1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6#include <linux/sched.h> 7#include <linux/pagemap.h> 8#include <linux/writeback.h> 9#include <linux/blkdev.h> 10#include <linux/rbtree.h> 11#include <linux/slab.h> 12#include <linux/error-injection.h> 13#include "ctree.h" 14#include "disk-io.h" 15#include "transaction.h" 16#include "volumes.h" 17#include "locking.h" 18#include "btrfs_inode.h" 19#include "async-thread.h" 20#include "free-space-cache.h" 21#include "inode-map.h" 22#include "qgroup.h" 23#include "print-tree.h" 24#include "delalloc-space.h" 25#include "block-group.h" 26#include "backref.h" 27#include "misc.h" 28 29/* 30 * Relocation overview 31 * 32 * [What does relocation do] 33 * 34 * The objective of relocation is to relocate all extents of the target block 35 * group to other block groups. 36 * This is utilized by resize (shrink only), profile converting, compacting 37 * space, or balance routine to spread chunks over devices. 38 * 39 * Before | After 40 * ------------------------------------------------------------------ 41 * BG A: 10 data extents | BG A: deleted 42 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 43 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 44 * 45 * [How does relocation work] 46 * 47 * 1. Mark the target block group read-only 48 * New extents won't be allocated from the target block group. 49 * 50 * 2.1 Record each extent in the target block group 51 * To build a proper map of extents to be relocated. 52 * 53 * 2.2 Build data reloc tree and reloc trees 54 * Data reloc tree will contain an inode, recording all newly relocated 55 * data extents. 56 * There will be only one data reloc tree for one data block group. 57 * 58 * Reloc tree will be a special snapshot of its source tree, containing 59 * relocated tree blocks. 60 * Each tree referring to a tree block in target block group will get its 61 * reloc tree built. 62 * 63 * 2.3 Swap source tree with its corresponding reloc tree 64 * Each involved tree only refers to new extents after swap. 65 * 66 * 3. Cleanup reloc trees and data reloc tree. 67 * As old extents in the target block group are still referenced by reloc 68 * trees, we need to clean them up before really freeing the target block 69 * group. 70 * 71 * The main complexity is in steps 2.2 and 2.3. 72 * 73 * The entry point of relocation is relocate_block_group() function. 74 */ 75 76#define RELOCATION_RESERVED_NODES 256 77/* 78 * map address of tree root to tree 79 */ 80struct mapping_node { 81 struct { 82 struct rb_node rb_node; 83 u64 bytenr; 84 }; /* Use rb_simle_node for search/insert */ 85 void *data; 86}; 87 88struct mapping_tree { 89 struct rb_root rb_root; 90 spinlock_t lock; 91}; 92 93/* 94 * present a tree block to process 95 */ 96struct tree_block { 97 struct { 98 struct rb_node rb_node; 99 u64 bytenr; 100 }; /* Use rb_simple_node for search/insert */ 101 struct btrfs_key key; 102 unsigned int level:8; 103 unsigned int key_ready:1; 104}; 105 106#define MAX_EXTENTS 128 107 108struct file_extent_cluster { 109 u64 start; 110 u64 end; 111 u64 boundary[MAX_EXTENTS]; 112 unsigned int nr; 113}; 114 115struct reloc_control { 116 /* block group to relocate */ 117 struct btrfs_block_group *block_group; 118 /* extent tree */ 119 struct btrfs_root *extent_root; 120 /* inode for moving data */ 121 struct inode *data_inode; 122 123 struct btrfs_block_rsv *block_rsv; 124 125 struct btrfs_backref_cache backref_cache; 126 127 struct file_extent_cluster cluster; 128 /* tree blocks have been processed */ 129 struct extent_io_tree processed_blocks; 130 /* map start of tree root to corresponding reloc tree */ 131 struct mapping_tree reloc_root_tree; 132 /* list of reloc trees */ 133 struct list_head reloc_roots; 134 /* list of subvolume trees that get relocated */ 135 struct list_head dirty_subvol_roots; 136 /* size of metadata reservation for merging reloc trees */ 137 u64 merging_rsv_size; 138 /* size of relocated tree nodes */ 139 u64 nodes_relocated; 140 /* reserved size for block group relocation*/ 141 u64 reserved_bytes; 142 143 u64 search_start; 144 u64 extents_found; 145 146 unsigned int stage:8; 147 unsigned int create_reloc_tree:1; 148 unsigned int merge_reloc_tree:1; 149 unsigned int found_file_extent:1; 150}; 151 152/* stages of data relocation */ 153#define MOVE_DATA_EXTENTS 0 154#define UPDATE_DATA_PTRS 1 155 156static void mark_block_processed(struct reloc_control *rc, 157 struct btrfs_backref_node *node) 158{ 159 u32 blocksize; 160 161 if (node->level == 0 || 162 in_range(node->bytenr, rc->block_group->start, 163 rc->block_group->length)) { 164 blocksize = rc->extent_root->fs_info->nodesize; 165 set_extent_bits(&rc->processed_blocks, node->bytenr, 166 node->bytenr + blocksize - 1, EXTENT_DIRTY); 167 } 168 node->processed = 1; 169} 170 171 172static void mapping_tree_init(struct mapping_tree *tree) 173{ 174 tree->rb_root = RB_ROOT; 175 spin_lock_init(&tree->lock); 176} 177 178/* 179 * walk up backref nodes until reach node presents tree root 180 */ 181static struct btrfs_backref_node *walk_up_backref( 182 struct btrfs_backref_node *node, 183 struct btrfs_backref_edge *edges[], int *index) 184{ 185 struct btrfs_backref_edge *edge; 186 int idx = *index; 187 188 while (!list_empty(&node->upper)) { 189 edge = list_entry(node->upper.next, 190 struct btrfs_backref_edge, list[LOWER]); 191 edges[idx++] = edge; 192 node = edge->node[UPPER]; 193 } 194 BUG_ON(node->detached); 195 *index = idx; 196 return node; 197} 198 199/* 200 * walk down backref nodes to find start of next reference path 201 */ 202static struct btrfs_backref_node *walk_down_backref( 203 struct btrfs_backref_edge *edges[], int *index) 204{ 205 struct btrfs_backref_edge *edge; 206 struct btrfs_backref_node *lower; 207 int idx = *index; 208 209 while (idx > 0) { 210 edge = edges[idx - 1]; 211 lower = edge->node[LOWER]; 212 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 213 idx--; 214 continue; 215 } 216 edge = list_entry(edge->list[LOWER].next, 217 struct btrfs_backref_edge, list[LOWER]); 218 edges[idx - 1] = edge; 219 *index = idx; 220 return edge->node[UPPER]; 221 } 222 *index = 0; 223 return NULL; 224} 225 226static void update_backref_node(struct btrfs_backref_cache *cache, 227 struct btrfs_backref_node *node, u64 bytenr) 228{ 229 struct rb_node *rb_node; 230 rb_erase(&node->rb_node, &cache->rb_root); 231 node->bytenr = bytenr; 232 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 233 if (rb_node) 234 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 235} 236 237/* 238 * update backref cache after a transaction commit 239 */ 240static int update_backref_cache(struct btrfs_trans_handle *trans, 241 struct btrfs_backref_cache *cache) 242{ 243 struct btrfs_backref_node *node; 244 int level = 0; 245 246 if (cache->last_trans == 0) { 247 cache->last_trans = trans->transid; 248 return 0; 249 } 250 251 if (cache->last_trans == trans->transid) 252 return 0; 253 254 /* 255 * detached nodes are used to avoid unnecessary backref 256 * lookup. transaction commit changes the extent tree. 257 * so the detached nodes are no longer useful. 258 */ 259 while (!list_empty(&cache->detached)) { 260 node = list_entry(cache->detached.next, 261 struct btrfs_backref_node, list); 262 btrfs_backref_cleanup_node(cache, node); 263 } 264 265 while (!list_empty(&cache->changed)) { 266 node = list_entry(cache->changed.next, 267 struct btrfs_backref_node, list); 268 list_del_init(&node->list); 269 BUG_ON(node->pending); 270 update_backref_node(cache, node, node->new_bytenr); 271 } 272 273 /* 274 * some nodes can be left in the pending list if there were 275 * errors during processing the pending nodes. 276 */ 277 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 278 list_for_each_entry(node, &cache->pending[level], list) { 279 BUG_ON(!node->pending); 280 if (node->bytenr == node->new_bytenr) 281 continue; 282 update_backref_node(cache, node, node->new_bytenr); 283 } 284 } 285 286 cache->last_trans = 0; 287 return 1; 288} 289 290static bool reloc_root_is_dead(struct btrfs_root *root) 291{ 292 /* 293 * Pair with set_bit/clear_bit in clean_dirty_subvols and 294 * btrfs_update_reloc_root. We need to see the updated bit before 295 * trying to access reloc_root 296 */ 297 smp_rmb(); 298 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 299 return true; 300 return false; 301} 302 303/* 304 * Check if this subvolume tree has valid reloc tree. 305 * 306 * Reloc tree after swap is considered dead, thus not considered as valid. 307 * This is enough for most callers, as they don't distinguish dead reloc root 308 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 309 * special case. 310 */ 311static bool have_reloc_root(struct btrfs_root *root) 312{ 313 if (reloc_root_is_dead(root)) 314 return false; 315 if (!root->reloc_root) 316 return false; 317 return true; 318} 319 320int btrfs_should_ignore_reloc_root(struct btrfs_root *root) 321{ 322 struct btrfs_root *reloc_root; 323 324 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 325 return 0; 326 327 /* This root has been merged with its reloc tree, we can ignore it */ 328 if (reloc_root_is_dead(root)) 329 return 1; 330 331 reloc_root = root->reloc_root; 332 if (!reloc_root) 333 return 0; 334 335 if (btrfs_header_generation(reloc_root->commit_root) == 336 root->fs_info->running_transaction->transid) 337 return 0; 338 /* 339 * if there is reloc tree and it was created in previous 340 * transaction backref lookup can find the reloc tree, 341 * so backref node for the fs tree root is useless for 342 * relocation. 343 */ 344 return 1; 345} 346 347/* 348 * find reloc tree by address of tree root 349 */ 350struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 351{ 352 struct reloc_control *rc = fs_info->reloc_ctl; 353 struct rb_node *rb_node; 354 struct mapping_node *node; 355 struct btrfs_root *root = NULL; 356 357 ASSERT(rc); 358 spin_lock(&rc->reloc_root_tree.lock); 359 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 360 if (rb_node) { 361 node = rb_entry(rb_node, struct mapping_node, rb_node); 362 root = (struct btrfs_root *)node->data; 363 } 364 spin_unlock(&rc->reloc_root_tree.lock); 365 return btrfs_grab_root(root); 366} 367 368/* 369 * For useless nodes, do two major clean ups: 370 * 371 * - Cleanup the children edges and nodes 372 * If child node is also orphan (no parent) during cleanup, then the child 373 * node will also be cleaned up. 374 * 375 * - Freeing up leaves (level 0), keeps nodes detached 376 * For nodes, the node is still cached as "detached" 377 * 378 * Return false if @node is not in the @useless_nodes list. 379 * Return true if @node is in the @useless_nodes list. 380 */ 381static bool handle_useless_nodes(struct reloc_control *rc, 382 struct btrfs_backref_node *node) 383{ 384 struct btrfs_backref_cache *cache = &rc->backref_cache; 385 struct list_head *useless_node = &cache->useless_node; 386 bool ret = false; 387 388 while (!list_empty(useless_node)) { 389 struct btrfs_backref_node *cur; 390 391 cur = list_first_entry(useless_node, struct btrfs_backref_node, 392 list); 393 list_del_init(&cur->list); 394 395 /* Only tree root nodes can be added to @useless_nodes */ 396 ASSERT(list_empty(&cur->upper)); 397 398 if (cur == node) 399 ret = true; 400 401 /* The node is the lowest node */ 402 if (cur->lowest) { 403 list_del_init(&cur->lower); 404 cur->lowest = 0; 405 } 406 407 /* Cleanup the lower edges */ 408 while (!list_empty(&cur->lower)) { 409 struct btrfs_backref_edge *edge; 410 struct btrfs_backref_node *lower; 411 412 edge = list_entry(cur->lower.next, 413 struct btrfs_backref_edge, list[UPPER]); 414 list_del(&edge->list[UPPER]); 415 list_del(&edge->list[LOWER]); 416 lower = edge->node[LOWER]; 417 btrfs_backref_free_edge(cache, edge); 418 419 /* Child node is also orphan, queue for cleanup */ 420 if (list_empty(&lower->upper)) 421 list_add(&lower->list, useless_node); 422 } 423 /* Mark this block processed for relocation */ 424 mark_block_processed(rc, cur); 425 426 /* 427 * Backref nodes for tree leaves are deleted from the cache. 428 * Backref nodes for upper level tree blocks are left in the 429 * cache to avoid unnecessary backref lookup. 430 */ 431 if (cur->level > 0) { 432 list_add(&cur->list, &cache->detached); 433 cur->detached = 1; 434 } else { 435 rb_erase(&cur->rb_node, &cache->rb_root); 436 btrfs_backref_free_node(cache, cur); 437 } 438 } 439 return ret; 440} 441 442/* 443 * Build backref tree for a given tree block. Root of the backref tree 444 * corresponds the tree block, leaves of the backref tree correspond roots of 445 * b-trees that reference the tree block. 446 * 447 * The basic idea of this function is check backrefs of a given block to find 448 * upper level blocks that reference the block, and then check backrefs of 449 * these upper level blocks recursively. The recursion stops when tree root is 450 * reached or backrefs for the block is cached. 451 * 452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 453 * all upper level blocks that directly/indirectly reference the block are also 454 * cached. 455 */ 456static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 457 struct reloc_control *rc, struct btrfs_key *node_key, 458 int level, u64 bytenr) 459{ 460 struct btrfs_backref_iter *iter; 461 struct btrfs_backref_cache *cache = &rc->backref_cache; 462 /* For searching parent of TREE_BLOCK_REF */ 463 struct btrfs_path *path; 464 struct btrfs_backref_node *cur; 465 struct btrfs_backref_node *node = NULL; 466 struct btrfs_backref_edge *edge; 467 int ret; 468 int err = 0; 469 470 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS); 471 if (!iter) 472 return ERR_PTR(-ENOMEM); 473 path = btrfs_alloc_path(); 474 if (!path) { 475 err = -ENOMEM; 476 goto out; 477 } 478 479 node = btrfs_backref_alloc_node(cache, bytenr, level); 480 if (!node) { 481 err = -ENOMEM; 482 goto out; 483 } 484 485 node->lowest = 1; 486 cur = node; 487 488 /* Breadth-first search to build backref cache */ 489 do { 490 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key, 491 cur); 492 if (ret < 0) { 493 err = ret; 494 goto out; 495 } 496 edge = list_first_entry_or_null(&cache->pending_edge, 497 struct btrfs_backref_edge, list[UPPER]); 498 /* 499 * The pending list isn't empty, take the first block to 500 * process 501 */ 502 if (edge) { 503 list_del_init(&edge->list[UPPER]); 504 cur = edge->node[UPPER]; 505 } 506 } while (edge); 507 508 /* Finish the upper linkage of newly added edges/nodes */ 509 ret = btrfs_backref_finish_upper_links(cache, node); 510 if (ret < 0) { 511 err = ret; 512 goto out; 513 } 514 515 if (handle_useless_nodes(rc, node)) 516 node = NULL; 517out: 518 btrfs_backref_iter_free(iter); 519 btrfs_free_path(path); 520 if (err) { 521 btrfs_backref_error_cleanup(cache, node); 522 return ERR_PTR(err); 523 } 524 ASSERT(!node || !node->detached); 525 ASSERT(list_empty(&cache->useless_node) && 526 list_empty(&cache->pending_edge)); 527 return node; 528} 529 530/* 531 * helper to add backref node for the newly created snapshot. 