1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/slab.h>
7#include <linux/blkdev.h>
8#include <linux/writeback.h>
9#include <linux/sched/mm.h>
10#include "misc.h"
11#include "ctree.h"
12#include "transaction.h"
13#include "btrfs_inode.h"
14#include "extent_io.h"
15#include "disk-io.h"
16#include "compression.h"
17#include "delalloc-space.h"
18#include "qgroup.h"
19
20static struct kmem_cache *btrfs_ordered_extent_cache;
21
22static u64 entry_end(struct btrfs_ordered_extent *entry)
23{
24	if (entry->file_offset + entry->num_bytes < entry->file_offset)
25		return (u64)-1;
26	return entry->file_offset + entry->num_bytes;
27}
28
29/* returns NULL if the insertion worked, or it returns the node it did find
30 * in the tree
31 */
32static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
33				   struct rb_node *node)
34{
35	struct rb_node **p = &root->rb_node;
36	struct rb_node *parent = NULL;
37	struct btrfs_ordered_extent *entry;
38
39	while (*p) {
40		parent = *p;
41		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
42
43		if (file_offset < entry->file_offset)
44			p = &(*p)->rb_left;
45		else if (file_offset >= entry_end(entry))
46			p = &(*p)->rb_right;
47		else
48			return parent;
49	}
50
51	rb_link_node(node, parent, p);
52	rb_insert_color(node, root);
53	return NULL;
54}
55
56/*
57 * look for a given offset in the tree, and if it can't be found return the
58 * first lesser offset
59 */
60static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
61				     struct rb_node **prev_ret)
62{
63	struct rb_node *n = root->rb_node;
64	struct rb_node *prev = NULL;
65	struct rb_node *test;
66	struct btrfs_ordered_extent *entry;
67	struct btrfs_ordered_extent *prev_entry = NULL;
68
69	while (n) {
70		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
71		prev = n;
72		prev_entry = entry;
73
74		if (file_offset < entry->file_offset)
75			n = n->rb_left;
76		else if (file_offset >= entry_end(entry))
77			n = n->rb_right;
78		else
79			return n;
80	}
81	if (!prev_ret)
82		return NULL;
83
84	while (prev && file_offset >= entry_end(prev_entry)) {
85		test = rb_next(prev);
86		if (!test)
87			break;
88		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
89				      rb_node);
90		if (file_offset < entry_end(prev_entry))
91			break;
92
93		prev = test;
94	}
95	if (prev)
96		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
97				      rb_node);
98	while (prev && file_offset < entry_end(prev_entry)) {
99		test = rb_prev(prev);
100		if (!test)
101			break;
102		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103				      rb_node);
104		prev = test;
105	}
106	*prev_ret = prev;
107	return NULL;
108}
109
110/*
111 * helper to check if a given offset is inside a given entry
112 */
113static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
114{
115	if (file_offset < entry->file_offset ||
116	    entry->file_offset + entry->num_bytes <= file_offset)
117		return 0;
118	return 1;
119}
120
121static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
122			  u64 len)
123{
124	if (file_offset + len <= entry->file_offset ||
125	    entry->file_offset + entry->num_bytes <= file_offset)
126		return 0;
127	return 1;
128}
129
130/*
131 * look find the first ordered struct that has this offset, otherwise
132 * the first one less than this offset
133 */
134static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
135					  u64 file_offset)
136{
137	struct rb_root *root = &tree->tree;
138	struct rb_node *prev = NULL;
139	struct rb_node *ret;
140	struct btrfs_ordered_extent *entry;
141
142	if (tree->last) {
143		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
144				 rb_node);
145		if (offset_in_entry(entry, file_offset))
146			return tree->last;
147	}
148	ret = __tree_search(root, file_offset, &prev);
149	if (!ret)
150		ret = prev;
151	if (ret)
152		tree->last = ret;
153	return ret;
154}
155
156/*
157 * Allocate and add a new ordered_extent into the per-inode tree.
158 *
159 * The tree is given a single reference on the ordered extent that was
160 * inserted.
