xref: /kernel/linux/linux-5.10/fs/btrfs/root-tree.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/err.h>
7#include <linux/uuid.h>
8#include "ctree.h"
9#include "transaction.h"
10#include "disk-io.h"
11#include "print-tree.h"
12#include "qgroup.h"
13#include "space-info.h"
14
15/*
16 * Read a root item from the tree. In case we detect a root item smaller then
17 * sizeof(root_item), we know it's an old version of the root structure and
18 * initialize all new fields to zero. The same happens if we detect mismatching
19 * generation numbers as then we know the root was once mounted with an older
20 * kernel that was not aware of the root item structure change.
21 */
22static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
23				struct btrfs_root_item *item)
24{
25	u32 len;
26	int need_reset = 0;
27
28	len = btrfs_item_size_nr(eb, slot);
29	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
30			   min_t(u32, len, sizeof(*item)));
31	if (len < sizeof(*item))
32		need_reset = 1;
33	if (!need_reset && btrfs_root_generation(item)
34		!= btrfs_root_generation_v2(item)) {
35		if (btrfs_root_generation_v2(item) != 0) {
36			btrfs_warn(eb->fs_info,
37					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
38		}
39		need_reset = 1;
40	}
41	if (need_reset) {
42		memset(&item->generation_v2, 0,
43			sizeof(*item) - offsetof(struct btrfs_root_item,
44					generation_v2));
45
46		generate_random_guid(item->uuid);
47	}
48}
49
50/*
51 * btrfs_find_root - lookup the root by the key.
52 * root: the root of the root tree
53 * search_key: the key to search
54 * path: the path we search
55 * root_item: the root item of the tree we look for
56 * root_key: the root key of the tree we look for
57 *
58 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
59 * of the search key, just lookup the root with the highest offset for a
60 * given objectid.
61 *
62 * If we find something return 0, otherwise > 0, < 0 on error.
63 */
64int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
65		    struct btrfs_path *path, struct btrfs_root_item *root_item,
66		    struct btrfs_key *root_key)
67{
68	struct btrfs_key found_key;
69	struct extent_buffer *l;
70	int ret;
71	int slot;
72
73	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
74	if (ret < 0)
75		return ret;
76
77	if (search_key->offset != -1ULL) {	/* the search key is exact */
78		if (ret > 0)
79			goto out;
80	} else {
81		BUG_ON(ret == 0);		/* Logical error */
82		if (path->slots[0] == 0)
83			goto out;
84		path->slots[0]--;
85		ret = 0;
86	}
87
88	l = path->nodes[0];
89	slot = path->slots[0];
90
91	btrfs_item_key_to_cpu(l, &found_key, slot);
92	if (found_key.objectid != search_key->objectid ||
93	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
94		ret = 1;
95		goto out;
96	}
97
98	if (root_item)
99		btrfs_read_root_item(l, slot, root_item);
100	if (root_key)
101		memcpy(root_key, &found_key, sizeof(found_key));
102out:
103	btrfs_release_path(path);
104	return ret;
105}
106
107void btrfs_set_root_node(struct btrfs_root_item *item,
108			 struct extent_buffer *node)
109{
110	btrfs_set_root_bytenr(item, node->start);
111	btrfs_set_root_level(item, btrfs_header_level(node));
112	btrfs_set_root_generation(item, btrfs_header_generation(node));
113}
114
115/*
116 * copy the data in 'item' into the btree
117 */
118int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
119		      *root, struct btrfs_key *key, struct btrfs_root_item
120		      *item)
121{
122	struct btrfs_fs_info *fs_info = root->fs_info;
123	struct btrfs_path *path;
124	struct extent_buffer *l;
125	int ret;
126	int slot;
127	unsigned long ptr;
128	u32 old_len;
129
130	path = btrfs_alloc_path();
131	if (!path)
132		return -ENOMEM;
133
134	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
135	if (ret < 0)
136		goto out;
137
138	if (ret > 0) {
139		btrfs_crit(fs_info,
140			"unable to find root key (%llu %u %llu) in tree %llu",
141			key->objectid, key->type, key->offset,
142			root->root_key.objectid);
143		ret = -EUCLEAN;
144		btrfs_abort_transaction(trans, ret);
145		goto out;
146	}
147
148	l = path->nodes[0];
149	slot = path->slots[0];
150	ptr = btrfs_item_ptr_offset(l, slot);
151	old_len = btrfs_item_size_nr(l, slot);
152
153	/*
154	 * If this is the first time we update the root item which originated
155	 * from an older kernel, we need to enlarge the item size to make room
156	 * for the added fields.
