1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6#include <linux/kernel.h> 7#include <linux/bio.h> 8#include <linux/file.h> 9#include <linux/fs.h> 10#include <linux/fsnotify.h> 11#include <linux/pagemap.h> 12#include <linux/highmem.h> 13#include <linux/time.h> 14#include <linux/string.h> 15#include <linux/backing-dev.h> 16#include <linux/mount.h> 17#include <linux/namei.h> 18#include <linux/writeback.h> 19#include <linux/compat.h> 20#include <linux/security.h> 21#include <linux/xattr.h> 22#include <linux/mm.h> 23#include <linux/slab.h> 24#include <linux/blkdev.h> 25#include <linux/uuid.h> 26#include <linux/btrfs.h> 27#include <linux/uaccess.h> 28#include <linux/iversion.h> 29#include "ctree.h" 30#include "disk-io.h" 31#include "export.h" 32#include "transaction.h" 33#include "btrfs_inode.h" 34#include "print-tree.h" 35#include "volumes.h" 36#include "locking.h" 37#include "inode-map.h" 38#include "backref.h" 39#include "rcu-string.h" 40#include "send.h" 41#include "dev-replace.h" 42#include "props.h" 43#include "sysfs.h" 44#include "qgroup.h" 45#include "tree-log.h" 46#include "compression.h" 47#include "space-info.h" 48#include "delalloc-space.h" 49#include "block-group.h" 50 51#ifdef CONFIG_64BIT 52/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 53 * structures are incorrect, as the timespec structure from userspace 54 * is 4 bytes too small. We define these alternatives here to teach 55 * the kernel about the 32-bit struct packing. 56 */ 57struct btrfs_ioctl_timespec_32 { 58 __u64 sec; 59 __u32 nsec; 60} __attribute__ ((__packed__)); 61 62struct btrfs_ioctl_received_subvol_args_32 { 63 char uuid[BTRFS_UUID_SIZE]; /* in */ 64 __u64 stransid; /* in */ 65 __u64 rtransid; /* out */ 66 struct btrfs_ioctl_timespec_32 stime; /* in */ 67 struct btrfs_ioctl_timespec_32 rtime; /* out */ 68 __u64 flags; /* in */ 69 __u64 reserved[16]; /* in */ 70} __attribute__ ((__packed__)); 71 72#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 73 struct btrfs_ioctl_received_subvol_args_32) 74#endif 75 76#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 77struct btrfs_ioctl_send_args_32 { 78 __s64 send_fd; /* in */ 79 __u64 clone_sources_count; /* in */ 80 compat_uptr_t clone_sources; /* in */ 81 __u64 parent_root; /* in */ 82 __u64 flags; /* in */ 83 __u64 reserved[4]; /* in */ 84} __attribute__ ((__packed__)); 85 86#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 87 struct btrfs_ioctl_send_args_32) 88#endif 89 90/* Mask out flags that are inappropriate for the given type of inode. */ 91static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 92 unsigned int flags) 93{ 94 if (S_ISDIR(inode->i_mode)) 95 return flags; 96 else if (S_ISREG(inode->i_mode)) 97 return flags & ~FS_DIRSYNC_FL; 98 else 99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 100} 101 102/* 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 104 * ioctl. 105 */ 106static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 107{ 108 unsigned int iflags = 0; 109 110 if (flags & BTRFS_INODE_SYNC) 111 iflags |= FS_SYNC_FL; 112 if (flags & BTRFS_INODE_IMMUTABLE) 113 iflags |= FS_IMMUTABLE_FL; 114 if (flags & BTRFS_INODE_APPEND) 115 iflags |= FS_APPEND_FL; 116 if (flags & BTRFS_INODE_NODUMP) 117 iflags |= FS_NODUMP_FL; 118 if (flags & BTRFS_INODE_NOATIME) 119 iflags |= FS_NOATIME_FL; 120 if (flags & BTRFS_INODE_DIRSYNC) 121 iflags |= FS_DIRSYNC_FL; 122 if (flags & BTRFS_INODE_NODATACOW) 123 iflags |= FS_NOCOW_FL; 124 125 if (flags & BTRFS_INODE_NOCOMPRESS) 126 iflags |= FS_NOCOMP_FL; 127 else if (flags & BTRFS_INODE_COMPRESS) 128 iflags |= FS_COMPR_FL; 129 130 return iflags; 131} 132 133/* 134 * Update inode->i_flags based on the btrfs internal flags. 135 */ 136void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 137{ 138 struct btrfs_inode *binode = BTRFS_I(inode); 139 unsigned int new_fl = 0; 140 141 if (binode->flags & BTRFS_INODE_SYNC) 142 new_fl |= S_SYNC; 143 if (binode->flags & BTRFS_INODE_IMMUTABLE) 144 new_fl |= S_IMMUTABLE; 145 if (binode->flags & BTRFS_INODE_APPEND) 146 new_fl |= S_APPEND; 147 if (binode->flags & BTRFS_INODE_NOATIME) 148 new_fl |= S_NOATIME; 149 if (binode->flags & BTRFS_INODE_DIRSYNC) 150 new_fl |= S_DIRSYNC; 151 152 set_mask_bits(&inode->i_flags, 153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 154 new_fl); 155} 156 157static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 158{ 159 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 161 162 if (copy_to_user(arg, &flags, sizeof(flags))) 163 return -EFAULT; 164 return 0; 165} 166 167/* 168 * Check if @flags are a supported and valid set of FS_*_FL flags and that 169 * the old and new flags are not conflicting 170 */ 171static int check_fsflags(unsigned int old_flags, unsigned int flags) 172{ 173 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 174 FS_NOATIME_FL | FS_NODUMP_FL | \ 175 FS_SYNC_FL | FS_DIRSYNC_FL | \ 176 FS_NOCOMP_FL | FS_COMPR_FL | 177 FS_NOCOW_FL)) 178 return -EOPNOTSUPP; 179 180 /* COMPR and NOCOMP on new/old are valid */ 181 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 182 return -EINVAL; 183 184 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 185 return -EINVAL; 186 187 /* NOCOW and compression options are mutually exclusive */ 188 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 189 return -EINVAL; 190 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 191 return -EINVAL; 192 193 return 0; 194} 195 196static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 197{ 198 struct inode *inode = file_inode(file); 199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 200 struct btrfs_inode *binode = BTRFS_I(inode); 201 struct btrfs_root *root = binode->root; 202 struct btrfs_trans_handle *trans; 203 unsigned int fsflags, old_fsflags; 204 int ret; 205 const char *comp = NULL; 206 u32 binode_flags; 207 208 if (!inode_owner_or_capable(inode)) 209 return -EPERM; 210 211 if (btrfs_root_readonly(root)) 212 return -EROFS; 213 214 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 215 return -EFAULT; 216 217 ret = mnt_want_write_file(file); 218 if (ret) 219 return ret; 220 221 inode_lock(inode); 222 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 223 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 224 225 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 226 if (ret) 227 goto out_unlock; 228 229 ret = check_fsflags(old_fsflags, fsflags); 230 if (ret) 231 goto out_unlock; 232 233 binode_flags = binode->flags; 234 if (fsflags & FS_SYNC_FL) 235 binode_flags |= BTRFS_INODE_SYNC; 236 else 237 binode_flags &= ~BTRFS_INODE_SYNC; 238 if (fsflags & FS_IMMUTABLE_FL) 239 binode_flags |= BTRFS_INODE_IMMUTABLE; 240 else 241 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 242 if (fsflags & FS_APPEND_FL) 243 binode_flags |= BTRFS_INODE_APPEND; 244 else 245 binode_flags &= ~BTRFS_INODE_APPEND; 246 if (fsflags & FS_NODUMP_FL) 247 binode_flags |= BTRFS_INODE_NODUMP; 248 else 249 binode_flags &= ~BTRFS_INODE_NODUMP; 250 if (fsflags & FS_NOATIME_FL) 251 binode_flags |= BTRFS_INODE_NOATIME; 252 else 253 binode_flags &= ~BTRFS_INODE_NOATIME; 254 if (fsflags & FS_DIRSYNC_FL) 255 binode_flags |= BTRFS_INODE_DIRSYNC; 256 else 257 binode_flags &= ~BTRFS_INODE_DIRSYNC; 258 if (fsflags & FS_NOCOW_FL) { 259 if (S_ISREG(inode->i_mode)) { 260 /* 261 * It's safe to turn csums off here, no extents exist. 262 * Otherwise we want the flag to reflect the real COW 263 * status of the file and will not set it. 264 */ 265 if (inode->i_size == 0) 266 binode_flags |= BTRFS_INODE_NODATACOW | 267 BTRFS_INODE_NODATASUM; 268 } else { 269 binode_flags |= BTRFS_INODE_NODATACOW; 270 } 271 } else { 272 /* 273 * Revert back under same assumptions as above 274 */ 275 if (S_ISREG(inode->i_mode)) { 276 if (inode->i_size == 0) 277 binode_flags &= ~(BTRFS_INODE_NODATACOW | 278 BTRFS_INODE_NODATASUM); 279 } else { 280 binode_flags &= ~BTRFS_INODE_NODATACOW; 281 } 282 } 283 284 /* 285 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 286 * flag may be changed automatically if compression code won't make 287 * things smaller. 288 */ 289 if (fsflags & FS_NOCOMP_FL) { 290 binode_flags &= ~BTRFS_INODE_COMPRESS; 291 binode_flags |= BTRFS_INODE_NOCOMPRESS; 292 } else if (fsflags & FS_COMPR_FL) { 293 294 if (IS_SWAPFILE(inode)) { 295 ret = -ETXTBSY; 296 goto out_unlock; 297 } 298 299 binode_flags |= BTRFS_INODE_COMPRESS; 300 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 301 302 comp = btrfs_compress_type2str(fs_info->compress_type); 303 if (!comp || comp[0] == 0) 304 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 305 } else { 306 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 307 } 308 309 /* 310 * 1 for inode item 311 * 2 for properties 312 */ 313 trans = btrfs_start_transaction(root, 3); 314 if (IS_ERR(trans)) { 315 ret = PTR_ERR(trans); 316 goto out_unlock; 317 } 318 319 if (comp) { 320 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 321 strlen(comp), 0); 322 if (ret) { 323 btrfs_abort_transaction(trans, ret); 324 goto out_end_trans; 325 } 326 } else { 327 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 328 0, 0); 329 if (ret && ret != -ENODATA) { 330 btrfs_abort_transaction(trans, ret); 331 goto out_end_trans; 332 } 333 } 334 335 binode->flags = binode_flags; 336 btrfs_sync_inode_flags_to_i_flags(inode); 337 inode_inc_iversion(inode); 338 inode->i_ctime = current_time(inode); 339 ret = btrfs_update_inode(trans, root, inode); 340 341 out_end_trans: 342 btrfs_end_transaction(trans); 343 out_unlock: 344 inode_unlock(inode); 345 mnt_drop_write_file(file); 346 return ret; 347} 348 349/* 350 * Translate btrfs internal inode flags to xflags as expected by the 351 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 352 * silently dropped. 353 */ 354static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 355{ 356 unsigned int xflags = 0; 357 358 if (flags & BTRFS_INODE_APPEND) 359 xflags |= FS_XFLAG_APPEND; 360 if (flags & BTRFS_INODE_IMMUTABLE) 361 xflags |= FS_XFLAG_IMMUTABLE; 362 if (flags & BTRFS_INODE_NOATIME) 363 xflags |= FS_XFLAG_NOATIME; 364 if (flags & BTRFS_INODE_NODUMP) 365 xflags |= FS_XFLAG_NODUMP; 366 if (flags & BTRFS_INODE_SYNC) 367 xflags |= FS_XFLAG_SYNC; 368 369 return xflags; 370} 371 372/* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 373static int check_xflags(unsigned int flags) 374{ 375 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 376 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 377 return -EOPNOTSUPP; 378 return 0; 379} 380 381bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 382 enum btrfs_exclusive_operation type) 383{ 384 return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type); 385} 386 387void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 388{ 389 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 390 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 391} 392 393/* 394 * Set the xflags from the internal inode flags. The remaining items of fsxattr 395 * are zeroed. 396 */ 397static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 398{ 399 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 400 struct fsxattr fa; 401 402 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags)); 403 if (copy_to_user(arg, &fa, sizeof(fa))) 404 return -EFAULT; 405 406 return 0; 407} 408 409static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 410{ 411 struct inode *inode = file_inode(file); 412 struct btrfs_inode *binode = BTRFS_I(inode); 413 struct btrfs_root *root = binode->root; 414 struct btrfs_trans_handle *trans; 415 struct fsxattr fa, old_fa; 416 unsigned old_flags; 417 unsigned old_i_flags; 418 int ret = 0; 419 420 if (!inode_owner_or_capable(inode)) 421 return -EPERM; 422 423 if (btrfs_root_readonly(root)) 424 return -EROFS; 425 426 if (copy_from_user(&fa, arg, sizeof(fa))) 427 return -EFAULT; 428 429 ret = check_xflags(fa.fsx_xflags); 430 if (ret) 431 return ret; 432 433 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 434 return -EOPNOTSUPP; 435 436 ret = mnt_want_write_file(file); 437 if (ret) 438 return ret; 439 440 inode_lock(inode); 441 442 old_flags = binode->flags; 443 old_i_flags = inode->i_flags; 444 445 simple_fill_fsxattr(&old_fa, 446 btrfs_inode_flags_to_xflags(binode->flags)); 447 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 448 if (ret) 449 goto out_unlock; 450 451 if (fa.fsx_xflags & FS_XFLAG_SYNC) 452 binode->flags |= BTRFS_INODE_SYNC; 453 else 454 binode->flags &= ~BTRFS_INODE_SYNC; 455 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 456 binode->flags |= BTRFS_INODE_IMMUTABLE; 457 else 458 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 459 if (fa.fsx_xflags & FS_XFLAG_APPEND) 460 binode->flags |= BTRFS_INODE_APPEND; 461 else 462 binode->flags &= ~BTRFS_INODE_APPEND; 463 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 464 binode->flags |= BTRFS_INODE_NODUMP; 465 else 466 binode->flags &= ~BTRFS_INODE_NODUMP; 467 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 468 binode->flags |= BTRFS_INODE_NOATIME; 469 else 470 binode->flags &= ~BTRFS_INODE_NOATIME; 471 472 /* 1 item for the inode */ 473 trans = btrfs_start_transaction(root, 1); 474 if (IS_ERR(trans)) { 475 ret = PTR_ERR(trans); 476 goto out_unlock; 477 } 478 479 btrfs_sync_inode_flags_to_i_flags(inode); 480 inode_inc_iversion(inode); 481 inode->i_ctime = current_time(inode); 482 ret = btrfs_update_inode(trans, root, inode); 483 484 btrfs_end_transaction(trans); 485 486out_unlock: 487 if (ret) { 488 binode->flags = old_flags; 489 inode->i_flags = old_i_flags; 490 } 491 492 inode_unlock(inode); 493 mnt_drop_write_file(file); 494 495 return ret; 496} 497 498static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 499{ 500 struct inode *inode = file_inode(file); 501 502 return put_user(inode->i_generation, arg); 503} 504 505static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 506 void __user *arg) 507{ 508 struct btrfs_device *device; 509 struct request_queue *q; 510 struct fstrim_range range; 511 u64 minlen = ULLONG_MAX; 512 u64 num_devices = 0; 513 int ret; 514 515 if (!capable(CAP_SYS_ADMIN)) 516 return -EPERM; 517 518 /* 519 * If the fs is mounted with nologreplay, which requires it to be 520 * mounted in RO mode as well, we can not allow discard on free space 521 * inside block groups, because log trees refer to extents that are not 522 * pinned in a block group's free space cache (pinning the extents is 523 * precisely the first phase of replaying a log tree). 524 */ 525 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 526 return -EROFS; 527 528 rcu_read_lock(); 529 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 530 dev_list) { 531 if (!device->bdev) 532 continue; 533 q = bdev_get_queue(device->bdev); 534 if (blk_queue_discard(q)) { 535 num_devices++; 536 minlen = min_t(u64, q->limits.discard_granularity, 537 minlen); 538 } 539 } 540 rcu_read_unlock(); 541 542 if (!num_devices) 543 return -EOPNOTSUPP; 544 if (copy_from_user(&range, arg, sizeof(range))) 545 return -EFAULT; 546 547 /* 548 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 549 * block group is in the logical address space, which can be any 550 * sectorsize aligned bytenr in the range [0, U64_MAX]. 551 */ 552 if (range.len < fs_info->sb->s_blocksize) 553 return -EINVAL; 554 555 range.minlen = max(range.minlen, minlen); 556 ret = btrfs_trim_fs(fs_info, &range); 557 if (ret < 0) 558 return ret; 559 560 if (copy_to_user(arg, &range, sizeof(range))) 561 return -EFAULT; 562 563 return 0; 564} 565 566int __pure btrfs_is_empty_uuid(u8 *uuid) 567{ 568 int i; 569 570 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 571 if (uuid[i]) 572 return 0; 573 } 574 return 1; 575} 576 577static noinline int create_subvol(struct inode *dir, 578 struct dentry *dentry, 579 const char *name, int namelen, 580 struct btrfs_qgroup_inherit *inherit) 581{ 582 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 583 struct btrfs_trans_handle *trans; 584 struct btrfs_key key; 585 struct btrfs_root_item *root_item; 586 struct btrfs_inode_item *inode_item; 587 struct extent_buffer *leaf; 588 struct btrfs_root *root = BTRFS_I(dir)->root; 589 struct btrfs_root *new_root; 590 struct btrfs_block_rsv block_rsv; 591 struct timespec64 cur_time = current_time(dir); 592 struct inode *inode; 593 int ret; 594 int err; 595 dev_t anon_dev = 0; 596 u64 objectid; 597 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 598 u64 index = 0; 599 600 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 601 if (!root_item) 602 return -ENOMEM; 603 604 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 605 if (ret) 606 goto fail_free; 607 608 ret = get_anon_bdev(&anon_dev); 609 if (ret < 0) 610 goto fail_free; 611 612 /* 613 * Don't create subvolume whose level is not zero. Or qgroup will be 614 * screwed up since it assumes subvolume qgroup's level to be 0. 615 */ 616 if (btrfs_qgroup_level(objectid)) { 617 ret = -ENOSPC; 618 goto fail_free; 619 } 620 621 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 622 /* 623 * The same as the snapshot creation, please see the comment 624 * of create_snapshot(). 