1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2012 Fusion-io All rights reserved. 4 * Copyright (C) 2012 Intel Corp. All rights reserved. 5 */ 6 7#include <linux/sched.h> 8#include <linux/bio.h> 9#include <linux/slab.h> 10#include <linux/blkdev.h> 11#include <linux/raid/pq.h> 12#include <linux/hash.h> 13#include <linux/list_sort.h> 14#include <linux/raid/xor.h> 15#include <linux/mm.h> 16#include "ctree.h" 17#include "disk-io.h" 18#include "volumes.h" 19#include "raid56.h" 20#include "async-thread.h" 21 22/* set when additional merges to this rbio are not allowed */ 23#define RBIO_RMW_LOCKED_BIT 1 24 25/* 26 * set when this rbio is sitting in the hash, but it is just a cache 27 * of past RMW 28 */ 29#define RBIO_CACHE_BIT 2 30 31/* 32 * set when it is safe to trust the stripe_pages for caching 33 */ 34#define RBIO_CACHE_READY_BIT 3 35 36#define RBIO_CACHE_SIZE 1024 37 38#define BTRFS_STRIPE_HASH_TABLE_BITS 11 39 40/* Used by the raid56 code to lock stripes for read/modify/write */ 41struct btrfs_stripe_hash { 42 struct list_head hash_list; 43 spinlock_t lock; 44}; 45 46/* Used by the raid56 code to lock stripes for read/modify/write */ 47struct btrfs_stripe_hash_table { 48 struct list_head stripe_cache; 49 spinlock_t cache_lock; 50 int cache_size; 51 struct btrfs_stripe_hash table[]; 52}; 53 54enum btrfs_rbio_ops { 55 BTRFS_RBIO_WRITE, 56 BTRFS_RBIO_READ_REBUILD, 57 BTRFS_RBIO_PARITY_SCRUB, 58 BTRFS_RBIO_REBUILD_MISSING, 59}; 60 61struct btrfs_raid_bio { 62 struct btrfs_fs_info *fs_info; 63 struct btrfs_bio *bbio; 64 65 /* while we're doing rmw on a stripe 66 * we put it into a hash table so we can 67 * lock the stripe and merge more rbios 68 * into it. 69 */ 70 struct list_head hash_list; 71 72 /* 73 * LRU list for the stripe cache 74 */ 75 struct list_head stripe_cache; 76 77 /* 78 * for scheduling work in the helper threads 79 */ 80 struct btrfs_work work; 81 82 /* 83 * bio list and bio_list_lock are used 84 * to add more bios into the stripe 85 * in hopes of avoiding the full rmw 86 */ 87 struct bio_list bio_list; 88 spinlock_t bio_list_lock; 89 90 /* also protected by the bio_list_lock, the 91 * plug list is used by the plugging code 92 * to collect partial bios while plugged. The 93 * stripe locking code also uses it to hand off 94 * the stripe lock to the next pending IO 95 */ 96 struct list_head plug_list; 97 98 /* 99 * flags that tell us if it is safe to 100 * merge with this bio 101 */ 102 unsigned long flags; 103 104 /* size of each individual stripe on disk */ 105 int stripe_len; 106 107 /* number of data stripes (no p/q) */ 108 int nr_data; 109 110 int real_stripes; 111 112 int stripe_npages; 113 /* 114 * set if we're doing a parity rebuild 115 * for a read from higher up, which is handled 116 * differently from a parity rebuild as part of 117 * rmw 118 */ 119 enum btrfs_rbio_ops operation; 120 121 /* first bad stripe */ 122 int faila; 123 124 /* second bad stripe (for raid6 use) */ 125 int failb; 126 127 int scrubp; 128 /* 129 * number of pages needed to represent the full 130 * stripe 131 */ 132 int nr_pages; 133 134 /* 135 * size of all the bios in the bio_list. This 136 * helps us decide if the rbio maps to a full 137 * stripe or not 138 */ 139 int bio_list_bytes; 140 141 int generic_bio_cnt; 142 143 refcount_t refs; 144 145 atomic_t stripes_pending; 146 147 atomic_t error; 148 /* 149 * these are two arrays of pointers. We allocate the 150 * rbio big enough to hold them both and setup their 151 * locations when the rbio is allocated 152 */ 153 154 /* pointers to pages that we allocated for 155 * reading/writing stripes directly from the disk (including P/Q) 156 */ 157 struct page **stripe_pages; 158 159 /* 160 * pointers to the pages in the bio_list. Stored 161 * here for faster lookup 162 */ 163 struct page **bio_pages; 164 165 /* 166 * bitmap to record which horizontal stripe has data 167 */ 168 unsigned long *dbitmap; 169 170 /* allocated with real_stripes-many pointers for finish_*() calls */ 171 void **finish_pointers; 172 173 /* allocated with stripe_npages-many bits for finish_*() calls */ 174 unsigned long *finish_pbitmap; 175}; 176 177static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); 178static noinline void finish_rmw(struct btrfs_raid_bio *rbio); 179static void rmw_work(struct btrfs_work *work); 180static void read_rebuild_work(struct btrfs_work *work); 181static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); 182static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); 183static void __free_raid_bio(struct btrfs_raid_bio *rbio); 184static void index_rbio_pages(struct btrfs_raid_bio *rbio); 185static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 186 187static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 188 int need_check); 189static void scrub_parity_work(struct btrfs_work *work); 190 191static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func) 192{ 193 btrfs_init_work(&rbio->work, work_func, NULL, NULL); 194 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 195} 196 197/* 198 * the stripe hash table is used for locking, and to collect 199 * bios in hopes of making a full stripe 200 */ 201int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 202{ 203 struct btrfs_stripe_hash_table *table; 204 struct btrfs_stripe_hash_table *x; 205 struct btrfs_stripe_hash *cur; 206 struct btrfs_stripe_hash *h; 207 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 208 int i; 209 210 if (info->stripe_hash_table) 211 return 0; 212 213 /* 214 * The table is large, starting with order 4 and can go as high as 215 * order 7 in case lock debugging is turned on. 216 * 217 * Try harder to allocate and fallback to vmalloc to lower the chance 218 * of a failing mount. 219 */ 220 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL); 221 if (!table) 222 return -ENOMEM; 223 224 spin_lock_init(&table->cache_lock); 225 INIT_LIST_HEAD(&table->stripe_cache); 226 227 h = table->table; 228 229 for (i = 0; i < num_entries; i++) { 230 cur = h + i; 231 INIT_LIST_HEAD(&cur->hash_list); 232 spin_lock_init(&cur->lock); 233 } 234 235 x = cmpxchg(&info->stripe_hash_table, NULL, table); 236 if (x) 237 kvfree(x); 238 return 0; 239} 240 241/* 242 * caching an rbio means to copy anything from the 243 * bio_pages array into the stripe_pages array. We 244 * use the page uptodate bit in the stripe cache array 245 * to indicate if it has valid data 246 * 247 * once the caching is done, we set the cache ready 248 * bit. 249 */ 250static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 251{ 252 int i; 253 char *s; 254 char *d; 255 int ret; 256 257 ret = alloc_rbio_pages(rbio); 258 if (ret) 259 return; 260 261 for (i = 0; i < rbio->nr_pages; i++) { 262 if (!rbio->bio_pages[i]) 263 continue; 264 265 s = kmap(rbio->bio_pages[i]); 266 d = kmap(rbio->stripe_pages[i]); 267 268 copy_page(d, s); 269 270 kunmap(rbio->bio_pages[i]); 271 kunmap(rbio->stripe_pages[i]); 272 SetPageUptodate(rbio->stripe_pages[i]); 273 } 274 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 275} 276 277/* 278 * we hash on the first logical address of the stripe 279 */ 280static int rbio_bucket(struct btrfs_raid_bio *rbio) 281{ 282 u64 num = rbio->bbio->raid_map[0]; 283 284 /* 285 * we shift down quite a bit. We're using byte 286 * addressing, and most of the lower bits are zeros. 287 * This tends to upset hash_64, and it consistently 288 * returns just one or two different values. 289 * 290 * shifting off the lower bits fixes things. 291 */ 292 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 293} 294 295/* 296 * stealing an rbio means taking all the uptodate pages from the stripe 297 * array in the source rbio and putting them into the destination rbio 298 */ 299static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 300{ 301 int i; 302 struct page *s; 303 struct page *d; 304 305 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 306 return; 307 308 for (i = 0; i < dest->nr_pages; i++) { 309 s = src->stripe_pages[i]; 310 if (!s || !PageUptodate(s)) { 311 continue; 312 } 313 314 d = dest->stripe_pages[i]; 315 if (d) 316 __free_page(d); 317 318 dest->stripe_pages[i] = s; 319 src->stripe_pages[i] = NULL; 320 } 321} 322 323/* 324 * merging means we take the bio_list from the victim and 325 * splice it into the destination. The victim should 326 * be discarded afterwards. 