532 * the backref node is created by cloning backref node that 533 * corresponds to root of source tree 534 */ 535static int clone_backref_node(struct btrfs_trans_handle *trans, 536 struct reloc_control *rc, 537 struct btrfs_root *src, 538 struct btrfs_root *dest) 539{ 540 struct btrfs_root *reloc_root = src->reloc_root; 541 struct btrfs_backref_cache *cache = &rc->backref_cache; 542 struct btrfs_backref_node *node = NULL; 543 struct btrfs_backref_node *new_node; 544 struct btrfs_backref_edge *edge; 545 struct btrfs_backref_edge *new_edge; 546 struct rb_node *rb_node; 547 548 if (cache->last_trans > 0) 549 update_backref_cache(trans, cache); 550 551 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 552 if (rb_node) { 553 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 554 if (node->detached) 555 node = NULL; 556 else 557 BUG_ON(node->new_bytenr != reloc_root->node->start); 558 } 559 560 if (!node) { 561 rb_node = rb_simple_search(&cache->rb_root, 562 reloc_root->commit_root->start); 563 if (rb_node) { 564 node = rb_entry(rb_node, struct btrfs_backref_node, 565 rb_node); 566 BUG_ON(node->detached); 567 } 568 } 569 570 if (!node) 571 return 0; 572 573 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 574 node->level); 575 if (!new_node) 576 return -ENOMEM; 577 578 new_node->lowest = node->lowest; 579 new_node->checked = 1; 580 new_node->root = btrfs_grab_root(dest); 581 ASSERT(new_node->root); 582 583 if (!node->lowest) { 584 list_for_each_entry(edge, &node->lower, list[UPPER]) { 585 new_edge = btrfs_backref_alloc_edge(cache); 586 if (!new_edge) 587 goto fail; 588 589 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 590 new_node, LINK_UPPER); 591 } 592 } else { 593 list_add_tail(&new_node->lower, &cache->leaves); 594 } 595 596 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 597 &new_node->rb_node); 598 if (rb_node) 599 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 600 601 if (!new_node->lowest) { 602 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 603 list_add_tail(&new_edge->list[LOWER], 604 &new_edge->node[LOWER]->upper); 605 } 606 } 607 return 0; 608fail: 609 while (!list_empty(&new_node->lower)) { 610 new_edge = list_entry(new_node->lower.next, 611 struct btrfs_backref_edge, list[UPPER]); 612 list_del(&new_edge->list[UPPER]); 613 btrfs_backref_free_edge(cache, new_edge); 614 } 615 btrfs_backref_free_node(cache, new_node); 616 return -ENOMEM; 617} 618 619/* 620 * helper to add 'address of tree root -> reloc tree' mapping 621 */ 622static int __must_check __add_reloc_root(struct btrfs_root *root) 623{ 624 struct btrfs_fs_info *fs_info = root->fs_info; 625 struct rb_node *rb_node; 626 struct mapping_node *node; 627 struct reloc_control *rc = fs_info->reloc_ctl; 628 629 node = kmalloc(sizeof(*node), GFP_NOFS); 630 if (!node) 631 return -ENOMEM; 632 633 node->bytenr = root->commit_root->start; 634 node->data = root; 635 636 spin_lock(&rc->reloc_root_tree.lock); 637 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 638 node->bytenr, &node->rb_node); 639 spin_unlock(&rc->reloc_root_tree.lock); 640 if (rb_node) { 641 btrfs_panic(fs_info, -EEXIST, 642 "Duplicate root found for start=%llu while inserting into relocation tree", 643 node->bytenr); 644 } 645 646 list_add_tail(&root->root_list, &rc->reloc_roots); 647 return 0; 648} 649 650/* 651 * helper to delete the 'address of tree root -> reloc tree' 652 * mapping 653 */ 654static void __del_reloc_root(struct btrfs_root *root) 655{ 656 struct btrfs_fs_info *fs_info = root->fs_info; 657 struct rb_node *rb_node; 658 struct mapping_node *node = NULL; 659 struct reloc_control *rc = fs_info->reloc_ctl; 660 bool put_ref = false; 661 662 if (rc && root->node) { 663 spin_lock(&rc->reloc_root_tree.lock); 664 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 665 root->commit_root->start); 666 if (rb_node) { 667 node = rb_entry(rb_node, struct mapping_node, rb_node); 668 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 669 RB_CLEAR_NODE(&node->rb_node); 670 } 671 spin_unlock(&rc->reloc_root_tree.lock); 672 ASSERT(!node || (struct btrfs_root *)node->data == root); 673 } 674 675 /* 676 * We only put the reloc root here if it's on the list. There's a lot 677 * of places where the pattern is to splice the rc->reloc_roots, process 678 * the reloc roots, and then add the reloc root back onto 679 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 680 * list we don't want the reference being dropped, because the guy 681 * messing with the list is in charge of the reference. 682 */ 683 spin_lock(&fs_info->trans_lock); 684 if (!list_empty(&root->root_list)) { 685 put_ref = true; 686 list_del_init(&root->root_list); 687 } 688 spin_unlock(&fs_info->trans_lock); 689 if (put_ref) 690 btrfs_put_root(root); 691 kfree(node); 692} 693 694/* 695 * helper to update the 'address of tree root -> reloc tree' 696 * mapping 697 */ 698static int __update_reloc_root(struct btrfs_root *root) 699{ 700 struct btrfs_fs_info *fs_info = root->fs_info; 701 struct rb_node *rb_node; 702 struct mapping_node *node = NULL; 703 struct reloc_control *rc = fs_info->reloc_ctl; 704 705 spin_lock(&rc->reloc_root_tree.lock); 706 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 707 root->commit_root->start); 708 if (rb_node) { 709 node = rb_entry(rb_node, struct mapping_node, rb_node); 710 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 711 } 712 spin_unlock(&rc->reloc_root_tree.lock); 713 714 if (!node) 715 return 0; 716 BUG_ON((struct btrfs_root *)node->data != root); 717 718 spin_lock(&rc->reloc_root_tree.lock); 719 node->bytenr = root->node->start; 720 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 721 node->bytenr, &node->rb_node); 722 spin_unlock(&rc->reloc_root_tree.lock); 723 if (rb_node) 724 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 725 return 0; 726} 727 728static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 729 struct btrfs_root *root, u64 objectid) 730{ 731 struct btrfs_fs_info *fs_info = root->fs_info; 732 struct btrfs_root *reloc_root; 733 struct extent_buffer *eb; 734 struct btrfs_root_item *root_item; 735 struct btrfs_key root_key; 736 int ret = 0; 737 bool must_abort = false; 738 739 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 740 if (!root_item) 741 return ERR_PTR(-ENOMEM); 742 743 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 744 root_key.type = BTRFS_ROOT_ITEM_KEY; 745 root_key.offset = objectid; 746 747 if (root->root_key.objectid == objectid) { 748 u64 commit_root_gen; 749 750 /* called by btrfs_init_reloc_root */ 751 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 752 BTRFS_TREE_RELOC_OBJECTID); 753 if (ret) 754 goto fail; 755 756 /* 757 * Set the last_snapshot field to the generation of the commit 758 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 759 * correctly (returns true) when the relocation root is created 760 * either inside the critical section of a transaction commit 761 * (through transaction.c:qgroup_account_snapshot()) and when 762 * it's created before the transaction commit is started. 763 */ 764 commit_root_gen = btrfs_header_generation(root->commit_root); 765 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 766 } else { 767 /* 768 * called by btrfs_reloc_post_snapshot_hook. 769 * the source tree is a reloc tree, all tree blocks 770 * modified after it was created have RELOC flag 771 * set in their headers. so it's OK to not update 772 * the 'last_snapshot'. 773 */ 774 ret = btrfs_copy_root(trans, root, root->node, &eb, 775 BTRFS_TREE_RELOC_OBJECTID); 776 if (ret) 777 goto fail; 778 } 779 780 /* 781 * We have changed references at this point, we must abort the 782 * transaction if anything fails. 783 */ 784 must_abort = true; 785 786 memcpy(root_item, &root->root_item, sizeof(*root_item)); 787 btrfs_set_root_bytenr(root_item, eb->start); 788 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 789 btrfs_set_root_generation(root_item, trans->transid); 790 791 if (root->root_key.objectid == objectid) { 792 btrfs_set_root_refs(root_item, 0); 793 memset(&root_item->drop_progress, 0, 794 sizeof(struct btrfs_disk_key)); 795 root_item->drop_level = 0; 796 } 797 798 btrfs_tree_unlock(eb); 799 free_extent_buffer(eb); 800 801 ret = btrfs_insert_root(trans, fs_info->tree_root, 802 &root_key, root_item); 803 if (ret) 804 goto fail; 805 806 kfree(root_item); 807 808 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 809 if (IS_ERR(reloc_root)) { 810 ret = PTR_ERR(reloc_root); 811 goto abort; 812 } 813 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 814 reloc_root->last_trans = trans->transid; 815 return reloc_root; 816fail: 817 kfree(root_item); 818abort: 819 if (must_abort) 820 btrfs_abort_transaction(trans, ret); 821 return ERR_PTR(ret); 822} 823 824/* 825 * create reloc tree for a given fs tree. reloc tree is just a 826 * snapshot of the fs tree with special root objectid. 827 * 828 * The reloc_root comes out of here with two references, one for 829 * root->reloc_root, and another for being on the rc->reloc_roots list. 830 */ 831int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 832 struct btrfs_root *root) 833{ 834 struct btrfs_fs_info *fs_info = root->fs_info; 835 struct btrfs_root *reloc_root; 836 struct reloc_control *rc = fs_info->reloc_ctl; 837 struct btrfs_block_rsv *rsv; 838 int clear_rsv = 0; 839 int ret; 840 841 if (!rc) 842 return 0; 843 844 /* 845 * The subvolume has reloc tree but the swap is finished, no need to 846 * create/update the dead reloc tree 847 */ 848 if (reloc_root_is_dead(root)) 849 return 0; 850 851 /* 852 * This is subtle but important. We do not do 853 * record_root_in_transaction for reloc roots, instead we record their 854 * corresponding fs root, and then here we update the last trans for the 855 * reloc root. This means that we have to do this for the entire life 856 * of the reloc root, regardless of which stage of the relocation we are 857 * in. 858 */ 859 if (root->reloc_root) { 860 reloc_root = root->reloc_root; 861 reloc_root->last_trans = trans->transid; 862 return 0; 863 } 864 865 /* 866 * We are merging reloc roots, we do not need new reloc trees. Also 867 * reloc trees never need their own reloc tree. 868 */ 869 if (!rc->create_reloc_tree || 870 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 871 return 0; 872 873 if (!trans->reloc_reserved) { 874 rsv = trans->block_rsv; 875 trans->block_rsv = rc->block_rsv; 876 clear_rsv = 1; 877 } 878 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 879 if (clear_rsv) 880 trans->block_rsv = rsv; 881 882 ret = __add_reloc_root(reloc_root); 883 BUG_ON(ret < 0); 884 root->reloc_root = btrfs_grab_root(reloc_root); 885 return 0; 886} 887 888/* 889 * update root item of reloc tree 890 */ 891int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 892 struct btrfs_root *root) 893{ 894 struct btrfs_fs_info *fs_info = root->fs_info; 895 struct btrfs_root *reloc_root; 896 struct btrfs_root_item *root_item; 897 int ret; 898 899 if (!have_reloc_root(root)) 900 return 0; 901 902 reloc_root = root->reloc_root; 903 root_item = &reloc_root->root_item; 904 905 /* 906 * We are probably ok here, but __del_reloc_root() will drop its ref of 907 * the root. We have the ref for root->reloc_root, but just in case 908 * hold it while we update the reloc root. 909 */ 910 btrfs_grab_root(reloc_root); 911 912 /* root->reloc_root will stay until current relocation finished */ 913 if (fs_info->reloc_ctl->merge_reloc_tree && 914 btrfs_root_refs(root_item) == 0) { 915 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 916 /* 917 * Mark the tree as dead before we change reloc_root so 918 * have_reloc_root will not touch it from now on. 919 */ 920 smp_wmb(); 921 __del_reloc_root(reloc_root); 922 } 923 924 if (reloc_root->commit_root != reloc_root->node) { 925 __update_reloc_root(reloc_root); 926 btrfs_set_root_node(root_item, reloc_root->node); 927 free_extent_buffer(reloc_root->commit_root); 928 reloc_root->commit_root = btrfs_root_node(reloc_root); 929 } 930 931 ret = btrfs_update_root(trans, fs_info->tree_root, 932 &reloc_root->root_key, root_item); 933 btrfs_put_root(reloc_root); 934 return ret; 935} 936 937/* 938 * helper to find first cached inode with inode number >= objectid 939 * in a subvolume 940 */ 941static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 942{ 943 struct rb_node *node; 944 struct rb_node *prev; 945 struct btrfs_inode *entry; 946 struct inode *inode; 947 948 spin_lock(&root->inode_lock); 949again: 950 node = root->inode_tree.rb_node; 951 prev = NULL; 952 while (node) { 953 prev = node; 954 entry = rb_entry(node, struct btrfs_inode, rb_node); 955 956 if (objectid < btrfs_ino(entry)) 957 node = node->rb_left; 958 else if (objectid > btrfs_ino(entry)) 959 node = node->rb_right; 960 else 961 break; 962 } 963 if (!node) { 964 while (prev) { 965 entry = rb_entry(prev, struct btrfs_inode, rb_node); 966 if (objectid <= btrfs_ino(entry)) { 967 node = prev; 968 break; 969 } 970 prev = rb_next(prev); 971 } 972 } 973 while (node) { 974 entry = rb_entry(node, struct btrfs_inode, rb_node); 975 inode = igrab(&entry->vfs_inode); 976 if (inode) { 977 spin_unlock(&root->inode_lock); 978 return inode; 979 } 980 981 objectid = btrfs_ino(entry) + 1; 982 if (cond_resched_lock(&root->inode_lock)) 983 goto again; 984 985 node = rb_next(node); 986 } 987 spin_unlock(&root->inode_lock); 988 return NULL; 989} 990 991/* 992 * get new location of data 993 */ 994static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 995 u64 bytenr, u64 num_bytes) 996{ 997 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 998 struct btrfs_path *path; 999 struct btrfs_file_extent_item *fi; 1000 struct extent_buffer *leaf; 1001 int ret; 1002 1003 path = btrfs_alloc_path(); 1004 if (!path) 1005 return -ENOMEM; 1006 1007 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1008 ret = btrfs_lookup_file_extent(NULL, root, path, 1009 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1010 if (ret < 0) 1011 goto out; 1012 if (ret > 0) { 1013 ret = -ENOENT; 1014 goto out; 1015 } 1016 1017 leaf = path->nodes[0]; 1018 fi = btrfs_item_ptr(leaf, path->slots[0], 1019 struct btrfs_file_extent_item); 1020 1021 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1022 btrfs_file_extent_compression(leaf, fi) || 1023 btrfs_file_extent_encryption(leaf, fi) || 1024 btrfs_file_extent_other_encoding(leaf, fi)); 1025 1026 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1027 ret = -EINVAL; 1028 goto out; 1029 } 1030 1031 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1032 ret = 0; 1033out: 1034 btrfs_free_path(path); 1035 return ret; 1036} 1037 1038/* 1039 * update file extent items in the tree leaf to point to 1040 * the new locations. 