1// SPDX-License-Identifier: GPL-2.0 2 3#include <linux/blkdev.h> 4#include <linux/iversion.h> 5#include "compression.h" 6#include "ctree.h" 7#include "delalloc-space.h" 8#include "reflink.h" 9#include "transaction.h" 10 11#define BTRFS_MAX_DEDUPE_LEN SZ_16M 12 13static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 14 struct inode *inode, 15 u64 endoff, 16 const u64 destoff, 17 const u64 olen, 18 int no_time_update) 19{ 20 struct btrfs_root *root = BTRFS_I(inode)->root; 21 int ret; 22 23 inode_inc_iversion(inode); 24 if (!no_time_update) 25 inode->i_mtime = inode->i_ctime = current_time(inode); 26 /* 27 * We round up to the block size at eof when determining which 28 * extents to clone above, but shouldn't round up the file size. 29 */ 30 if (endoff > destoff + olen) 31 endoff = destoff + olen; 32 if (endoff > inode->i_size) { 33 i_size_write(inode, endoff); 34 btrfs_inode_safe_disk_i_size_write(inode, 0); 35 } 36 37 ret = btrfs_update_inode(trans, root, inode); 38 if (ret) { 39 btrfs_abort_transaction(trans, ret); 40 btrfs_end_transaction(trans); 41 goto out; 42 } 43 ret = btrfs_end_transaction(trans); 44out: 45 return ret; 46} 47 48static int copy_inline_to_page(struct btrfs_inode *inode, 49 const u64 file_offset, 50 char *inline_data, 51 const u64 size, 52 const u64 datal, 53 const u8 comp_type) 54{ 55 const u64 block_size = btrfs_inode_sectorsize(inode); 56 const u64 range_end = file_offset + block_size - 1; 57 const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0); 58 char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0); 59 struct extent_changeset *data_reserved = NULL; 60 struct page *page = NULL; 61 struct address_space *mapping = inode->vfs_inode.i_mapping; 62 int ret; 63 64 ASSERT(IS_ALIGNED(file_offset, block_size)); 65 66 /* 67 * We have flushed and locked the ranges of the source and destination 68 * inodes, we also have locked the inodes, so we are safe to do a 69 * reservation here. Also we must not do the reservation while holding 70 * a transaction open, otherwise we would deadlock. 71 */ 72 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset, 73 block_size); 74 if (ret) 75 goto out; 76 77 page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT, 78 btrfs_alloc_write_mask(mapping)); 79 if (!page) { 80 ret = -ENOMEM; 81 goto out_unlock; 82 } 83 84 set_page_extent_mapped(page); 85 clear_extent_bit(&inode->io_tree, file_offset, range_end, 86 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 87 0, 0, NULL); 88 ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL); 89 if (ret) 90 goto out_unlock; 91 92 /* 93 * After dirtying the page our caller will need to start a transaction, 94 * and if we are low on metadata free space, that can cause flushing of 95 * delalloc for all inodes in order to get metadata space released. 96 * However we are holding the range locked for the whole duration of 97 * the clone/dedupe operation, so we may deadlock if that happens and no 98 * other task releases enough space. So mark this inode as not being 99 * possible to flush to avoid such deadlock. We will clear that flag 100 * when we finish cloning all extents, since a transaction is started 101 * after finding each extent to clone. 102 */ 103 set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags); 104 105 if (comp_type == BTRFS_COMPRESS_NONE) { 106 char *map; 107 108 map = kmap(page); 109 memcpy(map, data_start, datal); 110 flush_dcache_page(page); 111 kunmap(page); 112 } else { 113 ret = btrfs_decompress(comp_type, data_start, page, 0, 114 inline_size, datal); 115 if (ret) 116 goto out_unlock; 117 flush_dcache_page(page); 118 } 119 120 /* 121 * If our inline data is smaller then the block/page size, then the 122 * remaining of the block/page is equivalent to zeroes. We had something 123 * like the following done: 124 * 125 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file 126 * $ sync # (or fsync) 127 * $ xfs_io -c "falloc 0 4K" file 128 * $ xfs_io -c "pwrite -S 0xcd 4K 4K" 129 * 130 * So what's in the range [500, 4095] corresponds to zeroes. 