625 */ 626 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 627 if (ret) 628 goto fail_free; 629 630 trans = btrfs_start_transaction(root, 0); 631 if (IS_ERR(trans)) { 632 ret = PTR_ERR(trans); 633 btrfs_subvolume_release_metadata(root, &block_rsv); 634 goto fail_free; 635 } 636 trans->block_rsv = &block_rsv; 637 trans->bytes_reserved = block_rsv.size; 638 639 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 640 if (ret) 641 goto fail; 642 643 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 644 BTRFS_NESTING_NORMAL); 645 if (IS_ERR(leaf)) { 646 ret = PTR_ERR(leaf); 647 goto fail; 648 } 649 650 btrfs_mark_buffer_dirty(leaf); 651 652 inode_item = &root_item->inode; 653 btrfs_set_stack_inode_generation(inode_item, 1); 654 btrfs_set_stack_inode_size(inode_item, 3); 655 btrfs_set_stack_inode_nlink(inode_item, 1); 656 btrfs_set_stack_inode_nbytes(inode_item, 657 fs_info->nodesize); 658 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 659 660 btrfs_set_root_flags(root_item, 0); 661 btrfs_set_root_limit(root_item, 0); 662 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 663 664 btrfs_set_root_bytenr(root_item, leaf->start); 665 btrfs_set_root_generation(root_item, trans->transid); 666 btrfs_set_root_level(root_item, 0); 667 btrfs_set_root_refs(root_item, 1); 668 btrfs_set_root_used(root_item, leaf->len); 669 btrfs_set_root_last_snapshot(root_item, 0); 670 671 btrfs_set_root_generation_v2(root_item, 672 btrfs_root_generation(root_item)); 673 generate_random_guid(root_item->uuid); 674 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 675 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 676 root_item->ctime = root_item->otime; 677 btrfs_set_root_ctransid(root_item, trans->transid); 678 btrfs_set_root_otransid(root_item, trans->transid); 679 680 btrfs_tree_unlock(leaf); 681 682 btrfs_set_root_dirid(root_item, new_dirid); 683 684 key.objectid = objectid; 685 key.offset = 0; 686 key.type = BTRFS_ROOT_ITEM_KEY; 687 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 688 root_item); 689 if (ret) { 690 /* 691 * Since we don't abort the transaction in this case, free the 692 * tree block so that we don't leak space and leave the 693 * filesystem in an inconsistent state (an extent item in the 694 * extent tree without backreferences). Also no need to have 695 * the tree block locked since it is not in any tree at this 696 * point, so no other task can find it and use it. 697 */ 698 btrfs_free_tree_block(trans, root, leaf, 0, 1); 699 free_extent_buffer(leaf); 700 goto fail; 701 } 702 703 free_extent_buffer(leaf); 704 leaf = NULL; 705 706 key.offset = (u64)-1; 707 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 708 if (IS_ERR(new_root)) { 709 free_anon_bdev(anon_dev); 710 ret = PTR_ERR(new_root); 711 btrfs_abort_transaction(trans, ret); 712 goto fail; 713 } 714 /* Freeing will be done in btrfs_put_root() of new_root */ 715 anon_dev = 0; 716 717 btrfs_record_root_in_trans(trans, new_root); 718 719 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 720 btrfs_put_root(new_root); 721 if (ret) { 722 /* We potentially lose an unused inode item here */ 723 btrfs_abort_transaction(trans, ret); 724 goto fail; 725 } 726 727 mutex_lock(&new_root->objectid_mutex); 728 new_root->highest_objectid = new_dirid; 729 mutex_unlock(&new_root->objectid_mutex); 730 731 /* 732 * insert the directory item 733 */ 734 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 735 if (ret) { 736 btrfs_abort_transaction(trans, ret); 737 goto fail; 738 } 739 740 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 741 BTRFS_FT_DIR, index); 742 if (ret) { 743 btrfs_abort_transaction(trans, ret); 744 goto fail; 745 } 746 747 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 748 ret = btrfs_update_inode(trans, root, dir); 749 if (ret) { 750 btrfs_abort_transaction(trans, ret); 751 goto fail; 752 } 753 754 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 755 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 756 if (ret) { 757 btrfs_abort_transaction(trans, ret); 758 goto fail; 759 } 760 761 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 762 BTRFS_UUID_KEY_SUBVOL, objectid); 763 if (ret) 764 btrfs_abort_transaction(trans, ret); 765 766fail: 767 kfree(root_item); 768 trans->block_rsv = NULL; 769 trans->bytes_reserved = 0; 770 btrfs_subvolume_release_metadata(root, &block_rsv); 771 772 err = btrfs_commit_transaction(trans); 773 if (err && !ret) 774 ret = err; 775 776 if (!ret) { 777 inode = btrfs_lookup_dentry(dir, dentry); 778 if (IS_ERR(inode)) 779 return PTR_ERR(inode); 780 d_instantiate(dentry, inode); 781 } 782 return ret; 783 784fail_free: 785 if (anon_dev) 786 free_anon_bdev(anon_dev); 787 kfree(root_item); 788 return ret; 789} 790 791static int create_snapshot(struct btrfs_root *root, struct inode *dir, 792 struct dentry *dentry, bool readonly, 793 struct btrfs_qgroup_inherit *inherit) 794{ 795 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 796 struct inode *inode; 797 struct btrfs_pending_snapshot *pending_snapshot; 798 struct btrfs_trans_handle *trans; 799 int ret; 800 801 if (btrfs_root_refs(&root->root_item) == 0) 802 return -ENOENT; 803 804 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 805 return -EINVAL; 806 807 if (atomic_read(&root->nr_swapfiles)) { 808 btrfs_warn(fs_info, 809 "cannot snapshot subvolume with active swapfile"); 810 return -ETXTBSY; 811 } 812 813 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 814 if (!pending_snapshot) 815 return -ENOMEM; 816 817 ret = get_anon_bdev(&pending_snapshot->anon_dev); 818 if (ret < 0) 819 goto free_pending; 820 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 821 GFP_KERNEL); 822 pending_snapshot->path = btrfs_alloc_path(); 823 if (!pending_snapshot->root_item || !pending_snapshot->path) { 824 ret = -ENOMEM; 825 goto free_pending; 826 } 827 828 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 829 BTRFS_BLOCK_RSV_TEMP); 830 /* 831 * 1 - parent dir inode 832 * 2 - dir entries 833 * 1 - root item 834 * 2 - root ref/backref 835 * 1 - root of snapshot 836 * 1 - UUID item 837 */ 838 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 839 &pending_snapshot->block_rsv, 8, 840 false); 841 if (ret) 842 goto free_pending; 843 844 pending_snapshot->dentry = dentry; 845 pending_snapshot->root = root; 846 pending_snapshot->readonly = readonly; 847 pending_snapshot->dir = dir; 848 pending_snapshot->inherit = inherit; 849 850 trans = btrfs_start_transaction(root, 0); 851 if (IS_ERR(trans)) { 852 ret = PTR_ERR(trans); 853 goto fail; 854 } 855 856 spin_lock(&fs_info->trans_lock); 857 list_add(&pending_snapshot->list, 858 &trans->transaction->pending_snapshots); 859 spin_unlock(&fs_info->trans_lock); 860 861 ret = btrfs_commit_transaction(trans); 862 if (ret) 863 goto fail; 864 865 ret = pending_snapshot->error; 866 if (ret) 867 goto fail; 868 869 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 870 if (ret) 871 goto fail; 872 873 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 874 if (IS_ERR(inode)) { 875 ret = PTR_ERR(inode); 876 goto fail; 877 } 878 879 d_instantiate(dentry, inode); 880 ret = 0; 881 pending_snapshot->anon_dev = 0; 882fail: 883 /* Prevent double freeing of anon_dev */ 884 if (ret && pending_snapshot->snap) 885 pending_snapshot->snap->anon_dev = 0; 886 btrfs_put_root(pending_snapshot->snap); 887 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 888free_pending: 889 if (pending_snapshot->anon_dev) 890 free_anon_bdev(pending_snapshot->anon_dev); 891 kfree(pending_snapshot->root_item); 892 btrfs_free_path(pending_snapshot->path); 893 kfree(pending_snapshot); 894 895 return ret; 896} 897 898/* copy of may_delete in fs/namei.c() 899 * Check whether we can remove a link victim from directory dir, check 900 * whether the type of victim is right. 901 * 1. We can't do it if dir is read-only (done in permission()) 902 * 2. We should have write and exec permissions on dir 903 * 3. We can't remove anything from append-only dir 904 * 4. We can't do anything with immutable dir (done in permission()) 905 * 5. If the sticky bit on dir is set we should either 906 * a. be owner of dir, or 907 * b. be owner of victim, or 908 * c. have CAP_FOWNER capability 909 * 6. If the victim is append-only or immutable we can't do anything with 910 * links pointing to it. 911 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 912 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 913 * 9. We can't remove a root or mountpoint. 914 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 915 * nfs_async_unlink(). 916 */ 917 918static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 919{ 920 int error; 921 922 if (d_really_is_negative(victim)) 923 return -ENOENT; 924 925 BUG_ON(d_inode(victim->d_parent) != dir); 926 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 927 928 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 929 if (error) 930 return error; 931 if (IS_APPEND(dir)) 932 return -EPERM; 933 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 934 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 935 return -EPERM; 936 if (isdir) { 937 if (!d_is_dir(victim)) 938 return -ENOTDIR; 939 if (IS_ROOT(victim)) 940 return -EBUSY; 941 } else if (d_is_dir(victim)) 942 return -EISDIR; 943 if (IS_DEADDIR(dir)) 944 return -ENOENT; 945 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 946 return -EBUSY; 947 return 0; 948} 949 950/* copy of may_create in fs/namei.c() */ 951static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 952{ 953 if (d_really_is_positive(child)) 954 return -EEXIST; 955 if (IS_DEADDIR(dir)) 956 return -ENOENT; 957 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 958} 959 960/* 961 * Create a new subvolume below @parent. This is largely modeled after 962 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 963 * inside this filesystem so it's quite a bit simpler. 964 */ 965static noinline int btrfs_mksubvol(const struct path *parent, 966 const char *name, int namelen, 967 struct btrfs_root *snap_src, 968 bool readonly, 969 struct btrfs_qgroup_inherit *inherit) 970{ 971 struct inode *dir = d_inode(parent->dentry); 972 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 973 struct dentry *dentry; 974 int error; 975 976 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 977 if (error == -EINTR) 978 return error; 979 980 dentry = lookup_one_len(name, parent->dentry, namelen); 981 error = PTR_ERR(dentry); 982 if (IS_ERR(dentry)) 983 goto out_unlock; 984 985 error = btrfs_may_create(dir, dentry); 986 if (error) 987 goto out_dput; 988 989 /* 990 * even if this name doesn't exist, we may get hash collisions. 991 * check for them now when we can safely fail 992 */ 993 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 994 dir->i_ino, name, 995 namelen); 996 if (error) 997 goto out_dput; 998 999 down_read(&fs_info->subvol_sem); 1000 1001 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 1002 goto out_up_read; 1003 1004 if (snap_src) 1005 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 1006 else 1007 error = create_subvol(dir, dentry, name, namelen, inherit); 1008 1009 if (!error) 1010 fsnotify_mkdir(dir, dentry); 1011out_up_read: 1012 up_read(&fs_info->subvol_sem); 1013out_dput: 1014 dput(dentry); 1015out_unlock: 1016 inode_unlock(dir); 1017 return error; 1018} 1019 1020static noinline int btrfs_mksnapshot(const struct path *parent, 1021 const char *name, int namelen, 1022 struct btrfs_root *root, 1023 bool readonly, 1024 struct btrfs_qgroup_inherit *inherit) 1025{ 1026 int ret; 1027 bool snapshot_force_cow = false; 1028 1029 /* 1030 * Force new buffered writes to reserve space even when NOCOW is 1031 * possible. This is to avoid later writeback (running dealloc) to 1032 * fallback to COW mode and unexpectedly fail with ENOSPC. 1033 */ 1034 btrfs_drew_read_lock(&root->snapshot_lock); 1035 1036 ret = btrfs_start_delalloc_snapshot(root); 1037 if (ret) 1038 goto out; 1039 1040 /* 1041 * All previous writes have started writeback in NOCOW mode, so now 1042 * we force future writes to fallback to COW mode during snapshot 1043 * creation. 1044 */ 1045 atomic_inc(&root->snapshot_force_cow); 1046 snapshot_force_cow = true; 1047 1048 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1049 1050 ret = btrfs_mksubvol(parent, name, namelen, 1051 root, readonly, inherit); 1052out: 1053 if (snapshot_force_cow) 1054 atomic_dec(&root->snapshot_force_cow); 1055 btrfs_drew_read_unlock(&root->snapshot_lock); 1056 return ret; 1057} 1058 1059/* 1060 * When we're defragging a range, we don't want to kick it off again 1061 * if it is really just waiting for delalloc to send it down. 1062 * If we find a nice big extent or delalloc range for the bytes in the 1063 * file you want to defrag, we return 0 to let you know to skip this 1064 * part of the file 1065 */ 1066static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1067{ 1068 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1069 struct extent_map *em = NULL; 1070 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1071 u64 end; 1072 1073 read_lock(&em_tree->lock); 1074 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1075 read_unlock(&em_tree->lock); 1076 1077 if (em) { 1078 end = extent_map_end(em); 1079 free_extent_map(em); 1080 if (end - offset > thresh) 1081 return 0; 1082 } 1083 /* if we already have a nice delalloc here, just stop */ 1084 thresh /= 2; 1085 end = count_range_bits(io_tree, &offset, offset + thresh, 1086 thresh, EXTENT_DELALLOC, 1); 1087 if (end >= thresh) 1088 return 0; 1089 return 1; 1090} 1091 1092/* 1093 * helper function to walk through a file and find extents 1094 * newer than a specific transid, and smaller than thresh. 1095 * 1096 * This is used by the defragging code to find new and small 1097 * extents 1098 */ 1099static int find_new_extents(struct btrfs_root *root, 1100 struct inode *inode, u64 newer_than, 1101 u64 *off, u32 thresh) 1102{ 1103 struct btrfs_path *path; 1104 struct btrfs_key min_key; 1105 struct extent_buffer *leaf; 1106 struct btrfs_file_extent_item *extent; 1107 int type; 1108 int ret; 1109 u64 ino = btrfs_ino(BTRFS_I(inode)); 1110 1111 path = btrfs_alloc_path(); 1112 if (!path) 1113 return -ENOMEM; 1114 1115 min_key.objectid = ino; 1116 min_key.type = BTRFS_EXTENT_DATA_KEY; 1117 min_key.offset = *off; 1118 1119 while (1) { 1120 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1121 if (ret != 0) 1122 goto none; 1123process_slot: 1124 if (min_key.objectid != ino) 1125 goto none; 1126 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1127 goto none; 1128 1129 leaf = path->nodes[0]; 1130 extent = btrfs_item_ptr(leaf, path->slots[0], 1131 struct btrfs_file_extent_item); 1132 1133 type = btrfs_file_extent_type(leaf, extent); 1134 if (type == BTRFS_FILE_EXTENT_REG && 1135 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1136 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1137 *off = min_key.offset; 1138 btrfs_free_path(path); 1139 return 0; 1140 } 1141 1142 path->slots[0]++; 1143 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1144 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1145 goto process_slot; 1146 } 1147 1148 if (min_key.offset == (u64)-1) 1149 goto none; 1150 1151 min_key.offset++; 1152 btrfs_release_path(path); 1153 } 1154none: 1155 btrfs_free_path(path); 1156 return -ENOENT; 1157} 1158 1159static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1160{ 1161 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1162 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1163 struct extent_map *em; 1164 u64 len = PAGE_SIZE; 1165 1166 /* 1167 * hopefully we have this extent in the tree already, try without 1168 * the full extent lock 1169 */ 1170 read_lock(&em_tree->lock); 1171 em = lookup_extent_mapping(em_tree, start, len); 1172 read_unlock(&em_tree->lock); 1173 1174 if (!em) { 1175 struct extent_state *cached = NULL; 1176 u64 end = start + len - 1; 1177 1178 /* get the big lock and read metadata off disk */ 1179 lock_extent_bits(io_tree, start, end, &cached); 1180 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 1181 unlock_extent_cached(io_tree, start, end, &cached); 1182 1183 if (IS_ERR(em)) 1184 return NULL; 1185 } 1186 1187 return em; 1188} 1189 1190static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1191{ 1192 struct extent_map *next; 1193 bool ret = true; 1194 1195 /* this is the last extent */ 1196 if (em->start + em->len >= i_size_read(inode)) 1197 return false; 1198 1199 next = defrag_lookup_extent(inode, em->start + em->len); 1200 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1201 ret = false; 1202 else if ((em->block_start + em->block_len == next->block_start) && 1203 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1204 ret = false; 1205 1206 free_extent_map(next); 1207 return ret; 1208} 1209 1210static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1211 u64 *last_len, u64 *skip, u64 *defrag_end, 1212 int compress) 1213{ 1214 struct extent_map *em; 1215 int ret = 1; 1216 bool next_mergeable = true; 1217 bool prev_mergeable = true; 1218 1219 /* 1220 * make sure that once we start defragging an extent, we keep on 1221 * defragging it 1222 */ 1223 if (start < *defrag_end) 1224 return 1; 1225 1226 *skip = 0; 1227 1228 em = defrag_lookup_extent(inode, start); 1229 if (!em) 1230 return 0; 1231 1232 /* this will cover holes, and inline extents */ 1233 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1234 ret = 0; 1235 goto out; 1236 } 1237 1238 if (!