xref: /kernel/linux/linux-5.10/fs/btrfs/reada.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 STRATO.  All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/pagemap.h>
8#include <linux/writeback.h>
9#include <linux/blkdev.h>
10#include <linux/slab.h>
11#include <linux/workqueue.h>
12#include "ctree.h"
13#include "volumes.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "dev-replace.h"
17#include "block-group.h"
18
19#undef DEBUG
20
21/*
22 * This is the implementation for the generic read ahead framework.
23 *
24 * To trigger a readahead, btrfs_reada_add must be called. It will start
25 * a read ahead for the given range [start, end) on tree root. The returned
26 * handle can either be used to wait on the readahead to finish
27 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
28 *
29 * The read ahead works as follows:
30 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
31 * reada_start_machine will then search for extents to prefetch and trigger
32 * some reads. When a read finishes for a node, all contained node/leaf
33 * pointers that lie in the given range will also be enqueued. The reads will
34 * be triggered in sequential order, thus giving a big win over a naive
35 * enumeration. It will also make use of multi-device layouts. Each disk
36 * will have its on read pointer and all disks will by utilized in parallel.
37 * Also will no two disks read both sides of a mirror simultaneously, as this
38 * would waste seeking capacity. Instead both disks will read different parts
39 * of the filesystem.
40 * Any number of readaheads can be started in parallel. The read order will be
41 * determined globally, i.e. 2 parallel readaheads will normally finish faster
42 * than the 2 started one after another.
43 */
44
45#define MAX_IN_FLIGHT 6
46
47struct reada_extctl {
48	struct list_head	list;
49	struct reada_control	*rc;
50	u64			generation;
51};
52
53struct reada_extent {
54	u64			logical;
55	struct btrfs_key	top;
56	struct list_head	extctl;
57	int 			refcnt;
58	spinlock_t		lock;
59	struct reada_zone	*zones[BTRFS_MAX_MIRRORS];
60	int			nzones;
61	int			scheduled;
62};
63
64struct reada_zone {
65	u64			start;
66	u64			end;
67	u64			elems;
68	struct list_head	list;
69	spinlock_t		lock;
70	int			locked;
71	struct btrfs_device	*device;
72	struct btrfs_device	*devs[BTRFS_MAX_MIRRORS]; /* full list, incl
73							   * self */
74	int			ndevs;
75	struct kref		refcnt;
76};
77
78struct reada_machine_work {
79	struct btrfs_work	work;
80	struct btrfs_fs_info	*fs_info;
81};
82
83static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
84static void reada_control_release(struct kref *kref);
85static void reada_zone_release(struct kref *kref);
86static void reada_start_machine(struct btrfs_fs_info *fs_info);
87static void __reada_start_machine(struct btrfs_fs_info *fs_info);
88
89static int reada_add_block(struct reada_control *rc, u64 logical,
90			   struct btrfs_key *top, u64 generation);
91
92/* recurses */
93/* in case of err, eb might be NULL */
94static void __readahead_hook(struct btrfs_fs_info *fs_info,
95			     struct reada_extent *re, struct extent_buffer *eb,
96			     int err)
97{
98	int nritems;
99	int i;
100	u64 bytenr;
101	u64 generation;
102	struct list_head list;
103
104	spin_lock(&re->lock);
105	/*
106	 * just take the full list from the extent. afterwards we
107	 * don't need the lock anymore
108	 */
109	list_replace_init(&re->extctl, &list);
110	re->scheduled = 0;
111	spin_unlock(&re->lock);
112
113	/*
114	 * this is the error case, the extent buffer has not been
115	 * read correctly. We won't access anything from it and
116	 * just cleanup our data structures. Effectively this will
117	 * cut the branch below this node from read ahead.
118	 */
119	if (err)
120		goto cleanup;
121
122	/*
123	 * FIXME: currently we just set nritems to 0 if this is a leaf,
124	 * effectively ignoring the content. In a next step we could
125	 * trigger more readahead depending from the content, e.g.
126	 * fetch the checksums for the extents in the leaf.