1041 */ 1042static noinline_for_stack 1043int replace_file_extents(struct btrfs_trans_handle *trans, 1044 struct reloc_control *rc, 1045 struct btrfs_root *root, 1046 struct extent_buffer *leaf) 1047{ 1048 struct btrfs_fs_info *fs_info = root->fs_info; 1049 struct btrfs_key key; 1050 struct btrfs_file_extent_item *fi; 1051 struct inode *inode = NULL; 1052 u64 parent; 1053 u64 bytenr; 1054 u64 new_bytenr = 0; 1055 u64 num_bytes; 1056 u64 end; 1057 u32 nritems; 1058 u32 i; 1059 int ret = 0; 1060 int first = 1; 1061 int dirty = 0; 1062 1063 if (rc->stage != UPDATE_DATA_PTRS) 1064 return 0; 1065 1066 /* reloc trees always use full backref */ 1067 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1068 parent = leaf->start; 1069 else 1070 parent = 0; 1071 1072 nritems = btrfs_header_nritems(leaf); 1073 for (i = 0; i < nritems; i++) { 1074 struct btrfs_ref ref = { 0 }; 1075 1076 cond_resched(); 1077 btrfs_item_key_to_cpu(leaf, &key, i); 1078 if (key.type != BTRFS_EXTENT_DATA_KEY) 1079 continue; 1080 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1081 if (btrfs_file_extent_type(leaf, fi) == 1082 BTRFS_FILE_EXTENT_INLINE) 1083 continue; 1084 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1085 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1086 if (bytenr == 0) 1087 continue; 1088 if (!in_range(bytenr, rc->block_group->start, 1089 rc->block_group->length)) 1090 continue; 1091 1092 /* 1093 * if we are modifying block in fs tree, wait for readpage 1094 * to complete and drop the extent cache 1095 */ 1096 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1097 if (first) { 1098 inode = find_next_inode(root, key.objectid); 1099 first = 0; 1100 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1101 btrfs_add_delayed_iput(inode); 1102 inode = find_next_inode(root, key.objectid); 1103 } 1104 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1105 end = key.offset + 1106 btrfs_file_extent_num_bytes(leaf, fi); 1107 WARN_ON(!IS_ALIGNED(key.offset, 1108 fs_info->sectorsize)); 1109 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1110 end--; 1111 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1112 key.offset, end); 1113 if (!ret) 1114 continue; 1115 1116 btrfs_drop_extent_cache(BTRFS_I(inode), 1117 key.offset, end, 1); 1118 unlock_extent(&BTRFS_I(inode)->io_tree, 1119 key.offset, end); 1120 } 1121 } 1122 1123 ret = get_new_location(rc->data_inode, &new_bytenr, 1124 bytenr, num_bytes); 1125 if (ret) { 1126 /* 1127 * Don't have to abort since we've not changed anything 1128 * in the file extent yet. 1129 */ 1130 break; 1131 } 1132 1133 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1134 dirty = 1; 1135 1136 key.offset -= btrfs_file_extent_offset(leaf, fi); 1137 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1138 num_bytes, parent); 1139 ref.real_root = root->root_key.objectid; 1140 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1141 key.objectid, key.offset); 1142 ret = btrfs_inc_extent_ref(trans, &ref); 1143 if (ret) { 1144 btrfs_abort_transaction(trans, ret); 1145 break; 1146 } 1147 1148 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1149 num_bytes, parent); 1150 ref.real_root = root->root_key.objectid; 1151 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1152 key.objectid, key.offset); 1153 ret = btrfs_free_extent(trans, &ref); 1154 if (ret) { 1155 btrfs_abort_transaction(trans, ret); 1156 break; 1157 } 1158 } 1159 if (dirty) 1160 btrfs_mark_buffer_dirty(leaf); 1161 if (inode) 1162 btrfs_add_delayed_iput(inode); 1163 return ret; 1164} 1165 1166static noinline_for_stack 1167int memcmp_node_keys(struct extent_buffer *eb, int slot, 1168 struct btrfs_path *path, int level) 1169{ 1170 struct btrfs_disk_key key1; 1171 struct btrfs_disk_key key2; 1172 btrfs_node_key(eb, &key1, slot); 1173 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1174 return memcmp(&key1, &key2, sizeof(key1)); 1175} 1176 1177/* 1178 * try to replace tree blocks in fs tree with the new blocks 1179 * in reloc tree. tree blocks haven't been modified since the 1180 * reloc tree was create can be replaced. 1181 * 1182 * if a block was replaced, level of the block + 1 is returned. 1183 * if no block got replaced, 0 is returned. if there are other 1184 * errors, a negative error number is returned. 1185 */ 1186static noinline_for_stack 1187int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1188 struct btrfs_root *dest, struct btrfs_root *src, 1189 struct btrfs_path *path, struct btrfs_key *next_key, 1190 int lowest_level, int max_level) 1191{ 1192 struct btrfs_fs_info *fs_info = dest->fs_info; 1193 struct extent_buffer *eb; 1194 struct extent_buffer *parent; 1195 struct btrfs_ref ref = { 0 }; 1196 struct btrfs_key key; 1197 u64 old_bytenr; 1198 u64 new_bytenr; 1199 u64 old_ptr_gen; 1200 u64 new_ptr_gen; 1201 u64 last_snapshot; 1202 u32 blocksize; 1203 int cow = 0; 1204 int level; 1205 int ret; 1206 int slot; 1207 1208 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1209 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1210 1211 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1212again: 1213 slot = path->slots[lowest_level]; 1214 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1215 1216 eb = btrfs_lock_root_node(dest); 1217 btrfs_set_lock_blocking_write(eb); 1218 level = btrfs_header_level(eb); 1219 1220 if (level < lowest_level) { 1221 btrfs_tree_unlock(eb); 1222 free_extent_buffer(eb); 1223 return 0; 1224 } 1225 1226 if (cow) { 1227 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, 1228 BTRFS_NESTING_COW); 1229 BUG_ON(ret); 1230 } 1231 btrfs_set_lock_blocking_write(eb); 1232 1233 if (next_key) { 1234 next_key->objectid = (u64)-1; 1235 next_key->type = (u8)-1; 1236 next_key->offset = (u64)-1; 1237 } 1238 1239 parent = eb; 1240 while (1) { 1241 struct btrfs_key first_key; 1242 1243 level = btrfs_header_level(parent); 1244 ASSERT(level >= lowest_level); 1245 1246 ret = btrfs_bin_search(parent, &key, &slot); 1247 if (ret < 0) 1248 break; 1249 if (ret && slot > 0) 1250 slot--; 1251 1252 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1253 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1254 1255 old_bytenr = btrfs_node_blockptr(parent, slot); 1256 blocksize = fs_info->nodesize; 1257 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1258 btrfs_node_key_to_cpu(parent, &first_key, slot); 1259 1260 if (level <= max_level) { 1261 eb = path->nodes[level]; 1262 new_bytenr = btrfs_node_blockptr(eb, 1263 path->slots[level]); 1264 new_ptr_gen = btrfs_node_ptr_generation(eb, 1265 path->slots[level]); 1266 } else { 1267 new_bytenr = 0; 1268 new_ptr_gen = 0; 1269 } 1270 1271 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1272 ret = level; 1273 break; 1274 } 1275 1276 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1277 memcmp_node_keys(parent, slot, path, level)) { 1278 if (level <= lowest_level) { 1279 ret = 0; 1280 break; 1281 } 1282 1283 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen, 1284 level - 1, &first_key); 1285 if (IS_ERR(eb)) { 1286 ret = PTR_ERR(eb); 1287 break; 1288 } else if (!extent_buffer_uptodate(eb)) { 1289 ret = -EIO; 1290 free_extent_buffer(eb); 1291 break; 1292 } 1293 btrfs_tree_lock(eb); 1294 if (cow) { 1295 ret = btrfs_cow_block(trans, dest, eb, parent, 1296 slot, &eb, 1297 BTRFS_NESTING_COW); 1298 BUG_ON(ret); 1299 } 1300 btrfs_set_lock_blocking_write(eb); 1301 1302 btrfs_tree_unlock(parent); 1303 free_extent_buffer(parent); 1304 1305 parent = eb; 1306 continue; 1307 } 1308 1309 if (!cow) { 1310 btrfs_tree_unlock(parent); 1311 free_extent_buffer(parent); 1312 cow = 1; 1313 goto again; 1314 } 1315 1316 btrfs_node_key_to_cpu(path->nodes[level], &key, 1317 path->slots[level]); 1318 btrfs_release_path(path); 1319 1320 path->lowest_level = level; 1321 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1322 path->lowest_level = 0; 1323 BUG_ON(ret); 1324 1325 /* 1326 * Info qgroup to trace both subtrees. 1327 * 1328 * We must trace both trees. 1329 * 1) Tree reloc subtree 1330 * If not traced, we will leak data numbers 1331 * 2) Fs subtree 1332 * If not traced, we will double count old data 1333 * 1334 * We don't scan the subtree right now, but only record 1335 * the swapped tree blocks. 1336 * The real subtree rescan is delayed until we have new 1337 * CoW on the subtree root node before transaction commit. 1338 */ 1339 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1340 rc->block_group, parent, slot, 1341 path->nodes[level], path->slots[level], 1342 last_snapshot); 1343 if (ret < 0) 1344 break; 1345 /* 1346 * swap blocks in fs tree and reloc tree. 1347 */ 1348 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1349 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1350 btrfs_mark_buffer_dirty(parent); 1351 1352 btrfs_set_node_blockptr(path->nodes[level], 1353 path->slots[level], old_bytenr); 1354 btrfs_set_node_ptr_generation(path->nodes[level], 1355 path->slots[level], old_ptr_gen); 1356 btrfs_mark_buffer_dirty(path->nodes[level]); 1357 1358 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1359 blocksize, path->nodes[level]->start); 1360 ref.skip_qgroup = true; 1361 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1362 ret = btrfs_inc_extent_ref(trans, &ref); 1363 BUG_ON(ret); 1364 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1365 blocksize, 0); 1366 ref.skip_qgroup = true; 1367 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1368 ret = btrfs_inc_extent_ref(trans, &ref); 1369 BUG_ON(ret); 1370 1371 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1372 blocksize, path->nodes[level]->start); 1373 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1374 ref.skip_qgroup = true; 1375 ret = btrfs_free_extent(trans, &ref); 1376 BUG_ON(ret); 1377 1378 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1379 blocksize, 0); 1380 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1381 ref.skip_qgroup = true; 1382 ret = btrfs_free_extent(trans, &ref); 1383 BUG_ON(ret); 1384 1385 btrfs_unlock_up_safe(path, 0); 1386 1387 ret = level; 1388 break; 1389 } 1390 btrfs_tree_unlock(parent); 1391 free_extent_buffer(parent); 1392 return ret; 1393} 1394 1395/* 1396 * helper to find next relocated block in reloc tree 1397 */ 1398static noinline_for_stack 1399int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1400 int *level) 1401{ 1402 struct extent_buffer *eb; 1403 int i; 1404 u64 last_snapshot; 1405 u32 nritems; 1406 1407 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1408 1409 for (i = 0; i < *level; i++) { 1410 free_extent_buffer(path->nodes[i]); 1411 path->nodes[i] = NULL; 1412 } 1413 1414 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1415 eb = path->nodes[i]; 1416 nritems = btrfs_header_nritems(eb); 1417 while (path->slots[i] + 1 < nritems) { 1418 path->slots[i]++; 1419 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1420 last_snapshot) 1421 continue; 1422 1423 *level = i; 1424 return 0; 1425 } 1426 free_extent_buffer(path->nodes[i]); 1427 path->nodes[i] = NULL; 1428 } 1429 return 1; 1430} 1431 1432/* 1433 * walk down reloc tree to find relocated block of lowest level 1434 */ 1435static noinline_for_stack 1436int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1437 int *level) 1438{ 1439 struct btrfs_fs_info *fs_info = root->fs_info; 1440 struct extent_buffer *eb = NULL; 1441 int i; 1442 u64 bytenr; 1443 u64 ptr_gen = 0; 1444 u64 last_snapshot; 1445 u32 nritems; 1446 1447 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1448 1449 for (i = *level; i > 0; i--) { 1450 struct btrfs_key first_key; 1451 1452 eb = path->nodes[i]; 1453 nritems = btrfs_header_nritems(eb); 1454 while (path->slots[i] < nritems) { 1455 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1456 if (ptr_gen > last_snapshot) 1457 break; 1458 path->slots[i]++; 1459 } 1460 if (path->slots[i] >= nritems) { 1461 if (i == *level) 1462 break; 1463 *level = i + 1; 1464 return 0; 1465 } 1466 if (i == 1) { 1467 *level = i; 1468 return 0; 1469 } 1470 1471 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 1472 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]); 1473 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1, 1474 &first_key); 1475 if (IS_ERR(eb)) { 1476 return PTR_ERR(eb); 1477 } else if (!extent_buffer_uptodate(eb)) { 1478 free_extent_buffer(eb); 1479 return -EIO; 1480 } 1481 BUG_ON(btrfs_header_level(eb) != i - 1); 1482 path->nodes[i - 1] = eb; 1483 path->slots[i - 1] = 0; 1484 } 1485 return 1; 1486} 1487 1488/* 1489 * invalidate extent cache for file extents whose key in range of 1490 * [min_key, max_key) 1491 */ 1492static int