xref: /kernel/linux/linux-5.10/fs/btrfs/ref-verify.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2014 Facebook.  All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/stacktrace.h>
8#include "ctree.h"
9#include "disk-io.h"
10#include "locking.h"
11#include "delayed-ref.h"
12#include "ref-verify.h"
13
14/*
15 * Used to keep track the roots and number of refs each root has for a given
16 * bytenr.  This just tracks the number of direct references, no shared
17 * references.
18 */
19struct root_entry {
20	u64 root_objectid;
21	u64 num_refs;
22	struct rb_node node;
23};
24
25/*
26 * These are meant to represent what should exist in the extent tree, these can
27 * be used to verify the extent tree is consistent as these should all match
28 * what the extent tree says.
29 */
30struct ref_entry {
31	u64 root_objectid;
32	u64 parent;
33	u64 owner;
34	u64 offset;
35	u64 num_refs;
36	struct rb_node node;
37};
38
39#define MAX_TRACE	16
40
41/*
42 * Whenever we add/remove a reference we record the action.  The action maps
43 * back to the delayed ref action.  We hold the ref we are changing in the
44 * action so we can account for the history properly, and we record the root we
45 * were called with since it could be different from ref_root.  We also store
46 * stack traces because that's how I roll.
47 */
48struct ref_action {
49	int action;
50	u64 root;
51	struct ref_entry ref;
52	struct list_head list;
53	unsigned long trace[MAX_TRACE];
54	unsigned int trace_len;
55};
56
57/*
58 * One of these for every block we reference, it holds the roots and references
59 * to it as well as all of the ref actions that have occurred to it.  We never
60 * free it until we unmount the file system in order to make sure re-allocations
61 * are happening properly.
62 */
63struct block_entry {
64	u64 bytenr;
65	u64 len;
66	u64 num_refs;
67	int metadata;
68	int from_disk;
69	struct rb_root roots;
70	struct rb_root refs;
71	struct rb_node node;
72	struct list_head actions;
73};
74
75static struct block_entry *insert_block_entry(struct rb_root *root,
76					      struct block_entry *be)
77{
78	struct rb_node **p = &root->rb_node;
79	struct rb_node *parent_node = NULL;
80	struct block_entry *entry;
81
82	while (*p) {
83		parent_node = *p;
84		entry = rb_entry(parent_node, struct block_entry, node);
85		if (entry->bytenr > be->bytenr)
86			p = &(*p)->rb_left;
87		else if (entry->bytenr < be->bytenr)
88			p = &(*p)->rb_right;
89		else
90			return entry;
91	}
92
93	rb_link_node(&be->node, parent_node, p);
94	rb_insert_color(&be->node, root);
95	return NULL;
96}
97
98static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
99{
100	struct rb_node *n;
101	struct block_entry *entry = NULL;
102
103	n = root->rb_node;
104	while (n) {
105		entry = rb_entry(n, struct block_entry, node);
106		if (entry->bytenr < bytenr)
107			n = n->rb_right;
108		else if (entry->bytenr > bytenr)
109			n = n->rb_left;
110		else
111			return entry;
112	}
113	return NULL;
114}
115
116static struct root_entry *insert_root_entry(struct rb_root *root,
117					    struct root_entry *re)
118{
119	struct rb_node **p = &root->rb_node;
120	struct rb_node *parent_node = NULL;
121	struct root_entry *entry;
122
123	while (*p) {
124		parent_node = *p;
125		entry = rb_entry(parent_node, struct root_entry, node);
126		if (entry->root_objectid > re->root_objectid)
127			p = &(*p)->rb_left;
128		else if (entry->root_objectid < re->root_objectid)
129			p = &(*p)->rb_right;
130		else
131			return entry;
132	}
133
134	rb_link_node(&re->node, parent_node, p);
135	rb_insert_color(&re->node, root);
136	return NULL;
137
138}
139
140static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
141{
142	if (ref1->root_objectid < ref2->root_objectid)