127	 */
128	if (!btrfs_header_level(eb))
129		goto cleanup;
130
131	nritems = btrfs_header_nritems(eb);
132	generation = btrfs_header_generation(eb);
133	for (i = 0; i < nritems; i++) {
134		struct reada_extctl *rec;
135		u64 n_gen;
136		struct btrfs_key key;
137		struct btrfs_key next_key;
138
139		btrfs_node_key_to_cpu(eb, &key, i);
140		if (i + 1 < nritems)
141			btrfs_node_key_to_cpu(eb, &next_key, i + 1);
142		else
143			next_key = re->top;
144		bytenr = btrfs_node_blockptr(eb, i);
145		n_gen = btrfs_node_ptr_generation(eb, i);
146
147		list_for_each_entry(rec, &list, list) {
148			struct reada_control *rc = rec->rc;
149
150			/*
151			 * if the generation doesn't match, just ignore this
152			 * extctl. This will probably cut off a branch from
153			 * prefetch. Alternatively one could start a new (sub-)
154			 * prefetch for this branch, starting again from root.
155			 * FIXME: move the generation check out of this loop
156			 */
157#ifdef DEBUG
158			if (rec->generation != generation) {
159				btrfs_debug(fs_info,
160					    "generation mismatch for (%llu,%d,%llu) %llu != %llu",
161					    key.objectid, key.type, key.offset,
162					    rec->generation, generation);
163			}
164#endif
165			if (rec->generation == generation &&
166			    btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
167			    btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
168				reada_add_block(rc, bytenr, &next_key, n_gen);
169		}
170	}
171
172cleanup:
173	/*
174	 * free extctl records
175	 */
176	while (!list_empty(&list)) {
177		struct reada_control *rc;
178		struct reada_extctl *rec;
179
180		rec = list_first_entry(&list, struct reada_extctl, list);
181		list_del(&rec->list);
182		rc = rec->rc;
183		kfree(rec);
184
185		kref_get(&rc->refcnt);
186		if (atomic_dec_and_test(&rc->elems)) {
187			kref_put(&rc->refcnt, reada_control_release);
188			wake_up(&rc->wait);
189		}
190		kref_put(&rc->refcnt, reada_control_release);
191
192		reada_extent_put(fs_info, re);	/* one ref for each entry */
193	}
194
195	return;
196}
197
198int btree_readahead_hook(struct extent_buffer *eb, int err)
199{
200	struct btrfs_fs_info *fs_info = eb->fs_info;
201	int ret = 0;
202	struct reada_extent *re;
203
204	/* find extent */
205	spin_lock(&fs_info->reada_lock);
206	re = radix_tree_lookup(&fs_info->reada_tree,
207			       eb->start >> PAGE_SHIFT);
208	if (re)
209		re->refcnt++;
210	spin_unlock(&fs_info->reada_lock);
211	if (!re) {
212		ret = -1;
213		goto start_machine;
214	}
215
216	__readahead_hook(fs_info, re, eb, err);
217	reada_extent_put(fs_info, re);	/* our ref */
218
219start_machine:
220	reada_start_machine(fs_info);
221	return ret;
222}
223
224static struct reada_zone *reada_find_zone(struct btrfs_device *dev, u64 logical,
225					  struct btrfs_bio *bbio)
226{
227	struct btrfs_fs_info *fs_info = dev->fs_info;
228	int ret;
229	struct reada_zone *zone;
230	struct btrfs_block_group *cache = NULL;
231	u64 start;
232	u64 end;
233	int i;
234
235	zone = NULL;
236	spin_lock(&fs_info->reada_lock);
237	ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
238				     logical >> PAGE_SHIFT, 1);
239	if (ret == 1 && logical >= zone->start && logical <= zone->end) {
240		kref_get(&zone->refcnt);
241		spin_unlock(&fs_info->reada_lock);
242		return zone;
243	}
244
245	spin_unlock(&fs_info->reada_lock);
246
247	cache = btrfs_lookup_block_group(fs_info, logical);
248	if (!cache)
249		return NULL;
250
251	start = cache->start;
252	end = start + cache->length - 1;
253	btrfs_put_block_group(cache);
254
255	zone = kzalloc(sizeof(*zone), GFP_KERNEL);
256	if (!zone)
257		return NULL;
258
259	ret = radix_tree_preload(GFP_KERNEL);
260	if (ret) {
261		kfree(zone);
262		return NULL;
263	}
264
265	zone->start = start;
266	zone->end = end;
267	INIT_LIST_HEAD(&zone->list);
268	spin_lock_init(&zone->lock);
269	zone->locked = 0;
270	kref_init(&zone->refcnt);
271	zone->elems = 0;
272	zone->device = dev; /* our device always sits at index 0 */
