservation can be
80 *     completed.  If it can the space is added to space_info->bytes_may_use and
81 *     the ticket is woken up.
82 *
83 *   -> ticket wakeup
84 *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85 *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86 *     were interrupted.)
87 *
88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89 *
90 *   Same as the above, except we add ourselves to the
91 *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92 *   call flush_space() ourselves for the states that are safe for us to call
93 *   without deadlocking and hope for the best.
94 *
95 * THE FLUSHING STATES
96 *
97 *   Generally speaking we will have two cases for each state, a "nice" state
98 *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99 *   reduce the locking over head on the various trees, and even to keep from
100 *   doing any work at all in the case of delayed refs.  Each of these delayed
101 *   things however hold reservations, and so letting them run allows us to
102 *   reclaim space so we can make new reservations.
103 *
104 *   FLUSH_DELAYED_ITEMS
105 *     Every inode has a delayed item to update the inode.  Take a simple write
106 *     for example, we would update the inode item at write time to update the
107 *     mtime, and then again at finish_ordered_io() time in order to update the
108 *     isize or bytes.  We keep these delayed items to coalesce these operations
109 *     into a single operation done on demand.  These are an easy way to reclaim
110 *     metadata space.
111 *
112 *   FLUSH_DELALLOC
113 *     Look at the delalloc comment to get an idea of how much space is reserved
114 *     for delayed allocation.  We can reclaim some of this space simply by
115 *     running delalloc, but usually we need to wait for ordered extents to
116 *     reclaim the bulk of this space.
117 *
118 *   FLUSH_DELAYED_REFS
119 *     We have a block reserve for the outstanding delayed refs space, and every
120 *     delayed ref operation holds a reservation.  Running these is a quick way
121 *     to reclaim space, but we want to hold this until the end because COW can
122 *     churn a lot and we can avoid making some extent tree modifications if we
123 *     are able to delay for as long as possible.
124 *
125 *   ALLOC_CHUNK
126 *     We will skip this the first time through space reservation, because of
127 *     overcommit and we don't want to have a lot of useless metadata space when
128 *     our worst case reservations will likely never come true.
129 *
130 *   RUN_DELAYED_IPUTS
131 *     If we're freeing inodes we're likely freeing checksums, file extent
132 *     items, and extent tree items.  Loads of space could be freed up by these
133 *     operations, however they won't be usable until the transaction commits.
134 *
135 *   COMMIT_TRANS
136 *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137 *     transaction or not.  In order to avoid constantly churning we do all the
138 *     above flushing first and then commit the transaction as the last resort.
139 *     However we need to take into account things like pinned space that would
140 *     be freed, plus any delayed work we may not have gotten rid of in the case
141 *     of metadata.
142 *
143 * OVERCOMMIT
144 *
145 *   Because we hold so many reservations for metadata we will allow you to
146 *   reserve more space than is currently free in the currently allocate
147 *   metadata space.  This only happens with metadata, data does not allow
148 *   overcommitting.
149 *
150 *   You can see the current logic for when we allow overcommit in
151 *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
152 *   is no unallocated space to be had, all reservations are kept within the
153 *   free space in the allocated metadata chunks.
154 *
155 *   Because of overcommitting, you generally want to use the
156 *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
157 *   thing with or without extra unallocated space.
158 */
159
160u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161			  bool may_use_included)
162{
163	ASSERT(s_info);
164	return s_info->bytes_used + s_info->bytes_reserved +
165		s_info->bytes_pinned + s_info->bytes_readonly +
166		(may_use_included ? s_info->bytes_may_use : 0);
167}
168
169/*
170 * after adding space to the filesystem, we need to clear the full flags
171 * on all the space infos.
172 */
173void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
174{
175	struct list_head *head = &info->space_info;
176	struct btrfs_space_info *found;
177
178	list_for_each_entry(found, head, list)
179		found->full = 0;
180}
181
182static int create_space_info(struct btrfs_fs_info *info, u64 flags)
183{
184
185	struct btrfs_space_info *space_info;
186	int i;
187	int ret;
188
189	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
190	if (!space_info)
191		return -ENOMEM;
192
193	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
194				 GFP_KERNEL);
195	if (ret) {
196		kfree(space_info);
197		return ret;
198	}
199
200	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201		INIT_LIST_HEAD(&space_info->block_groups[i]);
202	init_rwsem(&space_info->groups_sem);
203	spin_lock_init(&space_info->lock);
204	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
205	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
206	INIT_LIST_HEAD(&space_info->ro_bgs);
207	INIT_LIST_HEAD(&space_info->tickets);
208	INIT_LIST_HEAD(&space_info->priority_tickets);
209
210	ret = btrfs_sysfs_add_space_info_type(info, space_info);
211	if (ret)
212		return ret;
213
214	list_add(&space_info->list, &info->space_info);
215	if (flags & BTRFS_BLOCK_GROUP_DATA)
216		info->data_sinfo = space_info;
217
218	return ret;
219}
220
221int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
222{
223	struct btrfs_super_block *disk_super;
224	u64 features;
225	u64 flags;
226	int mixed = 0;
227	int ret;
228
229	disk_super = fs_info->super_copy;
230	if (!btrfs_super_root(disk_super))