327 * 328 * must be called with dest->rbio_list_lock held 329 */ 330static void merge_rbio(struct btrfs_raid_bio *dest, 331 struct btrfs_raid_bio *victim) 332{ 333 bio_list_merge(&dest->bio_list, &victim->bio_list); 334 dest->bio_list_bytes += victim->bio_list_bytes; 335 /* Also inherit the bitmaps from @victim. */ 336 bitmap_or(dest->dbitmap, victim->dbitmap, dest->dbitmap, 337 dest->stripe_npages); 338 dest->generic_bio_cnt += victim->generic_bio_cnt; 339 bio_list_init(&victim->bio_list); 340} 341 342/* 343 * used to prune items that are in the cache. The caller 344 * must hold the hash table lock. 345 */ 346static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 347{ 348 int bucket = rbio_bucket(rbio); 349 struct btrfs_stripe_hash_table *table; 350 struct btrfs_stripe_hash *h; 351 int freeit = 0; 352 353 /* 354 * check the bit again under the hash table lock. 355 */ 356 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 357 return; 358 359 table = rbio->fs_info->stripe_hash_table; 360 h = table->table + bucket; 361 362 /* hold the lock for the bucket because we may be 363 * removing it from the hash table 364 */ 365 spin_lock(&h->lock); 366 367 /* 368 * hold the lock for the bio list because we need 369 * to make sure the bio list is empty 370 */ 371 spin_lock(&rbio->bio_list_lock); 372 373 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 374 list_del_init(&rbio->stripe_cache); 375 table->cache_size -= 1; 376 freeit = 1; 377 378 /* if the bio list isn't empty, this rbio is 379 * still involved in an IO. We take it out 380 * of the cache list, and drop the ref that 381 * was held for the list. 382 * 383 * If the bio_list was empty, we also remove 384 * the rbio from the hash_table, and drop 385 * the corresponding ref 386 */ 387 if (bio_list_empty(&rbio->bio_list)) { 388 if (!list_empty(&rbio->hash_list)) { 389 list_del_init(&rbio->hash_list); 390 refcount_dec(&rbio->refs); 391 BUG_ON(!list_empty(&rbio->plug_list)); 392 } 393 } 394 } 395 396 spin_unlock(&rbio->bio_list_lock); 397 spin_unlock(&h->lock); 398 399 if (freeit) 400 __free_raid_bio(rbio); 401} 402 403/* 404 * prune a given rbio from the cache 405 */ 406static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 407{ 408 struct btrfs_stripe_hash_table *table; 409 unsigned long flags; 410 411 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 412 return; 413 414 table = rbio->fs_info->stripe_hash_table; 415 416 spin_lock_irqsave(&table->cache_lock, flags); 417 __remove_rbio_from_cache(rbio); 418 spin_unlock_irqrestore(&table->cache_lock, flags); 419} 420 421/* 422 * remove everything in the cache 423 */ 424static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 425{ 426 struct btrfs_stripe_hash_table *table; 427 unsigned long flags; 428 struct btrfs_raid_bio *rbio; 429 430 table = info->stripe_hash_table; 431 432 spin_lock_irqsave(&table->cache_lock, flags); 433 while (!list_empty(&table->stripe_cache)) { 434 rbio = list_entry(table->stripe_cache.next, 435 struct btrfs_raid_bio, 436 stripe_cache); 437 __remove_rbio_from_cache(rbio); 438 } 439 spin_unlock_irqrestore(&table->cache_lock, flags); 440} 441 442/* 443 * remove all cached entries and free the hash table 444 * used by unmount 445 */ 446void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 447{ 448 if (!info->stripe_hash_table) 449 return; 450 btrfs_clear_rbio_cache(info); 451 kvfree(info->stripe_hash_table); 452 info->stripe_hash_table = NULL; 453} 454 455/* 456 * insert an rbio into the stripe cache. It 457 * must have already been prepared by calling 458 * cache_rbio_pages 459 * 460 * If this rbio was already cached, it gets 461 * moved to the front of the lru. 462 * 463 * If the size of the rbio cache is too big, we 464 * prune an item. 465 */ 466static void cache_rbio(struct btrfs_raid_bio *rbio) 467{ 468 struct btrfs_stripe_hash_table *table; 469 unsigned long flags; 470 471 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 472 return; 473 474 table = rbio->fs_info->stripe_hash_table; 475 476 spin_lock_irqsave(&table->cache_lock, flags); 477 spin_lock(&rbio->bio_list_lock); 478 479 /* bump our ref if we were not in the list before */ 480 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 481 refcount_inc(&rbio->refs); 482 483 if (!list_empty(&rbio->stripe_cache)){ 484 list_move(&rbio->stripe_cache, &table->stripe_cache); 485 } else { 486 list_add(&rbio->stripe_cache, &table->stripe_cache); 487 table->cache_size += 1; 488 } 489 490 spin_unlock(&rbio->bio_list_lock); 491 492 if (table->cache_size > RBIO_CACHE_SIZE) { 493 struct btrfs_raid_bio *found; 494 495 found = list_entry(table->stripe_cache.prev, 496 struct btrfs_raid_bio, 497 stripe_cache); 498 499 if (found != rbio) 500 __remove_rbio_from_cache(found); 501 } 502 503 spin_unlock_irqrestore(&table->cache_lock, flags); 504} 505 506/* 507 * helper function to run the xor_blocks api. It is only 508 * able to do MAX_XOR_BLOCKS at a time, so we need to 509 * loop through. 510 */ 511static void run_xor(void **pages, int src_cnt, ssize_t len) 512{ 513 int src_off = 0; 514 int xor_src_cnt = 0; 515 void *dest = pages[src_cnt]; 516 517 while(src_cnt > 0) { 518 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 519 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 520 521 src_cnt -= xor_src_cnt; 522 src_off += xor_src_cnt; 523 } 524} 525 526/* 527 * Returns true if the bio list inside this rbio covers an entire stripe (no 528 * rmw required). 529 */ 530static int rbio_is_full(struct btrfs_raid_bio *rbio) 531{ 532 unsigned long flags; 533 unsigned long size = rbio->bio_list_bytes; 534 int ret = 1; 535 536 spin_lock_irqsave(&rbio->bio_list_lock, flags); 537 if (size != rbio->nr_data * rbio->stripe_len) 538 ret = 0; 539 BUG_ON(size > rbio->nr_data * rbio->stripe_len); 540 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 541 542 return ret; 543} 544 545/* 546 * returns 1 if it is safe to merge two rbios together. 547 * The merging is safe if the two rbios correspond to 548 * the same stripe and if they are both going in the same 549 * direction (read vs write), and if neither one is 550 * locked for final IO 551 * 552 * The caller is responsible for locking such that 553 * rmw_locked is safe to test 554 */ 555static int rbio_can_merge(struct btrfs_raid_bio *last, 556 struct btrfs_raid_bio *cur) 557{ 558 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 559 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 560 return 0; 561 562 /* 563 * we can't merge with cached rbios, since the 564 * idea is that when we merge the destination 565 * rbio is going to run our IO for us. We can 566 * steal from cached rbios though, other functions 567 * handle that. 568 */ 569 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 570 test_bit(RBIO_CACHE_BIT, &cur->flags)) 571 return 0; 572 573 if (last->bbio->raid_map[0] != 574 cur->bbio->raid_map[0]) 575 return 0; 576 577 /* we can't merge with different operations */ 578 if (last->operation != cur->operation) 579 return 0; 580 /* 581 * We've need read the full stripe from the drive. 582 * check and repair the parity and write the new results. 583 * 584 * We're not allowed to add any new bios to the 585 * bio list here, anyone else that wants to 586 * change this stripe needs to do their own rmw. 587 */ 588 if (last->operation == BTRFS_RBIO_PARITY_SCRUB) 589 return 0; 590 591 if (last->operation == BTRFS_RBIO_REBUILD_MISSING) 592 return 0; 593 594 if (last->operation == BTRFS_RBIO_READ_REBUILD) { 595 int fa = last->faila; 596 int fb = last->failb; 597 int cur_fa = cur->faila; 598 int cur_fb = cur->failb; 599 600 if (last->faila >= last->failb) { 601 fa = last->failb; 602 fb = last->faila; 603 } 604 605 if (cur->faila >= cur->failb) { 606 cur_fa = cur->failb; 607 cur_fb = cur->faila; 608 } 609 610 if (fa != cur_fa || fb != cur_fb) 611 return 0; 612 } 613 return 1; 614} 615 616static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe, 617 int index) 618{ 619 return stripe * rbio->stripe_npages + index; 620} 621 622/* 623 * these are just the pages from the rbio array, not from anything 624 * the FS sent down to us 625 */ 626static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, 627 int index) 628{ 629 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)]; 630} 631 632/* 633 * helper to index into the pstripe 634 */ 635static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) 636{ 637 return rbio_stripe_page(rbio, rbio->nr_data, index); 638} 639 640/* 641 * helper to index into the qstripe, returns null 642 * if there is no qstripe 643 */ 644static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) 645{ 646 if (rbio->nr_data + 1 == rbio->real_stripes) 647 return NULL; 648 return rbio_stripe_page(rbio, rbio->nr_data + 1, index); 649} 650 651/* 652 * The first stripe in the table for a logical address 653 * has the lock. rbios are added in one of three ways: 654 * 655 * 1) Nobody has the stripe locked yet. The rbio is given 656 * the lock and 0 is returned. The caller must start the IO 657 * themselves. 658 * 659 * 2) Someone has the stripe locked, but we're able to merge 660 * with the lock owner. The rbio is freed and the IO will 661 * start automatically along with the existing rbio. 1 is returned. 662 * 663 * 3) Someone has the stripe locked, but we're not able to merge. 664 * The rbio is added to the lock owner's plug list, or merged into 665 * an rbio already on the plug list. When the lock owner unlocks, 666 * the next rbio on the list is run and the IO is started automatically. 667 * 1 is returned 668 * 669 * If we return 0, the caller still owns the rbio and must continue with 670 * IO submission. If we return 1, the caller must assume the rbio has 671 * already been freed. 