1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6#include <crypto/hash.h> 7#include <linux/kernel.h> 8#include <linux/bio.h> 9#include <linux/file.h> 10#include <linux/fs.h> 11#include <linux/pagemap.h> 12#include <linux/highmem.h> 13#include <linux/time.h> 14#include <linux/init.h> 15#include <linux/string.h> 16#include <linux/backing-dev.h> 17#include <linux/writeback.h> 18#include <linux/compat.h> 19#include <linux/xattr.h> 20#include <linux/posix_acl.h> 21#include <linux/falloc.h> 22#include <linux/slab.h> 23#include <linux/ratelimit.h> 24#include <linux/btrfs.h> 25#include <linux/blkdev.h> 26#include <linux/posix_acl_xattr.h> 27#include <linux/uio.h> 28#include <linux/magic.h> 29#include <linux/iversion.h> 30#include <linux/swap.h> 31#include <linux/migrate.h> 32#include <linux/sched/mm.h> 33#include <linux/iomap.h> 34#include <asm/unaligned.h> 35#include "misc.h" 36#include "ctree.h" 37#include "disk-io.h" 38#include "transaction.h" 39#include "btrfs_inode.h" 40#include "print-tree.h" 41#include "ordered-data.h" 42#include "xattr.h" 43#include "tree-log.h" 44#include "volumes.h" 45#include "compression.h" 46#include "locking.h" 47#include "free-space-cache.h" 48#include "inode-map.h" 49#include "props.h" 50#include "qgroup.h" 51#include "delalloc-space.h" 52#include "block-group.h" 53#include "space-info.h" 54 55struct btrfs_iget_args { 56 u64 ino; 57 struct btrfs_root *root; 58}; 59 60struct btrfs_dio_data { 61 u64 reserve; 62 loff_t length; 63 ssize_t submitted; 64 struct extent_changeset *data_reserved; 65 bool sync; 66}; 67 68static const struct inode_operations btrfs_dir_inode_operations; 69static const struct inode_operations btrfs_symlink_inode_operations; 70static const struct inode_operations btrfs_special_inode_operations; 71static const struct inode_operations btrfs_file_inode_operations; 72static const struct address_space_operations btrfs_aops; 73static const struct file_operations btrfs_dir_file_operations; 74 75static struct kmem_cache *btrfs_inode_cachep; 76struct kmem_cache *btrfs_trans_handle_cachep; 77struct kmem_cache *btrfs_path_cachep; 78struct kmem_cache *btrfs_free_space_cachep; 79struct kmem_cache *btrfs_free_space_bitmap_cachep; 80 81static int btrfs_setsize(struct inode *inode, struct iattr *attr); 82static int btrfs_truncate(struct inode *inode, bool skip_writeback); 83static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 84static noinline int cow_file_range(struct btrfs_inode *inode, 85 struct page *locked_page, 86 u64 start, u64 end, int *page_started, 87 unsigned long *nr_written, int unlock); 88static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 89 u64 len, u64 orig_start, u64 block_start, 90 u64 block_len, u64 orig_block_len, 91 u64 ram_bytes, int compress_type, 92 int type); 93 94static void __endio_write_update_ordered(struct btrfs_inode *inode, 95 const u64 offset, const u64 bytes, 96 const bool uptodate); 97 98/* 99 * Cleanup all submitted ordered extents in specified range to handle errors 100 * from the btrfs_run_delalloc_range() callback. 101 * 102 * NOTE: caller must ensure that when an error happens, it can not call 103 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 104 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 105 * to be released, which we want to happen only when finishing the ordered 106 * extent (btrfs_finish_ordered_io()). 107 */ 108static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 109 struct page *locked_page, 110 u64 offset, u64 bytes) 111{ 112 unsigned long index = offset >> PAGE_SHIFT; 113 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 114 u64 page_start = page_offset(locked_page); 115 u64 page_end = page_start + PAGE_SIZE - 1; 116 117 struct page *page; 118 119 while (index <= end_index) { 120 page = find_get_page(inode->vfs_inode.i_mapping, index); 121 index++; 122 if (!page) 123 continue; 124 ClearPagePrivate2(page); 125 put_page(page); 126 } 127 128 /* 129 * In case this page belongs to the delalloc range being instantiated 130 * then skip it, since the first page of a range is going to be 131 * properly cleaned up by the caller of run_delalloc_range 132 */ 133 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 134 offset += PAGE_SIZE; 135 bytes -= PAGE_SIZE; 136 } 137 138 return __endio_write_update_ordered(inode, offset, bytes, false); 139} 140 141static int btrfs_dirty_inode(struct inode *inode); 142 143static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 144 struct inode *inode, struct inode *dir, 145 const struct qstr *qstr) 146{ 147 int err; 148 149 err = btrfs_init_acl(trans, inode, dir); 150 if (!err) 151 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 152 return err; 153} 154 155/* 156 * this does all the hard work for inserting an inline extent into 157 * the btree. The caller should have done a btrfs_drop_extents so that 158 * no overlapping inline items exist in the btree 159 */ 160static int insert_inline_extent(struct btrfs_trans_handle *trans, 161 struct btrfs_path *path, int extent_inserted, 162 struct btrfs_root *root, struct inode *inode, 163 u64 start, size_t size, size_t compressed_size, 164 int compress_type, 165 struct page **compressed_pages) 166{ 167 struct extent_buffer *leaf; 168 struct page *page = NULL; 169 char *kaddr; 170 unsigned long ptr; 171 struct btrfs_file_extent_item *ei; 172 int ret; 173 size_t cur_size = size; 174 unsigned long offset; 175 176 ASSERT((compressed_size > 0 && compressed_pages) || 177 (compressed_size == 0 && !compressed_pages)); 178 179 if (compressed_size && compressed_pages) 180 cur_size = compressed_size; 181 182 inode_add_bytes(inode, size); 183 184 if (!extent_inserted) { 185 struct btrfs_key key; 186 size_t datasize; 187 188 key.objectid = btrfs_ino(BTRFS_I(inode)); 189 key.offset = start; 190 key.type = BTRFS_EXTENT_DATA_KEY; 191 192 datasize = btrfs_file_extent_calc_inline_size(cur_size); 193 path->leave_spinning = 1; 194 ret = btrfs_insert_empty_item(trans, root, path, &key, 195 datasize); 196 if (ret) 197 goto fail; 198 } 199 leaf = path->nodes[0]; 200 ei = btrfs_item_ptr(leaf, path->slots[0], 201 struct btrfs_file_extent_item); 202 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 203 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 204 btrfs_set_file_extent_encryption(leaf, ei, 0); 205 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 206 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 207 ptr = btrfs_file_extent_inline_start(ei); 208 209 if (compress_type != BTRFS_COMPRESS_NONE) { 210 struct page *cpage; 211 int i = 0; 212 while (compressed_size > 0) { 213 cpage = compressed_pages[i]; 214 cur_size = min_t(unsigned long, compressed_size, 215 PAGE_SIZE); 216 217 kaddr = kmap_atomic(cpage); 218 write_extent_buffer(leaf, kaddr, ptr, cur_size); 219 kunmap_atomic(kaddr); 220 221 i++; 222 ptr += cur_size; 223 compressed_size -= cur_size; 224 } 225 btrfs_set_file_extent_compression(leaf, ei, 226 compress_type); 227 } else { 228 page = find_get_page(inode->i_mapping, 229 start >> PAGE_SHIFT); 230 btrfs_set_file_extent_compression(leaf, ei, 0); 231 kaddr = kmap_atomic(page); 232 offset = offset_in_page(start); 233 write_extent_buffer(leaf, kaddr + offset, ptr, size); 234 kunmap_atomic(kaddr); 235 put_page(page); 236 } 237 btrfs_mark_buffer_dirty(leaf); 238 btrfs_release_path(path); 239 240 /* 241 * We align size to sectorsize for inline extents just for simplicity 242 * sake. 243 */ 244 size = ALIGN(size, root->fs_info->sectorsize); 245 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); 246 if (ret) 247 goto fail; 248 249 /* 250 * we're an inline extent, so nobody can 251 * extend the file past i_size without locking 252 * a page we already have locked. 253 * 254 * We must do any isize and inode updates 255 * before we unlock the pages. Otherwise we 256 * could end up racing with unlink. 257 */ 258 BTRFS_I(inode)->disk_i_size = inode->i_size; 259 ret = btrfs_update_inode(trans, root, inode); 260 261fail: 262 return ret; 263} 264 265 266/* 267 * conditionally insert an inline extent into the file. This 268 * does the checks required to make sure the data is small enough 269 * to fit as an inline extent. 270 */ 271static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start, 272 u64 end, size_t compressed_size, 273 int compress_type, 274 struct page **compressed_pages) 275{ 276 struct btrfs_root *root = inode->root; 277 struct btrfs_fs_info *fs_info = root->fs_info; 278 struct btrfs_trans_handle *trans; 279 u64 isize = i_size_read(&inode->vfs_inode); 280 u64 actual_end = min(end + 1, isize); 281 u64 inline_len = actual_end - start; 282 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 283 u64 data_len = inline_len; 284 int ret; 285 struct btrfs_path *path; 286 int extent_inserted = 0; 287 u32 extent_item_size; 288 289 if (compressed_size) 290 data_len = compressed_size; 291 292 if (start > 0 || 293 actual_end > fs_info->sectorsize || 294 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 295 (!compressed_size && 296 (actual_end & (fs_info->sectorsize - 1)) == 0) || 297 end + 1 < isize || 298 data_len > fs_info->max_inline) { 299 return 1; 300 } 301 302 path = btrfs_alloc_path(); 303 if (!path) 304 return -ENOMEM; 305 306 trans = btrfs_join_transaction(root); 307 if (IS_ERR(trans)) { 308 btrfs_free_path(path); 309 return PTR_ERR(trans); 310 } 311 trans->block_rsv = &inode->block_rsv; 312 313 if (compressed_size && compressed_pages) 314 extent_item_size = btrfs_file_extent_calc_inline_size( 315 compressed_size); 316 else 317 extent_item_size = btrfs_file_extent_calc_inline_size( 318 inline_len); 319 320 ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end, 321 NULL, 1, 1, extent_item_size, 322 &extent_inserted); 323 if (ret) { 324 btrfs_abort_transaction(trans, ret); 325 goto out; 326 } 327 328 if (isize > actual_end) 329 inline_len = min_t(u64, isize, actual_end); 330 ret = insert_inline_extent(trans, path, extent_inserted, 331 root, &inode->vfs_inode, start, 332 inline_len, compressed_size, 333 compress_type, compressed_pages); 334 if (ret && ret != -ENOSPC) { 335 btrfs_abort_transaction(trans, ret); 336 goto out; 337 } else if (ret == -ENOSPC) { 338 ret = 1; 339 goto out; 340 } 341 342 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 343 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 344out: 345 /* 346 * Don't forget to free the reserved space, as for inlined extent 347 * it won't count as data extent, free them directly here. 348 * And at reserve time, it's always aligned to page size, so 349 * just free one page here. 350 */ 351 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 352 btrfs_free_path(path); 353 btrfs_end_transaction(trans); 354 return ret; 355} 356 357struct async_extent { 358 u64 start; 359 u64 ram_size; 360 u64 compressed_size; 361 struct page **pages; 362 unsigned long nr_pages; 363 int compress_type; 364 struct list_head list; 365}; 366 367struct async_chunk { 368 struct inode *inode; 369 struct page *locked_page; 370 u64 start; 371 u64 end; 372 unsigned int write_flags; 373 struct list_head extents; 374 struct cgroup_subsys_state *blkcg_css; 375 struct btrfs_work work; 376 atomic_t *pending; 377}; 378 379struct async_cow { 380 /* Number of chunks in flight; must be first in the structure */ 381 atomic_t num_chunks; 382 struct async_chunk chunks[]; 383}; 384 385static noinline int add_async_extent(struct async_chunk *cow, 386 u64 start, u64 ram_size, 387 u64 compressed_size, 388 struct page **pages, 389 unsigned long nr_pages, 390 int compress_type) 391{ 392 struct async_extent *async_extent; 393 394 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 395 BUG_ON(!async_extent); /* -ENOMEM */ 396 async_extent->start = start; 397 async_extent->ram_size = ram_size; 398 async_extent->compressed_size = compressed_size; 399 async_extent->pages = pages; 400 async_extent->nr_pages = nr_pages; 401 async_extent->compress_type = compress_type; 402 list_add_tail(&async_extent->list, &cow->extents); 403 return 0; 404} 405 406/* 407 * Check if the inode has flags compatible with compression 408 */ 409static inline bool inode_can_compress(struct btrfs_inode *inode) 410{ 411 if (inode->flags & BTRFS_INODE_NODATACOW || 412 inode->flags & BTRFS_INODE_NODATASUM) 413 return false; 414 return true; 415} 416 417/* 418 * Check if the inode needs to be submitted to compression, based on mount 419 * options, defragmentation, properties or heuristics. 420 */ 421static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 422 u64 end) 423{ 424 struct btrfs_fs_info *fs_info = inode->root->fs_info; 425 426 if (!inode_can_compress(inode)) { 427 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 428 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 429 btrfs_ino(inode)); 430 return 0; 431 } 432 /* force compress */ 433 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 434 return 1; 435 /* defrag ioctl */ 436 if (inode->defrag_compress) 437 return 1; 438 /* bad compression ratios */ 439 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 440 return 0; 441 if (btrfs_test_opt(fs_info, COMPRESS) || 442 inode->flags & BTRFS_INODE_COMPRESS || 443 inode->prop_compress) 444 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 445 return 0; 446} 447 448static inline void inode_should_defrag(struct btrfs_inode *inode, 449 u64 start, u64 end, u64 num_bytes, u64 small_write) 450{ 451 /* If this is a small write inside eof, kick off a defrag */ 452 if (num_bytes < small_write && 453 (start > 0 || end + 1 < inode->disk_i_size)) 454 btrfs_add_inode_defrag(NULL, inode); 455} 456 457/* 458 * we create compressed extents in two phases. The first 459 * phase compresses a range of pages that have already been 460 * locked (both pages and state bits are locked). 461 * 462 * This is done inside an ordered work queue, and the compression 463 * is spread across many cpus. The actual IO submission is step 464 * two, and the ordered work queue takes care of making sure that 465 * happens in the same order things were put onto the queue by 466 * writepages and friends. 467 * 468 * If this code finds it can't get good compression, it puts an 469 * entry onto the work queue to write the uncompressed bytes. This 470 * makes sure that both compressed inodes and uncompressed inodes 471 * are written in the same order that the flusher thread sent them 472 * down. 473 */ 474static noinline int compress_file_range(struct async_chunk *async_chunk) 475{ 476 struct inode *inode = async_chunk->inode; 477 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 478 u64 blocksize = fs_info->sectorsize; 479 u64 start = async_chunk->start; 480 u64 end = async_chunk->end; 481 u64 actual_end; 482 u64 i_size; 483 int ret = 0; 484 struct page **pages = NULL; 485 unsigned long nr_pages; 486 unsigned long total_compressed = 0; 487 unsigned long total_in = 0; 488 int i; 489 int will_compress; 490 int compress_type = fs_info->compress_type; 491 int compressed_extents = 0; 492 int redirty = 0; 493 494 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 495 SZ_16K); 496 497 /* 498 * We need to save i_size before now because it could change in between 499 * us evaluating the size and assigning it. This is because we lock and 500 * unlock the page in truncate and fallocate, and then modify the i_size 501 * later on. 502 * 503 * The barriers are to emulate READ_ONCE, remove that once i_size_read 504 * does that for us. 505 */ 506 barrier(); 507 i_size = i_size_read(inode); 508 barrier(); 509 actual_end = min_t(u64, i_size, end + 1); 510again: 511 will_compress = 0; 512 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 513 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 514 nr_pages = min_t(unsigned long, nr_pages, 515 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 516 517 /* 518 * we don't want to send crud past the end of i_size through 519 * compression, that's just a waste of CPU time. So, if the 520 * end of the file is before the start of our current 521 * requested range of bytes, we bail out to the uncompressed 522 * cleanup code that can deal with all of this. 523 * 524 * It isn't really the fastest way to fix things, but this is a 525 * very uncommon corner. 526 */ 527 if (actual_end <= start) 528 goto cleanup_and_bail_uncompressed; 529 530 total_compressed = actual_end - start; 531 532 /* 533 * skip compression for a small file range(<=blocksize) that 534 * isn't an inline extent, since it doesn't save disk space at all. 535 */ 536 if (total_compressed <= blocksize && 537 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 538 goto cleanup_and_bail_uncompressed; 539 540 total_compressed = min_t(unsigned long, total_compressed, 541 BTRFS_MAX_UNCOMPRESSED); 542 total_in = 0; 543 ret = 0; 544 545 /* 546 * we do compression for mount -o compress and when the 547 * inode has not been flagged as nocompress. This flag can 548 * change at any time if we discover bad compression ratios. 549 */ 550 if (inode_need_compress(BTRFS_I(inode), start, end)) { 551 WARN_ON(pages); 552 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 553 if (!pages) { 554 /* just bail out to the uncompressed code */ 555 nr_pages = 0; 556 goto cont; 557 } 558 559 if (BTRFS_I(inode)->defrag_compress) 560 compress_type = BTRFS_I(inode)->defrag_compress; 561 else if (BTRFS_I(inode)->prop_compress) 562 compress_type = BTRFS_I(inode)->prop_compress; 563 564 /* 565 * we need to call clear_page_dirty_for_io on each 566 * page in the range. Otherwise applications with the file 567 * mmap'd can wander in and change the page contents while 568 * we are compressing them. 569 * 570 * If the compression fails for any reason, we set the pages 571 * dirty again later on. 572 * 573 * Note that the remaining part is redirtied, the start pointer 574 * has moved, the end is the original one. 575 */ 576 if (!redirty) { 577 extent_range_clear_dirty_for_io(inode, start, end); 578 redirty = 1; 579 } 580 581 /* Compression level is applied here and only here */ 582 ret = btrfs_compress_pages( 583 compress_type | (fs_info->compress_level << 4), 584 inode->i_mapping, start, 585 pages, 586 &nr_pages, 587 &total_in, 588 &total_compressed); 589 590 if (!ret) { 591 unsigned long offset = offset_in_page(total_compressed); 592 struct page *page = pages[nr_pages - 1]; 593 char *kaddr; 594 595 /* zero the tail end of the last page, we might be 596 * sending it down to disk 597 */ 598 if (offset) { 599 kaddr = kmap_atomic(page); 600 memset(kaddr + offset, 0, 601 PAGE_SIZE - offset); 602 kunmap_atomic(kaddr); 603 } 604 will_compress = 1; 605 } 606 } 607cont: 608 if (start == 0) { 609 /* lets try to make an inline extent */ 610 if (ret || total_in < actual_end) { 611 /* we didn't compress the entire range, try 612 * to make an uncompressed inline extent. 613 */ 614 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 615 0, BTRFS_COMPRESS_NONE, 616 NULL); 617 } else { 618 /* try making a compressed inline extent */ 619 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 620 total_compressed, 621 compress_type, pages); 622 } 623 if (ret <= 0) { 624 unsigned long clear_flags = EXTENT_DELALLOC | 625 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 626 EXTENT_DO_ACCOUNTING; 627 unsigned long page_error_op; 628 629 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 630 631 /* 632 * inline extent creation worked or returned error, 633 * we don't need to create any more async work items. 634 * Unlock and free up our temp pages. 635 * 636 * We use DO_ACCOUNTING here because we need the 637 * delalloc_release_metadata to be done _after_ we drop 638 * our outstanding extent for clearing delalloc for this 639 * range. 640 */ 641 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 642 NULL, 643 clear_flags, 644 PAGE_UNLOCK | 645 PAGE_CLEAR_DIRTY | 646 PAGE_SET_WRITEBACK | 647 page_error_op | 648 PAGE_END_WRITEBACK); 649 650 /* 651 * Ensure we only free the compressed pages if we have 652 * them allocated, as we can still reach here with 653 * inode_need_compress() == false. 654 */ 655 if (pages) { 656 for (i = 0; i < nr_pages; i++) { 657 WARN_ON(pages[i]->mapping); 658 put_page(pages[i]); 659 } 660 kfree(pages); 661 } 662 return 0; 663 } 664 } 665 666 if (will_compress) { 667 /* 668 * we aren't doing an inline extent round the compressed size 669 * up to a block size boundary so the allocator does sane 670 * things 671 */ 672 total_compressed = ALIGN(total_compressed, blocksize); 673 674 /* 675 * one last check to make sure the compression is really a 676 * win, compare the page count read with the blocks on disk, 677 * compression must free at least one sector size 678 */ 679 total_in = ALIGN(total_in, PAGE_SIZE); 680 if (total_compressed + blocksize <= total_in) { 681 compressed_extents++; 682 683 /* 684 * The async work queues will take care of doing actual 685 * allocation on disk for these compressed pages, and 686 * will submit them to the elevator. 687 */ 688 add_async_extent(async_chunk, start, total_in, 689 total_compressed, pages, nr_pages, 690 compress_type); 691 692 if (start + total_in < end) { 693 start += total_in; 694 pages = NULL; 695 cond_resched(); 696 goto again; 697 } 698 return compressed_extents; 699 } 700 } 701 if (pages) { 702 /* 703 * the compression code ran but failed to make things smaller, 704 * free any pages it allocated and our page pointer array 705 */ 706 for (i = 0; i < nr_pages; i++) { 707 WARN_ON(pages[i]->mapping); 708 put_page(pages[i]); 709 } 710 kfree(pages); 711 pages = NULL; 712 total_compressed = 0; 713 nr_pages = 0; 714 715 /* flag the file so we don't compress in the future */ 716 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 717 !(BTRFS_I(inode)->prop_compress)) { 718 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 719 } 720 } 721cleanup_and_bail_uncompressed: 722 /* 723 * No compression, but we still need to write the pages in the file 724 * we've been given so far. redirty the locked page if it corresponds 725 * to our extent and set things up for the async work queue to run 726 * cow_file_range to do the normal delalloc dance. 727 */ 728 if (async_chunk->locked_page && 729 (page_offset(async_chunk->locked_page) >= start && 730 page_offset(async_chunk->locked_page)) <= end) { 731 __set_page_dirty_nobuffers(async_chunk->locked_page); 732 /* unlocked later on in the async handlers */ 733 } 734 735 if (redirty) 736 extent_range_redirty_for_io(inode, start, end); 737 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 738 BTRFS_COMPRESS_NONE); 739 compressed_extents++; 740 741 return compressed_extents; 742} 743 744static void free_async_extent_pages(struct async_extent *async_extent) 745{ 746 int i; 747 748 if (!async_extent->pages) 749 return; 750 751 for (i = 0; i < async_extent->nr_pages; i++) { 752 WARN_ON(async_extent->pages[i]->mapping); 753 put_page(async_extent->pages[i]); 754 } 755 kfree(async_extent->pages); 756 async_extent->nr_pages = 0; 757 async_extent->pages = NULL; 758} 759 760/* 761 * phase two of compressed writeback. This is the ordered portion 762 * of the code, which only gets called in the order the work was 763 * queued. We walk all the async extents created by compress_file_range 764 * and send them down to the disk. 765 */ 766static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 767{ 768 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 769 struct btrfs_fs_info *fs_info = inode->root->fs_info; 770 struct async_extent *async_extent; 771 u64 alloc_hint = 0; 772 struct btrfs_key ins; 773 struct extent_map *em; 774 struct btrfs_root *root = inode->root; 775 struct extent_io_tree *io_tree = &inode->io_tree; 776 int ret = 0; 777 778again: 779 while (!list_empty(&async_chunk->extents)) { 780 async_extent = list_entry(async_chunk->extents.next, 781 struct async_extent, list); 782 list_del(&async_extent->list); 783 784retry: 785 lock_extent(io_tree, async_extent->start, 786 async_extent->start + async_extent->ram_size - 1); 787 /* did the compression code fall back to uncompressed IO? */ 788 if (!async_extent->pages) { 789 int page_started = 0; 790 unsigned long nr_written = 0; 791 792 /* allocate blocks */ 793 ret = cow_file_range(inode, async_chunk->locked_page, 794 async_extent->start, 795 async_extent->start + 796 async_extent->ram_size - 1, 797 &page_started, &nr_written, 0); 798 799 /* JDM XXX */ 800 801 /* 802 * if page_started, cow_file_range inserted an 803 * inline extent and took care of all the unlocking 804 * and IO for us. Otherwise, we need to submit 805 * all those pages down to the drive. 806 */ 807 if (!page_started && !ret) 808 extent_write_locked_range(&inode->vfs_inode, 809 async_extent->start, 810 async_extent->start + 811 async_extent->ram_size - 1, 812 WB_SYNC_ALL); 813 else if (ret && async_chunk->locked_page) 814 unlock_page(async_chunk->locked_page); 815 kfree(async_extent); 816 cond_resched(); 817 continue; 818 } 819 820 ret = btrfs_reserve_extent(root, async_extent->ram_size, 821 async_extent->compressed_size, 822 async_extent->compressed_size, 823 0, alloc_hint, &ins, 1, 1); 824 if (ret) { 825 free_async_extent_pages(async_extent); 826 827 if (ret == -ENOSPC) { 828 unlock_extent(io_tree, async_extent->start, 829 async_extent->start + 830 async_extent->ram_size - 1); 831 832 /* 833 * we need to redirty the pages if we decide to 834 * fallback to uncompressed IO, otherwise we 835 * will not submit these pages down to lower 836 * layers. 837 */ 838 extent_range_redirty_for_io(&inode->vfs_inode, 839 async_extent->start, 840 async_extent->start + 841 async_extent->ram_size - 1); 842 843 goto retry; 844 } 845 goto out_free; 846 } 847 /* 848 * here we're doing allocation and writeback of the 849 * compressed pages 850 */ 851 em = create_io_em(inode, async_extent->start, 852 async_extent->ram_size, /* len */ 853 async_extent->start, /* orig_start */ 854 ins.objectid, /* block_start */ 855 ins.offset, /* block_len */ 856 ins.offset, /* orig_block_len */ 857 async_extent->ram_size, /* ram_bytes */ 858 async_extent->compress_type, 859 BTRFS_ORDERED_COMPRESSED); 860 if (IS_ERR(em)) 861 /* ret value is not necessary due to void function */ 862 goto out_free_reserve; 863 free_extent_map(em); 864 865 ret = btrfs_add_ordered_extent_compress(inode, 866 async_extent->start, 867 ins.objectid, 868 async_extent->ram_size, 869 ins.offset, 870 BTRFS_ORDERED_COMPRESSED, 871 async_extent->compress_type); 872 if (ret) { 873 btrfs_drop_extent_cache(inode, async_extent->start, 874 async_extent->start + 875 async_extent->ram_size - 1, 0); 876 goto out_free_reserve; 877 } 878 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 879 880 /* 881 * clear dirty, set writeback and unlock the pages. 