143		return -1;
144	if (ref1->root_objectid > ref2->root_objectid)
145		return 1;
146	if (ref1->parent < ref2->parent)
147		return -1;
148	if (ref1->parent > ref2->parent)
149		return 1;
150	if (ref1->owner < ref2->owner)
151		return -1;
152	if (ref1->owner > ref2->owner)
153		return 1;
154	if (ref1->offset < ref2->offset)
155		return -1;
156	if (ref1->offset > ref2->offset)
157		return 1;
158	return 0;
159}
160
161static struct ref_entry *insert_ref_entry(struct rb_root *root,
162					  struct ref_entry *ref)
163{
164	struct rb_node **p = &root->rb_node;
165	struct rb_node *parent_node = NULL;
166	struct ref_entry *entry;
167	int cmp;
168
169	while (*p) {
170		parent_node = *p;
171		entry = rb_entry(parent_node, struct ref_entry, node);
172		cmp = comp_refs(entry, ref);
173		if (cmp > 0)
174			p = &(*p)->rb_left;
175		else if (cmp < 0)
176			p = &(*p)->rb_right;
177		else
178			return entry;
179	}
180
181	rb_link_node(&ref->node, parent_node, p);
182	rb_insert_color(&ref->node, root);
183	return NULL;
184
185}
186
187static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
188{
189	struct rb_node *n;
190	struct root_entry *entry = NULL;
191
192	n = root->rb_node;
193	while (n) {
194		entry = rb_entry(n, struct root_entry, node);
195		if (entry->root_objectid < objectid)
196			n = n->rb_right;
197		else if (entry->root_objectid > objectid)
198			n = n->rb_left;
199		else
200			return entry;
201	}
202	return NULL;
203}
204
205#ifdef CONFIG_STACKTRACE
206static void __save_stack_trace(struct ref_action *ra)
207{
208	ra->trace_len = stack_trace_save(ra->trace, MAX_TRACE, 2);
209}
210
211static void __print_stack_trace(struct btrfs_fs_info *fs_info,
212				struct ref_action *ra)
213{
214	if (ra->trace_len == 0) {
215		btrfs_err(fs_info, "  ref-verify: no stacktrace");
216		return;
217	}
218	stack_trace_print(ra->trace, ra->trace_len, 2);
219}
220#else
221static void inline __save_stack_trace(struct ref_action *ra)
222{
223}
224
225static void inline __print_stack_trace(struct btrfs_fs_info *fs_info,
226				       struct ref_action *ra)
227{
228	btrfs_err(fs_info, "  ref-verify: no stacktrace support");
229}
230#endif
231
232static void free_block_entry(struct block_entry *be)
233{
234	struct root_entry *re;
235	struct ref_entry *ref;
236	struct ref_action *ra;
237	struct rb_node *n;
238
239	while ((n = rb_first(&be->roots))) {
240		re = rb_entry(n, struct root_entry, node);
241		rb_erase(&re->node, &be->roots);
242		kfree(re);
243	}
244
245	while((n = rb_first(&be->refs))) {
246		ref = rb_entry(n, struct ref_entry, node);
247		rb_erase(&ref->node, &be->refs);
248		kfree(ref);
249	}
250
251	while (!list_empty(&be->actions)) {
252		ra = list_first_entry(&be->actions, struct ref_action,
253				      list);
254		list_del(&ra->list);
255		kfree(ra);
256	}
257	kfree(be);
258}
259
260static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
261					   u64 bytenr, u64 len,
262					   u64 root_objectid)
263{
264	struct block_entry *be = NULL, *exist;
265	struct root_entry *re = NULL;
266
267	re = kzalloc(sizeof(struct root_entry), GFP_KERNEL);
268	be = kzalloc(sizeof(struct block_entry), GFP_KERNEL);
269	if (!be || !re) {
270		kfree(re);
271		kfree(be);
272		return ERR_PTR(-ENOMEM);
273	}
274	be->bytenr = bytenr;
275	be->len = len;
276
277	re->root_objectid = root_objectid;
278	re->num_refs = 0;
279
280	spin_lock(&fs_info->ref_verify_lock);
281	exist = insert_block_entry(&fs_info->block_tree, be);
282	if (exist) {
283		if (root_objectid) {
284			struct root_entry *exist_re;
285
286			exist_re = insert_root_entry(&exist->roots, re);
287			if (exist_re)
288				kfree(re);
289		} else {
290			kfree(re);
291		}
292		kfree(be);
293		return exist;
294	}
295