273	for (i = 0; i < bbio->num_stripes; ++i) {
274		/* bounds have already been checked */
275		zone->devs[i] = bbio->stripes[i].dev;
276	}
277	zone->ndevs = bbio->num_stripes;
278
279	spin_lock(&fs_info->reada_lock);
280	ret = radix_tree_insert(&dev->reada_zones,
281				(unsigned long)(zone->end >> PAGE_SHIFT),
282				zone);
283
284	if (ret == -EEXIST) {
285		kfree(zone);
286		ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
287					     logical >> PAGE_SHIFT, 1);
288		if (ret == 1 && logical >= zone->start && logical <= zone->end)
289			kref_get(&zone->refcnt);
290		else
291			zone = NULL;
292	}
293	spin_unlock(&fs_info->reada_lock);
294	radix_tree_preload_end();
295
296	return zone;
297}
298
299static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
300					      u64 logical,
301					      struct btrfs_key *top)
302{
303	int ret;
304	struct reada_extent *re = NULL;
305	struct reada_extent *re_exist = NULL;
306	struct btrfs_bio *bbio = NULL;
307	struct btrfs_device *dev;
308	struct btrfs_device *prev_dev;
309	u64 length;
310	int real_stripes;
311	int nzones = 0;
312	unsigned long index = logical >> PAGE_SHIFT;
313	int dev_replace_is_ongoing;
314	int have_zone = 0;
315
316	spin_lock(&fs_info->reada_lock);
317	re = radix_tree_lookup(&fs_info->reada_tree, index);
318	if (re)
319		re->refcnt++;
320	spin_unlock(&fs_info->reada_lock);
321
322	if (re)
323		return re;
324
325	re = kzalloc(sizeof(*re), GFP_KERNEL);
326	if (!re)
327		return NULL;
328
329	re->logical = logical;
330	re->top = *top;
331	INIT_LIST_HEAD(&re->extctl);
332	spin_lock_init(&re->lock);
333	re->refcnt = 1;
334
335	/*
336	 * map block
337	 */
338	length = fs_info->nodesize;
339	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
340			&length, &bbio, 0);
341	if (ret || !bbio || length < fs_info->nodesize)
342		goto error;
343
344	if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
345		btrfs_err(fs_info,
346			   "readahead: more than %d copies not supported",
347			   BTRFS_MAX_MIRRORS);
348		goto error;
349	}
350
351	real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
352	for (nzones = 0; nzones < real_stripes; ++nzones) {
353		struct reada_zone *zone;
354
355		dev = bbio->stripes[nzones].dev;
356
357		/* cannot read ahead on missing device. */
358		if (!dev->bdev)
359			continue;
360
361		zone = reada_find_zone(dev, logical, bbio);
362		if (!zone)
363			continue;
364
365		re->zones[re->nzones++] = zone;
366		spin_lock(&zone->lock);
367		if (!zone->elems)
368			kref_get(&zone->refcnt);
369		++zone->elems;
370		spin_unlock(&zone->lock);
371		spin_lock(&fs_info->reada_lock);
372		kref_put(&zone->refcnt, reada_zone_release);
373		spin_unlock(&fs_info->reada_lock);
374	}
375	if (re->nzones == 0) {
376		/* not a single zone found, error and out */
377		goto error;
378	}
379
380	/* Insert extent in reada tree + all per-device trees, all or nothing */
381	down_read(&fs_info->dev_replace.rwsem);
382	ret = radix_tree_preload(GFP_KERNEL);
383	if (ret) {
384		up_read(&fs_info->dev_replace.rwsem);
385		goto error;
386	}
387
388	spin_lock(&fs_info->reada_lock);
389	ret = radix_tree_insert(&fs_info->reada_tree, index, re);
390	if (ret == -EEXIST) {
391		re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
392		re_exist->refcnt++;
393		spin_unlock(&fs_info->reada_lock);
394		radix_tree_preload_end();
395		up_read(&fs_info->dev_replace.rwsem);
396		goto error;
397	}
398	if (ret) {
399		spin_unlock(&fs_info->reada_lock);
400		radix_tree_preload_end();
401		up_read(&fs_info->dev_replace.rwsem);
402		goto error;
403	}
404	radix_tree_preload_end();
405	prev_dev = NULL;
406	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
407			&fs_info->dev_replace);
408	for (nzones = 0; nzones < re->nzones; ++nzones) {
409		dev = re->zones[nzones]->device;
410
411		if (dev == prev_dev) {
412			/*
413			 * in case of DUP, just add the first zone. As both
414			 * are on the same device, there's nothing to gain
415			 * from adding both.