882 */ 883 extent_clear_unlock_delalloc(inode, async_extent->start, 884 async_extent->start + 885 async_extent->ram_size - 1, 886 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 887 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 888 PAGE_SET_WRITEBACK); 889 if (btrfs_submit_compressed_write(inode, async_extent->start, 890 async_extent->ram_size, 891 ins.objectid, 892 ins.offset, async_extent->pages, 893 async_extent->nr_pages, 894 async_chunk->write_flags, 895 async_chunk->blkcg_css)) { 896 struct page *p = async_extent->pages[0]; 897 const u64 start = async_extent->start; 898 const u64 end = start + async_extent->ram_size - 1; 899 900 p->mapping = inode->vfs_inode.i_mapping; 901 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 902 903 p->mapping = NULL; 904 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 905 PAGE_END_WRITEBACK | 906 PAGE_SET_ERROR); 907 free_async_extent_pages(async_extent); 908 } 909 alloc_hint = ins.objectid + ins.offset; 910 kfree(async_extent); 911 cond_resched(); 912 } 913 return; 914out_free_reserve: 915 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 916 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 917out_free: 918 extent_clear_unlock_delalloc(inode, async_extent->start, 919 async_extent->start + 920 async_extent->ram_size - 1, 921 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 922 EXTENT_DELALLOC_NEW | 923 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 924 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 925 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 926 PAGE_SET_ERROR); 927 free_async_extent_pages(async_extent); 928 kfree(async_extent); 929 goto again; 930} 931 932static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 933 u64 num_bytes) 934{ 935 struct extent_map_tree *em_tree = &inode->extent_tree; 936 struct extent_map *em; 937 u64 alloc_hint = 0; 938 939 read_lock(&em_tree->lock); 940 em = search_extent_mapping(em_tree, start, num_bytes); 941 if (em) { 942 /* 943 * if block start isn't an actual block number then find the 944 * first block in this inode and use that as a hint. If that 945 * block is also bogus then just don't worry about it. 946 */ 947 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 948 free_extent_map(em); 949 em = search_extent_mapping(em_tree, 0, 0); 950 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 951 alloc_hint = em->block_start; 952 if (em) 953 free_extent_map(em); 954 } else { 955 alloc_hint = em->block_start; 956 free_extent_map(em); 957 } 958 } 959 read_unlock(&em_tree->lock); 960 961 return alloc_hint; 962} 963 964/* 965 * when extent_io.c finds a delayed allocation range in the file, 966 * the call backs end up in this code. The basic idea is to 967 * allocate extents on disk for the range, and create ordered data structs 968 * in ram to track those extents. 969 * 970 * locked_page is the page that writepage had locked already. We use 971 * it to make sure we don't do extra locks or unlocks. 972 * 973 * *page_started is set to one if we unlock locked_page and do everything 974 * required to start IO on it. It may be clean and already done with 975 * IO when we return. 976 */ 977static noinline int cow_file_range(struct btrfs_inode *inode, 978 struct page *locked_page, 979 u64 start, u64 end, int *page_started, 980 unsigned long *nr_written, int unlock) 981{ 982 struct btrfs_root *root = inode->root; 983 struct btrfs_fs_info *fs_info = root->fs_info; 984 u64 alloc_hint = 0; 985 u64 num_bytes; 986 unsigned long ram_size; 987 u64 cur_alloc_size = 0; 988 u64 min_alloc_size; 989 u64 blocksize = fs_info->sectorsize; 990 struct btrfs_key ins; 991 struct extent_map *em; 992 unsigned clear_bits; 993 unsigned long page_ops; 994 bool extent_reserved = false; 995 int ret = 0; 996 997 if (btrfs_is_free_space_inode(inode)) { 998 ret = -EINVAL; 999 goto out_unlock; 1000 } 1001 1002 num_bytes = ALIGN(end - start + 1, blocksize); 1003 num_bytes = max(blocksize, num_bytes); 1004 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1005 1006 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1007 1008 if (start == 0) { 1009 /* lets try to make an inline extent */ 1010 ret = cow_file_range_inline(inode, start, end, 0, 1011 BTRFS_COMPRESS_NONE, NULL); 1012 if (ret == 0) { 1013 /* 1014 * We use DO_ACCOUNTING here because we need the 1015 * delalloc_release_metadata to be run _after_ we drop 1016 * our outstanding extent for clearing delalloc for this 1017 * range. 1018 */ 1019 extent_clear_unlock_delalloc(inode, start, end, NULL, 1020 EXTENT_LOCKED | EXTENT_DELALLOC | 1021 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1022 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1023 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1024 PAGE_END_WRITEBACK); 1025 *nr_written = *nr_written + 1026 (end - start + PAGE_SIZE) / PAGE_SIZE; 1027 *page_started = 1; 1028 goto out; 1029 } else if (ret < 0) { 1030 goto out_unlock; 1031 } 1032 } 1033 1034 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1035 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1036 1037 /* 1038 * Relocation relies on the relocated extents to have exactly the same 1039 * size as the original extents. Normally writeback for relocation data 1040 * extents follows a NOCOW path because relocation preallocates the 1041 * extents. However, due to an operation such as scrub turning a block 1042 * group to RO mode, it may fallback to COW mode, so we must make sure 1043 * an extent allocated during COW has exactly the requested size and can 1044 * not be split into smaller extents, otherwise relocation breaks and 1045 * fails during the stage where it updates the bytenr of file extent 1046 * items. 1047 */ 1048 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1049 min_alloc_size = num_bytes; 1050 else 1051 min_alloc_size = fs_info->sectorsize; 1052 1053 while (num_bytes > 0) { 1054 cur_alloc_size = num_bytes; 1055 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1056 min_alloc_size, 0, alloc_hint, 1057 &ins, 1, 1); 1058 if (ret < 0) 1059 goto out_unlock; 1060 cur_alloc_size = ins.offset; 1061 extent_reserved = true; 1062 1063 ram_size = ins.offset; 1064 em = create_io_em(inode, start, ins.offset, /* len */ 1065 start, /* orig_start */ 1066 ins.objectid, /* block_start */ 1067 ins.offset, /* block_len */ 1068 ins.offset, /* orig_block_len */ 1069 ram_size, /* ram_bytes */ 1070 BTRFS_COMPRESS_NONE, /* compress_type */ 1071 BTRFS_ORDERED_REGULAR /* type */); 1072 if (IS_ERR(em)) { 1073 ret = PTR_ERR(em); 1074 goto out_reserve; 1075 } 1076 free_extent_map(em); 1077 1078 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1079 ram_size, cur_alloc_size, 0); 1080 if (ret) 1081 goto out_drop_extent_cache; 1082 1083 if (root->root_key.objectid == 1084 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1085 ret = btrfs_reloc_clone_csums(inode, start, 1086 cur_alloc_size); 1087 /* 1088 * Only drop cache here, and process as normal. 1089 * 1090 * We must not allow extent_clear_unlock_delalloc() 1091 * at out_unlock label to free meta of this ordered 1092 * extent, as its meta should be freed by 1093 * btrfs_finish_ordered_io(). 1094 * 1095 * So we must continue until @start is increased to 1096 * skip current ordered extent. 1097 */ 1098 if (ret) 1099 btrfs_drop_extent_cache(inode, start, 1100 start + ram_size - 1, 0); 1101 } 1102 1103 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1104 1105 /* we're not doing compressed IO, don't unlock the first 1106 * page (which the caller expects to stay locked), don't 1107 * clear any dirty bits and don't set any writeback bits 1108 * 1109 * Do set the Private2 bit so we know this page was properly 1110 * setup for writepage 1111 */ 1112 page_ops = unlock ? PAGE_UNLOCK : 0; 1113 page_ops |= PAGE_SET_PRIVATE2; 1114 1115 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1116 locked_page, 1117 EXTENT_LOCKED | EXTENT_DELALLOC, 1118 page_ops); 1119 if (num_bytes < cur_alloc_size) 1120 num_bytes = 0; 1121 else 1122 num_bytes -= cur_alloc_size; 1123 alloc_hint = ins.objectid + ins.offset; 1124 start += cur_alloc_size; 1125 extent_reserved = false; 1126 1127 /* 1128 * btrfs_reloc_clone_csums() error, since start is increased 1129 * extent_clear_unlock_delalloc() at out_unlock label won't 1130 * free metadata of current ordered extent, we're OK to exit. 1131 */ 1132 if (ret) 1133 goto out_unlock; 1134 } 1135out: 1136 return ret; 1137 1138out_drop_extent_cache: 1139 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1140out_reserve: 1141 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1142 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1143out_unlock: 1144 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1145 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1146 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1147 PAGE_END_WRITEBACK; 1148 /* 1149 * If we reserved an extent for our delalloc range (or a subrange) and 1150 * failed to create the respective ordered extent, then it means that 1151 * when we reserved the extent we decremented the extent's size from 1152 * the data space_info's bytes_may_use counter and incremented the 1153 * space_info's bytes_reserved counter by the same amount. We must make 1154 * sure extent_clear_unlock_delalloc() does not try to decrement again 1155 * the data space_info's bytes_may_use counter, therefore we do not pass 1156 * it the flag EXTENT_CLEAR_DATA_RESV. 1157 */ 1158 if (extent_reserved) { 1159 extent_clear_unlock_delalloc(inode, start, 1160 start + cur_alloc_size - 1, 1161 locked_page, 1162 clear_bits, 1163 page_ops); 1164 start += cur_alloc_size; 1165 if (start >= end) 1166 goto out; 1167 } 1168 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1169 clear_bits | EXTENT_CLEAR_DATA_RESV, 1170 page_ops); 1171 goto out; 1172} 1173 1174/* 1175 * work queue call back to started compression on a file and pages 1176 */ 1177static noinline void async_cow_start(struct btrfs_work *work) 1178{ 1179 struct async_chunk *async_chunk; 1180 int compressed_extents; 1181 1182 async_chunk = container_of(work, struct async_chunk, work); 1183 1184 compressed_extents = compress_file_range(async_chunk); 1185 if (compressed_extents == 0) { 1186 btrfs_add_delayed_iput(async_chunk->inode); 1187 async_chunk->inode = NULL; 1188 } 1189} 1190 1191/* 1192 * work queue call back to submit previously compressed pages 1193 */ 1194static noinline void async_cow_submit(struct btrfs_work *work) 1195{ 1196 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1197 work); 1198 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1199 unsigned long nr_pages; 1200 1201 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1202 PAGE_SHIFT; 1203 1204 /* 1205 * ->inode could be NULL if async_chunk_start has failed to compress, 1206 * in which case we don't have anything to submit, yet we need to 1207 * always adjust ->async_delalloc_pages as its paired with the init 1208 * happening in cow_file_range_async 1209 */ 1210 if (async_chunk->inode) 1211 submit_compressed_extents(async_chunk); 1212 1213 /* atomic_sub_return implies a barrier */ 1214 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1215 5 * SZ_1M) 1216 cond_wake_up_nomb(&fs_info->async_submit_wait); 1217} 1218 1219static noinline void async_cow_free(struct btrfs_work *work) 1220{ 1221 struct async_chunk *async_chunk; 1222 1223 async_chunk = container_of(work, struct async_chunk, work); 1224 if (async_chunk->inode) 1225 btrfs_add_delayed_iput(async_chunk->inode); 1226 if (async_chunk->blkcg_css) 1227 css_put(async_chunk->blkcg_css); 1228 /* 1229 * Since the pointer to 'pending' is at the beginning of the array of 1230 * async_chunk's, freeing it ensures the whole array has been freed. 1231 */ 1232 if (atomic_dec_and_test(async_chunk->pending)) 1233 kvfree(async_chunk->pending); 1234} 1235 1236static int cow_file_range_async(struct btrfs_inode *inode, 1237 struct writeback_control *wbc, 1238 struct page *locked_page, 1239 u64 start, u64 end, int *page_started, 1240 unsigned long *nr_written) 1241{ 1242 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1243 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1244 struct async_cow *ctx; 1245 struct async_chunk *async_chunk; 1246 unsigned long nr_pages; 1247 u64 cur_end; 1248 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1249 int i; 1250 bool should_compress; 1251 unsigned nofs_flag; 1252 const unsigned int write_flags = wbc_to_write_flags(wbc); 1253 1254 unlock_extent(&inode->io_tree, start, end); 1255 1256 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1257 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1258 num_chunks = 1; 1259 should_compress = false; 1260 } else { 1261 should_compress = true; 1262 } 1263 1264 nofs_flag = memalloc_nofs_save(); 1265 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1266 memalloc_nofs_restore(nofs_flag); 1267 1268 if (!ctx) { 1269 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1270 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1271 EXTENT_DO_ACCOUNTING; 1272 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1273 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1274 PAGE_SET_ERROR; 1275 1276 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1277 clear_bits, page_ops); 1278 return -ENOMEM; 1279 } 1280 1281 async_chunk = ctx->chunks; 1282 atomic_set(&ctx->num_chunks, num_chunks); 1283 1284 for (i = 0; i < num_chunks; i++) { 1285 if (should_compress) 1286 cur_end = min(end, start + SZ_512K - 1); 1287 else 1288 cur_end = end; 1289 1290 /* 1291 * igrab is called higher up in the call chain, take only the 1292 * lightweight reference for the callback lifetime 1293 */ 1294 ihold(&inode->vfs_inode); 1295 async_chunk[i].pending = &ctx->num_chunks; 1296 async_chunk[i].inode = &inode->vfs_inode; 1297 async_chunk[i].start = start; 1298 async_chunk[i].end = cur_end; 1299 async_chunk[i].write_flags = write_flags; 1300 INIT_LIST_HEAD(&async_chunk[i].extents); 1301 1302 /* 1303 * The locked_page comes all the way from writepage and its 1304 * the original page we were actually given. As we spread 1305 * this large delalloc region across multiple async_chunk 1306 * structs, only the first struct needs a pointer to locked_page 1307 * 1308 * This way we don't need racey decisions about who is supposed 1309 * to unlock it. 1310 */ 1311 if (locked_page) { 1312 /* 1313 * Depending on the compressibility, the pages might or 1314 * might not go through async. We want all of them to 1315 * be accounted against wbc once. Let's do it here 1316 * before the paths diverge. wbc accounting is used 1317 * only for foreign writeback detection and doesn't 1318 * need full accuracy. Just account the whole thing 1319 * against the first page. 1320 */ 1321 wbc_account_cgroup_owner(wbc, locked_page, 1322 cur_end - start); 1323 async_chunk[i].locked_page = locked_page; 1324 locked_page = NULL; 1325 } else { 1326 async_chunk[i].locked_page = NULL; 1327 } 1328 1329 if (blkcg_css != blkcg_root_css) { 1330 css_get(blkcg_css); 1331 async_chunk[i].blkcg_css = blkcg_css; 1332 } else { 1333 async_chunk[i].blkcg_css = NULL; 1334 } 1335 1336 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1337 async_cow_submit, async_cow_free); 1338 1339 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1340 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1341 1342 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1343 1344 *nr_written += nr_pages; 1345 start = cur_end + 1; 1346 } 1347 *page_started = 1; 1348 return 0; 1349} 1350 1351static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1352 u64 bytenr, u64 num_bytes) 1353{ 1354 int ret; 1355 struct btrfs_ordered_sum *sums; 1356 LIST_HEAD(list); 1357 1358 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1359 bytenr + num_bytes - 1, &list, 0); 1360 if (ret == 0 && list_empty(&list)) 1361 return 0; 1362 1363 while (!list_empty(&list)) { 1364 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1365 list_del(&sums->list); 1366 kfree(sums); 1367 } 1368 if (ret < 0) 1369 return ret; 1370 return 1; 1371} 1372 1373static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1374 const u64 start, const u64 end, 1375 int *page_started, unsigned long *nr_written) 1376{ 1377 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1378 const bool is_reloc_ino = (inode->root->root_key.objectid == 1379 BTRFS_DATA_RELOC_TREE_OBJECTID); 1380 const u64 range_bytes = end + 1 - start; 1381 struct extent_io_tree *io_tree = &inode->io_tree; 1382 u64 range_start = start; 1383 u64 count; 1384 1385 /* 1386 * If EXTENT_NORESERVE is set it means that when the buffered write was 1387 * made we had not enough available data space and therefore we did not 1388 * reserve data space for it, since we though we could do NOCOW for the 1389 * respective file range (either there is prealloc extent or the inode 1390 * has the NOCOW bit set). 1391 * 1392 * However when we need to fallback to COW mode (because for example the 1393 * block group for the corresponding extent was turned to RO mode by a 1394 * scrub or relocation) we need to do the following: 1395 * 1396 * 1) We increment the bytes_may_use counter of the data space info. 1397 * If COW succeeds, it allocates a new data extent and after doing 1398 * that it decrements the space info's bytes_may_use counter and 1399 * increments its bytes_reserved counter by the same amount (we do 1400 * this at btrfs_add_reserved_bytes()). So we need to increment the 1401 * bytes_may_use counter to compensate (when space is reserved at 1402 * buffered write time, the bytes_may_use counter is incremented); 1403 * 1404 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1405 * that if the COW path fails for any reason, it decrements (through 1406 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1407 * data space info, which we incremented in the step above. 1408 * 1409 * If we need to fallback to cow and the inode corresponds to a free 1410 * space cache inode or an inode of the data relocation tree, we must 1411 * also increment bytes_may_use of the data space_info for the same 1412 * reason. Space caches and relocated data extents always get a prealloc 1413 * extent for them, however scrub or balance may have set the block 1414 * group that contains that extent to RO mode and therefore force COW 1415 * when starting writeback. 1416 */ 1417 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1418 EXTENT_NORESERVE, 0); 1419 if (count > 0 || is_space_ino || is_reloc_ino) { 1420 u64 bytes = count; 1421 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1422 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1423 1424 if (is_space_ino || is_reloc_ino) 1425 bytes = range_bytes; 1426 1427 spin_lock(&sinfo->lock); 1428 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1429 spin_unlock(&sinfo->lock); 1430 1431 if (count > 0) 1432 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1433 0, 0, NULL); 1434 } 1435 1436 return cow_file_range(inode, locked_page, start, end, page_started, 1437 nr_written, 1); 1438} 1439 1440/* 1441 * when nowcow writeback call back. This checks for snapshots or COW copies 1442 * of the extents that exist in the file, and COWs the file as required. 1443 * 1444 * If no cow copies or snapshots exist, we write directly to the existing 1445 * blocks on disk 1446 */ 1447static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1448 struct page *locked_page, 1449 const u64 start, const u64 end, 1450 int *page_started, int force, 1451 unsigned long *nr_written) 1452{ 1453 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1454 struct btrfs_root *root = inode->root; 1455 struct btrfs_path *path; 1456 u64 cow_start = (u64)-1; 1457 u64 cur_offset = start; 1458 int ret; 1459 bool check_prev = true; 1460 const bool freespace_inode = btrfs_is_free_space_inode(inode); 1461 u64 ino = btrfs_ino(inode); 1462 bool nocow = false; 1463 u64 disk_bytenr = 0; 1464 1465 path = btrfs_alloc_path(); 1466 if (!path) { 1467 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1468 EXTENT_LOCKED | EXTENT_DELALLOC | 1469 EXTENT_DO_ACCOUNTING | 1470 EXTENT_DEFRAG, PAGE_UNLOCK | 1471 PAGE_CLEAR_DIRTY | 1472 PAGE_SET_WRITEBACK | 1473 PAGE_END_WRITEBACK); 1474 return -ENOMEM; 1475 } 1476 1477 while (1) { 1478 struct btrfs_key found_key; 1479 struct btrfs_file_extent_item *fi; 1480 struct extent_buffer *leaf; 1481 u64 extent_end; 1482 u64 extent_offset; 1483 u64 num_bytes = 0; 1484 u64 disk_num_bytes; 1485 u64 ram_bytes; 1486 int extent_type; 1487 1488 nocow = false; 1489 1490 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1491 cur_offset, 0); 1492 if (ret < 0) 1493 goto error; 1494 1495 /* 1496 * If there is no extent for our range when doing the initial 1497 * search, then go back to the previous slot as it will be the 1498 * one containing the search offset 1499 */ 1500 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1501 leaf = path->nodes[0]; 1502 btrfs_item_key_to_cpu(leaf, &found_key, 1503 path->slots[0] - 1); 1504 if (found_key.objectid == ino && 1505 found_key.type == BTRFS_EXTENT_DATA_KEY) 1506 path->slots[0]--; 1507 } 1508 check_prev = false; 1509next_slot: 1510 /* Go to next leaf if we have exhausted the current one */ 1511 leaf = path->nodes[0]; 1512 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1513 ret = btrfs_next_leaf(root, path); 1514 if (ret < 0) { 1515 if (cow_start != (u64)-1) 1516 cur_offset = cow_start; 1517 goto error; 1518 } 1519 if (ret > 0) 1520 break; 1521 leaf = path->nodes[0]; 1522 } 1523 1524 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1525 1526 /* Didn't find anything for our INO */ 1527 if (found_key.objectid > ino) 1528 break; 1529 /* 1530 * Keep searching until we find an EXTENT_ITEM or there are no 1531 * more extents for this inode 1532 */ 1533 if (WARN_ON_ONCE(found_key.objectid < ino) || 1534 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1535 path->slots[0]++; 1536 goto next_slot; 1537 } 1538 1539 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1540 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1541 found_key.offset > end) 1542 break; 1543 1544 /* 1545 * If the found extent starts after requested offset, then 1546 * adjust extent_end to be right before this extent begins 1547 */ 1548 if (found_key.offset > cur_offset) { 1549 extent_end = found_key.offset; 1550 extent_type = 0; 1551 goto out_check; 1552 } 1553 1554 /* 1555 * Found extent which begins before our range and potentially 1556 * intersect it 1557 */ 1558 fi = btrfs_item_ptr(leaf, path->slots[0], 1559 struct btrfs_file_extent_item); 1560 extent_type = btrfs_file_extent_type(leaf, fi); 1561 1562 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1563 if (extent_type == BTRFS_FILE_EXTENT_REG || 1564 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1565 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1566 extent_offset = btrfs_file_extent_offset(leaf, fi); 1567 extent_end = found_key.offset + 1568 btrfs_file_extent_num_bytes(leaf, fi); 1569 disk_num_bytes = 1570 btrfs_file_extent_disk_num_bytes(leaf, fi); 1571 /* 1572 * If the extent we got ends before our current offset, 1573 * skip to the next extent. 1574 */ 1575 if (extent_end <= cur_offset) { 1576 path->slots[0]++; 1577 goto next_slot; 1578 } 1579 /* Skip holes */ 1580 if (disk_bytenr == 0) 1581 goto out_check; 1582 /* Skip compressed/encrypted/encoded extents */ 1583 if (btrfs_file_extent_compression(leaf, fi) || 1584 btrfs_file_extent_encryption(leaf, fi) || 1585 btrfs_file_extent_other_encoding(leaf, fi)) 1586 goto out_check; 1587 /* 1588 * If extent is created before the last volume's snapshot 1589 * this implies the extent is shared, hence we can't do 1590 * nocow. This is the same check as in 1591 * btrfs_cross_ref_exist but without calling 1592 * btrfs_search_slot. 1593 */ 1594 if (!freespace_inode && 1595 btrfs_file_extent_generation(leaf, fi) <= 1596 btrfs_root_last_snapshot(&root->root_item)) 1597 goto out_check; 1598 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1599 goto out_check; 1600 /* If extent is RO, we must COW it */ 1601 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1602 goto out_check; 1603 ret = btrfs_cross_ref_exist(root, ino, 1604 found_key.offset - 1605 extent_offset, disk_bytenr, false); 1606 if (ret) { 1607 /* 1608 * ret could be -EIO if the above fails to read 1609 * metadata. 1610 */ 1611 if (ret < 0) { 1612 if (cow_start != (u64)-1) 1613 cur_offset = cow_start; 1614 goto error; 1615 } 1616 1617 WARN_ON_ONCE(freespace_inode); 1618 goto out_check; 1619 } 1620 disk_bytenr += extent_offset; 1621 disk_bytenr += cur_offset - found_key.offset; 1622 num_bytes = min(end + 1, extent_end) - cur_offset; 1623 /* 1624 * If there are pending snapshots for this root, we 1625 * fall into common COW way 1626 */ 1627 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1628 goto out_check; 1629 /* 1630 * force cow if csum exists in the range. 1631 * this ensure that csum for a given extent are 1632 * either valid or do not exist. 1633 */ 1634 ret = csum_exist_in_range(fs_info, disk_bytenr, 1635 num_bytes); 1636 if (ret) { 1637 /* 1638 * ret could be -EIO if the above fails to read 1639 * metadata. 1640 */ 1641 if (ret < 0) { 1642 if (cow_start != (u64)-1) 1643 cur_offset = cow_start; 1644 goto error; 1645 } 1646 WARN_ON_ONCE(freespace_inode); 1647 goto out_check; 1648 } 1649 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1650 goto out_check; 1651 nocow = true; 1652 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1653 extent_end = found_key.offset + ram_bytes; 1654 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1655 /* Skip extents outside of our requested range */ 1656 if (extent_end <= start) { 1657 path->slots[0]++; 1658 goto next_slot; 1659 } 1660 } else { 1661 /* If this triggers then we have a memory corruption */ 1662 BUG(); 1663 } 1664out_check: 1665 /* 1666 * If nocow is false then record the beginning of the range 1667 * that needs to be COWed 1668 */ 1669 if (!nocow) { 1670 if (cow_start == (u64)-1) 1671 cow_start = cur_offset; 1672 cur_offset = extent_end; 1673 if (cur_offset > end) 1674 break; 1675 path->slots[0]++; 1676 goto next_slot; 1677 } 1678 1679 btrfs_release_path(path); 1680 1681 /* 1682 * COW range from cow_start to found_key.offset - 1. As the key 1683 * will contain the beginning of the first extent that can be 1684 * NOCOW, following one which needs to be COW'ed 1685 */ 1686 if (cow_start != (u64)-1) { 1687 ret = fallback_to_cow(inode, locked_page, 1688 cow_start, found_key.offset - 1, 1689 page_started, nr_written); 1690 if (ret) 1691 goto error; 1692 cow_start = (u64)-1; 1693 } 1694 1695 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1696 u64 orig_start = found_key.offset - extent_offset; 1697 struct extent_map *em; 1698 1699 em = create_io_em(inode, cur_offset, num_bytes, 1700 orig_start, 1701 disk_bytenr, /* block_start */ 1702 num_bytes, /* block_len */ 1703 disk_num_bytes, /* orig_block_len */ 1704 ram_bytes, BTRFS_COMPRESS_NONE, 1705 BTRFS_ORDERED_PREALLOC); 1706 if (IS_ERR(em)) { 1707 ret = PTR_ERR(em); 1708 goto error; 1709 } 1710 free_extent_map(em); 1711 ret = btrfs_add_ordered_extent(inode, cur_offset, 1712 disk_bytenr, num_bytes, 1713 num_bytes, 1714 BTRFS_ORDERED_PREALLOC); 1715 if (ret) { 1716 btrfs_drop_extent_cache(inode, cur_offset, 1717 cur_offset + num_bytes - 1, 1718 0); 1719 goto error; 1720 } 1721 } else { 1722 ret = btrfs_add_ordered_extent(inode, cur_offset, 1723 disk_bytenr, num_bytes, 1724 num_bytes, 1725 BTRFS_ORDERED_NOCOW); 1726 if (ret) 1727 goto error; 1728 } 1729 1730 if (nocow) 1731 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1732 nocow = false; 1733 1734 if (root->root_key.objectid == 1735 BTRFS_DATA_RELOC_TREE_OBJECTID) 1736 /* 1737 * Error handled later, as we must prevent 1738 * extent_clear_unlock_delalloc() in error handler 1739 * from freeing metadata of created ordered extent. 1740 */ 1741 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1742 num_bytes); 1743 1744 extent_clear_unlock_delalloc(inode, cur_offset, 1745 cur_offset + num_bytes - 1, 1746 locked_page, EXTENT_LOCKED | 1747 EXTENT_DELALLOC | 1748 EXTENT_CLEAR_DATA_RESV, 1749 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1750 1751 cur_offset = extent_end; 1752 1753 /* 1754 * btrfs_reloc_clone_csums() error, now we're OK to call error 1755 * handler, as metadata for created ordered extent will only 1756 * be freed by btrfs_finish_ordered_io(). 