*defrag_end) 1239 prev_mergeable = false; 1240 1241 next_mergeable = defrag_check_next_extent(inode, em); 1242 /* 1243 * we hit a real extent, if it is big or the next extent is not a 1244 * real extent, don't bother defragging it 1245 */ 1246 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1247 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1248 ret = 0; 1249out: 1250 /* 1251 * last_len ends up being a counter of how many bytes we've defragged. 1252 * every time we choose not to defrag an extent, we reset *last_len 1253 * so that the next tiny extent will force a defrag. 1254 * 1255 * The end result of this is that tiny extents before a single big 1256 * extent will force at least part of that big extent to be defragged. 1257 */ 1258 if (ret) { 1259 *defrag_end = extent_map_end(em); 1260 } else { 1261 *last_len = 0; 1262 *skip = extent_map_end(em); 1263 *defrag_end = 0; 1264 } 1265 1266 free_extent_map(em); 1267 return ret; 1268} 1269 1270/* 1271 * it doesn't do much good to defrag one or two pages 1272 * at a time. This pulls in a nice chunk of pages 1273 * to COW and defrag. 1274 * 1275 * It also makes sure the delalloc code has enough 1276 * dirty data to avoid making new small extents as part 1277 * of the defrag 1278 * 1279 * It's a good idea to start RA on this range 1280 * before calling this. 1281 */ 1282static int cluster_pages_for_defrag(struct inode *inode, 1283 struct page **pages, 1284 unsigned long start_index, 1285 unsigned long num_pages) 1286{ 1287 unsigned long file_end; 1288 u64 isize = i_size_read(inode); 1289 u64 page_start; 1290 u64 page_end; 1291 u64 page_cnt; 1292 u64 start = (u64)start_index << PAGE_SHIFT; 1293 u64 search_start; 1294 int ret; 1295 int i; 1296 int i_done; 1297 struct btrfs_ordered_extent *ordered; 1298 struct extent_state *cached_state = NULL; 1299 struct extent_io_tree *tree; 1300 struct extent_changeset *data_reserved = NULL; 1301 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1302 1303 file_end = (isize - 1) >> PAGE_SHIFT; 1304 if (!isize || start_index > file_end) 1305 return 0; 1306 1307 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1308 1309 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1310 start, page_cnt << PAGE_SHIFT); 1311 if (ret) 1312 return ret; 1313 i_done = 0; 1314 tree = &BTRFS_I(inode)->io_tree; 1315 1316 /* step one, lock all the pages */ 1317 for (i = 0; i < page_cnt; i++) { 1318 struct page *page; 1319again: 1320 page = find_or_create_page(inode->i_mapping, 1321 start_index + i, mask); 1322 if (!page) 1323 break; 1324 1325 page_start = page_offset(page); 1326 page_end = page_start + PAGE_SIZE - 1; 1327 while (1) { 1328 lock_extent_bits(tree, page_start, page_end, 1329 &cached_state); 1330 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), 1331 page_start); 1332 unlock_extent_cached(tree, page_start, page_end, 1333 &cached_state); 1334 if (!ordered) 1335 break; 1336 1337 unlock_page(page); 1338 btrfs_start_ordered_extent(ordered, 1); 1339 btrfs_put_ordered_extent(ordered); 1340 lock_page(page); 1341 /* 1342 * we unlocked the page above, so we need check if 1343 * it was released or not. 1344 */ 1345 if (page->mapping != inode->i_mapping) { 1346 unlock_page(page); 1347 put_page(page); 1348 goto again; 1349 } 1350 } 1351 1352 if (!PageUptodate(page)) { 1353 btrfs_readpage(NULL, page); 1354 lock_page(page); 1355 if (!PageUptodate(page)) { 1356 unlock_page(page); 1357 put_page(page); 1358 ret = -EIO; 1359 break; 1360 } 1361 } 1362 1363 if (page->mapping != inode->i_mapping) { 1364 unlock_page(page); 1365 put_page(page); 1366 goto again; 1367 } 1368 1369 pages[i] = page; 1370 i_done++; 1371 } 1372 if (!i_done || ret) 1373 goto out; 1374 1375 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1376 goto out; 1377 1378 /* 1379 * so now we have a nice long stream of locked 1380 * and up to date pages, lets wait on them 1381 */ 1382 for (i = 0; i < i_done; i++) 1383 wait_on_page_writeback(pages[i]); 1384 1385 page_start = page_offset(pages[0]); 1386 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1387 1388 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1389 page_start, page_end - 1, &cached_state); 1390 1391 /* 1392 * When defragmenting we skip ranges that have holes or inline extents, 1393 * (check should_defrag_range()), to avoid unnecessary IO and wasting 1394 * space. At btrfs_defrag_file(), we check if a range should be defragged 1395 * before locking the inode and then, if it should, we trigger a sync 1396 * page cache readahead - we lock the inode only after that to avoid 1397 * blocking for too long other tasks that possibly want to operate on 1398 * other file ranges. But before we were able to get the inode lock, 1399 * some other task may have punched a hole in the range, or we may have 1400 * now an inline extent, in which case we should not defrag. So check 1401 * for that here, where we have the inode and the range locked, and bail 1402 * out if that happened. 1403 */ 1404 search_start = page_start; 1405 while (search_start < page_end) { 1406 struct extent_map *em; 1407 1408 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start, 1409 page_end - search_start); 1410 if (IS_ERR(em)) { 1411 ret = PTR_ERR(em); 1412 goto out_unlock_range; 1413 } 1414 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1415 free_extent_map(em); 1416 /* Ok, 0 means we did not defrag anything */ 1417 ret = 0; 1418 goto out_unlock_range; 1419 } 1420 search_start = extent_map_end(em); 1421 free_extent_map(em); 1422 } 1423 1424 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1425 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1426 EXTENT_DEFRAG, 0, 0, &cached_state); 1427 1428 if (i_done != page_cnt) { 1429 spin_lock(&BTRFS_I(inode)->lock); 1430 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1431 spin_unlock(&BTRFS_I(inode)->lock); 1432 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1433 start, (page_cnt - i_done) << PAGE_SHIFT, true); 1434 } 1435 1436 1437 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1438 &cached_state); 1439 1440 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1441 page_start, page_end - 1, &cached_state); 1442 1443 for (i = 0; i < i_done; i++) { 1444 clear_page_dirty_for_io(pages[i]); 1445 ClearPageChecked(pages[i]); 1446 set_page_extent_mapped(pages[i]); 1447 set_page_dirty(pages[i]); 1448 unlock_page(pages[i]); 1449 put_page(pages[i]); 1450 } 1451 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1452 extent_changeset_free(data_reserved); 1453 return i_done; 1454 1455out_unlock_range: 1456 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1457 page_start, page_end - 1, &cached_state); 1458out: 1459 for (i = 0; i < i_done; i++) { 1460 unlock_page(pages[i]); 1461 put_page(pages[i]); 1462 } 1463 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1464 start, page_cnt << PAGE_SHIFT, true); 1465 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1466 extent_changeset_free(data_reserved); 1467 return ret; 1468 1469} 1470 1471int btrfs_defrag_file(struct inode *inode, struct file *file, 1472 struct btrfs_ioctl_defrag_range_args *range, 1473 u64 newer_than, unsigned long max_to_defrag) 1474{ 1475 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1476 struct btrfs_root *root = BTRFS_I(inode)->root; 1477 struct file_ra_state *ra = NULL; 1478 unsigned long last_index; 1479 u64 isize = i_size_read(inode); 1480 u64 last_len = 0; 1481 u64 skip = 0; 1482 u64 defrag_end = 0; 1483 u64 newer_off = range->start; 1484 unsigned long i; 1485 unsigned long ra_index = 0; 1486 int ret; 1487 int defrag_count = 0; 1488 int compress_type = BTRFS_COMPRESS_ZLIB; 1489 u32 extent_thresh = range->extent_thresh; 1490 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1491 unsigned long cluster = max_cluster; 1492 u64 new_align = ~((u64)SZ_128K - 1); 1493 struct page **pages = NULL; 1494 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1495 1496 if (isize == 0) 1497 return 0; 1498 1499 if (range->start >= isize) 1500 return -EINVAL; 1501 1502 if (do_compress) { 1503 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1504 return -EINVAL; 1505 if (range->compress_type) 1506 compress_type = range->compress_type; 1507 } 1508 1509 if (extent_thresh == 0) 1510 extent_thresh = SZ_256K; 1511 1512 /* 1513 * If we were not given a file, allocate a readahead context. As 1514 * readahead is just an optimization, defrag will work without it so 1515 * we don't error out. 1516 */ 1517 if (!file) { 1518 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1519 if (ra) 1520 file_ra_state_init(ra, inode->i_mapping); 1521 } else { 1522 ra = &file->f_ra; 1523 } 1524 1525 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1526 if (!pages) { 1527 ret = -ENOMEM; 1528 goto out_ra; 1529 } 1530 1531 /* find the last page to defrag */ 1532 if (range->start + range->len > range->start) { 1533 last_index = min_t(u64, isize - 1, 1534 range->start + range->len - 1) >> PAGE_SHIFT; 1535 } else { 1536 last_index = (isize - 1) >> PAGE_SHIFT; 1537 } 1538 1539 if (newer_than) { 1540 ret = find_new_extents(root, inode, newer_than, 1541 &newer_off, SZ_64K); 1542 if (!ret) { 1543 range->start = newer_off; 1544 /* 1545 * we always align our defrag to help keep 1546 * the extents in the file evenly spaced 1547 */ 1548 i = (newer_off & new_align) >> PAGE_SHIFT; 1549 } else 1550 goto out_ra; 1551 } else { 1552 i = range->start >> PAGE_SHIFT; 1553 } 1554 if (!max_to_defrag) 1555 max_to_defrag = last_index - i + 1; 1556 1557 /* 1558 * make writeback starts from i, so the defrag range can be 1559 * written sequentially. 1560 */ 1561 if (i < inode->i_mapping->writeback_index) 1562 inode->i_mapping->writeback_index = i; 1563 1564 while (i <= last_index && defrag_count < max_to_defrag && 1565 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1566 /* 1567 * make sure we stop running if someone unmounts 1568 * the FS 1569 */ 1570 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1571 break; 1572 1573 if (btrfs_defrag_cancelled(fs_info)) { 1574 btrfs_debug(fs_info, "defrag_file cancelled"); 1575 ret = -EAGAIN; 1576 break; 1577 } 1578 1579 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1580 extent_thresh, &last_len, &skip, 1581 &defrag_end, do_compress)){ 1582 unsigned long next; 1583 /* 1584 * the should_defrag function tells us how much to skip 1585 * bump our counter by the suggested amount 1586 */ 1587 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1588 i = max(i + 1, next); 1589 continue; 1590 } 1591 1592 if (!newer_than) { 1593 cluster = (PAGE_ALIGN(defrag_end) >> 1594 PAGE_SHIFT) - i; 1595 cluster = min(cluster, max_cluster); 1596 } else { 1597 cluster = max_cluster; 1598 } 1599 1600 if (i + cluster > ra_index) { 1601 ra_index = max(i, ra_index); 1602 if (ra) 1603 page_cache_sync_readahead(inode->i_mapping, ra, 1604 file, ra_index, cluster); 1605 ra_index += cluster; 1606 } 1607 1608 inode_lock(inode); 1609 if (IS_SWAPFILE(inode)) { 1610 ret = -ETXTBSY; 1611 } else { 1612 if (do_compress) 1613 BTRFS_I(inode)->defrag_compress = compress_type; 1614 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1615 } 1616 if (ret < 0) { 1617 inode_unlock(inode); 1618 goto out_ra; 1619 } 1620 1621 defrag_count += ret; 1622 balance_dirty_pages_ratelimited(inode->i_mapping); 1623 inode_unlock(inode); 1624 1625 if (newer_than) { 1626 if (newer_off == (u64)-1) 1627 break; 1628 1629 if (ret > 0) 1630 i += ret; 1631 1632 newer_off = max(newer_off + 1, 1633 (u64)i << PAGE_SHIFT); 1634 1635 ret = find_new_extents(root, inode, newer_than, 1636 &newer_off, SZ_64K); 1637 if (!ret) { 1638 range->start = newer_off; 1639 i = (newer_off & new_align) >> PAGE_SHIFT; 1640 } else { 1641 break; 1642 } 1643 } else { 1644 if (ret > 0) { 1645 i += ret; 1646 last_len += ret << PAGE_SHIFT; 1647 } else { 1648 i++; 1649 last_len = 0; 1650 } 1651 } 1652 } 1653 1654 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1655 filemap_flush(inode->i_mapping); 1656 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1657 &BTRFS_I(inode)->runtime_flags)) 1658 filemap_flush(inode->i_mapping); 1659 } 1660 1661 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1662 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1663 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1664 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1665 } 1666 1667 ret = defrag_count; 1668 1669out_ra: 1670 if (do_compress) { 1671 inode_lock(inode); 1672 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1673 inode_unlock(inode); 1674 } 1675 if (!file) 1676 kfree(ra); 1677 kfree(pages); 1678 return ret; 1679} 1680 1681static noinline int btrfs_ioctl_resize(struct file *file, 1682 void __user *arg) 1683{ 1684 struct inode *inode = file_inode(file); 1685 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1686 u64 new_size; 1687 u64 old_size; 1688 u64 devid = 1; 1689 struct btrfs_root *root = BTRFS_I(inode)->root; 1690 struct btrfs_ioctl_vol_args *vol_args; 1691 struct btrfs_trans_handle *trans; 1692 struct btrfs_device *device = NULL; 1693 char *sizestr; 1694 char *retptr; 1695 char *devstr = NULL; 1696 int ret = 0; 1697 int mod = 0; 1698 1699 if (!capable(CAP_SYS_ADMIN)) 1700 return -EPERM; 1701 1702 ret = mnt_want_write_file(file); 1703 if (ret) 1704 return ret; 1705 1706 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) { 1707 mnt_drop_write_file(file); 1708 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1709 } 1710 1711 vol_args = memdup_user(arg, sizeof(*vol_args)); 1712 if (IS_ERR(vol_args)) { 1713 ret = PTR_ERR(vol_args); 1714 goto out; 1715 } 1716 1717 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1718 1719 sizestr = vol_args->name; 1720 devstr = strchr(sizestr, ':'); 1721 if (devstr) { 1722 sizestr = devstr + 1; 1723 *devstr = '\0'; 1724 devstr = vol_args->name; 1725 ret = kstrtoull(devstr, 10, &devid); 1726 if (ret) 1727 goto out_free; 1728 if (!devid) { 1729 ret = -EINVAL; 1730 goto out_free; 1731 } 1732 btrfs_info(fs_info, "resizing devid %llu", devid); 1733 } 1734 1735 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 1736 if (!device) { 1737 btrfs_info(fs_info, "resizer unable to find device %llu", 1738 devid); 1739 ret = -ENODEV; 1740 goto out_free; 1741 } 1742 1743 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1744 btrfs_info(fs_info, 1745 "resizer unable to apply on readonly device %llu", 1746 devid); 1747 ret = -EPERM; 1748 goto out_free; 1749 } 1750 1751 if (!strcmp(sizestr, "max")) 1752 new_size = device->bdev->bd_inode->i_size; 1753 else { 1754 if (sizestr[0] == '-') { 1755 mod = -1; 1756 sizestr++; 1757 } else if (sizestr[0] == '+') { 1758 mod = 1; 1759 sizestr++; 1760 } 1761 new_size = memparse(sizestr, &retptr); 1762 if (*retptr != '\0' || new_size == 0) { 1763 ret = -EINVAL; 1764 goto out_free; 1765 } 1766 } 1767 1768 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1769 ret = -EPERM; 1770 goto out_free; 1771 } 1772 1773 old_size = btrfs_device_get_total_bytes(device); 1774 1775 if (mod < 0) { 1776 if (new_size > old_size) { 1777 ret = -EINVAL; 1778 goto out_free; 1779 } 1780 new_size = old_size - new_size; 1781 } else if (mod > 0) { 1782 if (new_size > ULLONG_MAX - old_size) { 1783 ret = -ERANGE; 1784 goto out_free; 1785 } 1786 new_size = old_size + new_size; 1787 } 1788 1789 if (new_size < SZ_256M) { 1790 ret = -EINVAL; 1791 goto out_free; 1792 } 1793 if (new_size > device->bdev->bd_inode->i_size) { 1794 ret = -EFBIG; 1795 goto out_free; 1796 } 1797 1798 new_size = round_down(new_size, fs_info->sectorsize); 1799 1800 if (new_size > old_size) { 1801 trans = btrfs_start_transaction(root, 0); 1802 if (IS_ERR(trans)) { 1803 ret = PTR_ERR(trans); 1804 goto out_free; 1805 } 1806 ret = btrfs_grow_device(trans, device, new_size); 1807 btrfs_commit_transaction(trans); 1808 } else if (new_size < old_size) { 1809 ret = btrfs_shrink_device(device, new_size); 1810 } /* equal, nothing need to do */ 1811 1812 if (ret == 0 && new_size != old_size) 1813 btrfs_info_in_rcu(fs_info, 1814 "resize device %s (devid %llu) from %llu to %llu", 1815 rcu_str_deref(device->name), device->devid, 1816 old_size, new_size); 1817out_free: 1818 kfree(vol_args); 1819out: 1820 btrfs_exclop_finish(fs_info); 1821 mnt_drop_write_file(file); 1822 return ret; 1823} 1824 1825static noinline int __btrfs_ioctl_snap_create(struct file *file, 1826 const char *name, unsigned long fd, int subvol, 1827 bool readonly, 1828 struct btrfs_qgroup_inherit *inherit) 1829{ 1830 int namelen; 1831 int ret = 0; 1832 1833 if (!S_ISDIR(file_inode(file)->i_mode)) 1834 return -ENOTDIR; 1835 1836 ret = mnt_want_write_file(file); 1837 if (ret) 1838 goto out; 1839 1840 namelen = strlen(name); 1841 if (strchr(name, '/')) { 1842 ret = -EINVAL; 1843 goto out_drop_write; 1844 } 1845 1846 if (name[0] == '.' && 1847 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1848 ret = -EEXIST; 1849 goto out_drop_write; 1850 } 1851 1852 if (subvol) { 1853 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1854 NULL, readonly, inherit); 1855 } else { 1856 struct fd src = fdget(fd); 1857 struct inode *src_inode; 1858 if (!src.file) { 1859 ret = -EINVAL; 1860 goto out_drop_write; 1861 } 1862 1863 src_inode = file_inode(src.file); 1864 if (src_inode->i_sb != file_inode(file)->i_sb) { 1865 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1866 "Snapshot src from another FS"); 1867 ret = -EXDEV; 1868 } else if (!inode_owner_or_capable(src_inode)) { 1869 /* 1870 * Subvolume creation is not restricted, but snapshots 1871 * are limited to own subvolumes only 1872 */ 1873 ret = -EPERM; 1874 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1875 /* 1876 * Snapshots must be made with the src_inode referring 1877 * to the subvolume inode, otherwise the permission 1878 * checking above is useless because we may have 1879 * permission on a lower directory but not the subvol 1880 * itself. 