xref: /kernel/linux/linux-5.10/fs/btrfs/raid56.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2012 Fusion-io  All rights reserved.
4 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 */
6
7#include <linux/sched.h>
8#include <linux/bio.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/raid/pq.h>
12#include <linux/hash.h>
13#include <linux/list_sort.h>
14#include <linux/raid/xor.h>
15#include <linux/mm.h>
16#include "ctree.h"
17#include "disk-io.h"
18#include "volumes.h"
19#include "raid56.h"
20#include "async-thread.h"
21
22/* set when additional merges to this rbio are not allowed */
23#define RBIO_RMW_LOCKED_BIT	1
24
25/*
26 * set when this rbio is sitting in the hash, but it is just a cache
27 * of past RMW
28 */
29#define RBIO_CACHE_BIT		2
30
31/*
32 * set when it is safe to trust the stripe_pages for caching
33 */
34#define RBIO_CACHE_READY_BIT	3
35
36#define RBIO_CACHE_SIZE 1024
37
38#define BTRFS_STRIPE_HASH_TABLE_BITS				11
39
40/* Used by the raid56 code to lock stripes for read/modify/write */
41struct btrfs_stripe_hash {
42	struct list_head hash_list;
43	spinlock_t lock;
44};
45
46/* Used by the raid56 code to lock stripes for read/modify/write */
47struct btrfs_stripe_hash_table {
48	struct list_head stripe_cache;
49	spinlock_t cache_lock;
50	int cache_size;
51	struct btrfs_stripe_hash table[];
52};
53
54enum btrfs_rbio_ops {
55	BTRFS_RBIO_WRITE,
56	BTRFS_RBIO_READ_REBUILD,
57	BTRFS_RBIO_PARITY_SCRUB,
58	BTRFS_RBIO_REBUILD_MISSING,
59};
60
61struct btrfs_raid_bio {
62	struct btrfs_fs_info *fs_info;
63	struct btrfs_bio *bbio;
64
65	/* while we're doing rmw on a stripe
66	 * we put it into a hash table so we can
67	 * lock the stripe and merge more rbios
68	 * into it.
69	 */
70	struct list_head hash_list;
71
72	/*
73	 * LRU list for the stripe cache
74	 */
75	struct list_head stripe_cache;
76
77	/*
78	 * for scheduling work in the helper threads
79	 */
80	struct btrfs_work work;
81
82	/*
83	 * bio list and bio_list_lock are used
84	 * to add more bios into the stripe
85	 * in hopes of avoiding the full rmw
86	 */
87	struct bio_list bio_list;
88	spinlock_t bio_list_lock;
89
90	/* also protected by the bio_list_lock, the
91	 * plug list is used by the plugging code
92	 * to collect partial bios while plugged.  The
93	 * stripe locking code also uses it to hand off
94	 * the stripe lock to the next pending IO
95	 */
96	struct list_head plug_list;
97
98	/*
99	 * flags that tell us if it is safe to
100	 * merge with this bio
101	 */
102	unsigned long flags;
103
104	/* size of each individual stripe on disk */
105	int stripe_len;
106
107	/* number of data stripes (no p/q) */
108	int nr_data;
109
110	int real_stripes;
111
112	int stripe_npages;
113	/*
114	 * set if we're doing a parity rebuild
115	 * for a read from higher up, which is handled
116	 * differently from a parity rebuild as part of
117	 * rmw
118	 */
119	enum btrfs_rbio_ops operation;
120
121	/* first bad stripe */
122	int faila;
123
124	/* second bad stripe (for raid6 use) */
125	int failb;
126
127	int scrubp;
128	/*
129	 * number of pages needed to represent the full
130	 * stripe
131	 */
132	int nr_pages;
133
134	/*
135	 * size of all the bios in the bio_list.  This
136	 * helps us decide if the rbio maps to a full
137	 * stripe or not
138	 */
139	int bio_list_bytes;
140
141	int generic_bio_cnt;
142
143	refcount_t refs;
144
145	atomic_t stripes_pending;
146
147	atomic_t error;
148	/*
149	 * these are two arrays of pointers.  We allocate the
150	 * rbio big enough to hold them both and setup their
151	 * locations when the rbio is allocated
152	 */
153
154	/* pointers to pages that we allocated for
155	 * reading/writing stripes directly from the disk (including P/Q)
156	 */
157	struct page **stripe_pages;
158
159	/*
160	 * pointers to the pages in the bio_list.  Stored
161	 * here for faster lookup
162	 */
163	struct page **bio_pages;
164
165	/*
166	 * bitmap to record which horizontal stripe has data
167	 */
168	unsigned long *dbitmap;
169
170	/* allocated with real_stripes-many pointers for finish_*() calls */
171	void **finish_pointers;
172
173	/* allocated with stripe_npages-many bits for finish_*() calls */
174	unsigned long *finish_pbitmap;
175};
176
177static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
178static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
179static void rmw_work(struct btrfs_work *work);
180static void read_rebuild_work(struct btrfs_work *work);
181static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
182static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
183static void __free_raid_bio(struct btrfs_raid_bio *rbio);
184static void index_rbio_pages(struct btrfs_raid_bio *rbio);
185static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
186
187static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
188					 int need_check);
189static void scrub_parity_work(struct btrfs_work *work);
190
191static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
192{
193	btrfs_init_work(&rbio->work, work_func, NULL, NULL);
194	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
195}
196
197/*
198 * the stripe hash table is used for locking, and to collect
199 * bios in hopes of making a full stripe
200 */
201int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
202{
203	struct btrfs_stripe_hash_table *table;
204	struct btrfs_stripe_hash_table *x;
205	struct btrfs_stripe_hash *cur;
206	struct btrfs_stripe_hash *h;
207	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
208	int i;
209
210	if (info->stripe_hash_table)
211		return 0;
212
213	/*
214	 * The table is large, starting with order 4 and can go as high as
215	 * order 7 in case lock debugging is turned on.
216	 *
217	 * Try harder to allocate and fallback to vmalloc to lower the chance
218	 * of a failing mount.
219	 */
220	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
221	if (!table)
222		return -ENOMEM;
223
224	spin_lock_init(&table->cache_lock);
225	INIT_LIST_HEAD(&table->stripe_cache);
226
227	h = table->table;
228
229	for (i = 0; i < num_entries; i++) {
230		cur = h + i;
231		INIT_LIST_HEAD(&cur->hash_list);
232		spin_lock_init(&cur->lock);
233	}
234
235	x = cmpxchg(&info->stripe_hash_table, NULL, table);
236	if (x)
237		kvfree(x);
238	return 0;
239}
240
241/*
242 * caching an rbio means to copy anything from the
243 * bio_pages array into the stripe_pages array.  We
244 * use the page uptodate bit in the stripe cache array
245 * to indicate if it has valid data
246 *
247 * once the caching is done, we set the cache ready
248 * bit.
249 */
250static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
251{
252	int i;
253	char *s;
254	char *d;
255	int ret;
256
257	ret = alloc_rbio_pages(rbio);
258	if (ret)
259		return;
260
261	for (i = 0; i < rbio->nr_pages; i++) {
262		if (!rbio->bio_pages[i])
263			continue;
264
265		s = kmap(rbio->bio_pages[i]);
266		d = kmap(rbio->stripe_pages[i]);
267
268		copy_page(d, s);
269
270		kunmap(rbio->bio_pages[i]);
271		kunmap(rbio->stripe_pages[i]);
272		SetPageUptodate(rbio->stripe_pages[i]);
273	}
274	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
275}
276
277/*
278 * we hash on the first logical address of the stripe
279 */
280static int rbio_bucket(struct btrfs_raid_bio *rbio)
281{
282	u64 num = rbio->bbio->raid_map[0];
283
284	/*
285	 * we shift down quite a bit.  We're using byte
286	 * addressing, and most of the lower bits are zeros.
287	 * This tends to upset hash_64, and it consistently
288	 * returns just one or two different values.
289	 *
290	 * shifting off the lower bits fixes things.
291	 */
292	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
293}
294
295/*
296 * stealing an rbio means taking all the uptodate pages from the stripe
297 * array in the source rbio and putting them into the destination rbio
298 */
299static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
300{
301	int i;
302	struct page *s;
303	struct page *d;
304
305	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
306		return;
307
308	for (i = 0; i < dest->nr_pages; i++) {
309		s = src->stripe_pages[i];
310		if (!s || !PageUptodate(s)) {
311			continue;
312		}
313
314		d = dest->stripe_pages[i];
315		if (d)
316			__free_page(d);
317
318		dest->stripe_pages[i] = s;
319		src->stripe_pages[i] = NULL;
320	}
321}
322
323/*
324 * merging means we take the bio_list from the victim and
325 * splice it into the destination.  The victim should
326 * be discarded afterwards.
327 *
328 * must be called with dest->rbio_list_lock held
329 */
330static void merge_rbio(struct btrfs_raid_bio *dest,
331		       struct btrfs_raid_bio *victim)
332{
333	bio_list_merge(&dest->bio_list, &victim->bio_list);
334	dest->bio_list_bytes += victim->bio_list_bytes;
335	/* Also inherit the bitmaps from @victim. */
336	bitmap_or(dest->dbitmap, victim->dbitmap, dest->dbitmap,
337		  dest->stripe_npages);
338	dest->generic_bio_cnt += victim->generic_bio_cnt;
339	bio_list_init(&victim->bio_list);
340}
341
342/*
343 * used to prune items that are in the cache.  The caller
344 * must hold the hash table lock.
345 */
346static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
347{
348	int bucket = rbio_bucket(rbio);
349	struct btrfs_stripe_hash_table *table;
350	struct btrfs_stripe_hash *h;
351	int freeit = 0;
352
353	/*
354	 * check the bit again under the hash table lock.
355	 */
356	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
357		return;
358
359	table = rbio->fs_info->stripe_hash_table;
360	h = table->table + bucket;
361
362	/* hold the lock for the bucket because we may be
363	 * removing it from the hash table
364	 */
365	spin_lock(&h->lock);
366
367	/*
368	 * hold the lock for the bio list because we need
369	 * to make sure the bio list is empty
370	 */
371	spin_lock(&rbio->bio_list_lock);
372
373	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
374		list_del_init(&rbio->stripe_cache);
375		table->cache_size -= 1;
376		freeit = 1;
377
378		/* if the bio list isn't empty, this rbio is
379		 * still involved in an IO.  We take it out
380		 * of the cache list, and drop the ref that
381		 * was held for the list.