1757 */ 1758 if (ret) 1759 goto error; 1760 if (cur_offset > end) 1761 break; 1762 } 1763 btrfs_release_path(path); 1764 1765 if (cur_offset <= end && cow_start == (u64)-1) 1766 cow_start = cur_offset; 1767 1768 if (cow_start != (u64)-1) { 1769 cur_offset = end; 1770 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1771 page_started, nr_written); 1772 if (ret) 1773 goto error; 1774 } 1775 1776error: 1777 if (nocow) 1778 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1779 1780 if (ret && cur_offset < end) 1781 extent_clear_unlock_delalloc(inode, cur_offset, end, 1782 locked_page, EXTENT_LOCKED | 1783 EXTENT_DELALLOC | EXTENT_DEFRAG | 1784 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1785 PAGE_CLEAR_DIRTY | 1786 PAGE_SET_WRITEBACK | 1787 PAGE_END_WRITEBACK); 1788 btrfs_free_path(path); 1789 return ret; 1790} 1791 1792static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end) 1793{ 1794 1795 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1796 !(inode->flags & BTRFS_INODE_PREALLOC)) 1797 return 0; 1798 1799 /* 1800 * @defrag_bytes is a hint value, no spinlock held here, 1801 * if is not zero, it means the file is defragging. 1802 * Force cow if given extent needs to be defragged. 1803 */ 1804 if (inode->defrag_bytes && 1805 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL)) 1806 return 1; 1807 1808 return 0; 1809} 1810 1811/* 1812 * Function to process delayed allocation (create CoW) for ranges which are 1813 * being touched for the first time. 1814 */ 1815int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 1816 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1817 struct writeback_control *wbc) 1818{ 1819 int ret; 1820 int force_cow = need_force_cow(inode, start, end); 1821 1822 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1823 ret = run_delalloc_nocow(inode, locked_page, start, end, 1824 page_started, 1, nr_written); 1825 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1826 ret = run_delalloc_nocow(inode, locked_page, start, end, 1827 page_started, 0, nr_written); 1828 } else if (!inode_can_compress(inode) || 1829 !inode_need_compress(inode, start, end)) { 1830 ret = cow_file_range(inode, locked_page, start, end, 1831 page_started, nr_written, 1); 1832 } else { 1833 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1834 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1835 page_started, nr_written); 1836 } 1837 if (ret) 1838 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1839 end - start + 1); 1840 return ret; 1841} 1842 1843void btrfs_split_delalloc_extent(struct inode *inode, 1844 struct extent_state *orig, u64 split) 1845{ 1846 u64 size; 1847 1848 /* not delalloc, ignore it */ 1849 if (!(orig->state & EXTENT_DELALLOC)) 1850 return; 1851 1852 size = orig->end - orig->start + 1; 1853 if (size > BTRFS_MAX_EXTENT_SIZE) { 1854 u32 num_extents; 1855 u64 new_size; 1856 1857 /* 1858 * See the explanation in btrfs_merge_delalloc_extent, the same 1859 * applies here, just in reverse. 1860 */ 1861 new_size = orig->end - split + 1; 1862 num_extents = count_max_extents(new_size); 1863 new_size = split - orig->start; 1864 num_extents += count_max_extents(new_size); 1865 if (count_max_extents(size) >= num_extents) 1866 return; 1867 } 1868 1869 spin_lock(&BTRFS_I(inode)->lock); 1870 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1871 spin_unlock(&BTRFS_I(inode)->lock); 1872} 1873 1874/* 1875 * Handle merged delayed allocation extents so we can keep track of new extents 1876 * that are just merged onto old extents, such as when we are doing sequential 1877 * writes, so we can properly account for the metadata space we'll need. 1878 */ 1879void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1880 struct extent_state *other) 1881{ 1882 u64 new_size, old_size; 1883 u32 num_extents; 1884 1885 /* not delalloc, ignore it */ 1886 if (!(other->state & EXTENT_DELALLOC)) 1887 return; 1888 1889 if (new->start > other->start) 1890 new_size = new->end - other->start + 1; 1891 else 1892 new_size = other->end - new->start + 1; 1893 1894 /* we're not bigger than the max, unreserve the space and go */ 1895 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1896 spin_lock(&BTRFS_I(inode)->lock); 1897 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1898 spin_unlock(&BTRFS_I(inode)->lock); 1899 return; 1900 } 1901 1902 /* 1903 * We have to add up either side to figure out how many extents were 1904 * accounted for before we merged into one big extent. If the number of 1905 * extents we accounted for is <= the amount we need for the new range 1906 * then we can return, otherwise drop. Think of it like this 1907 * 1908 * [ 4k][MAX_SIZE] 1909 * 1910 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1911 * need 2 outstanding extents, on one side we have 1 and the other side 1912 * we have 1 so they are == and we can return. But in this case 1913 * 1914 * [MAX_SIZE+4k][MAX_SIZE+4k] 1915 * 1916 * Each range on their own accounts for 2 extents, but merged together 1917 * they are only 3 extents worth of accounting, so we need to drop in 1918 * this case. 1919 */ 1920 old_size = other->end - other->start + 1; 1921 num_extents = count_max_extents(old_size); 1922 old_size = new->end - new->start + 1; 1923 num_extents += count_max_extents(old_size); 1924 if (count_max_extents(new_size) >= num_extents) 1925 return; 1926 1927 spin_lock(&BTRFS_I(inode)->lock); 1928 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1929 spin_unlock(&BTRFS_I(inode)->lock); 1930} 1931 1932static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1933 struct inode *inode) 1934{ 1935 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1936 1937 spin_lock(&root->delalloc_lock); 1938 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1939 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1940 &root->delalloc_inodes); 1941 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1942 &BTRFS_I(inode)->runtime_flags); 1943 root->nr_delalloc_inodes++; 1944 if (root->nr_delalloc_inodes == 1) { 1945 spin_lock(&fs_info->delalloc_root_lock); 1946 BUG_ON(!list_empty(&root->delalloc_root)); 1947 list_add_tail(&root->delalloc_root, 1948 &fs_info->delalloc_roots); 1949 spin_unlock(&fs_info->delalloc_root_lock); 1950 } 1951 } 1952 spin_unlock(&root->delalloc_lock); 1953} 1954 1955 1956void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1957 struct btrfs_inode *inode) 1958{ 1959 struct btrfs_fs_info *fs_info = root->fs_info; 1960 1961 if (!list_empty(&inode->delalloc_inodes)) { 1962 list_del_init(&inode->delalloc_inodes); 1963 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1964 &inode->runtime_flags); 1965 root->nr_delalloc_inodes--; 1966 if (!root->nr_delalloc_inodes) { 1967 ASSERT(list_empty(&root->delalloc_inodes)); 1968 spin_lock(&fs_info->delalloc_root_lock); 1969 BUG_ON(list_empty(&root->delalloc_root)); 1970 list_del_init(&root->delalloc_root); 1971 spin_unlock(&fs_info->delalloc_root_lock); 1972 } 1973 } 1974} 1975 1976static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1977 struct btrfs_inode *inode) 1978{ 1979 spin_lock(&root->delalloc_lock); 1980 __btrfs_del_delalloc_inode(root, inode); 1981 spin_unlock(&root->delalloc_lock); 1982} 1983 1984/* 1985 * Properly track delayed allocation bytes in the inode and to maintain the 1986 * list of inodes that have pending delalloc work to be done. 1987 */ 1988void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1989 unsigned *bits) 1990{ 1991 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1992 1993 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1994 WARN_ON(1); 1995 /* 1996 * set_bit and clear bit hooks normally require _irqsave/restore 1997 * but in this case, we are only testing for the DELALLOC 1998 * bit, which is only set or cleared with irqs on 1999 */ 2000 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2001 struct btrfs_root *root = BTRFS_I(inode)->root; 2002 u64 len = state->end + 1 - state->start; 2003 u32 num_extents = count_max_extents(len); 2004 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2005 2006 spin_lock(&BTRFS_I(inode)->lock); 2007 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2008 spin_unlock(&BTRFS_I(inode)->lock); 2009 2010 /* For sanity tests */ 2011 if (btrfs_is_testing(fs_info)) 2012 return; 2013 2014 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2015 fs_info->delalloc_batch); 2016 spin_lock(&BTRFS_I(inode)->lock); 2017 BTRFS_I(inode)->delalloc_bytes += len; 2018 if (*bits & EXTENT_DEFRAG) 2019 BTRFS_I(inode)->defrag_bytes += len; 2020 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2021 &BTRFS_I(inode)->runtime_flags)) 2022 btrfs_add_delalloc_inodes(root, inode); 2023 spin_unlock(&BTRFS_I(inode)->lock); 2024 } 2025 2026 if (!(state->state & EXTENT_DELALLOC_NEW) && 2027 (*bits & EXTENT_DELALLOC_NEW)) { 2028 spin_lock(&BTRFS_I(inode)->lock); 2029 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2030 state->start; 2031 spin_unlock(&BTRFS_I(inode)->lock); 2032 } 2033} 2034 2035/* 2036 * Once a range is no longer delalloc this function ensures that proper 2037 * accounting happens. 2038 */ 2039void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2040 struct extent_state *state, unsigned *bits) 2041{ 2042 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2043 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2044 u64 len = state->end + 1 - state->start; 2045 u32 num_extents = count_max_extents(len); 2046 2047 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2048 spin_lock(&inode->lock); 2049 inode->defrag_bytes -= len; 2050 spin_unlock(&inode->lock); 2051 } 2052 2053 /* 2054 * set_bit and clear bit hooks normally require _irqsave/restore 2055 * but in this case, we are only testing for the DELALLOC 2056 * bit, which is only set or cleared with irqs on 2057 */ 2058 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2059 struct btrfs_root *root = inode->root; 2060 bool do_list = !btrfs_is_free_space_inode(inode); 2061 2062 spin_lock(&inode->lock); 2063 btrfs_mod_outstanding_extents(inode, -num_extents); 2064 spin_unlock(&inode->lock); 2065 2066 /* 2067 * We don't reserve metadata space for space cache inodes so we 2068 * don't need to call delalloc_release_metadata if there is an 2069 * error. 2070 */ 2071 if (*bits & EXTENT_CLEAR_META_RESV && 2072 root != fs_info->tree_root) 2073 btrfs_delalloc_release_metadata(inode, len, false); 2074 2075 /* For sanity tests. */ 2076 if (btrfs_is_testing(fs_info)) 2077 return; 2078 2079 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2080 do_list && !(state->state & EXTENT_NORESERVE) && 2081 (*bits & EXTENT_CLEAR_DATA_RESV)) 2082 btrfs_free_reserved_data_space_noquota(fs_info, len); 2083 2084 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2085 fs_info->delalloc_batch); 2086 spin_lock(&inode->lock); 2087 inode->delalloc_bytes -= len; 2088 if (do_list && inode->delalloc_bytes == 0 && 2089 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2090 &inode->runtime_flags)) 2091 btrfs_del_delalloc_inode(root, inode); 2092 spin_unlock(&inode->lock); 2093 } 2094 2095 if ((state->state & EXTENT_DELALLOC_NEW) && 2096 (*bits & EXTENT_DELALLOC_NEW)) { 2097 spin_lock(&inode->lock); 2098 ASSERT(inode->new_delalloc_bytes >= len); 2099 inode->new_delalloc_bytes -= len; 2100 spin_unlock(&inode->lock); 2101 } 2102} 2103 2104/* 2105 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2106 * in a chunk's stripe. This function ensures that bios do not span a 2107 * stripe/chunk 2108 * 2109 * @page - The page we are about to add to the bio 2110 * @size - size we want to add to the bio 2111 * @bio - bio we want to ensure is smaller than a stripe 2112 * @bio_flags - flags of the bio 2113 * 2114 * return 1 if page cannot be added to the bio 2115 * return 0 if page can be added to the bio 2116 * return error otherwise 2117 */ 2118int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2119 unsigned long bio_flags) 2120{ 2121 struct inode *inode = page->mapping->host; 2122 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2123 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 2124 u64 length = 0; 2125 u64 map_length; 2126 int ret; 2127 struct btrfs_io_geometry geom; 2128 2129 if (bio_flags & EXTENT_BIO_COMPRESSED) 2130 return 0; 2131 2132 length = bio->bi_iter.bi_size; 2133 map_length = length; 2134 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, 2135 &geom); 2136 if (ret < 0) 2137 return ret; 2138 2139 if (geom.len < length + size) 2140 return 1; 2141 return 0; 2142} 2143 2144/* 2145 * in order to insert checksums into the metadata in large chunks, 2146 * we wait until bio submission time. All the pages in the bio are 2147 * checksummed and sums are attached onto the ordered extent record. 2148 * 2149 * At IO completion time the cums attached on the ordered extent record 2150 * are inserted into the btree 2151 */ 2152static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 2153 u64 bio_offset) 2154{ 2155 struct inode *inode = private_data; 2156 2157 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2158} 2159 2160/* 2161 * extent_io.c submission hook. This does the right thing for csum calculation 2162 * on write, or reading the csums from the tree before a read. 2163 * 2164 * Rules about async/sync submit, 2165 * a) read: sync submit 2166 * 2167 * b) write without checksum: sync submit 2168 * 2169 * c) write with checksum: 2170 * c-1) if bio is issued by fsync: sync submit 2171 * (sync_writers != 0) 2172 * 2173 * c-2) if root is reloc root: sync submit 2174 * (only in case of buffered IO) 2175 * 2176 * c-3) otherwise: async submit 2177 */ 2178blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 2179 int mirror_num, unsigned long bio_flags) 2180 2181{ 2182 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2183 struct btrfs_root *root = BTRFS_I(inode)->root; 2184 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2185 blk_status_t ret = 0; 2186 int skip_sum; 2187 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2188 2189 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2190 2191 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2192 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2193 2194 if (bio_op(bio) != REQ_OP_WRITE) { 2195 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2196 if (ret) 2197 goto out; 2198 2199 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2200 ret = btrfs_submit_compressed_read(inode, bio, 2201 mirror_num, 2202 bio_flags); 2203 goto out; 2204 } else if (!skip_sum) { 2205 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL); 2206 if (ret) 2207 goto out; 2208 } 2209 goto mapit; 2210 } else if (async && !skip_sum) { 2211 /* csum items have already been cloned */ 2212 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2213 goto mapit; 2214 /* we're doing a write, do the async checksumming */ 2215 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2216 0, inode, btrfs_submit_bio_start); 2217 goto out; 2218 } else if (!skip_sum) { 2219 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2220 if (ret) 2221 goto out; 2222 } 2223 2224mapit: 2225 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2226 2227out: 2228 if (ret) { 2229 bio->bi_status = ret; 2230 bio_endio(bio); 2231 } 2232 return ret; 2233} 2234 2235/* 2236 * given a list of ordered sums record them in the inode. This happens 2237 * at IO completion time based on sums calculated at bio submission time. 2238 */ 2239static int add_pending_csums(struct btrfs_trans_handle *trans, 2240 struct list_head *list) 2241{ 2242 struct btrfs_ordered_sum *sum; 2243 int ret; 2244 2245 list_for_each_entry(sum, list, list) { 2246 trans->adding_csums = true; 2247 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum); 2248 trans->adding_csums = false; 2249 if (ret) 2250 return ret; 2251 } 2252 return 0; 2253} 2254 2255static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2256 const u64 start, 2257 const u64 len, 2258 struct extent_state **cached_state) 2259{ 2260 u64 search_start = start; 2261 const u64 end = start + len - 1; 2262 2263 while (search_start < end) { 2264 const u64 search_len = end - search_start + 1; 2265 struct extent_map *em; 2266 u64 em_len; 2267 int ret = 0; 2268 2269 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2270 if (IS_ERR(em)) 2271 return PTR_ERR(em); 2272 2273 if (em->block_start != EXTENT_MAP_HOLE) 2274 goto next; 2275 2276 em_len = em->len; 2277 if (em->start < search_start) 2278 em_len -= search_start - em->start; 2279 if (em_len > search_len) 2280 em_len = search_len; 2281 2282 ret = set_extent_bit(&inode->io_tree, search_start, 2283 search_start + em_len - 1, 2284 EXTENT_DELALLOC_NEW, 2285 NULL, cached_state, GFP_NOFS); 2286next: 2287 search_start = extent_map_end(em); 2288 free_extent_map(em); 2289 if (ret) 2290 return ret; 2291 } 2292 return 0; 2293} 2294 2295int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2296 unsigned int extra_bits, 2297 struct extent_state **cached_state) 2298{ 2299 WARN_ON(PAGE_ALIGNED(end)); 2300 2301 if (start >= i_size_read(&inode->vfs_inode) && 2302 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2303 /* 2304 * There can't be any extents following eof in this case so just 2305 * set the delalloc new bit for the range directly. 2306 */ 2307 extra_bits |= EXTENT_DELALLOC_NEW; 2308 } else { 2309 int ret; 2310 2311 ret = btrfs_find_new_delalloc_bytes(inode, start, 2312 end + 1 - start, 2313 cached_state); 2314 if (ret) 2315 return ret; 2316 } 2317 2318 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2319 cached_state); 2320} 2321 2322/* see btrfs_writepage_start_hook for details on why this is required */ 2323struct btrfs_writepage_fixup { 2324 struct page *page; 2325 struct inode *inode; 2326 struct btrfs_work work; 2327}; 2328 2329static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2330{ 2331 struct btrfs_writepage_fixup *fixup; 2332 struct btrfs_ordered_extent *ordered; 2333 struct extent_state *cached_state = NULL; 2334 struct extent_changeset *data_reserved = NULL; 2335 struct page *page; 2336 struct btrfs_inode *inode; 2337 u64 page_start; 2338 u64 page_end; 2339 int ret = 0; 2340 bool free_delalloc_space = true; 2341 2342 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2343 page = fixup->page; 2344 inode = BTRFS_I(fixup->inode); 2345 page_start = page_offset(page); 2346 page_end = page_offset(page) + PAGE_SIZE - 1; 2347 2348 /* 2349 * This is similar to page_mkwrite, we need to reserve the space before 2350 * we take the page lock. 2351 */ 2352 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2353 PAGE_SIZE); 2354again: 2355 lock_page(page); 2356 2357 /* 2358 * Before we queued this fixup, we took a reference on the page. 2359 * page->mapping may go NULL, but it shouldn't be moved to a different 2360 * address space. 2361 */ 2362 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2363 /* 2364 * Unfortunately this is a little tricky, either 2365 * 2366 * 1) We got here and our page had already been dealt with and 2367 * we reserved our space, thus ret == 0, so we need to just 2368 * drop our space reservation and bail. This can happen the 2369 * first time we come into the fixup worker, or could happen 2370 * while waiting for the ordered extent. 2371 * 2) Our page was already dealt with, but we happened to get an 2372 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2373 * this case we obviously don't have anything to release, but 2374 * because the page was already dealt with we don't want to 2375 * mark the page with an error, so make sure we're resetting 2376 * ret to 0. This is why we have this check _before_ the ret 2377 * check, because we do not want to have a surprise ENOSPC 2378 * when the page was already properly dealt with. 2379 */ 2380 if (!ret) { 2381 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2382 btrfs_delalloc_release_space(inode, data_reserved, 2383 page_start, PAGE_SIZE, 2384 true); 2385 } 2386 ret = 0; 2387 goto out_page; 2388 } 2389 2390 /* 2391 * We can't mess with the page state unless it is locked, so now that 2392 * it is locked bail if we failed to make our space reservation. 2393 */ 2394 if (ret) 2395 goto out_page; 2396 2397 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 2398 2399 /* already ordered? We're done */ 2400 if (PagePrivate2(page)) 2401 goto out_reserved; 2402 2403 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2404 if (ordered) { 2405 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2406 &cached_state); 2407 unlock_page(page); 2408 btrfs_start_ordered_extent(ordered, 1); 2409 btrfs_put_ordered_extent(ordered); 2410 goto again; 2411 } 2412 2413 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2414 &cached_state); 2415 if (ret) 2416 goto out_reserved; 2417 2418 /* 2419 * Everything went as planned, we're now the owner of a dirty page with 2420 * delayed allocation bits set and space reserved for our COW 2421 * destination. 2422 * 2423 * The page was dirty when we started, nothing should have cleaned it. 2424 */ 2425 BUG_ON(!PageDirty(page)); 2426 free_delalloc_space = false; 2427out_reserved: 2428 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2429 if (free_delalloc_space) 2430 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2431 PAGE_SIZE, true); 2432 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2433 &cached_state); 2434out_page: 2435 if (ret) { 2436 /* 2437 * We hit ENOSPC or other errors. Update the mapping and page 2438 * to reflect the errors and clean the page. 2439 */ 2440 mapping_set_error(page->mapping, ret); 2441 end_extent_writepage(page, ret, page_start, page_end); 2442 clear_page_dirty_for_io(page); 2443 SetPageError(page); 2444 } 2445 ClearPageChecked(page); 2446 unlock_page(page); 2447 put_page(page); 2448 kfree(fixup); 2449 extent_changeset_free(data_reserved); 2450 /* 2451 * As a precaution, do a delayed iput in case it would be the last iput 2452 * that could need flushing space. Recursing back to fixup worker would 2453 * deadlock. 2454 */ 2455 btrfs_add_delayed_iput(&inode->vfs_inode); 2456} 2457 2458/* 2459 * There are a few paths in the higher layers of the kernel that directly 2460 * set the page dirty bit without asking the filesystem if it is a 2461 * good idea. This causes problems because we want to make sure COW 2462 * properly happens and the data=ordered rules are followed. 2463 * 2464 * In our case any range that doesn't have the ORDERED bit set 2465 * hasn't been properly setup for IO. We kick off an async process 2466 * to fix it up. The async helper will wait for ordered extents, set 2467 * the delalloc bit and make it safe to write the page. 2468 */ 2469int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2470{ 2471 struct inode *inode = page->mapping->host; 2472 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2473 struct btrfs_writepage_fixup *fixup; 2474 2475 /* this page is properly in the ordered list */ 2476 if (TestClearPagePrivate2(page)) 2477 return 0; 2478 2479 /* 2480 * PageChecked is set below when we create a fixup worker for this page, 2481 * don't try to create another one if we're already PageChecked() 2482 * 2483 * The extent_io writepage code will redirty the page if we send back 2484 * EAGAIN. 2485 */ 2486 if (PageChecked(page)) 2487 return -EAGAIN; 2488 2489 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2490 if (!fixup) 2491 return -EAGAIN; 2492 2493 /* 2494 * We are already holding a reference to this inode from 2495 * write_cache_pages. We need to hold it because the space reservation 2496 * takes place outside of the page lock, and we can't trust 2497 * page->mapping outside of the page lock. 2498 */ 2499 ihold(inode); 2500 SetPageChecked(page); 2501 get_page(page); 2502 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2503 fixup->page = page; 2504 fixup->inode = inode; 2505 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2506 2507 return -EAGAIN; 2508} 2509 2510static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2511 struct btrfs_inode *inode, u64 file_pos, 2512 struct btrfs_file_extent_item *stack_fi, 2513 u64 qgroup_reserved) 2514{ 2515 struct btrfs_root *root = inode->root; 2516 struct btrfs_path *path; 2517 struct extent_buffer *leaf; 2518 struct btrfs_key ins; 2519 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2520 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2521 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2522 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2523 int extent_inserted = 0; 2524 int ret; 2525 2526 path = btrfs_alloc_path(); 2527 if (!path) 2528 return -ENOMEM; 2529 2530 /* 2531 * we may be replacing one extent in the tree with another. 2532 * The new extent is pinned in the extent map, and we don't want 2533 * to drop it from the cache until it is completely in the btree. 2534 * 2535 * So, tell btrfs_drop_extents to leave this extent in the cache. 2536 * the caller is expected to unpin it and allow it to be merged 2537 * with the others. 2538 */ 2539 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2540 file_pos + num_bytes, NULL, 0, 2541 1, sizeof(*stack_fi), &extent_inserted); 2542 if (ret) 2543 goto out; 2544 2545 if (!extent_inserted) { 2546 ins.objectid = btrfs_ino(inode); 2547 ins.offset = file_pos; 2548 ins.type = BTRFS_EXTENT_DATA_KEY; 2549 2550 path->leave_spinning = 1; 2551 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2552 sizeof(*stack_fi)); 2553 if (ret) 2554 goto out; 2555 } 2556 leaf = path->nodes[0]; 2557 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2558 write_extent_buffer(leaf, stack_fi, 2559 btrfs_item_ptr_offset(leaf, path->slots[0]), 2560 sizeof(struct btrfs_file_extent_item)); 2561 2562 btrfs_mark_buffer_dirty(leaf); 2563 btrfs_release_path(path); 2564 2565 inode_add_bytes(&inode->vfs_inode, num_bytes); 2566 2567 ins.objectid = disk_bytenr; 2568 ins.offset = disk_num_bytes; 2569 ins.type = BTRFS_EXTENT_ITEM_KEY; 2570 2571 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2572 if (ret) 2573 goto out; 2574 2575 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2576 file_pos, qgroup_reserved, &ins); 2577out: 2578 btrfs_free_path(path); 2579 2580 return ret; 2581} 2582 2583static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2584 u64 start, u64 len) 2585{ 2586 struct btrfs_block_group *cache; 2587 2588 cache = btrfs_lookup_block_group(fs_info, start); 2589 ASSERT(cache); 2590 2591 spin_lock(&cache->lock); 2592 cache->delalloc_bytes -= len; 2593 spin_unlock(&cache->lock); 2594 2595 btrfs_put_block_group(cache); 2596} 2597 2598static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2599 struct btrfs_ordered_extent *oe) 2600{ 2601 struct btrfs_file_extent_item stack_fi; 2602 u64 logical_len; 2603 2604 memset(&stack_fi, 0, sizeof(stack_fi)); 2605 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2606 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2607 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2608 oe->disk_num_bytes); 2609 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2610 logical_len = oe->truncated_len; 2611 else 2612 logical_len = oe->num_bytes; 2613 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len); 2614 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len); 2615 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2616 /* Encryption and other encoding is reserved and all 0 */ 2617 2618 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 2619 oe->file_offset, &stack_fi, 2620 oe->qgroup_rsv); 2621} 2622 2623/* 2624 * As ordered data IO finishes, this gets called so we can finish 2625 * an ordered extent if the range of bytes in the file it covers are 2626 * fully written. 