131 */ 132 if (datal < block_size) { 133 char *map; 134 135 map = kmap(page); 136 memset(map + datal, 0, block_size - datal); 137 flush_dcache_page(page); 138 kunmap(page); 139 } 140 141 SetPageUptodate(page); 142 ClearPageChecked(page); 143 set_page_dirty(page); 144out_unlock: 145 if (page) { 146 unlock_page(page); 147 put_page(page); 148 } 149 if (ret) 150 btrfs_delalloc_release_space(inode, data_reserved, file_offset, 151 block_size, true); 152 btrfs_delalloc_release_extents(inode, block_size); 153out: 154 extent_changeset_free(data_reserved); 155 156 return ret; 157} 158 159/* 160 * Deal with cloning of inline extents. We try to copy the inline extent from 161 * the source inode to destination inode when possible. When not possible we 162 * copy the inline extent's data into the respective page of the inode. 163 */ 164static int clone_copy_inline_extent(struct inode *dst, 165 struct btrfs_path *path, 166 struct btrfs_key *new_key, 167 const u64 drop_start, 168 const u64 datal, 169 const u64 size, 170 const u8 comp_type, 171 char *inline_data, 172 struct btrfs_trans_handle **trans_out) 173{ 174 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 175 struct btrfs_root *root = BTRFS_I(dst)->root; 176 const u64 aligned_end = ALIGN(new_key->offset + datal, 177 fs_info->sectorsize); 178 struct btrfs_trans_handle *trans = NULL; 179 int ret; 180 struct btrfs_key key; 181 182 if (new_key->offset > 0) { 183 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, 184 inline_data, size, datal, comp_type); 185 goto out; 186 } 187 188 key.objectid = btrfs_ino(BTRFS_I(dst)); 189 key.type = BTRFS_EXTENT_DATA_KEY; 190 key.offset = 0; 191 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 192 if (ret < 0) { 193 return ret; 194 } else if (ret > 0) { 195 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 196 ret = btrfs_next_leaf(root, path); 197 if (ret < 0) 198 return ret; 199 else if (ret > 0) 200 goto copy_inline_extent; 201 } 202 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 203 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 204 key.type == BTRFS_EXTENT_DATA_KEY) { 205 /* 206 * There's an implicit hole at file offset 0, copy the 207 * inline extent's data to the page. 208 */ 209 ASSERT(key.offset > 0); 210 goto copy_to_page; 211 } 212 } else if (i_size_read(dst) <= datal) { 213 struct btrfs_file_extent_item *ei; 214 215 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 216 struct btrfs_file_extent_item); 217 /* 218 * If it's an inline extent replace it with the source inline 219 * extent, otherwise copy the source inline extent data into 220 * the respective page at the destination inode. 221 */ 222 if (btrfs_file_extent_type(path->nodes[0], ei) == 223 BTRFS_FILE_EXTENT_INLINE) 224 goto copy_inline_extent; 225 226 goto copy_to_page; 227 } 228 229copy_inline_extent: 230 /* 231 * We have no extent items, or we have an extent at offset 0 which may 232 * or may not be inlined. All these cases are dealt the same way. 233 */ 234 if (i_size_read(dst) > datal) { 235 /* 236 * At the destination offset 0 we have either a hole, a regular 237 * extent or an inline extent larger then the one we want to 238 * clone. Deal with all these cases by copying the inline extent 239 * data into the respective page at the destination inode. 240 */ 241 goto copy_to_page; 242 } 243 244 /* 245 * Release path before starting a new transaction so we don't hold locks 246 * that would confuse lockdep. 