382		 *
383		 * If the bio_list was empty, we also remove
384		 * the rbio from the hash_table, and drop
385		 * the corresponding ref
386		 */
387		if (bio_list_empty(&rbio->bio_list)) {
388			if (!list_empty(&rbio->hash_list)) {
389				list_del_init(&rbio->hash_list);
390				refcount_dec(&rbio->refs);
391				BUG_ON(!list_empty(&rbio->plug_list));
392			}
393		}
394	}
395
396	spin_unlock(&rbio->bio_list_lock);
397	spin_unlock(&h->lock);
398
399	if (freeit)
400		__free_raid_bio(rbio);
401}
402
403/*
404 * prune a given rbio from the cache
405 */
406static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
407{
408	struct btrfs_stripe_hash_table *table;
409	unsigned long flags;
410
411	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
412		return;
413
414	table = rbio->fs_info->stripe_hash_table;
415
416	spin_lock_irqsave(&table->cache_lock, flags);
417	__remove_rbio_from_cache(rbio);
418	spin_unlock_irqrestore(&table->cache_lock, flags);
419}
420
421/*
422 * remove everything in the cache
423 */
424static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
425{
426	struct btrfs_stripe_hash_table *table;
427	unsigned long flags;
428	struct btrfs_raid_bio *rbio;
429
430	table = info->stripe_hash_table;
431
432	spin_lock_irqsave(&table->cache_lock, flags);
433	while (!list_empty(&table->stripe_cache)) {
434		rbio = list_entry(table->stripe_cache.next,
435				  struct btrfs_raid_bio,
436				  stripe_cache);
437		__remove_rbio_from_cache(rbio);
438	}
439	spin_unlock_irqrestore(&table->cache_lock, flags);
440}
441
442/*
443 * remove all cached entries and free the hash table
444 * used by unmount
445 */
446void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
447{
448	if (!info->stripe_hash_table)
449		return;
450	btrfs_clear_rbio_cache(info);
451	kvfree(info->stripe_hash_table);
452	info->stripe_hash_table = NULL;
453}
454
455/*
456 * insert an rbio into the stripe cache.  It
457 * must have already been prepared by calling
458 * cache_rbio_pages
459 *
460 * If this rbio was already cached, it gets
461 * moved to the front of the lru.
462 *
463 * If the size of the rbio cache is too big, we
464 * prune an item.
465 */
466static void cache_rbio(struct btrfs_raid_bio *rbio)
467{
468	struct btrfs_stripe_hash_table *table;
469	unsigned long flags;
470
471	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
472		return;
473
474	table = rbio->fs_info->stripe_hash_table;
475
476	spin_lock_irqsave(&table->cache_lock, flags);
477	spin_lock(&rbio->bio_list_lock);
478
479	/* bump our ref if we were not in the list before */
480	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
481		refcount_inc(&rbio->refs);
482
483	if (!list_empty(&rbio->stripe_cache)){
484		list_move(&rbio->stripe_cache, &table->stripe_cache);
485	} else {
486		list_add(&rbio->stripe_cache, &table->stripe_cache);
487		table->cache_size += 1;
488	}
489
490	spin_unlock(&rbio->bio_list_lock);
491
492	if (table->cache_size > RBIO_CACHE_SIZE) {
493		struct btrfs_raid_bio *found;
494
495		found = list_entry(table->stripe_cache.prev,
496				  struct btrfs_raid_bio,
497				  stripe_cache);
498
499		if (found != rbio)
500			__remove_rbio_from_cache(found);
501	}
502
503	spin_unlock_irqrestore(&table->cache_lock, flags);
504}
505
506/*
507 * helper function to run the xor_blocks api.  It is only
508 * able to do MAX_XOR_BLOCKS at a time, so we need to
509 * loop through.
510 */
511static void run_xor(void **pages, int src_cnt, ssize_t len)
512{
513	int src_off = 0;
514	int xor_src_cnt = 0;
515	void *dest = pages[src_cnt];
516
517	while(src_cnt > 0) {
518		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
519		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
520
521		src_cnt -= xor_src_cnt;
522		src_off += xor_src_cnt;
523	}
524}
525
526/*
527 * Returns true if the bio list inside this rbio covers an entire stripe (no
528 * rmw required).
529 */
530static int rbio_is_full(struct btrfs_raid_bio *rbio)
531{
532	unsigned long flags;
533	unsigned long size = rbio->bio_list_bytes;
534	int ret = 1;
535
536	spin_lock_irqsave(&rbio->bio_list_lock, flags);
537	if (size != rbio->nr_data * rbio->stripe_len)
538		ret = 0;
539	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
540	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
541
542	return ret;
543}
544
545/*
546 * returns 1 if it is safe to merge two rbios together.
547 * The merging is safe if the two rbios correspond to
548 * the same stripe and if they are both going in the same
549 * direction (read vs write), and if neither one is
550 * locked for final IO
551 *
552 * The caller is responsible for locking such that
553 * rmw_locked is safe to test
554 */
555static int rbio_can_merge(struct btrfs_raid_bio *last,
556			  struct btrfs_raid_bio *cur)
557{
558	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
559	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
560		return 0;
561
562	/*
563	 * we can't merge with cached rbios, since the
564	 * idea is that when we merge the destination
565	 * rbio is going to run our IO for us.  We can
566	 * steal from cached rbios though, other functions
567	 * handle that.
568	 */
569	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
570	    test_bit(RBIO_CACHE_BIT, &cur->flags))
571		return 0;
572
573	if (last->bbio->raid_map[0] !=
574	    cur->bbio->raid_map[0])
575		return 0;
576
577	/* we can't merge with different operations */
578	if (last->operation != cur->operation)
579		return 0;
580	/*
581	 * We've need read the full stripe from the drive.
582	 * check and repair the parity and write the new results.
583	 *
584	 * We're not allowed to add any new bios to the
585	 * bio list here, anyone else that wants to
586	 * change this stripe needs to do their own rmw.
587	 */
588	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
589		return 0;
590
591	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
592		return 0;
593
594	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
595		int fa = last->faila;
596		int fb = last->failb;
597		int cur_fa = cur->faila;
598		int cur_fb = cur->failb;
599
600		if (last->faila >= last->failb) {
601			fa = last->failb;
602			fb = last->faila;
603		}
604
605		if (cur->faila >= cur->failb) {
606			cur_fa = cur->failb;
607			cur_fb = cur->faila;
608		}
609
610		if (fa != cur_fa || fb != cur_fb)
611			return 0;
612	}
613	return 1;
614}
615
616static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
617				  int index)
618{
619	return stripe * rbio->stripe_npages + index;
620}
621
622/*
623 * these are just the pages from the rbio array, not from anything
624 * the FS sent down to us
625 */
626static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
627				     int index)
628{
629	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
630}
631
632/*
633 * helper to index into the pstripe
634 */
635static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
636{
637	return rbio_stripe_page(rbio, rbio->nr_data, index);
638}
639
640/*
641 * helper to index into the qstripe, returns null
642 * if there is no qstripe
643 */
644static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
645{
646	if (rbio->nr_data + 1 == rbio->real_stripes)
647		return NULL;
648	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
649}
650
651/*
652 * The first stripe in the table for a logical address
653 * has the lock.  rbios are added in one of three ways:
654 *
655 * 1) Nobody has the stripe locked yet.  The rbio is given
656 * the lock and 0 is returned.  The caller must start the IO
657 * themselves.
658 *
659 * 2) Someone has the stripe locked, but we're able to merge
660 * with the lock owner.  The rbio is freed and the IO will
661 * start automatically along with the existing rbio.  1 is returned.
662 *
663 * 3) Someone has the stripe locked, but we're not able to merge.
664 * The rbio is added to the lock owner's plug list, or merged into
665 * an rbio already on the plug list.  When the lock owner unlocks,
666 * the next rbio on the list is run and the IO is started automatically.
667 * 1 is returned
668 *
669 * If we return 0, the caller still owns the rbio and must continue with
670 * IO submission.  If we return 1, the caller must assume the rbio has
671 * already been freed.