296	be->num_refs = 0;
297	be->metadata = 0;
298	be->from_disk = 0;
299	be->roots = RB_ROOT;
300	be->refs = RB_ROOT;
301	INIT_LIST_HEAD(&be->actions);
302	if (root_objectid)
303		insert_root_entry(&be->roots, re);
304	else
305		kfree(re);
306	return be;
307}
308
309static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
310			  u64 parent, u64 bytenr, int level)
311{
312	struct block_entry *be;
313	struct root_entry *re;
314	struct ref_entry *ref = NULL, *exist;
315
316	ref = kmalloc(sizeof(struct ref_entry), GFP_KERNEL);
317	if (!ref)
318		return -ENOMEM;
319
320	if (parent)
321		ref->root_objectid = 0;
322	else
323		ref->root_objectid = ref_root;
324	ref->parent = parent;
325	ref->owner = level;
326	ref->offset = 0;
327	ref->num_refs = 1;
328
329	be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
330	if (IS_ERR(be)) {
331		kfree(ref);
332		return PTR_ERR(be);
333	}
334	be->num_refs++;
335	be->from_disk = 1;
336	be->metadata = 1;
337
338	if (!parent) {
339		ASSERT(ref_root);
340		re = lookup_root_entry(&be->roots, ref_root);
341		ASSERT(re);
342		re->num_refs++;
343	}
344	exist = insert_ref_entry(&be->refs, ref);
345	if (exist) {
346		exist->num_refs++;
347		kfree(ref);
348	}
349	spin_unlock(&fs_info->ref_verify_lock);
350
351	return 0;
352}
353
354static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
355			       u64 parent, u32 num_refs, u64 bytenr,
356			       u64 num_bytes)
357{
358	struct block_entry *be;
359	struct ref_entry *ref;
360
361	ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
362	if (!ref)
363		return -ENOMEM;
364	be = add_block_entry(fs_info, bytenr, num_bytes, 0);
365	if (IS_ERR(be)) {
366		kfree(ref);
367		return PTR_ERR(be);
368	}
369	be->num_refs += num_refs;
370
371	ref->parent = parent;
372	ref->num_refs = num_refs;
373	if (insert_ref_entry(&be->refs, ref)) {
374		spin_unlock(&fs_info->ref_verify_lock);
375		btrfs_err(fs_info, "existing shared ref when reading from disk?");
376		kfree(ref);
377		return -EINVAL;
378	}
379	spin_unlock(&fs_info->ref_verify_lock);
380	return 0;
381}
382
383static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
384			       struct extent_buffer *leaf,
385			       struct btrfs_extent_data_ref *dref,
386			       u64 bytenr, u64 num_bytes)
387{
388	struct block_entry *be;
389	struct ref_entry *ref;
390	struct root_entry *re;
391	u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
392	u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
393	u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
394	u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);
395
396	ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
397	if (!ref)
398		return -ENOMEM;
399	be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
400	if (IS_ERR(be)) {
401		kfree(ref);
402		return PTR_ERR(be);
403	}
404	be->num_refs += num_refs;
405
406	ref->parent = 0;
407	ref->owner = owner;
408	ref->root_objectid = ref_root;
409	ref->offset = offset;
410	ref->num_refs = num_refs;
411	if (insert_ref_entry(&be->refs, ref)) {
412		spin_unlock(&fs_info->ref_verify_lock);
413		btrfs_err(fs_info, "existing ref when reading from disk?");
414		kfree(ref);
415		return -EINVAL;
416	}
417
418	re = lookup_root_entry(&be->roots, ref_root);
419	if (!re) {
420		spin_unlock(&fs_info->ref_verify_lock);
421		btrfs_err(fs_info, "missing root in new block entry?");
422		return -EINVAL;
423	}
424	re->num_refs += num_refs;
425	spin_unlock(&fs_info->ref_verify_lock);
426	return 0;
427}
428
429static int process_extent_item(struct btrfs_fs_info *fs_info,
430			       struct btrfs_path *path, struct btrfs_key *key,
431			       int slot, int *tree_block_level)
432{
433	struct btrfs_extent_item *ei;
434	struct btrfs_extent_inline_ref *iref;