247 */ 248 btrfs_release_path(path); 249 /* 250 * If we end up here it means were copy the inline extent into a leaf 251 * of the destination inode. We know we will drop or adjust at most one 252 * extent item in the destination root. 253 * 254 * 1 unit - adjusting old extent (we may have to split it) 255 * 1 unit - add new extent 256 * 1 unit - inode update 257 */ 258 trans = btrfs_start_transaction(root, 3); 259 if (IS_ERR(trans)) { 260 ret = PTR_ERR(trans); 261 trans = NULL; 262 goto out; 263 } 264 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 265 if (ret) 266 goto out; 267 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 268 if (ret) 269 goto out; 270 271 write_extent_buffer(path->nodes[0], inline_data, 272 btrfs_item_ptr_offset(path->nodes[0], 273 path->slots[0]), 274 size); 275 inode_add_bytes(dst, datal); 276 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags); 277 ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end); 278out: 279 if (!ret && !trans) { 280 /* 281 * No transaction here means we copied the inline extent into a 282 * page of the destination inode. 283 * 284 * 1 unit to update inode item 285 */ 286 trans = btrfs_start_transaction(root, 1); 287 if (IS_ERR(trans)) { 288 ret = PTR_ERR(trans); 289 trans = NULL; 290 } 291 } 292 if (ret && trans) { 293 btrfs_abort_transaction(trans, ret); 294 btrfs_end_transaction(trans); 295 } 296 if (!ret) 297 *trans_out = trans; 298 299 return ret; 300 301copy_to_page: 302 /* 303 * Release our path because we don't need it anymore and also because 304 * copy_inline_to_page() needs to reserve data and metadata, which may 305 * need to flush delalloc when we are low on available space and 306 * therefore cause a deadlock if writeback of an inline extent needs to 307 * write to the same leaf or an ordered extent completion needs to write 308 * to the same leaf. 309 */ 310 btrfs_release_path(path); 311 312 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, 313 inline_data, size, datal, comp_type); 314 goto out; 315} 316 317/** 318 * btrfs_clone() - clone a range from inode file to another 319 * 320 * @src: Inode to clone from 321 * @inode: Inode to clone to 322 * @off: Offset within source to start clone from 323 * @olen: Original length, passed by user, of range to clone 324 * @olen_aligned: Block-aligned value of olen 325 * @destoff: Offset within @inode to start clone 326 * @no_time_update: Whether to update mtime/ctime on the target inode 327 */ 328static int btrfs_clone(struct inode *src, struct inode *inode, 329 const u64 off, const u64 olen, const u64 olen_aligned, 330 const u64 destoff, int no_time_update) 331{ 332 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 333 struct btrfs_path *path = NULL; 334 struct extent_buffer *leaf; 335 struct btrfs_trans_handle *trans; 336 char *buf = NULL; 337 struct btrfs_key key; 338 u32 nritems; 339 int slot; 340 int ret; 341 const u64 len = olen_aligned; 342 u64 last_dest_end = destoff; 343 344 ret = -ENOMEM; 345 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 346 if (!buf) 347 return ret; 348 349 path = btrfs_alloc_path(); 350 if (!path) { 351 kvfree(buf); 352 return ret; 353 } 354 355 path->reada = READA_FORWARD; 356 /* Clone data */ 357 key.objectid = btrfs_ino(BTRFS_I(src)); 358 key.type = BTRFS_EXTENT_DATA_KEY; 359 key.offset = off; 360 361 while (1) { 362 u64 next_key_min_offset = key.offset + 1; 363 struct btrfs_file_extent_item *extent; 364 u64 extent_gen; 365 int type; 366 u32 size; 367 struct btrfs_key new_key; 368 u64 disko = 0, diskl = 0; 369 u64 datao = 0, datal = 0; 370 u8 comp; 371 u64 drop_start; 372 373 /* Note the key will change type as we walk through the tree */ 374 path->leave_spinning = 1; 375 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 376 0, 0); 377 if (ret < 0) 378 goto out; 379 /* 380 * First search, if no extent item that starts at offset off was 381 * found but the previous item is an extent item, it's possible 382 * it might overlap our target range, therefore process it. 383 */ 384 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 385 btrfs_item_key_to_cpu(path->nodes[0], &key, 386 path->slots[0] - 1); 387 if (key.type == BTRFS_EXTENT_DATA_KEY) 388 path->slots[0]--; 389 } 390 391 nritems = btrfs_header_nritems(path->nodes[0]); 