2627 */ 2628static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2629{ 2630 struct inode *inode = ordered_extent->inode; 2631 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2632 struct btrfs_root *root = BTRFS_I(inode)->root; 2633 struct btrfs_trans_handle *trans = NULL; 2634 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2635 struct extent_state *cached_state = NULL; 2636 u64 start, end; 2637 int compress_type = 0; 2638 int ret = 0; 2639 u64 logical_len = ordered_extent->num_bytes; 2640 bool freespace_inode; 2641 bool truncated = false; 2642 bool range_locked = false; 2643 bool clear_new_delalloc_bytes = false; 2644 bool clear_reserved_extent = true; 2645 unsigned int clear_bits; 2646 2647 start = ordered_extent->file_offset; 2648 end = start + ordered_extent->num_bytes - 1; 2649 2650 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2651 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2652 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2653 clear_new_delalloc_bytes = true; 2654 2655 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 2656 2657 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2658 ret = -EIO; 2659 goto out; 2660 } 2661 2662 btrfs_free_io_failure_record(BTRFS_I(inode), start, end); 2663 2664 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2665 truncated = true; 2666 logical_len = ordered_extent->truncated_len; 2667 /* Truncated the entire extent, don't bother adding */ 2668 if (!logical_len) 2669 goto out; 2670 } 2671 2672 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2673 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2674 2675 btrfs_inode_safe_disk_i_size_write(inode, 0); 2676 if (freespace_inode) 2677 trans = btrfs_join_transaction_spacecache(root); 2678 else 2679 trans = btrfs_join_transaction(root); 2680 if (IS_ERR(trans)) { 2681 ret = PTR_ERR(trans); 2682 trans = NULL; 2683 goto out; 2684 } 2685 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2686 ret = btrfs_update_inode_fallback(trans, root, inode); 2687 if (ret) /* -ENOMEM or corruption */ 2688 btrfs_abort_transaction(trans, ret); 2689 goto out; 2690 } 2691 2692 range_locked = true; 2693 lock_extent_bits(io_tree, start, end, &cached_state); 2694 2695 if (freespace_inode) 2696 trans = btrfs_join_transaction_spacecache(root); 2697 else 2698 trans = btrfs_join_transaction(root); 2699 if (IS_ERR(trans)) { 2700 ret = PTR_ERR(trans); 2701 trans = NULL; 2702 goto out; 2703 } 2704 2705 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2706 2707 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2708 compress_type = ordered_extent->compress_type; 2709 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2710 BUG_ON(compress_type); 2711 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 2712 ordered_extent->file_offset, 2713 ordered_extent->file_offset + 2714 logical_len); 2715 } else { 2716 BUG_ON(root == fs_info->tree_root); 2717 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 2718 if (!ret) { 2719 clear_reserved_extent = false; 2720 btrfs_release_delalloc_bytes(fs_info, 2721 ordered_extent->disk_bytenr, 2722 ordered_extent->disk_num_bytes); 2723 } 2724 } 2725 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2726 ordered_extent->file_offset, 2727 ordered_extent->num_bytes, trans->transid); 2728 if (ret < 0) { 2729 btrfs_abort_transaction(trans, ret); 2730 goto out; 2731 } 2732 2733 ret = add_pending_csums(trans, &ordered_extent->list); 2734 if (ret) { 2735 btrfs_abort_transaction(trans, ret); 2736 goto out; 2737 } 2738 2739 btrfs_inode_safe_disk_i_size_write(inode, 0); 2740 ret = btrfs_update_inode_fallback(trans, root, inode); 2741 if (ret) { /* -ENOMEM or corruption */ 2742 btrfs_abort_transaction(trans, ret); 2743 goto out; 2744 } 2745 ret = 0; 2746out: 2747 clear_bits = EXTENT_DEFRAG; 2748 if (range_locked) 2749 clear_bits |= EXTENT_LOCKED; 2750 if (clear_new_delalloc_bytes) 2751 clear_bits |= EXTENT_DELALLOC_NEW; 2752 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 2753 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 2754 &cached_state); 2755 2756 if (trans) 2757 btrfs_end_transaction(trans); 2758 2759 if (ret || truncated) { 2760 u64 unwritten_start = start; 2761 2762 /* 2763 * If we failed to finish this ordered extent for any reason we 2764 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 2765 * extent, and mark the inode with the error if it wasn't 2766 * already set. Any error during writeback would have already 2767 * set the mapping error, so we need to set it if we're the ones 2768 * marking this ordered extent as failed. 2769 */ 2770 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 2771 &ordered_extent->flags)) 2772 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 2773 2774 if (truncated) 2775 unwritten_start += logical_len; 2776 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 2777 2778 /* Drop the cache for the part of the extent we didn't write. */ 2779 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0); 2780 2781 /* 2782 * If the ordered extent had an IOERR or something else went 2783 * wrong we need to return the space for this ordered extent 2784 * back to the allocator. We only free the extent in the 2785 * truncated case if we didn't write out the extent at all. 2786 * 2787 * If we made it past insert_reserved_file_extent before we 2788 * errored out then we don't need to do this as the accounting 2789 * has already been done. 2790 */ 2791 if ((ret || !logical_len) && 2792 clear_reserved_extent && 2793 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2794 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2795 /* 2796 * Discard the range before returning it back to the 2797 * free space pool 2798 */ 2799 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 2800 btrfs_discard_extent(fs_info, 2801 ordered_extent->disk_bytenr, 2802 ordered_extent->disk_num_bytes, 2803 NULL); 2804 btrfs_free_reserved_extent(fs_info, 2805 ordered_extent->disk_bytenr, 2806 ordered_extent->disk_num_bytes, 1); 2807 } 2808 } 2809 2810 /* 2811 * This needs to be done to make sure anybody waiting knows we are done 2812 * updating everything for this ordered extent. 2813 */ 2814 btrfs_remove_ordered_extent(BTRFS_I(inode), ordered_extent); 2815 2816 /* once for us */ 2817 btrfs_put_ordered_extent(ordered_extent); 2818 /* once for the tree */ 2819 btrfs_put_ordered_extent(ordered_extent); 2820 2821 return ret; 2822} 2823 2824static void finish_ordered_fn(struct btrfs_work *work) 2825{ 2826 struct btrfs_ordered_extent *ordered_extent; 2827 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2828 btrfs_finish_ordered_io(ordered_extent); 2829} 2830 2831void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 2832 u64 end, int uptodate) 2833{ 2834 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 2835 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2836 struct btrfs_ordered_extent *ordered_extent = NULL; 2837 struct btrfs_workqueue *wq; 2838 2839 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2840 2841 ClearPagePrivate2(page); 2842 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2843 end - start + 1, uptodate)) 2844 return; 2845 2846 if (btrfs_is_free_space_inode(inode)) 2847 wq = fs_info->endio_freespace_worker; 2848 else 2849 wq = fs_info->endio_write_workers; 2850 2851 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 2852 btrfs_queue_work(wq, &ordered_extent->work); 2853} 2854 2855static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, 2856 int icsum, struct page *page, int pgoff, u64 start, 2857 size_t len) 2858{ 2859 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2860 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 2861 char *kaddr; 2862 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2863 u8 *csum_expected; 2864 u8 csum[BTRFS_CSUM_SIZE]; 2865 2866 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; 2867 2868 kaddr = kmap_atomic(page); 2869 shash->tfm = fs_info->csum_shash; 2870 2871 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 2872 2873 if (memcmp(csum, csum_expected, csum_size)) 2874 goto zeroit; 2875 2876 kunmap_atomic(kaddr); 2877 return 0; 2878zeroit: 2879 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 2880 io_bio->mirror_num); 2881 if (io_bio->device) 2882 btrfs_dev_stat_inc_and_print(io_bio->device, 2883 BTRFS_DEV_STAT_CORRUPTION_ERRS); 2884 memset(kaddr + pgoff, 1, len); 2885 flush_dcache_page(page); 2886 kunmap_atomic(kaddr); 2887 return -EIO; 2888} 2889 2890/* 2891 * when reads are done, we need to check csums to verify the data is correct 2892 * if there's a match, we allow the bio to finish. If not, the code in 2893 * extent_io.c will try to find good copies for us. 2894 */ 2895int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u64 phy_offset, 2896 struct page *page, u64 start, u64 end, int mirror) 2897{ 2898 size_t offset = start - page_offset(page); 2899 struct inode *inode = page->mapping->host; 2900 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2901 struct btrfs_root *root = BTRFS_I(inode)->root; 2902 2903 if (PageChecked(page)) { 2904 ClearPageChecked(page); 2905 return 0; 2906 } 2907 2908 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2909 return 0; 2910 2911 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2912 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2913 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 2914 return 0; 2915 } 2916 2917 phy_offset >>= inode->i_sb->s_blocksize_bits; 2918 return check_data_csum(inode, io_bio, phy_offset, page, offset, start, 2919 (size_t)(end - start + 1)); 2920} 2921 2922/* 2923 * btrfs_add_delayed_iput - perform a delayed iput on @inode 2924 * 2925 * @inode: The inode we want to perform iput on 2926 * 2927 * This function uses the generic vfs_inode::i_count to track whether we should 2928 * just decrement it (in case it's > 1) or if this is the last iput then link 2929 * the inode to the delayed iput machinery. Delayed iputs are processed at 2930 * transaction commit time/superblock commit/cleaner kthread. 2931 */ 2932void btrfs_add_delayed_iput(struct inode *inode) 2933{ 2934 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2935 struct btrfs_inode *binode = BTRFS_I(inode); 2936 2937 if (atomic_add_unless(&inode->i_count, -1, 1)) 2938 return; 2939 2940 atomic_inc(&fs_info->nr_delayed_iputs); 2941 spin_lock(&fs_info->delayed_iput_lock); 2942 ASSERT(list_empty(&binode->delayed_iput)); 2943 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 2944 spin_unlock(&fs_info->delayed_iput_lock); 2945 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 2946 wake_up_process(fs_info->cleaner_kthread); 2947} 2948 2949static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 2950 struct btrfs_inode *inode) 2951{ 2952 list_del_init(&inode->delayed_iput); 2953 spin_unlock(&fs_info->delayed_iput_lock); 2954 iput(&inode->vfs_inode); 2955 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 2956 wake_up(&fs_info->delayed_iputs_wait); 2957 spin_lock(&fs_info->delayed_iput_lock); 2958} 2959 2960static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 2961 struct btrfs_inode *inode) 2962{ 2963 if (!list_empty(&inode->delayed_iput)) { 2964 spin_lock(&fs_info->delayed_iput_lock); 2965 if (!list_empty(&inode->delayed_iput)) 2966 run_delayed_iput_locked(fs_info, inode); 2967 spin_unlock(&fs_info->delayed_iput_lock); 2968 } 2969} 2970 2971void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 2972{ 2973 2974 spin_lock(&fs_info->delayed_iput_lock); 2975 while (!list_empty(&fs_info->delayed_iputs)) { 2976 struct btrfs_inode *inode; 2977 2978 inode = list_first_entry(&fs_info->delayed_iputs, 2979 struct btrfs_inode, delayed_iput); 2980 run_delayed_iput_locked(fs_info, inode); 2981 cond_resched_lock(&fs_info->delayed_iput_lock); 2982 } 2983 spin_unlock(&fs_info->delayed_iput_lock); 2984} 2985 2986/** 2987 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 2988 * @fs_info - the fs_info for this fs 2989 * @return - EINTR if we were killed, 0 if nothing's pending 2990 * 2991 * This will wait on any delayed iputs that are currently running with KILLABLE 2992 * set. Once they are all done running we will return, unless we are killed in 2993 * which case we return EINTR. This helps in user operations like fallocate etc 2994 * that might get blocked on the iputs. 2995 */ 2996int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 2997{ 2998 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 2999 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3000 if (ret) 3001 return -EINTR; 3002 return 0; 3003} 3004 3005/* 3006 * This creates an orphan entry for the given inode in case something goes wrong 3007 * in the middle of an unlink. 3008 */ 3009int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3010 struct btrfs_inode *inode) 3011{ 3012 int ret; 3013 3014 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3015 if (ret && ret != -EEXIST) { 3016 btrfs_abort_transaction(trans, ret); 3017 return ret; 3018 } 3019 3020 return 0; 3021} 3022 3023/* 3024 * We have done the delete so we can go ahead and remove the orphan item for 3025 * this particular inode. 3026 */ 3027static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3028 struct btrfs_inode *inode) 3029{ 3030 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3031} 3032 3033/* 3034 * this cleans up any orphans that may be left on the list from the last use 3035 * of this root. 3036 */ 3037int btrfs_orphan_cleanup(struct btrfs_root *root) 3038{ 3039 struct btrfs_fs_info *fs_info = root->fs_info; 3040 struct btrfs_path *path; 3041 struct extent_buffer *leaf; 3042 struct btrfs_key key, found_key; 3043 struct btrfs_trans_handle *trans; 3044 struct inode *inode; 3045 u64 last_objectid = 0; 3046 int ret = 0, nr_unlink = 0; 3047 3048 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3049 return 0; 3050 3051 path = btrfs_alloc_path(); 3052 if (!path) { 3053 ret = -ENOMEM; 3054 goto out; 3055 } 3056 path->reada = READA_BACK; 3057 3058 key.objectid = BTRFS_ORPHAN_OBJECTID; 3059 key.type = BTRFS_ORPHAN_ITEM_KEY; 3060 key.offset = (u64)-1; 3061 3062 while (1) { 3063 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3064 if (ret < 0) 3065 goto out; 3066 3067 /* 3068 * if ret == 0 means we found what we were searching for, which 3069 * is weird, but possible, so only screw with path if we didn't 3070 * find the key and see if we have stuff that matches 3071 */ 3072 if (ret > 0) { 3073 ret = 0; 3074 if (path->slots[0] == 0) 3075 break; 3076 path->slots[0]--; 3077 } 3078 3079 /* pull out the item */ 3080 leaf = path->nodes[0]; 3081 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3082 3083 /* make sure the item matches what we want */ 3084 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3085 break; 3086 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3087 break; 3088 3089 /* release the path since we're done with it */ 3090 btrfs_release_path(path); 3091 3092 /* 3093 * this is where we are basically btrfs_lookup, without the 3094 * crossing root thing. we store the inode number in the 3095 * offset of the orphan item. 3096 */ 3097 3098 if (found_key.offset == last_objectid) { 3099 btrfs_err(fs_info, 3100 "Error removing orphan entry, stopping orphan cleanup"); 3101 ret = -EINVAL; 3102 goto out; 3103 } 3104 3105 last_objectid = found_key.offset; 3106 3107 found_key.objectid = found_key.offset; 3108 found_key.type = BTRFS_INODE_ITEM_KEY; 3109 found_key.offset = 0; 3110 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3111 ret = PTR_ERR_OR_ZERO(inode); 3112 if (ret && ret != -ENOENT) 3113 goto out; 3114 3115 if (ret == -ENOENT && root == fs_info->tree_root) { 3116 struct btrfs_root *dead_root; 3117 int is_dead_root = 0; 3118 3119 /* 3120 * this is an orphan in the tree root. Currently these 3121 * could come from 2 sources: 3122 * a) a snapshot deletion in progress 3123 * b) a free space cache inode 3124 * We need to distinguish those two, as the snapshot 3125 * orphan must not get deleted. 3126 * find_dead_roots already ran before us, so if this 3127 * is a snapshot deletion, we should find the root 3128 * in the fs_roots radix tree. 3129 */ 3130 3131 spin_lock(&fs_info->fs_roots_radix_lock); 3132 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3133 (unsigned long)found_key.objectid); 3134 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3135 is_dead_root = 1; 3136 spin_unlock(&fs_info->fs_roots_radix_lock); 3137 3138 if (is_dead_root) { 3139 /* prevent this orphan from being found again */ 3140 key.offset = found_key.objectid - 1; 3141 continue; 3142 } 3143 3144 } 3145 3146 /* 3147 * If we have an inode with links, there are a couple of 3148 * possibilities. Old kernels (before v3.12) used to create an 3149 * orphan item for truncate indicating that there were possibly 3150 * extent items past i_size that needed to be deleted. In v3.12, 3151 * truncate was changed to update i_size in sync with the extent 3152 * items, but the (useless) orphan item was still created. Since 3153 * v4.18, we don't create the orphan item for truncate at all. 3154 * 3155 * So, this item could mean that we need to do a truncate, but 3156 * only if this filesystem was last used on a pre-v3.12 kernel 3157 * and was not cleanly unmounted. The odds of that are quite 3158 * slim, and it's a pain to do the truncate now, so just delete 3159 * the orphan item. 3160 * 3161 * It's also possible that this orphan item was supposed to be 3162 * deleted but wasn't. The inode number may have been reused, 3163 * but either way, we can delete the orphan item. 3164 */ 3165 if (ret == -ENOENT || inode->i_nlink) { 3166 if (!ret) 3167 iput(inode); 3168 trans = btrfs_start_transaction(root, 1); 3169 if (IS_ERR(trans)) { 3170 ret = PTR_ERR(trans); 3171 goto out; 3172 } 3173 btrfs_debug(fs_info, "auto deleting %Lu", 3174 found_key.objectid); 3175 ret = btrfs_del_orphan_item(trans, root, 3176 found_key.objectid); 3177 btrfs_end_transaction(trans); 3178 if (ret) 3179 goto out; 3180 continue; 3181 } 3182 3183 nr_unlink++; 3184 3185 /* this will do delete_inode and everything for us */ 3186 iput(inode); 3187 } 3188 /* release the path since we're done with it */ 3189 btrfs_release_path(path); 3190 3191 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3192 3193 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3194 trans = btrfs_join_transaction(root); 3195 if (!IS_ERR(trans)) 3196 btrfs_end_transaction(trans); 3197 } 3198 3199 if (nr_unlink) 3200 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3201 3202out: 3203 if (ret) 3204 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3205 btrfs_free_path(path); 3206 return ret; 3207} 3208 3209/* 3210 * very simple check to peek ahead in the leaf looking for xattrs. If we 3211 * don't find any xattrs, we know there can't be any acls. 3212 * 3213 * slot is the slot the inode is in, objectid is the objectid of the inode 3214 */ 3215static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3216 int slot, u64 objectid, 3217 int *first_xattr_slot) 3218{ 3219 u32 nritems = btrfs_header_nritems(leaf); 3220 struct btrfs_key found_key; 3221 static u64 xattr_access = 0; 3222 static u64 xattr_default = 0; 3223 int scanned = 0; 3224 3225 if (!xattr_access) { 3226 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3227 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3228 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3229 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3230 } 3231 3232 slot++; 3233 *first_xattr_slot = -1; 3234 while (slot < nritems) { 3235 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3236 3237 /* we found a different objectid, there must not be acls */ 3238 if (found_key.objectid != objectid) 3239 return 0; 3240 3241 /* we found an xattr, assume we've got an acl */ 3242 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3243 if (*first_xattr_slot == -1) 3244 *first_xattr_slot = slot; 3245 if (found_key.offset == xattr_access || 3246 found_key.offset == xattr_default) 3247 return 1; 3248 } 3249 3250 /* 3251 * we found a key greater than an xattr key, there can't 3252 * be any acls later on 3253 */ 3254 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3255 return 0; 3256 3257 slot++; 3258 scanned++; 3259 3260 /* 3261 * it goes inode, inode backrefs, xattrs, extents, 3262 * so if there are a ton of hard links to an inode there can 3263 * be a lot of backrefs. Don't waste time searching too hard, 3264 * this is just an optimization 3265 */ 3266 if (scanned >= 8) 3267 break; 3268 } 3269 /* we hit the end of the leaf before we found an xattr or 3270 * something larger than an xattr. We have to assume the inode 3271 * has acls 3272 */ 3273 if (*first_xattr_slot == -1) 3274 *first_xattr_slot = slot; 3275 return 1; 3276} 3277 3278/* 3279 * read an inode from the btree into the in-memory inode 3280 */ 3281static int btrfs_read_locked_inode(struct inode *inode, 3282 struct btrfs_path *in_path) 3283{ 3284 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3285 struct btrfs_path *path = in_path; 3286 struct extent_buffer *leaf; 3287 struct btrfs_inode_item *inode_item; 3288 struct btrfs_root *root = BTRFS_I(inode)->root; 3289 struct btrfs_key location; 3290 unsigned long ptr; 3291 int maybe_acls; 3292 u32 rdev; 3293 int ret; 3294 bool filled = false; 3295 int first_xattr_slot; 3296 3297 ret = btrfs_fill_inode(inode, &rdev); 3298 if (!ret) 3299 filled = true; 3300 3301 if (!path) { 3302 path = btrfs_alloc_path(); 3303 if (!path) 3304 return -ENOMEM; 3305 } 3306 3307 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3308 3309 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3310 if (ret) { 3311 if (path != in_path) 3312 btrfs_free_path(path); 3313 return ret; 3314 } 3315 3316 leaf = path->nodes[0]; 3317 3318 if (filled) 3319 goto cache_index; 3320 3321 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3322 struct btrfs_inode_item); 3323 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3324 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3325 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3326 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3327 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3328 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3329 round_up(i_size_read(inode), fs_info->sectorsize)); 3330 3331 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3332 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3333 3334 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3335 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3336 3337 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3338 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3339 3340 BTRFS_I(inode)->i_otime.tv_sec = 3341 btrfs_timespec_sec(leaf, &inode_item->otime); 3342 BTRFS_I(inode)->i_otime.tv_nsec = 3343 btrfs_timespec_nsec(leaf, &inode_item->otime); 3344 3345 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3346 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3347 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3348 3349 inode_set_iversion_queried(inode, 3350 btrfs_inode_sequence(leaf, inode_item)); 3351 inode->i_generation = BTRFS_I(inode)->generation; 3352 inode->i_rdev = 0; 3353 rdev = btrfs_inode_rdev(leaf, inode_item); 3354 3355 BTRFS_I(inode)->index_cnt = (u64)-1; 3356 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3357 3358cache_index: 3359 /* 3360 * If we were modified in the current generation and evicted from memory 3361 * and then re-read we need to do a full sync since we don't have any 3362 * idea about which extents were modified before we were evicted from 3363 * cache. 3364 * 3365 * This is required for both inode re-read from disk and delayed inode 3366 * in delayed_nodes_tree. 3367 */ 3368 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3369 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3370 &BTRFS_I(inode)->runtime_flags); 3371 3372 /* 3373 * We don't persist the id of the transaction where an unlink operation 3374 * against the inode was last made. So here we assume the inode might 3375 * have been evicted, and therefore the exact value of last_unlink_trans 3376 * lost, and set it to last_trans to avoid metadata inconsistencies 3377 * between the inode and its parent if the inode is fsync'ed and the log 3378 * replayed. For example, in the scenario: 3379 * 3380 * touch mydir/foo 3381 * ln mydir/foo mydir/bar 3382 * sync 3383 * unlink mydir/bar 3384 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3385 * xfs_io -c fsync mydir/foo 3386 * <power failure> 3387 * mount fs, triggers fsync log replay 3388 * 3389 * We must make sure that when we fsync our inode foo we also log its 3390 * parent inode, otherwise after log replay the parent still has the 3391 * dentry with the "bar" name but our inode foo has a link count of 1 3392 * and doesn't have an inode ref with the name "bar" anymore. 3393 * 3394 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3395 * but it guarantees correctness at the expense of occasional full 3396 * transaction commits on fsync if our inode is a directory, or if our 3397 * inode is not a directory, logging its parent unnecessarily. 3398 */ 3399 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3400 3401 /* 3402 * Same logic as for last_unlink_trans. We don't persist the generation 3403 * of the last transaction where this inode was used for a reflink 3404 * operation, so after eviction and reloading the inode we must be 3405 * pessimistic and assume the last transaction that modified the inode. 