161 */
162static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
163				      u64 disk_bytenr, u64 num_bytes,
164				      u64 disk_num_bytes, int type, int dio,
165				      int compress_type)
166{
167	struct btrfs_root *root = inode->root;
168	struct btrfs_fs_info *fs_info = root->fs_info;
169	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
170	struct rb_node *node;
171	struct btrfs_ordered_extent *entry;
172	int ret;
173
174	if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
175		/* For nocow write, we can release the qgroup rsv right now */
176		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
177		if (ret < 0)
178			return ret;
179		ret = 0;
180	} else {
181		/*
182		 * The ordered extent has reserved qgroup space, release now
183		 * and pass the reserved number for qgroup_record to free.
184		 */
185		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
186		if (ret < 0)
187			return ret;
188	}
189	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
190	if (!entry)
191		return -ENOMEM;
192
193	entry->file_offset = file_offset;
194	entry->disk_bytenr = disk_bytenr;
195	entry->num_bytes = num_bytes;
196	entry->disk_num_bytes = disk_num_bytes;
197	entry->bytes_left = num_bytes;
198	entry->inode = igrab(&inode->vfs_inode);
199	entry->compress_type = compress_type;
200	entry->truncated_len = (u64)-1;
201	entry->qgroup_rsv = ret;
202	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
203		set_bit(type, &entry->flags);
204
205	if (dio) {
206		percpu_counter_add_batch(&fs_info->dio_bytes, num_bytes,
207					 fs_info->delalloc_batch);
208		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
209	}
210
211	/* one ref for the tree */
212	refcount_set(&entry->refs, 1);
213	init_waitqueue_head(&entry->wait);
214	INIT_LIST_HEAD(&entry->list);
215	INIT_LIST_HEAD(&entry->log_list);
216	INIT_LIST_HEAD(&entry->root_extent_list);
217	INIT_LIST_HEAD(&entry->work_list);
218	init_completion(&entry->completion);
219
220	trace_btrfs_ordered_extent_add(inode, entry);
221
222	spin_lock_irq(&tree->lock);
223	node = tree_insert(&tree->tree, file_offset,
224			   &entry->rb_node);
225	if (node)
226		btrfs_panic(fs_info, -EEXIST,
227				"inconsistency in ordered tree at offset %llu",
228				file_offset);
229	spin_unlock_irq(&tree->lock);
230
231	spin_lock(&root->ordered_extent_lock);
232	list_add_tail(&entry->root_extent_list,
233		      &root->ordered_extents);
234	root->nr_ordered_extents++;
235	if (root->nr_ordered_extents == 1) {
236		spin_lock(&fs_info->ordered_root_lock);
237		BUG_ON(!list_empty(&root->ordered_root));
238		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
239		spin_unlock(&fs_info->ordered_root_lock);
240	}
241	spin_unlock(&root->ordered_extent_lock);
242
243	/*
244	 * We don't need the count_max_extents here, we can assume that all of
245	 * that work has been done at higher layers, so this is truly the
246	 * smallest the extent is going to get.
247	 */
248	spin_lock(&inode->lock);
249	btrfs_mod_outstanding_extents(inode, 1);
250	spin_unlock(&inode->lock);
251
252	return 0;
253}
254
255int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
256			     u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
257			     int type)
258{
259	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
260					  num_bytes, disk_num_bytes, type, 0,
261					  BTRFS_COMPRESS_NONE);
262}
263
264int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
265				 u64 disk_bytenr, u64 num_bytes,
266				 u64 disk_num_bytes, int type)
267{
268	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
269					  num_bytes, disk_num_bytes, type, 1,
270					  BTRFS_COMPRESS_NONE);
271}
272
273int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
274				      u64 disk_bytenr, u64 num_bytes,
275				      u64 disk_num_bytes, int type,
276				      int compress_type)
277{
278	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
279					  num_bytes, disk_num_bytes, type, 0,
280					  compress_type);
281}
282
283/*
284 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
285 * when an ordered extent is finished.  If the list covers more than one
286 * ordered extent, it is split across multiples.