invalidate_extent_cache(struct btrfs_root *root, 1493 struct btrfs_key *min_key, 1494 struct btrfs_key *max_key) 1495{ 1496 struct btrfs_fs_info *fs_info = root->fs_info; 1497 struct inode *inode = NULL; 1498 u64 objectid; 1499 u64 start, end; 1500 u64 ino; 1501 1502 objectid = min_key->objectid; 1503 while (1) { 1504 cond_resched(); 1505 iput(inode); 1506 1507 if (objectid > max_key->objectid) 1508 break; 1509 1510 inode = find_next_inode(root, objectid); 1511 if (!inode) 1512 break; 1513 ino = btrfs_ino(BTRFS_I(inode)); 1514 1515 if (ino > max_key->objectid) { 1516 iput(inode); 1517 break; 1518 } 1519 1520 objectid = ino + 1; 1521 if (!S_ISREG(inode->i_mode)) 1522 continue; 1523 1524 if (unlikely(min_key->objectid == ino)) { 1525 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1526 continue; 1527 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1528 start = 0; 1529 else { 1530 start = min_key->offset; 1531 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1532 } 1533 } else { 1534 start = 0; 1535 } 1536 1537 if (unlikely(max_key->objectid == ino)) { 1538 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1539 continue; 1540 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1541 end = (u64)-1; 1542 } else { 1543 if (max_key->offset == 0) 1544 continue; 1545 end = max_key->offset; 1546 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1547 end--; 1548 } 1549 } else { 1550 end = (u64)-1; 1551 } 1552 1553 /* the lock_extent waits for readpage to complete */ 1554 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 1555 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 1556 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1557 } 1558 return 0; 1559} 1560 1561static int find_next_key(struct btrfs_path *path, int level, 1562 struct btrfs_key *key) 1563 1564{ 1565 while (level < BTRFS_MAX_LEVEL) { 1566 if (!path->nodes[level]) 1567 break; 1568 if (path->slots[level] + 1 < 1569 btrfs_header_nritems(path->nodes[level])) { 1570 btrfs_node_key_to_cpu(path->nodes[level], key, 1571 path->slots[level] + 1); 1572 return 0; 1573 } 1574 level++; 1575 } 1576 return 1; 1577} 1578 1579/* 1580 * Insert current subvolume into reloc_control::dirty_subvol_roots 1581 */ 1582static void insert_dirty_subvol(struct btrfs_trans_handle *trans, 1583 struct reloc_control *rc, 1584 struct btrfs_root *root) 1585{ 1586 struct btrfs_root *reloc_root = root->reloc_root; 1587 struct btrfs_root_item *reloc_root_item; 1588 1589 /* @root must be a subvolume tree root with a valid reloc tree */ 1590 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1591 ASSERT(reloc_root); 1592 1593 reloc_root_item = &reloc_root->root_item; 1594 memset(&reloc_root_item->drop_progress, 0, 1595 sizeof(reloc_root_item->drop_progress)); 1596 reloc_root_item->drop_level = 0; 1597 btrfs_set_root_refs(reloc_root_item, 0); 1598 btrfs_update_reloc_root(trans, root); 1599 1600 if (list_empty(&root->reloc_dirty_list)) { 1601 btrfs_grab_root(root); 1602 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1603 } 1604} 1605 1606static int clean_dirty_subvols(struct reloc_control *rc) 1607{ 1608 struct btrfs_root *root; 1609 struct btrfs_root *next; 1610 int ret = 0; 1611 int ret2; 1612 1613 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1614 reloc_dirty_list) { 1615 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1616 /* Merged subvolume, cleanup its reloc root */ 1617 struct btrfs_root *reloc_root = root->reloc_root; 1618 1619 list_del_init(&root->reloc_dirty_list); 1620 root->reloc_root = NULL; 1621 /* 1622 * Need barrier to ensure clear_bit() only happens after 1623 * root->reloc_root = NULL. Pairs with have_reloc_root. 1624 */ 1625 smp_wmb(); 1626 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1627 if (reloc_root) { 1628 /* 1629 * btrfs_drop_snapshot drops our ref we hold for 1630 * ->reloc_root. If it fails however we must 1631 * drop the ref ourselves. 1632 */ 1633 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1634 if (ret2 < 0) { 1635 btrfs_put_root(reloc_root); 1636 if (!ret) 1637 ret = ret2; 1638 } 1639 } 1640 btrfs_put_root(root); 1641 } else { 1642 /* Orphan reloc tree, just clean it up */ 1643 ret2 = btrfs_drop_snapshot(root, 0, 1); 1644 if (ret2 < 0) { 1645 btrfs_put_root(root); 1646 if (!ret) 1647 ret = ret2; 1648 } 1649 } 1650 } 1651 return ret; 1652} 1653 1654/* 1655 * merge the relocated tree blocks in reloc tree with corresponding 1656 * fs tree. 1657 */ 1658static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1659 struct btrfs_root *root) 1660{ 1661 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1662 struct btrfs_key key; 1663 struct btrfs_key next_key; 1664 struct btrfs_trans_handle *trans = NULL; 1665 struct btrfs_root *reloc_root; 1666 struct btrfs_root_item *root_item; 1667 struct btrfs_path *path; 1668 struct extent_buffer *leaf; 1669 int reserve_level; 1670 int level; 1671 int max_level; 1672 int replaced = 0; 1673 int ret; 1674 int err = 0; 1675 u32 min_reserved; 1676 1677 path = btrfs_alloc_path(); 1678 if (!path) 1679 return -ENOMEM; 1680 path->reada = READA_FORWARD; 1681 1682 reloc_root = root->reloc_root; 1683 root_item = &reloc_root->root_item; 1684 1685 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1686 level = btrfs_root_level(root_item); 1687 atomic_inc(&reloc_root->node->refs); 1688 path->nodes[level] = reloc_root->node; 1689 path->slots[level] = 0; 1690 } else { 1691 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1692 1693 level = root_item->drop_level; 1694 BUG_ON(level == 0); 1695 path->lowest_level = level; 1696 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1697 path->lowest_level = 0; 1698 if (ret < 0) { 1699 btrfs_free_path(path); 1700 return ret; 1701 } 1702 1703 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1704 path->slots[level]); 1705 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1706 1707 btrfs_unlock_up_safe(path, 0); 1708 } 1709 1710 /* 1711 * In merge_reloc_root(), we modify the upper level pointer to swap the 1712 * tree blocks between reloc tree and subvolume tree. Thus for tree 1713 * block COW, we COW at most from level 1 to root level for each tree. 1714 * 1715 * Thus the needed metadata size is at most root_level * nodesize, 1716 * and * 2 since we have two trees to COW. 1717 */ 1718 reserve_level = max_t(int, 1, btrfs_root_level(root_item)); 1719 min_reserved = fs_info->nodesize * reserve_level * 2; 1720 memset(&next_key, 0, sizeof(next_key)); 1721 1722 while (1) { 1723 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 1724 BTRFS_RESERVE_FLUSH_LIMIT); 1725 if (ret) { 1726 err = ret; 1727 goto out; 1728 } 1729 trans = btrfs_start_transaction(root, 0); 1730 if (IS_ERR(trans)) { 1731 err = PTR_ERR(trans); 1732 trans = NULL; 1733 goto out; 1734 } 1735 1736 /* 1737 * At this point we no longer have a reloc_control, so we can't 1738 * depend on btrfs_init_reloc_root to update our last_trans. 1739 * 1740 * But that's ok, we started the trans handle on our 1741 * corresponding fs_root, which means it's been added to the 1742 * dirty list. At commit time we'll still call 1743 * btrfs_update_reloc_root() and update our root item 1744 * appropriately. 1745 */ 1746 reloc_root->last_trans = trans->transid; 1747 trans->block_rsv = rc->block_rsv; 1748 1749 replaced = 0; 1750 max_level = level; 1751 1752 ret = walk_down_reloc_tree(reloc_root, path, &level); 1753 if (ret < 0) { 1754 err = ret; 1755 goto out; 1756 } 1757 if (ret > 0) 1758 break; 1759 1760 if (!find_next_key(path, level, &key) && 1761 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1762 ret = 0; 1763 } else { 1764 ret = replace_path(trans, rc, root, reloc_root, path, 1765 &next_key, level, max_level); 1766 } 1767 if (ret < 0) { 1768 err = ret; 1769 goto out; 1770 } 1771 1772 if (ret > 0) { 1773 level = ret; 1774 btrfs_node_key_to_cpu(path->nodes[level], &key, 1775 path->slots[level]); 1776 replaced = 1; 1777 } 1778 1779 ret = walk_up_reloc_tree(reloc_root, path, &level); 1780 if (ret > 0) 1781 break; 1782 1783 BUG_ON(level == 0); 1784 /* 1785 * save the merging progress in the drop_progress. 1786 * this is OK since root refs == 1 in this case. 1787 */ 1788 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1789 path->slots[level]); 1790 root_item->drop_level = level; 1791 1792 btrfs_end_transaction_throttle(trans); 1793 trans = NULL; 1794 1795 btrfs_btree_balance_dirty(fs_info); 1796 1797 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1798 invalidate_extent_cache(root, &key, &next_key); 1799 } 1800 1801 /* 1802 * handle the case only one block in the fs tree need to be 1803 * relocated and the block is tree root. 1804 */ 1805 leaf = btrfs_lock_root_node(root); 1806 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, 1807 BTRFS_NESTING_COW); 1808 btrfs_tree_unlock(leaf); 1809 free_extent_buffer(leaf); 1810 if (ret < 0) 1811 err = ret; 1812out: 1813 btrfs_free_path(path); 1814 1815 if (err == 0) 1816 insert_dirty_subvol(trans, rc, root); 1817 1818 if (trans) 1819 btrfs_end_transaction_throttle(trans); 1820 1821 btrfs_btree_balance_dirty(fs_info); 1822 1823 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1824 invalidate_extent_cache(root, &key, &next_key); 1825 1826 return err; 1827} 1828 1829static noinline_for_stack 1830int prepare_to_merge(struct reloc_control *rc, int err) 1831{ 1832 struct btrfs_root *root = rc->extent_root; 1833 struct btrfs_fs_info *fs_info = root->fs_info; 1834 struct btrfs_root *reloc_root; 1835 struct btrfs_trans_handle *trans; 1836 LIST_HEAD(reloc_roots); 1837 u64 num_bytes = 0; 1838 int ret; 1839 1840 mutex_lock(&fs_info->reloc_mutex); 1841 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1842 rc->merging_rsv_size += rc->nodes_relocated * 2; 1843 mutex_unlock(&fs_info->reloc_mutex); 1844 1845again: 1846 if (!err) { 1847 num_bytes = rc->merging_rsv_size; 1848 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 1849 BTRFS_RESERVE_FLUSH_ALL); 1850 if (ret) 1851 err = ret; 1852 } 1853 1854 trans = btrfs_join_transaction(rc->extent_root); 1855 if (IS_ERR(trans)) { 1856 if (!err) 1857 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1858 num_bytes, NULL); 1859 return PTR_ERR(trans); 1860 } 1861 1862 if (!err) { 1863 if (num_bytes != rc->merging_rsv_size) { 1864 btrfs_end_transaction(trans); 1865 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1866 num_bytes, NULL); 1867 goto again; 1868 } 1869 } 1870 1871 rc->merge_reloc_tree = 1; 1872 1873 while (!list_empty(&rc->reloc_roots)) { 1874 reloc_root = list_entry(rc->reloc_roots.next, 1875 struct btrfs_root, root_list); 1876 list_del_init(&reloc_root->root_list); 1877 1878 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1879 false); 1880 BUG_ON(IS_ERR(root)); 1881 BUG_ON(root->reloc_root != reloc_root); 1882 1883 /* 1884 * set reference count to 1, so btrfs_recover_relocation 1885 * knows it should resumes merging 1886 */ 1887 if (!err) 1888 btrfs_set_root_refs(&reloc_root->root_item, 1); 1889 btrfs_update_reloc_root(trans, root); 1890 1891 list_add(&reloc_root->root_list, &reloc_roots); 1892 btrfs_put_root(root); 1893 } 1894 1895 list_splice(&reloc_roots, &rc->reloc_roots); 1896 1897 if (!err) 1898 err = btrfs_commit_transaction(trans); 1899 else 1900 btrfs_end_transaction(trans); 1901 return err; 1902} 1903 1904static noinline_for_stack 1905void free_reloc_roots(struct list_head *list) 1906{ 1907 struct btrfs_root *reloc_root, *tmp; 1908 1909 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1910 __del_reloc_root(reloc_root); 1911} 1912 1913static noinline_for_stack 1914void merge_reloc_roots(struct reloc_control *rc) 1915{ 1916 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1917 struct btrfs_root *root; 1918 struct btrfs_root *reloc_root; 1919 LIST_HEAD(reloc_roots); 1920 int found = 0; 1921 int ret = 0; 1922again: 1923 root = rc->extent_root; 1924 1925 /* 1926 * this serializes us with btrfs_record_root_in_transaction, 1927 * we have to make sure nobody is in the middle of 1928 * adding their roots to the list while we are 1929 * doing this splice 1930 */ 1931 mutex_lock(&fs_info->reloc_mutex); 1932 list_splice_init(&rc->reloc_roots, &reloc_roots); 1933 mutex_unlock(&fs_info->reloc_mutex); 1934 1935 while (!list_empty(&reloc_roots)) { 1936 found = 1; 1937 reloc_root = list_entry(reloc_roots.next, 1938 struct btrfs_root, root_list); 1939 1940 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1941 false); 1942 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 1943 BUG_ON(IS_ERR(root)); 1944 BUG_ON(root->reloc_root != reloc_root); 1945 ret = merge_reloc_root(rc, root); 1946 btrfs_put_root(root); 1947 if (ret) { 1948 if (list_empty(&reloc_root->root_list)) 1949 list_add_tail(&reloc_root->root_list, 1950 &reloc_roots); 1951 goto out; 1952 } 1953 } else { 1954 if (!IS_ERR(root)) { 1955 if (root->reloc_root == reloc_root) { 1956 root->reloc_root = NULL; 1957 btrfs_put_root(reloc_root); 1958 } 1959 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 1960 &root->state); 1961 btrfs_put_root(root); 1962 } 1963 1964 list_del_init(&reloc_root->root_list); 1965 /* Don't forget to queue this reloc root for cleanup */ 1966 list_add_tail(&reloc_root->reloc_dirty_list, 1967 &rc->dirty_subvol_roots); 1968 } 1969 } 1970 1971 if (found) { 1972 found = 0; 1973 goto again; 1974 } 1975out: 1976 if (ret) { 1977 btrfs_handle_fs_error(fs_info, ret, NULL); 1978 free_reloc_roots(&reloc_roots); 1979 1980 /* new reloc root may be added */ 1981 mutex_lock(&fs_info->reloc_mutex); 1982 list_splice_init(&rc->reloc_roots, &reloc_roots); 1983 mutex_unlock(&fs_info->reloc_mutex); 1984 free_reloc_roots(&reloc_roots); 1985 } 1986 1987 /* 1988 * We used to have 1989 * 1990 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 1991 * 1992 * here, but it's wrong. If we fail to start the transaction in 1993 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 1994 * have actually been removed from the reloc_root_tree rb tree. This is 1995 * fine because we're bailing here, and we hold a reference on the root 1996 * for the list that holds it, so these roots will be cleaned up when we 1997 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 1998 * will be cleaned up on unmount. 