435	struct btrfs_extent_data_ref *dref;
436	struct btrfs_shared_data_ref *sref;
437	struct extent_buffer *leaf = path->nodes[0];
438	u32 item_size = btrfs_item_size_nr(leaf, slot);
439	unsigned long end, ptr;
440	u64 offset, flags, count;
441	int type, ret;
442
443	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
444	flags = btrfs_extent_flags(leaf, ei);
445
446	if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
447	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
448		struct btrfs_tree_block_info *info;
449
450		info = (struct btrfs_tree_block_info *)(ei + 1);
451		*tree_block_level = btrfs_tree_block_level(leaf, info);
452		iref = (struct btrfs_extent_inline_ref *)(info + 1);
453	} else {
454		if (key->type == BTRFS_METADATA_ITEM_KEY)
455			*tree_block_level = key->offset;
456		iref = (struct btrfs_extent_inline_ref *)(ei + 1);
457	}
458
459	ptr = (unsigned long)iref;
460	end = (unsigned long)ei + item_size;
461	while (ptr < end) {
462		iref = (struct btrfs_extent_inline_ref *)ptr;
463		type = btrfs_extent_inline_ref_type(leaf, iref);
464		offset = btrfs_extent_inline_ref_offset(leaf, iref);
465		switch (type) {
466		case BTRFS_TREE_BLOCK_REF_KEY:
467			ret = add_tree_block(fs_info, offset, 0, key->objectid,
468					     *tree_block_level);
469			break;
470		case BTRFS_SHARED_BLOCK_REF_KEY:
471			ret = add_tree_block(fs_info, 0, offset, key->objectid,
472					     *tree_block_level);
473			break;
474		case BTRFS_EXTENT_DATA_REF_KEY:
475			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
476			ret = add_extent_data_ref(fs_info, leaf, dref,
477						  key->objectid, key->offset);
478			break;
479		case BTRFS_SHARED_DATA_REF_KEY:
480			sref = (struct btrfs_shared_data_ref *)(iref + 1);
481			count = btrfs_shared_data_ref_count(leaf, sref);
482			ret = add_shared_data_ref(fs_info, offset, count,
483						  key->objectid, key->offset);
484			break;
485		default:
486			btrfs_err(fs_info, "invalid key type in iref");
487			ret = -EINVAL;
488			break;
489		}
490		if (ret)
491			break;
492		ptr += btrfs_extent_inline_ref_size(type);
493	}
494	return ret;
495}
496
497static int process_leaf(struct btrfs_root *root,
498			struct btrfs_path *path, u64 *bytenr, u64 *num_bytes)
499{
500	struct btrfs_fs_info *fs_info = root->fs_info;
501	struct extent_buffer *leaf = path->nodes[0];
502	struct btrfs_extent_data_ref *dref;
503	struct btrfs_shared_data_ref *sref;
504	u32 count;
505	int i = 0, tree_block_level = 0, ret = 0;
506	struct btrfs_key key;
507	int nritems = btrfs_header_nritems(leaf);
508
509	for (i = 0; i < nritems; i++) {
510		btrfs_item_key_to_cpu(leaf, &key, i);
511		switch (key.type) {
512		case BTRFS_EXTENT_ITEM_KEY:
513			*num_bytes = key.offset;
514			fallthrough;
515		case BTRFS_METADATA_ITEM_KEY:
516			*bytenr = key.objectid;
517			ret = process_extent_item(fs_info, path, &key, i,
518						  &tree_block_level);
519			break;
520		case BTRFS_TREE_BLOCK_REF_KEY:
521			ret = add_tree_block(fs_info, key.offset, 0,
522					     key.objectid, tree_block_level);
523			break;
524		case BTRFS_SHARED_BLOCK_REF_KEY:
525			ret = add_tree_block(fs_info, 0, key.offset,
526					     key.objectid, tree_block_level);
527			break;
528		case BTRFS_EXTENT_DATA_REF_KEY:
529			dref = btrfs_item_ptr(leaf, i,
530					      struct btrfs_extent_data_ref);
531			ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
532						  *num_bytes);
533			break;
534		case BTRFS_SHARED_DATA_REF_KEY:
535			sref = btrfs_item_ptr(leaf, i,
536					      struct btrfs_shared_data_ref);
537			count = btrfs_shared_data_ref_count(leaf, sref);
538			ret = add_shared_data_ref(fs_info, key.offset, count,
539						  *bytenr, *num_bytes);
540			break;
541		default:
542			break;
543		}
544		if (ret)