231		return -EINVAL;
232
233	features = btrfs_super_incompat_flags(disk_super);
234	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
235		mixed = 1;
236
237	flags = BTRFS_BLOCK_GROUP_SYSTEM;
238	ret = create_space_info(fs_info, flags);
239	if (ret)
240		goto out;
241
242	if (mixed) {
243		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
244		ret = create_space_info(fs_info, flags);
245	} else {
246		flags = BTRFS_BLOCK_GROUP_METADATA;
247		ret = create_space_info(fs_info, flags);
248		if (ret)
249			goto out;
250
251		flags = BTRFS_BLOCK_GROUP_DATA;
252		ret = create_space_info(fs_info, flags);
253	}
254out:
255	return ret;
256}
257
258void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
259			     u64 total_bytes, u64 bytes_used,
260			     u64 bytes_readonly,
261			     struct btrfs_space_info **space_info)
262{
263	struct btrfs_space_info *found;
264	int factor;
265
266	factor = btrfs_bg_type_to_factor(flags);
267
268	found = btrfs_find_space_info(info, flags);
269	ASSERT(found);
270	spin_lock(&found->lock);
271	found->total_bytes += total_bytes;
272	found->disk_total += total_bytes * factor;
273	found->bytes_used += bytes_used;
274	found->disk_used += bytes_used * factor;
275	found->bytes_readonly += bytes_readonly;
276	if (total_bytes > 0)
277		found->full = 0;
278	btrfs_try_granting_tickets(info, found);
279	spin_unlock(&found->lock);
280	*space_info = found;
281}
282
283struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
284					       u64 flags)
285{
286	struct list_head *head = &info->space_info;
287	struct btrfs_space_info *found;
288
289	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
290
291	list_for_each_entry(found, head, list) {
292		if (found->flags & flags)
293			return found;
294	}
295	return NULL;
296}
297
298static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
299			  struct btrfs_space_info *space_info,
300			  enum btrfs_reserve_flush_enum flush)
301{
302	u64 profile;
303	u64 avail;
304	int factor;
305
306	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
307		profile = btrfs_system_alloc_profile(fs_info);
308	else
309		profile = btrfs_metadata_alloc_profile(fs_info);
310
311	avail = atomic64_read(&fs_info->free_chunk_space);
312
313	/*
314	 * If we have dup, raid1 or raid10 then only half of the free
315	 * space is actually usable.  For raid56, the space info used
316	 * doesn't include the parity drive, so we don't have to
317	 * change the math
318	 */
319	factor = btrfs_bg_type_to_factor(profile);
320	avail = div_u64(avail, factor);
321
322	/*
323	 * If we aren't flushing all things, let us overcommit up to
324	 * 1/2th of the space. If we can flush, don't let us overcommit
325	 * too much, let it overcommit up to 1/8 of the space.
326	 */
327	if (flush == BTRFS_RESERVE_FLUSH_ALL)
328		avail >>= 3;
329	else
330		avail >>= 1;
331	return avail;
332}
333
334int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
335			 struct btrfs_space_info *space_info, u64 bytes,
336			 enum btrfs_reserve_flush_enum flush)
337{
338	u64 avail;
339	u64 used;
340
341	/* Don't overcommit when in mixed mode */
342	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
343		return 0;
344
345	used = btrfs_space_info_used(space_info, true);
346	avail = calc_available_free_space(fs_info, space_info, flush);
347
348	if (used + bytes < space_info->total_bytes + avail)
349		return 1;
350	return 0;
351}
352
353static void remove_ticket(struct btrfs_space_info *space_info,
354			  struct reserve_ticket *ticket)
355{
356	if (!list_empty(&ticket->list)) {
357		list_del_init(&ticket->list);
358		ASSERT(space_info->reclaim_size >= ticket->bytes);
359		space_info->reclaim_size -= ticket->bytes;
360	}
361}
362
363/*
364 * This is for space we already have accounted in space_info->bytes_may_use, so
365 * basically when we're returning space from block_rsv's.
366 */
367void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
368				struct btrfs_space_info *space_info)
369{
370	struct list_head *head;
371	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
372
373	lockdep_assert_held(&space_info->lock);
374
375	head = &space_info->priority_tickets;
376again:
377	while (!list_empty(head)) {
378		struct reserve_ticket *ticket;
379		u64 used = btrfs_space_info_used(space_info, true);
380
381		ticket = list_first_entry(head, struct reserve_ticket, list);
382
383		/* Check and see if our ticket can be satisified now. */
384		if ((used + ticket->bytes <= space_info->total_bytes) ||
385		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
386					 flush)) {
387			btrfs_space_info_update_bytes_may_use(fs_info,
388							      space_info,
389							      ticket->bytes);
390			remove_ticket(space_info, ticket);
391			ticket->bytes = 0;
392			space_info->tickets_id++;
393			wake_up(&ticket->wait);
394		} else {
395			break;
396		}
397	}
398
399	if (head == &space_info->priority_tickets) {
400		head = &space_info->tickets;
401		flush = BTRFS_RESERVE_FLUSH_ALL;
402		goto again;
403	}
404}
405
406#define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
407do {									\
408	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
409	spin_lock(&__rsv->lock);					\
410	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
411		   __rsv->size, __rsv->reserved);			\
412	spin_unlock(&__rsv->lock);					\
413} while (0)
414
415static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
416				    struct btrfs_space_info *info)
417{
418	lockdep_assert_held(&info->lock);
419
420	/* The free space could be negative in case of overcommit */
421	btrfs_info(fs_info, "space_info %llu has %lld free, is %sfull",
422		   info->flags,
423		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
424		   info->full ? "" : "not ");
425	btrfs_info(fs_info,
426		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
427		info->total_bytes, info->bytes_used, info->bytes_pinned,
428		info->bytes_reserved, info->bytes_may_use,
429		info->bytes_readonly);
430
431	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