1999 * 2000 * The remaining nodes will be cleaned up by free_reloc_control. 2001 */ 2002} 2003 2004static void free_block_list(struct rb_root *blocks) 2005{ 2006 struct tree_block *block; 2007 struct rb_node *rb_node; 2008 while ((rb_node = rb_first(blocks))) { 2009 block = rb_entry(rb_node, struct tree_block, rb_node); 2010 rb_erase(rb_node, blocks); 2011 kfree(block); 2012 } 2013} 2014 2015static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2016 struct btrfs_root *reloc_root) 2017{ 2018 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2019 struct btrfs_root *root; 2020 int ret; 2021 2022 if (reloc_root->last_trans == trans->transid) 2023 return 0; 2024 2025 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 2026 BUG_ON(IS_ERR(root)); 2027 BUG_ON(root->reloc_root != reloc_root); 2028 ret = btrfs_record_root_in_trans(trans, root); 2029 btrfs_put_root(root); 2030 2031 return ret; 2032} 2033 2034static noinline_for_stack 2035struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2036 struct reloc_control *rc, 2037 struct btrfs_backref_node *node, 2038 struct btrfs_backref_edge *edges[]) 2039{ 2040 struct btrfs_backref_node *next; 2041 struct btrfs_root *root; 2042 int index = 0; 2043 2044 next = node; 2045 while (1) { 2046 cond_resched(); 2047 next = walk_up_backref(next, edges, &index); 2048 root = next->root; 2049 BUG_ON(!root); 2050 BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)); 2051 2052 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2053 record_reloc_root_in_trans(trans, root); 2054 break; 2055 } 2056 2057 btrfs_record_root_in_trans(trans, root); 2058 root = root->reloc_root; 2059 2060 if (next->new_bytenr != root->node->start) { 2061 BUG_ON(next->new_bytenr); 2062 BUG_ON(!list_empty(&next->list)); 2063 next->new_bytenr = root->node->start; 2064 btrfs_put_root(next->root); 2065 next->root = btrfs_grab_root(root); 2066 ASSERT(next->root); 2067 list_add_tail(&next->list, 2068 &rc->backref_cache.changed); 2069 mark_block_processed(rc, next); 2070 break; 2071 } 2072 2073 WARN_ON(1); 2074 root = NULL; 2075 next = walk_down_backref(edges, &index); 2076 if (!next || next->level <= node->level) 2077 break; 2078 } 2079 if (!root) 2080 return NULL; 2081 2082 next = node; 2083 /* setup backref node path for btrfs_reloc_cow_block */ 2084 while (1) { 2085 rc->backref_cache.path[next->level] = next; 2086 if (--index < 0) 2087 break; 2088 next = edges[index]->node[UPPER]; 2089 } 2090 return root; 2091} 2092 2093/* 2094 * Select a tree root for relocation. 2095 * 2096 * Return NULL if the block is not shareable. We should use do_relocation() in 2097 * this case. 2098 * 2099 * Return a tree root pointer if the block is shareable. 2100 * Return -ENOENT if the block is root of reloc tree. 2101 */ 2102static noinline_for_stack 2103struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2104{ 2105 struct btrfs_backref_node *next; 2106 struct btrfs_root *root; 2107 struct btrfs_root *fs_root = NULL; 2108 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2109 int index = 0; 2110 2111 next = node; 2112 while (1) { 2113 cond_resched(); 2114 next = walk_up_backref(next, edges, &index); 2115 root = next->root; 2116 BUG_ON(!root); 2117 2118 /* No other choice for non-shareable tree */ 2119 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2120 return root; 2121 2122 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2123 fs_root = root; 2124 2125 if (next != node) 2126 return NULL; 2127 2128 next = walk_down_backref(edges, &index); 2129 if (!next || next->level <= node->level) 2130 break; 2131 } 2132 2133 if (!fs_root) 2134 return ERR_PTR(-ENOENT); 2135 return fs_root; 2136} 2137 2138static noinline_for_stack 2139u64 calcu_metadata_size(struct reloc_control *rc, 2140 struct btrfs_backref_node *node, int reserve) 2141{ 2142 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2143 struct btrfs_backref_node *next = node; 2144 struct btrfs_backref_edge *edge; 2145 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2146 u64 num_bytes = 0; 2147 int index = 0; 2148 2149 BUG_ON(reserve && node->processed); 2150 2151 while (next) { 2152 cond_resched(); 2153 while (1) { 2154 if (next->processed && (reserve || next != node)) 2155 break; 2156 2157 num_bytes += fs_info->nodesize; 2158 2159 if (list_empty(&next->upper)) 2160 break; 2161 2162 edge = list_entry(next->upper.next, 2163 struct btrfs_backref_edge, list[LOWER]); 2164 edges[index++] = edge; 2165 next = edge->node[UPPER]; 2166 } 2167 next = walk_down_backref(edges, &index); 2168 } 2169 return num_bytes; 2170} 2171 2172static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2173 struct reloc_control *rc, 2174 struct btrfs_backref_node *node) 2175{ 2176 struct btrfs_root *root = rc->extent_root; 2177 struct btrfs_fs_info *fs_info = root->fs_info; 2178 u64 num_bytes; 2179 int ret; 2180 u64 tmp; 2181 2182 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2183 2184 trans->block_rsv = rc->block_rsv; 2185 rc->reserved_bytes += num_bytes; 2186 2187 /* 2188 * We are under a transaction here so we can only do limited flushing. 2189 * If we get an enospc just kick back -EAGAIN so we know to drop the 2190 * transaction and try to refill when we can flush all the things. 2191 */ 2192 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2193 BTRFS_RESERVE_FLUSH_LIMIT); 2194 if (ret) { 2195 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2196 while (tmp <= rc->reserved_bytes) 2197 tmp <<= 1; 2198 /* 2199 * only one thread can access block_rsv at this point, 2200 * so we don't need hold lock to protect block_rsv. 2201 * we expand more reservation size here to allow enough 2202 * space for relocation and we will return earlier in 2203 * enospc case. 2204 */ 2205 rc->block_rsv->size = tmp + fs_info->nodesize * 2206 RELOCATION_RESERVED_NODES; 2207 return -EAGAIN; 2208 } 2209 2210 return 0; 2211} 2212 2213/* 2214 * relocate a block tree, and then update pointers in upper level 2215 * blocks that reference the block to point to the new location. 2216 * 2217 * if called by link_to_upper, the block has already been relocated. 2218 * in that case this function just updates pointers. 2219 */ 2220static int do_relocation(struct btrfs_trans_handle *trans, 2221 struct reloc_control *rc, 2222 struct btrfs_backref_node *node, 2223 struct btrfs_key *key, 2224 struct btrfs_path *path, int lowest) 2225{ 2226 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2227 struct btrfs_backref_node *upper; 2228 struct btrfs_backref_edge *edge; 2229 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2230 struct btrfs_root *root; 2231 struct extent_buffer *eb; 2232 u32 blocksize; 2233 u64 bytenr; 2234 u64 generation; 2235 int slot; 2236 int ret; 2237 int err = 0; 2238 2239 BUG_ON(lowest && node->eb); 2240 2241 path->lowest_level = node->level + 1; 2242 rc->backref_cache.path[node->level] = node; 2243 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2244 struct btrfs_key first_key; 2245 struct btrfs_ref ref = { 0 }; 2246 2247 cond_resched(); 2248 2249 upper = edge->node[UPPER]; 2250 root = select_reloc_root(trans, rc, upper, edges); 2251 BUG_ON(!root); 2252 2253 if (upper->eb && !upper->locked) { 2254 if (!lowest) { 2255 ret = btrfs_bin_search(upper->eb, key, &slot); 2256 if (ret < 0) { 2257 err = ret; 2258 goto next; 2259 } 2260 BUG_ON(ret); 2261 bytenr = btrfs_node_blockptr(upper->eb, slot); 2262 if (node->eb->start == bytenr) 2263 goto next; 2264 } 2265 btrfs_backref_drop_node_buffer(upper); 2266 } 2267 2268 if (!upper->eb) { 2269 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2270 if (ret) { 2271 if (ret < 0) 2272 err = ret; 2273 else 2274 err = -ENOENT; 2275 2276 btrfs_release_path(path); 2277 break; 2278 } 2279 2280 if (!upper->eb) { 2281 upper->eb = path->nodes[upper->level]; 2282 path->nodes[upper->level] = NULL; 2283 } else { 2284 BUG_ON(upper->eb != path->nodes[upper->level]); 2285 } 2286 2287 upper->locked = 1; 2288 path->locks[upper->level] = 0; 2289 2290 slot = path->slots[upper->level]; 2291 btrfs_release_path(path); 2292 } else { 2293 ret = btrfs_bin_search(upper->eb, key, &slot); 2294 if (ret < 0) { 2295 err = ret; 2296 goto next; 2297 } 2298 BUG_ON(ret); 2299 } 2300 2301 bytenr = btrfs_node_blockptr(upper->eb, slot); 2302 if (lowest) { 2303 if (bytenr != node->bytenr) { 2304 btrfs_err(root->fs_info, 2305 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2306 bytenr, node->bytenr, slot, 2307 upper->eb->start); 2308 err = -EIO; 2309 goto next; 2310 } 2311 } else { 2312 if (node->eb->start == bytenr) 2313 goto next; 2314 } 2315 2316 blocksize = root->fs_info->nodesize; 2317 generation = btrfs_node_ptr_generation(upper->eb, slot); 2318 btrfs_node_key_to_cpu(upper->eb, &first_key, slot); 2319 eb = read_tree_block(fs_info, bytenr, generation, 2320 upper->level - 1, &first_key); 2321 if (IS_ERR(eb)) { 2322 err = PTR_ERR(eb); 2323 goto next; 2324 } else if (!extent_buffer_uptodate(eb)) { 2325 free_extent_buffer(eb); 2326 err = -EIO; 2327 goto next; 2328 } 2329 btrfs_tree_lock(eb); 2330 btrfs_set_lock_blocking_write(eb); 2331 2332 if (!node->eb) { 2333 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2334 slot, &eb, BTRFS_NESTING_COW); 2335 btrfs_tree_unlock(eb); 2336 free_extent_buffer(eb); 2337 if (ret < 0) { 2338 err = ret; 2339 goto next; 2340 } 2341 BUG_ON(node->eb != eb); 2342 } else { 2343 btrfs_set_node_blockptr(upper->eb, slot, 2344 node->eb->start); 2345 btrfs_set_node_ptr_generation(upper->eb, slot, 2346 trans->transid); 2347 btrfs_mark_buffer_dirty(upper->eb); 2348 2349 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2350 node->eb->start, blocksize, 2351 upper->eb->start); 2352 ref.real_root = root->root_key.objectid; 2353 btrfs_init_tree_ref(&ref, node->level, 2354 btrfs_header_owner(upper->eb)); 2355 ret = btrfs_inc_extent_ref(trans, &ref); 2356 BUG_ON(ret); 2357 2358 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2359 BUG_ON(ret); 2360 } 2361next: 2362 if (!upper->pending) 2363 btrfs_backref_drop_node_buffer(upper); 2364 else 2365 btrfs_backref_unlock_node_buffer(upper); 2366 if (err) 2367 break; 2368 } 2369 2370 if (!err && node->pending) { 2371 btrfs_backref_drop_node_buffer(node); 2372 list_move_tail(&node->list, &rc->backref_cache.changed); 2373 node->pending = 0; 2374 } 2375 2376 path->lowest_level = 0; 2377 BUG_ON(err == -ENOSPC); 2378 return err; 2379} 2380 2381static int link_to_upper(struct btrfs_trans_handle *trans, 2382 struct reloc_control *rc, 2383 struct btrfs_backref_node *node, 2384 struct btrfs_path *path) 2385{ 2386 struct btrfs_key key; 2387 2388 btrfs_node_key_to_cpu(node->eb, &key, 0); 2389 return do_relocation(trans, rc, node, &key, path, 0); 2390} 2391 2392static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2393 struct reloc_control *rc, 2394 struct btrfs_path *path, int err) 2395{ 2396 LIST_HEAD(list); 2397 struct btrfs_backref_cache *cache = &rc->backref_cache; 2398 struct btrfs_backref_node *node; 2399 int level; 2400 int ret; 2401 2402 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2403 while (!list_empty(&cache->pending[level])) { 2404 node = list_entry(cache->pending[level].next, 2405 struct btrfs_backref_node, list); 2406 list_move_tail(&node->list, &list); 2407 BUG_ON(!node->pending); 2408 2409 if (!err) { 2410 ret = link_to_upper(trans, rc, node, path); 2411 if (ret < 0) 2412 err = ret; 2413 } 2414 } 2415 list_splice_init(&list, &cache->pending[level]); 2416 } 2417 return err; 2418} 2419 2420/* 2421 * mark a block and all blocks directly/indirectly reference the block 2422 * as processed. 2423 */ 2424static void update_processed_blocks(struct reloc_control *rc, 2425 struct btrfs_backref_node *node) 2426{ 2427 struct btrfs_backref_node *next = node; 2428 struct btrfs_backref_edge *edge; 2429 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2430 int index = 0; 2431 2432 while (next) { 2433 cond_resched(); 2434 while (1) { 2435 if (next->processed) 2436 break; 2437 2438 mark_block_processed(rc, next); 2439 2440 if (list_empty(&next->upper)) 2441 break; 2442 2443 edge = list_entry(next->upper.next, 2444 struct btrfs_backref_edge, list[LOWER]); 2445 edges[index++] = edge; 2446 next = edge->node[UPPER]; 2447 } 2448 next = walk_down_backref(edges, &index); 2449 } 2450} 2451 2452static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2453{ 2454 u32 blocksize = rc->extent_root->fs_info->nodesize; 2455 2456 if (test_range_bit(&rc->processed_blocks, bytenr, 2457 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2458 return 1; 2459 return 0; 2460} 2461 2462static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2463 struct tree_block *block) 2464{ 2465 struct extent_buffer *eb; 2466 2467 eb = read_tree_block(fs_info, block->bytenr, block->key.offset, 2468 block->level, NULL); 2469 if (IS_ERR(eb)) { 2470 return PTR_ERR(eb); 2471 } else if (!extent_buffer_uptodate(eb)) { 2472 free_extent_buffer(eb); 2473 return -EIO; 2474 } 2475 if (block->level == 0) 2476 btrfs_item_key_to_cpu(eb, &block->key, 0); 2477 else 2478 btrfs_node_key_to_cpu(eb, &block->key, 0); 2479 free_extent_buffer(eb); 2480 block->key_ready = 1; 2481 return 0; 2482} 2483 2484/* 2485 * helper function to relocate a tree block 2486 */ 2487static int relocate_tree_block(struct btrfs_trans_handle *trans, 2488 struct reloc_control *rc, 2489 struct btrfs_backref_node *node, 2490 struct btrfs_key *key, 2491 struct btrfs_path *path) 2492{ 2493 struct btrfs_root *root; 2494 int ret = 0; 2495 2496 if (!node) 2497 return 0; 2498 2499 /* 2500 * If we fail here we want to drop our backref_node because we are going 2501 * to start over and regenerate the tree for it. 2502 */ 2503 ret = reserve_metadata_space(trans, rc, node); 2504 if (ret) 2505 goto out; 2506 2507 BUG_ON(node->processed); 2508 root = select_one_root(node); 2509 if (root == ERR_PTR(-ENOENT)) { 2510 update_processed_blocks(rc, node); 2511 goto out; 2512 } 2513 2514 if (root) { 2515 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2516 BUG_ON(node->new_bytenr); 2517 BUG_ON(!list_empty(&node->list)); 2518 btrfs_record_root_in_trans(trans, root); 