672 */ 673static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 674{ 675 struct btrfs_stripe_hash *h; 676 struct btrfs_raid_bio *cur; 677 struct btrfs_raid_bio *pending; 678 unsigned long flags; 679 struct btrfs_raid_bio *freeit = NULL; 680 struct btrfs_raid_bio *cache_drop = NULL; 681 int ret = 0; 682 683 h = rbio->fs_info->stripe_hash_table->table + rbio_bucket(rbio); 684 685 spin_lock_irqsave(&h->lock, flags); 686 list_for_each_entry(cur, &h->hash_list, hash_list) { 687 if (cur->bbio->raid_map[0] != rbio->bbio->raid_map[0]) 688 continue; 689 690 spin_lock(&cur->bio_list_lock); 691 692 /* Can we steal this cached rbio's pages? */ 693 if (bio_list_empty(&cur->bio_list) && 694 list_empty(&cur->plug_list) && 695 test_bit(RBIO_CACHE_BIT, &cur->flags) && 696 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 697 list_del_init(&cur->hash_list); 698 refcount_dec(&cur->refs); 699 700 steal_rbio(cur, rbio); 701 cache_drop = cur; 702 spin_unlock(&cur->bio_list_lock); 703 704 goto lockit; 705 } 706 707 /* Can we merge into the lock owner? */ 708 if (rbio_can_merge(cur, rbio)) { 709 merge_rbio(cur, rbio); 710 spin_unlock(&cur->bio_list_lock); 711 freeit = rbio; 712 ret = 1; 713 goto out; 714 } 715 716 717 /* 718 * We couldn't merge with the running rbio, see if we can merge 719 * with the pending ones. We don't have to check for rmw_locked 720 * because there is no way they are inside finish_rmw right now 721 */ 722 list_for_each_entry(pending, &cur->plug_list, plug_list) { 723 if (rbio_can_merge(pending, rbio)) { 724 merge_rbio(pending, rbio); 725 spin_unlock(&cur->bio_list_lock); 726 freeit = rbio; 727 ret = 1; 728 goto out; 729 } 730 } 731 732 /* 733 * No merging, put us on the tail of the plug list, our rbio 734 * will be started with the currently running rbio unlocks 735 */ 736 list_add_tail(&rbio->plug_list, &cur->plug_list); 737 spin_unlock(&cur->bio_list_lock); 738 ret = 1; 739 goto out; 740 } 741lockit: 742 refcount_inc(&rbio->refs); 743 list_add(&rbio->hash_list, &h->hash_list); 744out: 745 spin_unlock_irqrestore(&h->lock, flags); 746 if (cache_drop) 747 remove_rbio_from_cache(cache_drop); 748 if (freeit) 749 __free_raid_bio(freeit); 750 return ret; 751} 752 753/* 754 * called as rmw or parity rebuild is completed. If the plug list has more 755 * rbios waiting for this stripe, the next one on the list will be started 756 */ 757static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 758{ 759 int bucket; 760 struct btrfs_stripe_hash *h; 761 unsigned long flags; 762 int keep_cache = 0; 763 764 bucket = rbio_bucket(rbio); 765 h = rbio->fs_info->stripe_hash_table->table + bucket; 766 767 if (list_empty(&rbio->plug_list)) 768 cache_rbio(rbio); 769 770 spin_lock_irqsave(&h->lock, flags); 771 spin_lock(&rbio->bio_list_lock); 772 773 if (!list_empty(&rbio->hash_list)) { 774 /* 775 * if we're still cached and there is no other IO 776 * to perform, just leave this rbio here for others 777 * to steal from later 778 */ 779 if (list_empty(&rbio->plug_list) && 780 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 781 keep_cache = 1; 782 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 783 BUG_ON(!bio_list_empty(&rbio->bio_list)); 784 goto done; 785 } 786 787 list_del_init(&rbio->hash_list); 788 refcount_dec(&rbio->refs); 789 790 /* 791 * we use the plug list to hold all the rbios 792 * waiting for the chance to lock this stripe. 793 * hand the lock over to one of them. 794 */ 795 if (!list_empty(&rbio->plug_list)) { 796 struct btrfs_raid_bio *next; 797 struct list_head *head = rbio->plug_list.next; 798 799 next = list_entry(head, struct btrfs_raid_bio, 800 plug_list); 801 802 list_del_init(&rbio->plug_list); 803 804 list_add(&next->hash_list, &h->hash_list); 805 refcount_inc(&next->refs); 806 spin_unlock(&rbio->bio_list_lock); 807 spin_unlock_irqrestore(&h->lock, flags); 808 809 if (next->operation == BTRFS_RBIO_READ_REBUILD) 810 start_async_work(next, read_rebuild_work); 811 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { 812 steal_rbio(rbio, next); 813 start_async_work(next, read_rebuild_work); 814 } else if (next->operation == BTRFS_RBIO_WRITE) { 815 steal_rbio(rbio, next); 816 start_async_work(next, rmw_work); 817 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 818 steal_rbio(rbio, next); 819 start_async_work(next, scrub_parity_work); 820 } 821 822 goto done_nolock; 823 } 824 } 825done: 826 spin_unlock(&rbio->bio_list_lock); 827 spin_unlock_irqrestore(&h->lock, flags); 828 829done_nolock: 830 if (!keep_cache) 831 remove_rbio_from_cache(rbio); 832} 833 834static void __free_raid_bio(struct btrfs_raid_bio *rbio) 835{ 836 int i; 837 838 if (!refcount_dec_and_test(&rbio->refs)) 839 return; 840 841 WARN_ON(!list_empty(&rbio->stripe_cache)); 842 WARN_ON(!list_empty(&rbio->hash_list)); 843 WARN_ON(!bio_list_empty(&rbio->bio_list)); 844 845 for (i = 0; i < rbio->nr_pages; i++) { 846 if (rbio->stripe_pages[i]) { 847 __free_page(rbio->stripe_pages[i]); 848 rbio->stripe_pages[i] = NULL; 849 } 850 } 851 852 btrfs_put_bbio(rbio->bbio); 853 kfree(rbio); 854} 855 856static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) 857{ 858 struct bio *next; 859 860 while (cur) { 861 next = cur->bi_next; 862 cur->bi_next = NULL; 863 cur->bi_status = err; 864 bio_endio(cur); 865 cur = next; 866 } 867} 868 869/* 870 * this frees the rbio and runs through all the bios in the 871 * bio_list and calls end_io on them 872 */ 873static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) 874{ 875 struct bio *cur = bio_list_get(&rbio->bio_list); 876 struct bio *extra; 877 878 if (rbio->generic_bio_cnt) 879 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); 880 /* 881 * Clear the data bitmap, as the rbio may be cached for later usage. 882 * do this before before unlock_stripe() so there will be no new bio 883 * for this bio. 884 */ 885 bitmap_clear(rbio->dbitmap, 0, rbio->stripe_npages); 886 887 /* 888 * At this moment, rbio->bio_list is empty, however since rbio does not 889 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the 890 * hash list, rbio may be merged with others so that rbio->bio_list 891 * becomes non-empty. 892 * Once unlock_stripe() is done, rbio->bio_list will not be updated any 893 * more and we can call bio_endio() on all queued bios. 894 */ 895 unlock_stripe(rbio); 896 extra = bio_list_get(&rbio->bio_list); 897 __free_raid_bio(rbio); 898 899 rbio_endio_bio_list(cur, err); 900 if (extra) 901 rbio_endio_bio_list(extra, err); 902} 903 904/* 905 * end io function used by finish_rmw. When we finally 906 * get here, we've written a full stripe 907 */ 908static void raid_write_end_io(struct bio *bio) 909{ 910 struct btrfs_raid_bio *rbio = bio->bi_private; 911 blk_status_t err = bio->bi_status; 912 int max_errors; 913 914 if (err) 915 fail_bio_stripe(rbio, bio); 916 917 bio_put(bio); 918 919 if (!atomic_dec_and_test(&rbio->stripes_pending)) 920 return; 921 922 err = BLK_STS_OK; 923 924 /* OK, we have read all the stripes we need to. */ 925 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? 926 0 : rbio->bbio->max_errors; 927 if (atomic_read(&rbio->error) > max_errors) 928 err = BLK_STS_IOERR; 929 930 rbio_orig_end_io(rbio, err); 931} 932 933/* 934 * the read/modify/write code wants to use the original bio for 935 * any pages it included, and then use the rbio for everything 936 * else. This function decides if a given index (stripe number) 937 * and page number in that stripe fall inside the original bio 938 * or the rbio. 939 * 940 * if you set bio_list_only, you'll get a NULL back for any ranges 941 * that are outside the bio_list 942 * 943 * This doesn't take any refs on anything, you get a bare page pointer 944 * and the caller must bump refs as required. 945 * 946 * You must call index_rbio_pages once before you can trust 947 * the answers from this function. 948 */ 949static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, 950 int index, int pagenr, int bio_list_only) 951{ 952 int chunk_page; 953 struct page *p = NULL; 954 955 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; 956 957 spin_lock_irq(&rbio->bio_list_lock); 958 p = rbio->bio_pages[chunk_page]; 959 spin_unlock_irq(&rbio->bio_list_lock); 960 961 if (p || bio_list_only) 962 return p; 963 964 return rbio->stripe_pages[chunk_page]; 965} 966 967/* 968 * number of pages we need for the entire stripe across all the 969 * drives 970 */ 971static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) 972{ 973 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes; 974} 975 976/* 977 * allocation and initial setup for the btrfs_raid_bio. Not 978 * this does not allocate any pages for rbio->pages. 979 */ 980static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, 981 struct btrfs_bio *bbio, 982 u64 stripe_len) 983{ 984 struct btrfs_raid_bio *rbio; 985 int nr_data = 0; 986 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; 987 int num_pages = rbio_nr_pages(stripe_len, real_stripes); 988 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); 989 void *p; 990 991 rbio = kzalloc(sizeof(*rbio) + 992 sizeof(*rbio->stripe_pages) * num_pages + 993 sizeof(*rbio->bio_pages) * num_pages + 994 sizeof(*rbio->finish_pointers) * real_stripes + 995 sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) + 996 sizeof(*rbio->finish_pbitmap) * 997 BITS_TO_LONGS(stripe_npages), 998 GFP_NOFS); 999 if (!rbio) 1000 return ERR_PTR(-ENOMEM); 1001 1002 bio_list_init(&rbio->bio_list); 1003 INIT_LIST_HEAD(&rbio->plug_list); 1004 spin_lock_init(&rbio->bio_list_lock); 1005 INIT_LIST_HEAD(&rbio->stripe_cache); 1006 INIT_LIST_HEAD(&rbio->hash_list); 1007 rbio->bbio = bbio; 1008 rbio->fs_info = fs_info; 1009 rbio->stripe_len = stripe_len; 1010 rbio->nr_pages = num_pages; 1011 rbio->real_stripes = real_stripes; 1012 rbio->stripe_npages = stripe_npages; 1013 rbio->faila = -1; 1014 rbio->failb = -1; 1015 refcount_set(&rbio->refs, 1); 1016 atomic_set(&rbio->error, 0); 1017 atomic_set(&rbio->stripes_pending, 0); 1018 1019 /* 1020 * the stripe_pages, bio_pages, etc arrays point to the extra 1021 * memory we allocated past the end of the rbio 1022 */ 1023 p = rbio + 1; 1024#define CONSUME_ALLOC(ptr, count) do { \ 1025 ptr = p; \ 1026 p = (unsigned char *)p + sizeof(*(ptr)) * (count); \ 1027 } while (0) 1028 CONSUME_ALLOC(rbio->stripe_pages, num_pages); 1029 CONSUME_ALLOC(rbio->bio_pages, num_pages); 1030 CONSUME_ALLOC(rbio->finish_pointers, real_stripes); 1031 CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages)); 1032 CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages)); 1033#undef CONSUME_ALLOC 1034 1035 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1036 nr_data = real_stripes - 1; 1037 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1038 nr_data = real_stripes - 2; 1039 else 1040 BUG(); 1041 1042 rbio->nr_data = nr_data; 1043 return rbio; 1044} 1045 1046/* allocate pages for all the stripes in the bio, including parity */ 1047static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 