392process_slot: 393 if (path->slots[0] >= nritems) { 394 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 395 if (ret < 0) 396 goto out; 397 if (ret > 0) 398 break; 399 nritems = btrfs_header_nritems(path->nodes[0]); 400 } 401 leaf = path->nodes[0]; 402 slot = path->slots[0]; 403 404 btrfs_item_key_to_cpu(leaf, &key, slot); 405 if (key.type > BTRFS_EXTENT_DATA_KEY || 406 key.objectid != btrfs_ino(BTRFS_I(src))) 407 break; 408 409 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 410 411 extent = btrfs_item_ptr(leaf, slot, 412 struct btrfs_file_extent_item); 413 extent_gen = btrfs_file_extent_generation(leaf, extent); 414 comp = btrfs_file_extent_compression(leaf, extent); 415 type = btrfs_file_extent_type(leaf, extent); 416 if (type == BTRFS_FILE_EXTENT_REG || 417 type == BTRFS_FILE_EXTENT_PREALLOC) { 418 disko = btrfs_file_extent_disk_bytenr(leaf, extent); 419 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent); 420 datao = btrfs_file_extent_offset(leaf, extent); 421 datal = btrfs_file_extent_num_bytes(leaf, extent); 422 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 423 /* Take upper bound, may be compressed */ 424 datal = btrfs_file_extent_ram_bytes(leaf, extent); 425 } 426 427 /* 428 * The first search might have left us at an extent item that 429 * ends before our target range's start, can happen if we have 430 * holes and NO_HOLES feature enabled. 431 */ 432 if (key.offset + datal <= off) { 433 path->slots[0]++; 434 goto process_slot; 435 } else if (key.offset >= off + len) { 436 break; 437 } 438 next_key_min_offset = key.offset + datal; 439 size = btrfs_item_size_nr(leaf, slot); 440 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot), 441 size); 442 443 btrfs_release_path(path); 444 path->leave_spinning = 0; 445 446 memcpy(&new_key, &key, sizeof(new_key)); 447 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 448 if (off <= key.offset) 449 new_key.offset = key.offset + destoff - off; 450 else 451 new_key.offset = destoff; 452 453 /* 454 * Deal with a hole that doesn't have an extent item that 455 * represents it (NO_HOLES feature enabled). 456 * This hole is either in the middle of the cloning range or at 457 * the beginning (fully overlaps it or partially overlaps it). 458 */ 459 if (new_key.offset != last_dest_end) 460 drop_start = last_dest_end; 461 else 462 drop_start = new_key.offset; 463 464 if (type == BTRFS_FILE_EXTENT_REG || 465 type == BTRFS_FILE_EXTENT_PREALLOC) { 466 struct btrfs_replace_extent_info clone_info; 467 468 /* 469 * a | --- range to clone ---| b 470 * | ------------- extent ------------- | 471 */ 472 473 /* Subtract range b */ 474 if (key.offset + datal > off + len) 475 datal = off + len - key.offset; 476 477 /* Subtract range a */ 478 if (off > key.offset) { 479 datao += off - key.offset; 480 datal -= off - key.offset; 481 } 482 483 clone_info.disk_offset = disko; 484 clone_info.disk_len = diskl; 485 clone_info.data_offset = datao; 486 clone_info.data_len = datal; 487 clone_info.file_offset = new_key.offset; 488 clone_info.extent_buf = buf; 489 clone_info.is_new_extent = false; 490 ret = btrfs_replace_file_extents(inode, path, drop_start, 491 new_key.offset + datal - 1, &clone_info, 492 &trans); 493 if (ret) 494 goto out; 495 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 496 /* 497 * Inline extents always have to start at file offset 0 498 * and can never be bigger then the sector size. We can 499 * never clone only parts of an inline extent, since all 500 * reflink operations must start at a sector size aligned 501 * offset, and the length must be aligned too or end at 502 * the i_size (which implies the whole inlined data). 