1881 */ 1882 ret = -EINVAL; 1883 } else { 1884 ret = btrfs_mksnapshot(&file->f_path, name, namelen, 1885 BTRFS_I(src_inode)->root, 1886 readonly, inherit); 1887 } 1888 fdput(src); 1889 } 1890out_drop_write: 1891 mnt_drop_write_file(file); 1892out: 1893 return ret; 1894} 1895 1896static noinline int btrfs_ioctl_snap_create(struct file *file, 1897 void __user *arg, int subvol) 1898{ 1899 struct btrfs_ioctl_vol_args *vol_args; 1900 int ret; 1901 1902 if (!S_ISDIR(file_inode(file)->i_mode)) 1903 return -ENOTDIR; 1904 1905 vol_args = memdup_user(arg, sizeof(*vol_args)); 1906 if (IS_ERR(vol_args)) 1907 return PTR_ERR(vol_args); 1908 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1909 1910 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1911 subvol, false, NULL); 1912 1913 kfree(vol_args); 1914 return ret; 1915} 1916 1917static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1918 void __user *arg, int subvol) 1919{ 1920 struct btrfs_ioctl_vol_args_v2 *vol_args; 1921 int ret; 1922 bool readonly = false; 1923 struct btrfs_qgroup_inherit *inherit = NULL; 1924 1925 if (!S_ISDIR(file_inode(file)->i_mode)) 1926 return -ENOTDIR; 1927 1928 vol_args = memdup_user(arg, sizeof(*vol_args)); 1929 if (IS_ERR(vol_args)) 1930 return PTR_ERR(vol_args); 1931 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1932 1933 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1934 ret = -EOPNOTSUPP; 1935 goto free_args; 1936 } 1937 1938 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1939 readonly = true; 1940 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1941 u64 nums; 1942 1943 if (vol_args->size < sizeof(*inherit) || 1944 vol_args->size > PAGE_SIZE) { 1945 ret = -EINVAL; 1946 goto free_args; 1947 } 1948 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1949 if (IS_ERR(inherit)) { 1950 ret = PTR_ERR(inherit); 1951 goto free_args; 1952 } 1953 1954 if (inherit->num_qgroups > PAGE_SIZE || 1955 inherit->num_ref_copies > PAGE_SIZE || 1956 inherit->num_excl_copies > PAGE_SIZE) { 1957 ret = -EINVAL; 1958 goto free_inherit; 1959 } 1960 1961 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1962 2 * inherit->num_excl_copies; 1963 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1964 ret = -EINVAL; 1965 goto free_inherit; 1966 } 1967 } 1968 1969 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1970 subvol, readonly, inherit); 1971 if (ret) 1972 goto free_inherit; 1973free_inherit: 1974 kfree(inherit); 1975free_args: 1976 kfree(vol_args); 1977 return ret; 1978} 1979 1980static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1981 void __user *arg) 1982{ 1983 struct inode *inode = file_inode(file); 1984 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1985 struct btrfs_root *root = BTRFS_I(inode)->root; 1986 int ret = 0; 1987 u64 flags = 0; 1988 1989 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1990 return -EINVAL; 1991 1992 down_read(&fs_info->subvol_sem); 1993 if (btrfs_root_readonly(root)) 1994 flags |= BTRFS_SUBVOL_RDONLY; 1995 up_read(&fs_info->subvol_sem); 1996 1997 if (copy_to_user(arg, &flags, sizeof(flags))) 1998 ret = -EFAULT; 1999 2000 return ret; 2001} 2002 2003static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 2004 void __user *arg) 2005{ 2006 struct inode *inode = file_inode(file); 2007 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2008 struct btrfs_root *root = BTRFS_I(inode)->root; 2009 struct btrfs_trans_handle *trans; 2010 u64 root_flags; 2011 u64 flags; 2012 int ret = 0; 2013 2014 if (!inode_owner_or_capable(inode)) 2015 return -EPERM; 2016 2017 ret = mnt_want_write_file(file); 2018 if (ret) 2019 goto out; 2020 2021 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2022 ret = -EINVAL; 2023 goto out_drop_write; 2024 } 2025 2026 if (copy_from_user(&flags, arg, sizeof(flags))) { 2027 ret = -EFAULT; 2028 goto out_drop_write; 2029 } 2030 2031 if (flags & ~BTRFS_SUBVOL_RDONLY) { 2032 ret = -EOPNOTSUPP; 2033 goto out_drop_write; 2034 } 2035 2036 down_write(&fs_info->subvol_sem); 2037 2038 /* nothing to do */ 2039 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 2040 goto out_drop_sem; 2041 2042 root_flags = btrfs_root_flags(&root->root_item); 2043 if (flags & BTRFS_SUBVOL_RDONLY) { 2044 btrfs_set_root_flags(&root->root_item, 2045 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 2046 } else { 2047 /* 2048 * Block RO -> RW transition if this subvolume is involved in 2049 * send 2050 */ 2051 spin_lock(&root->root_item_lock); 2052 if (root->send_in_progress == 0) { 2053 btrfs_set_root_flags(&root->root_item, 2054 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 2055 spin_unlock(&root->root_item_lock); 2056 } else { 2057 spin_unlock(&root->root_item_lock); 2058 btrfs_warn(fs_info, 2059 "Attempt to set subvolume %llu read-write during send", 2060 root->root_key.objectid); 2061 ret = -EPERM; 2062 goto out_drop_sem; 2063 } 2064 } 2065 2066 trans = btrfs_start_transaction(root, 1); 2067 if (IS_ERR(trans)) { 2068 ret = PTR_ERR(trans); 2069 goto out_reset; 2070 } 2071 2072 ret = btrfs_update_root(trans, fs_info->tree_root, 2073 &root->root_key, &root->root_item); 2074 if (ret < 0) { 2075 btrfs_end_transaction(trans); 2076 goto out_reset; 2077 } 2078 2079 ret = btrfs_commit_transaction(trans); 2080 2081out_reset: 2082 if (ret) 2083 btrfs_set_root_flags(&root->root_item, root_flags); 2084out_drop_sem: 2085 up_write(&fs_info->subvol_sem); 2086out_drop_write: 2087 mnt_drop_write_file(file); 2088out: 2089 return ret; 2090} 2091 2092static noinline int key_in_sk(struct btrfs_key *key, 2093 struct btrfs_ioctl_search_key *sk) 2094{ 2095 struct btrfs_key test; 2096 int ret; 2097 2098 test.objectid = sk->min_objectid; 2099 test.type = sk->min_type; 2100 test.offset = sk->min_offset; 2101 2102 ret = btrfs_comp_cpu_keys(key, &test); 2103 if (ret < 0) 2104 return 0; 2105 2106 test.objectid = sk->max_objectid; 2107 test.type = sk->max_type; 2108 test.offset = sk->max_offset; 2109 2110 ret = btrfs_comp_cpu_keys(key, &test); 2111 if (ret > 0) 2112 return 0; 2113 return 1; 2114} 2115 2116static noinline int copy_to_sk(struct btrfs_path *path, 2117 struct btrfs_key *key, 2118 struct btrfs_ioctl_search_key *sk, 2119 u64 *buf_size, 2120 char __user *ubuf, 2121 unsigned long *sk_offset, 2122 int *num_found) 2123{ 2124 u64 found_transid; 2125 struct extent_buffer *leaf; 2126 struct btrfs_ioctl_search_header sh; 2127 struct btrfs_key test; 2128 unsigned long item_off; 2129 unsigned long item_len; 2130 int nritems; 2131 int i; 2132 int slot; 2133 int ret = 0; 2134 2135 leaf = path->nodes[0]; 2136 slot = path->slots[0]; 2137 nritems = btrfs_header_nritems(leaf); 2138 2139 if (btrfs_header_generation(leaf) > sk->max_transid) { 2140 i = nritems; 2141 goto advance_key; 2142 } 2143 found_transid = btrfs_header_generation(leaf); 2144 2145 for (i = slot; i < nritems; i++) { 2146 item_off = btrfs_item_ptr_offset(leaf, i); 2147 item_len = btrfs_item_size_nr(leaf, i); 2148 2149 btrfs_item_key_to_cpu(leaf, key, i); 2150 if (!key_in_sk(key, sk)) 2151 continue; 2152 2153 if (sizeof(sh) + item_len > *buf_size) { 2154 if (*num_found) { 2155 ret = 1; 2156 goto out; 2157 } 2158 2159 /* 2160 * return one empty item back for v1, which does not 2161 * handle -EOVERFLOW 2162 */ 2163 2164 *buf_size = sizeof(sh) + item_len; 2165 item_len = 0; 2166 ret = -EOVERFLOW; 2167 } 2168 2169 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2170 ret = 1; 2171 goto out; 2172 } 2173 2174 sh.objectid = key->objectid; 2175 sh.offset = key->offset; 2176 sh.type = key->type; 2177 sh.len = item_len; 2178 sh.transid = found_transid; 2179 2180 /* 2181 * Copy search result header. If we fault then loop again so we 2182 * can fault in the pages and -EFAULT there if there's a 2183 * problem. Otherwise we'll fault and then copy the buffer in 2184 * properly this next time through 2185 */ 2186 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2187 ret = 0; 2188 goto out; 2189 } 2190 2191 *sk_offset += sizeof(sh); 2192 2193 if (item_len) { 2194 char __user *up = ubuf + *sk_offset; 2195 /* 2196 * Copy the item, same behavior as above, but reset the 2197 * * sk_offset so we copy the full thing again. 2198 */ 2199 if (read_extent_buffer_to_user_nofault(leaf, up, 2200 item_off, item_len)) { 2201 ret = 0; 2202 *sk_offset -= sizeof(sh); 2203 goto out; 2204 } 2205 2206 *sk_offset += item_len; 2207 } 2208 (*num_found)++; 2209 2210 if (ret) /* -EOVERFLOW from above */ 2211 goto out; 2212 2213 if (*num_found >= sk->nr_items) { 2214 ret = 1; 2215 goto out; 2216 } 2217 } 2218advance_key: 2219 ret = 0; 2220 test.objectid = sk->max_objectid; 2221 test.type = sk->max_type; 2222 test.offset = sk->max_offset; 2223 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2224 ret = 1; 2225 else if (key->offset < (u64)-1) 2226 key->offset++; 2227 else if (key->type < (u8)-1) { 2228 key->offset = 0; 2229 key->type++; 2230 } else if (key->objectid < (u64)-1) { 2231 key->offset = 0; 2232 key->type = 0; 2233 key->objectid++; 2234 } else 2235 ret = 1; 2236out: 2237 /* 2238 * 0: all items from this leaf copied, continue with next 2239 * 1: * more items can be copied, but unused buffer is too small 2240 * * all items were found 2241 * Either way, it will stops the loop which iterates to the next 2242 * leaf 2243 * -EOVERFLOW: item was to large for buffer 2244 * -EFAULT: could not copy extent buffer back to userspace 2245 */ 2246 return ret; 2247} 2248 2249static noinline int search_ioctl(struct inode *inode, 2250 struct btrfs_ioctl_search_key *sk, 2251 u64 *buf_size, 2252 char __user *ubuf) 2253{ 2254 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2255 struct btrfs_root *root; 2256 struct btrfs_key key; 2257 struct btrfs_path *path; 2258 int ret; 2259 int num_found = 0; 2260 unsigned long sk_offset = 0; 2261 2262 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2263 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2264 return -EOVERFLOW; 2265 } 2266 2267 path = btrfs_alloc_path(); 2268 if (!path) 2269 return -ENOMEM; 2270 2271 if (sk->tree_id == 0) { 2272 /* search the root of the inode that was passed */ 2273 root = btrfs_grab_root(BTRFS_I(inode)->root); 2274 } else { 2275 root = btrfs_get_fs_root(info, sk->tree_id, true); 2276 if (IS_ERR(root)) { 2277 btrfs_free_path(path); 2278 return PTR_ERR(root); 2279 } 2280 } 2281 2282 key.objectid = sk->min_objectid; 2283 key.type = sk->min_type; 2284 key.offset = sk->min_offset; 2285 2286 while (1) { 2287 ret = fault_in_pages_writeable(ubuf + sk_offset, 2288 *buf_size - sk_offset); 2289 if (ret) 2290 break; 2291 2292 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2293 if (ret != 0) { 2294 if (ret > 0) 2295 ret = 0; 2296 goto err; 2297 } 2298 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2299 &sk_offset, &num_found); 2300 btrfs_release_path(path); 2301 if (ret) 2302 break; 2303 2304 } 2305 if (ret > 0) 2306 ret = 0; 2307err: 2308 sk->nr_items = num_found; 2309 btrfs_put_root(root); 2310 btrfs_free_path(path); 2311 return ret; 2312} 2313 2314static noinline int btrfs_ioctl_tree_search(struct file *file, 2315 void __user *argp) 2316{ 2317 struct btrfs_ioctl_search_args __user *uargs; 2318 struct btrfs_ioctl_search_key sk; 2319 struct inode *inode; 2320 int ret; 2321 u64 buf_size; 2322 2323 if (!capable(CAP_SYS_ADMIN)) 2324 return -EPERM; 2325 2326 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2327 2328 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2329 return -EFAULT; 2330 2331 buf_size = sizeof(uargs->buf); 2332 2333 inode = file_inode(file); 2334 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2335 2336 /* 2337 * In the origin implementation an overflow is handled by returning a 2338 * search header with a len of zero, so reset ret. 2339 */ 2340 if (ret == -EOVERFLOW) 2341 ret = 0; 2342 2343 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2344 ret = -EFAULT; 2345 return ret; 2346} 2347 2348static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2349 void __user *argp) 2350{ 2351 struct btrfs_ioctl_search_args_v2 __user *uarg; 2352 struct btrfs_ioctl_search_args_v2 args; 2353 struct inode *inode; 2354 int ret; 2355 u64 buf_size; 2356 const u64 buf_limit = SZ_16M; 2357 2358 if (!capable(CAP_SYS_ADMIN)) 2359 return -EPERM; 2360 2361 /* copy search header and buffer size */ 2362 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2363 if (copy_from_user(&args, uarg, sizeof(args))) 2364 return -EFAULT; 2365 2366 buf_size = args.buf_size; 2367 2368 /* limit result size to 16MB */ 2369 if (buf_size > buf_limit) 2370 buf_size = buf_limit; 2371 2372 inode = file_inode(file); 2373 ret = search_ioctl(inode, &args.key, &buf_size, 2374 (char __user *)(&uarg->buf[0])); 2375 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2376 ret = -EFAULT; 2377 else if (ret == -EOVERFLOW && 2378 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2379 ret = -EFAULT; 2380 2381 return ret; 2382} 2383 2384/* 2385 * Search INODE_REFs to identify path name of 'dirid' directory 2386 * in a 'tree_id' tree. and sets path name to 'name'. 2387 */ 2388static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2389 u64 tree_id, u64 dirid, char *name) 2390{ 2391 struct btrfs_root *root; 2392 struct btrfs_key key; 2393 char *ptr; 2394 int ret = -1; 2395 int slot; 2396 int len; 2397 int total_len = 0; 2398 struct btrfs_inode_ref *iref; 2399 struct extent_buffer *l; 2400 struct btrfs_path *path; 2401 2402 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2403 name[0]='\0'; 2404 return 0; 2405 } 2406 2407 path = btrfs_alloc_path(); 2408 if (!path) 2409 return -ENOMEM; 2410 2411 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2412 2413 root = btrfs_get_fs_root(info, tree_id, true); 2414 if (IS_ERR(root)) { 2415 ret = PTR_ERR(root); 2416 root = NULL; 2417 goto out; 2418 } 2419 2420 key.objectid = dirid; 2421 key.type = BTRFS_INODE_REF_KEY; 2422 key.offset = (u64)-1; 2423 2424 while (1) { 2425 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2426 if (ret < 0) 2427 goto out; 2428 else if (ret > 0) { 2429 ret = btrfs_previous_item(root, path, dirid, 2430 BTRFS_INODE_REF_KEY); 2431 if (ret < 0) 2432 goto out; 2433 else if (ret > 0) { 2434 ret = -ENOENT; 2435 goto out; 2436 } 2437 } 2438 2439 l = path->nodes[0]; 2440 slot = path->slots[0]; 2441 btrfs_item_key_to_cpu(l, &key, slot); 2442 2443 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2444 len = btrfs_inode_ref_name_len(l, iref); 2445 ptr -= len + 1; 2446 total_len += len + 1; 2447 if (ptr < name) { 2448 ret = -ENAMETOOLONG; 2449 goto out; 2450 } 2451 2452 *(ptr + len) = '/'; 2453 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2454 2455 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2456 break; 2457 2458 btrfs_release_path(path); 2459 key.objectid = key.offset; 2460 key.offset = (u64)-1; 2461 dirid = key.objectid; 2462 } 2463 memmove(name, ptr, total_len); 2464 name[total_len] = '\0'; 2465 ret = 0; 2466out: 2467 btrfs_put_root(root); 2468 btrfs_free_path(path); 2469 return ret; 2470} 2471 2472static int btrfs_search_path_in_tree_user(struct inode *inode, 2473 struct btrfs_ioctl_ino_lookup_user_args *args) 2474{ 2475 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2476 struct super_block *sb = inode->i_sb; 2477 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2478 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2479 u64 dirid = args->dirid; 2480 unsigned long item_off; 2481 unsigned long item_len; 2482 struct btrfs_inode_ref *iref; 2483 struct btrfs_root_ref *rref; 2484 struct btrfs_root *root = NULL; 2485 struct btrfs_path *path; 2486 struct btrfs_key key, key2; 2487 struct extent_buffer *leaf; 2488 struct inode *temp_inode; 2489 char *ptr; 2490 int slot; 2491 int len; 2492 int total_len = 0; 2493 int ret; 2494 2495 path = btrfs_alloc_path(); 2496 if (!path) 2497 return -ENOMEM; 2498 2499 /* 2500 * If the bottom subvolume does not exist directly under upper_limit, 2501 * construct the path in from the bottom up. 2502 */ 2503 if (dirid != upper_limit.objectid) { 2504 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2505 2506 root = btrfs_get_fs_root(fs_info, treeid, true); 2507 if (IS_ERR(root)) { 2508 ret = PTR_ERR(root); 2509 goto out; 2510 } 2511 2512 key.objectid = dirid; 2513 key.type = BTRFS_INODE_REF_KEY; 2514 key.offset = (u64)-1; 2515 while (1) { 2516 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2517 if (ret < 0) { 2518 goto out_put; 2519 } else if (ret > 0) { 2520 ret = btrfs_previous_item(root, path, dirid, 2521 BTRFS_INODE_REF_KEY); 2522 if (ret < 0) { 2523 goto out_put; 2524 } else if (ret > 0) { 2525 ret = -ENOENT; 2526 goto out_put; 2527 } 2528 } 2529 2530 leaf = path->nodes[0]; 2531 slot = path->slots[0]; 2532 btrfs_item_key_to_cpu(leaf, &key, slot); 2533 2534 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2535 len = btrfs_inode_ref_name_len(leaf, iref); 2536 ptr -= len + 1; 2537 total_len += len + 1; 2538 if (ptr < args->path) { 2539 ret = -ENAMETOOLONG; 2540 goto out_put; 2541 } 2542 2543 *(ptr + len) = '/'; 2544 read_extent_buffer(leaf, ptr, 2545 (unsigned long)(iref + 1), len); 2546 2547 /* Check the read+exec permission of this directory */ 2548 