1048{ 1049 int i; 1050 struct page *page; 1051 1052 for (i = 0; i < rbio->nr_pages; i++) { 1053 if (rbio->stripe_pages[i]) 1054 continue; 1055 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1056 if (!page) 1057 return -ENOMEM; 1058 rbio->stripe_pages[i] = page; 1059 } 1060 return 0; 1061} 1062 1063/* only allocate pages for p/q stripes */ 1064static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 1065{ 1066 int i; 1067 struct page *page; 1068 1069 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0); 1070 1071 for (; i < rbio->nr_pages; i++) { 1072 if (rbio->stripe_pages[i]) 1073 continue; 1074 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1075 if (!page) 1076 return -ENOMEM; 1077 rbio->stripe_pages[i] = page; 1078 } 1079 return 0; 1080} 1081 1082/* 1083 * add a single page from a specific stripe into our list of bios for IO 1084 * this will try to merge into existing bios if possible, and returns 1085 * zero if all went well. 1086 */ 1087static int rbio_add_io_page(struct btrfs_raid_bio *rbio, 1088 struct bio_list *bio_list, 1089 struct page *page, 1090 int stripe_nr, 1091 unsigned long page_index, 1092 unsigned long bio_max_len) 1093{ 1094 struct bio *last = bio_list->tail; 1095 int ret; 1096 struct bio *bio; 1097 struct btrfs_bio_stripe *stripe; 1098 u64 disk_start; 1099 1100 stripe = &rbio->bbio->stripes[stripe_nr]; 1101 disk_start = stripe->physical + (page_index << PAGE_SHIFT); 1102 1103 /* if the device is missing, just fail this stripe */ 1104 if (!stripe->dev->bdev) 1105 return fail_rbio_index(rbio, stripe_nr); 1106 1107 /* see if we can add this page onto our existing bio */ 1108 if (last) { 1109 u64 last_end = (u64)last->bi_iter.bi_sector << 9; 1110 last_end += last->bi_iter.bi_size; 1111 1112 /* 1113 * we can't merge these if they are from different 1114 * devices or if they are not contiguous 1115 */ 1116 if (last_end == disk_start && !last->bi_status && 1117 last->bi_disk == stripe->dev->bdev->bd_disk && 1118 last->bi_partno == stripe->dev->bdev->bd_partno) { 1119 ret = bio_add_page(last, page, PAGE_SIZE, 0); 1120 if (ret == PAGE_SIZE) 1121 return 0; 1122 } 1123 } 1124 1125 /* put a new bio on the list */ 1126 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1); 1127 btrfs_io_bio(bio)->device = stripe->dev; 1128 bio->bi_iter.bi_size = 0; 1129 bio_set_dev(bio, stripe->dev->bdev); 1130 bio->bi_iter.bi_sector = disk_start >> 9; 1131 1132 bio_add_page(bio, page, PAGE_SIZE, 0); 1133 bio_list_add(bio_list, bio); 1134 return 0; 1135} 1136 1137/* 1138 * while we're doing the read/modify/write cycle, we could 1139 * have errors in reading pages off the disk. This checks 1140 * for errors and if we're not able to read the page it'll 1141 * trigger parity reconstruction. The rmw will be finished 1142 * after we've reconstructed the failed stripes 1143 */ 1144static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) 1145{ 1146 if (rbio->faila >= 0 || rbio->failb >= 0) { 1147 BUG_ON(rbio->faila == rbio->real_stripes - 1); 1148 __raid56_parity_recover(rbio); 1149 } else { 1150 finish_rmw(rbio); 1151 } 1152} 1153 1154/* 1155 * helper function to walk our bio list and populate the bio_pages array with 1156 * the result. This seems expensive, but it is faster than constantly 1157 * searching through the bio list as we setup the IO in finish_rmw or stripe 1158 * reconstruction. 1159 * 1160 * This must be called before you trust the answers from page_in_rbio 1161 */ 1162static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1163{ 1164 struct bio *bio; 1165 u64 start; 1166 unsigned long stripe_offset; 1167 unsigned long page_index; 1168 1169 spin_lock_irq(&rbio->bio_list_lock); 1170 bio_list_for_each(bio, &rbio->bio_list) { 1171 struct bio_vec bvec; 1172 struct bvec_iter iter; 1173 int i = 0; 1174 1175 start = (u64)bio->bi_iter.bi_sector << 9; 1176 stripe_offset = start - rbio->bbio->raid_map[0]; 1177 page_index = stripe_offset >> PAGE_SHIFT; 1178 1179 if (bio_flagged(bio, BIO_CLONED)) 1180 bio->bi_iter = btrfs_io_bio(bio)->iter; 1181 1182 bio_for_each_segment(bvec, bio, iter) { 1183 rbio->bio_pages[page_index + i] = bvec.bv_page; 1184 i++; 1185 } 1186 } 1187 spin_unlock_irq(&rbio->bio_list_lock); 1188} 1189 1190/* 1191 * this is called from one of two situations. We either 1192 * have a full stripe from the higher layers, or we've read all 1193 * the missing bits off disk. 1194 * 1195 * This will calculate the parity and then send down any 1196 * changed blocks. 1197 */ 1198static noinline void finish_rmw(struct btrfs_raid_bio *rbio) 1199{ 1200 struct btrfs_bio *bbio = rbio->bbio; 1201 void **pointers = rbio->finish_pointers; 1202 int nr_data = rbio->nr_data; 1203 int stripe; 1204 int pagenr; 1205 bool has_qstripe; 1206 struct bio_list bio_list; 1207 struct bio *bio; 1208 int ret; 1209 1210 bio_list_init(&bio_list); 1211 1212 if (rbio->real_stripes - rbio->nr_data == 1) 1213 has_qstripe = false; 1214 else if (rbio->real_stripes - rbio->nr_data == 2) 1215 has_qstripe = true; 1216 else 1217 BUG(); 1218 1219 /* We should have at least one data sector. */ 1220 ASSERT(bitmap_weight(rbio->dbitmap, rbio->stripe_npages)); 1221 1222 /* at this point we either have a full stripe, 1223 * or we've read the full stripe from the drive. 1224 * recalculate the parity and write the new results. 1225 * 1226 * We're not allowed to add any new bios to the 1227 * bio list here, anyone else that wants to 1228 * change this stripe needs to do their own rmw. 1229 */ 1230 spin_lock_irq(&rbio->bio_list_lock); 1231 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1232 spin_unlock_irq(&rbio->bio_list_lock); 1233 1234 atomic_set(&rbio->error, 0); 1235 1236 /* 1237 * now that we've set rmw_locked, run through the 1238 * bio list one last time and map the page pointers 1239 * 1240 * We don't cache full rbios because we're assuming 1241 * the higher layers are unlikely to use this area of 1242 * the disk again soon. If they do use it again, 1243 * hopefully they will send another full bio. 1244 */ 1245 index_rbio_pages(rbio); 1246 if (!rbio_is_full(rbio)) 1247 cache_rbio_pages(rbio); 1248 else 1249 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1250 1251 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1252 struct page *p; 1253 /* first collect one page from each data stripe */ 1254 for (stripe = 0; stripe < nr_data; stripe++) { 1255 p = page_in_rbio(rbio, stripe, pagenr, 0); 1256 pointers[stripe] = kmap(p); 1257 } 1258 1259 /* then add the parity stripe */ 1260 p = rbio_pstripe_page(rbio, pagenr); 1261 SetPageUptodate(p); 1262 pointers[stripe++] = kmap(p); 1263 1264 if (has_qstripe) { 1265 1266 /* 1267 * raid6, add the qstripe and call the 1268 * library function to fill in our p/q 1269 */ 1270 p = rbio_qstripe_page(rbio, pagenr); 1271 SetPageUptodate(p); 1272 pointers[stripe++] = kmap(p); 1273 1274 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 1275 pointers); 1276 } else { 1277 /* raid5 */ 1278 copy_page(pointers[nr_data], pointers[0]); 1279 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 1280 } 1281 1282 1283 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 1284 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 1285 } 1286 1287 /* 1288 * time to start writing. Make bios for everything from the 1289 * higher layers (the bio_list in our rbio) and our p/q. Ignore 1290 * everything else. 1291 */ 1292 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1293 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1294 struct page *page; 1295 1296 /* This vertical stripe has no data, skip it. */ 1297 if (!test_bit(pagenr, rbio->dbitmap)) 1298 continue; 1299 1300 if (stripe < rbio->nr_data) { 1301 page = page_in_rbio(rbio, stripe, pagenr, 1); 1302 if (!page) 1303 continue; 1304 } else { 1305 page = rbio_stripe_page(rbio, stripe, pagenr); 1306 } 1307 1308 ret = rbio_add_io_page(rbio, &bio_list, 1309 page, stripe, pagenr, rbio->stripe_len); 1310 if (ret) 1311 goto cleanup; 1312 } 1313 } 1314 1315 if (likely(!bbio->num_tgtdevs)) 1316 goto write_data; 1317 1318 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1319 if (!bbio->tgtdev_map[stripe]) 1320 continue; 1321 1322 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1323 struct page *page; 1324 1325 /* This vertical stripe has no data, skip it. */ 1326 if (!test_bit(pagenr, rbio->dbitmap)) 1327 continue; 1328 1329 if (stripe < rbio->nr_data) { 1330 page = page_in_rbio(rbio, stripe, pagenr, 1); 1331 if (!page) 1332 continue; 1333 } else { 1334 page = rbio_stripe_page(rbio, stripe, pagenr); 1335 } 1336 1337 ret = rbio_add_io_page(rbio, &bio_list, page, 1338 rbio->bbio->tgtdev_map[stripe], 1339 pagenr, rbio->stripe_len); 1340 if (ret) 1341 goto cleanup; 1342 } 1343 } 1344 1345write_data: 1346 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); 1347 BUG_ON(atomic_read(&rbio->stripes_pending) == 0); 1348 1349 while ((bio = bio_list_pop(&bio_list))) { 1350 bio->bi_private = rbio; 1351 bio->bi_end_io = raid_write_end_io; 1352 bio->bi_opf = REQ_OP_WRITE; 1353 1354 submit_bio(bio); 1355 } 1356 return; 1357 1358cleanup: 1359 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1360 1361 while ((bio = bio_list_pop(&bio_list))) 1362 bio_put(bio); 1363} 1364 1365/* 1366 * helper to find the stripe number for a given bio. Used to figure out which 1367 * stripe has failed. This expects the bio to correspond to a physical disk, 1368 * so it looks up based on physical sector numbers. 