416			 * Also, it wouldn't work, as the tree is per device
417			 * and adding would fail with EEXIST
418			 */
419			continue;
420		}
421		if (!dev->bdev)
422			continue;
423
424		if (test_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state))
425			continue;
426
427		if (dev_replace_is_ongoing &&
428		    dev == fs_info->dev_replace.tgtdev) {
429			/*
430			 * as this device is selected for reading only as
431			 * a last resort, skip it for read ahead.
432			 */
433			continue;
434		}
435		prev_dev = dev;
436		ret = radix_tree_insert(&dev->reada_extents, index, re);
437		if (ret) {
438			while (--nzones >= 0) {
439				dev = re->zones[nzones]->device;
440				BUG_ON(dev == NULL);
441				/* ignore whether the entry was inserted */
442				radix_tree_delete(&dev->reada_extents, index);
443			}
444			radix_tree_delete(&fs_info->reada_tree, index);
445			spin_unlock(&fs_info->reada_lock);
446			up_read(&fs_info->dev_replace.rwsem);
447			goto error;
448		}
449		have_zone = 1;
450	}
451	if (!have_zone)
452		radix_tree_delete(&fs_info->reada_tree, index);
453	spin_unlock(&fs_info->reada_lock);
454	up_read(&fs_info->dev_replace.rwsem);
455
456	if (!have_zone)
457		goto error;
458
459	btrfs_put_bbio(bbio);
460	return re;
461
462error:
463	for (nzones = 0; nzones < re->nzones; ++nzones) {
464		struct reada_zone *zone;
465
466		zone = re->zones[nzones];
467		kref_get(&zone->refcnt);
468		spin_lock(&zone->lock);
469		--zone->elems;
470		if (zone->elems == 0) {
471			/*
472			 * no fs_info->reada_lock needed, as this can't be
473			 * the last ref
474			 */
475			kref_put(&zone->refcnt, reada_zone_release);
476		}
477		spin_unlock(&zone->lock);
478
479		spin_lock(&fs_info->reada_lock);
480		kref_put(&zone->refcnt, reada_zone_release);
481		spin_unlock(&fs_info->reada_lock);
482	}
483	btrfs_put_bbio(bbio);
484	kfree(re);
485	return re_exist;
486}
487
488static void reada_extent_put(struct btrfs_fs_info *fs_info,
489			     struct reada_extent *re)
490{
491	int i;
492	unsigned long index = re->logical >> PAGE_SHIFT;
493
494	spin_lock(&fs_info->reada_lock);
495	if (--re->refcnt) {
496		spin_unlock(&fs_info->reada_lock);
497		return;
498	}
499
500	radix_tree_delete(&fs_info->reada_tree, index);
501	for (i = 0; i < re->nzones; ++i) {
502		struct reada_zone *zone = re->zones[i];
503
504		radix_tree_delete(&zone->device->reada_extents, index);
505	}
506
507	spin_unlock(&fs_info->reada_lock);
508
509	for (i = 0; i < re->nzones; ++i) {
510		struct reada_zone *zone = re->zones[i];
511
512		kref_get(&zone->refcnt);
513		spin_lock(&zone->lock);
514		--zone->elems;
515		if (zone->elems == 0) {
516			/* no fs_info->reada_lock needed, as this can't be
517			 * the last ref */
518			kref_put(&zone->refcnt, reada_zone_release);
519		}
520		spin_unlock(&zone->lock);
521
522		spin_lock(&fs_info->reada_lock);
523		kref_put(&zone->refcnt, reada_zone_release);
524		spin_unlock(&fs_info->reada_lock);
525	}
526
527	kfree(re);
528}
529
530static void reada_zone_release(struct kref *kref)
531{
532	struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
533
534	radix_tree_delete(&zone->device->reada_zones,
535			  zone->end >> PAGE_SHIFT);
536
537	kfree(zone);
538}
539
540static void reada_control_release(struct kref *kref)
541{
542	struct reada_control *rc = container_of(kref, struct reada_control,
543						refcnt);
544
545	kfree(rc);
546}
547
548static int reada_add_block(struct reada_control *rc, u64 logical,
549			   struct btrfs_key *top, u64 generation)
550{