432	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
433	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
434	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
435	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
436
437}
438
439void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
440			   struct btrfs_space_info *info, u64 bytes,
441			   int dump_block_groups)
442{
443	struct btrfs_block_group *cache;
444	int index = 0;
445
446	spin_lock(&info->lock);
447	__btrfs_dump_space_info(fs_info, info);
448	spin_unlock(&info->lock);
449
450	if (!dump_block_groups)
451		return;
452
453	down_read(&info->groups_sem);
454again:
455	list_for_each_entry(cache, &info->block_groups[index], list) {
456		spin_lock(&cache->lock);
457		btrfs_info(fs_info,
458			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
459			cache->start, cache->length, cache->used, cache->pinned,
460			cache->reserved, cache->ro ? "[readonly]" : "");
461		spin_unlock(&cache->lock);
462		btrfs_dump_free_space(cache, bytes);
463	}
464	if (++index < BTRFS_NR_RAID_TYPES)
465		goto again;
466	up_read(&info->groups_sem);
467}
468
469static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
470					u64 to_reclaim)
471{
472	u64 bytes;
473	u64 nr;
474
475	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
476	nr = div64_u64(to_reclaim, bytes);
477	if (!nr)
478		nr = 1;
479	return nr;
480}
481
482#define EXTENT_SIZE_PER_ITEM	SZ_256K
483
484/*
485 * shrink metadata reservation for delalloc
486 */
487static void shrink_delalloc(struct btrfs_fs_info *fs_info,
488			    struct btrfs_space_info *space_info,
489			    u64 to_reclaim, bool wait_ordered)
490{
491	struct btrfs_trans_handle *trans;
492	u64 delalloc_bytes;
493	u64 dio_bytes;
494	u64 items;
495	long time_left;
496	int loops;
497
498	/* Calc the number of the pages we need flush for space reservation */
499	if (to_reclaim == U64_MAX) {
500		items = U64_MAX;
501	} else {
502		/*
503		 * to_reclaim is set to however much metadata we need to
504		 * reclaim, but reclaiming that much data doesn't really track
505		 * exactly, so increase the amount to reclaim by 2x in order to
506		 * make sure we're flushing enough delalloc to hopefully reclaim
507		 * some metadata reservations.
508		 */
509		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
510		to_reclaim = items * EXTENT_SIZE_PER_ITEM;
511	}
512
513	trans = (struct btrfs_trans_handle *)current->journal_info;
514
515	delalloc_bytes = percpu_counter_sum_positive(
516						&fs_info->delalloc_bytes);
517	dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
518	if (delalloc_bytes == 0 && dio_bytes == 0) {
519		if (trans)
520			return;
521		if (wait_ordered)
522			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
523		return;
524	}
525
526	/*
527	 * If we are doing more ordered than delalloc we need to just wait on
528	 * ordered extents, otherwise we'll waste time trying to flush delalloc
529	 * that likely won't give us the space back we need.
530	 */
531	if (dio_bytes > delalloc_bytes)
532		wait_ordered = true;
533
534	loops = 0;
535	while ((delalloc_bytes || dio_bytes) && loops < 3) {
536		u64 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
537
538		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
539
540		loops++;
541		if (wait_ordered && !trans) {
542			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
543		} else {
544			time_left = schedule_timeout_killable(1);
545			if (time_left)
546				break;
547		}
548
549		spin_lock(&space_info->lock);
550		if (list_empty(&space_info->tickets) &&
551		    list_empty(&space_info->priority_tickets)) {
552			spin_unlock(&space_info->lock);
553			break;
554		}
555		spin_unlock(&space_info->lock);
556
557		delalloc_bytes = percpu_counter_sum_positive(
558						&fs_info->delalloc_bytes);
559		dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
560	}
561}
562
563/**
564 * maybe_commit_transaction - possibly commit the transaction if its ok to
565 * @root - the root we're allocating for
566 * @bytes - the number of bytes we want to reserve
567 * @force - force the commit
568 *
569 * This will check to make sure that committing the transaction will actually
570 * get us somewhere and then commit the transaction if it does.  Otherwise it
571 * will return -ENOSPC.
572 */
573static int may_commit_transaction(struct btrfs_fs_info *fs_info,
574				  struct btrfs_space_info *space_info)
575{
576	struct reserve_ticket *ticket = NULL;
577	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
578	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
579	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
580	struct btrfs_trans_handle *trans;
581	u64 reclaim_bytes = 0;
582	u64 bytes_needed = 0;
583	u64 cur_free_bytes = 0;
584
585	trans = (struct btrfs_trans_handle *)current->journal_info;
586	if (trans)
587		return -EAGAIN;
588
589	spin_lock(&space_info->lock);
590	cur_free_bytes = btrfs_space_info_used(space_info, true);
591	if (cur_free_bytes < space_info->total_bytes)
592		cur_free_bytes = space_info->total_bytes - cur_free_bytes;
593	else
594		cur_free_bytes = 0;
595
596	if (!list_empty(&space_info->priority_tickets))
597		ticket = list_first_entry(&space_info->priority_tickets,
598					  struct reserve_ticket, list);
599	else if (!list_empty(&space_info->tickets))
600		ticket = list_first_entry(&space_info->tickets,
601					  struct reserve_ticket, list);
602	if (ticket)
603		bytes_needed = ticket->bytes;
604
605	if (bytes_needed > cur_free_bytes)
606		bytes_needed -= cur_free_bytes;
607	else
608		bytes_needed = 0;
609	spin_unlock(&space_info->lock);
610
611	if (!bytes_needed)
612		return 0;
613
614	trans = btrfs_join_transaction(fs_info->extent_root);
615	if (IS_ERR(trans))
616		return PTR_ERR(trans);
617
618	/*
619	 * See if there is enough pinned space to make this reservation, or if
620	 * we have block groups that are going to be freed, allowing us to
621	 * possibly do a chunk allocation the next loop through.