1369 */ 1370static int find_bio_stripe(struct btrfs_raid_bio *rbio, 1371 struct bio *bio) 1372{ 1373 u64 physical = bio->bi_iter.bi_sector; 1374 int i; 1375 struct btrfs_bio_stripe *stripe; 1376 1377 physical <<= 9; 1378 1379 for (i = 0; i < rbio->bbio->num_stripes; i++) { 1380 stripe = &rbio->bbio->stripes[i]; 1381 if (in_range(physical, stripe->physical, rbio->stripe_len) && 1382 stripe->dev->bdev && 1383 bio->bi_disk == stripe->dev->bdev->bd_disk && 1384 bio->bi_partno == stripe->dev->bdev->bd_partno) { 1385 return i; 1386 } 1387 } 1388 return -1; 1389} 1390 1391/* 1392 * helper to find the stripe number for a given 1393 * bio (before mapping). Used to figure out which stripe has 1394 * failed. This looks up based on logical block numbers. 1395 */ 1396static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, 1397 struct bio *bio) 1398{ 1399 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1400 int i; 1401 1402 for (i = 0; i < rbio->nr_data; i++) { 1403 u64 stripe_start = rbio->bbio->raid_map[i]; 1404 1405 if (in_range(logical, stripe_start, rbio->stripe_len)) 1406 return i; 1407 } 1408 return -1; 1409} 1410 1411/* 1412 * returns -EIO if we had too many failures 1413 */ 1414static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) 1415{ 1416 unsigned long flags; 1417 int ret = 0; 1418 1419 spin_lock_irqsave(&rbio->bio_list_lock, flags); 1420 1421 /* we already know this stripe is bad, move on */ 1422 if (rbio->faila == failed || rbio->failb == failed) 1423 goto out; 1424 1425 if (rbio->faila == -1) { 1426 /* first failure on this rbio */ 1427 rbio->faila = failed; 1428 atomic_inc(&rbio->error); 1429 } else if (rbio->failb == -1) { 1430 /* second failure on this rbio */ 1431 rbio->failb = failed; 1432 atomic_inc(&rbio->error); 1433 } else { 1434 ret = -EIO; 1435 } 1436out: 1437 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 1438 1439 return ret; 1440} 1441 1442/* 1443 * helper to fail a stripe based on a physical disk 1444 * bio. 1445 */ 1446static int fail_bio_stripe(struct btrfs_raid_bio *rbio, 1447 struct bio *bio) 1448{ 1449 int failed = find_bio_stripe(rbio, bio); 1450 1451 if (failed < 0) 1452 return -EIO; 1453 1454 return fail_rbio_index(rbio, failed); 1455} 1456 1457/* 1458 * this sets each page in the bio uptodate. It should only be used on private 1459 * rbio pages, nothing that comes in from the higher layers 1460 */ 1461static void set_bio_pages_uptodate(struct bio *bio) 1462{ 1463 struct bio_vec *bvec; 1464 struct bvec_iter_all iter_all; 1465 1466 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1467 1468 bio_for_each_segment_all(bvec, bio, iter_all) 1469 SetPageUptodate(bvec->bv_page); 1470} 1471 1472/* 1473 * end io for the read phase of the rmw cycle. All the bios here are physical 1474 * stripe bios we've read from the disk so we can recalculate the parity of the 1475 * stripe. 1476 * 1477 * This will usually kick off finish_rmw once all the bios are read in, but it 1478 * may trigger parity reconstruction if we had any errors along the way 1479 */ 1480static void raid_rmw_end_io(struct bio *bio) 1481{ 1482 struct btrfs_raid_bio *rbio = bio->bi_private; 1483 1484 if (bio->bi_status) 1485 fail_bio_stripe(rbio, bio); 1486 else 1487 set_bio_pages_uptodate(bio); 1488 1489 bio_put(bio); 1490 1491 if (!atomic_dec_and_test(&rbio->stripes_pending)) 1492 return; 1493 1494 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 1495 goto cleanup; 1496 1497 /* 1498 * this will normally call finish_rmw to start our write 1499 * but if there are any failed stripes we'll reconstruct 1500 * from parity first 1501 */ 1502 validate_rbio_for_rmw(rbio); 1503 return; 1504 1505cleanup: 1506 1507 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1508} 1509 1510/* 1511 * the stripe must be locked by the caller. It will 1512 * unlock after all the writes are done 1513 */ 1514static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) 1515{ 1516 int bios_to_read = 0; 1517 struct bio_list bio_list; 1518 int ret; 1519 int pagenr; 1520 int stripe; 1521 struct bio *bio; 1522 1523 bio_list_init(&bio_list); 1524 1525 ret = alloc_rbio_pages(rbio); 1526 if (ret) 1527 goto cleanup; 1528 1529 index_rbio_pages(rbio); 1530 1531 atomic_set(&rbio->error, 0); 1532 /* 1533 * build a list of bios to read all the missing parts of this 1534 * stripe 1535 */ 1536 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1537 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1538 struct page *page; 1539 /* 1540 * we want to find all the pages missing from 1541 * the rbio and read them from the disk. If 1542 * page_in_rbio finds a page in the bio list 1543 * we don't need to read it off the stripe. 1544 */ 1545 page = page_in_rbio(rbio, stripe, pagenr, 1); 1546 if (page) 1547 continue; 1548 1549 page = rbio_stripe_page(rbio, stripe, pagenr); 1550 /* 1551 * the bio cache may have handed us an uptodate 1552 * page. If so, be happy and use it 1553 */ 1554 if (PageUptodate(page)) 1555 continue; 1556 1557 ret = rbio_add_io_page(rbio, &bio_list, page, 1558 stripe, pagenr, rbio->stripe_len); 1559 if (ret) 1560 goto cleanup; 1561 } 1562 } 1563 1564 bios_to_read = bio_list_size(&bio_list); 1565 if (!bios_to_read) { 1566 /* 1567 * this can happen if others have merged with 1568 * us, it means there is nothing left to read. 1569 * But if there are missing devices it may not be 1570 * safe to do the full stripe write yet. 1571 */ 1572 goto finish; 1573 } 1574 1575 /* 1576 * the bbio may be freed once we submit the last bio. Make sure 1577 * not to touch it after that 1578 */ 1579 atomic_set(&rbio->stripes_pending, bios_to_read); 1580 while ((bio = bio_list_pop(&bio_list))) { 1581 bio->bi_private = rbio; 1582 bio->bi_end_io = raid_rmw_end_io; 1583 bio->bi_opf = REQ_OP_READ; 1584 1585 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 1586 1587 submit_bio(bio); 1588 } 1589 /* the actual write will happen once the reads are done */ 1590 return 0; 1591 1592cleanup: 1593 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1594 1595 while ((bio = bio_list_pop(&bio_list))) 1596 bio_put(bio); 1597 1598 return -EIO; 1599 1600finish: 1601 validate_rbio_for_rmw(rbio); 1602 return 0; 1603} 1604 1605/* 1606 * if the upper layers pass in a full stripe, we thank them by only allocating 1607 * enough pages to hold the parity, and sending it all down quickly. 1608 */ 1609static int full_stripe_write(struct btrfs_raid_bio *rbio) 1610{ 1611 int ret; 1612 1613 ret = alloc_rbio_parity_pages(rbio); 1614 if (ret) { 1615 __free_raid_bio(rbio); 1616 return ret; 1617 } 1618 1619 ret = lock_stripe_add(rbio); 1620 if (ret == 0) 1621 finish_rmw(rbio); 1622 return 0; 1623} 1624 1625/* 1626 * partial stripe writes get handed over to async helpers. 1627 * We're really hoping to merge a few more writes into this 1628 * rbio before calculating new parity 1629 */ 1630static int partial_stripe_write(struct btrfs_raid_bio *rbio) 1631{ 1632 int ret; 1633 1634 ret = lock_stripe_add(rbio); 1635 if (ret == 0) 1636 start_async_work(rbio, rmw_work); 1637 return 0; 1638} 1639 1640/* 1641 * sometimes while we were reading from the drive to 1642 * recalculate parity, enough new bios come into create 1643 * a full stripe. So we do a check here to see if we can 1644 * go directly to finish_rmw 1645 */ 1646static int __raid56_parity_write(struct btrfs_raid_bio *rbio) 1647{ 1648 /* head off into rmw land if we don't have a full stripe */ 1649 if (!rbio_is_full(rbio)) 1650 return partial_stripe_write(rbio); 1651 return full_stripe_write(rbio); 1652} 1653 1654/* 1655 * We use plugging call backs to collect full stripes. 1656 * Any time we get a partial stripe write while plugged 1657 * we collect it into a list. When the unplug comes down, 1658 * we sort the list by logical block number and merge 1659 * everything we can into the same rbios 1660 */ 1661struct btrfs_plug_cb { 1662 struct blk_plug_cb cb; 1663 struct btrfs_fs_info *info; 1664 struct list_head rbio_list; 1665 struct btrfs_work work; 1666}; 1667 1668/* 1669 * rbios on the plug list are sorted for easier merging. 1670 */ 1671static int plug_cmp(void *priv, const struct list_head *a, 1672 const struct list_head *b) 1673{ 1674 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1675 plug_list); 1676 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1677 plug_list); 1678 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1679 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1680 1681 if (a_sector < b_sector) 1682 return -1; 1683 if (a_sector > b_sector) 1684 return 1; 1685 return 0; 1686} 1687 1688static void run_plug(struct btrfs_plug_cb *plug) 1689{ 1690 struct btrfs_raid_bio *cur; 1691 struct btrfs_raid_bio *last = NULL; 1692 1693 /* 1694 * sort our plug list then try to merge 1695 * everything we can in hopes of creating full 1696 * stripes. 