503 */ 504 ASSERT(key.offset == 0); 505 ASSERT(datal <= fs_info->sectorsize); 506 if (WARN_ON(key.offset != 0) || 507 WARN_ON(datal > fs_info->sectorsize)) { 508 ret = -EUCLEAN; 509 goto out; 510 } 511 512 ret = clone_copy_inline_extent(inode, path, &new_key, 513 drop_start, datal, size, 514 comp, buf, &trans); 515 if (ret) 516 goto out; 517 } 518 519 btrfs_release_path(path); 520 521 /* 522 * If this is a new extent update the last_reflink_trans of both 523 * inodes. This is used by fsync to make sure it does not log 524 * multiple checksum items with overlapping ranges. For older 525 * extents we don't need to do it since inode logging skips the 526 * checksums for older extents. Also ignore holes and inline 527 * extents because they don't have checksums in the csum tree. 528 */ 529 if (extent_gen == trans->transid && disko > 0) { 530 BTRFS_I(src)->last_reflink_trans = trans->transid; 531 BTRFS_I(inode)->last_reflink_trans = trans->transid; 532 } 533 534 last_dest_end = ALIGN(new_key.offset + datal, 535 fs_info->sectorsize); 536 ret = clone_finish_inode_update(trans, inode, last_dest_end, 537 destoff, olen, no_time_update); 538 if (ret) 539 goto out; 540 if (new_key.offset + datal >= destoff + len) 541 break; 542 543 btrfs_release_path(path); 544 key.offset = next_key_min_offset; 545 546 if (fatal_signal_pending(current)) { 547 ret = -EINTR; 548 goto out; 549 } 550 551 cond_resched(); 552 } 553 ret = 0; 554 555 if (last_dest_end < destoff + len) { 556 /* 557 * We have an implicit hole that fully or partially overlaps our 558 * cloning range at its end. This means that we either have the 559 * NO_HOLES feature enabled or the implicit hole happened due to 560 * mixing buffered and direct IO writes against this file. 561 */ 562 btrfs_release_path(path); 563 path->leave_spinning = 0; 564 565 /* 566 * When using NO_HOLES and we are cloning a range that covers 567 * only a hole (no extents) into a range beyond the current 568 * i_size, punching a hole in the target range will not create 569 * an extent map defining a hole, because the range starts at or 570 * beyond current i_size. If the file previously had an i_size 571 * greater than the new i_size set by this clone operation, we 572 * need to make sure the next fsync is a full fsync, so that it 573 * detects and logs a hole covering a range from the current 574 * i_size to the new i_size. If the clone range covers extents, 575 * besides a hole, then we know the full sync flag was already 576 * set by previous calls to btrfs_replace_file_extents() that 577 * replaced file extent items. 578 */ 579 if (last_dest_end >= i_size_read(inode)) 580 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 581 &BTRFS_I(inode)->runtime_flags); 582 583 ret = btrfs_replace_file_extents(inode, path, last_dest_end, 584 destoff + len - 1, NULL, &trans); 585 if (ret) 586 goto out; 587 588 ret = clone_finish_inode_update(trans, inode, destoff + len, 589 destoff, olen, no_time_update); 590 } 591 592out: 593 btrfs_free_path(path); 594 kvfree(buf); 595 clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags); 596 597 return ret; 598} 599 600static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 601 struct inode *inode2, u64 loff2, u64 len) 602{ 603 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 604 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 605} 606 607static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 608 struct inode *inode2, u64 loff2, u64 len) 609{ 610 if (inode1 < inode2) { 611 swap(inode1, inode2); 612 swap(loff1, loff2); 613 } else if (inode1 == inode2 && loff2 < loff1) { 614 swap(loff1, loff2); 615 } 616 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 617 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 618} 619 620static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len, 621 struct inode *dst, u64 dst_loff) 622{ 623 const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 624 int ret; 625 626 /* 627 * Lock destination range to serialize with concurrent readpages() and 628 * source range to serialize with relocation. 