622	 */
623	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
624	    __percpu_counter_compare(&space_info->total_bytes_pinned,
625				     bytes_needed,
626				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
627		goto commit;
628
629	/*
630	 * See if there is some space in the delayed insertion reserve for this
631	 * reservation.  If the space_info's don't match (like for DATA or
632	 * SYSTEM) then just go enospc, reclaiming this space won't recover any
633	 * space to satisfy those reservations.
634	 */
635	if (space_info != delayed_rsv->space_info)
636		goto enospc;
637
638	spin_lock(&delayed_rsv->lock);
639	reclaim_bytes += delayed_rsv->reserved;
640	spin_unlock(&delayed_rsv->lock);
641
642	spin_lock(&delayed_refs_rsv->lock);
643	reclaim_bytes += delayed_refs_rsv->reserved;
644	spin_unlock(&delayed_refs_rsv->lock);
645
646	spin_lock(&trans_rsv->lock);
647	reclaim_bytes += trans_rsv->reserved;
648	spin_unlock(&trans_rsv->lock);
649
650	if (reclaim_bytes >= bytes_needed)
651		goto commit;
652	bytes_needed -= reclaim_bytes;
653
654	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
655				   bytes_needed,
656				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
657		goto enospc;
658
659commit:
660	return btrfs_commit_transaction(trans);
661enospc:
662	btrfs_end_transaction(trans);
663	return -ENOSPC;
664}
665
666/*
667 * Try to flush some data based on policy set by @state. This is only advisory
668 * and may fail for various reasons. The caller is supposed to examine the
669 * state of @space_info to detect the outcome.
670 */
671static void flush_space(struct btrfs_fs_info *fs_info,
672		       struct btrfs_space_info *space_info, u64 num_bytes,
673		       int state)
674{
675	struct btrfs_root *root = fs_info->extent_root;
676	struct btrfs_trans_handle *trans;
677	int nr;
678	int ret = 0;
679
680	switch (state) {
681	case FLUSH_DELAYED_ITEMS_NR:
682	case FLUSH_DELAYED_ITEMS:
683		if (state == FLUSH_DELAYED_ITEMS_NR)
684			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
685		else
686			nr = -1;
687
688		trans = btrfs_join_transaction(root);
689		if (IS_ERR(trans)) {
690			ret = PTR_ERR(trans);
691			break;
692		}
693		ret = btrfs_run_delayed_items_nr(trans, nr);
694		btrfs_end_transaction(trans);
695		break;
696	case FLUSH_DELALLOC:
697	case FLUSH_DELALLOC_WAIT:
698		shrink_delalloc(fs_info, space_info, num_bytes,
699				state == FLUSH_DELALLOC_WAIT);
700		break;
701	case FLUSH_DELAYED_REFS_NR:
702	case FLUSH_DELAYED_REFS:
703		trans = btrfs_join_transaction(root);
704		if (IS_ERR(trans)) {
705			ret = PTR_ERR(trans);
706			break;
707		}
708		if (state == FLUSH_DELAYED_REFS_NR)
709			nr = calc_reclaim_items_nr(fs_info, num_bytes);
710		else
711			nr = 0;
712		btrfs_run_delayed_refs(trans, nr);
713		btrfs_end_transaction(trans);
714		break;
715	case ALLOC_CHUNK:
716	case ALLOC_CHUNK_FORCE:
717		trans = btrfs_join_transaction(root);
718		if (IS_ERR(trans)) {
719			ret = PTR_ERR(trans);
720			break;
721		}
722		ret = btrfs_chunk_alloc(trans,
723				btrfs_get_alloc_profile(fs_info, space_info->flags),
724				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
725					CHUNK_ALLOC_FORCE);
726		btrfs_end_transaction(trans);
727		if (ret > 0 || ret == -ENOSPC)
728			ret = 0;
729		break;
730	case RUN_DELAYED_IPUTS:
731		/*
732		 * If we have pending delayed iputs then we could free up a
733		 * bunch of pinned space, so make sure we run the iputs before
734		 * we do our pinned bytes check below.
735		 */
736		btrfs_run_delayed_iputs(fs_info);
737		btrfs_wait_on_delayed_iputs(fs_info);
738		break;
739	case COMMIT_TRANS:
740		ret = may_commit_transaction(fs_info, space_info);
741		break;
742	default:
743		ret = -ENOSPC;
744		break;
745	}
746
747	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
748				ret);
749	return;
750}
751
752static inline u64
753btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
754				 struct btrfs_space_info *space_info)
755{
756	u64 used;
757	u64 avail;
758	u64 expected;
759	u64 to_reclaim = space_info->reclaim_size;
760
761	lockdep_assert_held(&space_info->lock);
762
763	avail = calc_available_free_space(fs_info, space_info,
764					  BTRFS_RESERVE_FLUSH_ALL);
765	used = btrfs_space_info_used(space_info, true);
766
767	/*
768	 * We may be flushing because suddenly we have less space than we had
769	 * before, and now we're well over-committed based on our current free
770	 * space.  If that's the case add in our overage so we make sure to put
771	 * appropriate pressure on the flushing state machine.