ret = btrfs_previous_item(root, path, dirid, 2549 BTRFS_INODE_ITEM_KEY); 2550 if (ret < 0) { 2551 goto out_put; 2552 } else if (ret > 0) { 2553 ret = -ENOENT; 2554 goto out_put; 2555 } 2556 2557 leaf = path->nodes[0]; 2558 slot = path->slots[0]; 2559 btrfs_item_key_to_cpu(leaf, &key2, slot); 2560 if (key2.objectid != dirid) { 2561 ret = -ENOENT; 2562 goto out_put; 2563 } 2564 2565 /* 2566 * We don't need the path anymore, so release it and 2567 * avoid deadlocks and lockdep warnings in case 2568 * btrfs_iget() needs to lookup the inode from its root 2569 * btree and lock the same leaf. 2570 */ 2571 btrfs_release_path(path); 2572 temp_inode = btrfs_iget(sb, key2.objectid, root); 2573 if (IS_ERR(temp_inode)) { 2574 ret = PTR_ERR(temp_inode); 2575 goto out_put; 2576 } 2577 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2578 iput(temp_inode); 2579 if (ret) { 2580 ret = -EACCES; 2581 goto out_put; 2582 } 2583 2584 if (key.offset == upper_limit.objectid) 2585 break; 2586 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2587 ret = -EACCES; 2588 goto out_put; 2589 } 2590 2591 key.objectid = key.offset; 2592 key.offset = (u64)-1; 2593 dirid = key.objectid; 2594 } 2595 2596 memmove(args->path, ptr, total_len); 2597 args->path[total_len] = '\0'; 2598 btrfs_put_root(root); 2599 root = NULL; 2600 btrfs_release_path(path); 2601 } 2602 2603 /* Get the bottom subvolume's name from ROOT_REF */ 2604 key.objectid = treeid; 2605 key.type = BTRFS_ROOT_REF_KEY; 2606 key.offset = args->treeid; 2607 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2608 if (ret < 0) { 2609 goto out; 2610 } else if (ret > 0) { 2611 ret = -ENOENT; 2612 goto out; 2613 } 2614 2615 leaf = path->nodes[0]; 2616 slot = path->slots[0]; 2617 btrfs_item_key_to_cpu(leaf, &key, slot); 2618 2619 item_off = btrfs_item_ptr_offset(leaf, slot); 2620 item_len = btrfs_item_size_nr(leaf, slot); 2621 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2622 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2623 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2624 ret = -EINVAL; 2625 goto out; 2626 } 2627 2628 /* Copy subvolume's name */ 2629 item_off += sizeof(struct btrfs_root_ref); 2630 item_len -= sizeof(struct btrfs_root_ref); 2631 read_extent_buffer(leaf, args->name, item_off, item_len); 2632 args->name[item_len] = 0; 2633 2634out_put: 2635 btrfs_put_root(root); 2636out: 2637 btrfs_free_path(path); 2638 return ret; 2639} 2640 2641static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2642 void __user *argp) 2643{ 2644 struct btrfs_ioctl_ino_lookup_args *args; 2645 struct inode *inode; 2646 int ret = 0; 2647 2648 args = memdup_user(argp, sizeof(*args)); 2649 if (IS_ERR(args)) 2650 return PTR_ERR(args); 2651 2652 inode = file_inode(file); 2653 2654 /* 2655 * Unprivileged query to obtain the containing subvolume root id. The 2656 * path is reset so it's consistent with btrfs_search_path_in_tree. 2657 */ 2658 if (args->treeid == 0) 2659 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2660 2661 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2662 args->name[0] = 0; 2663 goto out; 2664 } 2665 2666 if (!capable(CAP_SYS_ADMIN)) { 2667 ret = -EPERM; 2668 goto out; 2669 } 2670 2671 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2672 args->treeid, args->objectid, 2673 args->name); 2674 2675out: 2676 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2677 ret = -EFAULT; 2678 2679 kfree(args); 2680 return ret; 2681} 2682 2683/* 2684 * Version of ino_lookup ioctl (unprivileged) 2685 * 2686 * The main differences from ino_lookup ioctl are: 2687 * 2688 * 1. Read + Exec permission will be checked using inode_permission() during 2689 * path construction. -EACCES will be returned in case of failure. 2690 * 2. Path construction will be stopped at the inode number which corresponds 2691 * to the fd with which this ioctl is called. If constructed path does not 2692 * exist under fd's inode, -EACCES will be returned. 2693 * 3. The name of bottom subvolume is also searched and filled. 2694 */ 2695static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2696{ 2697 struct btrfs_ioctl_ino_lookup_user_args *args; 2698 struct inode *inode; 2699 int ret; 2700 2701 args = memdup_user(argp, sizeof(*args)); 2702 if (IS_ERR(args)) 2703 return PTR_ERR(args); 2704 2705 inode = file_inode(file); 2706 2707 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2708 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2709 /* 2710 * The subvolume does not exist under fd with which this is 2711 * called 2712 */ 2713 kfree(args); 2714 return -EACCES; 2715 } 2716 2717 ret = btrfs_search_path_in_tree_user(inode, args); 2718 2719 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2720 ret = -EFAULT; 2721 2722 kfree(args); 2723 return ret; 2724} 2725 2726/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2727static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2728{ 2729 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2730 struct btrfs_fs_info *fs_info; 2731 struct btrfs_root *root; 2732 struct btrfs_path *path; 2733 struct btrfs_key key; 2734 struct btrfs_root_item *root_item; 2735 struct btrfs_root_ref *rref; 2736 struct extent_buffer *leaf; 2737 unsigned long item_off; 2738 unsigned long item_len; 2739 struct inode *inode; 2740 int slot; 2741 int ret = 0; 2742 2743 path = btrfs_alloc_path(); 2744 if (!path) 2745 return -ENOMEM; 2746 2747 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2748 if (!subvol_info) { 2749 btrfs_free_path(path); 2750 return -ENOMEM; 2751 } 2752 2753 inode = file_inode(file); 2754 fs_info = BTRFS_I(inode)->root->fs_info; 2755 2756 /* Get root_item of inode's subvolume */ 2757 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2758 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2759 if (IS_ERR(root)) { 2760 ret = PTR_ERR(root); 2761 goto out_free; 2762 } 2763 root_item = &root->root_item; 2764 2765 subvol_info->treeid = key.objectid; 2766 2767 subvol_info->generation = btrfs_root_generation(root_item); 2768 subvol_info->flags = btrfs_root_flags(root_item); 2769 2770 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2771 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2772 BTRFS_UUID_SIZE); 2773 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2774 BTRFS_UUID_SIZE); 2775 2776 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2777 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2778 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2779 2780 subvol_info->otransid = btrfs_root_otransid(root_item); 2781 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2782 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2783 2784 subvol_info->stransid = btrfs_root_stransid(root_item); 2785 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2786 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2787 2788 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2789 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2790 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2791 2792 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2793 /* Search root tree for ROOT_BACKREF of this subvolume */ 2794 key.type = BTRFS_ROOT_BACKREF_KEY; 2795 key.offset = 0; 2796 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2797 if (ret < 0) { 2798 goto out; 2799 } else if (path->slots[0] >= 2800 btrfs_header_nritems(path->nodes[0])) { 2801 ret = btrfs_next_leaf(fs_info->tree_root, path); 2802 if (ret < 0) { 2803 goto out; 2804 } else if (ret > 0) { 2805 ret = -EUCLEAN; 2806 goto out; 2807 } 2808 } 2809 2810 leaf = path->nodes[0]; 2811 slot = path->slots[0]; 2812 btrfs_item_key_to_cpu(leaf, &key, slot); 2813 if (key.objectid == subvol_info->treeid && 2814 key.type == BTRFS_ROOT_BACKREF_KEY) { 2815 subvol_info->parent_id = key.offset; 2816 2817 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2818 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2819 2820 item_off = btrfs_item_ptr_offset(leaf, slot) 2821 + sizeof(struct btrfs_root_ref); 2822 item_len = btrfs_item_size_nr(leaf, slot) 2823 - sizeof(struct btrfs_root_ref); 2824 read_extent_buffer(leaf, subvol_info->name, 2825 item_off, item_len); 2826 } else { 2827 ret = -ENOENT; 2828 goto out; 2829 } 2830 } 2831 2832 btrfs_free_path(path); 2833 path = NULL; 2834 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2835 ret = -EFAULT; 2836 2837out: 2838 btrfs_put_root(root); 2839out_free: 2840 btrfs_free_path(path); 2841 kfree(subvol_info); 2842 return ret; 2843} 2844 2845/* 2846 * Return ROOT_REF information of the subvolume containing this inode 2847 * except the subvolume name. 2848 */ 2849static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2850{ 2851 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2852 struct btrfs_root_ref *rref; 2853 struct btrfs_root *root; 2854 struct btrfs_path *path; 2855 struct btrfs_key key; 2856 struct extent_buffer *leaf; 2857 struct inode *inode; 2858 u64 objectid; 2859 int slot; 2860 int ret; 2861 u8 found; 2862 2863 path = btrfs_alloc_path(); 2864 if (!path) 2865 return -ENOMEM; 2866 2867 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2868 if (IS_ERR(rootrefs)) { 2869 btrfs_free_path(path); 2870 return PTR_ERR(rootrefs); 2871 } 2872 2873 inode = file_inode(file); 2874 root = BTRFS_I(inode)->root->fs_info->tree_root; 2875 objectid = BTRFS_I(inode)->root->root_key.objectid; 2876 2877 key.objectid = objectid; 2878 key.type = BTRFS_ROOT_REF_KEY; 2879 key.offset = rootrefs->min_treeid; 2880 found = 0; 2881 2882 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2883 if (ret < 0) { 2884 goto out; 2885 } else if (path->slots[0] >= 2886 btrfs_header_nritems(path->nodes[0])) { 2887 ret = btrfs_next_leaf(root, path); 2888 if (ret < 0) { 2889 goto out; 2890 } else if (ret > 0) { 2891 ret = -EUCLEAN; 2892 goto out; 2893 } 2894 } 2895 while (1) { 2896 leaf = path->nodes[0]; 2897 slot = path->slots[0]; 2898 2899 btrfs_item_key_to_cpu(leaf, &key, slot); 2900 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2901 ret = 0; 2902 goto out; 2903 } 2904 2905 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2906 ret = -EOVERFLOW; 2907 goto out; 2908 } 2909 2910 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2911 rootrefs->rootref[found].treeid = key.offset; 2912 rootrefs->rootref[found].dirid = 2913 btrfs_root_ref_dirid(leaf, rref); 2914 found++; 2915 2916 ret = btrfs_next_item(root, path); 2917 if (ret < 0) { 2918 goto out; 2919 } else if (ret > 0) { 2920 ret = -EUCLEAN; 2921 goto out; 2922 } 2923 } 2924 2925out: 2926 btrfs_free_path(path); 2927 2928 if (!ret || ret == -EOVERFLOW) { 2929 rootrefs->num_items = found; 2930 /* update min_treeid for next search */ 2931 if (found) 2932 rootrefs->min_treeid = 2933 rootrefs->rootref[found - 1].treeid + 1; 2934 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2935 ret = -EFAULT; 2936 } 2937 2938 kfree(rootrefs); 2939 2940 return ret; 2941} 2942 2943static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2944 void __user *arg, 2945 bool destroy_v2) 2946{ 2947 struct dentry *parent = file->f_path.dentry; 2948 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2949 struct dentry *dentry; 2950 struct inode *dir = d_inode(parent); 2951 struct inode *inode; 2952 struct btrfs_root *root = BTRFS_I(dir)->root; 2953 struct btrfs_root *dest = NULL; 2954 struct btrfs_ioctl_vol_args *vol_args = NULL; 2955 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2956 char *subvol_name, *subvol_name_ptr = NULL; 2957 int subvol_namelen; 2958 int err = 0; 2959 bool destroy_parent = false; 2960 2961 if (destroy_v2) { 2962 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2963 if (IS_ERR(vol_args2)) 2964 return PTR_ERR(vol_args2); 2965 2966 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2967 err = -EOPNOTSUPP; 2968 goto out; 2969 } 2970 2971 /* 2972 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2973 * name, same as v1 currently does. 2974 */ 2975 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2976 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2977 subvol_name = vol_args2->name; 2978 2979 err = mnt_want_write_file(file); 2980 if (err) 2981 goto out; 2982 } else { 2983 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2984 err = -EINVAL; 2985 goto out; 2986 } 2987 2988 err = mnt_want_write_file(file); 2989 if (err) 2990 goto out; 2991 2992 dentry = btrfs_get_dentry(fs_info->sb, 2993 BTRFS_FIRST_FREE_OBJECTID, 2994 vol_args2->subvolid, 0, 0); 2995 if (IS_ERR(dentry)) { 2996 err = PTR_ERR(dentry); 2997 goto out_drop_write; 2998 } 2999 3000 /* 3001 * Change the default parent since the subvolume being 3002 * deleted can be outside of the current mount point. 3003 */ 3004 parent = btrfs_get_parent(dentry); 3005 3006 /* 3007 * At this point dentry->d_name can point to '/' if the 3008 * subvolume we want to destroy is outsite of the 3009 * current mount point, so we need to release the 3010 * current dentry and execute the lookup to return a new 3011 * one with ->d_name pointing to the 3012 * <mount point>/subvol_name. 3013 */ 3014 dput(dentry); 3015 if (IS_ERR(parent)) { 3016 err = PTR_ERR(parent); 3017 goto out_drop_write; 3018 } 3019 dir = d_inode(parent); 3020 3021 /* 3022 * If v2 was used with SPEC_BY_ID, a new parent was 3023 * allocated since the subvolume can be outside of the 3024 * current mount point. Later on we need to release this 3025 * new parent dentry. 3026 */ 3027 destroy_parent = true; 3028 3029 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 3030 fs_info, vol_args2->subvolid); 3031 if (IS_ERR(subvol_name_ptr)) { 3032 err = PTR_ERR(subvol_name_ptr); 3033 goto free_parent; 3034 } 3035 /* subvol_name_ptr is already NULL termined */ 3036 subvol_name = (char *)kbasename(subvol_name_ptr); 3037 } 3038 } else { 3039 vol_args = memdup_user(arg, sizeof(*vol_args)); 3040 if (IS_ERR(vol_args)) 3041 return PTR_ERR(vol_args); 3042 3043 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 3044 subvol_name = vol_args->name; 3045 3046 err = mnt_want_write_file(file); 3047 if (err) 3048 goto out; 3049 } 3050 3051 subvol_namelen = strlen(subvol_name); 3052 3053 if (strchr(subvol_name, '/') || 3054 strncmp(subvol_name, "..", subvol_namelen) == 0) { 3055 err = -EINVAL; 3056 goto free_subvol_name; 3057 } 3058 3059 if (!S_ISDIR(dir->i_mode)) { 3060 err = -ENOTDIR; 3061 goto free_subvol_name; 3062 } 3063 3064 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3065 if (err == -EINTR) 3066 goto free_subvol_name; 3067 dentry = lookup_one_len(subvol_name, parent, subvol_namelen); 3068 if (IS_ERR(dentry)) { 3069 err = PTR_ERR(dentry); 3070 goto out_unlock_dir; 3071 } 3072 3073 if (d_really_is_negative(dentry)) { 3074 err = -ENOENT; 3075 goto out_dput; 3076 } 3077 3078 inode = d_inode(dentry); 3079 dest = BTRFS_I(inode)->root; 3080 if (!capable(CAP_SYS_ADMIN)) { 3081 /* 3082 * Regular user. Only allow this with a special mount 3083 * option, when the user has write+exec access to the 3084 * subvol root, and when rmdir(2) would have been 3085 * allowed. 3086 * 3087 * Note that this is _not_ check that the subvol is 3088 * empty or doesn't contain data that we wouldn't 3089 * otherwise be able to delete. 3090 * 3091 * Users who want to delete empty subvols should try 3092 * rmdir(2). 