672 */
673static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
674{
675	struct btrfs_stripe_hash *h;
676	struct btrfs_raid_bio *cur;
677	struct btrfs_raid_bio *pending;
678	unsigned long flags;
679	struct btrfs_raid_bio *freeit = NULL;
680	struct btrfs_raid_bio *cache_drop = NULL;
681	int ret = 0;
682
683	h = rbio->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
684
685	spin_lock_irqsave(&h->lock, flags);
686	list_for_each_entry(cur, &h->hash_list, hash_list) {
687		if (cur->bbio->raid_map[0] != rbio->bbio->raid_map[0])
688			continue;
689
690		spin_lock(&cur->bio_list_lock);
691
692		/* Can we steal this cached rbio's pages? */
693		if (bio_list_empty(&cur->bio_list) &&
694		    list_empty(&cur->plug_list) &&
695		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
696		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
697			list_del_init(&cur->hash_list);
698			refcount_dec(&cur->refs);
699
700			steal_rbio(cur, rbio);
701			cache_drop = cur;
702			spin_unlock(&cur->bio_list_lock);
703
704			goto lockit;
705		}
706
707		/* Can we merge into the lock owner? */
708		if (rbio_can_merge(cur, rbio)) {
709			merge_rbio(cur, rbio);
710			spin_unlock(&cur->bio_list_lock);
711			freeit = rbio;
712			ret = 1;
713			goto out;
714		}
715
716
717		/*
718		 * We couldn't merge with the running rbio, see if we can merge
719		 * with the pending ones.  We don't have to check for rmw_locked
720		 * because there is no way they are inside finish_rmw right now
721		 */
722		list_for_each_entry(pending, &cur->plug_list, plug_list) {
723			if (rbio_can_merge(pending, rbio)) {
724				merge_rbio(pending, rbio);
725				spin_unlock(&cur->bio_list_lock);
726				freeit = rbio;
727				ret = 1;
728				goto out;
729			}
730		}
731
732		/*
733		 * No merging, put us on the tail of the plug list, our rbio
734		 * will be started with the currently running rbio unlocks
735		 */
736		list_add_tail(&rbio->plug_list, &cur->plug_list);
737		spin_unlock(&cur->bio_list_lock);
738		ret = 1;
739		goto out;
740	}
741lockit:
742	refcount_inc(&rbio->refs);
743	list_add(&rbio->hash_list, &h->hash_list);
744out:
745	spin_unlock_irqrestore(&h->lock, flags);
746	if (cache_drop)
747		remove_rbio_from_cache(cache_drop);
748	if (freeit)
749		__free_raid_bio(freeit);
750	return ret;
751}
752
753/*
754 * called as rmw or parity rebuild is completed.  If the plug list has more
755 * rbios waiting for this stripe, the next one on the list will be started
756 */
757static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
758{
759	int bucket;
760	struct btrfs_stripe_hash *h;
761	unsigned long flags;
762	int keep_cache = 0;
763
764	bucket = rbio_bucket(rbio);
765	h = rbio->fs_info->stripe_hash_table->table + bucket;
766
767	if (list_empty(&rbio->plug_list))
768		cache_rbio(rbio);
769
770	spin_lock_irqsave(&h->lock, flags);
771	spin_lock(&rbio->bio_list_lock);
772
773	if (!list_empty(&rbio->hash_list)) {
774		/*
775		 * if we're still cached and there is no other IO
776		 * to perform, just leave this rbio here for others
777		 * to steal from later
778		 */
779		if (list_empty(&rbio->plug_list) &&
780		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
781			keep_cache = 1;
782			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
783			BUG_ON(!bio_list_empty(&rbio->bio_list));
784			goto done;
785		}
786
787		list_del_init(&rbio->hash_list);
788		refcount_dec(&rbio->refs);
789
790		/*
791		 * we use the plug list to hold all the rbios
792		 * waiting for the chance to lock this stripe.
793		 * hand the lock over to one of them.
794		 */
795		if (!list_empty(&rbio->plug_list)) {
796			struct btrfs_raid_bio *next;
797			struct list_head *head = rbio->plug_list.next;
798
799			next = list_entry(head, struct btrfs_raid_bio,
800					  plug_list);
801
802			list_del_init(&rbio->plug_list);
803
804			list_add(&next->hash_list, &h->hash_list);
805			refcount_inc(&next->refs);
806			spin_unlock(&rbio->bio_list_lock);
807			spin_unlock_irqrestore(&h->lock, flags);
808
809			if (next->operation == BTRFS_RBIO_READ_REBUILD)
810				start_async_work(next, read_rebuild_work);
811			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
812				steal_rbio(rbio, next);
813				start_async_work(next, read_rebuild_work);
814			} else if (next->operation == BTRFS_RBIO_WRITE) {
815				steal_rbio(rbio, next);
816				start_async_work(next, rmw_work);
817			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
818				steal_rbio(rbio, next);
819				start_async_work(next, scrub_parity_work);
820			}
821
822			goto done_nolock;
823		}
824	}
825done:
826	spin_unlock(&rbio->bio_list_lock);
827	spin_unlock_irqrestore(&h->lock, flags);
828
829done_nolock:
830	if (!keep_cache)
831		remove_rbio_from_cache(rbio);
832}
833
834static void __free_raid_bio(struct btrfs_raid_bio *rbio)
835{
836	int i;
837
838	if (!refcount_dec_and_test(&rbio->refs))
839		return;
840
841	WARN_ON(!list_empty(&rbio->stripe_cache));
842	WARN_ON(!list_empty(&rbio->hash_list));
843	WARN_ON(!bio_list_empty(&rbio->bio_list));
844
845	for (i = 0; i < rbio->nr_pages; i++) {
846		if (rbio->stripe_pages[i]) {
847			__free_page(rbio->stripe_pages[i]);
848			rbio->stripe_pages[i] = NULL;
849		}
850	}
851
852	btrfs_put_bbio(rbio->bbio);
853	kfree(rbio);
854}
855
856static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
857{
858	struct bio *next;
859
860	while (cur) {
861		next = cur->bi_next;
862		cur->bi_next = NULL;
863		cur->bi_status = err;
864		bio_endio(cur);
865		cur = next;
866	}
867}
868
869/*
870 * this frees the rbio and runs through all the bios in the
871 * bio_list and calls end_io on them
872 */
873static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
874{
875	struct bio *cur = bio_list_get(&rbio->bio_list);
876	struct bio *extra;
877
878	if (rbio->generic_bio_cnt)
879		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
880	/*
881	 * Clear the data bitmap, as the rbio may be cached for later usage.
882	 * do this before before unlock_stripe() so there will be no new bio
883	 * for this bio.
884	 */
885	bitmap_clear(rbio->dbitmap, 0, rbio->stripe_npages);
886
887	/*
888	 * At this moment, rbio->bio_list is empty, however since rbio does not
889	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
890	 * hash list, rbio may be merged with others so that rbio->bio_list
891	 * becomes non-empty.
892	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
893	 * more and we can call bio_endio() on all queued bios.
894	 */
895	unlock_stripe(rbio);
896	extra = bio_list_get(&rbio->bio_list);
897	__free_raid_bio(rbio);
898
899	rbio_endio_bio_list(cur, err);
900	if (extra)
901		rbio_endio_bio_list(extra, err);
902}
903
904/*
905 * end io function used by finish_rmw.  When we finally
906 * get here, we've written a full stripe
907 */
908static void raid_write_end_io(struct bio *bio)
909{
910	struct btrfs_raid_bio *rbio = bio->bi_private;
911	blk_status_t err = bio->bi_status;
912	int max_errors;
913
914	if (err)
915		fail_bio_stripe(rbio, bio);
916
917	bio_put(bio);
918
919	if (!atomic_dec_and_test(&rbio->stripes_pending))
920		return;
921
922	err = BLK_STS_OK;
923
924	/* OK, we have read all the stripes we need to. */
925	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
926		     0 : rbio->bbio->max_errors;
927	if (atomic_read(&rbio->error) > max_errors)
928		err = BLK_STS_IOERR;
929
930	rbio_orig_end_io(rbio, err);
931}
932
933/*
934 * the read/modify/write code wants to use the original bio for
935 * any pages it included, and then use the rbio for everything
936 * else.  This function decides if a given index (stripe number)
937 * and page number in that stripe fall inside the original bio
938 * or the rbio.
939 *
940 * if you set bio_list_only, you'll get a NULL back for any ranges
941 * that are outside the bio_list
942 *
943 * This doesn't take any refs on anything, you get a bare page pointer
944 * and the caller must bump refs as required.
945 *
946 * You must call index_rbio_pages once before you can trust
947 * the answers from this function.
948 */
949static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
950				 int index, int pagenr, int bio_list_only)
951{
952	int chunk_page;
953	struct page *p = NULL;
954
955	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
956
957	spin_lock_irq(&rbio->bio_list_lock);
958	p = rbio->bio_pages[chunk_page];
959	spin_unlock_irq(&rbio->bio_list_lock);
960
961	if (p || bio_list_only)
962		return p;
963
964	return rbio->stripe_pages[chunk_page];
965}
966
967/*
968 * number of pages we need for the entire stripe across all the
969 * drives
970 */
971static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
972{
973	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
974}
975
976/*
977 * allocation and initial setup for the btrfs_raid_bio.  Not
978 * this does not allocate any pages for rbio->pages.
979 */
980static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
981					 struct btrfs_bio *bbio,
982					 u64 stripe_len)
983{
984	struct btrfs_raid_bio *rbio;
985	int nr_data = 0;
986	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
987	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
988	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
989	void *p;
990
991	rbio = kzalloc(sizeof(*rbio) +
992		       sizeof(*rbio->stripe_pages) * num_pages +
993		       sizeof(*rbio->bio_pages) * num_pages +
994		       sizeof(*rbio->finish_pointers) * real_stripes +
995		       sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
996		       sizeof(*rbio->finish_pbitmap) *
997				BITS_TO_LONGS(stripe_npages),
998		       GFP_NOFS);
999	if (!rbio)
1000		return ERR_PTR(-ENOMEM);
1001
1002	bio_list_init(&rbio->bio_list);
1003	INIT_LIST_HEAD(&rbio->plug_list);
1004	spin_lock_init(&rbio->bio_list_lock);
1005	INIT_LIST_HEAD(&rbio->stripe_cache);
1006	INIT_LIST_HEAD(&rbio->hash_list);
1007	rbio->bbio = bbio;
1008	rbio->fs_info = fs_info;
1009	rbio->stripe_len = stripe_len;
1010	rbio->nr_pages = num_pages;
1011	rbio->real_stripes = real_stripes;
1012	rbio->stripe_npages = stripe_npages;
1013	rbio->faila = -1;
1014	rbio->failb = -1;
1015	refcount_set(&rbio->refs, 1);
1016	atomic_set(&rbio->error, 0);
1017	atomic_set(&rbio->stripes_pending, 0);
1018
1019	/*
1020	 * the stripe_pages, bio_pages, etc arrays point to the extra
1021	 * memory we allocated past the end of the rbio
1022	 */
1023	p = rbio + 1;
1024#define CONSUME_ALLOC(ptr, count)	do {				\
1025		ptr = p;						\
1026		p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\
1027	} while (0)
1028	CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1029	CONSUME_ALLOC(rbio->bio_pages, num_pages);
1030	CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1031	CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1032	CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1033#undef  CONSUME_ALLOC
1034
1035	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1036		nr_data = real_stripes - 1;
1037	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1038		nr_data = real_stripes - 2;
1039	else
1040		BUG();
1041
1042	rbio->nr_data = nr_data;
1043	return rbio;
1044}
1045
1046/* allocate pages for all the stripes in the bio, including parity */
1047static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1048{
1049	int i;
1050	struct page *page;
1051
1052	for (i = 0; i < rbio->nr_pages; i++) {
1053		if (rbio->stripe_pages[i])
1054			continue;
1055		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1056		if (!page)
1057			return -ENOMEM;
1058		rbio->stripe_pages[i] = page;
1059	}
1060	return 0;
1061}
1062
1063/* only allocate pages for p/q stripes */
1064static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1065{
1066	int i;
1067	struct page *page;
1068
1069	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1070
1071	for (; i < rbio->nr_pages; i++) {
1072		if (rbio->stripe_pages[i])
1073			continue;
1074		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1075		if (!page)
1076			return -ENOMEM;
1077		rbio->stripe_pages[i] = page;
1078	}
1079	return 0;
1080}
1081
1082/*
1083 * add a single page from a specific stripe into our list of bios for IO
1084 * this will try to merge into existing bios if possible, and returns
1085 * zero if all went well.