287 */
288void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
289			   struct btrfs_ordered_sum *sum)
290{
291	struct btrfs_ordered_inode_tree *tree;
292
293	tree = &BTRFS_I(entry->inode)->ordered_tree;
294	spin_lock_irq(&tree->lock);
295	list_add_tail(&sum->list, &entry->list);
296	spin_unlock_irq(&tree->lock);
297}
298
299/*
300 * this is used to account for finished IO across a given range
301 * of the file.  The IO may span ordered extents.  If
302 * a given ordered_extent is completely done, 1 is returned, otherwise
303 * 0.
304 *
305 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
306 * to make sure this function only returns 1 once for a given ordered extent.
307 *
308 * file_offset is updated to one byte past the range that is recorded as
309 * complete.  This allows you to walk forward in the file.
310 */
311int btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode,
312				   struct btrfs_ordered_extent **cached,
313				   u64 *file_offset, u64 io_size, int uptodate)
314{
315	struct btrfs_fs_info *fs_info = inode->root->fs_info;
316	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
317	struct rb_node *node;
318	struct btrfs_ordered_extent *entry = NULL;
319	int ret;
320	unsigned long flags;
321	u64 dec_end;
322	u64 dec_start;
323	u64 to_dec;
324
325	spin_lock_irqsave(&tree->lock, flags);
326	node = tree_search(tree, *file_offset);
327	if (!node) {
328		ret = 1;
329		goto out;
330	}
331
332	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
333	if (!offset_in_entry(entry, *file_offset)) {
334		ret = 1;
335		goto out;
336	}
337
338	dec_start = max(*file_offset, entry->file_offset);
339	dec_end = min(*file_offset + io_size,
340		      entry->file_offset + entry->num_bytes);
341	*file_offset = dec_end;
342	if (dec_start > dec_end) {
343		btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
344			   dec_start, dec_end);
345	}
346	to_dec = dec_end - dec_start;
347	if (to_dec > entry->bytes_left) {
348		btrfs_crit(fs_info,
349			   "bad ordered accounting left %llu size %llu",
350			   entry->bytes_left, to_dec);
351	}
352	entry->bytes_left -= to_dec;
353	if (!uptodate)
354		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
355
356	if (entry->bytes_left == 0) {
357		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
358		/* test_and_set_bit implies a barrier */
359		cond_wake_up_nomb(&entry->wait);
360	} else {
361		ret = 1;
362	}
363out:
364	if (!ret && cached && entry) {
365		*cached = entry;
366		refcount_inc(&entry->refs);
367	}
368	spin_unlock_irqrestore(&tree->lock, flags);
369	return ret == 0;
370}
371
372/*
373 * this is used to account for finished IO across a given range
374 * of the file.  The IO should not span ordered extents.  If
375 * a given ordered_extent is completely done, 1 is returned, otherwise
376 * 0.
377 *
378 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
379 * to make sure this function only returns 1 once for a given ordered extent.
380 */
381int btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
382				   struct btrfs_ordered_extent **cached,
383				   u64 file_offset, u64 io_size, int uptodate)
384{
385	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
386	struct rb_node *node;
387	struct btrfs_ordered_extent *entry = NULL;
388	unsigned long flags;
389	int ret;
390
391	spin_lock_irqsave(&tree->lock, flags);
392	if (cached && *cached) {
393		entry = *cached;
394		goto have_entry;
395	}
396
397	node = tree_search(tree, file_offset);
398	if (!node) {
399		ret = 1;
400		goto out;
401	}
402
403	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
404have_entry:
405	if (!offset_in_entry(entry, file_offset)) {
406		ret = 1;
407		goto out;
408	}
409
410	if (io_size > entry->bytes_left) {
411		btrfs_crit(inode->root->fs_info,
412			   "bad ordered accounting left %llu size %llu",
413		       entry->bytes_left, io_size);
414	}
415	entry->bytes_left -= io_size;
416	if (!uptodate)
417		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
418
419	if (entry->bytes_left == 0) {
420		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
421		/* test_and_set_bit implies a barrier */
422		cond_wake_up_nomb(&entry->wait);
423	} else {
424		ret = 1;
425	}
426out:
427	if (!ret && cached && entry) {
428		*cached = entry;
429		refcount_inc(&entry->refs);
430	}
431	spin_unlock_irqrestore(&tree->lock, flags);
432	return ret == 0;
433}
434
435/*
436 * used to drop a reference on an ordered extent.  This will free
437 * the extent if the last reference is dropped
438 */
439void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
440{
441	struct list_head *cur;
442	struct btrfs_ordered_sum *sum;
443
444	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
445
446	if (refcount_dec_and_test(&entry->refs)) {
447		ASSERT(list_empty(&entry->root_extent_list));
448		ASSERT(list_empty(&entry->log_list));
449		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
450		if (entry->inode)
451			btrfs_add_delayed_iput(entry->inode);
452		while (!list_empty(&entry->list)) {
453			cur = entry->list.next;
454			sum = list_entry(cur, struct btrfs_ordered_sum, list);
455			list_del(&sum->list);
456			kvfree(sum);
457		}
458		kmem_cache_free(btrfs_ordered_extent_cache, entry);
459	}
460}
461
462/*
463 * remove an ordered extent from the tree.  No references are dropped
464 * and waiters are woken up.