1697 */ 1698 list_sort(NULL, &plug->rbio_list, plug_cmp); 1699 while (!list_empty(&plug->rbio_list)) { 1700 cur = list_entry(plug->rbio_list.next, 1701 struct btrfs_raid_bio, plug_list); 1702 list_del_init(&cur->plug_list); 1703 1704 if (rbio_is_full(cur)) { 1705 int ret; 1706 1707 /* we have a full stripe, send it down */ 1708 ret = full_stripe_write(cur); 1709 BUG_ON(ret); 1710 continue; 1711 } 1712 if (last) { 1713 if (rbio_can_merge(last, cur)) { 1714 merge_rbio(last, cur); 1715 __free_raid_bio(cur); 1716 continue; 1717 1718 } 1719 __raid56_parity_write(last); 1720 } 1721 last = cur; 1722 } 1723 if (last) { 1724 __raid56_parity_write(last); 1725 } 1726 kfree(plug); 1727} 1728 1729/* 1730 * if the unplug comes from schedule, we have to push the 1731 * work off to a helper thread 1732 */ 1733static void unplug_work(struct btrfs_work *work) 1734{ 1735 struct btrfs_plug_cb *plug; 1736 plug = container_of(work, struct btrfs_plug_cb, work); 1737 run_plug(plug); 1738} 1739 1740static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1741{ 1742 struct btrfs_plug_cb *plug; 1743 plug = container_of(cb, struct btrfs_plug_cb, cb); 1744 1745 if (from_schedule) { 1746 btrfs_init_work(&plug->work, unplug_work, NULL, NULL); 1747 btrfs_queue_work(plug->info->rmw_workers, 1748 &plug->work); 1749 return; 1750 } 1751 run_plug(plug); 1752} 1753 1754/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */ 1755static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio) 1756{ 1757 const struct btrfs_fs_info *fs_info = rbio->fs_info; 1758 const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT; 1759 const u64 full_stripe_start = rbio->bbio->raid_map[0]; 1760 const u32 orig_len = orig_bio->bi_iter.bi_size; 1761 const u32 sectorsize = fs_info->sectorsize; 1762 u64 cur_logical; 1763 1764 ASSERT(orig_logical >= full_stripe_start && 1765 orig_logical + orig_len <= full_stripe_start + 1766 rbio->nr_data * rbio->stripe_len); 1767 1768 bio_list_add(&rbio->bio_list, orig_bio); 1769 rbio->bio_list_bytes += orig_bio->bi_iter.bi_size; 1770 1771 /* Update the dbitmap. */ 1772 for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len; 1773 cur_logical += sectorsize) { 1774 int bit = ((u32)(cur_logical - full_stripe_start) >> 1775 PAGE_SHIFT) % rbio->stripe_npages; 1776 1777 set_bit(bit, rbio->dbitmap); 1778 } 1779} 1780 1781/* 1782 * our main entry point for writes from the rest of the FS. 1783 */ 1784int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio, 1785 struct btrfs_bio *bbio, u64 stripe_len) 1786{ 1787 struct btrfs_raid_bio *rbio; 1788 struct btrfs_plug_cb *plug = NULL; 1789 struct blk_plug_cb *cb; 1790 int ret; 1791 1792 rbio = alloc_rbio(fs_info, bbio, stripe_len); 1793 if (IS_ERR(rbio)) { 1794 btrfs_put_bbio(bbio); 1795 return PTR_ERR(rbio); 1796 } 1797 rbio->operation = BTRFS_RBIO_WRITE; 1798 rbio_add_bio(rbio, bio); 1799 1800 btrfs_bio_counter_inc_noblocked(fs_info); 1801 rbio->generic_bio_cnt = 1; 1802 1803 /* 1804 * don't plug on full rbios, just get them out the door 1805 * as quickly as we can 1806 */ 1807 if (rbio_is_full(rbio)) { 1808 ret = full_stripe_write(rbio); 1809 if (ret) 1810 btrfs_bio_counter_dec(fs_info); 1811 return ret; 1812 } 1813 1814 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug)); 1815 if (cb) { 1816 plug = container_of(cb, struct btrfs_plug_cb, cb); 1817 if (!plug->info) { 1818 plug->info = fs_info; 1819 INIT_LIST_HEAD(&plug->rbio_list); 1820 } 1821 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1822 ret = 0; 1823 } else { 1824 ret = __raid56_parity_write(rbio); 1825 if (ret) 1826 btrfs_bio_counter_dec(fs_info); 1827 } 1828 return ret; 1829} 1830 1831/* 1832 * all parity reconstruction happens here. We've read in everything 1833 * we can find from the drives and this does the heavy lifting of 1834 * sorting the good from the bad. 1835 */ 1836static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) 1837{ 1838 int pagenr, stripe; 1839 void **pointers; 1840 int faila = -1, failb = -1; 1841 struct page *page; 1842 blk_status_t err; 1843 int i; 1844 1845 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1846 if (!pointers) { 1847 err = BLK_STS_RESOURCE; 1848 goto cleanup_io; 1849 } 1850 1851 faila = rbio->faila; 1852 failb = rbio->failb; 1853 1854 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1855 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1856 spin_lock_irq(&rbio->bio_list_lock); 1857 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1858 spin_unlock_irq(&rbio->bio_list_lock); 1859 } 1860 1861 index_rbio_pages(rbio); 1862 1863 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1864 /* 1865 * Now we just use bitmap to mark the horizontal stripes in 1866 * which we have data when doing parity scrub. 1867 */ 1868 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1869 !test_bit(pagenr, rbio->dbitmap)) 1870 continue; 1871 1872 /* setup our array of pointers with pages 1873 * from each stripe 1874 */ 1875 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1876 /* 1877 * if we're rebuilding a read, we have to use 1878 * pages from the bio list 1879 */ 1880 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1881 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1882 (stripe == faila || stripe == failb)) { 1883 page = page_in_rbio(rbio, stripe, pagenr, 0); 1884 } else { 1885 page = rbio_stripe_page(rbio, stripe, pagenr); 1886 } 1887 pointers[stripe] = kmap(page); 1888 } 1889 1890 /* all raid6 handling here */ 1891 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1892 /* 1893 * single failure, rebuild from parity raid5 1894 * style 1895 */ 1896 if (failb < 0) { 1897 if (faila == rbio->nr_data) { 1898 /* 1899 * Just the P stripe has failed, without 1900 * a bad data or Q stripe. 1901 * TODO, we should redo the xor here. 1902 */ 1903 err = BLK_STS_IOERR; 1904 goto cleanup; 1905 } 1906 /* 1907 * a single failure in raid6 is rebuilt 1908 * in the pstripe code below 1909 */ 1910 goto pstripe; 1911 } 1912 1913 /* make sure our ps and qs are in order */ 1914 if (faila > failb) 1915 swap(faila, failb); 1916 1917 /* if the q stripe is failed, do a pstripe reconstruction 1918 * from the xors. 1919 * If both the q stripe and the P stripe are failed, we're 1920 * here due to a crc mismatch and we can't give them the 1921 * data they want 1922 */ 1923 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { 1924 if (rbio->bbio->raid_map[faila] == 1925 RAID5_P_STRIPE) { 1926 err = BLK_STS_IOERR; 1927 goto cleanup; 1928 } 1929 /* 1930 * otherwise we have one bad data stripe and 1931 * a good P stripe. raid5! 1932 */ 1933 goto pstripe; 1934 } 1935 1936 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { 1937 raid6_datap_recov(rbio->real_stripes, 1938 PAGE_SIZE, faila, pointers); 1939 } else { 1940 raid6_2data_recov(rbio->real_stripes, 1941 PAGE_SIZE, faila, failb, 1942 pointers); 1943 } 1944 } else { 1945 void *p; 1946 1947 /* rebuild from P stripe here (raid5 or raid6) */ 1948 BUG_ON(failb != -1); 1949pstripe: 1950 /* Copy parity block into failed block to start with */ 1951 copy_page(pointers[faila], pointers[rbio->nr_data]); 1952 1953 /* rearrange the pointer array */ 1954 p = pointers[faila]; 1955 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) 1956 pointers[stripe] = pointers[stripe + 1]; 1957 pointers[rbio->nr_data - 1] = p; 1958 1959 /* xor in the rest */ 1960 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE); 1961 } 1962 /* if we're doing this rebuild as part of an rmw, go through 1963 * and set all of our private rbio pages in the 1964 * failed stripes as uptodate. This way finish_rmw will 1965 * know they can be trusted. If this was a read reconstruction, 1966 * other endio functions will fiddle the uptodate bits 1967 */ 1968 if (rbio->operation == BTRFS_RBIO_WRITE) { 1969 for (i = 0; i < rbio->stripe_npages; i++) { 1970 if (faila != -1) { 1971 page = rbio_stripe_page(rbio, faila, i); 1972 SetPageUptodate(page); 1973 } 1974 if (failb != -1) { 1975 page = rbio_stripe_page(rbio, failb, i); 1976 SetPageUptodate(page); 1977 } 1978 } 1979 } 1980 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1981 /* 1982 * if we're rebuilding a read, we have to use 1983 * pages from the bio list 1984 */ 1985 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1986 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1987 (stripe == faila || stripe == failb)) { 1988 page = page_in_rbio(rbio, stripe, pagenr, 0); 1989 } else { 1990 page = rbio_stripe_page(rbio, stripe, pagenr); 1991 } 1992 kunmap(page); 1993 } 1994 } 1995 1996 err = BLK_STS_OK; 1997cleanup: 1998 kfree(pointers); 1999 2000cleanup_io: 2001 /* 2002 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a 2003 * valid rbio which is consistent with ondisk content, thus such a 2004 * valid rbio can be cached to avoid further disk reads. 2005 */ 2006 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 2007 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 2008 /* 2009 * - In case of two failures, where rbio->failb != -1: 2010 * 2011 * Do not cache this rbio since the above read reconstruction 2012 * (raid6_datap_recov() or raid6_2data_recov()) may have 2013 * changed some content of stripes which are not identical to 2014 * on-disk content any more, otherwise, a later write/recover 2015 * may steal stripe_pages from this rbio and end up with 2016 * corruptions or rebuild failures. 2017 * 2018 * - In case of single failure, where rbio->failb == -1: 2019 * 2020 * Cache this rbio iff the above read reconstruction is 2021 * executed without problems. 2022 */ 2023 if (err == BLK_STS_OK && rbio->failb < 0) 2024 cache_rbio_pages(rbio); 2025 else 2026 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2027 2028 rbio_orig_end_io(rbio, err); 2029 } else if (err == BLK_STS_OK) { 2030 rbio->faila = -1; 2031 rbio->failb = -1; 2032 2033 if (rbio->operation == BTRFS_RBIO_WRITE) 2034 finish_rmw(rbio); 2035 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) 2036 finish_parity_scrub(rbio, 0); 2037 else 2038 BUG(); 2039 } else { 2040 rbio_orig_end_io(rbio, err); 2041 } 2042} 2043 2044/* 2045 * This is called only for stripes we've read from disk to 2046 * reconstruct the parity. 2047 */ 2048static void raid_recover_end_io(struct bio *bio) 2049{ 2050 struct btrfs_raid_bio *rbio = bio->bi_private; 2051 2052 /* 2053 * we only read stripe pages off the disk, set them 2054 * up to date if there were no errors 2055 */ 2056 if (bio->bi_status) 2057 fail_bio_stripe(rbio, bio); 2058 else 2059 set_bio_pages_uptodate(bio); 2060 bio_put(bio); 2061 2062 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2063 return; 2064 2065 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2066 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2067 else 2068 __raid_recover_end_io(rbio); 2069} 2070 2071/* 2072 * reads everything we need off the disk to reconstruct 2073 * the parity. endio handlers trigger final reconstruction 2074 * when the IO is done. 2075 * 2076 * This is used both for reads from the higher layers and for 2077 * parity construction required to finish a rmw cycle. 