629 */ 630 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 631 ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1); 632 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 633 634 return ret; 635} 636 637static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 638 struct inode *dst, u64 dst_loff) 639{ 640 int ret = 0; 641 u64 i, tail_len, chunk_count; 642 struct btrfs_root *root_dst = BTRFS_I(dst)->root; 643 644 spin_lock(&root_dst->root_item_lock); 645 if (root_dst->send_in_progress) { 646 btrfs_warn_rl(root_dst->fs_info, 647"cannot deduplicate to root %llu while send operations are using it (%d in progress)", 648 root_dst->root_key.objectid, 649 root_dst->send_in_progress); 650 spin_unlock(&root_dst->root_item_lock); 651 return -EAGAIN; 652 } 653 root_dst->dedupe_in_progress++; 654 spin_unlock(&root_dst->root_item_lock); 655 656 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 657 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 658 659 for (i = 0; i < chunk_count; i++) { 660 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 661 dst, dst_loff); 662 if (ret) 663 goto out; 664 665 loff += BTRFS_MAX_DEDUPE_LEN; 666 dst_loff += BTRFS_MAX_DEDUPE_LEN; 667 } 668 669 if (tail_len > 0) 670 ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff); 671out: 672 spin_lock(&root_dst->root_item_lock); 673 root_dst->dedupe_in_progress--; 674 spin_unlock(&root_dst->root_item_lock); 675 676 return ret; 677} 678 679static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 680 u64 off, u64 olen, u64 destoff) 681{ 682 struct inode *inode = file_inode(file); 683 struct inode *src = file_inode(file_src); 684 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 685 int ret; 686 int wb_ret; 687 u64 len = olen; 688 u64 bs = fs_info->sb->s_blocksize; 689 690 /* 691 * VFS's generic_remap_file_range_prep() protects us from cloning the 692 * eof block into the middle of a file, which would result in corruption 693 * if the file size is not blocksize aligned. So we don't need to check 694 * for that case here. 695 */ 696 if (off + len == src->i_size) 697 len = ALIGN(src->i_size, bs) - off; 698 699 if (destoff > inode->i_size) { 700 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); 701 702 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 703 if (ret) 704 return ret; 705 /* 706 * We may have truncated the last block if the inode's size is 707 * not sector size aligned, so we need to wait for writeback to 708 * complete before proceeding further, otherwise we can race 709 * with cloning and attempt to increment a reference to an 710 * extent that no longer exists (writeback completed right after 711 * we found the previous extent covering eof and before we 712 * attempted to increment its reference count). 713 */ 714 ret = btrfs_wait_ordered_range(inode, wb_start, 715 destoff - wb_start); 716 if (ret) 717 return ret; 718 } 719 720 /* 721 * Lock destination range to serialize with concurrent readpages() and 722 * source range to serialize with relocation. 723 */ 724 btrfs_double_extent_lock(src, off, inode, destoff, len); 725 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 726 btrfs_double_extent_unlock(src, off, inode, destoff, len); 727 728 /* 729 * We may have copied an inline extent into a page of the destination 730 * range, so wait for writeback to complete before truncating pages 731 * from the page cache. This is a rare case. 732 */ 733 wb_ret = btrfs_wait_ordered_range(inode, destoff, len); 734 ret = ret ? ret : wb_ret; 735 /* 736 * Truncate page cache pages so that future reads will see the cloned 737 * data immediately and not the previous data. 738 */ 739 truncate_inode_pages_range(&inode->i_data, 740 round_down(destoff, PAGE_SIZE), 741 round_up(destoff + len, PAGE_SIZE) - 1); 742 743 return ret; 744} 745 746static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, 747 struct file *file_out, loff_t pos_out, 748 loff_t *len, unsigned int remap_flags) 749{ 750 struct inode *inode_in = file_inode(file_in); 751 struct inode *inode_out = file_inode(file_out); 752 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize; 753 bool same_inode = inode_out == inode_in; 754 u64 wb_len; 755 int ret; 756 757 if (!