465 */
466void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
467				 struct btrfs_ordered_extent *entry)
468{
469	struct btrfs_ordered_inode_tree *tree;
470	struct btrfs_root *root = btrfs_inode->root;
471	struct btrfs_fs_info *fs_info = root->fs_info;
472	struct rb_node *node;
473	bool pending;
474
475	/* This is paired with btrfs_add_ordered_extent. */
476	spin_lock(&btrfs_inode->lock);
477	btrfs_mod_outstanding_extents(btrfs_inode, -1);
478	spin_unlock(&btrfs_inode->lock);
479	if (root != fs_info->tree_root)
480		btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
481						false);
482
483	if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
484		percpu_counter_add_batch(&fs_info->dio_bytes, -entry->num_bytes,
485					 fs_info->delalloc_batch);
486
487	tree = &btrfs_inode->ordered_tree;
488	spin_lock_irq(&tree->lock);
489	node = &entry->rb_node;
490	rb_erase(node, &tree->tree);
491	RB_CLEAR_NODE(node);
492	if (tree->last == node)
493		tree->last = NULL;
494	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
495	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
496	spin_unlock_irq(&tree->lock);
497
498	/*
499	 * The current running transaction is waiting on us, we need to let it
500	 * know that we're complete and wake it up.
501	 */
502	if (pending) {
503		struct btrfs_transaction *trans;
504
505		/*
506		 * The checks for trans are just a formality, it should be set,
507		 * but if it isn't we don't want to deref/assert under the spin
508		 * lock, so be nice and check if trans is set, but ASSERT() so
509		 * if it isn't set a developer will notice.
510		 */
511		spin_lock(&fs_info->trans_lock);
512		trans = fs_info->running_transaction;
513		if (trans)
514			refcount_inc(&trans->use_count);
515		spin_unlock(&fs_info->trans_lock);
516
517		ASSERT(trans);
518		if (trans) {
519			if (atomic_dec_and_test(&trans->pending_ordered))
520				wake_up(&trans->pending_wait);
521			btrfs_put_transaction(trans);
522		}
523	}
524
525	spin_lock(&root->ordered_extent_lock);
526	list_del_init(&entry->root_extent_list);
527	root->nr_ordered_extents--;
528
529	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
530
531	if (!root->nr_ordered_extents) {
532		spin_lock(&fs_info->ordered_root_lock);
533		BUG_ON(list_empty(&root->ordered_root));
534		list_del_init(&root->ordered_root);
535		spin_unlock(&fs_info->ordered_root_lock);
536	}
537	spin_unlock(&root->ordered_extent_lock);
538	wake_up(&entry->wait);
539}
540
541static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
542{
543	struct btrfs_ordered_extent *ordered;
544
545	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
546	btrfs_start_ordered_extent(ordered, 1);
547	complete(&ordered->completion);
548}
549
550/*
551 * wait for all the ordered extents in a root.  This is done when balancing
552 * space between drives.