2519 root = root->reloc_root; 2520 node->new_bytenr = root->node->start; 2521 btrfs_put_root(node->root); 2522 node->root = btrfs_grab_root(root); 2523 ASSERT(node->root); 2524 list_add_tail(&node->list, &rc->backref_cache.changed); 2525 } else { 2526 path->lowest_level = node->level; 2527 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2528 btrfs_release_path(path); 2529 if (ret > 0) 2530 ret = 0; 2531 } 2532 if (!ret) 2533 update_processed_blocks(rc, node); 2534 } else { 2535 ret = do_relocation(trans, rc, node, key, path, 1); 2536 } 2537out: 2538 if (ret || node->level == 0 || node->cowonly) 2539 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2540 return ret; 2541} 2542 2543/* 2544 * relocate a list of blocks 2545 */ 2546static noinline_for_stack 2547int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2548 struct reloc_control *rc, struct rb_root *blocks) 2549{ 2550 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2551 struct btrfs_backref_node *node; 2552 struct btrfs_path *path; 2553 struct tree_block *block; 2554 struct tree_block *next; 2555 int ret; 2556 int err = 0; 2557 2558 path = btrfs_alloc_path(); 2559 if (!path) { 2560 err = -ENOMEM; 2561 goto out_free_blocks; 2562 } 2563 2564 /* Kick in readahead for tree blocks with missing keys */ 2565 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2566 if (!block->key_ready) 2567 readahead_tree_block(fs_info, block->bytenr); 2568 } 2569 2570 /* Get first keys */ 2571 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2572 if (!block->key_ready) { 2573 err = get_tree_block_key(fs_info, block); 2574 if (err) 2575 goto out_free_path; 2576 } 2577 } 2578 2579 /* Do tree relocation */ 2580 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2581 node = build_backref_tree(rc, &block->key, 2582 block->level, block->bytenr); 2583 if (IS_ERR(node)) { 2584 err = PTR_ERR(node); 2585 goto out; 2586 } 2587 2588 ret = relocate_tree_block(trans, rc, node, &block->key, 2589 path); 2590 if (ret < 0) { 2591 err = ret; 2592 break; 2593 } 2594 } 2595out: 2596 err = finish_pending_nodes(trans, rc, path, err); 2597 2598out_free_path: 2599 btrfs_free_path(path); 2600out_free_blocks: 2601 free_block_list(blocks); 2602 return err; 2603} 2604 2605static noinline_for_stack int prealloc_file_extent_cluster( 2606 struct btrfs_inode *inode, 2607 struct file_extent_cluster *cluster) 2608{ 2609 u64 alloc_hint = 0; 2610 u64 start; 2611 u64 end; 2612 u64 offset = inode->index_cnt; 2613 u64 num_bytes; 2614 int nr; 2615 int ret = 0; 2616 u64 prealloc_start = cluster->start - offset; 2617 u64 prealloc_end = cluster->end - offset; 2618 u64 cur_offset = prealloc_start; 2619 2620 BUG_ON(cluster->start != cluster->boundary[0]); 2621 ret = btrfs_alloc_data_chunk_ondemand(inode, 2622 prealloc_end + 1 - prealloc_start); 2623 if (ret) 2624 return ret; 2625 2626 inode_lock(&inode->vfs_inode); 2627 for (nr = 0; nr < cluster->nr; nr++) { 2628 start = cluster->boundary[nr] - offset; 2629 if (nr + 1 < cluster->nr) 2630 end = cluster->boundary[nr + 1] - 1 - offset; 2631 else 2632 end = cluster->end - offset; 2633 2634 lock_extent(&inode->io_tree, start, end); 2635 num_bytes = end + 1 - start; 2636 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2637 num_bytes, num_bytes, 2638 end + 1, &alloc_hint); 2639 cur_offset = end + 1; 2640 unlock_extent(&inode->io_tree, start, end); 2641 if (ret) 2642 break; 2643 } 2644 inode_unlock(&inode->vfs_inode); 2645 2646 if (cur_offset < prealloc_end) 2647 btrfs_free_reserved_data_space_noquota(inode->root->fs_info, 2648 prealloc_end + 1 - cur_offset); 2649 return ret; 2650} 2651 2652static noinline_for_stack 2653int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 2654 u64 block_start) 2655{ 2656 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2657 struct extent_map *em; 2658 int ret = 0; 2659 2660 em = alloc_extent_map(); 2661 if (!em) 2662 return -ENOMEM; 2663 2664 em->start = start; 2665 em->len = end + 1 - start; 2666 em->block_len = em->len; 2667 em->block_start = block_start; 2668 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2669 2670 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2671 while (1) { 2672 write_lock(&em_tree->lock); 2673 ret = add_extent_mapping(em_tree, em, 0); 2674 write_unlock(&em_tree->lock); 2675 if (ret != -EEXIST) { 2676 free_extent_map(em); 2677 break; 2678 } 2679 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 2680 } 2681 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2682 return ret; 2683} 2684 2685/* 2686 * Allow error injection to test balance cancellation 2687 */ 2688int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info) 2689{ 2690 return atomic_read(&fs_info->balance_cancel_req) || 2691 fatal_signal_pending(current); 2692} 2693ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2694 2695static int relocate_file_extent_cluster(struct inode *inode, 2696 struct file_extent_cluster *cluster) 2697{ 2698 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2699 u64 page_start; 2700 u64 page_end; 2701 u64 offset = BTRFS_I(inode)->index_cnt; 2702 unsigned long index; 2703 unsigned long last_index; 2704 struct page *page; 2705 struct file_ra_state *ra; 2706 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2707 int nr = 0; 2708 int ret = 0; 2709 2710 if (!cluster->nr) 2711 return 0; 2712 2713 ra = kzalloc(sizeof(*ra), GFP_NOFS); 2714 if (!ra) 2715 return -ENOMEM; 2716 2717 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster); 2718 if (ret) 2719 goto out; 2720 2721 file_ra_state_init(ra, inode->i_mapping); 2722 2723 ret = setup_extent_mapping(inode, cluster->start - offset, 2724 cluster->end - offset, cluster->start); 2725 if (ret) 2726 goto out; 2727 2728 index = (cluster->start - offset) >> PAGE_SHIFT; 2729 last_index = (cluster->end - offset) >> PAGE_SHIFT; 2730 while (index <= last_index) { 2731 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 2732 PAGE_SIZE); 2733 if (ret) 2734 goto out; 2735 2736 page = find_lock_page(inode->i_mapping, index); 2737 if (!page) { 2738 page_cache_sync_readahead(inode->i_mapping, 2739 ra, NULL, index, 2740 last_index + 1 - index); 2741 page = find_or_create_page(inode->i_mapping, index, 2742 mask); 2743 if (!page) { 2744 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2745 PAGE_SIZE, true); 2746 btrfs_delalloc_release_extents(BTRFS_I(inode), 2747 PAGE_SIZE); 2748 ret = -ENOMEM; 2749 goto out; 2750 } 2751 } 2752 2753 if (PageReadahead(page)) { 2754 page_cache_async_readahead(inode->i_mapping, 2755 ra, NULL, page, index, 2756 last_index + 1 - index); 2757 } 2758 2759 if (!PageUptodate(page)) { 2760 btrfs_readpage(NULL, page); 2761 lock_page(page); 2762 if (!PageUptodate(page)) { 2763 unlock_page(page); 2764 put_page(page); 2765 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2766 PAGE_SIZE, true); 2767 btrfs_delalloc_release_extents(BTRFS_I(inode), 2768 PAGE_SIZE); 2769 ret = -EIO; 2770 goto out; 2771 } 2772 } 2773 2774 page_start = page_offset(page); 2775 page_end = page_start + PAGE_SIZE - 1; 2776 2777 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 2778 2779 set_page_extent_mapped(page); 2780 2781 if (nr < cluster->nr && 2782 page_start + offset == cluster->boundary[nr]) { 2783 set_extent_bits(&BTRFS_I(inode)->io_tree, 2784 page_start, page_end, 2785 EXTENT_BOUNDARY); 2786 nr++; 2787 } 2788 2789 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, 2790 page_end, 0, NULL); 2791 if (ret) { 2792 unlock_page(page); 2793 put_page(page); 2794 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2795 PAGE_SIZE, true); 2796 btrfs_delalloc_release_extents(BTRFS_I(inode), 2797 PAGE_SIZE); 2798 2799 clear_extent_bits(&BTRFS_I(inode)->io_tree, 2800 page_start, page_end, 2801 EXTENT_LOCKED | EXTENT_BOUNDARY); 2802 goto out; 2803 2804 } 2805 set_page_dirty(page); 2806 2807 unlock_extent(&BTRFS_I(inode)->io_tree, 2808 page_start, page_end); 2809 unlock_page(page); 2810 put_page(page); 2811 2812 index++; 2813 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2814 balance_dirty_pages_ratelimited(inode->i_mapping); 2815 btrfs_throttle(fs_info); 2816 if (btrfs_should_cancel_balance(fs_info)) { 2817 ret = -ECANCELED; 2818 goto out; 2819 } 2820 } 2821 WARN_ON(nr != cluster->nr); 2822out: 2823 kfree(ra); 2824 return ret; 2825} 2826 2827static noinline_for_stack 2828int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 2829 struct file_extent_cluster *cluster) 2830{ 2831 int ret; 2832 2833 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 2834 ret = relocate_file_extent_cluster(inode, cluster); 2835 if (ret) 2836 return ret; 2837 cluster->nr = 0; 2838 } 2839 2840 if (!cluster->nr) 2841 cluster->start = extent_key->objectid; 2842 else 2843 BUG_ON(cluster->nr >= MAX_EXTENTS); 2844 cluster->end = extent_key->objectid + extent_key->offset - 1; 2845 cluster->boundary[cluster->nr] = extent_key->objectid; 2846 cluster->nr++; 2847 2848 if (cluster->nr >= MAX_EXTENTS) { 2849 ret = relocate_file_extent_cluster(inode, cluster); 2850 if (ret) 2851 return ret; 2852 cluster->nr = 0; 2853 } 2854 return 0; 2855} 2856 2857/* 2858 * helper to add a tree block to the list. 2859 * the major work is getting the generation and level of the block 2860 */ 2861static int add_tree_block(struct reloc_control *rc, 2862 struct btrfs_key *extent_key, 2863 struct btrfs_path *path, 2864 struct rb_root *blocks) 2865{ 2866 struct extent_buffer *eb; 2867 struct btrfs_extent_item *ei; 2868 struct btrfs_tree_block_info *bi; 2869 struct tree_block *block; 2870 struct rb_node *rb_node; 2871 u32 item_size; 2872 int level = -1; 2873 u64 generation; 2874 2875 eb = path->nodes[0]; 2876 item_size = btrfs_item_size_nr(eb, path->slots[0]); 2877 2878 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 2879 item_size >= sizeof(*ei) + sizeof(*bi)) { 2880 ei = btrfs_item_ptr(eb, path->slots[0], 2881 struct btrfs_extent_item); 2882 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 2883 bi = (struct btrfs_tree_block_info *)(ei + 1); 2884 level = btrfs_tree_block_level(eb, bi); 2885 } else { 2886 level = (int)extent_key->offset; 2887 } 2888 generation = btrfs_extent_generation(eb, ei); 2889 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 2890 btrfs_print_v0_err(eb->fs_info); 2891 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 2892 return -EINVAL; 2893 } else { 2894 BUG(); 2895 } 2896 2897 btrfs_release_path(path); 2898 2899 BUG_ON(level == -1); 2900 2901 block = kmalloc(sizeof(*block), GFP_NOFS); 2902 if (!block) 2903 return -ENOMEM; 2904 2905 block->bytenr = extent_key->objectid; 2906 block->key.objectid = rc->extent_root->fs_info->nodesize; 2907 block->key.offset = generation; 2908 block->level = level; 2909 block->key_ready = 0; 2910 2911 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 2912 if (rb_node) 2913 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 2914 -EEXIST); 2915 2916 return 0; 2917} 2918 2919/* 2920 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 2921 */ 2922static int __add_tree_block(struct reloc_control *rc, 2923 u64 bytenr, u32 blocksize, 2924 struct rb_root *blocks) 2925{ 2926 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2927 struct btrfs_path *path; 2928 struct btrfs_key key; 2929 int ret; 2930 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2931 2932 if (tree_block_processed(bytenr, rc)) 2933 return 0; 2934 2935 if (rb_simple_search(blocks, bytenr)) 2936 return 0; 2937 2938 path = btrfs_alloc_path(); 2939 if (!path) 2940 return -ENOMEM; 2941again: 2942 key.objectid = bytenr; 2943 if (skinny) { 2944 key.type = BTRFS_METADATA_ITEM_KEY; 2945 key.offset = (u64)-1; 2946 } else { 2947 key.type = BTRFS_EXTENT_ITEM_KEY; 2948 key.offset = blocksize; 2949 } 2950 2951 path->search_commit_root = 1; 2952 path->skip_locking = 1; 2953 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 2954 if (ret < 0) 2955 goto out; 2956 2957 if (ret > 0 && skinny) { 2958 if (path->slots[0]) { 2959 path->slots[0]--; 2960 btrfs_item_key_to_cpu(path->nodes[0], &key, 2961 path->slots[0]); 2962 if (key.objectid == bytenr && 2963 (key.type == BTRFS_METADATA_ITEM_KEY || 2964 (key.type == BTRFS_EXTENT_ITEM_KEY && 2965 key.offset == blocksize))) 2966 ret = 0; 2967 } 2968 2969 if (ret) { 2970 skinny = false; 2971 btrfs_release_path(path); 2972 goto again; 2973 } 2974 } 2975 if (ret) { 2976 ASSERT(ret == 1); 2977 btrfs_print_leaf(path->nodes[0]); 2978 btrfs_err(fs_info, 2979 "tree block extent item (%llu) is not found in extent tree", 2980 bytenr); 2981 WARN_ON(1); 2982 ret = -EINVAL; 2983 goto out; 2984 } 2985 2986 ret = add_tree_block(rc, &key, path, blocks); 2987out: 2988 btrfs_free_path(path); 2989 return ret; 2990} 2991 2992static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 2993 struct btrfs_block_group *block_group, 2994 struct inode *inode, 2995 u64 ino) 2996{ 2997 struct btrfs_root *root = fs_info->tree_root; 2998 struct btrfs_trans_handle *trans; 2999 int ret = 0; 3000 3001 if (inode) 3002 goto truncate; 3003 3004 inode = btrfs_iget(fs_info->sb, ino, root); 3005 if (IS_ERR(inode)) 3006 return -ENOENT; 3007 3008truncate: 3009 ret = btrfs_check_trunc_cache_free_space(fs_info, 3010 &fs_info->global_block_rsv); 3011 if (ret) 3012 goto out; 3013 3014 trans = btrfs_join_transaction(root); 3015 if (IS_ERR(trans)) { 3016 ret = PTR_ERR(trans); 3017 goto out; 3018 } 3019 3020 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3021 3022 btrfs_end_transaction(trans); 3023 btrfs_btree_balance_dirty(fs_info); 3024out: 3025 iput(inode); 3026 return ret; 3027} 3028 3029/* 3030 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3031 * cache inode, to avoid free space cache data extent blocking data relocation. 