545			break;
546	}
547	return ret;
548}
549
550/* Walk down to the leaf from the given level */
551static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
552			  int level, u64 *bytenr, u64 *num_bytes)
553{
554	struct btrfs_fs_info *fs_info = root->fs_info;
555	struct extent_buffer *eb;
556	u64 block_bytenr, gen;
557	int ret = 0;
558
559	while (level >= 0) {
560		if (level) {
561			struct btrfs_key first_key;
562
563			block_bytenr = btrfs_node_blockptr(path->nodes[level],
564							   path->slots[level]);
565			gen = btrfs_node_ptr_generation(path->nodes[level],
566							path->slots[level]);
567			btrfs_node_key_to_cpu(path->nodes[level], &first_key,
568					      path->slots[level]);
569			eb = read_tree_block(fs_info, block_bytenr, gen,
570					     level - 1, &first_key);
571			if (IS_ERR(eb))
572				return PTR_ERR(eb);
573			if (!extent_buffer_uptodate(eb)) {
574				free_extent_buffer(eb);
575				return -EIO;
576			}
577			btrfs_tree_read_lock(eb);
578			btrfs_set_lock_blocking_read(eb);
579			path->nodes[level-1] = eb;
580			path->slots[level-1] = 0;
581			path->locks[level-1] = BTRFS_READ_LOCK_BLOCKING;
582		} else {
583			ret = process_leaf(root, path, bytenr, num_bytes);
584			if (ret)
585				break;
586		}
587		level--;
588	}
589	return ret;
590}
591
592/* Walk up to the next node that needs to be processed */
593static int walk_up_tree(struct btrfs_path *path, int *level)
594{
595	int l;
596
597	for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
598		if (!path->nodes[l])
599			continue;
600		if (l) {
601			path->slots[l]++;
602			if (path->slots[l] <
603			    btrfs_header_nritems(path->nodes[l])) {
604				*level = l;
605				return 0;
606			}
607		}
608		btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
609		free_extent_buffer(path->nodes[l]);
610		path->nodes[l] = NULL;
611		path->slots[l] = 0;
612		path->locks[l] = 0;
613	}
614
615	return 1;
616}
617
618static void dump_ref_action(struct btrfs_fs_info *fs_info,
619			    struct ref_action *ra)
620{
621	btrfs_err(fs_info,
622"  Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
623		  ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
624		  ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
625	__print_stack_trace(fs_info, ra);
626}
627
628/*
629 * Dumps all the information from the block entry to printk, it's going to be
630 * awesome.
631 */
632static void dump_block_entry(struct btrfs_fs_info *fs_info,
633			     struct block_entry *be)
634{
635	struct ref_entry *ref;
636	struct root_entry *re;
637	struct ref_action *ra;
638	struct rb_node *n;
639
640	btrfs_err(fs_info,
641"dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
642		  be->bytenr, be->len, be->num_refs, be->metadata,
643		  be->from_disk);
644
645	for (n = rb_first(&be->refs); n; n = rb_next(n)) {
646		ref = rb_entry(n, struct ref_entry, node);
647		btrfs_err(fs_info,
648"  ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
649			  ref->root_objectid, ref->parent, ref->owner,
650			  ref->offset, ref->num_refs);
651	}
652
653	for (n = rb_first(&be->roots); n; n = rb_next(n)) {
654		re = rb_entry(n, struct root_entry, node);
655		btrfs_err(fs_info, "  root entry %llu, num_refs %llu",
656			  re->root_objectid, re->num_refs);
657	}
658
659	list_for_each_entry(ra, &be->actions, list)
660		dump_ref_action(fs_info, ra);
661}
662
663/*
664 * btrfs_ref_tree_mod: called when we modify a ref for a bytenr
665 *
666 * This will add an action item to the given bytenr and do sanity checks to make
667 * sure we haven't messed something up.  If we are making a new allocation and
668 * this block entry has history we will delete all previous actions as long as
669 * our sanity checks pass as they are no longer needed.