772	 */
773	if (space_info->total_bytes + avail < used)
774		to_reclaim += used - (space_info->total_bytes + avail);
775
776	if (to_reclaim)
777		return to_reclaim;
778
779	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
780	if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
781				 BTRFS_RESERVE_FLUSH_ALL))
782		return 0;
783
784	used = btrfs_space_info_used(space_info, true);
785
786	if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
787				 BTRFS_RESERVE_FLUSH_ALL))
788		expected = div_factor_fine(space_info->total_bytes, 95);
789	else
790		expected = div_factor_fine(space_info->total_bytes, 90);
791
792	if (used > expected)
793		to_reclaim = used - expected;
794	else
795		to_reclaim = 0;
796	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
797				     space_info->bytes_reserved);
798	return to_reclaim;
799}
800
801static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
802					struct btrfs_space_info *space_info,
803					u64 used)
804{
805	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
806
807	/* If we're just plain full then async reclaim just slows us down. */
808	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
809		return 0;
810
811	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
812		return 0;
813
814	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
815		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
816}
817
818static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
819				  struct btrfs_space_info *space_info,
820				  struct reserve_ticket *ticket)
821{
822	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
823	u64 min_bytes;
824
825	if (global_rsv->space_info != space_info)
826		return false;
827
828	spin_lock(&global_rsv->lock);
829	min_bytes = div_factor(global_rsv->size, 1);
830	if (global_rsv->reserved < min_bytes + ticket->bytes) {
831		spin_unlock(&global_rsv->lock);
832		return false;
833	}
834	global_rsv->reserved -= ticket->bytes;
835	remove_ticket(space_info, ticket);
836	ticket->bytes = 0;
837	wake_up(&ticket->wait);
838	space_info->tickets_id++;
839	if (global_rsv->reserved < global_rsv->size)
840		global_rsv->full = 0;
841	spin_unlock(&global_rsv->lock);
842
843	return true;
844}
845
846/*
847 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
848 * @fs_info - fs_info for this fs
849 * @space_info - the space info we were flushing
850 *
851 * We call this when we've exhausted our flushing ability and haven't made
852 * progress in satisfying tickets.  The reservation code handles tickets in
853 * order, so if there is a large ticket first and then smaller ones we could
854 * very well satisfy the smaller tickets.  This will attempt to wake up any
855 * tickets in the list to catch this case.
856 *
857 * This function returns true if it was able to make progress by clearing out
858 * other tickets, or if it stumbles across a ticket that was smaller than the
859 * first ticket.
860 */
861static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
862				   struct btrfs_space_info *space_info)
863{
864	struct reserve_ticket *ticket;
865	u64 tickets_id = space_info->tickets_id;
866	u64 first_ticket_bytes = 0;
867
868	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
869		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
870		__btrfs_dump_space_info(fs_info, space_info);
871	}
872
873	while (!list_empty(&space_info->tickets) &&
874	       tickets_id == space_info->tickets_id) {
875		ticket = list_first_entry(&space_info->tickets,
876					  struct reserve_ticket, list);
877
878		if (ticket->steal &&
879		    steal_from_global_rsv(fs_info, space_info, ticket))
880			return true;
881
882		/*
883		 * may_commit_transaction will avoid committing the transaction
884		 * if it doesn't feel like the space reclaimed by the commit
885		 * would result in the ticket succeeding.  However if we have a
886		 * smaller ticket in the queue it may be small enough to be
887		 * satisified by committing the transaction, so if any
888		 * subsequent ticket is smaller than the first ticket go ahead
889		 * and send us back for another loop through the enospc flushing
890		 * code.
891		 */
892		if (first_ticket_bytes == 0)
893			first_ticket_bytes = ticket->bytes;
894		else if (first_ticket_bytes > ticket->bytes)
895			return true;
896
897		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
898			btrfs_info(fs_info, "failing ticket with %llu bytes",
899				   ticket->bytes);
900
901		remove_ticket(space_info, ticket);
902		ticket->error = -ENOSPC;
903		wake_up(&ticket->wait);
904
905		/*
906		 * We're just throwing tickets away, so more flushing may not
907		 * trip over btrfs_try_granting_tickets, so we need to call it
908		 * here to see if we can make progress with the next ticket in
909		 * the list.
910		 */
911		btrfs_try_granting_tickets(fs_info, space_info);
912	}
913	return (tickets_id != space_info->tickets_id);
914}
915
916/*
917 * This is for normal flushers, we can wait all goddamned day if we want to.  We
918 * will loop and continuously try to flush as long as we are making progress.
919 * We count progress as clearing off tickets each time we have to loop.
920 */
921static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
922{
923	struct btrfs_fs_info *fs_info;
924	struct btrfs_space_info *space_info;
925	u64 to_reclaim;
926	int flush_state;
927	int commit_cycles = 0;
928	u64 last_tickets_id;
929
930	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
931	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
932
933	spin_lock(&space_info->lock);
934	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
935	if (!to_reclaim) {
936		space_info->flush = 0;
937		spin_unlock(&space_info->lock);
938		return;
939	}
940	last_tickets_id = space_info->tickets_id;
941	spin_unlock(&space_info->lock);
942
943	flush_state = FLUSH_DELAYED_ITEMS_NR;
944	do {
945		flush_space(fs_info, space_info, to_reclaim, flush_state);
946		spin_lock(&space_info->lock);
947		if (list_empty(&space_info->tickets)) {
948			space_info->flush = 0;
949			spin_unlock(&space_info->lock);
950			return;
951		}
952		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
953							      space_info);
954		if (last_tickets_id == space_info->tickets_id) {
955			flush_state++;
956		} else {
957			last_tickets_id = space_info->tickets_id;
958			flush_state = FLUSH_DELAYED_ITEMS_NR;
959			if (commit_cycles)
960				commit_cycles--;
961		}
962
963		/*
964		 * We don't want to force a chunk allocation until we've tried
965		 * pretty hard to reclaim space.  Think of the case where we
966		 * freed up a bunch of space and so have a lot of pinned space
967		 * to reclaim.  We would rather use that than possibly create a
968		 * underutilized metadata chunk.  So if this is our first run
969		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
970		 * commit the transaction.  If nothing has changed the next go
971		 * around then we can force a chunk allocation.