3093 */ 3094 err = -EPERM; 3095 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3096 goto out_dput; 3097 3098 /* 3099 * Do not allow deletion if the parent dir is the same 3100 * as the dir to be deleted. That means the ioctl 3101 * must be called on the dentry referencing the root 3102 * of the subvol, not a random directory contained 3103 * within it. 3104 */ 3105 err = -EINVAL; 3106 if (root == dest) 3107 goto out_dput; 3108 3109 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 3110 if (err) 3111 goto out_dput; 3112 } 3113 3114 /* check if subvolume may be deleted by a user */ 3115 err = btrfs_may_delete(dir, dentry, 1); 3116 if (err) 3117 goto out_dput; 3118 3119 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3120 err = -EINVAL; 3121 goto out_dput; 3122 } 3123 3124 inode_lock(inode); 3125 err = btrfs_delete_subvolume(dir, dentry); 3126 inode_unlock(inode); 3127 if (!err) 3128 d_delete_notify(dir, dentry); 3129 3130out_dput: 3131 dput(dentry); 3132out_unlock_dir: 3133 inode_unlock(dir); 3134free_subvol_name: 3135 kfree(subvol_name_ptr); 3136free_parent: 3137 if (destroy_parent) 3138 dput(parent); 3139out_drop_write: 3140 mnt_drop_write_file(file); 3141out: 3142 kfree(vol_args2); 3143 kfree(vol_args); 3144 return err; 3145} 3146 3147static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3148{ 3149 struct inode *inode = file_inode(file); 3150 struct btrfs_root *root = BTRFS_I(inode)->root; 3151 struct btrfs_ioctl_defrag_range_args *range; 3152 int ret; 3153 3154 ret = mnt_want_write_file(file); 3155 if (ret) 3156 return ret; 3157 3158 if (btrfs_root_readonly(root)) { 3159 ret = -EROFS; 3160 goto out; 3161 } 3162 3163 switch (inode->i_mode & S_IFMT) { 3164 case S_IFDIR: 3165 if (!capable(CAP_SYS_ADMIN)) { 3166 ret = -EPERM; 3167 goto out; 3168 } 3169 ret = btrfs_defrag_root(root); 3170 break; 3171 case S_IFREG: 3172 /* 3173 * Note that this does not check the file descriptor for write 3174 * access. This prevents defragmenting executables that are 3175 * running and allows defrag on files open in read-only mode. 3176 */ 3177 if (!capable(CAP_SYS_ADMIN) && 3178 inode_permission(inode, MAY_WRITE)) { 3179 ret = -EPERM; 3180 goto out; 3181 } 3182 3183 range = kzalloc(sizeof(*range), GFP_KERNEL); 3184 if (!range) { 3185 ret = -ENOMEM; 3186 goto out; 3187 } 3188 3189 if (argp) { 3190 if (copy_from_user(range, argp, 3191 sizeof(*range))) { 3192 ret = -EFAULT; 3193 kfree(range); 3194 goto out; 3195 } 3196 if (range->flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) { 3197 ret = -EOPNOTSUPP; 3198 goto out; 3199 } 3200 /* compression requires us to start the IO */ 3201 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3202 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 3203 range->extent_thresh = (u32)-1; 3204 } 3205 } else { 3206 /* the rest are all set to zero by kzalloc */ 3207 range->len = (u64)-1; 3208 } 3209 ret = btrfs_defrag_file(file_inode(file), file, 3210 range, BTRFS_OLDEST_GENERATION, 0); 3211 if (ret > 0) 3212 ret = 0; 3213 kfree(range); 3214 break; 3215 default: 3216 ret = -EINVAL; 3217 } 3218out: 3219 mnt_drop_write_file(file); 3220 return ret; 3221} 3222 3223static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3224{ 3225 struct btrfs_ioctl_vol_args *vol_args; 3226 int ret; 3227 3228 if (!capable(CAP_SYS_ADMIN)) 3229 return -EPERM; 3230 3231 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3232 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3233 3234 vol_args = memdup_user(arg, sizeof(*vol_args)); 3235 if (IS_ERR(vol_args)) { 3236 ret = PTR_ERR(vol_args); 3237 goto out; 3238 } 3239 3240 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3241 ret = btrfs_init_new_device(fs_info, vol_args->name); 3242 3243 if (!ret) 3244 btrfs_info(fs_info, "disk added %s", vol_args->name); 3245 3246 kfree(vol_args); 3247out: 3248 btrfs_exclop_finish(fs_info); 3249 return ret; 3250} 3251 3252static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3253{ 3254 struct inode *inode = file_inode(file); 3255 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3256 struct btrfs_ioctl_vol_args_v2 *vol_args; 3257 int ret; 3258 3259 if (!capable(CAP_SYS_ADMIN)) 3260 return -EPERM; 3261 3262 ret = mnt_want_write_file(file); 3263 if (ret) 3264 return ret; 3265 3266 vol_args = memdup_user(arg, sizeof(*vol_args)); 3267 if (IS_ERR(vol_args)) { 3268 ret = PTR_ERR(vol_args); 3269 goto err_drop; 3270 } 3271 3272 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3273 ret = -EOPNOTSUPP; 3274 goto out; 3275 } 3276 3277 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3278 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3279 goto out; 3280 } 3281 3282 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3283 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3284 } else { 3285 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3286 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3287 } 3288 btrfs_exclop_finish(fs_info); 3289 3290 if (!ret) { 3291 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3292 btrfs_info(fs_info, "device deleted: id %llu", 3293 vol_args->devid); 3294 else 3295 btrfs_info(fs_info, "device deleted: %s", 3296 vol_args->name); 3297 } 3298out: 3299 kfree(vol_args); 3300err_drop: 3301 mnt_drop_write_file(file); 3302 return ret; 3303} 3304 3305static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3306{ 3307 struct inode *inode = file_inode(file); 3308 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3309 struct btrfs_ioctl_vol_args *vol_args; 3310 int ret; 3311 3312 if (!capable(CAP_SYS_ADMIN)) 3313 return -EPERM; 3314 3315 ret = mnt_want_write_file(file); 3316 if (ret) 3317 return ret; 3318 3319 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3320 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3321 goto out_drop_write; 3322 } 3323 3324 vol_args = memdup_user(arg, sizeof(*vol_args)); 3325 if (IS_ERR(vol_args)) { 3326 ret = PTR_ERR(vol_args); 3327 goto out; 3328 } 3329 3330 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3331 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3332 3333 if (!ret) 3334 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3335 kfree(vol_args); 3336out: 3337 btrfs_exclop_finish(fs_info); 3338out_drop_write: 3339 mnt_drop_write_file(file); 3340 3341 return ret; 3342} 3343 3344static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3345 void __user *arg) 3346{ 3347 struct btrfs_ioctl_fs_info_args *fi_args; 3348 struct btrfs_device *device; 3349 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3350 u64 flags_in; 3351 int ret = 0; 3352 3353 fi_args = memdup_user(arg, sizeof(*fi_args)); 3354 if (IS_ERR(fi_args)) 3355 return PTR_ERR(fi_args); 3356 3357 flags_in = fi_args->flags; 3358 memset(fi_args, 0, sizeof(*fi_args)); 3359 3360 rcu_read_lock(); 3361 fi_args->num_devices = fs_devices->num_devices; 3362 3363 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3364 if (device->devid > fi_args->max_id) 3365 fi_args->max_id = device->devid; 3366 } 3367 rcu_read_unlock(); 3368 3369 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3370 fi_args->nodesize = fs_info->nodesize; 3371 fi_args->sectorsize = fs_info->sectorsize; 3372 fi_args->clone_alignment = fs_info->sectorsize; 3373 3374 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3375 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3376 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3377 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3378 } 3379 3380 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3381 fi_args->generation = fs_info->generation; 3382 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3383 } 3384 3385 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3386 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3387 sizeof(fi_args->metadata_uuid)); 3388 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3389 } 3390 3391 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3392 ret = -EFAULT; 3393 3394 kfree(fi_args); 3395 return ret; 3396} 3397 3398static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3399 void __user *arg) 3400{ 3401 struct btrfs_ioctl_dev_info_args *di_args; 3402 struct btrfs_device *dev; 3403 int ret = 0; 3404 char *s_uuid = NULL; 3405 3406 di_args = memdup_user(arg, sizeof(*di_args)); 3407 if (IS_ERR(di_args)) 3408 return PTR_ERR(di_args); 3409 3410 if (!btrfs_is_empty_uuid(di_args->uuid)) 3411 s_uuid = di_args->uuid; 3412 3413 rcu_read_lock(); 3414 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3415 NULL, true); 3416 3417 if (!dev) { 3418 ret = -ENODEV; 3419 goto out; 3420 } 3421 3422 di_args->devid = dev->devid; 3423 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3424 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3425 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3426 if (dev->name) 3427 strscpy(di_args->path, rcu_str_deref(dev->name), sizeof(di_args->path)); 3428 else 3429 di_args->path[0] = '\0'; 3430 3431out: 3432 rcu_read_unlock(); 3433 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3434 ret = -EFAULT; 3435 3436 kfree(di_args); 3437 return ret; 3438} 3439 3440static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3441{ 3442 struct inode *inode = file_inode(file); 3443 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3444 struct btrfs_root *root = BTRFS_I(inode)->root; 3445 struct btrfs_root *new_root; 3446 struct btrfs_dir_item *di; 3447 struct btrfs_trans_handle *trans; 3448 struct btrfs_path *path = NULL; 3449 struct btrfs_disk_key disk_key; 3450 u64 objectid = 0; 3451 u64 dir_id; 3452 int ret; 3453 3454 if (!capable(CAP_SYS_ADMIN)) 3455 return -EPERM; 3456 3457 ret = mnt_want_write_file(file); 3458 if (ret) 3459 return ret; 3460 3461 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3462 ret = -EFAULT; 3463 goto out; 3464 } 3465 3466 if (!objectid) 3467 objectid = BTRFS_FS_TREE_OBJECTID; 3468 3469 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3470 if (IS_ERR(new_root)) { 3471 ret = PTR_ERR(new_root); 3472 goto out; 3473 } 3474 if (!is_fstree(new_root->root_key.objectid)) { 3475 ret = -ENOENT; 3476 goto out_free; 3477 } 3478 3479 path = btrfs_alloc_path(); 3480 if (!path) { 3481 ret = -ENOMEM; 3482 goto out_free; 3483 } 3484 path->leave_spinning = 1; 3485 3486 trans = btrfs_start_transaction(root, 1); 3487 if (IS_ERR(trans)) { 3488 ret = PTR_ERR(trans); 3489 goto out_free; 3490 } 3491 3492 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3493 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3494 dir_id, "default", 7, 1); 3495 if (IS_ERR_OR_NULL(di)) { 3496 btrfs_release_path(path); 3497 btrfs_end_transaction(trans); 3498 btrfs_err(fs_info, 3499 "Umm, you don't have the default diritem, this isn't going to work"); 3500 ret = -ENOENT; 3501 goto out_free; 3502 } 3503 3504 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3505 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3506 btrfs_mark_buffer_dirty(path->nodes[0]); 3507 btrfs_release_path(path); 3508 3509 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3510 btrfs_end_transaction(trans); 3511out_free: 3512 btrfs_put_root(new_root); 3513 btrfs_free_path(path); 3514out: 3515 mnt_drop_write_file(file); 3516 return ret; 3517} 3518 3519static void get_block_group_info(struct list_head *groups_list, 3520 struct btrfs_ioctl_space_info *space) 3521{ 3522 struct btrfs_block_group *block_group; 3523 3524 space->total_bytes = 0; 3525 space->used_bytes = 0; 3526 space->flags = 0; 3527 list_for_each_entry(block_group, groups_list, list) { 3528 space->flags = block_group->flags; 3529 space->total_bytes += block_group->length; 3530 space->used_bytes += block_group->used; 3531 } 3532} 3533 3534static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3535 void __user *arg) 3536{ 3537 struct btrfs_ioctl_space_args space_args = { 0 }; 3538 struct btrfs_ioctl_space_info space; 3539 struct btrfs_ioctl_space_info *dest; 3540 struct btrfs_ioctl_space_info *dest_orig; 3541 struct btrfs_ioctl_space_info __user *user_dest; 3542 struct btrfs_space_info *info; 3543 static const u64 types[] = { 3544 BTRFS_BLOCK_GROUP_DATA, 3545 BTRFS_BLOCK_GROUP_SYSTEM, 3546 BTRFS_BLOCK_GROUP_METADATA, 3547 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3548 }; 3549 int num_types = 4; 3550 int alloc_size; 3551 int ret = 0; 3552 u64 slot_count = 0; 3553 int i, c; 3554 3555 if (copy_from_user(&space_args, 3556 (struct btrfs_ioctl_space_args __user *)arg, 3557 sizeof(space_args))) 3558 return -EFAULT; 3559 3560 for (i = 0; i < num_types; i++) { 3561 struct btrfs_space_info *tmp; 3562 3563 info = NULL; 3564 list_for_each_entry(tmp, &fs_info->space_info, list) { 3565 if (tmp->flags == types[i]) { 3566 info = tmp; 3567 break; 3568 } 3569 } 3570 3571 if (!info) 3572 continue; 3573 3574 down_read(&info->groups_sem); 3575 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3576 if (!list_empty(&info->block_groups[c])) 3577 slot_count++; 3578 } 3579 up_read(&info->groups_sem); 3580 } 3581 3582 /* 3583 * Global block reserve, exported as a space_info 3584 */ 3585 slot_count++; 3586 3587 /* space_slots == 0 means they are asking for a count */ 3588 if (space_args.space_slots == 0) { 3589 space_args.total_spaces = slot_count; 3590 goto out; 3591 } 3592 3593 slot_count = min_t(u64, space_args.space_slots, slot_count); 3594 3595 alloc_size = sizeof(*dest) * slot_count; 3596 3597 /* we generally have at most 6 or so space infos, one for each raid 3598 * level. So, a whole page should be more than enough for everyone 3599 */ 3600 if (alloc_size > PAGE_SIZE) 3601 return -ENOMEM; 3602 3603 space_args.total_spaces = 0; 3604 dest = kmalloc(alloc_size, GFP_KERNEL); 3605 if (!dest) 3606 return -ENOMEM; 3607 dest_orig = dest; 3608 3609 /* now we have a buffer to copy into */ 3610 for (i = 0; i < num_types; i++) { 3611 struct btrfs_space_info *tmp; 3612 3613 if (!slot_count) 3614 break; 3615 3616 info = NULL; 3617 list_for_each_entry(tmp, &fs_info->space_info, list) { 3618 if (tmp->flags == types[i]) { 3619 info = tmp; 3620 break; 3621 } 3622 } 3623 3624 if (!info) 3625 continue; 3626 down_read(&info->groups_sem); 3627 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3628 if (!list_empty(&info->block_groups[c])) { 3629 get_block_group_info(&info->block_groups[c], 3630 &space); 3631 memcpy(dest, &space, sizeof(space)); 3632 dest++; 3633 space_args.total_spaces++; 3634 slot_count--; 3635 } 3636 if (!slot_count) 3637 break; 3638 } 3639 up_read(&info->groups_sem); 3640 } 3641 3642 /* 3643 * Add global block reserve 3644 */ 3645 if (slot_count) { 3646 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3647 3648 spin_lock(&block_rsv->lock); 3649 space.total_bytes = block_rsv->size; 3650 space.used_bytes = block_rsv->size - block_rsv->reserved; 3651 spin_unlock(&block_rsv->lock); 3652 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3653 memcpy(dest, &space, sizeof(space)); 3654 space_args.total_spaces++; 3655 } 3656 3657 user_dest = (struct btrfs_ioctl_space_info __user *) 3658 (arg + sizeof(struct btrfs_ioctl_space_args)); 3659 3660 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3661 ret = -EFAULT; 3662 3663 kfree(dest_orig); 3664out: 3665 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3666 ret = -EFAULT; 3667 3668 return ret; 3669} 3670 3671static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3672 void __user *argp) 3673{ 3674 struct btrfs_trans_handle *trans; 3675 u64 transid; 3676 int ret; 3677 3678 trans = btrfs_attach_transaction_barrier(root); 3679 if (IS_ERR(trans)) { 3680 if (PTR_ERR(trans) != -ENOENT) 3681 return PTR_ERR(trans); 3682 3683 /* No running transaction, don't bother */ 3684 transid = root->fs_info->last_trans_committed; 3685 goto out; 3686 } 3687 transid = trans->transid; 3688 ret = btrfs_commit_transaction_async(trans, 0); 3689 if (ret) { 3690 btrfs_end_transaction(trans); 3691 return ret; 3692 } 3693out: 3694 if (argp) 3695 if (copy_to_user(argp, &transid, sizeof(transid))) 3696 return -EFAULT; 3697 return 0; 3698} 3699 3700static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3701 void __user *argp) 3702{ 3703 u64 transid; 3704 3705 if (argp) { 3706 if (copy_from_user(&transid, argp, sizeof(transid))) 3707 return -EFAULT; 3708 } else { 3709 transid = 0; /* current trans */ 3710 } 3711 return btrfs_wait_for_commit(fs_info, transid); 3712} 3713 3714static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3715{ 3716 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3717 struct btrfs_ioctl_scrub_args *sa; 3718 int ret; 3719 3720 if (!capable(CAP_SYS_ADMIN)) 3721 return -EPERM; 3722 3723 sa = memdup_user(arg, sizeof(*sa)); 3724 if (IS_ERR(sa)) 3725 return PTR_ERR(sa); 3726 3727 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) { 3728 ret = -EOPNOTSUPP; 3729 goto out; 3730 } 3731 3732 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3733 ret = mnt_want_write_file(file); 3734 if (ret) 3735 goto out; 3736 } 3737 3738 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3739 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3740 0); 3741 3742 /* 3743 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3744 * error. This is important as it allows user space to know how much 3745 * progress scrub has done. For example, if scrub is canceled we get 3746 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3747 * space. Later user space can inspect the progress from the structure 3748 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3749 * previously (btrfs-progs does this). 