1086 */
1087static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1088			    struct bio_list *bio_list,
1089			    struct page *page,
1090			    int stripe_nr,
1091			    unsigned long page_index,
1092			    unsigned long bio_max_len)
1093{
1094	struct bio *last = bio_list->tail;
1095	int ret;
1096	struct bio *bio;
1097	struct btrfs_bio_stripe *stripe;
1098	u64 disk_start;
1099
1100	stripe = &rbio->bbio->stripes[stripe_nr];
1101	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1102
1103	/* if the device is missing, just fail this stripe */
1104	if (!stripe->dev->bdev)
1105		return fail_rbio_index(rbio, stripe_nr);
1106
1107	/* see if we can add this page onto our existing bio */
1108	if (last) {
1109		u64 last_end = (u64)last->bi_iter.bi_sector << 9;
1110		last_end += last->bi_iter.bi_size;
1111
1112		/*
1113		 * we can't merge these if they are from different
1114		 * devices or if they are not contiguous
1115		 */
1116		if (last_end == disk_start && !last->bi_status &&
1117		    last->bi_disk == stripe->dev->bdev->bd_disk &&
1118		    last->bi_partno == stripe->dev->bdev->bd_partno) {
1119			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1120			if (ret == PAGE_SIZE)
1121				return 0;
1122		}
1123	}
1124
1125	/* put a new bio on the list */
1126	bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1127	btrfs_io_bio(bio)->device = stripe->dev;
1128	bio->bi_iter.bi_size = 0;
1129	bio_set_dev(bio, stripe->dev->bdev);
1130	bio->bi_iter.bi_sector = disk_start >> 9;
1131
1132	bio_add_page(bio, page, PAGE_SIZE, 0);
1133	bio_list_add(bio_list, bio);
1134	return 0;
1135}
1136
1137/*
1138 * while we're doing the read/modify/write cycle, we could
1139 * have errors in reading pages off the disk.  This checks
1140 * for errors and if we're not able to read the page it'll
1141 * trigger parity reconstruction.  The rmw will be finished
1142 * after we've reconstructed the failed stripes
1143 */
1144static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1145{
1146	if (rbio->faila >= 0 || rbio->failb >= 0) {
1147		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1148		__raid56_parity_recover(rbio);
1149	} else {
1150		finish_rmw(rbio);
1151	}
1152}
1153
1154/*
1155 * helper function to walk our bio list and populate the bio_pages array with
1156 * the result.  This seems expensive, but it is faster than constantly
1157 * searching through the bio list as we setup the IO in finish_rmw or stripe
1158 * reconstruction.
1159 *
1160 * This must be called before you trust the answers from page_in_rbio
1161 */
1162static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1163{
1164	struct bio *bio;
1165	u64 start;
1166	unsigned long stripe_offset;
1167	unsigned long page_index;
1168
1169	spin_lock_irq(&rbio->bio_list_lock);
1170	bio_list_for_each(bio, &rbio->bio_list) {
1171		struct bio_vec bvec;
1172		struct bvec_iter iter;
1173		int i = 0;
1174
1175		start = (u64)bio->bi_iter.bi_sector << 9;
1176		stripe_offset = start - rbio->bbio->raid_map[0];
1177		page_index = stripe_offset >> PAGE_SHIFT;
1178
1179		if (bio_flagged(bio, BIO_CLONED))
1180			bio->bi_iter = btrfs_io_bio(bio)->iter;
1181
1182		bio_for_each_segment(bvec, bio, iter) {
1183			rbio->bio_pages[page_index + i] = bvec.bv_page;
1184			i++;
1185		}
1186	}
1187	spin_unlock_irq(&rbio->bio_list_lock);
1188}
1189
1190/*
1191 * this is called from one of two situations.  We either
1192 * have a full stripe from the higher layers, or we've read all
1193 * the missing bits off disk.
1194 *
1195 * This will calculate the parity and then send down any
1196 * changed blocks.
1197 */
1198static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1199{
1200	struct btrfs_bio *bbio = rbio->bbio;
1201	void **pointers = rbio->finish_pointers;
1202	int nr_data = rbio->nr_data;
1203	int stripe;
1204	int pagenr;
1205	bool has_qstripe;
1206	struct bio_list bio_list;
1207	struct bio *bio;
1208	int ret;
1209
1210	bio_list_init(&bio_list);
1211
1212	if (rbio->real_stripes - rbio->nr_data == 1)
1213		has_qstripe = false;
1214	else if (rbio->real_stripes - rbio->nr_data == 2)
1215		has_qstripe = true;
1216	else
1217		BUG();
1218
1219	/* We should have at least one data sector. */
1220	ASSERT(bitmap_weight(rbio->dbitmap, rbio->stripe_npages));
1221
1222	/* at this point we either have a full stripe,
1223	 * or we've read the full stripe from the drive.
1224	 * recalculate the parity and write the new results.
1225	 *
1226	 * We're not allowed to add any new bios to the
1227	 * bio list here, anyone else that wants to
1228	 * change this stripe needs to do their own rmw.
1229	 */
1230	spin_lock_irq(&rbio->bio_list_lock);
1231	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1232	spin_unlock_irq(&rbio->bio_list_lock);
1233
1234	atomic_set(&rbio->error, 0);
1235
1236	/*
1237	 * now that we've set rmw_locked, run through the
1238	 * bio list one last time and map the page pointers
1239	 *
1240	 * We don't cache full rbios because we're assuming
1241	 * the higher layers are unlikely to use this area of
1242	 * the disk again soon.  If they do use it again,
1243	 * hopefully they will send another full bio.
1244	 */
1245	index_rbio_pages(rbio);
1246	if (!rbio_is_full(rbio))
1247		cache_rbio_pages(rbio);
1248	else
1249		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1250
1251	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1252		struct page *p;
1253		/* first collect one page from each data stripe */
1254		for (stripe = 0; stripe < nr_data; stripe++) {
1255			p = page_in_rbio(rbio, stripe, pagenr, 0);
1256			pointers[stripe] = kmap(p);
1257		}
1258
1259		/* then add the parity stripe */
1260		p = rbio_pstripe_page(rbio, pagenr);
1261		SetPageUptodate(p);
1262		pointers[stripe++] = kmap(p);
1263
1264		if (has_qstripe) {
1265
1266			/*
1267			 * raid6, add the qstripe and call the
1268			 * library function to fill in our p/q
1269			 */
1270			p = rbio_qstripe_page(rbio, pagenr);
1271			SetPageUptodate(p);
1272			pointers[stripe++] = kmap(p);
1273
1274			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1275						pointers);
1276		} else {
1277			/* raid5 */
1278			copy_page(pointers[nr_data], pointers[0]);
1279			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1280		}
1281
1282
1283		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1284			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1285	}
1286
1287	/*
1288	 * time to start writing.  Make bios for everything from the
1289	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1290	 * everything else.
1291	 */
1292	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1293		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1294			struct page *page;
1295
1296			/* This vertical stripe has no data, skip it. */
1297			if (!test_bit(pagenr, rbio->dbitmap))
1298				continue;
1299
1300			if (stripe < rbio->nr_data) {
1301				page = page_in_rbio(rbio, stripe, pagenr, 1);
1302				if (!page)
1303					continue;
1304			} else {
1305			       page = rbio_stripe_page(rbio, stripe, pagenr);
1306			}
1307
1308			ret = rbio_add_io_page(rbio, &bio_list,
1309				       page, stripe, pagenr, rbio->stripe_len);
1310			if (ret)
1311				goto cleanup;
1312		}
1313	}
1314
1315	if (likely(!bbio->num_tgtdevs))
1316		goto write_data;
1317
1318	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1319		if (!bbio->tgtdev_map[stripe])
1320			continue;
1321
1322		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1323			struct page *page;
1324
1325			/* This vertical stripe has no data, skip it. */
1326			if (!test_bit(pagenr, rbio->dbitmap))
1327				continue;
1328
1329			if (stripe < rbio->nr_data) {
1330				page = page_in_rbio(rbio, stripe, pagenr, 1);
1331				if (!page)
1332					continue;
1333			} else {
1334			       page = rbio_stripe_page(rbio, stripe, pagenr);
1335			}
1336
1337			ret = rbio_add_io_page(rbio, &bio_list, page,
1338					       rbio->bbio->tgtdev_map[stripe],
1339					       pagenr, rbio->stripe_len);
1340			if (ret)
1341				goto cleanup;
1342		}
1343	}
1344
1345write_data:
1346	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1347	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1348
1349	while ((bio = bio_list_pop(&bio_list))) {
1350		bio->bi_private = rbio;
1351		bio->bi_end_io = raid_write_end_io;
1352		bio->bi_opf = REQ_OP_WRITE;
1353
1354		submit_bio(bio);
1355	}
1356	return;
1357
1358cleanup:
1359	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1360
1361	while ((bio = bio_list_pop(&bio_list)))
1362		bio_put(bio);
1363}
1364
1365/*
1366 * helper to find the stripe number for a given bio.  Used to figure out which
1367 * stripe has failed.  This expects the bio to correspond to a physical disk,
1368 * so it looks up based on physical sector numbers.
1369 */
1370static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1371			   struct bio *bio)
1372{
1373	u64 physical = bio->bi_iter.bi_sector;
1374	int i;
1375	struct btrfs_bio_stripe *stripe;
1376
1377	physical <<= 9;
1378
1379	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1380		stripe = &rbio->bbio->stripes[i];
1381		if (in_range(physical, stripe->physical, rbio->stripe_len) &&
1382		    stripe->dev->bdev &&
1383		    bio->bi_disk == stripe->dev->bdev->bd_disk &&
1384		    bio->bi_partno == stripe->dev->bdev->bd_partno) {
1385			return i;
1386		}
1387	}
1388	return -1;
1389}
1390
1391/*
1392 * helper to find the stripe number for a given
1393 * bio (before mapping).  Used to figure out which stripe has
1394 * failed.  This looks up based on logical block numbers.