972		 */
973		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
974			flush_state++;
975
976		if (flush_state > COMMIT_TRANS) {
977			commit_cycles++;
978			if (commit_cycles > 2) {
979				if (maybe_fail_all_tickets(fs_info, space_info)) {
980					flush_state = FLUSH_DELAYED_ITEMS_NR;
981					commit_cycles--;
982				} else {
983					space_info->flush = 0;
984				}
985			} else {
986				flush_state = FLUSH_DELAYED_ITEMS_NR;
987			}
988		}
989		spin_unlock(&space_info->lock);
990	} while (flush_state <= COMMIT_TRANS);
991}
992
993/*
994 * FLUSH_DELALLOC_WAIT:
995 *   Space is freed from flushing delalloc in one of two ways.
996 *
997 *   1) compression is on and we allocate less space than we reserved
998 *   2) we are overwriting existing space
999 *
1000 *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1001 *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1002 *   length to ->bytes_reserved, and subtracts the reserved space from
1003 *   ->bytes_may_use.
1004 *
1005 *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1006 *   extent in the range we are overwriting, which creates a delayed ref for
1007 *   that freed extent.  This however is not reclaimed until the transaction
1008 *   commits, thus the next stages.
1009 *
1010 * RUN_DELAYED_IPUTS
1011 *   If we are freeing inodes, we want to make sure all delayed iputs have
1012 *   completed, because they could have been on an inode with i_nlink == 0, and
1013 *   thus have been truncated and freed up space.  But again this space is not
1014 *   immediately re-usable, it comes in the form of a delayed ref, which must be
1015 *   run and then the transaction must be committed.
1016 *
1017 * FLUSH_DELAYED_REFS
1018 *   The above two cases generate delayed refs that will affect
1019 *   ->total_bytes_pinned.  However this counter can be inconsistent with
1020 *   reality if there are outstanding delayed refs.  This is because we adjust
1021 *   the counter based solely on the current set of delayed refs and disregard
1022 *   any on-disk state which might include more refs.  So for example, if we
1023 *   have an extent with 2 references, but we only drop 1, we'll see that there
1024 *   is a negative delayed ref count for the extent and assume that the space
1025 *   will be freed, and thus increase ->total_bytes_pinned.
1026 *
1027 *   Running the delayed refs gives us the actual real view of what will be
1028 *   freed at the transaction commit time.  This stage will not actually free
1029 *   space for us, it just makes sure that may_commit_transaction() has all of
1030 *   the information it needs to make the right decision.
1031 *
1032 * COMMIT_TRANS
1033 *   This is where we reclaim all of the pinned space generated by the previous
1034 *   two stages.  We will not commit the transaction if we don't think we're
1035 *   likely to satisfy our request, which means if our current free space +
1036 *   total_bytes_pinned < reservation we will not commit.  This is why the
1037 *   previous states are actually important, to make sure we know for sure
1038 *   whether committing the transaction will allow us to make progress.
1039 *
1040 * ALLOC_CHUNK_FORCE
1041 *   For data we start with alloc chunk force, however we could have been full
1042 *   before, and then the transaction commit could have freed new block groups,
1043 *   so if we now have space to allocate do the force chunk allocation.
1044 */
1045static const enum btrfs_flush_state data_flush_states[] = {
1046	FLUSH_DELALLOC_WAIT,
1047	RUN_DELAYED_IPUTS,
1048	FLUSH_DELAYED_REFS,
1049	COMMIT_TRANS,
1050	ALLOC_CHUNK_FORCE,
1051};
1052
1053static void btrfs_async_reclaim_data_space(struct work_struct *work)
1054{
1055	struct btrfs_fs_info *fs_info;
1056	struct btrfs_space_info *space_info;
1057	u64 last_tickets_id;
1058	int flush_state = 0;
1059
1060	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1061	space_info = fs_info->data_sinfo;
1062
1063	spin_lock(&space_info->lock);
1064	if (list_empty(&space_info->tickets)) {
1065		space_info->flush = 0;
1066		spin_unlock(&space_info->lock);
1067		return;
1068	}
1069	last_tickets_id = space_info->tickets_id;
1070	spin_unlock(&space_info->lock);
1071
1072	while (!space_info->full) {
1073		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1074		spin_lock(&space_info->lock);
1075		if (list_empty(&space_info->tickets)) {
1076			space_info->flush = 0;
1077			spin_unlock(&space_info->lock);
1078			return;
1079		}
1080		last_tickets_id = space_info->tickets_id;
1081		spin_unlock(&space_info->lock);
1082	}
1083
1084	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1085		flush_space(fs_info, space_info, U64_MAX,
1086			    data_flush_states[flush_state]);
1087		spin_lock(&space_info->lock);
1088		if (list_empty(&space_info->tickets)) {
1089			space_info->flush = 0;
1090			spin_unlock(&space_info->lock);
1091			return;
1092		}
1093
1094		if (last_tickets_id == space_info->tickets_id) {
1095			flush_state++;
1096		} else {
1097			last_tickets_id = space_info->tickets_id;
1098			flush_state = 0;
1099		}
1100
1101		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1102			if (space_info->full) {
1103				if (maybe_fail_all_tickets(fs_info, space_info))
1104					flush_state = 0;
1105				else
1106					space_info->flush = 0;
1107			} else {
1108				flush_state = 0;
1109			}
1110		}
1111		spin_unlock(&space_info->lock);
1112	}
1113}
1114
1115void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1116{