3750 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3751 * then return -EFAULT to signal the structure was not copied or it may 3752 * be corrupt and unreliable due to a partial copy. 3753 */ 3754 if (copy_to_user(arg, sa, sizeof(*sa))) 3755 ret = -EFAULT; 3756 3757 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3758 mnt_drop_write_file(file); 3759out: 3760 kfree(sa); 3761 return ret; 3762} 3763 3764static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3765{ 3766 if (!capable(CAP_SYS_ADMIN)) 3767 return -EPERM; 3768 3769 return btrfs_scrub_cancel(fs_info); 3770} 3771 3772static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3773 void __user *arg) 3774{ 3775 struct btrfs_ioctl_scrub_args *sa; 3776 int ret; 3777 3778 if (!capable(CAP_SYS_ADMIN)) 3779 return -EPERM; 3780 3781 sa = memdup_user(arg, sizeof(*sa)); 3782 if (IS_ERR(sa)) 3783 return PTR_ERR(sa); 3784 3785 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3786 3787 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3788 ret = -EFAULT; 3789 3790 kfree(sa); 3791 return ret; 3792} 3793 3794static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3795 void __user *arg) 3796{ 3797 struct btrfs_ioctl_get_dev_stats *sa; 3798 int ret; 3799 3800 sa = memdup_user(arg, sizeof(*sa)); 3801 if (IS_ERR(sa)) 3802 return PTR_ERR(sa); 3803 3804 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3805 kfree(sa); 3806 return -EPERM; 3807 } 3808 3809 ret = btrfs_get_dev_stats(fs_info, sa); 3810 3811 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3812 ret = -EFAULT; 3813 3814 kfree(sa); 3815 return ret; 3816} 3817 3818static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3819 void __user *arg) 3820{ 3821 struct btrfs_ioctl_dev_replace_args *p; 3822 int ret; 3823 3824 if (!capable(CAP_SYS_ADMIN)) 3825 return -EPERM; 3826 3827 p = memdup_user(arg, sizeof(*p)); 3828 if (IS_ERR(p)) 3829 return PTR_ERR(p); 3830 3831 switch (p->cmd) { 3832 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3833 if (sb_rdonly(fs_info->sb)) { 3834 ret = -EROFS; 3835 goto out; 3836 } 3837 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3838 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3839 } else { 3840 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3841 btrfs_exclop_finish(fs_info); 3842 } 3843 break; 3844 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3845 btrfs_dev_replace_status(fs_info, p); 3846 ret = 0; 3847 break; 3848 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3849 p->result = btrfs_dev_replace_cancel(fs_info); 3850 ret = 0; 3851 break; 3852 default: 3853 ret = -EINVAL; 3854 break; 3855 } 3856 3857 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3858 ret = -EFAULT; 3859out: 3860 kfree(p); 3861 return ret; 3862} 3863 3864static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3865{ 3866 int ret = 0; 3867 int i; 3868 u64 rel_ptr; 3869 int size; 3870 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3871 struct inode_fs_paths *ipath = NULL; 3872 struct btrfs_path *path; 3873 3874 if (!capable(CAP_DAC_READ_SEARCH)) 3875 return -EPERM; 3876 3877 path = btrfs_alloc_path(); 3878 if (!path) { 3879 ret = -ENOMEM; 3880 goto out; 3881 } 3882 3883 ipa = memdup_user(arg, sizeof(*ipa)); 3884 if (IS_ERR(ipa)) { 3885 ret = PTR_ERR(ipa); 3886 ipa = NULL; 3887 goto out; 3888 } 3889 3890 size = min_t(u32, ipa->size, 4096); 3891 ipath = init_ipath(size, root, path); 3892 if (IS_ERR(ipath)) { 3893 ret = PTR_ERR(ipath); 3894 ipath = NULL; 3895 goto out; 3896 } 3897 3898 ret = paths_from_inode(ipa->inum, ipath); 3899 if (ret < 0) 3900 goto out; 3901 3902 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3903 rel_ptr = ipath->fspath->val[i] - 3904 (u64)(unsigned long)ipath->fspath->val; 3905 ipath->fspath->val[i] = rel_ptr; 3906 } 3907 3908 btrfs_free_path(path); 3909 path = NULL; 3910 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3911 ipath->fspath, size); 3912 if (ret) { 3913 ret = -EFAULT; 3914 goto out; 3915 } 3916 3917out: 3918 btrfs_free_path(path); 3919 free_ipath(ipath); 3920 kfree(ipa); 3921 3922 return ret; 3923} 3924 3925static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3926 void __user *arg, int version) 3927{ 3928 int ret = 0; 3929 int size; 3930 struct btrfs_ioctl_logical_ino_args *loi; 3931 struct btrfs_data_container *inodes = NULL; 3932 struct btrfs_path *path = NULL; 3933 bool ignore_offset; 3934 3935 if (!capable(CAP_SYS_ADMIN)) 3936 return -EPERM; 3937 3938 loi = memdup_user(arg, sizeof(*loi)); 3939 if (IS_ERR(loi)) 3940 return PTR_ERR(loi); 3941 3942 if (version == 1) { 3943 ignore_offset = false; 3944 size = min_t(u32, loi->size, SZ_64K); 3945 } else { 3946 /* All reserved bits must be 0 for now */ 3947 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3948 ret = -EINVAL; 3949 goto out_loi; 3950 } 3951 /* Only accept flags we have defined so far */ 3952 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3953 ret = -EINVAL; 3954 goto out_loi; 3955 } 3956 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3957 size = min_t(u32, loi->size, SZ_16M); 3958 } 3959 3960 inodes = init_data_container(size); 3961 if (IS_ERR(inodes)) { 3962 ret = PTR_ERR(inodes); 3963 goto out_loi; 3964 } 3965 3966 path = btrfs_alloc_path(); 3967 if (!path) { 3968 ret = -ENOMEM; 3969 goto out; 3970 } 3971 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3972 inodes, ignore_offset); 3973 btrfs_free_path(path); 3974 if (ret == -EINVAL) 3975 ret = -ENOENT; 3976 if (ret < 0) 3977 goto out; 3978 3979 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3980 size); 3981 if (ret) 3982 ret = -EFAULT; 3983 3984out: 3985 kvfree(inodes); 3986out_loi: 3987 kfree(loi); 3988 3989 return ret; 3990} 3991 3992void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3993 struct btrfs_ioctl_balance_args *bargs) 3994{ 3995 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3996 3997 bargs->flags = bctl->flags; 3998 3999 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4000 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4001 if (atomic_read(&fs_info->balance_pause_req)) 4002 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4003 if (atomic_read(&fs_info->balance_cancel_req)) 4004 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4005 4006 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4007 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4008 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4009 4010 spin_lock(&fs_info->balance_lock); 4011 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4012 spin_unlock(&fs_info->balance_lock); 4013} 4014 4015static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4016{ 4017 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4018 struct btrfs_fs_info *fs_info = root->fs_info; 4019 struct btrfs_ioctl_balance_args *bargs; 4020 struct btrfs_balance_control *bctl; 4021 bool need_unlock; /* for mut. excl. ops lock */ 4022 int ret; 4023 4024 if (!capable(CAP_SYS_ADMIN)) 4025 return -EPERM; 4026 4027 ret = mnt_want_write_file(file); 4028 if (ret) 4029 return ret; 4030 4031again: 4032 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4033 mutex_lock(&fs_info->balance_mutex); 4034 need_unlock = true; 4035 goto locked; 4036 } 4037 4038 /* 4039 * mut. excl. ops lock is locked. Three possibilities: 4040 * (1) some other op is running 4041 * (2) balance is running 4042 * (3) balance is paused -- special case (think resume) 4043 */ 4044 mutex_lock(&fs_info->balance_mutex); 4045 if (fs_info->balance_ctl) { 4046 /* this is either (2) or (3) */ 4047 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4048 mutex_unlock(&fs_info->balance_mutex); 4049 /* 4050 * Lock released to allow other waiters to continue, 4051 * we'll reexamine the status again. 4052 */ 4053 mutex_lock(&fs_info->balance_mutex); 4054 4055 if (fs_info->balance_ctl && 4056 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4057 /* this is (3) */ 4058 need_unlock = false; 4059 goto locked; 4060 } 4061 4062 mutex_unlock(&fs_info->balance_mutex); 4063 goto again; 4064 } else { 4065 /* this is (2) */ 4066 mutex_unlock(&fs_info->balance_mutex); 4067 ret = -EINPROGRESS; 4068 goto out; 4069 } 4070 } else { 4071 /* this is (1) */ 4072 mutex_unlock(&fs_info->balance_mutex); 4073 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4074 goto out; 4075 } 4076 4077locked: 4078 4079 if (arg) { 4080 bargs = memdup_user(arg, sizeof(*bargs)); 4081 if (IS_ERR(bargs)) { 4082 ret = PTR_ERR(bargs); 4083 goto out_unlock; 4084 } 4085 4086 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4087 if (!fs_info->balance_ctl) { 4088 ret = -ENOTCONN; 4089 goto out_bargs; 4090 } 4091 4092 bctl = fs_info->balance_ctl; 4093 spin_lock(&fs_info->balance_lock); 4094 bctl->flags |= BTRFS_BALANCE_RESUME; 4095 spin_unlock(&fs_info->balance_lock); 4096 4097 goto do_balance; 4098 } 4099 } else { 4100 bargs = NULL; 4101 } 4102 4103 if (fs_info->balance_ctl) { 4104 ret = -EINPROGRESS; 4105 goto out_bargs; 4106 } 4107 4108 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4109 if (!bctl) { 4110 ret = -ENOMEM; 4111 goto out_bargs; 4112 } 4113 4114 if (arg) { 4115 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4116 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4117 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4118 4119 bctl->flags = bargs->flags; 4120 } else { 4121 /* balance everything - no filters */ 4122 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4123 } 4124 4125 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4126 ret = -EINVAL; 4127 goto out_bctl; 4128 } 4129 4130do_balance: 4131 /* 4132 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4133 * bctl is freed in reset_balance_state, or, if restriper was paused 4134 * all the way until unmount, in free_fs_info. The flag should be 4135 * cleared after reset_balance_state. 4136 */ 4137 need_unlock = false; 4138 4139 ret = btrfs_balance(fs_info, bctl, bargs); 4140 bctl = NULL; 4141 4142 if ((ret == 0 || ret == -ECANCELED) && arg) { 4143 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4144 ret = -EFAULT; 4145 } 4146 4147out_bctl: 4148 kfree(bctl); 4149out_bargs: 4150 kfree(bargs); 4151out_unlock: 4152 mutex_unlock(&fs_info->balance_mutex); 4153 if (need_unlock) 4154 btrfs_exclop_finish(fs_info); 4155out: 4156 mnt_drop_write_file(file); 4157 return ret; 4158} 4159 4160static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4161{ 4162 if (!capable(CAP_SYS_ADMIN)) 4163 return -EPERM; 4164 4165 switch (cmd) { 4166 case BTRFS_BALANCE_CTL_PAUSE: 4167 return btrfs_pause_balance(fs_info); 4168 case BTRFS_BALANCE_CTL_CANCEL: 4169 return btrfs_cancel_balance(fs_info); 4170 } 4171 4172 return -EINVAL; 4173} 4174 4175static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4176 void __user *arg) 4177{ 4178 struct btrfs_ioctl_balance_args *bargs; 4179 int ret = 0; 4180 4181 if (!capable(CAP_SYS_ADMIN)) 4182 return -EPERM; 4183 4184 mutex_lock(&fs_info->balance_mutex); 4185 if (!fs_info->balance_ctl) { 4186 ret = -ENOTCONN; 4187 goto out; 4188 } 4189 4190 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4191 if (!bargs) { 4192 ret = -ENOMEM; 4193 goto out; 4194 } 4195 4196 btrfs_update_ioctl_balance_args(fs_info, bargs); 4197 4198 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4199 ret = -EFAULT; 4200 4201 kfree(bargs); 4202out: 4203 mutex_unlock(&fs_info->balance_mutex); 4204 return ret; 4205} 4206 4207static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4208{ 4209 struct inode *inode = file_inode(file); 4210 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4211 struct btrfs_ioctl_quota_ctl_args *sa; 4212 int ret; 4213 4214 if (!capable(CAP_SYS_ADMIN)) 4215 return -EPERM; 4216 4217 ret = mnt_want_write_file(file); 4218 if (ret) 4219 return ret; 4220 4221 sa = memdup_user(arg, sizeof(*sa)); 4222 if (IS_ERR(sa)) { 4223 ret = PTR_ERR(sa); 4224 goto drop_write; 4225 } 4226 4227 down_write(&fs_info->subvol_sem); 4228 4229 switch (sa->cmd) { 4230 case BTRFS_QUOTA_CTL_ENABLE: 4231 ret = btrfs_quota_enable(fs_info); 4232 break; 4233 case BTRFS_QUOTA_CTL_DISABLE: 4234 ret = btrfs_quota_disable(fs_info); 4235 break; 4236 default: 4237 ret = -EINVAL; 4238 break; 4239 } 4240 4241 kfree(sa); 4242 up_write(&fs_info->subvol_sem); 4243drop_write: 4244 mnt_drop_write_file(file); 4245 return ret; 4246} 4247 4248static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4249{ 4250 struct inode *inode = file_inode(file); 4251 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4252 struct btrfs_root *root = BTRFS_I(inode)->root; 4253 struct btrfs_ioctl_qgroup_assign_args *sa; 4254 struct btrfs_trans_handle *trans; 4255 int ret; 4256 int err; 4257 4258 if (!capable(CAP_SYS_ADMIN)) 4259 return -EPERM; 4260 4261 ret = mnt_want_write_file(file); 4262 if (ret) 4263 return ret; 4264 4265 sa = memdup_user(arg, sizeof(*sa)); 4266 if (IS_ERR(sa)) { 4267 ret = PTR_ERR(sa); 4268 goto drop_write; 4269 } 4270 4271 trans = btrfs_join_transaction(root); 4272 if (IS_ERR(trans)) { 4273 ret = PTR_ERR(trans); 4274 goto out; 4275 } 4276 4277 if (sa->assign) { 4278 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4279 } else { 4280 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4281 } 4282 4283 /* update qgroup status and info */ 4284 mutex_lock(&fs_info->qgroup_ioctl_lock); 4285 err = btrfs_run_qgroups(trans); 4286 mutex_unlock(&fs_info->qgroup_ioctl_lock); 4287 if (err < 0) 4288 btrfs_handle_fs_error(fs_info, err, 4289 "failed to update qgroup status and info"); 4290 err = btrfs_end_transaction(trans); 4291 if (err && !ret) 4292 ret = err; 4293 4294out: 4295 kfree(sa); 4296drop_write: 4297 mnt_drop_write_file(file); 4298 return ret; 4299} 4300 4301static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4302{ 4303 struct inode *inode = file_inode(file); 4304 struct btrfs_root *root = BTRFS_I(inode)->root; 4305 struct btrfs_ioctl_qgroup_create_args *sa; 4306 struct btrfs_trans_handle *trans; 4307 int ret; 4308 int err; 4309 4310 if (!capable(CAP_SYS_ADMIN)) 4311 return -EPERM; 4312 4313 ret = mnt_want_write_file(file); 4314 if (ret) 4315 return ret; 4316 4317 sa = memdup_user(arg, sizeof(*sa)); 4318 if (IS_ERR(sa)) { 4319 ret = PTR_ERR(sa); 4320 goto drop_write; 4321 } 4322 4323 if (!sa->qgroupid) { 4324 ret = -EINVAL; 4325 goto out; 4326 } 4327 4328 if (sa->create && is_fstree(sa->qgroupid)) { 4329 ret = -EINVAL; 4330 goto out; 4331 } 4332 4333 trans = btrfs_join_transaction(root); 4334 if (IS_ERR(trans)) { 4335 ret = PTR_ERR(trans); 4336 goto out; 4337 } 4338 4339 if (sa->create) { 4340 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4341 } else { 4342 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4343 } 4344 4345 err = btrfs_end_transaction(trans); 4346 if (err && !ret) 4347 ret = err; 4348 4349out: 4350 kfree(sa); 4351drop_write: 4352 mnt_drop_write_file(file); 4353 return ret; 4354} 4355 4356static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4357{ 4358 struct inode *inode = file_inode(file); 4359 struct btrfs_root *root = BTRFS_I(inode)->root; 4360 struct btrfs_ioctl_qgroup_limit_args *sa; 4361 struct btrfs_trans_handle *trans; 4362 int ret; 4363 int err; 4364 u64 qgroupid; 4365 4366 if (!capable(CAP_SYS_ADMIN)) 4367 return -EPERM; 4368 4369 ret = mnt_want_write_file(file); 4370 if (ret) 4371 return ret; 4372 4373 sa = memdup_user(arg, sizeof(*sa)); 4374 if (IS_ERR(sa)) { 4375 ret = PTR_ERR(sa); 4376 goto drop_write; 4377 } 4378 4379 trans = btrfs_join_transaction(root); 4380 if (IS_ERR(trans)) { 4381 ret = PTR_ERR(trans); 4382 goto out; 4383 } 4384 4385 qgroupid = sa->qgroupid; 4386 if (!qgroupid) { 4387 /* take the current subvol as qgroup */ 4388 qgroupid = root->root_key.objectid; 4389 } 4390 4391 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4392 4393 err = btrfs_end_transaction(trans); 4394 if (err && !ret) 4395 ret = err; 4396 4397out: 4398 kfree(sa); 4399drop_write: 4400 mnt_drop_write_file(file); 4401 return ret; 4402} 4403 4404static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4405{ 4406 struct inode *inode = file_inode(file); 4407 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4408 struct btrfs_ioctl_quota_rescan_args *qsa; 4409 int ret; 4410 4411 if (!capable(CAP_SYS_ADMIN)) 4412 return -EPERM; 4413 4414 ret = mnt_want_write_file(file); 4415 if (ret) 4416 return ret; 4417 4418 qsa = memdup_user(arg, sizeof(*qsa)); 4419 if (IS_ERR(qsa)) { 4420 ret = PTR_ERR(qsa); 4421 goto drop_write; 4422 } 4423 4424 if (qsa->flags) { 4425 ret = -EINVAL; 4426 goto out; 4427 } 4428 4429 ret = btrfs_qgroup_rescan(fs_info); 4430 4431out: 4432 kfree(qsa); 4433drop_write: 4434 mnt_drop_write_file(file); 4435 return ret; 4436} 4437 4438static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4439 void __user *arg) 4440{ 4441 struct btrfs_ioctl_quota_rescan_args *qsa; 4442 int ret = 0; 4443 4444 if (!capable(CAP_SYS_ADMIN)) 4445 return -EPERM; 4446 4447 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4448 if (!qsa) 4449 return -ENOMEM; 4450 4451 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4452 qsa->flags = 1; 4453 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4454 } 4455 4456 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4457 ret = -EFAULT; 4458 4459 kfree(qsa); 4460 return ret; 4461} 4462 4463static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4464 void __user *arg) 4465{ 4466 if (!capable(CAP_SYS_ADMIN)) 4467 return -EPERM; 4468 4469 return btrfs_qgroup_wait_for_completion(fs_info, true); 4470} 4471 4472static long _btrfs_ioctl_set_received_subvol(struct file *file, 4473 struct btrfs_ioctl_received_subvol_args *sa) 4474{ 4475 struct inode *inode = file_inode(file); 4476 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4477 struct btrfs_root *root = BTRFS_I(inode)->root; 4478 struct btrfs_root_item *root_item = &root->root_item; 4479 struct btrfs_trans_handle *trans; 4480 struct timespec64 ct = current_time(inode); 4481 int ret = 0; 4482 int received_uuid_changed; 4483 4484 if (!inode_owner_or_capable(inode)) 4485 return -EPERM; 4486 4487 ret = mnt_want_write_file(file); 4488 if (ret < 0) 4489 return ret; 4490 4491 down_write(&fs_info->subvol_sem); 4492 4493 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4494 ret = -EINVAL; 4495 goto out; 4496 } 4497 4498 if (btrfs_root_readonly(root)) { 4499 ret = -EROFS; 4500 goto out; 4501 } 4502 4503 /* 4504 * 1 - root item 4505 * 2 - uuid items (received uuid + subvol uuid) 4506 */ 4507 trans = btrfs_start_transaction(root, 3); 4508 if (IS_ERR(trans)) { 4509 ret = PTR_ERR(trans); 4510 trans = NULL; 4511 goto out; 4512 } 4513 4514 sa->rtransid = trans->transid; 4515 sa->rtime.sec = ct.tv_sec; 4516 sa->rtime.nsec = ct.tv_nsec; 4517 4518 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4519 BTRFS_UUID_SIZE); 4520 if (received_uuid_changed && 4521 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4522 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4523 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4524 root->root_key.objectid); 4525 if (ret && ret != -ENOENT) { 4526 btrfs_abort_transaction(trans, ret); 4527 btrfs_end_transaction(trans); 4528 goto out; 4529 } 4530 } 4531 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4532 btrfs_set_root_stransid(root_item, sa->stransid); 4533 btrfs_set_root_rtransid(root_item, sa->rtransid); 4534 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4535 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4536 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4537 