551	struct btrfs_fs_info *fs_info = rc->fs_info;
552	struct reada_extent *re;
553	struct reada_extctl *rec;
554
555	/* takes one ref */
556	re = reada_find_extent(fs_info, logical, top);
557	if (!re)
558		return -1;
559
560	rec = kzalloc(sizeof(*rec), GFP_KERNEL);
561	if (!rec) {
562		reada_extent_put(fs_info, re);
563		return -ENOMEM;
564	}
565
566	rec->rc = rc;
567	rec->generation = generation;
568	atomic_inc(&rc->elems);
569
570	spin_lock(&re->lock);
571	list_add_tail(&rec->list, &re->extctl);
572	spin_unlock(&re->lock);
573
574	/* leave the ref on the extent */
575
576	return 0;
577}
578
579/*
580 * called with fs_info->reada_lock held
581 */
582static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
583{
584	int i;
585	unsigned long index = zone->end >> PAGE_SHIFT;
586
587	for (i = 0; i < zone->ndevs; ++i) {
588		struct reada_zone *peer;
589		peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
590		if (peer && peer->device != zone->device)
591			peer->locked = lock;
592	}
593}
594
595/*
596 * called with fs_info->reada_lock held
597 */
598static int reada_pick_zone(struct btrfs_device *dev)
599{
600	struct reada_zone *top_zone = NULL;
601	struct reada_zone *top_locked_zone = NULL;
602	u64 top_elems = 0;
603	u64 top_locked_elems = 0;
604	unsigned long index = 0;
605	int ret;
606
607	if (dev->reada_curr_zone) {
608		reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
609		kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
610		dev->reada_curr_zone = NULL;
611	}
612	/* pick the zone with the most elements */
613	while (1) {
614		struct reada_zone *zone;
615
616		ret = radix_tree_gang_lookup(&dev->reada_zones,
617					     (void **)&zone, index, 1);
618		if (ret == 0)
619			break;
620		index = (zone->end >> PAGE_SHIFT) + 1;
621		if (zone->locked) {
622			if (zone->elems > top_locked_elems) {
623				top_locked_elems = zone->elems;
624				top_locked_zone = zone;
625			}
626		} else {
627			if (zone->elems > top_elems) {
628				top_elems = zone->elems;
629				top_zone = zone;
630			}
631		}
632	}
633	if (top_zone)
634		dev->reada_curr_zone = top_zone;
635	else if (top_locked_zone)
636		dev->reada_curr_zone = top_locked_zone;
637	else
638		return 0;
639
640	dev->reada_next = dev->reada_curr_zone->start;
641	kref_get(&dev->reada_curr_zone->refcnt);
642	reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
643
644	return 1;
645}
646
647static int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
648				    int mirror_num, struct extent_buffer **eb)
649{
650	struct extent_buffer *buf = NULL;
651	int ret;
652
653	buf = btrfs_find_create_tree_block(fs_info, bytenr);
654	if (IS_ERR(buf))
655		return 0;
656
657	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
658
659	ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
660	if (ret) {
661		free_extent_buffer_stale(buf);
662		return ret;
663	}
664
665	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
666		free_extent_buffer_stale(buf);
667		return -EIO;
668	} else if (extent_buffer_uptodate(buf)) {
669		*eb = buf;
670	} else {
671		free_extent_buffer(buf);
672	}
673	return 0;
674}
675
676static int reada_start_machine_dev(struct btrfs_device *dev)
677{
678	struct btrfs_fs_info *fs_info = dev->fs_info;
679	struct reada_extent *re = NULL;
680	int mirror_num = 0;
681	struct extent_buffer *eb = NULL;
682	u64 logical;
683	int ret;
684	int i;
685
686	spin_lock(&fs_info->reada_lock);
687	if (dev->reada_curr_zone == NULL) {
688		ret = reada_pick_zone(dev);
689		if (!ret) {
690			spin_unlock(&fs_info->reada_lock);