553 */
554u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
555			       const u64 range_start, const u64 range_len)
556{
557	struct btrfs_fs_info *fs_info = root->fs_info;
558	LIST_HEAD(splice);
559	LIST_HEAD(skipped);
560	LIST_HEAD(works);
561	struct btrfs_ordered_extent *ordered, *next;
562	u64 count = 0;
563	const u64 range_end = range_start + range_len;
564
565	mutex_lock(&root->ordered_extent_mutex);
566	spin_lock(&root->ordered_extent_lock);
567	list_splice_init(&root->ordered_extents, &splice);
568	while (!list_empty(&splice) && nr) {
569		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
570					   root_extent_list);
571
572		if (range_end <= ordered->disk_bytenr ||
573		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
574			list_move_tail(&ordered->root_extent_list, &skipped);
575			cond_resched_lock(&root->ordered_extent_lock);
576			continue;
577		}
578
579		list_move_tail(&ordered->root_extent_list,
580			       &root->ordered_extents);
581		refcount_inc(&ordered->refs);
582		spin_unlock(&root->ordered_extent_lock);
583
584		btrfs_init_work(&ordered->flush_work,
585				btrfs_run_ordered_extent_work, NULL, NULL);
586		list_add_tail(&ordered->work_list, &works);
587		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
588
589		cond_resched();
590		spin_lock(&root->ordered_extent_lock);
591		if (nr != U64_MAX)
592			nr--;
593		count++;
594	}
595	list_splice_tail(&skipped, &root->ordered_extents);
596	list_splice_tail(&splice, &root->ordered_extents);
597	spin_unlock(&root->ordered_extent_lock);
598
599	list_for_each_entry_safe(ordered, next, &works, work_list) {
600		list_del_init(&ordered->work_list);
601		wait_for_completion(&ordered->completion);
602		btrfs_put_ordered_extent(ordered);
603		cond_resched();
604	}
605	mutex_unlock(&root->ordered_extent_mutex);
606
607	return count;
608}
609
610void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
611			     const u64 range_start, const u64 range_len)
612{
613	struct btrfs_root *root;
614	struct list_head splice;
615	u64 done;
616
617	INIT_LIST_HEAD(&splice);
618
619	mutex_lock(&fs_info->ordered_operations_mutex);
620	spin_lock(&fs_info->ordered_root_lock);
621	list_splice_init(&fs_info->ordered_roots, &splice);
622	while (!list_empty(&splice) && nr) {
623		root = list_first_entry(&splice, struct btrfs_root,
624					ordered_root);
625		root = btrfs_grab_root(root);
626		BUG_ON(!root);
627		list_move_tail(&root->ordered_root,
628			       &fs_info->ordered_roots);
629		spin_unlock(&fs_info->ordered_root_lock);
630
631		done = btrfs_wait_ordered_extents(root, nr,
632						  range_start, range_len);
633		btrfs_put_root(root);
634
635		spin_lock(&fs_info->ordered_root_lock);
636		if (nr != U64_MAX) {
637			nr -= done;
638		}
639	}
640	list_splice_tail(&splice, &fs_info->ordered_roots);
641	spin_unlock(&fs_info->ordered_root_lock);
642	mutex_unlock(&fs_info->ordered_operations_mutex);
643}
644
645/*
646 * Used to start IO or wait for a given ordered extent to finish.
647 *
648 * If wait is one, this effectively waits on page writeback for all the pages
649 * in the extent, and it waits on the io completion code to insert
650 * metadata into the btree corresponding to the extent
651 */
652void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
653{
654	u64 start = entry->file_offset;
655	u64 end = start + entry->num_bytes - 1;
656	struct btrfs_inode *inode = BTRFS_I(entry->inode);
657
658	trace_btrfs_ordered_extent_start(inode, entry);
659
660	/*
661	 * pages in the range can be dirty, clean or writeback.  We
662	 * start IO on any dirty ones so the wait doesn't stall waiting
663	 * for the flusher thread to find them
664	 */
665	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
666		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
667	if (wait) {
668		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
669						 &entry->flags));
670	}
671}
672
673/*
674 * Used to wait on ordered extents across a large range of bytes.