670 */
671int btrfs_ref_tree_mod(struct btrfs_fs_info *fs_info,
672		       struct btrfs_ref *generic_ref)
673{
674	struct ref_entry *ref = NULL, *exist;
675	struct ref_action *ra = NULL;
676	struct block_entry *be = NULL;
677	struct root_entry *re = NULL;
678	int action = generic_ref->action;
679	int ret = 0;
680	bool metadata;
681	u64 bytenr = generic_ref->bytenr;
682	u64 num_bytes = generic_ref->len;
683	u64 parent = generic_ref->parent;
684	u64 ref_root;
685	u64 owner;
686	u64 offset;
687
688	if (!btrfs_test_opt(fs_info, REF_VERIFY))
689		return 0;
690
691	if (generic_ref->type == BTRFS_REF_METADATA) {
692		ref_root = generic_ref->tree_ref.root;
693		owner = generic_ref->tree_ref.level;
694		offset = 0;
695	} else {
696		ref_root = generic_ref->data_ref.ref_root;
697		owner = generic_ref->data_ref.ino;
698		offset = generic_ref->data_ref.offset;
699	}
700	metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
701
702	ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
703	ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
704	if (!ra || !ref) {
705		kfree(ref);
706		kfree(ra);
707		ret = -ENOMEM;
708		goto out;
709	}
710
711	if (parent) {
712		ref->parent = parent;
713	} else {
714		ref->root_objectid = ref_root;
715		ref->owner = owner;
716		ref->offset = offset;
717	}
718	ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;
719
720	memcpy(&ra->ref, ref, sizeof(struct ref_entry));
721	/*
722	 * Save the extra info from the delayed ref in the ref action to make it
723	 * easier to figure out what is happening.  The real ref's we add to the
724	 * ref tree need to reflect what we save on disk so it matches any
725	 * on-disk refs we pre-loaded.
726	 */
727	ra->ref.owner = owner;
728	ra->ref.offset = offset;
729	ra->ref.root_objectid = ref_root;
730	__save_stack_trace(ra);
731
732	INIT_LIST_HEAD(&ra->list);
733	ra->action = action;
734	ra->root = generic_ref->real_root;
735
736	/*
737	 * This is an allocation, preallocate the block_entry in case we haven't
738	 * used it before.
739	 */
740	ret = -EINVAL;
741	if (action == BTRFS_ADD_DELAYED_EXTENT) {
742		/*
743		 * For subvol_create we'll just pass in whatever the parent root
744		 * is and the new root objectid, so let's not treat the passed
745		 * in root as if it really has a ref for this bytenr.
746		 */
747		be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
748		if (IS_ERR(be)) {
749			kfree(ref);
750			kfree(ra);
751			ret = PTR_ERR(be);
752			goto out;
753		}
754		be->num_refs++;
755		if (metadata)
756			be->metadata = 1;
757
758		if (be->num_refs != 1) {
759			btrfs_err(fs_info,
760			"re-allocated a block that still has references to it!");
761			dump_block_entry(fs_info, be);
762			dump_ref_action(fs_info, ra);
763			kfree(ref);
764			kfree(ra);
765			goto out_unlock;
766		}
767
768		while (!list_empty(&be->actions)) {
769			struct ref_action *tmp;
770
771			tmp = list_first_entry(&be->actions, struct ref_action,
772					       list);
773			list_del(&tmp->list);
774			kfree(tmp);
775		}
776	} else {
777		struct root_entry *tmp;
778
779		if (!parent) {
780			re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
781			if (!re) {
782				kfree(ref);
783				kfree(ra);
784				ret = -ENOMEM;
785				goto out;
786			}
787			/*
788			 * This is the root that is modifying us, so it's the
789			 * one we want to lookup below when we modify the
790			 * re->num_refs.