1117	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1118	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1119}
1120
1121static const enum btrfs_flush_state priority_flush_states[] = {
1122	FLUSH_DELAYED_ITEMS_NR,
1123	FLUSH_DELAYED_ITEMS,
1124	ALLOC_CHUNK,
1125};
1126
1127static const enum btrfs_flush_state evict_flush_states[] = {
1128	FLUSH_DELAYED_ITEMS_NR,
1129	FLUSH_DELAYED_ITEMS,
1130	FLUSH_DELAYED_REFS_NR,
1131	FLUSH_DELAYED_REFS,
1132	FLUSH_DELALLOC,
1133	FLUSH_DELALLOC_WAIT,
1134	ALLOC_CHUNK,
1135	COMMIT_TRANS,
1136};
1137
1138static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1139				struct btrfs_space_info *space_info,
1140				struct reserve_ticket *ticket,
1141				const enum btrfs_flush_state *states,
1142				int states_nr)
1143{
1144	u64 to_reclaim;
1145	int flush_state;
1146
1147	spin_lock(&space_info->lock);
1148	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1149	if (!to_reclaim) {
1150		spin_unlock(&space_info->lock);
1151		return;
1152	}
1153	spin_unlock(&space_info->lock);
1154
1155	flush_state = 0;
1156	do {
1157		flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1158		flush_state++;
1159		spin_lock(&space_info->lock);
1160		if (ticket->bytes == 0) {
1161			spin_unlock(&space_info->lock);
1162			return;
1163		}
1164		spin_unlock(&space_info->lock);
1165	} while (flush_state < states_nr);
1166}
1167
1168static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1169					struct btrfs_space_info *space_info,
1170					struct reserve_ticket *ticket)
1171{
1172	while (!space_info->full) {
1173		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1174		spin_lock(&space_info->lock);
1175		if (ticket->bytes == 0) {
1176			spin_unlock(&space_info->lock);
1177			return;
1178		}
1179		spin_unlock(&space_info->lock);
1180	}
1181}
1182
1183static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1184				struct btrfs_space_info *space_info,
1185				struct reserve_ticket *ticket)
1186
1187{
1188	DEFINE_WAIT(wait);
1189	int ret = 0;
1190
1191	spin_lock(&space_info->lock);
1192	while (ticket->bytes > 0 && ticket->error == 0) {
1193		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1194		if (ret) {
1195			/*
1196			 * Delete us from the list. After we unlock the space
1197			 * info, we don't want the async reclaim job to reserve
1198			 * space for this ticket. If that would happen, then the
1199			 * ticket's task would not known that space was reserved
1200			 * despite getting an error, resulting in a space leak
1201			 * (bytes_may_use counter of our space_info).
1202			 */
1203			remove_ticket(space_info, ticket);
1204			ticket->error = -EINTR;
1205			break;
1206		}
1207		spin_unlock(&space_info->lock);
1208
1209		schedule();
1210
1211		finish_wait(&ticket->wait, &wait);
1212		spin_lock(&space_info->lock);
1213	}
1214	spin_unlock(&space_info->lock);
1215}
1216
1217/**
1218 * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1219 * @fs_info - the fs
1220 * @space_info - the space_info for the reservation
1221 * @ticket - the ticket for the reservation
1222 * @flush - how much we can flush
1223 *
1224 * This does the work of figuring out how to flush for the ticket, waiting for
1225 * the reservation, and returning the appropriate error if there is one.
1226 */
1227static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1228				 struct btrfs_space_info *space_info,
1229				 struct reserve_ticket *ticket,
1230				 enum btrfs_reserve_flush_enum flush)
1231{
1232	int ret;
1233
1234	switch (flush) {
1235	case BTRFS_RESERVE_FLUSH_DATA:
1236	case BTRFS_RESERVE_FLUSH_ALL:
1237	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1238		wait_reserve_ticket(fs_info, space_info, ticket);
1239		break;
1240	case BTRFS_RESERVE_FLUSH_LIMIT:
1241		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1242						priority_flush_states,
1243						ARRAY_SIZE(priority_flush_states));
1244		break;
1245	case BTRFS_RESERVE_FLUSH_EVICT:
1246		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1247						evict_flush_states,
1248						ARRAY_SIZE(evict_flush_states));
1249		break;
1250	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1251		priority_reclaim_data_space(fs_info, space_info, ticket);
1252		break;
1253	default:
1254		ASSERT(0);
1255		break;
1256	}
1257
1258	spin_lock(&space_info->lock);
1259	ret = ticket->error;
1260	if (ticket->bytes || ticket->error) {
1261		/*
1262		 * We were a priority ticket, so we need to delete ourselves
1263		 * from the list.  Because we could have other priority tickets
1264		 * behind us that require less space, run
1265		 * btrfs_try_granting_tickets() to see if their reservations can
1266		 * now be made.
1267		 */
1268		if (!list_empty(&ticket->list)) {
1269			remove_ticket(space_info, ticket);
1270			btrfs_try_granting_tickets(fs_info, space_info);
1271		}
1272
1273		if (!ret)
1274			ret = -ENOSPC;
1275	}
1276	spin_unlock(&space_info->lock);
1277	ASSERT(list_empty(&ticket->list));
1278	/*
1279	 * Check that we can't have an error set if the reservation succeeded,
1280	 * as that would confuse tasks and lead them to error out without
1281	 * releasing reserved space (if an error happens the expectation is that
1282	 * space wasn't reserved at all).
1283	 */
1284	ASSERT(!(ticket->bytes == 0 && ticket->error));
1285	return ret;
1286}
1287
1288/*
1289 * This returns true if this flush state will go through the ordinary flushing
1290 * code.