675 */
676int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
677{
678	int ret = 0;
679	int ret_wb = 0;
680	u64 end;
681	u64 orig_end;
682	struct btrfs_ordered_extent *ordered;
683
684	if (start + len < start) {
685		orig_end = INT_LIMIT(loff_t);
686	} else {
687		orig_end = start + len - 1;
688		if (orig_end > INT_LIMIT(loff_t))
689			orig_end = INT_LIMIT(loff_t);
690	}
691
692	/* start IO across the range first to instantiate any delalloc
693	 * extents
694	 */
695	ret = btrfs_fdatawrite_range(inode, start, orig_end);
696	if (ret)
697		return ret;
698
699	/*
700	 * If we have a writeback error don't return immediately. Wait first
701	 * for any ordered extents that haven't completed yet. This is to make
702	 * sure no one can dirty the same page ranges and call writepages()
703	 * before the ordered extents complete - to avoid failures (-EEXIST)
704	 * when adding the new ordered extents to the ordered tree.
705	 */
706	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
707
708	end = orig_end;
709	while (1) {
710		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
711		if (!ordered)
712			break;
713		if (ordered->file_offset > orig_end) {
714			btrfs_put_ordered_extent(ordered);
715			break;
716		}
717		if (ordered->file_offset + ordered->num_bytes <= start) {
718			btrfs_put_ordered_extent(ordered);
719			break;
720		}
721		btrfs_start_ordered_extent(ordered, 1);
722		end = ordered->file_offset;
723		/*
724		 * If the ordered extent had an error save the error but don't
725		 * exit without waiting first for all other ordered extents in
726		 * the range to complete.
727		 */
728		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
729			ret = -EIO;
730		btrfs_put_ordered_extent(ordered);
731		if (end == 0 || end == start)
732			break;
733		end--;
734	}
735	return ret_wb ? ret_wb : ret;
736}
737
738/*
739 * find an ordered extent corresponding to file_offset.  return NULL if
740 * nothing is found, otherwise take a reference on the extent and return it
741 */
742struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
743							 u64 file_offset)
744{
745	struct btrfs_ordered_inode_tree *tree;
746	struct rb_node *node;
747	struct btrfs_ordered_extent *entry = NULL;
748
749	tree = &inode->ordered_tree;
750	spin_lock_irq(&tree->lock);
751	node = tree_search(tree, file_offset);
752	if (!node)
753		goto out;
754
755	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
756	if (!offset_in_entry(entry, file_offset))
757		entry = NULL;
758	if (entry)
759		refcount_inc(&entry->refs);
760out:
761	spin_unlock_irq(&tree->lock);
762	return entry;
763}
764
765/* Since the DIO code tries to lock a wide area we need to look for any ordered
766 * extents that exist in the range, rather than just the start of the range.
767 */
768struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
769		struct btrfs_inode *inode, u64 file_offset, u64 len)
770{
771	struct btrfs_ordered_inode_tree *tree;
772	struct rb_node *node;
773	struct btrfs_ordered_extent *entry = NULL;
774
775	tree = &inode->ordered_tree;
776	spin_lock_irq(&tree->lock);
777	node = tree_search(tree, file_offset);
778	if (!node) {
779		node = tree_search(tree, file_offset + len);
780		if (!node)
781			goto out;
782	}
783
784	while (1) {
785		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
786		if (range_overlaps(entry, file_offset, len))
787			break;
788
789		if (entry->file_offset >= file_offset + len) {
790			entry = NULL;
791			break;
792		}
793		entry = NULL;
794		node = rb_next(node);
795		if (!node)
796			break;
797	}
798out:
799	if (entry)
800		refcount_inc(&entry->refs);
801	spin_unlock_irq(&tree->lock);
802	return entry;
803}
804
805/*
806 * Adds all ordered extents to the given list. The list ends up sorted by the
807 * file_offset of the ordered extents.