157	 */
158	if (old_len < sizeof(*item)) {
159		btrfs_release_path(path);
160		ret = btrfs_search_slot(trans, root, key, path,
161				-1, 1);
162		if (ret < 0) {
163			btrfs_abort_transaction(trans, ret);
164			goto out;
165		}
166
167		ret = btrfs_del_item(trans, root, path);
168		if (ret < 0) {
169			btrfs_abort_transaction(trans, ret);
170			goto out;
171		}
172		btrfs_release_path(path);
173		ret = btrfs_insert_empty_item(trans, root, path,
174				key, sizeof(*item));
175		if (ret < 0) {
176			btrfs_abort_transaction(trans, ret);
177			goto out;
178		}
179		l = path->nodes[0];
180		slot = path->slots[0];
181		ptr = btrfs_item_ptr_offset(l, slot);
182	}
183
184	/*
185	 * Update generation_v2 so at the next mount we know the new root
186	 * fields are valid.
187	 */
188	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
189
190	write_extent_buffer(l, item, ptr, sizeof(*item));
191	btrfs_mark_buffer_dirty(path->nodes[0]);
192out:
193	btrfs_free_path(path);
194	return ret;
195}
196
197int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
198		      const struct btrfs_key *key, struct btrfs_root_item *item)
199{
200	/*
201	 * Make sure generation v1 and v2 match. See update_root for details.
202	 */
203	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
204	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
205}
206
207int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
208{
209	struct btrfs_root *tree_root = fs_info->tree_root;
210	struct extent_buffer *leaf;
211	struct btrfs_path *path;
212	struct btrfs_key key;
213	struct btrfs_root *root;
214	int err = 0;
215	int ret;
216
217	path = btrfs_alloc_path();
218	if (!path)
219		return -ENOMEM;
220
221	key.objectid = BTRFS_ORPHAN_OBJECTID;
222	key.type = BTRFS_ORPHAN_ITEM_KEY;
223	key.offset = 0;
224
225	while (1) {
226		u64 root_objectid;
227
228		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
229		if (ret < 0) {
230			err = ret;
231			break;
232		}
233
234		leaf = path->nodes[0];
235		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
236			ret = btrfs_next_leaf(tree_root, path);
237			if (ret < 0)
238				err = ret;
239			if (ret != 0)
240				break;
241			leaf = path->nodes[0];
242		}
243
244		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
245		btrfs_release_path(path);
246
247		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
248		    key.type != BTRFS_ORPHAN_ITEM_KEY)
249			break;
250
251		root_objectid = key.offset;
252		key.offset++;
253
254		root = btrfs_get_fs_root(fs_info, root_objectid, false);
255		err = PTR_ERR_OR_ZERO(root);
256		if (err && err != -ENOENT) {
257			break;
258		} else if (err == -ENOENT) {
259			struct btrfs_trans_handle *trans;
260
261			btrfs_release_path(path);
262
263			trans = btrfs_join_transaction(tree_root);
264			if (IS_ERR(trans)) {
265				err = PTR_ERR(trans);
266				btrfs_handle_fs_error(fs_info, err,
267					    "Failed to start trans to delete orphan item");
268				break;
269			}
270			err = btrfs_del_orphan_item(trans, tree_root,
271						    root_objectid);