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4538 4539 ret = btrfs_update_root(trans, fs_info->tree_root, 4540 &root->root_key, &root->root_item); 4541 if (ret < 0) { 4542 btrfs_end_transaction(trans); 4543 goto out; 4544 } 4545 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4546 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4547 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4548 root->root_key.objectid); 4549 if (ret < 0 && ret != -EEXIST) { 4550 btrfs_abort_transaction(trans, ret); 4551 btrfs_end_transaction(trans); 4552 goto out; 4553 } 4554 } 4555 ret = btrfs_commit_transaction(trans); 4556out: 4557 up_write(&fs_info->subvol_sem); 4558 mnt_drop_write_file(file); 4559 return ret; 4560} 4561 4562#ifdef CONFIG_64BIT 4563static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4564 void __user *arg) 4565{ 4566 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4567 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4568 int ret = 0; 4569 4570 args32 = memdup_user(arg, sizeof(*args32)); 4571 if (IS_ERR(args32)) 4572 return PTR_ERR(args32); 4573 4574 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4575 if (!args64) { 4576 ret = -ENOMEM; 4577 goto out; 4578 } 4579 4580 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4581 args64->stransid = args32->stransid; 4582 args64->rtransid = args32->rtransid; 4583 args64->stime.sec = args32->stime.sec; 4584 args64->stime.nsec = args32->stime.nsec; 4585 args64->rtime.sec = args32->rtime.sec; 4586 args64->rtime.nsec = args32->rtime.nsec; 4587 args64->flags = args32->flags; 4588 4589 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4590 if (ret) 4591 goto out; 4592 4593 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4594 args32->stransid = args64->stransid; 4595 args32->rtransid = args64->rtransid; 4596 args32->stime.sec = args64->stime.sec; 4597 args32->stime.nsec = args64->stime.nsec; 4598 args32->rtime.sec = args64->rtime.sec; 4599 args32->rtime.nsec = args64->rtime.nsec; 4600 args32->flags = args64->flags; 4601 4602 ret = copy_to_user(arg, args32, sizeof(*args32)); 4603 if (ret) 4604 ret = -EFAULT; 4605 4606out: 4607 kfree(args32); 4608 kfree(args64); 4609 return ret; 4610} 4611#endif 4612 4613static long btrfs_ioctl_set_received_subvol(struct file *file, 4614 void __user *arg) 4615{ 4616 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4617 int ret = 0; 4618 4619 sa = memdup_user(arg, sizeof(*sa)); 4620 if (IS_ERR(sa)) 4621 return PTR_ERR(sa); 4622 4623 ret = _btrfs_ioctl_set_received_subvol(file, sa); 4624 4625 if (ret) 4626 goto out; 4627 4628 ret = copy_to_user(arg, sa, sizeof(*sa)); 4629 if (ret) 4630 ret = -EFAULT; 4631 4632out: 4633 kfree(sa); 4634 return ret; 4635} 4636 4637static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4638 void __user *arg) 4639{ 4640 size_t len; 4641 int ret; 4642 char label[BTRFS_LABEL_SIZE]; 4643 4644 spin_lock(&fs_info->super_lock); 4645 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4646 spin_unlock(&fs_info->super_lock); 4647 4648 len = strnlen(label, BTRFS_LABEL_SIZE); 4649 4650 if (len == BTRFS_LABEL_SIZE) { 4651 btrfs_warn(fs_info, 4652 "label is too long, return the first %zu bytes", 4653 --len); 4654 } 4655 4656 ret = copy_to_user(arg, label, len); 4657 4658 return ret ? -EFAULT : 0; 4659} 4660 4661static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4662{ 4663 struct inode *inode = file_inode(file); 4664 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4665 struct btrfs_root *root = BTRFS_I(inode)->root; 4666 struct btrfs_super_block *super_block = fs_info->super_copy; 4667 struct btrfs_trans_handle *trans; 4668 char label[BTRFS_LABEL_SIZE]; 4669 int ret; 4670 4671 if (!capable(CAP_SYS_ADMIN)) 4672 return -EPERM; 4673 4674 if (copy_from_user(label, arg, sizeof(label))) 4675 return -EFAULT; 4676 4677 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4678 btrfs_err(fs_info, 4679 "unable to set label with more than %d bytes", 4680 BTRFS_LABEL_SIZE - 1); 4681 return -EINVAL; 4682 } 4683 4684 ret = mnt_want_write_file(file); 4685 if (ret) 4686 return ret; 4687 4688 trans = btrfs_start_transaction(root, 0); 4689 if (IS_ERR(trans)) { 4690 ret = PTR_ERR(trans); 4691 goto out_unlock; 4692 } 4693 4694 spin_lock(&fs_info->super_lock); 4695 strcpy(super_block->label, label); 4696 spin_unlock(&fs_info->super_lock); 4697 ret = btrfs_commit_transaction(trans); 4698 4699out_unlock: 4700 mnt_drop_write_file(file); 4701 return ret; 4702} 4703 4704#define INIT_FEATURE_FLAGS(suffix) \ 4705 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4706 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4707 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4708 4709int btrfs_ioctl_get_supported_features(void __user *arg) 4710{ 4711 static const struct btrfs_ioctl_feature_flags features[3] = { 4712 INIT_FEATURE_FLAGS(SUPP), 4713 INIT_FEATURE_FLAGS(SAFE_SET), 4714 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4715 }; 4716 4717 if (copy_to_user(arg, &features, sizeof(features))) 4718 return -EFAULT; 4719 4720 return 0; 4721} 4722 4723static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4724 void __user *arg) 4725{ 4726 struct btrfs_super_block *super_block = fs_info->super_copy; 4727 struct btrfs_ioctl_feature_flags features; 4728 4729 features.compat_flags = btrfs_super_compat_flags(super_block); 4730 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4731 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4732 4733 if (copy_to_user(arg, &features, sizeof(features))) 4734 return -EFAULT; 4735 4736 return 0; 4737} 4738 4739static int check_feature_bits(struct btrfs_fs_info *fs_info, 4740 enum btrfs_feature_set set, 4741 u64 change_mask, u64 flags, u64 supported_flags, 4742 u64 safe_set, u64 safe_clear) 4743{ 4744 const char *type = btrfs_feature_set_name(set); 4745 char *names; 4746 u64 disallowed, unsupported; 4747 u64 set_mask = flags & change_mask; 4748 u64 clear_mask = ~flags & change_mask; 4749 4750 unsupported = set_mask & ~supported_flags; 4751 if (unsupported) { 4752 names = btrfs_printable_features(set, unsupported); 4753 if (names) { 4754 btrfs_warn(fs_info, 4755 "this kernel does not support the %s feature bit%s", 4756 names, strchr(names, ',') ? "s" : ""); 4757 kfree(names); 4758 } else 4759 btrfs_warn(fs_info, 4760 "this kernel does not support %s bits 0x%llx", 4761 type, unsupported); 4762 return -EOPNOTSUPP; 4763 } 4764 4765 disallowed = set_mask & ~safe_set; 4766 if (disallowed) { 4767 names = btrfs_printable_features(set, disallowed); 4768 if (names) { 4769 btrfs_warn(fs_info, 4770 "can't set the %s feature bit%s while mounted", 4771 names, strchr(names, ',') ? "s" : ""); 4772 kfree(names); 4773 } else 4774 btrfs_warn(fs_info, 4775 "can't set %s bits 0x%llx while mounted", 4776 type, disallowed); 4777 return -EPERM; 4778 } 4779 4780 disallowed = clear_mask & ~safe_clear; 4781 if (disallowed) { 4782 names = btrfs_printable_features(set, disallowed); 4783 if (names) { 4784 btrfs_warn(fs_info, 4785 "can't clear the %s feature bit%s while mounted", 4786 names, strchr(names, ',') ? "s" : ""); 4787 kfree(names); 4788 } else 4789 btrfs_warn(fs_info, 4790 "can't clear %s bits 0x%llx while mounted", 4791 type, disallowed); 4792 return -EPERM; 4793 } 4794 4795 return 0; 4796} 4797 4798#define check_feature(fs_info, change_mask, flags, mask_base) \ 4799check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4800 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4801 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4802 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4803 4804static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4805{ 4806 struct inode *inode = file_inode(file); 4807 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4808 struct btrfs_root *root = BTRFS_I(inode)->root; 4809 struct btrfs_super_block *super_block = fs_info->super_copy; 4810 struct btrfs_ioctl_feature_flags flags[2]; 4811 struct btrfs_trans_handle *trans; 4812 u64 newflags; 4813 int ret; 4814 4815 if (!capable(CAP_SYS_ADMIN)) 4816 return -EPERM; 4817 4818 if (copy_from_user(flags, arg, sizeof(flags))) 4819 return -EFAULT; 4820 4821 /* Nothing to do */ 4822 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4823 !flags[0].incompat_flags) 4824 return 0; 4825 4826 ret = check_feature(fs_info, flags[0].compat_flags, 4827 flags[1].compat_flags, COMPAT); 4828 if (ret) 4829 return ret; 4830 4831 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4832 flags[1].compat_ro_flags, COMPAT_RO); 4833 if (ret) 4834 return ret; 4835 4836 ret = check_feature(fs_info, flags[0].incompat_flags, 4837 flags[1].incompat_flags, INCOMPAT); 4838 if (ret) 4839 return ret; 4840 4841 ret = mnt_want_write_file(file); 4842 if (ret) 4843 return ret; 4844 4845 trans = btrfs_start_transaction(root, 0); 4846 if (IS_ERR(trans)) { 4847 ret = PTR_ERR(trans); 4848 goto out_drop_write; 4849 } 4850 4851 spin_lock(&fs_info->super_lock); 4852 newflags = btrfs_super_compat_flags(super_block); 4853 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4854 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4855 btrfs_set_super_compat_flags(super_block, newflags); 4856 4857 newflags = btrfs_super_compat_ro_flags(super_block); 4858 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4859 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4860 btrfs_set_super_compat_ro_flags(super_block, newflags); 4861 4862 newflags = btrfs_super_incompat_flags(super_block); 4863 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4864 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4865 btrfs_set_super_incompat_flags(super_block, newflags); 4866 spin_unlock(&fs_info->super_lock); 4867 4868 ret = btrfs_commit_transaction(trans); 4869out_drop_write: 4870 mnt_drop_write_file(file); 4871 4872 return ret; 4873} 4874 4875static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4876{ 4877 struct btrfs_ioctl_send_args *arg; 4878 int ret; 4879 4880 if (compat) { 4881#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4882 struct btrfs_ioctl_send_args_32 args32 = { 0 }; 4883 4884 ret = copy_from_user(&args32, argp, sizeof(args32)); 4885 if (ret) 4886 return -EFAULT; 4887 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4888 if (!arg) 4889 return -ENOMEM; 4890 arg->send_fd = args32.send_fd; 4891 arg->clone_sources_count = args32.clone_sources_count; 4892 arg->clone_sources = compat_ptr(args32.clone_sources); 4893 arg->parent_root = args32.parent_root; 4894 arg->flags = args32.flags; 4895 memcpy(arg->reserved, args32.reserved, 4896 sizeof(args32.reserved)); 4897#else 4898 return -ENOTTY; 4899#endif 4900 } else { 4901 arg = memdup_user(argp, sizeof(*arg)); 4902 if (IS_ERR(arg)) 4903 return PTR_ERR(arg); 4904 } 4905 ret = btrfs_ioctl_send(file, arg); 4906 kfree(arg); 4907 return ret; 4908} 4909 4910long btrfs_ioctl(struct file *file, unsigned int 4911 cmd, unsigned long arg) 4912{ 4913 struct inode *inode = file_inode(file); 4914 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4915 struct btrfs_root *root = BTRFS_I(inode)->root; 4916 void __user *argp = (void __user *)arg; 4917 4918 switch (cmd) { 4919 case FS_IOC_GETFLAGS: 4920 return btrfs_ioctl_getflags(file, argp); 4921 case FS_IOC_SETFLAGS: 4922 return btrfs_ioctl_setflags(file, argp); 4923 case FS_IOC_GETVERSION: 4924 return btrfs_ioctl_getversion(file, argp); 4925 case FS_IOC_GETFSLABEL: 4926 return btrfs_ioctl_get_fslabel(fs_info, argp); 4927 case FS_IOC_SETFSLABEL: 4928 return btrfs_ioctl_set_fslabel(file, argp); 4929 case FITRIM: 4930 return btrfs_ioctl_fitrim(fs_info, argp); 4931 case BTRFS_IOC_SNAP_CREATE: 4932 return btrfs_ioctl_snap_create(file, argp, 0); 4933 case BTRFS_IOC_SNAP_CREATE_V2: 4934 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4935 case BTRFS_IOC_SUBVOL_CREATE: 4936 return btrfs_ioctl_snap_create(file, argp, 1); 4937 case BTRFS_IOC_SUBVOL_CREATE_V2: 4938 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4939 case BTRFS_IOC_SNAP_DESTROY: 4940 return btrfs_ioctl_snap_destroy(file, argp, false); 4941 case BTRFS_IOC_SNAP_DESTROY_V2: 4942 return btrfs_ioctl_snap_destroy(file, argp, true); 4943 case BTRFS_IOC_SUBVOL_GETFLAGS: 4944 return btrfs_ioctl_subvol_getflags(file, argp); 4945 case BTRFS_IOC_SUBVOL_SETFLAGS: 4946 return btrfs_ioctl_subvol_setflags(file, argp); 4947 case BTRFS_IOC_DEFAULT_SUBVOL: 4948 return btrfs_ioctl_default_subvol(file, argp); 4949 case BTRFS_IOC_DEFRAG: 4950 return btrfs_ioctl_defrag(file, NULL); 4951 case BTRFS_IOC_DEFRAG_RANGE: 4952 return btrfs_ioctl_defrag(file, argp); 4953 case BTRFS_IOC_RESIZE: 4954 return btrfs_ioctl_resize(file, argp); 4955 case BTRFS_IOC_ADD_DEV: 4956 return btrfs_ioctl_add_dev(fs_info, argp); 4957 case BTRFS_IOC_RM_DEV: 4958 return btrfs_ioctl_rm_dev(file, argp); 4959 case BTRFS_IOC_RM_DEV_V2: 4960 return btrfs_ioctl_rm_dev_v2(file, argp); 4961 case BTRFS_IOC_FS_INFO: 4962 return btrfs_ioctl_fs_info(fs_info, argp); 4963 case BTRFS_IOC_DEV_INFO: 4964 return btrfs_ioctl_dev_info(fs_info, argp); 4965 case BTRFS_IOC_BALANCE: 4966 return btrfs_ioctl_balance(file, NULL); 4967 case BTRFS_IOC_TREE_SEARCH: 4968 return btrfs_ioctl_tree_search(file, argp); 4969 case BTRFS_IOC_TREE_SEARCH_V2: 4970 return btrfs_ioctl_tree_search_v2(file, argp); 4971 case BTRFS_IOC_INO_LOOKUP: 4972 return btrfs_ioctl_ino_lookup(file, argp); 4973 case BTRFS_IOC_INO_PATHS: 4974 return btrfs_ioctl_ino_to_path(root, argp); 4975 case BTRFS_IOC_LOGICAL_INO: 4976 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4977 case BTRFS_IOC_LOGICAL_INO_V2: 4978 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4979 case BTRFS_IOC_SPACE_INFO: 4980 return btrfs_ioctl_space_info(fs_info, argp); 4981 case BTRFS_IOC_SYNC: { 4982 int ret; 4983 4984 ret = btrfs_start_delalloc_roots(fs_info, U64_MAX, false); 4985 if (ret) 4986 return ret; 4987 ret = btrfs_sync_fs(inode->i_sb, 1); 4988 /* 4989 * The transaction thread may want to do more work, 4990 * namely it pokes the cleaner kthread that will start 4991 * processing uncleaned subvols. 4992 */ 4993 wake_up_process(fs_info->transaction_kthread); 4994 return ret; 4995 } 4996 case BTRFS_IOC_START_SYNC: 4997 return btrfs_ioctl_start_sync(root, argp); 4998 case BTRFS_IOC_WAIT_SYNC: 4999 return btrfs_ioctl_wait_sync(fs_info, argp); 5000 case BTRFS_IOC_SCRUB: 5001 return btrfs_ioctl_scrub(file, argp); 5002 case BTRFS_IOC_SCRUB_CANCEL: 5003 return btrfs_ioctl_scrub_cancel(fs_info); 5004 case BTRFS_IOC_SCRUB_PROGRESS: 5005 return btrfs_ioctl_scrub_progress(fs_info, argp); 5006 case BTRFS_IOC_BALANCE_V2: 5007 return btrfs_ioctl_balance(file, argp); 5008 case BTRFS_IOC_BALANCE_CTL: 5009 return btrfs_ioctl_balance_ctl(fs_info, arg); 5010 case BTRFS_IOC_BALANCE_PROGRESS: 5011 return btrfs_ioctl_balance_progress(fs_info, argp); 5012 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5013 return btrfs_ioctl_set_received_subvol(file, argp); 5014#ifdef CONFIG_64BIT 5015 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5016 return btrfs_ioctl_set_received_subvol_32(file, argp); 5017#endif 5018 case BTRFS_IOC_SEND: 5019 return _btrfs_ioctl_send(file, argp, false); 5020#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5021 case BTRFS_IOC_SEND_32: 5022 return _btrfs_ioctl_send(file, argp, true); 5023#endif 5024 case BTRFS_IOC_GET_DEV_STATS: 5025 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5026 case BTRFS_IOC_QUOTA_CTL: 5027 return btrfs_ioctl_quota_ctl(file, argp); 5028 case BTRFS_IOC_QGROUP_ASSIGN: 5029 return btrfs_ioctl_qgroup_assign(file, argp); 5030 case BTRFS_IOC_QGROUP_CREATE: 5031 return btrfs_ioctl_qgroup_create(file, argp); 5032 case BTRFS_IOC_QGROUP_LIMIT: 5033 return btrfs_ioctl_qgroup_limit(file, argp); 5034 case BTRFS_IOC_QUOTA_RESCAN: 5035 return btrfs_ioctl_quota_rescan(file, argp); 5036 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5037 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5038 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5039 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5040 case BTRFS_IOC_DEV_REPLACE: 5041 return btrfs_ioctl_dev_replace(fs_info, argp); 5042 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5043 return btrfs_ioctl_get_supported_features(argp); 5044 case BTRFS_IOC_GET_FEATURES: 5045 return btrfs_ioctl_get_features(fs_info, argp); 5046 case BTRFS_IOC_SET_FEATURES: 5047 return btrfs_ioctl_set_features(file, argp); 5048 case FS_IOC_FSGETXATTR: 5049 return btrfs_ioctl_fsgetxattr(file, argp); 5050 case FS_IOC_FSSETXATTR: 5051 return btrfs_ioctl_fssetxattr(file, argp); 5052 case BTRFS_IOC_GET_SUBVOL_INFO: 5053 return btrfs_ioctl_get_subvol_info(file, argp); 5054 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5055 return btrfs_ioctl_get_subvol_rootref(file, argp); 5056 case BTRFS_IOC_INO_LOOKUP_USER: 5057 return btrfs_ioctl_ino_lookup_user(file, argp); 5058 } 5059 5060 return -ENOTTY; 5061} 5062 5063#ifdef CONFIG_COMPAT 5064long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5065{ 5066 /* 5067 * These all access 32-bit values anyway so no further 5068 * handling is necessary. 5069 */ 5070 switch (cmd) { 5071 case FS_IOC32_GETFLAGS: 5072 cmd = FS_IOC_GETFLAGS; 5073 break; 5074 case FS_IOC32_SETFLAGS: 5075 cmd = FS_IOC_SETFLAGS; 5076 break; 5077 case FS_IOC32_GETVERSION: 5078 cmd = FS_IOC_GETVERSION; 5079 break; 5080 } 5081 5082 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5083} 5084#endif 5085