3406 */ 3407 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3408 3409 path->slots[0]++; 3410 if (inode->i_nlink != 1 || 3411 path->slots[0] >= btrfs_header_nritems(leaf)) 3412 goto cache_acl; 3413 3414 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3415 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3416 goto cache_acl; 3417 3418 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3419 if (location.type == BTRFS_INODE_REF_KEY) { 3420 struct btrfs_inode_ref *ref; 3421 3422 ref = (struct btrfs_inode_ref *)ptr; 3423 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3424 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3425 struct btrfs_inode_extref *extref; 3426 3427 extref = (struct btrfs_inode_extref *)ptr; 3428 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3429 extref); 3430 } 3431cache_acl: 3432 /* 3433 * try to precache a NULL acl entry for files that don't have 3434 * any xattrs or acls 3435 */ 3436 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3437 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3438 if (first_xattr_slot != -1) { 3439 path->slots[0] = first_xattr_slot; 3440 ret = btrfs_load_inode_props(inode, path); 3441 if (ret) 3442 btrfs_err(fs_info, 3443 "error loading props for ino %llu (root %llu): %d", 3444 btrfs_ino(BTRFS_I(inode)), 3445 root->root_key.objectid, ret); 3446 } 3447 if (path != in_path) 3448 btrfs_free_path(path); 3449 3450 if (!maybe_acls) 3451 cache_no_acl(inode); 3452 3453 switch (inode->i_mode & S_IFMT) { 3454 case S_IFREG: 3455 inode->i_mapping->a_ops = &btrfs_aops; 3456 inode->i_fop = &btrfs_file_operations; 3457 inode->i_op = &btrfs_file_inode_operations; 3458 break; 3459 case S_IFDIR: 3460 inode->i_fop = &btrfs_dir_file_operations; 3461 inode->i_op = &btrfs_dir_inode_operations; 3462 break; 3463 case S_IFLNK: 3464 inode->i_op = &btrfs_symlink_inode_operations; 3465 inode_nohighmem(inode); 3466 inode->i_mapping->a_ops = &btrfs_aops; 3467 break; 3468 default: 3469 inode->i_op = &btrfs_special_inode_operations; 3470 init_special_inode(inode, inode->i_mode, rdev); 3471 break; 3472 } 3473 3474 btrfs_sync_inode_flags_to_i_flags(inode); 3475 return 0; 3476} 3477 3478/* 3479 * given a leaf and an inode, copy the inode fields into the leaf 3480 */ 3481static void fill_inode_item(struct btrfs_trans_handle *trans, 3482 struct extent_buffer *leaf, 3483 struct btrfs_inode_item *item, 3484 struct inode *inode) 3485{ 3486 struct btrfs_map_token token; 3487 3488 btrfs_init_map_token(&token, leaf); 3489 3490 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3491 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3492 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3493 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3494 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3495 3496 btrfs_set_token_timespec_sec(&token, &item->atime, 3497 inode->i_atime.tv_sec); 3498 btrfs_set_token_timespec_nsec(&token, &item->atime, 3499 inode->i_atime.tv_nsec); 3500 3501 btrfs_set_token_timespec_sec(&token, &item->mtime, 3502 inode->i_mtime.tv_sec); 3503 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3504 inode->i_mtime.tv_nsec); 3505 3506 btrfs_set_token_timespec_sec(&token, &item->ctime, 3507 inode->i_ctime.tv_sec); 3508 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3509 inode->i_ctime.tv_nsec); 3510 3511 btrfs_set_token_timespec_sec(&token, &item->otime, 3512 BTRFS_I(inode)->i_otime.tv_sec); 3513 btrfs_set_token_timespec_nsec(&token, &item->otime, 3514 BTRFS_I(inode)->i_otime.tv_nsec); 3515 3516 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3517 btrfs_set_token_inode_generation(&token, item, 3518 BTRFS_I(inode)->generation); 3519 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3520 btrfs_set_token_inode_transid(&token, item, trans->transid); 3521 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3522 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3523 btrfs_set_token_inode_block_group(&token, item, 0); 3524} 3525 3526/* 3527 * copy everything in the in-memory inode into the btree. 3528 */ 3529static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3530 struct btrfs_root *root, struct inode *inode) 3531{ 3532 struct btrfs_inode_item *inode_item; 3533 struct btrfs_path *path; 3534 struct extent_buffer *leaf; 3535 int ret; 3536 3537 path = btrfs_alloc_path(); 3538 if (!path) 3539 return -ENOMEM; 3540 3541 path->leave_spinning = 1; 3542 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3543 1); 3544 if (ret) { 3545 if (ret > 0) 3546 ret = -ENOENT; 3547 goto failed; 3548 } 3549 3550 leaf = path->nodes[0]; 3551 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3552 struct btrfs_inode_item); 3553 3554 fill_inode_item(trans, leaf, inode_item, inode); 3555 btrfs_mark_buffer_dirty(leaf); 3556 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 3557 ret = 0; 3558failed: 3559 btrfs_free_path(path); 3560 return ret; 3561} 3562 3563/* 3564 * copy everything in the in-memory inode into the btree. 3565 */ 3566noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3567 struct btrfs_root *root, struct inode *inode) 3568{ 3569 struct btrfs_fs_info *fs_info = root->fs_info; 3570 int ret; 3571 3572 /* 3573 * If the inode is a free space inode, we can deadlock during commit 3574 * if we put it into the delayed code. 3575 * 3576 * The data relocation inode should also be directly updated 3577 * without delay 3578 */ 3579 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3580 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3581 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3582 btrfs_update_root_times(trans, root); 3583 3584 ret = btrfs_delayed_update_inode(trans, root, inode); 3585 if (!ret) 3586 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 3587 return ret; 3588 } 3589 3590 return btrfs_update_inode_item(trans, root, inode); 3591} 3592 3593noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3594 struct btrfs_root *root, 3595 struct inode *inode) 3596{ 3597 int ret; 3598 3599 ret = btrfs_update_inode(trans, root, inode); 3600 if (ret == -ENOSPC) 3601 return btrfs_update_inode_item(trans, root, inode); 3602 return ret; 3603} 3604 3605/* 3606 * unlink helper that gets used here in inode.c and in the tree logging 3607 * recovery code. It remove a link in a directory with a given name, and 3608 * also drops the back refs in the inode to the directory 3609 */ 3610static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3611 struct btrfs_root *root, 3612 struct btrfs_inode *dir, 3613 struct btrfs_inode *inode, 3614 const char *name, int name_len) 3615{ 3616 struct btrfs_fs_info *fs_info = root->fs_info; 3617 struct btrfs_path *path; 3618 int ret = 0; 3619 struct btrfs_dir_item *di; 3620 u64 index; 3621 u64 ino = btrfs_ino(inode); 3622 u64 dir_ino = btrfs_ino(dir); 3623 3624 path = btrfs_alloc_path(); 3625 if (!path) { 3626 ret = -ENOMEM; 3627 goto out; 3628 } 3629 3630 path->leave_spinning = 1; 3631 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3632 name, name_len, -1); 3633 if (IS_ERR_OR_NULL(di)) { 3634 ret = di ? PTR_ERR(di) : -ENOENT; 3635 goto err; 3636 } 3637 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3638 if (ret) 3639 goto err; 3640 btrfs_release_path(path); 3641 3642 /* 3643 * If we don't have dir index, we have to get it by looking up 3644 * the inode ref, since we get the inode ref, remove it directly, 3645 * it is unnecessary to do delayed deletion. 3646 * 3647 * But if we have dir index, needn't search inode ref to get it. 3648 * Since the inode ref is close to the inode item, it is better 3649 * that we delay to delete it, and just do this deletion when 3650 * we update the inode item. 3651 */ 3652 if (inode->dir_index) { 3653 ret = btrfs_delayed_delete_inode_ref(inode); 3654 if (!ret) { 3655 index = inode->dir_index; 3656 goto skip_backref; 3657 } 3658 } 3659 3660 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3661 dir_ino, &index); 3662 if (ret) { 3663 btrfs_info(fs_info, 3664 "failed to delete reference to %.*s, inode %llu parent %llu", 3665 name_len, name, ino, dir_ino); 3666 btrfs_abort_transaction(trans, ret); 3667 goto err; 3668 } 3669skip_backref: 3670 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3671 if (ret) { 3672 btrfs_abort_transaction(trans, ret); 3673 goto err; 3674 } 3675 3676 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3677 dir_ino); 3678 if (ret != 0 && ret != -ENOENT) { 3679 btrfs_abort_transaction(trans, ret); 3680 goto err; 3681 } 3682 3683 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3684 index); 3685 if (ret == -ENOENT) 3686 ret = 0; 3687 else if (ret) 3688 btrfs_abort_transaction(trans, ret); 3689 3690 /* 3691 * If we have a pending delayed iput we could end up with the final iput 3692 * being run in btrfs-cleaner context. If we have enough of these built 3693 * up we can end up burning a lot of time in btrfs-cleaner without any 3694 * way to throttle the unlinks. Since we're currently holding a ref on 3695 * the inode we can run the delayed iput here without any issues as the 3696 * final iput won't be done until after we drop the ref we're currently 3697 * holding. 3698 */ 3699 btrfs_run_delayed_iput(fs_info, inode); 3700err: 3701 btrfs_free_path(path); 3702 if (ret) 3703 goto out; 3704 3705 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3706 inode_inc_iversion(&inode->vfs_inode); 3707 inode_inc_iversion(&dir->vfs_inode); 3708 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3709 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3710 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 3711out: 3712 return ret; 3713} 3714 3715int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3716 struct btrfs_root *root, 3717 struct btrfs_inode *dir, struct btrfs_inode *inode, 3718 const char *name, int name_len) 3719{ 3720 int ret; 3721 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3722 if (!ret) { 3723 drop_nlink(&inode->vfs_inode); 3724 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 3725 } 3726 return ret; 3727} 3728 3729/* 3730 * helper to start transaction for unlink and rmdir. 3731 * 3732 * unlink and rmdir are special in btrfs, they do not always free space, so 3733 * if we cannot make our reservations the normal way try and see if there is 3734 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3735 * allow the unlink to occur. 3736 */ 3737static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3738{ 3739 struct btrfs_root *root = BTRFS_I(dir)->root; 3740 3741 /* 3742 * 1 for the possible orphan item 3743 * 1 for the dir item 3744 * 1 for the dir index 3745 * 1 for the inode ref 3746 * 1 for the inode 3747 */ 3748 return btrfs_start_transaction_fallback_global_rsv(root, 5); 3749} 3750 3751static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3752{ 3753 struct btrfs_root *root = BTRFS_I(dir)->root; 3754 struct btrfs_trans_handle *trans; 3755 struct inode *inode = d_inode(dentry); 3756 int ret; 3757 3758 trans = __unlink_start_trans(dir); 3759 if (IS_ERR(trans)) 3760 return PTR_ERR(trans); 3761 3762 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 3763 0); 3764 3765 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 3766 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 3767 dentry->d_name.len); 3768 if (ret) 3769 goto out; 3770 3771 if (inode->i_nlink == 0) { 3772 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3773 if (ret) 3774 goto out; 3775 } 3776 3777out: 3778 btrfs_end_transaction(trans); 3779 btrfs_btree_balance_dirty(root->fs_info); 3780 return ret; 3781} 3782 3783static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3784 struct inode *dir, struct dentry *dentry) 3785{ 3786 struct btrfs_root *root = BTRFS_I(dir)->root; 3787 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 3788 struct btrfs_path *path; 3789 struct extent_buffer *leaf; 3790 struct btrfs_dir_item *di; 3791 struct btrfs_key key; 3792 const char *name = dentry->d_name.name; 3793 int name_len = dentry->d_name.len; 3794 u64 index; 3795 int ret; 3796 u64 objectid; 3797 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 3798 3799 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 3800 objectid = inode->root->root_key.objectid; 3801 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3802 objectid = inode->location.objectid; 3803 } else { 3804 WARN_ON(1); 3805 return -EINVAL; 3806 } 3807 3808 path = btrfs_alloc_path(); 3809 if (!path) 3810 return -ENOMEM; 3811 3812 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3813 name, name_len, -1); 3814 if (IS_ERR_OR_NULL(di)) { 3815 ret = di ? PTR_ERR(di) : -ENOENT; 3816 goto out; 3817 } 3818 3819 leaf = path->nodes[0]; 3820 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3821 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3822 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3823 if (ret) { 3824 btrfs_abort_transaction(trans, ret); 3825 goto out; 3826 } 3827 btrfs_release_path(path); 3828 3829 /* 3830 * This is a placeholder inode for a subvolume we didn't have a 3831 * reference to at the time of the snapshot creation. In the meantime 3832 * we could have renamed the real subvol link into our snapshot, so 3833 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 3834 * Instead simply lookup the dir_index_item for this entry so we can 3835 * remove it. Otherwise we know we have a ref to the root and we can 3836 * call btrfs_del_root_ref, and it _shouldn't_ fail. 3837 */ 3838 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3839 di = btrfs_search_dir_index_item(root, path, dir_ino, 3840 name, name_len); 3841 if (IS_ERR_OR_NULL(di)) { 3842 if (!di) 3843 ret = -ENOENT; 3844 else 3845 ret = PTR_ERR(di); 3846 btrfs_abort_transaction(trans, ret); 3847 goto out; 3848 } 3849 3850 leaf = path->nodes[0]; 3851 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3852 index = key.offset; 3853 btrfs_release_path(path); 3854 } else { 3855 ret = btrfs_del_root_ref(trans, objectid, 3856 root->root_key.objectid, dir_ino, 3857 &index, name, name_len); 3858 if (ret) { 3859 btrfs_abort_transaction(trans, ret); 3860 goto out; 3861 } 3862 } 3863 3864 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 3865 if (ret) { 3866 btrfs_abort_transaction(trans, ret); 3867 goto out; 3868 } 3869 3870 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 3871 inode_inc_iversion(dir); 3872 dir->i_mtime = dir->i_ctime = current_time(dir); 3873 ret = btrfs_update_inode_fallback(trans, root, dir); 3874 if (ret) 3875 btrfs_abort_transaction(trans, ret); 3876out: 3877 btrfs_free_path(path); 3878 return ret; 3879} 3880 3881/* 3882 * Helper to check if the subvolume references other subvolumes or if it's 3883 * default. 3884 */ 3885static noinline int may_destroy_subvol(struct btrfs_root *root) 3886{ 3887 struct btrfs_fs_info *fs_info = root->fs_info; 3888 struct btrfs_path *path; 3889 struct btrfs_dir_item *di; 3890 struct btrfs_key key; 3891 u64 dir_id; 3892 int ret; 3893 3894 path = btrfs_alloc_path(); 3895 if (!path) 3896 return -ENOMEM; 3897 3898 /* Make sure this root isn't set as the default subvol */ 3899 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3900 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 3901 dir_id, "default", 7, 0); 3902 if (di && !IS_ERR(di)) { 3903 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 3904 if (key.objectid == root->root_key.objectid) { 3905 ret = -EPERM; 3906 btrfs_err(fs_info, 3907 "deleting default subvolume %llu is not allowed", 3908 key.objectid); 3909 goto out; 3910 } 3911 btrfs_release_path(path); 3912 } 3913 3914 key.objectid = root->root_key.objectid; 3915 key.type = BTRFS_ROOT_REF_KEY; 3916 key.offset = (u64)-1; 3917 3918 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3919 if (ret < 0) 3920 goto out; 3921 BUG_ON(ret == 0); 3922 3923 ret = 0; 3924 if (path->slots[0] > 0) { 3925 path->slots[0]--; 3926 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3927 if (key.objectid == root->root_key.objectid && 3928 key.type == BTRFS_ROOT_REF_KEY) 3929 ret = -ENOTEMPTY; 3930 } 3931out: 3932 btrfs_free_path(path); 3933 return ret; 3934} 3935 3936/* Delete all dentries for inodes belonging to the root */ 3937static void btrfs_prune_dentries(struct btrfs_root *root) 3938{ 3939 struct btrfs_fs_info *fs_info = root->fs_info; 3940 struct rb_node *node; 3941 struct rb_node *prev; 3942 struct btrfs_inode *entry; 3943 struct inode *inode; 3944 u64 objectid = 0; 3945 3946 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3947 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3948 3949 spin_lock(&root->inode_lock); 3950again: 3951 node = root->inode_tree.rb_node; 3952 prev = NULL; 3953 while (node) { 3954 prev = node; 3955 entry = rb_entry(node, struct btrfs_inode, rb_node); 3956 3957 if (objectid < btrfs_ino(entry)) 3958 node = node->rb_left; 3959 else if (objectid > btrfs_ino(entry)) 3960 node = node->rb_right; 3961 else 3962 break; 3963 } 3964 if (!node) { 3965 while (prev) { 3966 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3967 if (objectid <= btrfs_ino(entry)) { 3968 node = prev; 3969 break; 3970 } 3971 prev = rb_next(prev); 3972 } 3973 } 3974 while (node) { 3975 entry = rb_entry(node, struct btrfs_inode, rb_node); 3976 objectid = btrfs_ino(entry) + 1; 3977 inode = igrab(&entry->vfs_inode); 3978 if (inode) { 3979 spin_unlock(&root->inode_lock); 3980 if (atomic_read(&inode->i_count) > 1) 3981 d_prune_aliases(inode); 3982 /* 3983 * btrfs_drop_inode will have it removed from the inode 3984 * cache when its usage count hits zero. 3985 */ 3986 iput(inode); 3987 cond_resched(); 3988 spin_lock(&root->inode_lock); 3989 goto again; 3990 } 3991 3992 if (cond_resched_lock(&root->inode_lock)) 3993 goto again; 3994 3995 node = rb_next(node); 3996 } 3997 spin_unlock(&root->inode_lock); 3998} 3999 4000int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4001{ 4002 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4003 struct btrfs_root *root = BTRFS_I(dir)->root; 4004 struct inode *inode = d_inode(dentry); 4005 struct btrfs_root *dest = BTRFS_I(inode)->root; 4006 struct btrfs_trans_handle *trans; 4007 struct btrfs_block_rsv block_rsv; 4008 u64 root_flags; 4009 int ret; 4010 4011 down_write(&fs_info->subvol_sem); 4012 4013 /* 4014 * Don't allow to delete a subvolume with send in progress. This is 4015 * inside the inode lock so the error handling that has to drop the bit 4016 * again is not run concurrently. 4017 */ 4018 spin_lock(&dest->root_item_lock); 4019 if (dest->send_in_progress) { 4020 spin_unlock(&dest->root_item_lock); 4021 btrfs_warn(fs_info, 4022 "attempt to delete subvolume %llu during send", 4023 dest->root_key.objectid); 4024 ret = -EPERM; 4025 goto out_up_write; 4026 } 4027 if (atomic_read(&dest->nr_swapfiles)) { 4028 spin_unlock(&dest->root_item_lock); 4029 btrfs_warn(fs_info, 4030 "attempt to delete subvolume %llu with active swapfile", 4031 root->root_key.objectid); 4032 ret = -EPERM; 4033 goto out_up_write; 4034 } 4035 root_flags = btrfs_root_flags(&dest->root_item); 4036 btrfs_set_root_flags(&dest->root_item, 4037 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4038 spin_unlock(&dest->root_item_lock); 4039 4040 ret = may_destroy_subvol(dest); 4041 if (ret) 4042 goto out_undead; 4043 4044 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4045 /* 4046 * One for dir inode, 4047 * two for dir entries, 4048 * two for root ref/backref. 4049 */ 4050 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4051 if (ret) 4052 goto out_undead; 4053 4054 trans = btrfs_start_transaction(root, 0); 4055 if (IS_ERR(trans)) { 4056 ret = PTR_ERR(trans); 4057 goto out_release; 4058 } 4059 trans->block_rsv = &block_rsv; 4060 trans->bytes_reserved = block_rsv.size; 4061 4062 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4063 4064 ret = btrfs_unlink_subvol(trans, dir, dentry); 4065 if (ret) { 4066 btrfs_abort_transaction(trans, ret); 4067 goto out_end_trans; 4068 } 4069 4070 btrfs_record_root_in_trans(trans, dest); 4071 4072 memset(&dest->root_item.drop_progress, 0, 4073 sizeof(dest->root_item.drop_progress)); 4074 dest->root_item.drop_level = 0; 4075 btrfs_set_root_refs(&dest->root_item, 0); 4076 4077 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4078 ret = btrfs_insert_orphan_item(trans, 4079 fs_info->tree_root, 4080 dest->root_key.objectid); 4081 if (ret) { 4082 btrfs_abort_transaction(trans, ret); 4083 goto out_end_trans; 4084 } 4085 } 4086 4087 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4088 BTRFS_UUID_KEY_SUBVOL, 4089 dest->root_key.objectid); 4090 if (ret && ret != -ENOENT) { 4091 btrfs_abort_transaction(trans, ret); 4092 goto out_end_trans; 4093 } 4094 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4095 ret = btrfs_uuid_tree_remove(trans, 4096 dest->root_item.received_uuid, 4097 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4098 dest->root_key.objectid); 4099 if (ret && ret != -ENOENT) { 4100 btrfs_abort_transaction(trans, ret); 4101 goto out_end_trans; 4102 } 4103 } 4104 4105 free_anon_bdev(dest->anon_dev); 4106 dest->anon_dev = 0; 4107out_end_trans: 4108 trans->block_rsv = NULL; 4109 trans->bytes_reserved = 0; 4110 ret = btrfs_end_transaction(trans); 4111 inode->i_flags |= S_DEAD; 4112out_release: 4113 btrfs_subvolume_release_metadata(root, &block_rsv); 4114out_undead: 4115 if (ret) { 4116 spin_lock(&dest->root_item_lock); 4117 root_flags = btrfs_root_flags(&dest->root_item); 4118 btrfs_set_root_flags(&dest->root_item, 4119 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4120 spin_unlock(&dest->root_item_lock); 4121 } 4122out_up_write: 4123 up_write(&fs_info->subvol_sem); 4124 if (!ret) { 4125 d_invalidate(dentry); 4126 btrfs_prune_dentries(dest); 4127 ASSERT(dest->send_in_progress == 0); 4128 4129 /* the last ref */ 4130 if (dest->ino_cache_inode) { 4131 iput(dest->ino_cache_inode); 4132 dest->ino_cache_inode = NULL; 4133 } 4134 } 4135 4136 return ret; 4137} 4138 4139static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4140{ 4141 struct inode *inode = d_inode(dentry); 4142 int err = 0; 4143 struct btrfs_root *root = BTRFS_I(dir)->root; 4144 struct btrfs_trans_handle *trans; 4145 u64 last_unlink_trans; 4146 4147 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4148 return -ENOTEMPTY; 4149 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4150 return btrfs_delete_subvolume(dir, dentry); 4151 4152 trans = __unlink_start_trans(dir); 4153 if (IS_ERR(trans)) 4154 return PTR_ERR(trans); 4155 4156 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4157 err = btrfs_unlink_subvol(trans, dir, dentry); 4158 goto out; 4159 } 4160 4161 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4162 if (err) 4163 goto out; 4164 4165 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4166 4167 /* now the directory is empty */ 4168 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4169 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4170 dentry->d_name.len); 4171 if (!err) { 4172 btrfs_i_size_write(BTRFS_I(inode), 0); 4173 /* 4174 * Propagate the last_unlink_trans value of the deleted dir to 4175 * its parent directory. This is to prevent an unrecoverable 4176 * log tree in the case we do something like this: 4177 * 1) create dir foo 4178 * 2) create snapshot under dir foo 4179 * 3) delete the snapshot 4180 * 4) rmdir foo 4181 * 5) mkdir foo 4182 * 6) fsync foo or some file inside foo 4183 */ 4184 if (last_unlink_trans >= trans->transid) 4185 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4186 } 4187out: 4188 btrfs_end_transaction(trans); 4189 btrfs_btree_balance_dirty(root->fs_info); 4190 4191 return err; 4192} 4193 4194/* 4195 * Return this if we need to call truncate_block for the last bit of the 4196 * truncate. 4197 */ 4198#define NEED_TRUNCATE_BLOCK 1 4199 4200/* 4201 * this can truncate away extent items, csum items and directory items. 4202 * It starts at a high offset and removes keys until it can't find 4203 * any higher than new_size 4204 * 4205 * csum items that cross the new i_size are truncated to the new size 4206 * as well. 4207 * 4208 * min_type is the minimum key type to truncate down to. If set to 0, this 4209 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4210 */ 4211int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4212 struct btrfs_root *root, 4213 struct inode *inode, 4214 u64 new_size, u32 min_type) 4215{ 4216 struct btrfs_fs_info *fs_info = root->fs_info; 4217 struct btrfs_path *path; 4218 struct extent_buffer *leaf; 4219 struct btrfs_file_extent_item *fi; 4220 struct btrfs_key key; 4221 struct btrfs_key found_key; 4222 u64 extent_start = 0; 4223 u64 extent_num_bytes = 0; 4224 u64 extent_offset = 0; 4225 u64 item_end = 0; 4226 u64 last_size = new_size; 4227 u32 found_type = (u8)-1; 4228 int found_extent; 4229 int del_item; 4230 int pending_del_nr = 0; 4231 int pending_del_slot = 0; 4232 int extent_type = -1; 4233 int ret; 4234 u64 ino = btrfs_ino(BTRFS_I(inode)); 4235 u64 bytes_deleted = 0; 4236 bool be_nice = false; 4237 bool should_throttle = false; 4238 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4239 struct extent_state *cached_state = NULL; 4240 4241 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4242 4243 /* 4244 * For non-free space inodes and non-shareable roots, we want to back 4245 * off from time to time. This means all inodes in subvolume roots, 4246 * reloc roots, and data reloc roots. 4247 */ 4248 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4249 test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4250 be_nice = true; 4251 4252 path = btrfs_alloc_path(); 4253 if (!path) 4254 return -ENOMEM; 4255 path->reada = READA_BACK; 4256 4257 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4258 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, 4259 &cached_state); 4260 4261 /* 4262 * We want to drop from the next block forward in case this 4263 * new size is not block aligned since we will be keeping the 4264 * last block of the extent just the way it is. 4265 */ 4266 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4267 fs_info->sectorsize), 4268 (u64)-1, 0); 4269 } 4270 4271 /* 4272 * This function is also used to drop the items in the log tree before 4273 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4274 * it is used to drop the logged items. So we shouldn't kill the delayed 4275 * items. 4276 */ 4277 if (min_type == 0 && root == BTRFS_I(inode)->root) 4278 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4279 4280 key.objectid = ino; 4281 key.offset = (u64)-1; 4282 key.type = (u8)-1; 4283 4284search_again: 4285 /* 4286 * with a 16K leaf size and 128MB extents, you can actually queue 4287 * up a huge file in a single leaf. Most of the time that 4288 * bytes_deleted is > 0, it will be huge by the time we get here 4289 */ 4290 if (be_nice && bytes_deleted > SZ_32M && 4291 btrfs_should_end_transaction(trans)) { 4292 ret = -EAGAIN; 4293 goto out; 4294 } 4295 4296 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4297 if (ret < 0) 4298 goto out; 4299 4300 if (ret > 0) { 4301 ret = 0; 4302 /* there are no items in the tree for us to truncate, we're 4303 * done 4304 */ 4305 if (path->slots[0] == 0) 4306 goto out; 4307 path->slots[0]--; 4308 } 4309 4310 while (1) { 4311 u64 clear_start = 0, clear_len = 0; 4312 4313 fi = NULL; 4314 leaf = path->nodes[0]; 4315 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4316 found_type = found_key.type; 4317 4318 if (found_key.objectid != ino) 4319 break; 4320 4321 if (found_type < min_type) 4322 break; 4323 4324 item_end = found_key.offset; 4325 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4326 fi = btrfs_item_ptr(leaf, path->slots[0], 4327 struct btrfs_file_extent_item); 4328 extent_type = btrfs_file_extent_type(leaf, fi); 4329 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4330 item_end += 4331 btrfs_file_extent_num_bytes(leaf, fi); 4332 4333 trace_btrfs_truncate_show_fi_regular( 4334 BTRFS_I(inode), leaf, fi, 4335 found_key.offset); 4336 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4337 item_end += btrfs_file_extent_ram_bytes(leaf, 4338 fi); 4339 4340 trace_btrfs_truncate_show_fi_inline( 4341 BTRFS_I(inode), leaf, fi, path->slots[0], 4342 found_key.offset); 4343 } 4344 item_end--; 4345 } 4346 if (found_type > min_type) { 4347 del_item = 1; 4348 } else { 4349 if (item_end < new_size) 4350 break; 4351 if (found_key.offset >= new_size) 4352 del_item = 1; 4353 else 4354 del_item = 0; 4355 } 4356 found_extent = 0; 4357 /* FIXME, shrink the extent if the ref count is only 1 */ 4358 if (found_type != BTRFS_EXTENT_DATA_KEY) 4359 goto delete; 4360 4361 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4362 u64 num_dec; 4363 4364 clear_start = found_key.offset; 4365 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4366 if (!del_item) { 4367 u64 orig_num_bytes = 4368 btrfs_file_extent_num_bytes(leaf, fi); 4369 extent_num_bytes = ALIGN(new_size - 4370 found_key.offset, 4371 fs_info->sectorsize); 4372 clear_start = ALIGN(new_size, fs_info->sectorsize); 4373 btrfs_set_file_extent_num_bytes(leaf, fi, 4374 extent_num_bytes); 4375 num_dec = (orig_num_bytes - 4376 extent_num_bytes); 4377 if (test_bit(BTRFS_ROOT_SHAREABLE, 4378 &root->state) && 4379 extent_start != 0) 4380 inode_sub_bytes(inode, num_dec); 4381 btrfs_mark_buffer_dirty(leaf); 4382 } else { 4383 extent_num_bytes = 4384 btrfs_file_extent_disk_num_bytes(leaf, 4385 fi); 4386 extent_offset = found_key.offset - 4387 btrfs_file_extent_offset(leaf, fi); 4388 4389 /* FIXME blocksize != 4096 */ 4390 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4391 if (extent_start != 0) { 4392 found_extent = 1; 4393 if (test_bit(BTRFS_ROOT_SHAREABLE, 4394 &root->state)) 4395 inode_sub_bytes(inode, num_dec); 4396 } 4397 } 4398 clear_len = num_dec; 4399 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4400 /* 4401 * we can't truncate inline items that have had 4402 * special encodings 4403 */ 4404 if (!del_item && 4405 btrfs_file_extent_encryption(leaf, fi) == 0 && 4406 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4407 btrfs_file_extent_compression(leaf, fi) == 0) { 4408 u32 size = (u32)(new_size - found_key.offset); 4409 4410 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4411 size = btrfs_file_extent_calc_inline_size(size); 4412 btrfs_truncate_item(path, size, 1); 4413 } else if (!del_item) { 4414 /* 4415 * We have to bail so the last_size is set to 4416 * just before this extent. 