808 */
809void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
810					   struct list_head *list)
811{
812	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
813	struct rb_node *n;
814
815	ASSERT(inode_is_locked(&inode->vfs_inode));
816
817	spin_lock_irq(&tree->lock);
818	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
819		struct btrfs_ordered_extent *ordered;
820
821		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
822
823		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
824			continue;
825
826		ASSERT(list_empty(&ordered->log_list));
827		list_add_tail(&ordered->log_list, list);
828		refcount_inc(&ordered->refs);
829	}
830	spin_unlock_irq(&tree->lock);
831}
832
833/*
834 * lookup and return any extent before 'file_offset'.  NULL is returned
835 * if none is found
836 */
837struct btrfs_ordered_extent *
838btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
839{
840	struct btrfs_ordered_inode_tree *tree;
841	struct rb_node *node;
842	struct btrfs_ordered_extent *entry = NULL;
843
844	tree = &inode->ordered_tree;
845	spin_lock_irq(&tree->lock);
846	node = tree_search(tree, file_offset);
847	if (!node)
848		goto out;
849
850	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
851	refcount_inc(&entry->refs);
852out:
853	spin_unlock_irq(&tree->lock);
854	return entry;
855}
856
857/*
858 * search the ordered extents for one corresponding to 'offset' and
859 * try to find a checksum.  This is used because we allow pages to
860 * be reclaimed before their checksum is actually put into the btree
861 */
862int btrfs_find_ordered_sum(struct btrfs_inode *inode, u64 offset,
863			   u64 disk_bytenr, u8 *sum, int len)
864{
865	struct btrfs_fs_info *fs_info = inode->root->fs_info;
866	struct btrfs_ordered_sum *ordered_sum;
867	struct btrfs_ordered_extent *ordered;
868	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
869	unsigned long num_sectors;
870	unsigned long i;
871	u32 sectorsize = btrfs_inode_sectorsize(inode);
872	const u8 blocksize_bits = inode->vfs_inode.i_sb->s_blocksize_bits;
873	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
874	int index = 0;
875
876	ordered = btrfs_lookup_ordered_extent(inode, offset);
877	if (!ordered)
878		return 0;
879
880	spin_lock_irq(&tree->lock);
881	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
882		if (disk_bytenr >= ordered_sum->bytenr &&
883		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
884			i = (disk_bytenr - ordered_sum->bytenr) >> blocksize_bits;
885			num_sectors = ordered_sum->len >> blocksize_bits;
886			num_sectors = min_t(int, len - index, num_sectors - i);
887			memcpy(sum + index, ordered_sum->sums + i * csum_size,
888			       num_sectors * csum_size);
889
890			index += (int)num_sectors * csum_size;
891			if (index == len)
892				goto out;
893			disk_bytenr += num_sectors * sectorsize;
894		}
895	}
896out:
897	spin_unlock_irq(&tree->lock);
898	btrfs_put_ordered_extent(ordered);
899	return index;
900}
901
902/*
903 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
904 * ordered extents in it are run to completion.
905 *
906 * @inode:        Inode whose ordered tree is to be searched
907 * @start:        Beginning of range to flush
908 * @end:          Last byte of range to lock
909 * @cached_state: If passed, will return the extent state responsible for the
910 * locked range. It's the caller's responsibility to free the cached state.
911 *
912 * This function always returns with the given range locked, ensuring after it's
913 * called no order extent can be pending.
914 */
915void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
916					u64 end,
917					struct extent_state **cached_state)
918{
919	struct btrfs_ordered_extent *ordered;
920	struct extent_state *cache = NULL;
921	struct extent_state **cachedp = &cache;
922
923	if (cached_state)
924		cachedp = cached_state;
925
926	while (1) {
927		lock_extent_bits(&inode->io_tree, start, end, cachedp);
928		ordered = btrfs_lookup_ordered_range(inode, start,
929						     end - start + 1);
930		if (!ordered) {
931			/*
932			 * If no external cached_state has been passed then
933			 * decrement the extra ref taken for cachedp since we
934			 * aren't exposing it outside of this function
935			 */
936			if (!cached_state)
937				refcount_dec(&cache->refs);
938			break;
939		}
940		unlock_extent_cached(&inode->io_tree, start, end, cachedp);
941		btrfs_start_ordered_extent(ordered, 1);
942		btrfs_put_ordered_extent(ordered);
943	}
944}
945
946int __init ordered_data_init(void)
947{
948	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
949				     sizeof(struct btrfs_ordered_extent), 0,
950				     SLAB_MEM_SPREAD,
951				     NULL);
952	if (!btrfs_ordered_extent_cache)
953		return -ENOMEM;
954
955	return 0;
956}
957
958void __cold ordered_data_exit(void)
959{
960	kmem_cache_destroy(btrfs_ordered_extent_cache);
961}
962