791			 */
792			ref_root = generic_ref->real_root;
793			re->root_objectid = generic_ref->real_root;
794			re->num_refs = 0;
795		}
796
797		spin_lock(&fs_info->ref_verify_lock);
798		be = lookup_block_entry(&fs_info->block_tree, bytenr);
799		if (!be) {
800			btrfs_err(fs_info,
801"trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
802				  action, (unsigned long long)bytenr,
803				  (unsigned long long)num_bytes);
804			dump_ref_action(fs_info, ra);
805			kfree(ref);
806			kfree(ra);
807			kfree(re);
808			goto out_unlock;
809		} else if (be->num_refs == 0) {
810			btrfs_err(fs_info,
811		"trying to do action %d for a bytenr that has 0 total references",
812				action);
813			dump_block_entry(fs_info, be);
814			dump_ref_action(fs_info, ra);
815			kfree(ref);
816			kfree(ra);
817			kfree(re);
818			goto out_unlock;
819		}
820
821		if (!parent) {
822			tmp = insert_root_entry(&be->roots, re);
823			if (tmp) {
824				kfree(re);
825				re = tmp;
826			}
827		}
828	}
829
830	exist = insert_ref_entry(&be->refs, ref);
831	if (exist) {
832		if (action == BTRFS_DROP_DELAYED_REF) {
833			if (exist->num_refs == 0) {
834				btrfs_err(fs_info,
835"dropping a ref for a existing root that doesn't have a ref on the block");
836				dump_block_entry(fs_info, be);
837				dump_ref_action(fs_info, ra);
838				kfree(ref);
839				kfree(ra);
840				goto out_unlock;
841			}
842			exist->num_refs--;
843			if (exist->num_refs == 0) {
844				rb_erase(&exist->node, &be->refs);
845				kfree(exist);
846			}
847		} else if (!be->metadata) {
848			exist->num_refs++;
849		} else {
850			btrfs_err(fs_info,
851"attempting to add another ref for an existing ref on a tree block");
852			dump_block_entry(fs_info, be);
853			dump_ref_action(fs_info, ra);
854			kfree(ref);
855			kfree(ra);
856			goto out_unlock;
857		}
858		kfree(ref);
859	} else {
860		if (action == BTRFS_DROP_DELAYED_REF) {
861			btrfs_err(fs_info,
862"dropping a ref for a root that doesn't have a ref on the block");
863			dump_block_entry(fs_info, be);
864			dump_ref_action(fs_info, ra);
865			kfree(ref);
866			kfree(ra);
867			goto out_unlock;
868		}
869	}
870
871	if (!parent && !re) {
872		re = lookup_root_entry(&be->roots, ref_root);
873		if (!re) {
874			/*
875			 * This shouldn't happen because we will add our re
876			 * above when we lookup the be with !parent, but just in
877			 * case catch this case so we don't panic because I
878			 * didn't think of some other corner case.