(remap_flags & REMAP_FILE_DEDUP)) { 758 struct btrfs_root *root_out = BTRFS_I(inode_out)->root; 759 760 if (btrfs_root_readonly(root_out)) 761 return -EROFS; 762 763 if (file_in->f_path.mnt != file_out->f_path.mnt || 764 inode_in->i_sb != inode_out->i_sb) 765 return -EXDEV; 766 } 767 768 /* Don't make the dst file partly checksummed */ 769 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) != 770 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) { 771 return -EINVAL; 772 } 773 774 /* 775 * Now that the inodes are locked, we need to start writeback ourselves 776 * and can not rely on the writeback from the VFS's generic helper 777 * generic_remap_file_range_prep() because: 778 * 779 * 1) For compression we must call filemap_fdatawrite_range() range 780 * twice (btrfs_fdatawrite_range() does it for us), and the generic 781 * helper only calls it once; 782 * 783 * 2) filemap_fdatawrite_range(), called by the generic helper only 784 * waits for the writeback to complete, i.e. for IO to be done, and 785 * not for the ordered extents to complete. We need to wait for them 786 * to complete so that new file extent items are in the fs tree. 787 */ 788 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) 789 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs); 790 else 791 wb_len = ALIGN(*len, bs); 792 793 /* 794 * Since we don't lock ranges, wait for ongoing lockless dio writes (as 795 * any in progress could create its ordered extents after we wait for 796 * existing ordered extents below). 797 */ 798 inode_dio_wait(inode_in); 799 if (!same_inode) 800 inode_dio_wait(inode_out); 801 802 /* 803 * Workaround to make sure NOCOW buffered write reach disk as NOCOW. 804 * 805 * Btrfs' back references do not have a block level granularity, they 806 * work at the whole extent level. 807 * NOCOW buffered write without data space reserved may not be able 808 * to fall back to CoW due to lack of data space, thus could cause 809 * data loss. 810 * 811 * Here we take a shortcut by flushing the whole inode, so that all 812 * nocow write should reach disk as nocow before we increase the 813 * reference of the extent. We could do better by only flushing NOCOW 814 * data, but that needs extra accounting. 815 * 816 * Also we don't need to check ASYNC_EXTENT, as async extent will be 817 * CoWed anyway, not affecting nocow part. 818 */ 819 ret = filemap_flush(inode_in->i_mapping); 820 if (ret < 0) 821 return ret; 822 823 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), 824 wb_len); 825 if (ret < 0) 826 return ret; 827 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), 828 wb_len); 829 if (ret < 0) 830 return ret; 831 832 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 833 len, remap_flags); 834} 835 836loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, 837 struct file *dst_file, loff_t destoff, loff_t len, 838 unsigned int remap_flags) 839{ 840 struct inode *src_inode = file_inode(src_file); 841 struct inode *dst_inode = file_inode(dst_file); 842 bool same_inode = dst_inode == src_inode; 843 int ret; 844 845 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 846 return -EINVAL; 847 848 if (same_inode) 849 inode_lock(src_inode); 850 else 851 lock_two_nondirectories(src_inode, dst_inode); 852 853 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, 854 &len, remap_flags); 855 if (ret < 0 || len == 0) 856 goto out_unlock; 857 858 if (remap_flags & REMAP_FILE_DEDUP) 859 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff); 860 else 861 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); 862 863out_unlock: 864 if (same_inode) 865 inode_unlock(src_inode); 866 else 867 unlock_two_nondirectories(src_inode, dst_inode); 868 869 return ret < 0 ? ret : len; 870} 871