4417 */ 4418 ret = NEED_TRUNCATE_BLOCK; 4419 break; 4420 } else { 4421 /* 4422 * Inline extents are special, we just treat 4423 * them as a full sector worth in the file 4424 * extent tree just for simplicity sake. 4425 */ 4426 clear_len = fs_info->sectorsize; 4427 } 4428 4429 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4430 inode_sub_bytes(inode, item_end + 1 - new_size); 4431 } 4432delete: 4433 /* 4434 * We use btrfs_truncate_inode_items() to clean up log trees for 4435 * multiple fsyncs, and in this case we don't want to clear the 4436 * file extent range because it's just the log. 4437 */ 4438 if (root == BTRFS_I(inode)->root) { 4439 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 4440 clear_start, clear_len); 4441 if (ret) { 4442 btrfs_abort_transaction(trans, ret); 4443 break; 4444 } 4445 } 4446 4447 if (del_item) 4448 last_size = found_key.offset; 4449 else 4450 last_size = new_size; 4451 if (del_item) { 4452 if (!pending_del_nr) { 4453 /* no pending yet, add ourselves */ 4454 pending_del_slot = path->slots[0]; 4455 pending_del_nr = 1; 4456 } else if (pending_del_nr && 4457 path->slots[0] + 1 == pending_del_slot) { 4458 /* hop on the pending chunk */ 4459 pending_del_nr++; 4460 pending_del_slot = path->slots[0]; 4461 } else { 4462 BUG(); 4463 } 4464 } else { 4465 break; 4466 } 4467 should_throttle = false; 4468 4469 if (found_extent && 4470 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4471 struct btrfs_ref ref = { 0 }; 4472 4473 bytes_deleted += extent_num_bytes; 4474 4475 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4476 extent_start, extent_num_bytes, 0); 4477 ref.real_root = root->root_key.objectid; 4478 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4479 ino, extent_offset); 4480 ret = btrfs_free_extent(trans, &ref); 4481 if (ret) { 4482 btrfs_abort_transaction(trans, ret); 4483 break; 4484 } 4485 if (be_nice) { 4486 if (btrfs_should_throttle_delayed_refs(trans)) 4487 should_throttle = true; 4488 } 4489 } 4490 4491 if (found_type == BTRFS_INODE_ITEM_KEY) 4492 break; 4493 4494 if (path->slots[0] == 0 || 4495 path->slots[0] != pending_del_slot || 4496 should_throttle) { 4497 if (pending_del_nr) { 4498 ret = btrfs_del_items(trans, root, path, 4499 pending_del_slot, 4500 pending_del_nr); 4501 if (ret) { 4502 btrfs_abort_transaction(trans, ret); 4503 break; 4504 } 4505 pending_del_nr = 0; 4506 } 4507 btrfs_release_path(path); 4508 4509 /* 4510 * We can generate a lot of delayed refs, so we need to 4511 * throttle every once and a while and make sure we're 4512 * adding enough space to keep up with the work we are 4513 * generating. Since we hold a transaction here we 4514 * can't flush, and we don't want to FLUSH_LIMIT because 4515 * we could have generated too many delayed refs to 4516 * actually allocate, so just bail if we're short and 4517 * let the normal reservation dance happen higher up. 4518 */ 4519 if (should_throttle) { 4520 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4521 BTRFS_RESERVE_NO_FLUSH); 4522 if (ret) { 4523 ret = -EAGAIN; 4524 break; 4525 } 4526 } 4527 goto search_again; 4528 } else { 4529 path->slots[0]--; 4530 } 4531 } 4532out: 4533 if (ret >= 0 && pending_del_nr) { 4534 int err; 4535 4536 err = btrfs_del_items(trans, root, path, pending_del_slot, 4537 pending_del_nr); 4538 if (err) { 4539 btrfs_abort_transaction(trans, err); 4540 ret = err; 4541 } 4542 } 4543 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4544 ASSERT(last_size >= new_size); 4545 if (!ret && last_size > new_size) 4546 last_size = new_size; 4547 btrfs_inode_safe_disk_i_size_write(inode, last_size); 4548 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, 4549 (u64)-1, &cached_state); 4550 } 4551 4552 btrfs_free_path(path); 4553 return ret; 4554} 4555 4556/* 4557 * btrfs_truncate_block - read, zero a chunk and write a block 4558 * @inode - inode that we're zeroing 4559 * @from - the offset to start zeroing 4560 * @len - the length to zero, 0 to zero the entire range respective to the 4561 * offset 4562 * @front - zero up to the offset instead of from the offset on 4563 * 4564 * This will find the block for the "from" offset and cow the block and zero the 4565 * part we want to zero. This is used with truncate and hole punching. 4566 */ 4567int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4568 int front) 4569{ 4570 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4571 struct address_space *mapping = inode->i_mapping; 4572 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4573 struct btrfs_ordered_extent *ordered; 4574 struct extent_state *cached_state = NULL; 4575 struct extent_changeset *data_reserved = NULL; 4576 char *kaddr; 4577 bool only_release_metadata = false; 4578 u32 blocksize = fs_info->sectorsize; 4579 pgoff_t index = from >> PAGE_SHIFT; 4580 unsigned offset = from & (blocksize - 1); 4581 struct page *page; 4582 gfp_t mask = btrfs_alloc_write_mask(mapping); 4583 size_t write_bytes = blocksize; 4584 int ret = 0; 4585 u64 block_start; 4586 u64 block_end; 4587 4588 if (IS_ALIGNED(offset, blocksize) && 4589 (!len || IS_ALIGNED(len, blocksize))) 4590 goto out; 4591 4592 block_start = round_down(from, blocksize); 4593 block_end = block_start + blocksize - 1; 4594 4595 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 4596 block_start, blocksize); 4597 if (ret < 0) { 4598 if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start, 4599 &write_bytes) > 0) { 4600 /* For nocow case, no need to reserve data space */ 4601 only_release_metadata = true; 4602 } else { 4603 goto out; 4604 } 4605 } 4606 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize); 4607 if (ret < 0) { 4608 if (!only_release_metadata) 4609 btrfs_free_reserved_data_space(BTRFS_I(inode), 4610 data_reserved, block_start, blocksize); 4611 goto out; 4612 } 4613again: 4614 page = find_or_create_page(mapping, index, mask); 4615 if (!page) { 4616 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 4617 block_start, blocksize, true); 4618 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4619 ret = -ENOMEM; 4620 goto out; 4621 } 4622 4623 if (!PageUptodate(page)) { 4624 ret = btrfs_readpage(NULL, page); 4625 lock_page(page); 4626 if (page->mapping != mapping) { 4627 unlock_page(page); 4628 put_page(page); 4629 goto again; 4630 } 4631 if (!PageUptodate(page)) { 4632 ret = -EIO; 4633 goto out_unlock; 4634 } 4635 } 4636 wait_on_page_writeback(page); 4637 4638 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4639 set_page_extent_mapped(page); 4640 4641 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start); 4642 if (ordered) { 4643 unlock_extent_cached(io_tree, block_start, block_end, 4644 &cached_state); 4645 unlock_page(page); 4646 put_page(page); 4647 btrfs_start_ordered_extent(ordered, 1); 4648 btrfs_put_ordered_extent(ordered); 4649 goto again; 4650 } 4651 4652 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4653 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4654 0, 0, &cached_state); 4655 4656 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0, 4657 &cached_state); 4658 if (ret) { 4659 unlock_extent_cached(io_tree, block_start, block_end, 4660 &cached_state); 4661 goto out_unlock; 4662 } 4663 4664 if (offset != blocksize) { 4665 if (!len) 4666 len = blocksize - offset; 4667 kaddr = kmap(page); 4668 if (front) 4669 memset(kaddr + (block_start - page_offset(page)), 4670 0, offset); 4671 else 4672 memset(kaddr + (block_start - page_offset(page)) + offset, 4673 0, len); 4674 flush_dcache_page(page); 4675 kunmap(page); 4676 } 4677 ClearPageChecked(page); 4678 set_page_dirty(page); 4679 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4680 4681 if (only_release_metadata) 4682 set_extent_bit(&BTRFS_I(inode)->io_tree, block_start, 4683 block_end, EXTENT_NORESERVE, NULL, NULL, 4684 GFP_NOFS); 4685 4686out_unlock: 4687 if (ret) { 4688 if (only_release_metadata) 4689 btrfs_delalloc_release_metadata(BTRFS_I(inode), 4690 blocksize, true); 4691 else 4692 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 4693 block_start, blocksize, true); 4694 } 4695 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4696 unlock_page(page); 4697 put_page(page); 4698out: 4699 if (only_release_metadata) 4700 btrfs_check_nocow_unlock(BTRFS_I(inode)); 4701 extent_changeset_free(data_reserved); 4702 return ret; 4703} 4704 4705static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4706 u64 offset, u64 len) 4707{ 4708 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4709 struct btrfs_trans_handle *trans; 4710 int ret; 4711 4712 /* 4713 * Still need to make sure the inode looks like it's been updated so 4714 * that any holes get logged if we fsync. 4715 */ 4716 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4717 BTRFS_I(inode)->last_trans = fs_info->generation; 4718 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4719 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4720 return 0; 4721 } 4722 4723 /* 4724 * 1 - for the one we're dropping 4725 * 1 - for the one we're adding 4726 * 1 - for updating the inode. 4727 */ 4728 trans = btrfs_start_transaction(root, 3); 4729 if (IS_ERR(trans)) 4730 return PTR_ERR(trans); 4731 4732 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4733 if (ret) { 4734 btrfs_abort_transaction(trans, ret); 4735 btrfs_end_transaction(trans); 4736 return ret; 4737 } 4738 4739 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4740 offset, 0, 0, len, 0, len, 0, 0, 0); 4741 if (ret) 4742 btrfs_abort_transaction(trans, ret); 4743 else 4744 btrfs_update_inode(trans, root, inode); 4745 btrfs_end_transaction(trans); 4746 return ret; 4747} 4748 4749/* 4750 * This function puts in dummy file extents for the area we're creating a hole 4751 * for. So if we are truncating this file to a larger size we need to insert 4752 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4753 * the range between oldsize and size 4754 */ 4755int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4756{ 4757 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4758 struct btrfs_root *root = BTRFS_I(inode)->root; 4759 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4760 struct extent_map *em = NULL; 4761 struct extent_state *cached_state = NULL; 4762 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4763 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4764 u64 block_end = ALIGN(size, fs_info->sectorsize); 4765 u64 last_byte; 4766 u64 cur_offset; 4767 u64 hole_size; 4768 int err = 0; 4769 4770 /* 4771 * If our size started in the middle of a block we need to zero out the 4772 * rest of the block before we expand the i_size, otherwise we could 4773 * expose stale data. 4774 */ 4775 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4776 if (err) 4777 return err; 4778 4779 if (size <= hole_start) 4780 return 0; 4781 4782 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start, 4783 block_end - 1, &cached_state); 4784 cur_offset = hole_start; 4785 while (1) { 4786 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4787 block_end - cur_offset); 4788 if (IS_ERR(em)) { 4789 err = PTR_ERR(em); 4790 em = NULL; 4791 break; 4792 } 4793 last_byte = min(extent_map_end(em), block_end); 4794 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4795 hole_size = last_byte - cur_offset; 4796 4797 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4798 struct extent_map *hole_em; 4799 4800 err = maybe_insert_hole(root, inode, cur_offset, 4801 hole_size); 4802 if (err) 4803 break; 4804 4805 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 4806 cur_offset, hole_size); 4807 if (err) 4808 break; 4809 4810 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4811 cur_offset + hole_size - 1, 0); 4812 hole_em = alloc_extent_map(); 4813 if (!hole_em) { 4814 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4815 &BTRFS_I(inode)->runtime_flags); 4816 goto next; 4817 } 4818 hole_em->start = cur_offset; 4819 hole_em->len = hole_size; 4820 hole_em->orig_start = cur_offset; 4821 4822 hole_em->block_start = EXTENT_MAP_HOLE; 4823 hole_em->block_len = 0; 4824 hole_em->orig_block_len = 0; 4825 hole_em->ram_bytes = hole_size; 4826 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4827 hole_em->generation = fs_info->generation; 4828 4829 while (1) { 4830 write_lock(&em_tree->lock); 4831 err = add_extent_mapping(em_tree, hole_em, 1); 4832 write_unlock(&em_tree->lock); 4833 if (err != -EEXIST) 4834 break; 4835 btrfs_drop_extent_cache(BTRFS_I(inode), 4836 cur_offset, 4837 cur_offset + 4838 hole_size - 1, 0); 4839 } 4840 free_extent_map(hole_em); 4841 } else { 4842 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 4843 cur_offset, hole_size); 4844 if (err) 4845 break; 4846 } 4847next: 4848 free_extent_map(em); 4849 em = NULL; 4850 cur_offset = last_byte; 4851 if (cur_offset >= block_end) 4852 break; 4853 } 4854 free_extent_map(em); 4855 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 4856 return err; 4857} 4858 4859static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4860{ 4861 struct btrfs_root *root = BTRFS_I(inode)->root; 4862 struct btrfs_trans_handle *trans; 4863 loff_t oldsize = i_size_read(inode); 4864 loff_t newsize = attr->ia_size; 4865 int mask = attr->ia_valid; 4866 int ret; 4867 4868 /* 4869 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4870 * special case where we need to update the times despite not having 4871 * these flags set. For all other operations the VFS set these flags 4872 * explicitly if it wants a timestamp update. 4873 */ 4874 if (newsize != oldsize) { 4875 inode_inc_iversion(inode); 4876 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4877 inode->i_ctime = inode->i_mtime = 4878 current_time(inode); 4879 } 4880 4881 if (newsize > oldsize) { 4882 /* 4883 * Don't do an expanding truncate while snapshotting is ongoing. 4884 * This is to ensure the snapshot captures a fully consistent 4885 * state of this file - if the snapshot captures this expanding 4886 * truncation, it must capture all writes that happened before 4887 * this truncation. 4888 */ 4889 btrfs_drew_write_lock(&root->snapshot_lock); 4890 ret = btrfs_cont_expand(inode, oldsize, newsize); 4891 if (ret) { 4892 btrfs_drew_write_unlock(&root->snapshot_lock); 4893 return ret; 4894 } 4895 4896 trans = btrfs_start_transaction(root, 1); 4897 if (IS_ERR(trans)) { 4898 btrfs_drew_write_unlock(&root->snapshot_lock); 4899 return PTR_ERR(trans); 4900 } 4901 4902 i_size_write(inode, newsize); 4903 btrfs_inode_safe_disk_i_size_write(inode, 0); 4904 pagecache_isize_extended(inode, oldsize, newsize); 4905 ret = btrfs_update_inode(trans, root, inode); 4906 btrfs_drew_write_unlock(&root->snapshot_lock); 4907 btrfs_end_transaction(trans); 4908 } else { 4909 4910 /* 4911 * We're truncating a file that used to have good data down to 4912 * zero. Make sure any new writes to the file get on disk 4913 * on close. 4914 */ 4915 if (newsize == 0) 4916 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 4917 &BTRFS_I(inode)->runtime_flags); 4918 4919 truncate_setsize(inode, newsize); 4920 4921 inode_dio_wait(inode); 4922 4923 ret = btrfs_truncate(inode, newsize == oldsize); 4924 if (ret && inode->i_nlink) { 4925 int err; 4926 4927 /* 4928 * Truncate failed, so fix up the in-memory size. We 4929 * adjusted disk_i_size down as we removed extents, so 4930 * wait for disk_i_size to be stable and then update the 4931 * in-memory size to match. 4932 */ 4933 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 4934 if (err) 4935 return err; 4936 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4937 } 4938 } 4939 4940 return ret; 4941} 4942 4943static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4944{ 4945 struct inode *inode = d_inode(dentry); 4946 struct btrfs_root *root = BTRFS_I(inode)->root; 4947 int err; 4948 4949 if (btrfs_root_readonly(root)) 4950 return -EROFS; 4951 4952 err = setattr_prepare(dentry, attr); 4953 if (err) 4954 return err; 4955 4956 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4957 err = btrfs_setsize(inode, attr); 4958 if (err) 4959 return err; 4960 } 4961 4962 if (attr->ia_valid) { 4963 setattr_copy(inode, attr); 4964 inode_inc_iversion(inode); 4965 err = btrfs_dirty_inode(inode); 4966 4967 if (!err && attr->ia_valid & ATTR_MODE) 4968 err = posix_acl_chmod(inode, inode->i_mode); 4969 } 4970 4971 return err; 4972} 4973 4974/* 4975 * While truncating the inode pages during eviction, we get the VFS calling 4976 * btrfs_invalidatepage() against each page of the inode. This is slow because 4977 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4978 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4979 * extent_state structures over and over, wasting lots of time. 4980 * 4981 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4982 * those expensive operations on a per page basis and do only the ordered io 4983 * finishing, while we release here the extent_map and extent_state structures, 4984 * without the excessive merging and splitting. 4985 */ 4986static void evict_inode_truncate_pages(struct inode *inode) 4987{ 4988 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4989 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4990 struct rb_node *node; 4991 4992 ASSERT(inode->i_state & I_FREEING); 4993 truncate_inode_pages_final(&inode->i_data); 4994 4995 write_lock(&map_tree->lock); 4996 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 4997 struct extent_map *em; 4998 4999 node = rb_first_cached(&map_tree->map); 5000 em = rb_entry(node, struct extent_map, rb_node); 5001 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5002 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5003 remove_extent_mapping(map_tree, em); 5004 free_extent_map(em); 5005 if (need_resched()) { 5006 write_unlock(&map_tree->lock); 5007 cond_resched(); 5008 write_lock(&map_tree->lock); 5009 } 5010 } 5011 write_unlock(&map_tree->lock); 5012 5013 /* 5014 * Keep looping until we have no more ranges in the io tree. 5015 * We can have ongoing bios started by readahead that have 5016 * their endio callback (extent_io.c:end_bio_extent_readpage) 5017 * still in progress (unlocked the pages in the bio but did not yet 5018 * unlocked the ranges in the io tree). Therefore this means some 5019 * ranges can still be locked and eviction started because before 5020 * submitting those bios, which are executed by a separate task (work 5021 * queue kthread), inode references (inode->i_count) were not taken 5022 * (which would be dropped in the end io callback of each bio). 5023 * Therefore here we effectively end up waiting for those bios and 5024 * anyone else holding locked ranges without having bumped the inode's 5025 * reference count - if we don't do it, when they access the inode's 5026 * io_tree to unlock a range it may be too late, leading to an 5027 * use-after-free issue. 5028 */ 5029 spin_lock(&io_tree->lock); 5030 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5031 struct extent_state *state; 5032 struct extent_state *cached_state = NULL; 5033 u64 start; 5034 u64 end; 5035 unsigned state_flags; 5036 5037 node = rb_first(&io_tree->state); 5038 state = rb_entry(node, struct extent_state, rb_node); 5039 start = state->start; 5040 end = state->end; 5041 state_flags = state->state; 5042 spin_unlock(&io_tree->lock); 5043 5044 lock_extent_bits(io_tree, start, end, &cached_state); 5045 5046 /* 5047 * If still has DELALLOC flag, the extent didn't reach disk, 5048 * and its reserved space won't be freed by delayed_ref. 5049 * So we need to free its reserved space here. 5050 * (Refer to comment in btrfs_invalidatepage, case 2) 5051 * 5052 * Note, end is the bytenr of last byte, so we need + 1 here. 5053 */ 5054 if (state_flags & EXTENT_DELALLOC) 5055 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5056 end - start + 1); 5057 5058 clear_extent_bit(io_tree, start, end, 5059 EXTENT_LOCKED | EXTENT_DELALLOC | 5060 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5061 &cached_state); 5062 5063 cond_resched(); 5064 spin_lock(&io_tree->lock); 5065 } 5066 spin_unlock(&io_tree->lock); 5067} 5068 5069static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5070 struct btrfs_block_rsv *rsv) 5071{ 5072 struct btrfs_fs_info *fs_info = root->fs_info; 5073 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5074 struct btrfs_trans_handle *trans; 5075 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5076 int ret; 5077 5078 /* 5079 * Eviction should be taking place at some place safe because of our 5080 * delayed iputs. However the normal flushing code will run delayed 5081 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5082 * 5083 * We reserve the delayed_refs_extra here again because we can't use 5084 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5085 * above. We reserve our extra bit here because we generate a ton of 5086 * delayed refs activity by truncating. 5087 * 5088 * If we cannot make our reservation we'll attempt to steal from the 5089 * global reserve, because we really want to be able to free up space. 5090 */ 5091 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 5092 BTRFS_RESERVE_FLUSH_EVICT); 5093 if (ret) { 5094 /* 5095 * Try to steal from the global reserve if there is space for 5096 * it. 5097 */ 5098 if (btrfs_check_space_for_delayed_refs(fs_info) || 5099 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 5100 btrfs_warn(fs_info, 5101 "could not allocate space for delete; will truncate on mount"); 5102 return ERR_PTR(-ENOSPC); 5103 } 5104 delayed_refs_extra = 0; 5105 } 5106 5107 trans = btrfs_join_transaction(root); 5108 if (IS_ERR(trans)) 5109 return trans; 5110 5111 if (delayed_refs_extra) { 5112 trans->block_rsv = &fs_info->trans_block_rsv; 5113 trans->bytes_reserved = delayed_refs_extra; 5114 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5115 delayed_refs_extra, 1); 5116 } 5117 return trans; 5118} 5119 5120void btrfs_evict_inode(struct inode *inode) 5121{ 5122 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5123 struct btrfs_trans_handle *trans; 5124 struct btrfs_root *root = BTRFS_I(inode)->root; 5125 struct btrfs_block_rsv *rsv; 5126 int ret; 5127 5128 trace_btrfs_inode_evict(inode); 5129 5130 if (!root) { 5131 clear_inode(inode); 5132 return; 5133 } 5134 5135 evict_inode_truncate_pages(inode); 5136 5137 if (inode->i_nlink && 5138 ((btrfs_root_refs(&root->root_item) != 0 && 5139 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5140 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5141 goto no_delete; 5142 5143 if (is_bad_inode(inode)) 5144 goto no_delete; 5145 5146 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5147 5148 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5149 goto no_delete; 5150 5151 if (inode->i_nlink > 0) { 5152 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5153 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5154 goto no_delete; 5155 } 5156 5157 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5158 if (ret) 5159 goto no_delete; 5160 5161 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5162 if (!rsv) 5163 goto no_delete; 5164 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5165 rsv->failfast = 1; 5166 5167 btrfs_i_size_write(BTRFS_I(inode), 0); 5168 5169 while (1) { 5170 trans = evict_refill_and_join(root, rsv); 5171 if (IS_ERR(trans)) 5172 goto free_rsv; 5173 5174 trans->block_rsv = rsv; 5175 5176 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5177 trans->block_rsv = &fs_info->trans_block_rsv; 5178 btrfs_end_transaction(trans); 5179 btrfs_btree_balance_dirty(fs_info); 5180 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5181 goto free_rsv; 5182 else if (!ret) 5183 break; 5184 } 5185 5186 /* 5187 * Errors here aren't a big deal, it just means we leave orphan items in 5188 * the tree. They will be cleaned up on the next mount. If the inode 5189 * number gets reused, cleanup deletes the orphan item without doing 5190 * anything, and unlink reuses the existing orphan item. 5191 * 5192 * If it turns out that we are dropping too many of these, we might want 5193 * to add a mechanism for retrying these after a commit. 5194 */ 5195 trans = evict_refill_and_join(root, rsv); 5196 if (!IS_ERR(trans)) { 5197 trans->block_rsv = rsv; 5198 btrfs_orphan_del(trans, BTRFS_I(inode)); 5199 trans->block_rsv = &fs_info->trans_block_rsv; 5200 btrfs_end_transaction(trans); 5201 } 5202 5203 if (!(root == fs_info->tree_root || 5204 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5205 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5206 5207free_rsv: 5208 btrfs_free_block_rsv(fs_info, rsv); 5209no_delete: 5210 /* 5211 * If we didn't successfully delete, the orphan item will still be in 5212 * the tree and we'll retry on the next mount. Again, we might also want 5213 * to retry these periodically in the future. 5214 */ 5215 btrfs_remove_delayed_node(BTRFS_I(inode)); 5216 clear_inode(inode); 5217} 5218 5219/* 5220 * Return the key found in the dir entry in the location pointer, fill @type 5221 * with BTRFS_FT_*, and return 0. 5222 * 5223 * If no dir entries were found, returns -ENOENT. 5224 * If found a corrupted location in dir entry, returns -EUCLEAN. 5225 */ 5226static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5227 struct btrfs_key *location, u8 *type) 5228{ 5229 const char *name = dentry->d_name.name; 5230 int namelen = dentry->d_name.len; 5231 struct btrfs_dir_item *di; 5232 struct btrfs_path *path; 5233 struct btrfs_root *root = BTRFS_I(dir)->root; 5234 int ret = 0; 5235 5236 path = btrfs_alloc_path(); 5237 if (!path) 5238 return -ENOMEM; 5239 5240 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5241 name, namelen, 0); 5242 if (IS_ERR_OR_NULL(di)) { 5243 ret = di ? PTR_ERR(di) : -ENOENT; 5244 goto out; 5245 } 5246 5247 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5248 if (location->type != BTRFS_INODE_ITEM_KEY && 5249 location->type != BTRFS_ROOT_ITEM_KEY) { 5250 ret = -EUCLEAN; 5251 btrfs_warn(root->fs_info, 5252"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5253 __func__, name, btrfs_ino(BTRFS_I(dir)), 5254 location->objectid, location->type, location->offset); 5255 } 5256 if (!ret) 5257 *type = btrfs_dir_type(path->nodes[0], di); 5258out: 5259 btrfs_free_path(path); 5260 return ret; 5261} 5262 5263/* 5264 * when we hit a tree root in a directory, the btrfs part of the inode 5265 * needs to be changed to reflect the root directory of the tree root. This 5266 * is kind of like crossing a mount point. 