691			return 0;
692		}
693	}
694	/*
695	 * FIXME currently we issue the reads one extent at a time. If we have
696	 * a contiguous block of extents, we could also coagulate them or use
697	 * plugging to speed things up
698	 */
699	ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
700				     dev->reada_next >> PAGE_SHIFT, 1);
701	if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
702		ret = reada_pick_zone(dev);
703		if (!ret) {
704			spin_unlock(&fs_info->reada_lock);
705			return 0;
706		}
707		re = NULL;
708		ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
709					dev->reada_next >> PAGE_SHIFT, 1);
710	}
711	if (ret == 0) {
712		spin_unlock(&fs_info->reada_lock);
713		return 0;
714	}
715	dev->reada_next = re->logical + fs_info->nodesize;
716	re->refcnt++;
717
718	spin_unlock(&fs_info->reada_lock);
719
720	spin_lock(&re->lock);
721	if (re->scheduled || list_empty(&re->extctl)) {
722		spin_unlock(&re->lock);
723		reada_extent_put(fs_info, re);
724		return 0;
725	}
726	re->scheduled = 1;
727	spin_unlock(&re->lock);
728
729	/*
730	 * find mirror num
731	 */
732	for (i = 0; i < re->nzones; ++i) {
733		if (re->zones[i]->device == dev) {
734			mirror_num = i + 1;
735			break;
736		}
737	}
738	logical = re->logical;
739
740	atomic_inc(&dev->reada_in_flight);
741	ret = reada_tree_block_flagged(fs_info, logical, mirror_num, &eb);
742	if (ret)
743		__readahead_hook(fs_info, re, NULL, ret);
744	else if (eb)
745		__readahead_hook(fs_info, re, eb, ret);
746
747	if (eb)
748		free_extent_buffer(eb);
749
750	atomic_dec(&dev->reada_in_flight);
751	reada_extent_put(fs_info, re);
752
753	return 1;
754
755}
756
757static void reada_start_machine_worker(struct btrfs_work *work)
758{
759	struct reada_machine_work *rmw;
760	int old_ioprio;
761
762	rmw = container_of(work, struct reada_machine_work, work);
763
764	old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
765				       task_nice_ioprio(current));
766	set_task_ioprio(current, BTRFS_IOPRIO_READA);
767	__reada_start_machine(rmw->fs_info);
768	set_task_ioprio(current, old_ioprio);
769
770	atomic_dec(&rmw->fs_info->reada_works_cnt);
771
772	kfree(rmw);
773}
774
775/* Try to start up to 10k READA requests for a group of devices */
776static int reada_start_for_fsdevs(struct btrfs_fs_devices *fs_devices)
777{
778	u64 enqueued;
779	u64 total = 0;
780	struct btrfs_device *device;
781
782	do {
783		enqueued = 0;
784		list_for_each_entry(device, &fs_devices->devices, dev_list) {
785			if (atomic_read(&device->reada_in_flight) <
786			    MAX_IN_FLIGHT)
787				enqueued += reada_start_machine_dev(device);
788		}
789		total += enqueued;
790	} while (enqueued && total < 10000);
791
792	return total;
793}
794
795static void __reada_start_machine(struct btrfs_fs_info *fs_info)
796{
797	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
798	int i;
799	u64 enqueued = 0;
800
801	mutex_lock(&fs_devices->device_list_mutex);
802
803	enqueued += reada_start_for_fsdevs(fs_devices);
804	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
805		enqueued += reada_start_for_fsdevs(seed_devs);
806
807	mutex_unlock(&fs_devices->device_list_mutex);
808	if (enqueued == 0)
809		return;
810
811	/*
812	 * If everything is already in the cache, this is effectively single
813	 * threaded. To a) not hold the caller for too long and b) to utilize
814	 * more cores, we broke the loop above after 10000 iterations and now
815	 * enqueue to workers to finish it. This will distribute the load to
816	 * the cores.