1395 */
1396static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1397				   struct bio *bio)
1398{
1399	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1400	int i;
1401
1402	for (i = 0; i < rbio->nr_data; i++) {
1403		u64 stripe_start = rbio->bbio->raid_map[i];
1404
1405		if (in_range(logical, stripe_start, rbio->stripe_len))
1406			return i;
1407	}
1408	return -1;
1409}
1410
1411/*
1412 * returns -EIO if we had too many failures
1413 */
1414static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1415{
1416	unsigned long flags;
1417	int ret = 0;
1418
1419	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1420
1421	/* we already know this stripe is bad, move on */
1422	if (rbio->faila == failed || rbio->failb == failed)
1423		goto out;
1424
1425	if (rbio->faila == -1) {
1426		/* first failure on this rbio */
1427		rbio->faila = failed;
1428		atomic_inc(&rbio->error);
1429	} else if (rbio->failb == -1) {
1430		/* second failure on this rbio */
1431		rbio->failb = failed;
1432		atomic_inc(&rbio->error);
1433	} else {
1434		ret = -EIO;
1435	}
1436out:
1437	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1438
1439	return ret;
1440}
1441
1442/*
1443 * helper to fail a stripe based on a physical disk
1444 * bio.
1445 */
1446static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1447			   struct bio *bio)
1448{
1449	int failed = find_bio_stripe(rbio, bio);
1450
1451	if (failed < 0)
1452		return -EIO;
1453
1454	return fail_rbio_index(rbio, failed);
1455}
1456
1457/*
1458 * this sets each page in the bio uptodate.  It should only be used on private
1459 * rbio pages, nothing that comes in from the higher layers
1460 */
1461static void set_bio_pages_uptodate(struct bio *bio)
1462{
1463	struct bio_vec *bvec;
1464	struct bvec_iter_all iter_all;
1465
1466	ASSERT(!bio_flagged(bio, BIO_CLONED));
1467
1468	bio_for_each_segment_all(bvec, bio, iter_all)
1469		SetPageUptodate(bvec->bv_page);
1470}
1471
1472/*
1473 * end io for the read phase of the rmw cycle.  All the bios here are physical
1474 * stripe bios we've read from the disk so we can recalculate the parity of the
1475 * stripe.
1476 *
1477 * This will usually kick off finish_rmw once all the bios are read in, but it
1478 * may trigger parity reconstruction if we had any errors along the way
1479 */
1480static void raid_rmw_end_io(struct bio *bio)
1481{
1482	struct btrfs_raid_bio *rbio = bio->bi_private;
1483
1484	if (bio->bi_status)
1485		fail_bio_stripe(rbio, bio);
1486	else
1487		set_bio_pages_uptodate(bio);
1488
1489	bio_put(bio);
1490
1491	if (!atomic_dec_and_test(&rbio->stripes_pending))
1492		return;
1493
1494	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1495		goto cleanup;
1496
1497	/*
1498	 * this will normally call finish_rmw to start our write
1499	 * but if there are any failed stripes we'll reconstruct
1500	 * from parity first
1501	 */
1502	validate_rbio_for_rmw(rbio);
1503	return;
1504
1505cleanup:
1506
1507	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1508}
1509
1510/*
1511 * the stripe must be locked by the caller.  It will
1512 * unlock after all the writes are done
1513 */
1514static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1515{
1516	int bios_to_read = 0;
1517	struct bio_list bio_list;
1518	int ret;
1519	int pagenr;
1520	int stripe;
1521	struct bio *bio;
1522
1523	bio_list_init(&bio_list);
1524
1525	ret = alloc_rbio_pages(rbio);
1526	if (ret)
1527		goto cleanup;
1528
1529	index_rbio_pages(rbio);
1530
1531	atomic_set(&rbio->error, 0);
1532	/*
1533	 * build a list of bios to read all the missing parts of this
1534	 * stripe
1535	 */
1536	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1537		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1538			struct page *page;
1539			/*
1540			 * we want to find all the pages missing from
1541			 * the rbio and read them from the disk.  If
1542			 * page_in_rbio finds a page in the bio list
1543			 * we don't need to read it off the stripe.
1544			 */
1545			page = page_in_rbio(rbio, stripe, pagenr, 1);
1546			if (page)
1547				continue;
1548
1549			page = rbio_stripe_page(rbio, stripe, pagenr);
1550			/*
1551			 * the bio cache may have handed us an uptodate
1552			 * page.  If so, be happy and use it
1553			 */
1554			if (PageUptodate(page))
1555				continue;
1556
1557			ret = rbio_add_io_page(rbio, &bio_list, page,
1558				       stripe, pagenr, rbio->stripe_len);
1559			if (ret)
1560				goto cleanup;
1561		}
1562	}
1563
1564	bios_to_read = bio_list_size(&bio_list);
1565	if (!bios_to_read) {
1566		/*
1567		 * this can happen if others have merged with
1568		 * us, it means there is nothing left to read.
1569		 * But if there are missing devices it may not be
1570		 * safe to do the full stripe write yet.
1571		 */
1572		goto finish;
1573	}
1574
1575	/*
1576	 * the bbio may be freed once we submit the last bio.  Make sure
1577	 * not to touch it after that
1578	 */
1579	atomic_set(&rbio->stripes_pending, bios_to_read);
1580	while ((bio = bio_list_pop(&bio_list))) {
1581		bio->bi_private = rbio;
1582		bio->bi_end_io = raid_rmw_end_io;
1583		bio->bi_opf = REQ_OP_READ;
1584
1585		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1586
1587		submit_bio(bio);
1588	}
1589	/* the actual write will happen once the reads are done */
1590	return 0;
1591
1592cleanup:
1593	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1594
1595	while ((bio = bio_list_pop(&bio_list)))
1596		bio_put(bio);
1597
1598	return -EIO;
1599
1600finish:
1601	validate_rbio_for_rmw(rbio);
1602	return 0;
1603}
1604
1605/*
1606 * if the upper layers pass in a full stripe, we thank them by only allocating
1607 * enough pages to hold the parity, and sending it all down quickly.
1608 */
1609static int full_stripe_write(struct btrfs_raid_bio *rbio)
1610{
1611	int ret;
1612
1613	ret = alloc_rbio_parity_pages(rbio);
1614	if (ret) {
1615		__free_raid_bio(rbio);
1616		return ret;
1617	}
1618
1619	ret = lock_stripe_add(rbio);
1620	if (ret == 0)
1621		finish_rmw(rbio);
1622	return 0;
1623}
1624
1625/*
1626 * partial stripe writes get handed over to async helpers.
1627 * We're really hoping to merge a few more writes into this
1628 * rbio before calculating new parity
1629 */
1630static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1631{
1632	int ret;
1633
1634	ret = lock_stripe_add(rbio);
1635	if (ret == 0)
1636		start_async_work(rbio, rmw_work);
1637	return 0;
1638}
1639
1640/*
1641 * sometimes while we were reading from the drive to
1642 * recalculate parity, enough new bios come into create
1643 * a full stripe.  So we do a check here to see if we can
1644 * go directly to finish_rmw
1645 */
1646static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1647{
1648	/* head off into rmw land if we don't have a full stripe */
1649	if (!rbio_is_full(rbio))
1650		return partial_stripe_write(rbio);
1651	return full_stripe_write(rbio);
1652}
1653
1654/*
1655 * We use plugging call backs to collect full stripes.
1656 * Any time we get a partial stripe write while plugged
1657 * we collect it into a list.  When the unplug comes down,
1658 * we sort the list by logical block number and merge
1659 * everything we can into the same rbios
1660 */
1661struct btrfs_plug_cb {
1662	struct blk_plug_cb cb;
1663	struct btrfs_fs_info *info;
1664	struct list_head rbio_list;
1665	struct btrfs_work work;
1666};
1667
1668/*
1669 * rbios on the plug list are sorted for easier merging.
1670 */
1671static int plug_cmp(void *priv, const struct list_head *a,
1672		    const struct list_head *b)
1673{
1674	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1675						 plug_list);
1676	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1677						 plug_list);
1678	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1679	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1680
1681	if (a_sector < b_sector)
1682		return -1;
1683	if (a_sector > b_sector)
1684		return 1;
1685	return 0;
1686}
1687
1688static void run_plug(struct btrfs_plug_cb *plug)
1689{
1690	struct btrfs_raid_bio *cur;
1691	struct btrfs_raid_bio *last = NULL;
1692
1693	/*
1694	 * sort our plug list then try to merge
1695	 * everything we can in hopes of creating full
1696	 * stripes.
1697	 */
1698	list_sort(NULL, &plug->rbio_list, plug_cmp);
1699	while (!list_empty(&plug->rbio_list)) {
1700		cur = list_entry(plug->rbio_list.next,
1701				 struct btrfs_raid_bio, plug_list);
1702		list_del_init(&cur->plug_list);
1703
1704		if (rbio_is_full(cur)) {
1705			int ret;
1706
1707			/* we have a full stripe, send it down */
1708			ret = full_stripe_write(cur);
1709			BUG_ON(ret);
1710			continue;
1711		}
1712		if (last) {
1713			if (rbio_can_merge(last, cur)) {
1714				merge_rbio(last, cur);
1715				__free_raid_bio(cur);
1716				continue;
1717
1718			}
1719			__raid56_parity_write(last);
1720		}
1721		last = cur;
1722	}
1723	if (last) {
1724		__raid56_parity_write(last);
1725	}
1726	kfree(plug);
1727}
1728
1729/*
1730 * if the unplug comes from schedule, we have to push the
1731 * work off to a helper thread
1732 */
1733static void unplug_work(struct btrfs_work *work)
1734{
1735	struct btrfs_plug_cb *plug;
1736	plug = container_of(work, struct btrfs_plug_cb, work);
1737	run_plug(plug);
1738}
1739
1740static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1741{
1742	struct btrfs_plug_cb *plug;
1743	plug = container_of(cb, struct btrfs_plug_cb, cb);
1744
1745	if (from_schedule) {
1746		btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1747		btrfs_queue_work(plug->info->rmw_workers,
1748				 &plug->work);
1749		return;
1750	}
1751	run_plug(plug);
1752}
1753
1754/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1755static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1756{
1757	const struct btrfs_fs_info *fs_info = rbio->fs_info;
1758	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1759	const u64 full_stripe_start = rbio->bbio->raid_map[0];
1760	const u32 orig_len = orig_bio->bi_iter.bi_size;
1761	const u32 sectorsize = fs_info->sectorsize;
1762	u64 cur_logical;
1763
1764	ASSERT(orig_logical >= full_stripe_start &&
1765	       orig_logical + orig_len <= full_stripe_start +
1766	       rbio->nr_data * rbio->stripe_len);
1767
1768	bio_list_add(&rbio->bio_list, orig_bio);
1769	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1770
1771	/* Update the dbitmap. */
1772	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1773	     cur_logical += sectorsize) {
1774		int bit = ((u32)(cur_logical - full_stripe_start) >>
1775			   PAGE_SHIFT) % rbio->stripe_npages;
1776
1777		set_bit(bit, rbio->dbitmap);
1778	}
1779}
1780
1781/*
1782 * our main entry point for writes from the rest of the FS.