3032 */ 3033static int delete_v1_space_cache(struct extent_buffer *leaf, 3034 struct btrfs_block_group *block_group, 3035 u64 data_bytenr) 3036{ 3037 u64 space_cache_ino; 3038 struct btrfs_file_extent_item *ei; 3039 struct btrfs_key key; 3040 bool found = false; 3041 int i; 3042 int ret; 3043 3044 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3045 return 0; 3046 3047 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3048 u8 type; 3049 3050 btrfs_item_key_to_cpu(leaf, &key, i); 3051 if (key.type != BTRFS_EXTENT_DATA_KEY) 3052 continue; 3053 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3054 type = btrfs_file_extent_type(leaf, ei); 3055 3056 if ((type == BTRFS_FILE_EXTENT_REG || 3057 type == BTRFS_FILE_EXTENT_PREALLOC) && 3058 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3059 found = true; 3060 space_cache_ino = key.objectid; 3061 break; 3062 } 3063 } 3064 if (!found) 3065 return -ENOENT; 3066 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3067 space_cache_ino); 3068 return ret; 3069} 3070 3071/* 3072 * helper to find all tree blocks that reference a given data extent 3073 */ 3074static noinline_for_stack 3075int add_data_references(struct reloc_control *rc, 3076 struct btrfs_key *extent_key, 3077 struct btrfs_path *path, 3078 struct rb_root *blocks) 3079{ 3080 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3081 struct ulist *leaves = NULL; 3082 struct ulist_iterator leaf_uiter; 3083 struct ulist_node *ref_node = NULL; 3084 const u32 blocksize = fs_info->nodesize; 3085 int ret = 0; 3086 3087 btrfs_release_path(path); 3088 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid, 3089 0, &leaves, NULL, true); 3090 if (ret < 0) 3091 return ret; 3092 3093 ULIST_ITER_INIT(&leaf_uiter); 3094 while ((ref_node = ulist_next(leaves, &leaf_uiter))) { 3095 struct extent_buffer *eb; 3096 3097 eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL); 3098 if (IS_ERR(eb)) { 3099 ret = PTR_ERR(eb); 3100 break; 3101 } 3102 ret = delete_v1_space_cache(eb, rc->block_group, 3103 extent_key->objectid); 3104 free_extent_buffer(eb); 3105 if (ret < 0) 3106 break; 3107 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3108 if (ret < 0) 3109 break; 3110 } 3111 if (ret < 0) 3112 free_block_list(blocks); 3113 ulist_free(leaves); 3114 return ret; 3115} 3116 3117/* 3118 * helper to find next unprocessed extent 3119 */ 3120static noinline_for_stack 3121int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3122 struct btrfs_key *extent_key) 3123{ 3124 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3125 struct btrfs_key key; 3126 struct extent_buffer *leaf; 3127 u64 start, end, last; 3128 int ret; 3129 3130 last = rc->block_group->start + rc->block_group->length; 3131 while (1) { 3132 cond_resched(); 3133 if (rc->search_start >= last) { 3134 ret = 1; 3135 break; 3136 } 3137 3138 key.objectid = rc->search_start; 3139 key.type = BTRFS_EXTENT_ITEM_KEY; 3140 key.offset = 0; 3141 3142 path->search_commit_root = 1; 3143 path->skip_locking = 1; 3144 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3145 0, 0); 3146 if (ret < 0) 3147 break; 3148next: 3149 leaf = path->nodes[0]; 3150 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3151 ret = btrfs_next_leaf(rc->extent_root, path); 3152 if (ret != 0) 3153 break; 3154 leaf = path->nodes[0]; 3155 } 3156 3157 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3158 if (key.objectid >= last) { 3159 ret = 1; 3160 break; 3161 } 3162 3163 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3164 key.type != BTRFS_METADATA_ITEM_KEY) { 3165 path->slots[0]++; 3166 goto next; 3167 } 3168 3169 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3170 key.objectid + key.offset <= rc->search_start) { 3171 path->slots[0]++; 3172 goto next; 3173 } 3174 3175 if (key.type == BTRFS_METADATA_ITEM_KEY && 3176 key.objectid + fs_info->nodesize <= 3177 rc->search_start) { 3178 path->slots[0]++; 3179 goto next; 3180 } 3181 3182 ret = find_first_extent_bit(&rc->processed_blocks, 3183 key.objectid, &start, &end, 3184 EXTENT_DIRTY, NULL); 3185 3186 if (ret == 0 && start <= key.objectid) { 3187 btrfs_release_path(path); 3188 rc->search_start = end + 1; 3189 } else { 3190 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3191 rc->search_start = key.objectid + key.offset; 3192 else 3193 rc->search_start = key.objectid + 3194 fs_info->nodesize; 3195 memcpy(extent_key, &key, sizeof(key)); 3196 return 0; 3197 } 3198 } 3199 btrfs_release_path(path); 3200 return ret; 3201} 3202 3203static void set_reloc_control(struct reloc_control *rc) 3204{ 3205 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3206 3207 mutex_lock(&fs_info->reloc_mutex); 3208 fs_info->reloc_ctl = rc; 3209 mutex_unlock(&fs_info->reloc_mutex); 3210} 3211 3212static void unset_reloc_control(struct reloc_control *rc) 3213{ 3214 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3215 3216 mutex_lock(&fs_info->reloc_mutex); 3217 fs_info->reloc_ctl = NULL; 3218 mutex_unlock(&fs_info->reloc_mutex); 3219} 3220 3221static int check_extent_flags(u64 flags) 3222{ 3223 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3224 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3225 return 1; 3226 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3227 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3228 return 1; 3229 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3230 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3231 return 1; 3232 return 0; 3233} 3234 3235static noinline_for_stack 3236int prepare_to_relocate(struct reloc_control *rc) 3237{ 3238 struct btrfs_trans_handle *trans; 3239 int ret; 3240 3241 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3242 BTRFS_BLOCK_RSV_TEMP); 3243 if (!rc->block_rsv) 3244 return -ENOMEM; 3245 3246 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3247 rc->search_start = rc->block_group->start; 3248 rc->extents_found = 0; 3249 rc->nodes_relocated = 0; 3250 rc->merging_rsv_size = 0; 3251 rc->reserved_bytes = 0; 3252 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3253 RELOCATION_RESERVED_NODES; 3254 ret = btrfs_block_rsv_refill(rc->extent_root, 3255 rc->block_rsv, rc->block_rsv->size, 3256 BTRFS_RESERVE_FLUSH_ALL); 3257 if (ret) 3258 return ret; 3259 3260 rc->create_reloc_tree = 1; 3261 set_reloc_control(rc); 3262 3263 trans = btrfs_join_transaction(rc->extent_root); 3264 if (IS_ERR(trans)) { 3265 unset_reloc_control(rc); 3266 /* 3267 * extent tree is not a ref_cow tree and has no reloc_root to 3268 * cleanup. And callers are responsible to free the above 3269 * block rsv. 3270 */ 3271 return PTR_ERR(trans); 3272 } 3273 3274 ret = btrfs_commit_transaction(trans); 3275 if (ret) 3276 unset_reloc_control(rc); 3277 3278 return ret; 3279} 3280 3281static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3282{ 3283 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3284 struct rb_root blocks = RB_ROOT; 3285 struct btrfs_key key; 3286 struct btrfs_trans_handle *trans = NULL; 3287 struct btrfs_path *path; 3288 struct btrfs_extent_item *ei; 3289 u64 flags; 3290 u32 item_size; 3291 int ret; 3292 int err = 0; 3293 int progress = 0; 3294 3295 path = btrfs_alloc_path(); 3296 if (!path) 3297 return -ENOMEM; 3298 path->reada = READA_FORWARD; 3299 3300 ret = prepare_to_relocate(rc); 3301 if (ret) { 3302 err = ret; 3303 goto out_free; 3304 } 3305 3306 while (1) { 3307 rc->reserved_bytes = 0; 3308 ret = btrfs_block_rsv_refill(rc->extent_root, 3309 rc->block_rsv, rc->block_rsv->size, 3310 BTRFS_RESERVE_FLUSH_ALL); 3311 if (ret) { 3312 err = ret; 3313 break; 3314 } 3315 progress++; 3316 trans = btrfs_start_transaction(rc->extent_root, 0); 3317 if (IS_ERR(trans)) { 3318 err = PTR_ERR(trans); 3319 trans = NULL; 3320 break; 3321 } 3322restart: 3323 if (update_backref_cache(trans, &rc->backref_cache)) { 3324 btrfs_end_transaction(trans); 3325 trans = NULL; 3326 continue; 3327 } 3328 3329 ret = find_next_extent(rc, path, &key); 3330 if (ret < 0) 3331 err = ret; 3332 if (ret != 0) 3333 break; 3334 3335 rc->extents_found++; 3336 3337 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3338 struct btrfs_extent_item); 3339 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3340 if (item_size >= sizeof(*ei)) { 3341 flags = btrfs_extent_flags(path->nodes[0], ei); 3342 ret = check_extent_flags(flags); 3343 BUG_ON(ret); 3344 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3345 err = -EINVAL; 3346 btrfs_print_v0_err(trans->fs_info); 3347 btrfs_abort_transaction(trans, err); 3348 break; 3349 } else { 3350 BUG(); 3351 } 3352 3353 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3354 ret = add_tree_block(rc, &key, path, &blocks); 3355 } else if (rc->stage == UPDATE_DATA_PTRS && 3356 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3357 ret = add_data_references(rc, &key, path, &blocks); 3358 } else { 3359 btrfs_release_path(path); 3360 ret = 0; 3361 } 3362 if (ret < 0) { 3363 err = ret; 3364 break; 3365 } 3366 3367 if (!RB_EMPTY_ROOT(&blocks)) { 3368 ret = relocate_tree_blocks(trans, rc, &blocks); 3369 if (ret < 0) { 3370 if (ret != -EAGAIN) { 3371 err = ret; 3372 break; 3373 } 3374 rc->extents_found--; 3375 rc->search_start = key.objectid; 3376 } 3377 } 3378 3379 btrfs_end_transaction_throttle(trans); 3380 btrfs_btree_balance_dirty(fs_info); 3381 trans = NULL; 3382 3383 if (rc->stage == MOVE_DATA_EXTENTS && 3384 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3385 rc->found_file_extent = 1; 3386 ret = relocate_data_extent(rc->data_inode, 3387 &key, &rc->cluster); 3388 if (ret < 0) { 3389 err = ret; 3390 break; 3391 } 3392 } 3393 if (btrfs_should_cancel_balance(fs_info)) { 3394 err = -ECANCELED; 3395 break; 3396 } 3397 } 3398 if (trans && progress && err == -ENOSPC) { 3399 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3400 if (ret == 1) { 3401 err = 0; 3402 progress = 0; 3403 goto restart; 3404 } 3405 } 3406 3407 btrfs_release_path(path); 3408 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3409 3410 if (trans) { 3411 btrfs_end_transaction_throttle(trans); 3412 btrfs_btree_balance_dirty(fs_info); 3413 } 3414 3415 if (!err) { 3416 ret = relocate_file_extent_cluster(rc->data_inode, 3417 &rc->cluster); 3418 if (ret < 0) 3419 err = ret; 3420 } 3421 3422 rc->create_reloc_tree = 0; 3423 set_reloc_control(rc); 3424 3425 btrfs_backref_release_cache(&rc->backref_cache); 3426 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3427 3428 /* 3429 * Even in the case when the relocation is cancelled, we should all go 3430 * through prepare_to_merge() and merge_reloc_roots(). 3431 * 3432 * For error (including cancelled balance), prepare_to_merge() will 3433 * mark all reloc trees orphan, then queue them for cleanup in 3434 * merge_reloc_roots() 3435 */ 3436 err = prepare_to_merge(rc, err); 3437 3438 merge_reloc_roots(rc); 3439 3440 rc->merge_reloc_tree = 0; 3441 unset_reloc_control(rc); 3442 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3443 3444 /* get rid of pinned extents */ 3445 trans = btrfs_join_transaction(rc->extent_root); 3446 if (IS_ERR(trans)) { 3447 err = PTR_ERR(trans); 3448 goto out_free; 3449 } 3450 ret = btrfs_commit_transaction(trans); 3451 if (ret && !err) 3452 err = ret; 3453out_free: 3454 ret = clean_dirty_subvols(rc); 3455 if (ret < 0 && !err) 3456 err = ret; 3457 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3458 btrfs_free_path(path); 3459 return err; 3460} 3461 3462static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3463 struct btrfs_root *root, u64 objectid) 3464{ 3465 struct btrfs_path *path; 3466 struct btrfs_inode_item *item; 3467 struct extent_buffer *leaf; 3468 int ret; 3469 3470 path = btrfs_alloc_path(); 3471 if (!path) 3472 return -ENOMEM; 3473 3474 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3475 if (ret) 3476 goto out; 3477 3478 leaf = path->nodes[0]; 3479 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3480 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3481 btrfs_set_inode_generation(leaf, item, 1); 3482 btrfs_set_inode_size(leaf, item, 0); 3483 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3484 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3485 BTRFS_INODE_PREALLOC); 3486 btrfs_mark_buffer_dirty(leaf); 3487out: 3488 btrfs_free_path(path); 3489 return ret; 3490} 3491 3492/* 3493 * helper to create inode for data relocation. 3494 * the inode is in data relocation tree and its link count is 0 3495 */ 3496static noinline_for_stack 3497struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3498 struct btrfs_block_group *group) 3499{ 3500 struct inode *inode = NULL; 3501 struct btrfs_trans_handle *trans; 3502 struct btrfs_root *root; 3503 u64 objectid; 3504 int err = 0; 3505 3506 root = btrfs_grab_root(fs_info->data_reloc_root); 3507 trans = btrfs_start_transaction(root, 6); 3508 if (IS_ERR(trans)) { 3509 btrfs_put_root(root); 3510 return ERR_CAST(trans); 3511 } 3512 3513 err = btrfs_find_free_objectid(root, &objectid); 3514 if (err) 3515 goto out; 3516 3517 err = __insert_orphan_inode(trans, root, objectid); 3518 BUG_ON(err); 3519 3520 inode = btrfs_iget(fs_info->sb, objectid, root); 3521 BUG_ON(IS_ERR(inode)); 3522 BTRFS_I(inode)->index_cnt = group->start; 3523 3524 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3525out: 3526 btrfs_put_root(root); 3527 btrfs_end_transaction(trans); 3528 btrfs_btree_balance_dirty(fs_info); 3529 if (err) { 3530 if (inode) 3531 iput(inode); 3532 inode = ERR_PTR(err); 3533 } 3534 return inode; 3535} 3536 3537static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 3538{ 3539 struct reloc_control *rc; 3540 3541 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3542 if (!rc) 3543 return NULL; 3544 3545 INIT_LIST_HEAD(&rc->reloc_roots); 3546 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 3547 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1); 3548 mapping_tree_init(&rc->reloc_root_tree); 3549 extent_io_tree_init(fs_info, &rc->processed_blocks, 3550 IO_TREE_RELOC_BLOCKS, NULL); 3551 return rc; 3552} 3553 3554static void free_reloc_control(struct reloc_control *rc) 3555{ 3556 struct mapping_node *node, *tmp; 3557 3558 free_reloc_roots(&rc->reloc_roots); 3559 rbtree_postorder_for_each_entry_safe(node, tmp, 3560 &rc->reloc_root_tree.rb_root, rb_node) 3561 kfree(node); 3562 3563 kfree(rc); 3564} 3565 3566/* 3567 * Print the block group being relocated 3568 */ 3569static void describe_relocation(struct btrfs_fs_info *fs_info, 3570 struct btrfs_block_group *block_group) 3571{ 3572 char buf[128] = {'\0'}; 3573 3574 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 3575 3576 btrfs_info(fs_info, 3577 "relocating block group %llu flags %s", 3578 block_group->start, buf); 3579} 3580 3581static const char *stage_to_string(int stage) 3582{ 3583 if (stage == MOVE_DATA_EXTENTS) 3584 return "move data extents"; 3585 if (stage == UPDATE_DATA_PTRS) 3586 return "update data pointers"; 3587 return "unknown"; 3588} 3589 3590/* 3591 * function to relocate all extents in a block group. 