272			btrfs_end_transaction(trans);
273			if (err) {
274				btrfs_handle_fs_error(fs_info, err,
275					    "Failed to delete root orphan item");
276				break;
277			}
278			continue;
279		}
280
281		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
282		if (btrfs_root_refs(&root->root_item) == 0) {
283			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
284			btrfs_add_dead_root(root);
285		}
286		btrfs_put_root(root);
287	}
288
289	btrfs_free_path(path);
290	return err;
291}
292
293/* drop the root item for 'key' from the tree root */
294int btrfs_del_root(struct btrfs_trans_handle *trans,
295		   const struct btrfs_key *key)
296{
297	struct btrfs_root *root = trans->fs_info->tree_root;
298	struct btrfs_path *path;
299	int ret;
300
301	path = btrfs_alloc_path();
302	if (!path)
303		return -ENOMEM;
304	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
305	if (ret < 0)
306		goto out;
307
308	BUG_ON(ret != 0);
309
310	ret = btrfs_del_item(trans, root, path);
311out:
312	btrfs_free_path(path);
313	return ret;
314}
315
316int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
317		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
318		       int name_len)
319
320{
321	struct btrfs_root *tree_root = trans->fs_info->tree_root;
322	struct btrfs_path *path;
323	struct btrfs_root_ref *ref;
324	struct extent_buffer *leaf;
325	struct btrfs_key key;
326	unsigned long ptr;
327	int err = 0;
328	int ret;
329
330	path = btrfs_alloc_path();
331	if (!path)
332		return -ENOMEM;
333
334	key.objectid = root_id;
335	key.type = BTRFS_ROOT_BACKREF_KEY;
336	key.offset = ref_id;
337again:
338	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
339	if (ret < 0) {
340		err = ret;
341		goto out;
342	} else if (ret == 0) {
343		leaf = path->nodes[0];
344		ref = btrfs_item_ptr(leaf, path->slots[0],
345				     struct btrfs_root_ref);
346		ptr = (unsigned long)(ref + 1);
347		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
348		    (btrfs_root_ref_name_len(leaf, ref) != name_len) ||
349		    memcmp_extent_buffer(leaf, name, ptr, name_len)) {
350			err = -ENOENT;
351			goto out;
352		}
353		*sequence = btrfs_root_ref_sequence(leaf, ref);
354
355		ret = btrfs_del_item(trans, tree_root, path);
356		if (ret) {
357			err = ret;
358			goto out;
359		}
360	} else
361		err = -ENOENT;
362
363	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
364		btrfs_release_path(path);
365		key.objectid = ref_id;
366		key.type = BTRFS_ROOT_REF_KEY;
367		key.offset = root_id;
368		goto again;
369	}
370
371out:
372	btrfs_free_path(path);
373	return err;
374}
375
376/*
377 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
378 * or BTRFS_ROOT_BACKREF_KEY.
379 *
380 * The dirid, sequence, name and name_len refer to the directory entry
381 * that is referencing the root.
382 *
383 * For a forward ref, the root_id is the id of the tree referencing
384 * the root and ref_id is the id of the subvol  or snapshot.
385 *
386 * For a back ref the root_id is the id of the subvol or snapshot and
387 * ref_id is the id of the tree referencing it.