879			 */
880			btrfs_err(fs_info, "failed to find root %llu for %llu",
881				  generic_ref->real_root, be->bytenr);
882			dump_block_entry(fs_info, be);
883			dump_ref_action(fs_info, ra);
884			kfree(ra);
885			goto out_unlock;
886		}
887	}
888	if (action == BTRFS_DROP_DELAYED_REF) {
889		if (re)
890			re->num_refs--;
891		be->num_refs--;
892	} else if (action == BTRFS_ADD_DELAYED_REF) {
893		be->num_refs++;
894		if (re)
895			re->num_refs++;
896	}
897	list_add_tail(&ra->list, &be->actions);
898	ret = 0;
899out_unlock:
900	spin_unlock(&fs_info->ref_verify_lock);
901out:
902	if (ret) {
903		btrfs_free_ref_cache(fs_info);
904		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
905	}
906	return ret;
907}
908
909/* Free up the ref cache */
910void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
911{
912	struct block_entry *be;
913	struct rb_node *n;
914
915	if (!btrfs_test_opt(fs_info, REF_VERIFY))
916		return;
917
918	spin_lock(&fs_info->ref_verify_lock);
919	while ((n = rb_first(&fs_info->block_tree))) {
920		be = rb_entry(n, struct block_entry, node);
921		rb_erase(&be->node, &fs_info->block_tree);
922		free_block_entry(be);
923		cond_resched_lock(&fs_info->ref_verify_lock);
924	}
925	spin_unlock(&fs_info->ref_verify_lock);
926}
927
928void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
929			       u64 len)
930{
931	struct block_entry *be = NULL, *entry;
932	struct rb_node *n;
933
934	if (!btrfs_test_opt(fs_info, REF_VERIFY))
935		return;
936
937	spin_lock(&fs_info->ref_verify_lock);
938	n = fs_info->block_tree.rb_node;
939	while (n) {
940		entry = rb_entry(n, struct block_entry, node);
941		if (entry->bytenr < start) {
942			n = n->rb_right;
943		} else if (entry->bytenr > start) {
944			n = n->rb_left;
945		} else {
946			be = entry;
947			break;
948		}
949		/* We want to get as close to start as possible */
950		if (be == NULL ||
951		    (entry->bytenr < start && be->bytenr > start) ||
952		    (entry->bytenr < start && entry->bytenr > be->bytenr))
953			be = entry;
954	}
955
956	/*
957	 * Could have an empty block group, maybe have something to check for
958	 * this case to verify we were actually empty?
959	 */
960	if (!be) {
961		spin_unlock(&fs_info->ref_verify_lock);
962		return;
963	}
964
965	n = &be->node;
966	while (n) {
967		be = rb_entry(n, struct block_entry, node);
968		n = rb_next(n);
969		if (be->bytenr < start && be->bytenr + be->len > start) {
970			btrfs_err(fs_info,
971				"block entry overlaps a block group [%llu,%llu]!",
972				start, len);
973			dump_block_entry(fs_info, be);
974			continue;
975		}
976		if (be->bytenr < start)
977			continue;
978		if (be->bytenr >= start + len)
979			break;
980		if (be->bytenr + be->len > start + len) {
981			btrfs_err(fs_info,
982				"block entry overlaps a block group [%llu,%llu]!",
983				start, len);
984			dump_block_entry(fs_info, be);
985		}
986		rb_erase(&be->node, &fs_info->block_tree);
987		free_block_entry(be);
988	}
989	spin_unlock(&fs_info->ref_verify_lock);
990}
991
992/* Walk down all roots and build the ref tree, meant to be called at mount */
993int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
994{
995	struct btrfs_path *path;
996	struct extent_buffer *eb;
997	u64 bytenr = 0, num_bytes = 0;
998	int ret, level;
999
1000	if (!btrfs_test_opt(fs_info, REF_VERIFY))
1001		return 0;
1002
1003	path = btrfs_alloc_path();
1004	if (!path)
1005		return -ENOMEM;
1006
1007	eb = btrfs_read_lock_root_node(fs_info->extent_root);
1008	btrfs_set_lock_blocking_read(eb);
1009	level = btrfs_header_level(eb);
1010	path->nodes[level] = eb;
1011	path->slots[level] = 0;
1012	path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1013
1014	while (1) {
1015		/*
1016		 * We have to keep track of the bytenr/num_bytes we last hit
1017		 * because we could have run out of space for an inline ref, and
1018		 * would have had to added a ref key item which may appear on a
1019		 * different leaf from the original extent item.
1020		 */
1021		ret = walk_down_tree(fs_info->extent_root, path, level,
1022				     &bytenr, &num_bytes);
1023		if (ret)
1024			break;
1025		ret = walk_up_tree(path, &level);
1026		if (ret < 0)
1027			break;
1028		if (ret > 0) {
1029			ret = 0;
1030			break;
1031		}
1032	}
1033	if (ret) {
1034		btrfs_free_ref_cache(fs_info);
1035		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
1036	}
1037	btrfs_free_path(path);
1038	return ret;
1039}
1040