1291 */
1292static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1293{
1294	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1295		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1296}
1297
1298/**
1299 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1300 * @root - the root we're allocating for
1301 * @space_info - the space info we want to allocate from
1302 * @orig_bytes - the number of bytes we want
1303 * @flush - whether or not we can flush to make our reservation
1304 *
1305 * This will reserve orig_bytes number of bytes from the space info associated
1306 * with the block_rsv.  If there is not enough space it will make an attempt to
1307 * flush out space to make room.  It will do this by flushing delalloc if
1308 * possible or committing the transaction.  If flush is 0 then no attempts to
1309 * regain reservations will be made and this will fail if there is not enough
1310 * space already.
1311 */
1312static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1313			   struct btrfs_space_info *space_info, u64 orig_bytes,
1314			   enum btrfs_reserve_flush_enum flush)
1315{
1316	struct work_struct *async_work;
1317	struct reserve_ticket ticket;
1318	u64 used;
1319	int ret = 0;
1320	bool pending_tickets;
1321
1322	ASSERT(orig_bytes);
1323	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1324
1325	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1326		async_work = &fs_info->async_data_reclaim_work;
1327	else
1328		async_work = &fs_info->async_reclaim_work;
1329
1330	spin_lock(&space_info->lock);
1331	ret = -ENOSPC;
1332	used = btrfs_space_info_used(space_info, true);
1333
1334	/*
1335	 * We don't want NO_FLUSH allocations to jump everybody, they can
1336	 * generally handle ENOSPC in a different way, so treat them the same as
1337	 * normal flushers when it comes to skipping pending tickets.
1338	 */
1339	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1340		pending_tickets = !list_empty(&space_info->tickets) ||
1341			!list_empty(&space_info->priority_tickets);
1342	else
1343		pending_tickets = !list_empty(&space_info->priority_tickets);
1344
1345	/*
1346	 * Carry on if we have enough space (short-circuit) OR call
1347	 * can_overcommit() to ensure we can overcommit to continue.
1348	 */
1349	if (!pending_tickets &&
1350	    ((used + orig_bytes <= space_info->total_bytes) ||
1351	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1352		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1353						      orig_bytes);
1354		ret = 0;
1355	}
1356
1357	/*
1358	 * If we couldn't make a reservation then setup our reservation ticket
1359	 * and kick the async worker if it's not already running.
1360	 *
1361	 * If we are a priority flusher then we just need to add our ticket to
1362	 * the list and we will do our own flushing further down.
1363	 */
1364	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1365		ticket.bytes = orig_bytes;
1366		ticket.error = 0;
1367		space_info->reclaim_size += ticket.bytes;
1368		init_waitqueue_head(&ticket.wait);
1369		ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1370		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1371		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1372		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1373			list_add_tail(&ticket.list, &space_info->tickets);
1374			if (!space_info->flush) {
1375				space_info->flush = 1;
1376				trace_btrfs_trigger_flush(fs_info,
1377							  space_info->flags,
1378							  orig_bytes, flush,
1379							  "enospc");
1380				queue_work(system_unbound_wq, async_work);
1381			}
1382		} else {
1383			list_add_tail(&ticket.list,
1384				      &space_info->priority_tickets);
1385		}
1386	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1387		used += orig_bytes;
1388		/*
1389		 * We will do the space reservation dance during log replay,
1390		 * which means we won't have fs_info->fs_root set, so don't do
1391		 * the async reclaim as we will panic.
1392		 */
1393		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1394		    need_do_async_reclaim(fs_info, space_info, used) &&
1395		    !work_busy(&fs_info->async_reclaim_work)) {
1396			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1397						  orig_bytes, flush, "preempt");
1398			queue_work(system_unbound_wq,
1399				   &fs_info->async_reclaim_work);
1400		}
1401	}
1402	spin_unlock(&space_info->lock);
1403	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1404		return ret;
1405
1406	return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1407}
1408
1409/**
1410 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1411 * @root - the root we're allocating for
1412 * @block_rsv - the block_rsv we're allocating for
1413 * @orig_bytes - the number of bytes we want
1414 * @flush - whether or not we can flush to make our reservation
1415 *
1416 * This will reserve orig_bytes number of bytes from the space info associated
1417 * with the block_rsv.  If there is not enough space it will make an attempt to
1418 * flush out space to make room.  It will do this by flushing delalloc if
1419 * possible or committing the transaction.  If flush is 0 then no attempts to
1420 * regain reservations will be made and this will fail if there is not enough
1421 * space already.
1422 */
1423int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1424				 struct btrfs_block_rsv *block_rsv,
1425				 u64 orig_bytes,
1426				 enum btrfs_reserve_flush_enum flush)
1427{
1428	struct btrfs_fs_info *fs_info = root->fs_info;
1429	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1430	int ret;
1431
1432	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1433	if (ret == -ENOSPC &&
1434	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1435		if (block_rsv != global_rsv &&
1436		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1437			ret = 0;
1438	}
1439	if (ret == -ENOSPC) {
1440		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1441					      block_rsv->space_info->flags,
1442					      orig_bytes, 1);
1443
1444		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1445			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1446					      orig_bytes, 0);
1447	}
1448	return ret;
1449}
1450
1451/**
1452 * btrfs_reserve_data_bytes - try to reserve data bytes for an allocation
1453 * @fs_info - the filesystem
1454 * @bytes - the number of bytes we need
1455 * @flush - how we are allowed to flush
1456 *
1457 * This will reserve bytes from the data space info.  If there is not enough
1458 * space then we will attempt to flush space as specified by flush.
1459 */
1460int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1461			     enum btrfs_reserve_flush_enum flush)
1462{
1463	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1464	int ret;
1465
1466	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1467	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1468	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1469
1470	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1471	if (ret == -ENOSPC) {
1472		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1473					      data_sinfo->flags, bytes, 1);
1474		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1475			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1476	}
1477	return ret;
1478}
1479