388 *
389 * Will return 0, -ENOMEM, or anything from the CoW path
390 */
391int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
392		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
393		       int name_len)
394{
395	struct btrfs_root *tree_root = trans->fs_info->tree_root;
396	struct btrfs_key key;
397	int ret;
398	struct btrfs_path *path;
399	struct btrfs_root_ref *ref;
400	struct extent_buffer *leaf;
401	unsigned long ptr;
402
403	path = btrfs_alloc_path();
404	if (!path)
405		return -ENOMEM;
406
407	key.objectid = root_id;
408	key.type = BTRFS_ROOT_BACKREF_KEY;
409	key.offset = ref_id;
410again:
411	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
412				      sizeof(*ref) + name_len);
413	if (ret) {
414		btrfs_abort_transaction(trans, ret);
415		btrfs_free_path(path);
416		return ret;
417	}
418
419	leaf = path->nodes[0];
420	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
421	btrfs_set_root_ref_dirid(leaf, ref, dirid);
422	btrfs_set_root_ref_sequence(leaf, ref, sequence);
423	btrfs_set_root_ref_name_len(leaf, ref, name_len);
424	ptr = (unsigned long)(ref + 1);
425	write_extent_buffer(leaf, name, ptr, name_len);
426	btrfs_mark_buffer_dirty(leaf);
427
428	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
429		btrfs_release_path(path);
430		key.objectid = ref_id;
431		key.type = BTRFS_ROOT_REF_KEY;
432		key.offset = root_id;
433		goto again;
434	}
435
436	btrfs_free_path(path);
437	return 0;
438}
439
440/*
441 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
442 * for subvolumes. To work around this problem, we steal a bit from
443 * root_item->inode_item->flags, and use it to indicate if those fields
444 * have been properly initialized.
445 */
446void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
447{
448	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
449
450	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
451		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
452		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
453		btrfs_set_root_flags(root_item, 0);
454		btrfs_set_root_limit(root_item, 0);
455	}
456}
457
458void btrfs_update_root_times(struct btrfs_trans_handle *trans,
459			     struct btrfs_root *root)
460{
461	struct btrfs_root_item *item = &root->root_item;
462	struct timespec64 ct;
463
464	ktime_get_real_ts64(&ct);
465	spin_lock(&root->root_item_lock);
466	btrfs_set_root_ctransid(item, trans->transid);
467	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
468	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
469	spin_unlock(&root->root_item_lock);
470}
471
472/*
473 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
474 * root: the root of the parent directory
475 * rsv: block reservation
476 * items: the number of items that we need do reservation
477 * use_global_rsv: allow fallback to the global block reservation
478 *
479 * This function is used to reserve the space for snapshot/subvolume
480 * creation and deletion. Those operations are different with the
481 * common file/directory operations, they change two fs/file trees
482 * and root tree, the number of items that the qgroup reserves is
483 * different with the free space reservation. So we can not use
484 * the space reservation mechanism in start_transaction().
485 */
486int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
487				     struct btrfs_block_rsv *rsv, int items,
488				     bool use_global_rsv)
489{
490	u64 qgroup_num_bytes = 0;
491	u64 num_bytes;
492	int ret;
493	struct btrfs_fs_info *fs_info = root->fs_info;
494	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
495
496	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
497		/* One for parent inode, two for dir entries */
498		qgroup_num_bytes = 3 * fs_info->nodesize;
499		ret = btrfs_qgroup_reserve_meta_prealloc(root,
500				qgroup_num_bytes, true);
501		if (ret)
502			return ret;
503	}
504
505	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
506	rsv->space_info = btrfs_find_space_info(fs_info,
507					    BTRFS_BLOCK_GROUP_METADATA);
508	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
509				  BTRFS_RESERVE_FLUSH_ALL);
510
511	if (ret == -ENOSPC && use_global_rsv)
512		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
513
514	if (ret && qgroup_num_bytes)
515		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
516
517	if (!ret) {
518		spin_lock(&rsv->lock);
519		rsv->qgroup_rsv_reserved += qgroup_num_bytes;
520		spin_unlock(&rsv->lock);
521	}
522	return ret;
523}
524
525void btrfs_subvolume_release_metadata(struct btrfs_root *root,
526				      struct btrfs_block_rsv *rsv)
527{
528	struct btrfs_fs_info *fs_info = root->fs_info;
529	u64 qgroup_to_release;
530
531	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release);
532	btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release);
533}
534