1783 */
1784int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1785			struct btrfs_bio *bbio, u64 stripe_len)
1786{
1787	struct btrfs_raid_bio *rbio;
1788	struct btrfs_plug_cb *plug = NULL;
1789	struct blk_plug_cb *cb;
1790	int ret;
1791
1792	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1793	if (IS_ERR(rbio)) {
1794		btrfs_put_bbio(bbio);
1795		return PTR_ERR(rbio);
1796	}
1797	rbio->operation = BTRFS_RBIO_WRITE;
1798	rbio_add_bio(rbio, bio);
1799
1800	btrfs_bio_counter_inc_noblocked(fs_info);
1801	rbio->generic_bio_cnt = 1;
1802
1803	/*
1804	 * don't plug on full rbios, just get them out the door
1805	 * as quickly as we can
1806	 */
1807	if (rbio_is_full(rbio)) {
1808		ret = full_stripe_write(rbio);
1809		if (ret)
1810			btrfs_bio_counter_dec(fs_info);
1811		return ret;
1812	}
1813
1814	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1815	if (cb) {
1816		plug = container_of(cb, struct btrfs_plug_cb, cb);
1817		if (!plug->info) {
1818			plug->info = fs_info;
1819			INIT_LIST_HEAD(&plug->rbio_list);
1820		}
1821		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1822		ret = 0;
1823	} else {
1824		ret = __raid56_parity_write(rbio);
1825		if (ret)
1826			btrfs_bio_counter_dec(fs_info);
1827	}
1828	return ret;
1829}
1830
1831/*
1832 * all parity reconstruction happens here.  We've read in everything
1833 * we can find from the drives and this does the heavy lifting of
1834 * sorting the good from the bad.
1835 */
1836static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1837{
1838	int pagenr, stripe;
1839	void **pointers;
1840	int faila = -1, failb = -1;
1841	struct page *page;
1842	blk_status_t err;
1843	int i;
1844
1845	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1846	if (!pointers) {
1847		err = BLK_STS_RESOURCE;
1848		goto cleanup_io;
1849	}
1850
1851	faila = rbio->faila;
1852	failb = rbio->failb;
1853
1854	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1855	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1856		spin_lock_irq(&rbio->bio_list_lock);
1857		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1858		spin_unlock_irq(&rbio->bio_list_lock);
1859	}
1860
1861	index_rbio_pages(rbio);
1862
1863	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1864		/*
1865		 * Now we just use bitmap to mark the horizontal stripes in
1866		 * which we have data when doing parity scrub.
1867		 */
1868		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1869		    !test_bit(pagenr, rbio->dbitmap))
1870			continue;
1871
1872		/* setup our array of pointers with pages
1873		 * from each stripe
1874		 */
1875		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1876			/*
1877			 * if we're rebuilding a read, we have to use
1878			 * pages from the bio list
1879			 */
1880			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1881			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1882			    (stripe == faila || stripe == failb)) {
1883				page = page_in_rbio(rbio, stripe, pagenr, 0);
1884			} else {
1885				page = rbio_stripe_page(rbio, stripe, pagenr);
1886			}
1887			pointers[stripe] = kmap(page);
1888		}
1889
1890		/* all raid6 handling here */
1891		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1892			/*
1893			 * single failure, rebuild from parity raid5
1894			 * style
1895			 */
1896			if (failb < 0) {
1897				if (faila == rbio->nr_data) {
1898					/*
1899					 * Just the P stripe has failed, without
1900					 * a bad data or Q stripe.
1901					 * TODO, we should redo the xor here.
1902					 */
1903					err = BLK_STS_IOERR;
1904					goto cleanup;
1905				}
1906				/*
1907				 * a single failure in raid6 is rebuilt
1908				 * in the pstripe code below
1909				 */
1910				goto pstripe;
1911			}
1912
1913			/* make sure our ps and qs are in order */
1914			if (faila > failb)
1915				swap(faila, failb);
1916
1917			/* if the q stripe is failed, do a pstripe reconstruction
1918			 * from the xors.
1919			 * If both the q stripe and the P stripe are failed, we're
1920			 * here due to a crc mismatch and we can't give them the
1921			 * data they want
1922			 */
1923			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1924				if (rbio->bbio->raid_map[faila] ==
1925				    RAID5_P_STRIPE) {
1926					err = BLK_STS_IOERR;
1927					goto cleanup;
1928				}
1929				/*
1930				 * otherwise we have one bad data stripe and
1931				 * a good P stripe.  raid5!
1932				 */
1933				goto pstripe;
1934			}
1935
1936			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1937				raid6_datap_recov(rbio->real_stripes,
1938						  PAGE_SIZE, faila, pointers);
1939			} else {
1940				raid6_2data_recov(rbio->real_stripes,
1941						  PAGE_SIZE, faila, failb,
1942						  pointers);
1943			}
1944		} else {
1945			void *p;
1946
1947			/* rebuild from P stripe here (raid5 or raid6) */
1948			BUG_ON(failb != -1);
1949pstripe:
1950			/* Copy parity block into failed block to start with */
1951			copy_page(pointers[faila], pointers[rbio->nr_data]);
1952
1953			/* rearrange the pointer array */
1954			p = pointers[faila];
1955			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1956				pointers[stripe] = pointers[stripe + 1];
1957			pointers[rbio->nr_data - 1] = p;
1958
1959			/* xor in the rest */
1960			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1961		}
1962		/* if we're doing this rebuild as part of an rmw, go through
1963		 * and set all of our private rbio pages in the
1964		 * failed stripes as uptodate.  This way finish_rmw will
1965		 * know they can be trusted.  If this was a read reconstruction,
1966		 * other endio functions will fiddle the uptodate bits
1967		 */
1968		if (rbio->operation == BTRFS_RBIO_WRITE) {
1969			for (i = 0;  i < rbio->stripe_npages; i++) {
1970				if (faila != -1) {
1971					page = rbio_stripe_page(rbio, faila, i);
1972					SetPageUptodate(page);
1973				}
1974				if (failb != -1) {
1975					page = rbio_stripe_page(rbio, failb, i);
1976					SetPageUptodate(page);
1977				}
1978			}
1979		}
1980		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1981			/*
1982			 * if we're rebuilding a read, we have to use
1983			 * pages from the bio list
1984			 */
1985			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1986			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1987			    (stripe == faila || stripe == failb)) {
1988				page = page_in_rbio(rbio, stripe, pagenr, 0);
1989			} else {
1990				page = rbio_stripe_page(rbio, stripe, pagenr);
1991			}
1992			kunmap(page);
1993		}
1994	}
1995
1996	err = BLK_STS_OK;
1997cleanup:
1998	kfree(pointers);
1999
2000cleanup_io:
2001	/*
2002	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
2003	 * valid rbio which is consistent with ondisk content, thus such a
2004	 * valid rbio can be cached to avoid further disk reads.
2005	 */
2006	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2007	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
2008		/*
2009		 * - In case of two failures, where rbio->failb != -1:
2010		 *
2011		 *   Do not cache this rbio since the above read reconstruction
2012		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
2013		 *   changed some content of stripes which are not identical to
2014		 *   on-disk content any more, otherwise, a later write/recover
2015		 *   may steal stripe_pages from this rbio and end up with
2016		 *   corruptions or rebuild failures.
2017		 *
2018		 * - In case of single failure, where rbio->failb == -1:
2019		 *
2020		 *   Cache this rbio iff the above read reconstruction is
2021		 *   executed without problems.
2022		 */
2023		if (err == BLK_STS_OK && rbio->failb < 0)
2024			cache_rbio_pages(rbio);
2025		else
2026			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2027
2028		rbio_orig_end_io(rbio, err);
2029	} else if (err == BLK_STS_OK) {
2030		rbio->faila = -1;
2031		rbio->failb = -1;
2032
2033		if (rbio->operation == BTRFS_RBIO_WRITE)
2034			finish_rmw(rbio);
2035		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2036			finish_parity_scrub(rbio, 0);
2037		else
2038			BUG();
2039	} else {
2040		rbio_orig_end_io(rbio, err);
2041	}
2042}
2043
2044/*
2045 * This is called only for stripes we've read from disk to
2046 * reconstruct the parity.
2047 */
2048static void raid_recover_end_io(struct bio *bio)
2049{
2050	struct btrfs_raid_bio *rbio = bio->bi_private;
2051
2052	/*
2053	 * we only read stripe pages off the disk, set them
2054	 * up to date if there were no errors
2055	 */
2056	if (bio->bi_status)
2057		fail_bio_stripe(rbio, bio);
2058	else
2059		set_bio_pages_uptodate(bio);
2060	bio_put(bio);
2061
2062	if (!atomic_dec_and_test(&rbio->stripes_pending))
2063		return;
2064
2065	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2066		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2067	else
2068		__raid_recover_end_io(rbio);
2069}
2070
2071/*
2072 * reads everything we need off the disk to reconstruct
2073 * the parity. endio handlers trigger final reconstruction
2074 * when the IO is done.