2078 */ 2079static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) 2080{ 2081 int bios_to_read = 0; 2082 struct bio_list bio_list; 2083 int ret; 2084 int pagenr; 2085 int stripe; 2086 struct bio *bio; 2087 2088 bio_list_init(&bio_list); 2089 2090 ret = alloc_rbio_pages(rbio); 2091 if (ret) 2092 goto cleanup; 2093 2094 atomic_set(&rbio->error, 0); 2095 2096 /* 2097 * Read everything that hasn't failed. However this time we will 2098 * not trust any cached sector. 2099 * As we may read out some stale data but higher layer is not reading 2100 * that stale part. 2101 * 2102 * So here we always re-read everything in recovery path. 2103 */ 2104 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2105 if (rbio->faila == stripe || rbio->failb == stripe) { 2106 atomic_inc(&rbio->error); 2107 continue; 2108 } 2109 2110 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 2111 ret = rbio_add_io_page(rbio, &bio_list, 2112 rbio_stripe_page(rbio, stripe, pagenr), 2113 stripe, pagenr, rbio->stripe_len); 2114 if (ret < 0) 2115 goto cleanup; 2116 } 2117 } 2118 2119 bios_to_read = bio_list_size(&bio_list); 2120 if (!bios_to_read) { 2121 /* 2122 * we might have no bios to read just because the pages 2123 * were up to date, or we might have no bios to read because 2124 * the devices were gone. 2125 */ 2126 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { 2127 __raid_recover_end_io(rbio); 2128 return 0; 2129 } else { 2130 goto cleanup; 2131 } 2132 } 2133 2134 /* 2135 * the bbio may be freed once we submit the last bio. Make sure 2136 * not to touch it after that 2137 */ 2138 atomic_set(&rbio->stripes_pending, bios_to_read); 2139 while ((bio = bio_list_pop(&bio_list))) { 2140 bio->bi_private = rbio; 2141 bio->bi_end_io = raid_recover_end_io; 2142 bio->bi_opf = REQ_OP_READ; 2143 2144 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2145 2146 submit_bio(bio); 2147 } 2148 2149 return 0; 2150 2151cleanup: 2152 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 2153 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) 2154 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2155 2156 while ((bio = bio_list_pop(&bio_list))) 2157 bio_put(bio); 2158 2159 return -EIO; 2160} 2161 2162/* 2163 * the main entry point for reads from the higher layers. This 2164 * is really only called when the normal read path had a failure, 2165 * so we assume the bio they send down corresponds to a failed part 2166 * of the drive. 2167 */ 2168int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio, 2169 struct btrfs_bio *bbio, u64 stripe_len, 2170 int mirror_num, int generic_io) 2171{ 2172 struct btrfs_raid_bio *rbio; 2173 int ret; 2174 2175 if (generic_io) { 2176 ASSERT(bbio->mirror_num == mirror_num); 2177 btrfs_io_bio(bio)->mirror_num = mirror_num; 2178 } 2179 2180 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2181 if (IS_ERR(rbio)) { 2182 if (generic_io) 2183 btrfs_put_bbio(bbio); 2184 return PTR_ERR(rbio); 2185 } 2186 2187 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2188 rbio_add_bio(rbio, bio); 2189 2190 rbio->faila = find_logical_bio_stripe(rbio, bio); 2191 if (rbio->faila == -1) { 2192 btrfs_warn(fs_info, 2193 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)", 2194 __func__, (u64)bio->bi_iter.bi_sector << 9, 2195 (u64)bio->bi_iter.bi_size, bbio->map_type); 2196 if (generic_io) 2197 btrfs_put_bbio(bbio); 2198 kfree(rbio); 2199 return -EIO; 2200 } 2201 2202 if (generic_io) { 2203 btrfs_bio_counter_inc_noblocked(fs_info); 2204 rbio->generic_bio_cnt = 1; 2205 } else { 2206 btrfs_get_bbio(bbio); 2207 } 2208 2209 /* 2210 * Loop retry: 2211 * for 'mirror == 2', reconstruct from all other stripes. 2212 * for 'mirror_num > 2', select a stripe to fail on every retry. 2213 */ 2214 if (mirror_num > 2) { 2215 /* 2216 * 'mirror == 3' is to fail the p stripe and 2217 * reconstruct from the q stripe. 'mirror > 3' is to 2218 * fail a data stripe and reconstruct from p+q stripe. 2219 */ 2220 rbio->failb = rbio->real_stripes - (mirror_num - 1); 2221 ASSERT(rbio->failb > 0); 2222 if (rbio->failb <= rbio->faila) 2223 rbio->failb--; 2224 } 2225 2226 ret = lock_stripe_add(rbio); 2227 2228 /* 2229 * __raid56_parity_recover will end the bio with 2230 * any errors it hits. We don't want to return 2231 * its error value up the stack because our caller 2232 * will end up calling bio_endio with any nonzero 2233 * return 2234 */ 2235 if (ret == 0) 2236 __raid56_parity_recover(rbio); 2237 /* 2238 * our rbio has been added to the list of 2239 * rbios that will be handled after the 2240 * currently lock owner is done 2241 */ 2242 return 0; 2243 2244} 2245 2246static void rmw_work(struct btrfs_work *work) 2247{ 2248 struct btrfs_raid_bio *rbio; 2249 2250 rbio = container_of(work, struct btrfs_raid_bio, work); 2251 raid56_rmw_stripe(rbio); 2252} 2253 2254static void read_rebuild_work(struct btrfs_work *work) 2255{ 2256 struct btrfs_raid_bio *rbio; 2257 2258 rbio = container_of(work, struct btrfs_raid_bio, work); 2259 __raid56_parity_recover(rbio); 2260} 2261 2262/* 2263 * The following code is used to scrub/replace the parity stripe 2264 * 2265 * Caller must have already increased bio_counter for getting @bbio. 2266 * 2267 * Note: We need make sure all the pages that add into the scrub/replace 2268 * raid bio are correct and not be changed during the scrub/replace. That 2269 * is those pages just hold metadata or file data with checksum. 2270 */ 2271 2272struct btrfs_raid_bio * 2273raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2274 struct btrfs_bio *bbio, u64 stripe_len, 2275 struct btrfs_device *scrub_dev, 2276 unsigned long *dbitmap, int stripe_nsectors) 2277{ 2278 struct btrfs_raid_bio *rbio; 2279 int i; 2280 2281 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2282 if (IS_ERR(rbio)) 2283 return NULL; 2284 bio_list_add(&rbio->bio_list, bio); 2285 /* 2286 * This is a special bio which is used to hold the completion handler 2287 * and make the scrub rbio is similar to the other types 2288 */ 2289 ASSERT(!bio->bi_iter.bi_size); 2290 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2291 2292 /* 2293 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted 2294 * to the end position, so this search can start from the first parity 2295 * stripe. 2296 */ 2297 for (i = rbio->nr_data; i < rbio->real_stripes; i++) { 2298 if (bbio->stripes[i].dev == scrub_dev) { 2299 rbio->scrubp = i; 2300 break; 2301 } 2302 } 2303 ASSERT(i < rbio->real_stripes); 2304 2305 /* Now we just support the sectorsize equals to page size */ 2306 ASSERT(fs_info->sectorsize == PAGE_SIZE); 2307 ASSERT(rbio->stripe_npages == stripe_nsectors); 2308 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); 2309 2310 /* 2311 * We have already increased bio_counter when getting bbio, record it 2312 * so we can free it at rbio_orig_end_io(). 2313 */ 2314 rbio->generic_bio_cnt = 1; 2315 2316 return rbio; 2317} 2318 2319/* Used for both parity scrub and missing. */ 2320void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, 2321 u64 logical) 2322{ 2323 int stripe_offset; 2324 int index; 2325 2326 ASSERT(logical >= rbio->bbio->raid_map[0]); 2327 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + 2328 rbio->stripe_len * rbio->nr_data); 2329 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); 2330 index = stripe_offset >> PAGE_SHIFT; 2331 rbio->bio_pages[index] = page; 2332} 2333 2334/* 2335 * We just scrub the parity that we have correct data on the same horizontal, 2336 * so we needn't allocate all pages for all the stripes. 2337 */ 2338static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2339{ 2340 int i; 2341 int bit; 2342 int index; 2343 struct page *page; 2344 2345 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { 2346 for (i = 0; i < rbio->real_stripes; i++) { 2347 index = i * rbio->stripe_npages + bit; 2348 if (rbio->stripe_pages[index]) 2349 continue; 2350 2351 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2352 if (!page) 2353 return -ENOMEM; 2354 rbio->stripe_pages[index] = page; 2355 } 2356 } 2357 return 0; 2358} 2359 2360static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 2361 int need_check) 2362{ 2363 struct btrfs_bio *bbio = rbio->bbio; 2364 void **pointers = rbio->finish_pointers; 2365 unsigned long *pbitmap = rbio->finish_pbitmap; 2366 int nr_data = rbio->nr_data; 2367 int stripe; 2368 int pagenr; 2369 bool has_qstripe; 2370 struct page *p_page = NULL; 2371 struct page *q_page = NULL; 2372 struct bio_list bio_list; 2373 struct bio *bio; 2374 int is_replace = 0; 2375 int ret; 2376 2377 bio_list_init(&bio_list); 2378 2379 if (rbio->real_stripes - rbio->nr_data == 1) 2380 has_qstripe = false; 2381 else if (rbio->real_stripes - rbio->nr_data == 2) 2382 has_qstripe = true; 2383 else 2384 BUG(); 2385 2386 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { 2387 is_replace = 1; 2388 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); 2389 } 2390 2391 /* 2392 * Because the higher layers(scrubber) are unlikely to 2393 * use this area of the disk again soon, so don't cache 2394 * it. 2395 */ 2396 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2397 2398 if (!need_check) 2399 goto writeback; 2400 2401 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2402 if (!p_page) 2403 goto cleanup; 2404 SetPageUptodate(p_page); 2405 2406 if (has_qstripe) { 2407 /* RAID6, allocate and map temp