5267 */ 5268static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5269 struct inode *dir, 5270 struct dentry *dentry, 5271 struct btrfs_key *location, 5272 struct btrfs_root **sub_root) 5273{ 5274 struct btrfs_path *path; 5275 struct btrfs_root *new_root; 5276 struct btrfs_root_ref *ref; 5277 struct extent_buffer *leaf; 5278 struct btrfs_key key; 5279 int ret; 5280 int err = 0; 5281 5282 path = btrfs_alloc_path(); 5283 if (!path) { 5284 err = -ENOMEM; 5285 goto out; 5286 } 5287 5288 err = -ENOENT; 5289 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5290 key.type = BTRFS_ROOT_REF_KEY; 5291 key.offset = location->objectid; 5292 5293 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5294 if (ret) { 5295 if (ret < 0) 5296 err = ret; 5297 goto out; 5298 } 5299 5300 leaf = path->nodes[0]; 5301 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5302 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5303 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5304 goto out; 5305 5306 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5307 (unsigned long)(ref + 1), 5308 dentry->d_name.len); 5309 if (ret) 5310 goto out; 5311 5312 btrfs_release_path(path); 5313 5314 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5315 if (IS_ERR(new_root)) { 5316 err = PTR_ERR(new_root); 5317 goto out; 5318 } 5319 5320 *sub_root = new_root; 5321 location->objectid = btrfs_root_dirid(&new_root->root_item); 5322 location->type = BTRFS_INODE_ITEM_KEY; 5323 location->offset = 0; 5324 err = 0; 5325out: 5326 btrfs_free_path(path); 5327 return err; 5328} 5329 5330static void inode_tree_add(struct inode *inode) 5331{ 5332 struct btrfs_root *root = BTRFS_I(inode)->root; 5333 struct btrfs_inode *entry; 5334 struct rb_node **p; 5335 struct rb_node *parent; 5336 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5337 u64 ino = btrfs_ino(BTRFS_I(inode)); 5338 5339 if (inode_unhashed(inode)) 5340 return; 5341 parent = NULL; 5342 spin_lock(&root->inode_lock); 5343 p = &root->inode_tree.rb_node; 5344 while (*p) { 5345 parent = *p; 5346 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5347 5348 if (ino < btrfs_ino(entry)) 5349 p = &parent->rb_left; 5350 else if (ino > btrfs_ino(entry)) 5351 p = &parent->rb_right; 5352 else { 5353 WARN_ON(!(entry->vfs_inode.i_state & 5354 (I_WILL_FREE | I_FREEING))); 5355 rb_replace_node(parent, new, &root->inode_tree); 5356 RB_CLEAR_NODE(parent); 5357 spin_unlock(&root->inode_lock); 5358 return; 5359 } 5360 } 5361 rb_link_node(new, parent, p); 5362 rb_insert_color(new, &root->inode_tree); 5363 spin_unlock(&root->inode_lock); 5364} 5365 5366static void inode_tree_del(struct btrfs_inode *inode) 5367{ 5368 struct btrfs_root *root = inode->root; 5369 int empty = 0; 5370 5371 spin_lock(&root->inode_lock); 5372 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5373 rb_erase(&inode->rb_node, &root->inode_tree); 5374 RB_CLEAR_NODE(&inode->rb_node); 5375 empty = RB_EMPTY_ROOT(&root->inode_tree); 5376 } 5377 spin_unlock(&root->inode_lock); 5378 5379 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5380 spin_lock(&root->inode_lock); 5381 empty = RB_EMPTY_ROOT(&root->inode_tree); 5382 spin_unlock(&root->inode_lock); 5383 if (empty) 5384 btrfs_add_dead_root(root); 5385 } 5386} 5387 5388 5389static int btrfs_init_locked_inode(struct inode *inode, void *p) 5390{ 5391 struct btrfs_iget_args *args = p; 5392 5393 inode->i_ino = args->ino; 5394 BTRFS_I(inode)->location.objectid = args->ino; 5395 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5396 BTRFS_I(inode)->location.offset = 0; 5397 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5398 BUG_ON(args->root && !BTRFS_I(inode)->root); 5399 return 0; 5400} 5401 5402static int btrfs_find_actor(struct inode *inode, void *opaque) 5403{ 5404 struct btrfs_iget_args *args = opaque; 5405 5406 return args->ino == BTRFS_I(inode)->location.objectid && 5407 args->root == BTRFS_I(inode)->root; 5408} 5409 5410static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5411 struct btrfs_root *root) 5412{ 5413 struct inode *inode; 5414 struct btrfs_iget_args args; 5415 unsigned long hashval = btrfs_inode_hash(ino, root); 5416 5417 args.ino = ino; 5418 args.root = root; 5419 5420 inode = iget5_locked(s, hashval, btrfs_find_actor, 5421 btrfs_init_locked_inode, 5422 (void *)&args); 5423 return inode; 5424} 5425 5426/* 5427 * Get an inode object given its inode number and corresponding root. 5428 * Path can be preallocated to prevent recursing back to iget through 5429 * allocator. NULL is also valid but may require an additional allocation 5430 * later. 5431 */ 5432struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5433 struct btrfs_root *root, struct btrfs_path *path) 5434{ 5435 struct inode *inode; 5436 5437 inode = btrfs_iget_locked(s, ino, root); 5438 if (!inode) 5439 return ERR_PTR(-ENOMEM); 5440 5441 if (inode->i_state & I_NEW) { 5442 int ret; 5443 5444 ret = btrfs_read_locked_inode(inode, path); 5445 if (!ret) { 5446 inode_tree_add(inode); 5447 unlock_new_inode(inode); 5448 } else { 5449 iget_failed(inode); 5450 /* 5451 * ret > 0 can come from btrfs_search_slot called by 5452 * btrfs_read_locked_inode, this means the inode item 5453 * was not found. 5454 */ 5455 if (ret > 0) 5456 ret = -ENOENT; 5457 inode = ERR_PTR(ret); 5458 } 5459 } 5460 5461 return inode; 5462} 5463 5464struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5465{ 5466 return btrfs_iget_path(s, ino, root, NULL); 5467} 5468 5469static struct inode *new_simple_dir(struct super_block *s, 5470 struct btrfs_key *key, 5471 struct btrfs_root *root) 5472{ 5473 struct inode *inode = new_inode(s); 5474 5475 if (!inode) 5476 return ERR_PTR(-ENOMEM); 5477 5478 BTRFS_I(inode)->root = btrfs_grab_root(root); 5479 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5480 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5481 5482 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5483 /* 5484 * We only need lookup, the rest is read-only and there's no inode 5485 * associated with the dentry 5486 */ 5487 inode->i_op = &simple_dir_inode_operations; 5488 inode->i_opflags &= ~IOP_XATTR; 5489 inode->i_fop = &simple_dir_operations; 5490 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5491 inode->i_mtime = current_time(inode); 5492 inode->i_atime = inode->i_mtime; 5493 inode->i_ctime = inode->i_mtime; 5494 BTRFS_I(inode)->i_otime = inode->i_mtime; 5495 5496 return inode; 5497} 5498 5499static inline u8 btrfs_inode_type(struct inode *inode) 5500{ 5501 /* 5502 * Compile-time asserts that generic FT_* types still match 5503 * BTRFS_FT_* types 5504 */ 5505 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5506 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5507 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5508 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5509 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5510 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5511 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5512 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5513 5514 return fs_umode_to_ftype(inode->i_mode); 5515} 5516 5517struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5518{ 5519 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5520 struct inode *inode; 5521 struct btrfs_root *root = BTRFS_I(dir)->root; 5522 struct btrfs_root *sub_root = root; 5523 struct btrfs_key location; 5524 u8 di_type = 0; 5525 int ret = 0; 5526 5527 if (dentry->d_name.len > BTRFS_NAME_LEN) 5528 return ERR_PTR(-ENAMETOOLONG); 5529 5530 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5531 if (ret < 0) 5532 return ERR_PTR(ret); 5533 5534 if (location.type == BTRFS_INODE_ITEM_KEY) { 5535 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5536 if (IS_ERR(inode)) 5537 return inode; 5538 5539 /* Do extra check against inode mode with di_type */ 5540 if (btrfs_inode_type(inode) != di_type) { 5541 btrfs_crit(fs_info, 5542"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5543 inode->i_mode, btrfs_inode_type(inode), 5544 di_type); 5545 iput(inode); 5546 return ERR_PTR(-EUCLEAN); 5547 } 5548 return inode; 5549 } 5550 5551 ret = fixup_tree_root_location(fs_info, dir, dentry, 5552 &location, &sub_root); 5553 if (ret < 0) { 5554 if (ret != -ENOENT) 5555 inode = ERR_PTR(ret); 5556 else 5557 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5558 } else { 5559 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5560 } 5561 if (root != sub_root) 5562 btrfs_put_root(sub_root); 5563 5564 if (!IS_ERR(inode) && root != sub_root) { 5565 down_read(&fs_info->cleanup_work_sem); 5566 if (!sb_rdonly(inode->i_sb)) 5567 ret = btrfs_orphan_cleanup(sub_root); 5568 up_read(&fs_info->cleanup_work_sem); 5569 if (ret) { 5570 iput(inode); 5571 inode = ERR_PTR(ret); 5572 } 5573 } 5574 5575 return inode; 5576} 5577 5578static int btrfs_dentry_delete(const struct dentry *dentry) 5579{ 5580 struct btrfs_root *root; 5581 struct inode *inode = d_inode(dentry); 5582 5583 if (!inode && !IS_ROOT(dentry)) 5584 inode = d_inode(dentry->d_parent); 5585 5586 if (inode) { 5587 root = BTRFS_I(inode)->root; 5588 if (btrfs_root_refs(&root->root_item) == 0) 5589 return 1; 5590 5591 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5592 return 1; 5593 } 5594 return 0; 5595} 5596 5597static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5598 unsigned int flags) 5599{ 5600 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5601 5602 if (inode == ERR_PTR(-ENOENT)) 5603 inode = NULL; 5604 return d_splice_alias(inode, dentry); 5605} 5606 5607/* 5608 * All this infrastructure exists because dir_emit can fault, and we are holding 5609 * the tree lock when doing readdir. For now just allocate a buffer and copy 5610 * our information into that, and then dir_emit from the buffer. This is 5611 * similar to what NFS does, only we don't keep the buffer around in pagecache 5612 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5613 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5614 * tree lock. 5615 */ 5616static int btrfs_opendir(struct inode *inode, struct file *file) 5617{ 5618 struct btrfs_file_private *private; 5619 5620 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5621 if (!private) 5622 return -ENOMEM; 5623 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5624 if (!private->filldir_buf) { 5625 kfree(private); 5626 return -ENOMEM; 5627 } 5628 file->private_data = private; 5629 return 0; 5630} 5631 5632struct dir_entry { 5633 u64 ino; 5634 u64 offset; 5635 unsigned type; 5636 int name_len; 5637}; 5638 5639static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5640{ 5641 while (entries--) { 5642 struct dir_entry *entry = addr; 5643 char *name = (char *)(entry + 1); 5644 5645 ctx->pos = get_unaligned(&entry->offset); 5646 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5647 get_unaligned(&entry->ino), 5648 get_unaligned(&entry->type))) 5649 return 1; 5650 addr += sizeof(struct dir_entry) + 5651 get_unaligned(&entry->name_len); 5652 ctx->pos++; 5653 } 5654 return 0; 5655} 5656 5657static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5658{ 5659 struct inode *inode = file_inode(file); 5660 struct btrfs_root *root = BTRFS_I(inode)->root; 5661 struct btrfs_file_private *private = file->private_data; 5662 struct btrfs_dir_item *di; 5663 struct btrfs_key key; 5664 struct btrfs_key found_key; 5665 struct btrfs_path *path; 5666 void *addr; 5667 struct list_head ins_list; 5668 struct list_head del_list; 5669 int ret; 5670 struct extent_buffer *leaf; 5671 int slot; 5672 char *name_ptr; 5673 int name_len; 5674 int entries = 0; 5675 int total_len = 0; 5676 bool put = false; 5677 struct btrfs_key location; 5678 5679 if (!dir_emit_dots(file, ctx)) 5680 return 0; 5681 5682 path = btrfs_alloc_path(); 5683 if (!path) 5684 return -ENOMEM; 5685 5686 addr = private->filldir_buf; 5687 path->reada = READA_FORWARD; 5688 5689 INIT_LIST_HEAD(&ins_list); 5690 INIT_LIST_HEAD(&del_list); 5691 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5692 5693again: 5694 key.type = BTRFS_DIR_INDEX_KEY; 5695 key.offset = ctx->pos; 5696 key.objectid = btrfs_ino(BTRFS_I(inode)); 5697 5698 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5699 if (ret < 0) 5700 goto err; 5701 5702 while (1) { 5703 struct dir_entry *entry; 5704 5705 leaf = path->nodes[0]; 5706 slot = path->slots[0]; 5707 if (slot >= btrfs_header_nritems(leaf)) { 5708 ret = btrfs_next_leaf(root, path); 5709 if (ret < 0) 5710 goto err; 5711 else if (ret > 0) 5712 break; 5713 continue; 5714 } 5715 5716 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5717 5718 if (found_key.objectid != key.objectid) 5719 break; 5720 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5721 break; 5722 if (found_key.offset < ctx->pos) 5723 goto next; 5724 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5725 goto next; 5726 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5727 name_len = btrfs_dir_name_len(leaf, di); 5728 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5729 PAGE_SIZE) { 5730 btrfs_release_path(path); 5731 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5732 if (ret) 5733 goto nopos; 5734 addr = private->filldir_buf; 5735 entries = 0; 5736 total_len = 0; 5737 goto again; 5738 } 5739 5740 entry = addr; 5741 put_unaligned(name_len, &entry->name_len); 5742 name_ptr = (char *)(entry + 1); 5743 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5744 name_len); 5745 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 5746 &entry->type); 5747 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5748 put_unaligned(location.objectid, &entry->ino); 5749 put_unaligned(found_key.offset, &entry->offset); 5750 entries++; 5751 addr += sizeof(struct dir_entry) + name_len; 5752 total_len += sizeof(struct dir_entry) + name_len; 5753next: 5754 path->slots[0]++; 5755 } 5756 btrfs_release_path(path); 5757 5758 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5759 if (ret) 5760 goto nopos; 5761 5762 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5763 if (ret) 5764 goto nopos; 5765 5766 /* 5767 * Stop new entries from being returned after we return the last 5768 * entry. 5769 * 5770 * New directory entries are assigned a strictly increasing 5771 * offset. This means that new entries created during readdir 5772 * are *guaranteed* to be seen in the future by that readdir. 5773 * This has broken buggy programs which operate on names as 5774 * they're returned by readdir. Until we re-use freed offsets 5775 * we have this hack to stop new entries from being returned 5776 * under the assumption that they'll never reach this huge 5777 * offset. 5778 * 5779 * This is being careful not to overflow 32bit loff_t unless the 5780 * last entry requires it because doing so has broken 32bit apps 5781 * in the past. 5782 */ 5783 if (ctx->pos >= INT_MAX) 5784 ctx->pos = LLONG_MAX; 5785 else 5786 ctx->pos = INT_MAX; 5787nopos: 5788 ret = 0; 5789err: 5790 if (put) 5791 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5792 btrfs_free_path(path); 5793 return ret; 5794} 5795 5796/* 5797 * This is somewhat expensive, updating the tree every time the 5798 * inode changes. But, it is most likely to find the inode in cache. 5799 * FIXME, needs more benchmarking...there are no reasons other than performance 5800 * to keep or drop this code. 5801 */ 5802static int btrfs_dirty_inode(struct inode *inode) 5803{ 5804 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5805 struct btrfs_root *root = BTRFS_I(inode)->root; 5806 struct btrfs_trans_handle *trans; 5807 int ret; 5808 5809 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5810 return 0; 5811 5812 trans = btrfs_join_transaction(root); 5813 if (IS_ERR(trans)) 5814 return PTR_ERR(trans); 5815 5816 ret = btrfs_update_inode(trans, root, inode); 5817 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 5818 /* whoops, lets try again with the full transaction */ 5819 btrfs_end_transaction(trans); 5820 trans = btrfs_start_transaction(root, 1); 5821 if (IS_ERR(trans)) 5822 return PTR_ERR(trans); 5823 5824 ret = btrfs_update_inode(trans, root, inode); 5825 } 5826 btrfs_end_transaction(trans); 5827 if (BTRFS_I(inode)->delayed_node) 5828 btrfs_balance_delayed_items(fs_info); 5829 5830 return ret; 5831} 5832 5833/* 5834 * This is a copy of file_update_time. We need this so we can return error on 5835 * ENOSPC for updating the inode in the case of file write and mmap writes. 5836 */ 5837static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5838 int flags) 5839{ 5840 struct btrfs_root *root = BTRFS_I(inode)->root; 5841 bool dirty = flags & ~S_VERSION; 5842 5843 if (btrfs_root_readonly(root)) 5844 return -EROFS; 5845 5846 if (flags & S_VERSION) 5847 dirty |= inode_maybe_inc_iversion(inode, dirty); 5848 if (flags & S_CTIME) 5849 inode->i_ctime = *now; 5850 if (flags & S_MTIME) 5851 inode->i_mtime = *now; 5852 if (flags & S_ATIME) 5853 inode->i_atime = *now; 5854 return dirty ? btrfs_dirty_inode(inode) : 0; 5855} 5856 5857/* 5858 * find the highest existing sequence number in a directory 5859 * and then set the in-memory index_cnt variable to reflect 5860 * free sequence numbers 5861 */ 5862static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5863{ 5864 struct btrfs_root *root = inode->root; 5865 struct btrfs_key key, found_key; 5866 struct btrfs_path *path; 5867 struct extent_buffer *leaf; 5868 int ret; 5869 5870 key.objectid = btrfs_ino(inode); 5871 key.type = BTRFS_DIR_INDEX_KEY; 5872 key.offset = (u64)-1; 5873 5874 path = btrfs_alloc_path(); 5875 if (!path) 5876 return -ENOMEM; 5877 5878 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5879 if (ret < 0) 5880 goto out; 5881 /* FIXME: we should be able to handle this */ 5882 if (ret == 0) 5883 goto out; 5884 ret = 0; 5885 5886 /* 5887 * MAGIC NUMBER EXPLANATION: 5888 * since we search a directory based on f_pos we have to start at 2 5889 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5890 * else has to start at 2 5891 */ 5892 if (path->slots[0] == 0) { 5893 inode->index_cnt = 2; 5894 goto out; 5895 } 5896 5897 path->slots[0]--; 5898 5899 leaf = path->nodes[0]; 5900 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5901 5902 if (found_key.objectid != btrfs_ino(inode) || 5903 found_key.type != BTRFS_DIR_INDEX_KEY) { 5904 inode->index_cnt = 2; 5905 goto out; 5906 } 5907 5908 inode->index_cnt = found_key.offset + 1; 5909out: 5910 btrfs_free_path(path); 5911 return ret; 5912} 5913 5914/* 5915 * helper to find a free sequence number in a given directory. This current 5916 * code is very simple, later versions will do smarter things in the btree 5917 */ 5918int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 5919{ 5920 int ret = 0; 5921 5922 if (dir->index_cnt == (u64)-1) { 5923 ret = btrfs_inode_delayed_dir_index_count(dir); 5924 if (ret) { 5925 ret = btrfs_set_inode_index_count(dir); 5926 if (ret) 5927 return ret; 5928 } 5929 } 5930 5931 *index = dir->index_cnt; 5932 dir->index_cnt++; 5933 5934 return ret; 5935} 5936 5937static int btrfs_insert_inode_locked(struct inode *inode) 5938{ 5939 struct btrfs_iget_args args; 5940 5941 args.ino = BTRFS_I(inode)->location.objectid; 5942 args.root = BTRFS_I(inode)->root; 5943 5944 return insert_inode_locked4(inode, 5945 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5946 btrfs_find_actor, &args); 5947} 5948 5949/* 5950 * Inherit flags from the parent inode. 5951 * 5952 * Currently only the compression flags and the cow flags are inherited. 5953 */ 5954static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 5955{ 5956 unsigned int flags; 5957 5958 if (!dir) 5959 return; 5960 5961 flags = BTRFS_I(dir)->flags; 5962 5963 if (flags & BTRFS_INODE_NOCOMPRESS) { 5964 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 5965 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 5966 } else if (flags & BTRFS_INODE_COMPRESS) { 5967 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 5968 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 5969 } 5970 5971 if (flags & BTRFS_INODE_NODATACOW) { 5972 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 5973 if (S_ISREG(inode->i_mode)) 5974 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5975 } 5976 5977 btrfs_sync_inode_flags_to_i_flags(inode); 5978} 5979 5980static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5981 struct btrfs_root *root, 5982 struct inode *dir, 5983 const char *name, int name_len, 5984 u64 ref_objectid, u64 objectid, 5985 umode_t mode, u64 *index) 5986{ 5987 struct btrfs_fs_info *fs_info = root->fs_info; 5988 struct inode *inode; 5989 struct btrfs_inode_item *inode_item; 5990 struct btrfs_key *location; 5991 struct btrfs_path *path; 5992 struct btrfs_inode_ref *ref; 5993 struct btrfs_key key[2]; 5994 u32 sizes[2]; 5995 int nitems = name ? 2 : 1; 5996 unsigned long ptr; 5997 unsigned int nofs_flag; 5998 int ret; 5999 6000 path = btrfs_alloc_path(); 6001 if (!path) 6002 return ERR_PTR(-ENOMEM); 6003 6004 nofs_flag = memalloc_nofs_save(); 6005 inode = new_inode(fs_info->sb); 6006 memalloc_nofs_restore(nofs_flag); 6007 if (!inode) { 6008 btrfs_free_path(path); 6009 return ERR_PTR(-ENOMEM); 6010 } 6011 6012 /* 6013 * O_TMPFILE, set link count to 0, so that after this point, 6014 * we fill in an inode item with the correct link count. 6015 */ 6016 if (!name) 6017 set_nlink(inode, 0); 6018 6019 /* 6020 * we have to initialize this early, so we can reclaim the inode 6021 * number if we fail afterwards in this function. 6022 */ 6023 inode->i_ino = objectid; 6024 6025 if (dir && name) { 6026 trace_btrfs_inode_request(dir); 6027 6028 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6029 if (ret) { 6030 btrfs_free_path(path); 6031 iput(inode); 6032 return ERR_PTR(ret); 6033 } 6034 } else if (dir) { 6035 *index = 0; 6036 } 6037 /* 6038 * index_cnt is ignored for everything but a dir, 6039 * btrfs_set_inode_index_count has an explanation for the magic 6040 * number 6041 */ 6042 BTRFS_I(inode)->index_cnt = 2; 6043 BTRFS_I(inode)->dir_index = *index; 6044 BTRFS_I(inode)->root = btrfs_grab_root(root); 6045 BTRFS_I(inode)->generation = trans->transid; 6046 inode->i_generation = BTRFS_I(inode)->generation; 6047 6048 /* 6049 * We could have gotten an inode number from somebody who was fsynced 6050 * and then removed in this same transaction, so let's just set full 6051 * sync since it will be a full sync anyway and this will blow away the 6052 * old info in the log. 6053 */ 6054 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6055 6056 key[0].objectid = objectid; 6057 key[0].type = BTRFS_INODE_ITEM_KEY; 6058 key[0].offset = 0; 6059 6060 sizes[0] = sizeof(struct btrfs_inode_item); 6061 6062 if (name) { 6063 /* 6064 * Start new inodes with an inode_ref. This is slightly more 6065 * efficient for small numbers of hard links since they will 6066 * be packed into one item. Extended refs will kick in if we 6067 * add more hard links than can fit in the ref item. 6068 */ 6069 key[1].objectid = objectid; 6070 key[1].type = BTRFS_INODE_REF_KEY; 6071 key[1].offset = ref_objectid; 6072 6073 sizes[1] = name_len + sizeof(*ref); 6074 } 6075 6076 location = &BTRFS_I(inode)->location; 6077 location->objectid = objectid; 6078 location->offset = 0; 6079 location->type = BTRFS_INODE_ITEM_KEY; 6080 6081 ret = btrfs_insert_inode_locked(inode); 6082 if (ret < 0) { 6083 iput(inode); 6084 goto fail; 6085 } 6086 6087 path->leave_spinning = 1; 6088 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6089 if (ret != 0) 6090 goto fail_unlock; 6091 6092 inode_init_owner(inode, dir, mode); 6093 inode_set_bytes(inode, 0); 6094 6095 inode->i_mtime = current_time(inode); 6096 inode->i_atime = inode->i_mtime; 6097 inode->i_ctime = inode->i_mtime; 6098 BTRFS_I(inode)->i_otime = inode->i_mtime; 6099 6100 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6101 struct btrfs_inode_item); 6102 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6103 sizeof(*inode_item)); 6104 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6105 6106 if (name) { 6107 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6108 struct btrfs_inode_ref); 6109 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6110 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6111 ptr = (unsigned long)(ref + 1); 6112 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6113 } 6114 6115 btrfs_mark_buffer_dirty(path->nodes[0]); 6116 btrfs_free_path(path); 6117 6118 btrfs_inherit_iflags(inode, dir); 6119 6120 if (S_ISREG(mode)) { 6121 if (btrfs_test_opt(fs_info, NODATASUM)) 6122 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6123 if (btrfs_test_opt(fs_info, NODATACOW)) 6124 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6125 BTRFS_INODE_NODATASUM; 6126 } 6127 6128 inode_tree_add(inode); 6129 6130 trace_btrfs_inode_new(inode); 6131 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6132 6133 btrfs_update_root_times(trans, root); 6134 6135 ret = btrfs_inode_inherit_props(trans, inode, dir); 6136 if (ret) 6137 btrfs_err(fs_info, 6138 "error inheriting props for ino %llu (root %llu): %d", 6139 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6140 6141 return inode; 6142 6143fail_unlock: 6144 discard_new_inode(inode); 6145fail: 6146 if (dir && name) 6147 BTRFS_I(dir)->index_cnt--; 6148 btrfs_free_path(path); 6149 return ERR_PTR(ret); 6150} 6151 6152/* 6153 * utility function to add 'inode' into 'parent_inode' with 6154 * a give name and a given sequence number. 6155 * if 'add_backref' is true, also insert a backref from the 6156 * inode to the parent directory. 6157 */ 6158int btrfs_add_link(struct btrfs_trans_handle *trans, 6159 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6160 const char *name, int name_len, int add_backref, u64 index) 6161{ 6162 int ret = 0; 6163 struct btrfs_key key; 6164 struct btrfs_root *root = parent_inode->root; 6165 u64 ino = btrfs_ino(inode); 6166 u64 parent_ino = btrfs_ino(parent_inode); 6167 6168 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6169 memcpy(&key, &inode->root->root_key, sizeof(key)); 6170 } else { 6171 key.objectid = ino; 6172 key.type = BTRFS_INODE_ITEM_KEY; 6173 key.offset = 0; 6174 } 6175 6176 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6177 ret = btrfs_add_root_ref(trans, key.objectid, 6178 root->root_key.objectid, parent_ino, 6179 index, name, name_len); 6180 } else if (add_backref) { 6181 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6182 parent_ino, index); 6183 } 6184 6185 /* Nothing to clean up yet */ 6186 if (ret) 6187 return ret; 6188 6189 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6190 btrfs_inode_type(&inode->vfs_inode), index); 6191 if (ret == -EEXIST || ret == -EOVERFLOW) 6192 goto fail_dir_item; 6193 else if (ret) { 6194 btrfs_abort_transaction(trans, ret); 6195 return ret; 6196 } 6197 6198 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6199 name_len * 2); 6200 inode_inc_iversion(&parent_inode->vfs_inode); 6201 /* 6202 * If we are replaying a log tree, we do not want to update the mtime 6203 * and ctime of the parent directory with the current time, since the 6204 * log replay procedure is responsible for setting them to their correct 6205 * values (the ones it had when the fsync was done). 