817	 */
818	for (i = 0; i < 2; ++i) {
819		reada_start_machine(fs_info);
820		if (atomic_read(&fs_info->reada_works_cnt) >
821		    BTRFS_MAX_MIRRORS * 2)
822			break;
823	}
824}
825
826static void reada_start_machine(struct btrfs_fs_info *fs_info)
827{
828	struct reada_machine_work *rmw;
829
830	rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
831	if (!rmw) {
832		/* FIXME we cannot handle this properly right now */
833		BUG();
834	}
835	btrfs_init_work(&rmw->work, reada_start_machine_worker, NULL, NULL);
836	rmw->fs_info = fs_info;
837
838	btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
839	atomic_inc(&fs_info->reada_works_cnt);
840}
841
842#ifdef DEBUG
843static void dump_devs(struct btrfs_fs_info *fs_info, int all)
844{
845	struct btrfs_device *device;
846	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
847	unsigned long index;
848	int ret;
849	int i;
850	int j;
851	int cnt;
852
853	spin_lock(&fs_info->reada_lock);
854	list_for_each_entry(device, &fs_devices->devices, dev_list) {
855		btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
856			atomic_read(&device->reada_in_flight));
857		index = 0;
858		while (1) {
859			struct reada_zone *zone;
860			ret = radix_tree_gang_lookup(&device->reada_zones,
861						     (void **)&zone, index, 1);
862			if (ret == 0)
863				break;
864			pr_debug("  zone %llu-%llu elems %llu locked %d devs",
865				    zone->start, zone->end, zone->elems,
866				    zone->locked);
867			for (j = 0; j < zone->ndevs; ++j) {
868				pr_cont(" %lld",
869					zone->devs[j]->devid);
870			}
871			if (device->reada_curr_zone == zone)
872				pr_cont(" curr off %llu",
873					device->reada_next - zone->start);
874			pr_cont("\n");
875			index = (zone->end >> PAGE_SHIFT) + 1;
876		}
877		cnt = 0;
878		index = 0;
879		while (all) {
880			struct reada_extent *re = NULL;
881
882			ret = radix_tree_gang_lookup(&device->reada_extents,
883						     (void **)&re, index, 1);
884			if (ret == 0)
885				break;
886			pr_debug("  re: logical %llu size %u empty %d scheduled %d",
887				re->logical, fs_info->nodesize,
888				list_empty(&re->extctl), re->scheduled);
889
890			for (i = 0; i < re->nzones; ++i) {
891				pr_cont(" zone %llu-%llu devs",
892					re->zones[i]->start,
893					re->zones[i]->end);
894				for (j = 0; j < re->zones[i]->ndevs; ++j) {
895					pr_cont(" %lld",
896						re->zones[i]->devs[j]->devid);
897				}
898			}
899			pr_cont("\n");
900			index = (re->logical >> PAGE_SHIFT) + 1;
901			if (++cnt > 15)
902				break;
903		}
904	}
905
906	index = 0;
907	cnt = 0;
908	while (all) {
909		struct reada_extent *re = NULL;
910
911		ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
912					     index, 1);
913		if (ret == 0)
914			break;
915		if (!re->scheduled) {
916			index = (re->logical >> PAGE_SHIFT) + 1;
917			continue;
918		}
919		pr_debug("re: logical %llu size %u list empty %d scheduled %d",
920			re->logical, fs_info->nodesize,
921			list_empty(&re->extctl), re->scheduled);
922		for (i = 0; i < re->nzones; ++i) {
923			pr_cont(" zone %llu-%llu devs",
924				re->zones[i]->start,
925				re->zones[i]->end);
926			for (j = 0; j < re->zones[i]->ndevs; ++j) {
927				pr_cont(" %lld",
928				       re->zones[i]->devs[j]->devid);
929			}
930		}
931		pr_cont("\n");
932		index = (re->logical >> PAGE_SHIFT) + 1;
933	}
934	spin_unlock(&fs_info->reada_lock);
935}
936#endif
937
938/*
939 * interface
940 */
941struct reada_control *btrfs_reada_add(struct btrfs_root *root,
942			struct btrfs_key *key_start, struct btrfs_key *key_end)
943{
944	struct reada_control *rc;
945	u64 start;
946	u64 generation;
947	int ret;
948	struct extent_buffer *node;
949	static struct btrfs_key max_key = {
950		.objectid = (u64)-1,