space for the Q stripe */ 2408 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2409 if (!q_page) { 2410 __free_page(p_page); 2411 goto cleanup; 2412 } 2413 SetPageUptodate(q_page); 2414 pointers[rbio->real_stripes - 1] = kmap(q_page); 2415 } 2416 2417 atomic_set(&rbio->error, 0); 2418 2419 /* Map the parity stripe just once */ 2420 pointers[nr_data] = kmap(p_page); 2421 2422 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2423 struct page *p; 2424 void *parity; 2425 /* first collect one page from each data stripe */ 2426 for (stripe = 0; stripe < nr_data; stripe++) { 2427 p = page_in_rbio(rbio, stripe, pagenr, 0); 2428 pointers[stripe] = kmap(p); 2429 } 2430 2431 if (has_qstripe) { 2432 /* RAID6, call the library function to fill in our P/Q */ 2433 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 2434 pointers); 2435 } else { 2436 /* raid5 */ 2437 copy_page(pointers[nr_data], pointers[0]); 2438 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 2439 } 2440 2441 /* Check scrubbing parity and repair it */ 2442 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2443 parity = kmap(p); 2444 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE)) 2445 copy_page(parity, pointers[rbio->scrubp]); 2446 else 2447 /* Parity is right, needn't writeback */ 2448 bitmap_clear(rbio->dbitmap, pagenr, 1); 2449 kunmap(p); 2450 2451 for (stripe = 0; stripe < nr_data; stripe++) 2452 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 2453 } 2454 2455 kunmap(p_page); 2456 __free_page(p_page); 2457 if (q_page) { 2458 kunmap(q_page); 2459 __free_page(q_page); 2460 } 2461 2462writeback: 2463 /* 2464 * time to start writing. Make bios for everything from the 2465 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2466 * everything else. 2467 */ 2468 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2469 struct page *page; 2470 2471 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2472 ret = rbio_add_io_page(rbio, &bio_list, 2473 page, rbio->scrubp, pagenr, rbio->stripe_len); 2474 if (ret) 2475 goto cleanup; 2476 } 2477 2478 if (!is_replace) 2479 goto submit_write; 2480 2481 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { 2482 struct page *page; 2483 2484 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2485 ret = rbio_add_io_page(rbio, &bio_list, page, 2486 bbio->tgtdev_map[rbio->scrubp], 2487 pagenr, rbio->stripe_len); 2488 if (ret) 2489 goto cleanup; 2490 } 2491 2492submit_write: 2493 nr_data = bio_list_size(&bio_list); 2494 if (!nr_data) { 2495 /* Every parity is right */ 2496 rbio_orig_end_io(rbio, BLK_STS_OK); 2497 return; 2498 } 2499 2500 atomic_set(&rbio->stripes_pending, nr_data); 2501 2502 while ((bio = bio_list_pop(&bio_list))) { 2503 bio->bi_private = rbio; 2504 bio->bi_end_io = raid_write_end_io; 2505 bio->bi_opf = REQ_OP_WRITE; 2506 2507 submit_bio(bio); 2508 } 2509 return; 2510 2511cleanup: 2512 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2513 2514 while ((bio = bio_list_pop(&bio_list))) 2515 bio_put(bio); 2516} 2517 2518static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2519{ 2520 if (stripe >= 0 && stripe < rbio->nr_data) 2521 return 1; 2522 return 0; 2523} 2524 2525/* 2526 * While we're doing the parity check and repair, we could have errors 2527 * in reading pages off the disk. This checks for errors and if we're 2528 * not able to read the page it'll trigger parity reconstruction. The 2529 * parity scrub will be finished after we've reconstructed the failed 2530 * stripes 2531 */ 2532static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) 2533{ 2534 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2535 goto cleanup; 2536 2537 if (rbio->faila >= 0 || rbio->failb >= 0) { 2538 int dfail = 0, failp = -1; 2539 2540 if (is_data_stripe(rbio, rbio->faila)) 2541 dfail++; 2542 else if (is_parity_stripe(rbio->faila)) 2543 failp = rbio->faila; 2544 2545 if (is_data_stripe(rbio, rbio->failb)) 2546 dfail++; 2547 else if (is_parity_stripe(rbio->failb)) 2548 failp = rbio->failb; 2549 2550 /* 2551 * Because we can not use a scrubbing parity to repair 2552 * the data, so the capability of the repair is declined. 2553 * (In the case of RAID5, we can not repair anything) 2554 */ 2555 if (dfail > rbio->bbio->max_errors - 1) 2556 goto cleanup; 2557 2558 /* 2559 * If all data is good, only parity is correctly, just 2560 * repair the parity. 2561 */ 2562 if (dfail == 0) { 2563 finish_parity_scrub(rbio, 0); 2564 return; 2565 } 2566 2567 /* 2568 * Here means we got one corrupted data stripe and one 2569 * corrupted parity on RAID6, if the corrupted parity 2570 * is scrubbing parity, luckily, use the other one to repair 2571 * the data, or we can not repair the data stripe. 2572 */ 2573 if (failp != rbio->scrubp) 2574 goto cleanup; 2575 2576 __raid_recover_end_io(rbio); 2577 } else { 2578 finish_parity_scrub(rbio, 1); 2579 } 2580 return; 2581 2582cleanup: 2583 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2584} 2585 2586/* 2587 * end io for the read phase of the rmw cycle. All the bios here are physical 2588 * stripe bios we've read from the disk so we can recalculate the parity of the 2589 * stripe. 2590 * 2591 * This will usually kick off finish_rmw once all the bios are read in, but it 2592 * may trigger parity reconstruction if we had any errors along the way 2593 */ 2594static void raid56_parity_scrub_end_io(struct bio *bio) 2595{ 2596 struct btrfs_raid_bio *rbio = bio->bi_private; 2597 2598 if (bio->bi_status) 2599 fail_bio_stripe(rbio, bio); 2600 else 2601 set_bio_pages_uptodate(bio); 2602 2603 bio_put(bio); 2604 2605 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2606 return; 2607 2608 /* 2609 * this will normally call finish_rmw to start our write 2610 * but if there are any failed stripes we'll reconstruct 2611 * from parity first 2612 */ 2613 validate_rbio_for_parity_scrub(rbio); 2614} 2615 2616static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) 2617{ 2618 int bios_to_read = 0; 2619 struct bio_list bio_list; 2620 int ret; 2621 int pagenr; 2622 int stripe; 2623 struct bio *bio; 2624 2625 bio_list_init(&bio_list); 2626 2627 ret = alloc_rbio_essential_pages(rbio); 2628 if (ret) 2629 goto cleanup; 2630 2631 atomic_set(&rbio->error, 0); 2632 /* 2633 * build a list of bios to read all the missing parts of this 2634 * stripe 2635 */ 2636 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2637 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2638 struct page *page; 2639 /* 2640 * we want to find all the pages missing from 2641 * the rbio and read them from the disk. If 2642 * page_in_rbio finds a page in the bio list 2643 * we don't need to read it off the stripe. 2644 */ 2645 page = page_in_rbio(rbio, stripe, pagenr, 1); 2646 if (page) 2647 continue; 2648 2649 page = rbio_stripe_page(rbio, stripe, pagenr); 2650 /* 2651 * the bio cache may have handed us an uptodate 2652 * page. If so, be happy and use it 2653 */ 2654 if (PageUptodate(page)) 2655 continue; 2656 2657 ret = rbio_add_io_page(rbio, &bio_list, page, 2658 stripe, pagenr, rbio->stripe_len); 2659 if (ret) 2660 goto cleanup; 2661 } 2662 } 2663 2664 bios_to_read = bio_list_size(&bio_list); 2665 if (!bios_to_read) { 2666 /* 2667 * this can happen if others have merged with 2668 * us, it means there is nothing left to read. 2669 * But if there are missing devices it may not be 2670 * safe to do the full stripe write yet. 2671 */ 2672 goto finish; 2673 } 2674 2675 /* 2676 * the bbio may be freed once we submit the last bio. Make sure 2677 * not to touch it after that 2678 */ 2679 atomic_set(&rbio->stripes_pending, bios_to_read); 2680 while ((bio = bio_list_pop(&bio_list))) { 2681 bio->bi_private = rbio; 2682 bio->bi_end_io = raid56_parity_scrub_end_io; 2683 bio->bi_opf = REQ_OP_READ; 2684 2685 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2686 2687 submit_bio(bio); 2688 } 2689 /* the actual write will happen once the reads are done */ 2690 return; 2691 2692cleanup: 2693 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2694 2695 while ((bio = bio_list_pop(&bio_list))) 2696 bio_put(bio); 2697 2698 return; 2699 2700finish: 2701 validate_rbio_for_parity_scrub(rbio); 2702} 2703 2704static void scrub_parity_work(struct btrfs_work *work) 2705{ 2706 struct btrfs_raid_bio *rbio; 2707 2708 rbio = container_of(work, struct btrfs_raid_bio, work); 2709 raid56_parity_scrub_stripe(rbio); 2710} 2711 2712void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2713{ 2714 if (!lock_stripe_add(rbio)) 2715 start_async_work(rbio, scrub_parity_work); 2716} 2717 2718/* The following code is used for dev replace of a missing RAID 5/6 device. */ 2719 2720struct btrfs_raid_bio * 2721raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2722 struct btrfs_bio *bbio, u64 length) 2723{ 2724 struct btrfs_raid_bio *rbio; 2725 2726 rbio = alloc_rbio(fs_info, bbio, length); 2727 if (IS_ERR(rbio)) 2728 return NULL; 2729 2730 rbio->operation = BTRFS_RBIO_REBUILD_MISSING; 2731 bio_list_add(&rbio->bio_list, bio); 2732 /* 2733 * This is a special bio which is used to hold the completion handler 2734 * and make the scrub rbio is similar to the other types 2735 */ 2736 ASSERT(!bio->bi_iter.bi_size); 2737 2738 rbio->faila = find_logical_bio_stripe(rbio, bio); 2739 if (rbio->faila == -1) { 2740 BUG(); 2741 kfree(rbio); 2742 return NULL; 2743 } 2744 2745 /* 2746 * When we get bbio, we have already increased bio_counter, record it 2747 * so we can free it at rbio_orig_end_io() 2748 */ 2749 rbio->generic_bio_cnt = 1; 2750 2751 return rbio; 2752} 2753 2754void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) 2755{ 2756 if (!lock_stripe_add(rbio)) 2757 start_async_work(rbio, read_rebuild_work); 2758} 2759