2075 *
2076 * This is used both for reads from the higher layers and for
2077 * parity construction required to finish a rmw cycle.
2078 */
2079static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2080{
2081	int bios_to_read = 0;
2082	struct bio_list bio_list;
2083	int ret;
2084	int pagenr;
2085	int stripe;
2086	struct bio *bio;
2087
2088	bio_list_init(&bio_list);
2089
2090	ret = alloc_rbio_pages(rbio);
2091	if (ret)
2092		goto cleanup;
2093
2094	atomic_set(&rbio->error, 0);
2095
2096	/*
2097	 * Read everything that hasn't failed. However this time we will
2098	 * not trust any cached sector.
2099	 * As we may read out some stale data but higher layer is not reading
2100	 * that stale part.
2101	 *
2102	 * So here we always re-read everything in recovery path.
2103	 */
2104	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2105		if (rbio->faila == stripe || rbio->failb == stripe) {
2106			atomic_inc(&rbio->error);
2107			continue;
2108		}
2109
2110		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2111			ret = rbio_add_io_page(rbio, &bio_list,
2112				       rbio_stripe_page(rbio, stripe, pagenr),
2113				       stripe, pagenr, rbio->stripe_len);
2114			if (ret < 0)
2115				goto cleanup;
2116		}
2117	}
2118
2119	bios_to_read = bio_list_size(&bio_list);
2120	if (!bios_to_read) {
2121		/*
2122		 * we might have no bios to read just because the pages
2123		 * were up to date, or we might have no bios to read because
2124		 * the devices were gone.
2125		 */
2126		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2127			__raid_recover_end_io(rbio);
2128			return 0;
2129		} else {
2130			goto cleanup;
2131		}
2132	}
2133
2134	/*
2135	 * the bbio may be freed once we submit the last bio.  Make sure
2136	 * not to touch it after that
2137	 */
2138	atomic_set(&rbio->stripes_pending, bios_to_read);
2139	while ((bio = bio_list_pop(&bio_list))) {
2140		bio->bi_private = rbio;
2141		bio->bi_end_io = raid_recover_end_io;
2142		bio->bi_opf = REQ_OP_READ;
2143
2144		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2145
2146		submit_bio(bio);
2147	}
2148
2149	return 0;
2150
2151cleanup:
2152	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2153	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2154		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2155
2156	while ((bio = bio_list_pop(&bio_list)))
2157		bio_put(bio);
2158
2159	return -EIO;
2160}
2161
2162/*
2163 * the main entry point for reads from the higher layers.  This
2164 * is really only called when the normal read path had a failure,
2165 * so we assume the bio they send down corresponds to a failed part
2166 * of the drive.
2167 */
2168int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2169			  struct btrfs_bio *bbio, u64 stripe_len,
2170			  int mirror_num, int generic_io)
2171{
2172	struct btrfs_raid_bio *rbio;
2173	int ret;
2174
2175	if (generic_io) {
2176		ASSERT(bbio->mirror_num == mirror_num);
2177		btrfs_io_bio(bio)->mirror_num = mirror_num;
2178	}
2179
2180	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2181	if (IS_ERR(rbio)) {
2182		if (generic_io)
2183			btrfs_put_bbio(bbio);
2184		return PTR_ERR(rbio);
2185	}
2186
2187	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2188	rbio_add_bio(rbio, bio);
2189
2190	rbio->faila = find_logical_bio_stripe(rbio, bio);
2191	if (rbio->faila == -1) {
2192		btrfs_warn(fs_info,
2193	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2194			   __func__, (u64)bio->bi_iter.bi_sector << 9,
2195			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2196		if (generic_io)
2197			btrfs_put_bbio(bbio);
2198		kfree(rbio);
2199		return -EIO;
2200	}
2201
2202	if (generic_io) {
2203		btrfs_bio_counter_inc_noblocked(fs_info);
2204		rbio->generic_bio_cnt = 1;
2205	} else {
2206		btrfs_get_bbio(bbio);
2207	}
2208
2209	/*
2210	 * Loop retry:
2211	 * for 'mirror == 2', reconstruct from all other stripes.
2212	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2213	 */
2214	if (mirror_num > 2) {
2215		/*
2216		 * 'mirror == 3' is to fail the p stripe and
2217		 * reconstruct from the q stripe.  'mirror > 3' is to
2218		 * fail a data stripe and reconstruct from p+q stripe.
2219		 */
2220		rbio->failb = rbio->real_stripes - (mirror_num - 1);
2221		ASSERT(rbio->failb > 0);
2222		if (rbio->failb <= rbio->faila)
2223			rbio->failb--;
2224	}
2225
2226	ret = lock_stripe_add(rbio);
2227
2228	/*
2229	 * __raid56_parity_recover will end the bio with
2230	 * any errors it hits.  We don't want to return
2231	 * its error value up the stack because our caller
2232	 * will end up calling bio_endio with any nonzero
2233	 * return
2234	 */
2235	if (ret == 0)
2236		__raid56_parity_recover(rbio);
2237	/*
2238	 * our rbio has been added to the list of
2239	 * rbios that will be handled after the
2240	 * currently lock owner is done
2241	 */
2242	return 0;
2243
2244}
2245
2246static void rmw_work(struct btrfs_work *work)
2247{
2248	struct btrfs_raid_bio *rbio;
2249
2250	rbio = container_of(work, struct btrfs_raid_bio, work);
2251	raid56_rmw_stripe(rbio);
2252}
2253
2254static void read_rebuild_work(struct btrfs_work *work)
2255{
2256	struct btrfs_raid_bio *rbio;
2257
2258	rbio = container_of(work, struct btrfs_raid_bio, work);
2259	__raid56_parity_recover(rbio);
2260}
2261
2262/*
2263 * The following code is used to scrub/replace the parity stripe
2264 *
2265 * Caller must have already increased bio_counter for getting @bbio.
2266 *
2267 * Note: We need make sure all the pages that add into the scrub/replace
2268 * raid bio are correct and not be changed during the scrub/replace. That
2269 * is those pages just hold metadata or file data with checksum.
2270 */
2271
2272struct btrfs_raid_bio *
2273raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2274			       struct btrfs_bio *bbio, u64 stripe_len,
2275			       struct btrfs_device *scrub_dev,
2276			       unsigned long *dbitmap, int stripe_nsectors)
2277{
2278	struct btrfs_raid_bio *rbio;
2279	int i;
2280
2281	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2282	if (IS_ERR(rbio))
2283		return NULL;
2284	bio_list_add(&rbio->bio_list, bio);
2285	/*
2286	 * This is a special bio which is used to hold the completion handler
2287	 * and make the scrub rbio is similar to the other types
2288	 */
2289	ASSERT(!bio->bi_iter.bi_size);
2290	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2291
2292	/*
2293	 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2294	 * to the end position, so this search can start from the first parity
2295	 * stripe.
2296	 */
2297	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2298		if (bbio->stripes[i].dev == scrub_dev) {
2299			rbio->scrubp = i;
2300			break;
2301		}
2302	}
2303	ASSERT(i < rbio->real_stripes);
2304
2305	/* Now we just support the sectorsize equals to page size */
2306	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2307	ASSERT(rbio->stripe_npages == stripe_nsectors);
2308	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2309
2310	/*
2311	 * We have already increased bio_counter when getting bbio, record it
2312	 * so we can free it at rbio_orig_end_io().
2313	 */
2314	rbio->generic_bio_cnt = 1;
2315
2316	return rbio;
2317}
2318
2319/* Used for both parity scrub and missing. */
2320void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2321			    u64 logical)
2322{
2323	int stripe_offset;
2324	int index;
2325
2326	ASSERT(logical >= rbio->bbio->raid_map[0]);
2327	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2328				rbio->stripe_len * rbio->nr_data);
2329	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2330	index = stripe_offset >> PAGE_SHIFT;
2331	rbio->bio_pages[index] = page;
2332}
2333
2334/*
2335 * We just scrub the parity that we have correct data on the same horizontal,
2336 * so we needn't allocate all pages for all the stripes.
2337 */
2338static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2339{
2340	int i;
2341	int bit;
2342	int index;
2343	struct page *page;
2344
2345	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2346		for (i = 0; i < rbio->real_stripes; i++) {
2347			index = i * rbio->stripe_npages + bit;
2348			if (rbio->stripe_pages[index])
2349				continue;
2350
2351			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2352			if (!page)
2353				return -ENOMEM;
2354			rbio->stripe_pages[index] = page;
2355		}
2356	}
2357	return 0;
2358}
2359
2360static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2361					 int need_check)
2362{
2363	struct btrfs_bio *bbio = rbio->bbio;
2364	void **pointers = rbio->finish_pointers;
2365	unsigned long *pbitmap = rbio->finish_pbitmap;
2366	int nr_data = rbio->nr_data;
2367	int stripe;
2368	int pagenr;
2369	bool has_qstripe;
2370	struct page *p_page = NULL;
2371	struct page *q_page = NULL;
2372	struct bio_list bio_list;
2373	struct bio *bio;
2374	int is_replace = 0;
2375	int ret;
2376
2377	bio_list_init(&bio_list);
2378
2379	if (rbio->real_stripes - rbio->nr_data == 1)
2380		has_qstripe = false;
2381	else if (rbio->real_stripes - rbio->nr_data == 2)
2382		has_qstripe = true;
2383	else
2384		BUG();
2385
2386	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2387		is_replace = 1;
2388		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2389	}
2390
2391	/*
2392	 * Because the higher layers(scrubber) are unlikely to
2393	 * use this area of the disk again soon, so don't cache
2394	 * it.