951		.type = (u8)-1,
952		.offset = (u64)-1
953	};
954
955	rc = kzalloc(sizeof(*rc), GFP_KERNEL);
956	if (!rc)
957		return ERR_PTR(-ENOMEM);
958
959	rc->fs_info = root->fs_info;
960	rc->key_start = *key_start;
961	rc->key_end = *key_end;
962	atomic_set(&rc->elems, 0);
963	init_waitqueue_head(&rc->wait);
964	kref_init(&rc->refcnt);
965	kref_get(&rc->refcnt); /* one ref for having elements */
966
967	node = btrfs_root_node(root);
968	start = node->start;
969	generation = btrfs_header_generation(node);
970	free_extent_buffer(node);
971
972	ret = reada_add_block(rc, start, &max_key, generation);
973	if (ret) {
974		kfree(rc);
975		return ERR_PTR(ret);
976	}
977
978	reada_start_machine(root->fs_info);
979
980	return rc;
981}
982
983#ifdef DEBUG
984int btrfs_reada_wait(void *handle)
985{
986	struct reada_control *rc = handle;
987	struct btrfs_fs_info *fs_info = rc->fs_info;
988
989	while (atomic_read(&rc->elems)) {
990		if (!atomic_read(&fs_info->reada_works_cnt))
991			reada_start_machine(fs_info);
992		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
993				   5 * HZ);
994		dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
995	}
996
997	dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
998
999	kref_put(&rc->refcnt, reada_control_release);
1000
1001	return 0;
1002}
1003#else
1004int btrfs_reada_wait(void *handle)
1005{
1006	struct reada_control *rc = handle;
1007	struct btrfs_fs_info *fs_info = rc->fs_info;
1008
1009	while (atomic_read(&rc->elems)) {
1010		if (!atomic_read(&fs_info->reada_works_cnt))
1011			reada_start_machine(fs_info);
1012		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
1013				   (HZ + 9) / 10);
1014	}
1015
1016	kref_put(&rc->refcnt, reada_control_release);
1017
1018	return 0;
1019}
1020#endif
1021
1022void btrfs_reada_detach(void *handle)
1023{
1024	struct reada_control *rc = handle;
1025
1026	kref_put(&rc->refcnt, reada_control_release);
1027}
1028
1029/*
1030 * Before removing a device (device replace or device remove ioctls), call this
1031 * function to wait for all existing readahead requests on the device and to
1032 * make sure no one queues more readahead requests for the device.
1033 *
1034 * Must be called without holding neither the device list mutex nor the device
1035 * replace semaphore, otherwise it will deadlock.
1036 */
1037void btrfs_reada_remove_dev(struct btrfs_device *dev)
1038{
1039	struct btrfs_fs_info *fs_info = dev->fs_info;
1040
1041	/* Serialize with readahead extent creation at reada_find_extent(). */
1042	spin_lock(&fs_info->reada_lock);
1043	set_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state);
1044	spin_unlock(&fs_info->reada_lock);
1045
1046	/*
1047	 * There might be readahead requests added to the radix trees which
1048	 * were not yet added to the readahead work queue. We need to start
1049	 * them and wait for their completion, otherwise we can end up with
1050	 * use-after-free problems when dropping the last reference on the
1051	 * readahead extents and their zones, as they need to access the
1052	 * device structure.
1053	 */
1054	reada_start_machine(fs_info);
1055	btrfs_flush_workqueue(fs_info->readahead_workers);
1056}
1057
1058/*
1059 * If when removing a device (device replace or device remove ioctls) an error
1060 * happens after calling btrfs_reada_remove_dev(), call this to undo what that
1061 * function did. This is safe to call even if btrfs_reada_remove_dev() was not
1062 * called before.
1063 */
1064void btrfs_reada_undo_remove_dev(struct btrfs_device *dev)
1065{
1066	spin_lock(&dev->fs_info->reada_lock);
1067	clear_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state);
1068	spin_unlock(&dev->fs_info->reada_lock);
1069}
1070