3592 */ 3593int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 3594{ 3595 struct btrfs_block_group *bg; 3596 struct btrfs_root *extent_root = fs_info->extent_root; 3597 struct reloc_control *rc; 3598 struct inode *inode; 3599 struct btrfs_path *path; 3600 int ret; 3601 int rw = 0; 3602 int err = 0; 3603 3604 bg = btrfs_lookup_block_group(fs_info, group_start); 3605 if (!bg) 3606 return -ENOENT; 3607 3608 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 3609 btrfs_put_block_group(bg); 3610 return -ETXTBSY; 3611 } 3612 3613 rc = alloc_reloc_control(fs_info); 3614 if (!rc) { 3615 btrfs_put_block_group(bg); 3616 return -ENOMEM; 3617 } 3618 3619 rc->extent_root = extent_root; 3620 rc->block_group = bg; 3621 3622 ret = btrfs_inc_block_group_ro(rc->block_group, true); 3623 if (ret) { 3624 err = ret; 3625 goto out; 3626 } 3627 rw = 1; 3628 3629 path = btrfs_alloc_path(); 3630 if (!path) { 3631 err = -ENOMEM; 3632 goto out; 3633 } 3634 3635 inode = lookup_free_space_inode(rc->block_group, path); 3636 btrfs_free_path(path); 3637 3638 if (!IS_ERR(inode)) 3639 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 3640 else 3641 ret = PTR_ERR(inode); 3642 3643 if (ret && ret != -ENOENT) { 3644 err = ret; 3645 goto out; 3646 } 3647 3648 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 3649 if (IS_ERR(rc->data_inode)) { 3650 err = PTR_ERR(rc->data_inode); 3651 rc->data_inode = NULL; 3652 goto out; 3653 } 3654 3655 describe_relocation(fs_info, rc->block_group); 3656 3657 btrfs_wait_block_group_reservations(rc->block_group); 3658 btrfs_wait_nocow_writers(rc->block_group); 3659 btrfs_wait_ordered_roots(fs_info, U64_MAX, 3660 rc->block_group->start, 3661 rc->block_group->length); 3662 3663 while (1) { 3664 int finishes_stage; 3665 3666 mutex_lock(&fs_info->cleaner_mutex); 3667 ret = relocate_block_group(rc); 3668 mutex_unlock(&fs_info->cleaner_mutex); 3669 if (ret < 0) 3670 err = ret; 3671 3672 finishes_stage = rc->stage; 3673 /* 3674 * We may have gotten ENOSPC after we already dirtied some 3675 * extents. If writeout happens while we're relocating a 3676 * different block group we could end up hitting the 3677 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 3678 * btrfs_reloc_cow_block. Make sure we write everything out 3679 * properly so we don't trip over this problem, and then break 3680 * out of the loop if we hit an error. 3681 */ 3682 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 3683 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 3684 (u64)-1); 3685 if (ret) 3686 err = ret; 3687 invalidate_mapping_pages(rc->data_inode->i_mapping, 3688 0, -1); 3689 rc->stage = UPDATE_DATA_PTRS; 3690 } 3691 3692 if (err < 0) 3693 goto out; 3694 3695 if (rc->extents_found == 0) 3696 break; 3697 3698 btrfs_info(fs_info, "found %llu extents, stage: %s", 3699 rc->extents_found, stage_to_string(finishes_stage)); 3700 } 3701 3702 WARN_ON(rc->block_group->pinned > 0); 3703 WARN_ON(rc->block_group->reserved > 0); 3704 WARN_ON(rc->block_group->used > 0); 3705out: 3706 if (err && rw) 3707 btrfs_dec_block_group_ro(rc->block_group); 3708 iput(rc->data_inode); 3709 btrfs_put_block_group(rc->block_group); 3710 free_reloc_control(rc); 3711 return err; 3712} 3713 3714static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 3715{ 3716 struct btrfs_fs_info *fs_info = root->fs_info; 3717 struct btrfs_trans_handle *trans; 3718 int ret, err; 3719 3720 trans = btrfs_start_transaction(fs_info->tree_root, 0); 3721 if (IS_ERR(trans)) 3722 return PTR_ERR(trans); 3723 3724 memset(&root->root_item.drop_progress, 0, 3725 sizeof(root->root_item.drop_progress)); 3726 root->root_item.drop_level = 0; 3727 btrfs_set_root_refs(&root->root_item, 0); 3728 ret = btrfs_update_root(trans, fs_info->tree_root, 3729 &root->root_key, &root->root_item); 3730 3731 err = btrfs_end_transaction(trans); 3732 if (err) 3733 return err; 3734 return ret; 3735} 3736 3737/* 3738 * recover relocation interrupted by system crash. 3739 * 3740 * this function resumes merging reloc trees with corresponding fs trees. 3741 * this is important for keeping the sharing of tree blocks 3742 */ 3743int btrfs_recover_relocation(struct btrfs_root *root) 3744{ 3745 struct btrfs_fs_info *fs_info = root->fs_info; 3746 LIST_HEAD(reloc_roots); 3747 struct btrfs_key key; 3748 struct btrfs_root *fs_root; 3749 struct btrfs_root *reloc_root; 3750 struct btrfs_path *path; 3751 struct extent_buffer *leaf; 3752 struct reloc_control *rc = NULL; 3753 struct btrfs_trans_handle *trans; 3754 int ret; 3755 int err = 0; 3756 3757 path = btrfs_alloc_path(); 3758 if (!path) 3759 return -ENOMEM; 3760 path->reada = READA_BACK; 3761 3762 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 3763 key.type = BTRFS_ROOT_ITEM_KEY; 3764 key.offset = (u64)-1; 3765 3766 while (1) { 3767 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 3768 path, 0, 0); 3769 if (ret < 0) { 3770 err = ret; 3771 goto out; 3772 } 3773 if (ret > 0) { 3774 if (path->slots[0] == 0) 3775 break; 3776 path->slots[0]--; 3777 } 3778 leaf = path->nodes[0]; 3779 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3780 btrfs_release_path(path); 3781 3782 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 3783 key.type != BTRFS_ROOT_ITEM_KEY) 3784 break; 3785 3786 reloc_root = btrfs_read_tree_root(root, &key); 3787 if (IS_ERR(reloc_root)) { 3788 err = PTR_ERR(reloc_root); 3789 goto out; 3790 } 3791 3792 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 3793 list_add(&reloc_root->root_list, &reloc_roots); 3794 3795 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 3796 fs_root = btrfs_get_fs_root(fs_info, 3797 reloc_root->root_key.offset, false); 3798 if (IS_ERR(fs_root)) { 3799 ret = PTR_ERR(fs_root); 3800 if (ret != -ENOENT) { 3801 err = ret; 3802 goto out; 3803 } 3804 ret = mark_garbage_root(reloc_root); 3805 if (ret < 0) { 3806 err = ret; 3807 goto out; 3808 } 3809 } else { 3810 btrfs_put_root(fs_root); 3811 } 3812 } 3813 3814 if (key.offset == 0) 3815 break; 3816 3817 key.offset--; 3818 } 3819 btrfs_release_path(path); 3820 3821 if (list_empty(&reloc_roots)) 3822 goto out; 3823 3824 rc = alloc_reloc_control(fs_info); 3825 if (!rc) { 3826 err = -ENOMEM; 3827 goto out; 3828 } 3829 3830 rc->extent_root = fs_info->extent_root; 3831 3832 set_reloc_control(rc); 3833 3834 trans = btrfs_join_transaction(rc->extent_root); 3835 if (IS_ERR(trans)) { 3836 err = PTR_ERR(trans); 3837 goto out_unset; 3838 } 3839 3840 rc->merge_reloc_tree = 1; 3841 3842 while (!list_empty(&reloc_roots)) { 3843 reloc_root = list_entry(reloc_roots.next, 3844 struct btrfs_root, root_list); 3845 list_del(&reloc_root->root_list); 3846 3847 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 3848 list_add_tail(&reloc_root->root_list, 3849 &rc->reloc_roots); 3850 continue; 3851 } 3852 3853 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 3854 false); 3855 if (IS_ERR(fs_root)) { 3856 err = PTR_ERR(fs_root); 3857 list_add_tail(&reloc_root->root_list, &reloc_roots); 3858 btrfs_end_transaction(trans); 3859 goto out_unset; 3860 } 3861 3862 err = __add_reloc_root(reloc_root); 3863 BUG_ON(err < 0); /* -ENOMEM or logic error */ 3864 fs_root->reloc_root = btrfs_grab_root(reloc_root); 3865 btrfs_put_root(fs_root); 3866 } 3867 3868 err = btrfs_commit_transaction(trans); 3869 if (err) 3870 goto out_unset; 3871 3872 merge_reloc_roots(rc); 3873 3874 unset_reloc_control(rc); 3875 3876 trans = btrfs_join_transaction(rc->extent_root); 3877 if (IS_ERR(trans)) { 3878 err = PTR_ERR(trans); 3879 goto out_clean; 3880 } 3881 err = btrfs_commit_transaction(trans); 3882out_clean: 3883 ret = clean_dirty_subvols(rc); 3884 if (ret < 0 && !err) 3885 err = ret; 3886out_unset: 3887 unset_reloc_control(rc); 3888 free_reloc_control(rc); 3889out: 3890 free_reloc_roots(&reloc_roots); 3891 3892 btrfs_free_path(path); 3893 3894 if (err == 0) { 3895 /* cleanup orphan inode in data relocation tree */ 3896 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 3897 ASSERT(fs_root); 3898 err = btrfs_orphan_cleanup(fs_root); 3899 btrfs_put_root(fs_root); 3900 } 3901 return err; 3902} 3903 3904/* 3905 * helper to add ordered checksum for data relocation. 3906 * 3907 * cloning checksum properly handles the nodatasum extents. 3908 * it also saves CPU time to re-calculate the checksum. 3909 */ 3910int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len) 3911{ 3912 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3913 struct btrfs_ordered_sum *sums; 3914 struct btrfs_ordered_extent *ordered; 3915 int ret; 3916 u64 disk_bytenr; 3917 u64 new_bytenr; 3918 LIST_HEAD(list); 3919 3920 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 3921 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len); 3922 3923 disk_bytenr = file_pos + inode->index_cnt; 3924 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 3925 disk_bytenr + len - 1, &list, 0); 3926 if (ret) 3927 goto out; 3928 3929 while (!list_empty(&list)) { 3930 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 3931 list_del_init(&sums->list); 3932 3933 /* 3934 * We need to offset the new_bytenr based on where the csum is. 3935 * We need to do this because we will read in entire prealloc 3936 * extents but we may have written to say the middle of the 3937 * prealloc extent, so we need to make sure the csum goes with 3938 * the right disk offset. 3939 * 3940 * We can do this because the data reloc inode refers strictly 3941 * to the on disk bytes, so we don't have to worry about 3942 * disk_len vs real len like with real inodes since it's all 3943 * disk length. 3944 */ 3945 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr; 3946 sums->bytenr = new_bytenr; 3947 3948 btrfs_add_ordered_sum(ordered, sums); 3949 } 3950out: 3951 btrfs_put_ordered_extent(ordered); 3952 return ret; 3953} 3954 3955int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3956 struct btrfs_root *root, struct extent_buffer *buf, 3957 struct extent_buffer *cow) 3958{ 3959 struct btrfs_fs_info *fs_info = root->fs_info; 3960 struct reloc_control *rc; 3961 struct btrfs_backref_node *node; 3962 int first_cow = 0; 3963 int level; 3964 int ret = 0; 3965 3966 rc = fs_info->reloc_ctl; 3967 if (!rc) 3968 return 0; 3969 3970 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 3971 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 3972 3973 level = btrfs_header_level(buf); 3974 if (btrfs_header_generation(buf) <= 3975 btrfs_root_last_snapshot(&root->root_item)) 3976 first_cow = 1; 3977 3978 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 3979 rc->create_reloc_tree) { 3980 WARN_ON(!first_cow && level == 0); 3981 3982 node = rc->backref_cache.path[level]; 3983 BUG_ON(node->bytenr != buf->start && 3984 node->new_bytenr != buf->start); 3985 3986 btrfs_backref_drop_node_buffer(node); 3987 atomic_inc(&cow->refs); 3988 node->eb = cow; 3989 node->new_bytenr = cow->start; 3990 3991 if (!node->pending) { 3992 list_move_tail(&node->list, 3993 &rc->backref_cache.pending[level]); 3994 node->pending = 1; 3995 } 3996 3997 if (first_cow) 3998 mark_block_processed(rc, node); 3999 4000 if (first_cow && level > 0) 4001 rc->nodes_relocated += buf->len; 4002 } 4003 4004 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4005 ret = replace_file_extents(trans, rc, root, cow); 4006 return ret; 4007} 4008 4009/* 4010 * called before creating snapshot. it calculates metadata reservation 4011 * required for relocating tree blocks in the snapshot 4012 */ 4013void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4014 u64 *bytes_to_reserve) 4015{ 4016 struct btrfs_root *root = pending->root; 4017 struct reloc_control *rc = root->fs_info->reloc_ctl; 4018 4019 if (!rc || !have_reloc_root(root)) 4020 return; 4021 4022 if (!rc->merge_reloc_tree) 4023 return; 4024 4025 root = root->reloc_root; 4026 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4027 /* 4028 * relocation is in the stage of merging trees. the space 4029 * used by merging a reloc tree is twice the size of 4030 * relocated tree nodes in the worst case. half for cowing 4031 * the reloc tree, half for cowing the fs tree. the space 4032 * used by cowing the reloc tree will be freed after the 4033 * tree is dropped. if we create snapshot, cowing the fs 4034 * tree may use more space than it frees. so we need 4035 * reserve extra space. 4036 */ 4037 *bytes_to_reserve += rc->nodes_relocated; 4038} 4039 4040/* 4041 * called after snapshot is created. migrate block reservation 4042 * and create reloc root for the newly created snapshot 4043 * 4044 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4045 * references held on the reloc_root, one for root->reloc_root and one for 4046 * rc->reloc_roots. 4047 */ 4048int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4049 struct btrfs_pending_snapshot *pending) 4050{ 4051 struct btrfs_root *root = pending->root; 4052 struct btrfs_root *reloc_root; 4053 struct btrfs_root *new_root; 4054 struct reloc_control *rc = root->fs_info->reloc_ctl; 4055 int ret; 4056 4057 if (!rc || !have_reloc_root(root)) 4058 return 0; 4059 4060 rc = root->fs_info->reloc_ctl; 4061 rc->merging_rsv_size += rc->nodes_relocated; 4062 4063 if (rc->merge_reloc_tree) { 4064 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4065 rc->block_rsv, 4066 rc->nodes_relocated, true); 4067 if (ret) 4068 return ret; 4069 } 4070 4071 new_root = pending->snap; 4072 reloc_root = create_reloc_root(trans, root->reloc_root, 4073 new_root->root_key.objectid); 4074 if (IS_ERR(reloc_root)) 4075 return PTR_ERR(reloc_root); 4076 4077 ret = __add_reloc_root(reloc_root); 4078 BUG_ON(ret < 0); 4079 new_root->reloc_root = btrfs_grab_root(reloc_root); 4080 4081 if (rc->create_reloc_tree) 4082 ret = clone_backref_node(trans, rc, root, reloc_root); 4083 return ret; 4084} 4085