2395	 */
2396	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2397
2398	if (!need_check)
2399		goto writeback;
2400
2401	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2402	if (!p_page)
2403		goto cleanup;
2404	SetPageUptodate(p_page);
2405
2406	if (has_qstripe) {
2407		/* RAID6, allocate and map temp space for the Q stripe */
2408		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2409		if (!q_page) {
2410			__free_page(p_page);
2411			goto cleanup;
2412		}
2413		SetPageUptodate(q_page);
2414		pointers[rbio->real_stripes - 1] = kmap(q_page);
2415	}
2416
2417	atomic_set(&rbio->error, 0);
2418
2419	/* Map the parity stripe just once */
2420	pointers[nr_data] = kmap(p_page);
2421
2422	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2423		struct page *p;
2424		void *parity;
2425		/* first collect one page from each data stripe */
2426		for (stripe = 0; stripe < nr_data; stripe++) {
2427			p = page_in_rbio(rbio, stripe, pagenr, 0);
2428			pointers[stripe] = kmap(p);
2429		}
2430
2431		if (has_qstripe) {
2432			/* RAID6, call the library function to fill in our P/Q */
2433			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2434						pointers);
2435		} else {
2436			/* raid5 */
2437			copy_page(pointers[nr_data], pointers[0]);
2438			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2439		}
2440
2441		/* Check scrubbing parity and repair it */
2442		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2443		parity = kmap(p);
2444		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2445			copy_page(parity, pointers[rbio->scrubp]);
2446		else
2447			/* Parity is right, needn't writeback */
2448			bitmap_clear(rbio->dbitmap, pagenr, 1);
2449		kunmap(p);
2450
2451		for (stripe = 0; stripe < nr_data; stripe++)
2452			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2453	}
2454
2455	kunmap(p_page);
2456	__free_page(p_page);
2457	if (q_page) {
2458		kunmap(q_page);
2459		__free_page(q_page);
2460	}
2461
2462writeback:
2463	/*
2464	 * time to start writing.  Make bios for everything from the
2465	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2466	 * everything else.
2467	 */
2468	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2469		struct page *page;
2470
2471		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2472		ret = rbio_add_io_page(rbio, &bio_list,
2473			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2474		if (ret)
2475			goto cleanup;
2476	}
2477
2478	if (!is_replace)
2479		goto submit_write;
2480
2481	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2482		struct page *page;
2483
2484		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2485		ret = rbio_add_io_page(rbio, &bio_list, page,
2486				       bbio->tgtdev_map[rbio->scrubp],
2487				       pagenr, rbio->stripe_len);
2488		if (ret)
2489			goto cleanup;
2490	}
2491
2492submit_write:
2493	nr_data = bio_list_size(&bio_list);
2494	if (!nr_data) {
2495		/* Every parity is right */
2496		rbio_orig_end_io(rbio, BLK_STS_OK);
2497		return;
2498	}
2499
2500	atomic_set(&rbio->stripes_pending, nr_data);
2501
2502	while ((bio = bio_list_pop(&bio_list))) {
2503		bio->bi_private = rbio;
2504		bio->bi_end_io = raid_write_end_io;
2505		bio->bi_opf = REQ_OP_WRITE;
2506
2507		submit_bio(bio);
2508	}
2509	return;
2510
2511cleanup:
2512	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2513
2514	while ((bio = bio_list_pop(&bio_list)))
2515		bio_put(bio);
2516}
2517
2518static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2519{
2520	if (stripe >= 0 && stripe < rbio->nr_data)
2521		return 1;
2522	return 0;
2523}
2524
2525/*
2526 * While we're doing the parity check and repair, we could have errors
2527 * in reading pages off the disk.  This checks for errors and if we're
2528 * not able to read the page it'll trigger parity reconstruction.  The
2529 * parity scrub will be finished after we've reconstructed the failed
2530 * stripes
2531 */
2532static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2533{
2534	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2535		goto cleanup;
2536
2537	if (rbio->faila >= 0 || rbio->failb >= 0) {
2538		int dfail = 0, failp = -1;
2539
2540		if (is_data_stripe(rbio, rbio->faila))
2541			dfail++;
2542		else if (is_parity_stripe(rbio->faila))
2543			failp = rbio->faila;
2544
2545		if (is_data_stripe(rbio, rbio->failb))
2546			dfail++;
2547		else if (is_parity_stripe(rbio->failb))
2548			failp = rbio->failb;
2549
2550		/*
2551		 * Because we can not use a scrubbing parity to repair
2552		 * the data, so the capability of the repair is declined.
2553		 * (In the case of RAID5, we can not repair anything)
2554		 */
2555		if (dfail > rbio->bbio->max_errors - 1)
2556			goto cleanup;
2557
2558		/*
2559		 * If all data is good, only parity is correctly, just
2560		 * repair the parity.
2561		 */
2562		if (dfail == 0) {
2563			finish_parity_scrub(rbio, 0);
2564			return;
2565		}
2566
2567		/*
2568		 * Here means we got one corrupted data stripe and one
2569		 * corrupted parity on RAID6, if the corrupted parity
2570		 * is scrubbing parity, luckily, use the other one to repair
2571		 * the data, or we can not repair the data stripe.
2572		 */
2573		if (failp != rbio->scrubp)
2574			goto cleanup;
2575
2576		__raid_recover_end_io(rbio);
2577	} else {
2578		finish_parity_scrub(rbio, 1);
2579	}
2580	return;
2581
2582cleanup:
2583	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2584}
2585
2586/*
2587 * end io for the read phase of the rmw cycle.  All the bios here are physical
2588 * stripe bios we've read from the disk so we can recalculate the parity of the
2589 * stripe.
2590 *
2591 * This will usually kick off finish_rmw once all the bios are read in, but it
2592 * may trigger parity reconstruction if we had any errors along the way
2593 */
2594static void raid56_parity_scrub_end_io(struct bio *bio)
2595{
2596	struct btrfs_raid_bio *rbio = bio->bi_private;
2597
2598	if (bio->bi_status)
2599		fail_bio_stripe(rbio, bio);
2600	else
2601		set_bio_pages_uptodate(bio);
2602
2603	bio_put(bio);
2604
2605	if (!atomic_dec_and_test(&rbio->stripes_pending))
2606		return;
2607
2608	/*
2609	 * this will normally call finish_rmw to start our write
2610	 * but if there are any failed stripes we'll reconstruct
2611	 * from parity first
2612	 */
2613	validate_rbio_for_parity_scrub(rbio);
2614}
2615
2616static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2617{
2618	int bios_to_read = 0;
2619	struct bio_list bio_list;
2620	int ret;
2621	int pagenr;
2622	int stripe;
2623	struct bio *bio;
2624
2625	bio_list_init(&bio_list);
2626
2627	ret = alloc_rbio_essential_pages(rbio);
2628	if (ret)
2629		goto cleanup;
2630
2631	atomic_set(&rbio->error, 0);
2632	/*
2633	 * build a list of bios to read all the missing parts of this
2634	 * stripe
2635	 */
2636	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2637		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2638			struct page *page;
2639			/*
2640			 * we want to find all the pages missing from
2641			 * the rbio and read them from the disk.  If
2642			 * page_in_rbio finds a page in the bio list
2643			 * we don't need to read it off the stripe.
2644			 */
2645			page = page_in_rbio(rbio, stripe, pagenr, 1);
2646			if (page)
2647				continue;
2648
2649			page = rbio_stripe_page(rbio, stripe, pagenr);
2650			/*
2651			 * the bio cache may have handed us an uptodate
2652			 * page.  If so, be happy and use it
2653			 */
2654			if (PageUptodate(page))
2655				continue;
2656
2657			ret = rbio_add_io_page(rbio, &bio_list, page,
2658				       stripe, pagenr, rbio->stripe_len);
2659			if (ret)
2660				goto cleanup;
2661		}
2662	}
2663
2664	bios_to_read = bio_list_size(&bio_list);
2665	if (!bios_to_read) {
2666		/*
2667		 * this can happen if others have merged with
2668		 * us, it means there is nothing left to read.
2669		 * But if there are missing devices it may not be
2670		 * safe to do the full stripe write yet.
2671		 */
2672		goto finish;
2673	}
2674
2675	/*
2676	 * the bbio may be freed once we submit the last bio.  Make sure
2677	 * not to touch it after that
2678	 */
2679	atomic_set(&rbio->stripes_pending, bios_to_read);
2680	while ((bio = bio_list_pop(&bio_list))) {
2681		bio->bi_private = rbio;
2682		bio->bi_end_io = raid56_parity_scrub_end_io;
2683		bio->bi_opf = REQ_OP_READ;
2684
2685		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2686
2687		submit_bio(bio);
2688	}
2689	/* the actual write will happen once the reads are done */
2690	return;
2691
2692cleanup:
2693	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2694
2695	while ((bio = bio_list_pop(&bio_list)))
2696		bio_put(bio);
2697
2698	return;
2699
2700finish:
2701	validate_rbio_for_parity_scrub(rbio);
2702}
2703
2704static void scrub_parity_work(struct btrfs_work *work)
2705{
2706	struct btrfs_raid_bio *rbio;
2707
2708	rbio = container_of(work, struct btrfs_raid_bio, work);
2709	raid56_parity_scrub_stripe(rbio);
2710}
2711
2712void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2713{
2714	if (!lock_stripe_add(rbio))
2715		start_async_work(rbio, scrub_parity_work);
2716}
2717
2718/* The following code is used for dev replace of a missing RAID 5/6 device. */
2719
2720struct btrfs_raid_bio *
2721raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2722			  struct btrfs_bio *bbio, u64 length)
2723{
2724	struct btrfs_raid_bio *rbio;
2725
2726	rbio = alloc_rbio(fs_info, bbio, length);
2727	if (IS_ERR(rbio))
2728		return NULL;
2729
2730	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2731	bio_list_add(&rbio->bio_list, bio);
2732	/*
2733	 * This is a special bio which is used to hold the completion handler
2734	 * and make the scrub rbio is similar to the other types
2735	 */
2736	ASSERT(!bio->bi_iter.bi_size);
2737
2738	rbio->faila = find_logical_bio_stripe(rbio, bio);
2739	if (rbio->faila == -1) {
2740		BUG();
2741		kfree(rbio);
2742		return NULL;
2743	}
2744
2745	/*
2746	 * When we get bbio, we have already increased bio_counter, record it
2747	 * so we can free it at rbio_orig_end_io()
2748	 */
2749	rbio->generic_bio_cnt = 1;
2750
2751	return rbio;
2752}
2753
2754void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2755{
2756	if (!lock_stripe_add(rbio))
2757		start_async_work(rbio, read_rebuild_work);
2758}
2759