6206 */ 6207 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6208 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6209 6210 parent_inode->vfs_inode.i_mtime = now; 6211 parent_inode->vfs_inode.i_ctime = now; 6212 } 6213 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6214 if (ret) 6215 btrfs_abort_transaction(trans, ret); 6216 return ret; 6217 6218fail_dir_item: 6219 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6220 u64 local_index; 6221 int err; 6222 err = btrfs_del_root_ref(trans, key.objectid, 6223 root->root_key.objectid, parent_ino, 6224 &local_index, name, name_len); 6225 if (err) 6226 btrfs_abort_transaction(trans, err); 6227 } else if (add_backref) { 6228 u64 local_index; 6229 int err; 6230 6231 err = btrfs_del_inode_ref(trans, root, name, name_len, 6232 ino, parent_ino, &local_index); 6233 if (err) 6234 btrfs_abort_transaction(trans, err); 6235 } 6236 6237 /* Return the original error code */ 6238 return ret; 6239} 6240 6241static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6242 struct btrfs_inode *dir, struct dentry *dentry, 6243 struct btrfs_inode *inode, int backref, u64 index) 6244{ 6245 int err = btrfs_add_link(trans, dir, inode, 6246 dentry->d_name.name, dentry->d_name.len, 6247 backref, index); 6248 if (err > 0) 6249 err = -EEXIST; 6250 return err; 6251} 6252 6253static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6254 umode_t mode, dev_t rdev) 6255{ 6256 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6257 struct btrfs_trans_handle *trans; 6258 struct btrfs_root *root = BTRFS_I(dir)->root; 6259 struct inode *inode = NULL; 6260 int err; 6261 u64 objectid; 6262 u64 index = 0; 6263 6264 /* 6265 * 2 for inode item and ref 6266 * 2 for dir items 6267 * 1 for xattr if selinux is on 6268 */ 6269 trans = btrfs_start_transaction(root, 5); 6270 if (IS_ERR(trans)) 6271 return PTR_ERR(trans); 6272 6273 err = btrfs_find_free_objectid(root, &objectid); 6274 if (err) 6275 goto out_unlock; 6276 6277 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6278 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6279 mode, &index); 6280 if (IS_ERR(inode)) { 6281 err = PTR_ERR(inode); 6282 inode = NULL; 6283 goto out_unlock; 6284 } 6285 6286 /* 6287 * If the active LSM wants to access the inode during 6288 * d_instantiate it needs these. Smack checks to see 6289 * if the filesystem supports xattrs by looking at the 6290 * ops vector. 6291 */ 6292 inode->i_op = &btrfs_special_inode_operations; 6293 init_special_inode(inode, inode->i_mode, rdev); 6294 6295 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6296 if (err) 6297 goto out_unlock; 6298 6299 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6300 0, index); 6301 if (err) 6302 goto out_unlock; 6303 6304 btrfs_update_inode(trans, root, inode); 6305 d_instantiate_new(dentry, inode); 6306 6307out_unlock: 6308 btrfs_end_transaction(trans); 6309 btrfs_btree_balance_dirty(fs_info); 6310 if (err && inode) { 6311 inode_dec_link_count(inode); 6312 discard_new_inode(inode); 6313 } 6314 return err; 6315} 6316 6317static int btrfs_create(struct inode *dir, struct dentry *dentry, 6318 umode_t mode, bool excl) 6319{ 6320 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6321 struct btrfs_trans_handle *trans; 6322 struct btrfs_root *root = BTRFS_I(dir)->root; 6323 struct inode *inode = NULL; 6324 int err; 6325 u64 objectid; 6326 u64 index = 0; 6327 6328 /* 6329 * 2 for inode item and ref 6330 * 2 for dir items 6331 * 1 for xattr if selinux is on 6332 */ 6333 trans = btrfs_start_transaction(root, 5); 6334 if (IS_ERR(trans)) 6335 return PTR_ERR(trans); 6336 6337 err = btrfs_find_free_objectid(root, &objectid); 6338 if (err) 6339 goto out_unlock; 6340 6341 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6342 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6343 mode, &index); 6344 if (IS_ERR(inode)) { 6345 err = PTR_ERR(inode); 6346 inode = NULL; 6347 goto out_unlock; 6348 } 6349 /* 6350 * If the active LSM wants to access the inode during 6351 * d_instantiate it needs these. Smack checks to see 6352 * if the filesystem supports xattrs by looking at the 6353 * ops vector. 6354 */ 6355 inode->i_fop = &btrfs_file_operations; 6356 inode->i_op = &btrfs_file_inode_operations; 6357 inode->i_mapping->a_ops = &btrfs_aops; 6358 6359 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6360 if (err) 6361 goto out_unlock; 6362 6363 err = btrfs_update_inode(trans, root, inode); 6364 if (err) 6365 goto out_unlock; 6366 6367 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6368 0, index); 6369 if (err) 6370 goto out_unlock; 6371 6372 d_instantiate_new(dentry, inode); 6373 6374out_unlock: 6375 btrfs_end_transaction(trans); 6376 if (err && inode) { 6377 inode_dec_link_count(inode); 6378 discard_new_inode(inode); 6379 } 6380 btrfs_btree_balance_dirty(fs_info); 6381 return err; 6382} 6383 6384static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6385 struct dentry *dentry) 6386{ 6387 struct btrfs_trans_handle *trans = NULL; 6388 struct btrfs_root *root = BTRFS_I(dir)->root; 6389 struct inode *inode = d_inode(old_dentry); 6390 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6391 u64 index; 6392 int err; 6393 int drop_inode = 0; 6394 6395 /* do not allow sys_link's with other subvols of the same device */ 6396 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6397 return -EXDEV; 6398 6399 if (inode->i_nlink >= BTRFS_LINK_MAX) 6400 return -EMLINK; 6401 6402 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6403 if (err) 6404 goto fail; 6405 6406 /* 6407 * 2 items for inode and inode ref 6408 * 2 items for dir items 6409 * 1 item for parent inode 6410 * 1 item for orphan item deletion if O_TMPFILE 6411 */ 6412 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6413 if (IS_ERR(trans)) { 6414 err = PTR_ERR(trans); 6415 trans = NULL; 6416 goto fail; 6417 } 6418 6419 /* There are several dir indexes for this inode, clear the cache. */ 6420 BTRFS_I(inode)->dir_index = 0ULL; 6421 inc_nlink(inode); 6422 inode_inc_iversion(inode); 6423 inode->i_ctime = current_time(inode); 6424 ihold(inode); 6425 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6426 6427 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6428 1, index); 6429 6430 if (err) { 6431 drop_inode = 1; 6432 } else { 6433 struct dentry *parent = dentry->d_parent; 6434 6435 err = btrfs_update_inode(trans, root, inode); 6436 if (err) 6437 goto fail; 6438 if (inode->i_nlink == 1) { 6439 /* 6440 * If new hard link count is 1, it's a file created 6441 * with open(2) O_TMPFILE flag. 6442 */ 6443 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6444 if (err) 6445 goto fail; 6446 } 6447 d_instantiate(dentry, inode); 6448 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6449 } 6450 6451fail: 6452 if (trans) 6453 btrfs_end_transaction(trans); 6454 if (drop_inode) { 6455 inode_dec_link_count(inode); 6456 iput(inode); 6457 } 6458 btrfs_btree_balance_dirty(fs_info); 6459 return err; 6460} 6461 6462static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6463{ 6464 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6465 struct inode *inode = NULL; 6466 struct btrfs_trans_handle *trans; 6467 struct btrfs_root *root = BTRFS_I(dir)->root; 6468 int err = 0; 6469 u64 objectid = 0; 6470 u64 index = 0; 6471 6472 /* 6473 * 2 items for inode and ref 6474 * 2 items for dir items 6475 * 1 for xattr if selinux is on 6476 */ 6477 trans = btrfs_start_transaction(root, 5); 6478 if (IS_ERR(trans)) 6479 return PTR_ERR(trans); 6480 6481 err = btrfs_find_free_objectid(root, &objectid); 6482 if (err) 6483 goto out_fail; 6484 6485 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6486 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6487 S_IFDIR | mode, &index); 6488 if (IS_ERR(inode)) { 6489 err = PTR_ERR(inode); 6490 inode = NULL; 6491 goto out_fail; 6492 } 6493 6494 /* these must be set before we unlock the inode */ 6495 inode->i_op = &btrfs_dir_inode_operations; 6496 inode->i_fop = &btrfs_dir_file_operations; 6497 6498 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6499 if (err) 6500 goto out_fail; 6501 6502 btrfs_i_size_write(BTRFS_I(inode), 0); 6503 err = btrfs_update_inode(trans, root, inode); 6504 if (err) 6505 goto out_fail; 6506 6507 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6508 dentry->d_name.name, 6509 dentry->d_name.len, 0, index); 6510 if (err) 6511 goto out_fail; 6512 6513 d_instantiate_new(dentry, inode); 6514 6515out_fail: 6516 btrfs_end_transaction(trans); 6517 if (err && inode) { 6518 inode_dec_link_count(inode); 6519 discard_new_inode(inode); 6520 } 6521 btrfs_btree_balance_dirty(fs_info); 6522 return err; 6523} 6524 6525static noinline int uncompress_inline(struct btrfs_path *path, 6526 struct page *page, 6527 size_t pg_offset, u64 extent_offset, 6528 struct btrfs_file_extent_item *item) 6529{ 6530 int ret; 6531 struct extent_buffer *leaf = path->nodes[0]; 6532 char *tmp; 6533 size_t max_size; 6534 unsigned long inline_size; 6535 unsigned long ptr; 6536 int compress_type; 6537 6538 WARN_ON(pg_offset != 0); 6539 compress_type = btrfs_file_extent_compression(leaf, item); 6540 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6541 inline_size = btrfs_file_extent_inline_item_len(leaf, 6542 btrfs_item_nr(path->slots[0])); 6543 tmp = kmalloc(inline_size, GFP_NOFS); 6544 if (!tmp) 6545 return -ENOMEM; 6546 ptr = btrfs_file_extent_inline_start(item); 6547 6548 read_extent_buffer(leaf, tmp, ptr, inline_size); 6549 6550 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6551 ret = btrfs_decompress(compress_type, tmp, page, 6552 extent_offset, inline_size, max_size); 6553 6554 /* 6555 * decompression code contains a memset to fill in any space between the end 6556 * of the uncompressed data and the end of max_size in case the decompressed 6557 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6558 * the end of an inline extent and the beginning of the next block, so we 6559 * cover that region here. 6560 */ 6561 6562 if (max_size + pg_offset < PAGE_SIZE) { 6563 char *map = kmap(page); 6564 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6565 kunmap(page); 6566 } 6567 kfree(tmp); 6568 return ret; 6569} 6570 6571/** 6572 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6573 * @inode: file to search in 6574 * @page: page to read extent data into if the extent is inline 6575 * @pg_offset: offset into @page to copy to 6576 * @start: file offset 6577 * @len: length of range starting at @start 6578 * 6579 * This returns the first &struct extent_map which overlaps with the given 6580 * range, reading it from the B-tree and caching it if necessary. Note that 6581 * there may be more extents which overlap the given range after the returned 6582 * extent_map. 6583 * 6584 * If @page is not NULL and the extent is inline, this also reads the extent 6585 * data directly into the page and marks the extent up to date in the io_tree. 6586 * 6587 * Return: ERR_PTR on error, non-NULL extent_map on success. 6588 */ 6589struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6590 struct page *page, size_t pg_offset, 6591 u64 start, u64 len) 6592{ 6593 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6594 int ret = 0; 6595 u64 extent_start = 0; 6596 u64 extent_end = 0; 6597 u64 objectid = btrfs_ino(inode); 6598 int extent_type = -1; 6599 struct btrfs_path *path = NULL; 6600 struct btrfs_root *root = inode->root; 6601 struct btrfs_file_extent_item *item; 6602 struct extent_buffer *leaf; 6603 struct btrfs_key found_key; 6604 struct extent_map *em = NULL; 6605 struct extent_map_tree *em_tree = &inode->extent_tree; 6606 struct extent_io_tree *io_tree = &inode->io_tree; 6607 6608 read_lock(&em_tree->lock); 6609 em = lookup_extent_mapping(em_tree, start, len); 6610 read_unlock(&em_tree->lock); 6611 6612 if (em) { 6613 if (em->start > start || em->start + em->len <= start) 6614 free_extent_map(em); 6615 else if (em->block_start == EXTENT_MAP_INLINE && page) 6616 free_extent_map(em); 6617 else 6618 goto out; 6619 } 6620 em = alloc_extent_map(); 6621 if (!em) { 6622 ret = -ENOMEM; 6623 goto out; 6624 } 6625 em->start = EXTENT_MAP_HOLE; 6626 em->orig_start = EXTENT_MAP_HOLE; 6627 em->len = (u64)-1; 6628 em->block_len = (u64)-1; 6629 6630 path = btrfs_alloc_path(); 6631 if (!path) { 6632 ret = -ENOMEM; 6633 goto out; 6634 } 6635 6636 /* Chances are we'll be called again, so go ahead and do readahead */ 6637 path->reada = READA_FORWARD; 6638 6639 /* 6640 * Unless we're going to uncompress the inline extent, no sleep would 6641 * happen. 6642 */ 6643 path->leave_spinning = 1; 6644 6645 path->recurse = btrfs_is_free_space_inode(inode); 6646 6647 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6648 if (ret < 0) { 6649 goto out; 6650 } else if (ret > 0) { 6651 if (path->slots[0] == 0) 6652 goto not_found; 6653 path->slots[0]--; 6654 ret = 0; 6655 } 6656 6657 leaf = path->nodes[0]; 6658 item = btrfs_item_ptr(leaf, path->slots[0], 6659 struct btrfs_file_extent_item); 6660 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6661 if (found_key.objectid != objectid || 6662 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6663 /* 6664 * If we backup past the first extent we want to move forward 6665 * and see if there is an extent in front of us, otherwise we'll 6666 * say there is a hole for our whole search range which can 6667 * cause problems. 6668 */ 6669 extent_end = start; 6670 goto next; 6671 } 6672 6673 extent_type = btrfs_file_extent_type(leaf, item); 6674 extent_start = found_key.offset; 6675 extent_end = btrfs_file_extent_end(path); 6676 if (extent_type == BTRFS_FILE_EXTENT_REG || 6677 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6678 /* Only regular file could have regular/prealloc extent */ 6679 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6680 ret = -EUCLEAN; 6681 btrfs_crit(fs_info, 6682 "regular/prealloc extent found for non-regular inode %llu", 6683 btrfs_ino(inode)); 6684 goto out; 6685 } 6686 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6687 extent_start); 6688 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6689 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6690 path->slots[0], 6691 extent_start); 6692 } 6693next: 6694 if (start >= extent_end) { 6695 path->slots[0]++; 6696 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6697 ret = btrfs_next_leaf(root, path); 6698 if (ret < 0) 6699 goto out; 6700 else if (ret > 0) 6701 goto not_found; 6702 6703 leaf = path->nodes[0]; 6704 } 6705 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6706 if (found_key.objectid != objectid || 6707 found_key.type != BTRFS_EXTENT_DATA_KEY) 6708 goto not_found; 6709 if (start + len <= found_key.offset) 6710 goto not_found; 6711 if (start > found_key.offset) 6712 goto next; 6713 6714 /* New extent overlaps with existing one */ 6715 em->start = start; 6716 em->orig_start = start; 6717 em->len = found_key.offset - start; 6718 em->block_start = EXTENT_MAP_HOLE; 6719 goto insert; 6720 } 6721 6722 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6723 6724 if (extent_type == BTRFS_FILE_EXTENT_REG || 6725 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6726 goto insert; 6727 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6728 unsigned long ptr; 6729 char *map; 6730 size_t size; 6731 size_t extent_offset; 6732 size_t copy_size; 6733 6734 if (!page) 6735 goto out; 6736 6737 size = btrfs_file_extent_ram_bytes(leaf, item); 6738 extent_offset = page_offset(page) + pg_offset - extent_start; 6739 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6740 size - extent_offset); 6741 em->start = extent_start + extent_offset; 6742 em->len = ALIGN(copy_size, fs_info->sectorsize); 6743 em->orig_block_len = em->len; 6744 em->orig_start = em->start; 6745 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6746 6747 btrfs_set_path_blocking(path); 6748 if (!PageUptodate(page)) { 6749 if (btrfs_file_extent_compression(leaf, item) != 6750 BTRFS_COMPRESS_NONE) { 6751 ret = uncompress_inline(path, page, pg_offset, 6752 extent_offset, item); 6753 if (ret) 6754 goto out; 6755 } else { 6756 map = kmap(page); 6757 read_extent_buffer(leaf, map + pg_offset, ptr, 6758 copy_size); 6759 if (pg_offset + copy_size < PAGE_SIZE) { 6760 memset(map + pg_offset + copy_size, 0, 6761 PAGE_SIZE - pg_offset - 6762 copy_size); 6763 } 6764 kunmap(page); 6765 } 6766 flush_dcache_page(page); 6767 } 6768 set_extent_uptodate(io_tree, em->start, 6769 extent_map_end(em) - 1, NULL, GFP_NOFS); 6770 goto insert; 6771 } 6772not_found: 6773 em->start = start; 6774 em->orig_start = start; 6775 em->len = len; 6776 em->block_start = EXTENT_MAP_HOLE; 6777insert: 6778 ret = 0; 6779 btrfs_release_path(path); 6780 if (em->start > start || extent_map_end(em) <= start) { 6781 btrfs_err(fs_info, 6782 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6783 em->start, em->len, start, len); 6784 ret = -EIO; 6785 goto out; 6786 } 6787 6788 write_lock(&em_tree->lock); 6789 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6790 write_unlock(&em_tree->lock); 6791out: 6792 btrfs_free_path(path); 6793 6794 trace_btrfs_get_extent(root, inode, em); 6795 6796 if (ret) { 6797 free_extent_map(em); 6798 return ERR_PTR(ret); 6799 } 6800 return em; 6801} 6802 6803struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6804 u64 start, u64 len) 6805{ 6806 struct extent_map *em; 6807 struct extent_map *hole_em = NULL; 6808 u64 delalloc_start = start; 6809 u64 end; 6810 u64 delalloc_len; 6811 u64 delalloc_end; 6812 int err = 0; 6813 6814 em = btrfs_get_extent(inode, NULL, 0, start, len); 6815 if (IS_ERR(em)) 6816 return em; 6817 /* 6818 * If our em maps to: 6819 * - a hole or 6820 * - a pre-alloc extent, 6821 * there might actually be delalloc bytes behind it. 6822 */ 6823 if (em->block_start != EXTENT_MAP_HOLE && 6824 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6825 return em; 6826 else 6827 hole_em = em; 6828 6829 /* check to see if we've wrapped (len == -1 or similar) */ 6830 end = start + len; 6831 if (end < start) 6832 end = (u64)-1; 6833 else 6834 end -= 1; 6835 6836 em = NULL; 6837 6838 /* ok, we didn't find anything, lets look for delalloc */ 6839 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 6840 end, len, EXTENT_DELALLOC, 1); 6841 delalloc_end = delalloc_start + delalloc_len; 6842 if (delalloc_end < delalloc_start) 6843 delalloc_end = (u64)-1; 6844 6845 /* 6846 * We didn't find anything useful, return the original results from 6847 * get_extent() 6848 */ 6849 if (delalloc_start > end || delalloc_end <= start) { 6850 em = hole_em; 6851 hole_em = NULL; 6852 goto out; 6853 } 6854 6855 /* 6856 * Adjust the delalloc_start to make sure it doesn't go backwards from 6857 * the start they passed in 6858 */ 6859 delalloc_start = max(start, delalloc_start); 6860 delalloc_len = delalloc_end - delalloc_start; 6861 6862 if (delalloc_len > 0) { 6863 u64 hole_start; 6864 u64 hole_len; 6865 const u64 hole_end = extent_map_end(hole_em); 6866 6867 em = alloc_extent_map(); 6868 if (!em) { 6869 err = -ENOMEM; 6870 goto out; 6871 } 6872 6873 ASSERT(hole_em); 6874 /* 6875 * When btrfs_get_extent can't find anything it returns one 6876 * huge hole 6877 * 6878 * Make sure what it found really fits our range, and adjust to 6879 * make sure it is based on the start from the caller 6880 */ 6881 if (hole_end <= start || hole_em->start > end) { 6882 free_extent_map(hole_em); 6883 hole_em = NULL; 6884 } else { 6885 hole_start = max(hole_em->start, start); 6886 hole_len = hole_end - hole_start; 6887 } 6888 6889 if (hole_em && delalloc_start > hole_start) { 6890 /* 6891 * Our hole starts before our delalloc, so we have to 6892 * return just the parts of the hole that go until the 6893 * delalloc starts 6894 */ 6895 em->len = min(hole_len, delalloc_start - hole_start); 6896 em->start = hole_start; 6897 em->orig_start = hole_start; 6898 /* 6899 * Don't adjust block start at all, it is fixed at 6900 * EXTENT_MAP_HOLE 6901 */ 6902 em->block_start = hole_em->block_start; 6903 em->block_len = hole_len; 6904 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6905 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6906 } else { 6907 /* 6908 * Hole is out of passed range or it starts after 6909 * delalloc range 6910 */ 6911 em->start = delalloc_start; 6912 em->len = delalloc_len; 6913 em->orig_start = delalloc_start; 6914 em->block_start = EXTENT_MAP_DELALLOC; 6915 em->block_len = delalloc_len; 6916 } 6917 } else { 6918 return hole_em; 6919 } 6920out: 6921 6922 free_extent_map(hole_em); 6923 if (err) { 6924 free_extent_map(em); 6925 return ERR_PTR(err); 6926 } 6927 return em; 6928} 6929 6930static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 6931 const u64 start, 6932 const u64 len, 6933 const u64 orig_start, 6934 const u64 block_start, 6935 const u64 block_len, 6936 const u64 orig_block_len, 6937 const u64 ram_bytes, 6938 const int type) 6939{ 6940 struct extent_map *em = NULL; 6941 int ret; 6942 6943 if (type != BTRFS_ORDERED_NOCOW) { 6944 em = create_io_em(inode, start, len, orig_start, block_start, 6945 block_len, orig_block_len, ram_bytes, 6946 BTRFS_COMPRESS_NONE, /* compress_type */ 6947 type); 6948 if (IS_ERR(em)) 6949 goto out; 6950 } 6951 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len, 6952 block_len, type); 6953 if (ret) { 6954 if (em) { 6955 free_extent_map(em); 6956 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 6957 } 6958 em = ERR_PTR(ret); 6959 } 6960 out: 6961 6962 return em; 6963} 6964 6965static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 6966 u64 start, u64 len) 6967{ 6968 struct btrfs_root *root = inode->root; 6969 struct btrfs_fs_info *fs_info = root->fs_info; 6970 struct extent_map *em; 6971 struct btrfs_key ins; 6972 u64 alloc_hint; 6973 int ret; 6974 6975 alloc_hint = get_extent_allocation_hint(inode, start, len); 6976 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 6977 0, alloc_hint, &ins, 1, 1); 6978 if (ret) 6979 return ERR_PTR(ret); 6980 6981 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 6982 ins.objectid, ins.offset, ins.offset, 6983 ins.offset, BTRFS_ORDERED_REGULAR); 6984 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 6985 if (IS_ERR(em)) 6986 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 6987 1); 6988 6989 return em; 6990} 6991 6992/* 6993 * Check if we can do nocow write into the range [@offset, @offset + @len) 6994 * 6995 * @offset: File offset 6996 * @len: The length to write, will be updated to the nocow writeable 6997 * range 6998 * @orig_start: (optional) Return the original file offset of the file extent 6999 * @orig_len: (optional) Return the original on-disk length of the file extent 7000 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7001 * @strict: if true, omit optimizations that might force us into unnecessary 7002 * cow. e.g., don't trust generation number. 7003 * 7004 * This function will flush ordered extents in the range to ensure proper 7005 * nocow checks for (nowait == false) case. 7006 * 7007 * Return: 7008 * >0 and update @len if we can do nocow write 7009 * 0 if we can't do nocow write 7010 * <0 if error happened 7011 * 7012 * NOTE: This only checks the file extents, caller is responsible to wait for 7013 * any ordered extents. 7014 */ 7015noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7016 u64 *orig_start, u64 *orig_block_len, 7017 u64 *ram_bytes, bool strict) 7018{ 7019 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7020 struct btrfs_path *path; 7021 int ret; 7022 struct extent_buffer *leaf; 7023 struct btrfs_root *root = BTRFS_I(inode)->root; 7024 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7025 struct btrfs_file_extent_item *fi; 7026 struct btrfs_key key; 7027 u64 disk_bytenr; 7028 u64 backref_offset; 7029 u64 extent_end; 7030 u64 num_bytes; 7031 int slot; 7032 int found_type; 7033 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7034 7035 path = btrfs_alloc_path(); 7036 if (!path) 7037 return -ENOMEM; 7038 7039 ret = btrfs_lookup_file_extent(NULL, root, path, 7040 btrfs_ino(BTRFS_I(inode)), offset, 0); 7041 if (ret < 0) 7042 goto out; 7043 7044 slot = path->slots[0]; 7045 if (ret == 1) { 7046 if (slot == 0) { 7047 /* can't find the item, must cow */ 7048 ret = 0; 7049 goto out; 7050 } 7051 slot--; 7052 } 7053 ret = 0; 7054 leaf = path->nodes[0]; 7055 btrfs_item_key_to_cpu(leaf, &key, slot); 7056 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7057 key.type != BTRFS_EXTENT_DATA_KEY) { 7058 /* not our file or wrong item type, must cow */ 7059 goto out; 7060 } 7061 7062 if (key.offset > offset) { 7063 /* Wrong offset, must cow */ 7064 goto out; 7065 } 7066 7067 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7068 found_type = btrfs_file_extent_type(leaf, fi); 7069 if (found_type != BTRFS_FILE_EXTENT_REG && 7070 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7071 /* not a regular extent, must cow */ 7072 goto out; 7073 } 7074 7075 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7076 goto out; 7077 7078 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7079 if (extent_end <= offset) 7080 goto out; 7081 7082 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7083 if (disk_bytenr == 0) 7084 goto out; 7085 7086 if (btrfs_file_extent_compression(leaf, fi) || 7087 btrfs_file_extent_encryption(leaf, fi) || 7088 btrfs_file_extent_other_encoding(leaf, fi)) 7089 goto out; 7090 7091 /* 7092 * Do the same check as in btrfs_cross_ref_exist but without the 7093 * unnecessary search. 7094 */ 7095 if (!strict && 7096 (btrfs_file_extent_generation(leaf, fi) <= 7097 btrfs_root_last_snapshot(&root->root_item))) 7098 goto out; 7099 7100 backref_offset = btrfs_file_extent_offset(leaf, fi); 7101 7102 if (orig_start) { 7103 *orig_start = key.offset - backref_offset; 7104 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7105 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7106 } 7107 7108 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7109 goto out; 7110 7111 num_bytes = min(offset + *len, extent_end) - offset; 7112 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7113 u64 range_end; 7114 7115 range_end = round_up(offset + num_bytes, 7116 root->fs_info->sectorsize) - 1; 7117 ret = test_range_bit(io_tree, offset, range_end, 7118 EXTENT_DELALLOC, 0, NULL); 7119 if (ret) { 7120 ret = -EAGAIN; 7121 goto out; 7122 } 7123 } 7124 7125 btrfs_release_path(path); 7126 7127 /* 7128 * look for other files referencing this extent, if we 7129 * find any we must cow 7130 */ 7131 7132 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7133 key.offset - backref_offset, disk_bytenr, 7134 strict); 7135 if (ret) { 7136 ret = 0; 7137 goto out; 7138 } 7139 7140 /* 7141 * adjust disk_bytenr and num_bytes to cover just the bytes 7142 * in this extent we are about to write. If there 7143 * are any csums in that range we have to cow in order 7144 * to keep the csums correct 7145 */ 7146 disk_bytenr += backref_offset; 7147 disk_bytenr += offset - key.offset; 7148 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7149 goto out; 7150 /* 7151 * all of the above have passed, it is safe to overwrite this extent 7152 * without cow 7153 */ 7154 *len = num_bytes; 7155 ret = 1; 7156out: 7157 btrfs_free_path(path); 7158 return ret; 7159} 7160 7161static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7162 struct extent_state **cached_state, bool writing) 7163{ 7164 struct btrfs_ordered_extent *ordered; 7165 int ret = 0; 7166 7167 while (1) { 7168 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7169 cached_state); 7170 /* 7171 * We're concerned with the entire range that we're going to be 7172 * doing DIO to, so we need to make sure there's no ordered 7173 * extents in this range. 7174 */ 7175 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7176 lockend - lockstart + 1); 7177 7178 /* 7179 * We need to make sure there are no buffered pages in this 7180 * range either, we could have raced between the invalidate in 7181 * generic_file_direct_write and locking the extent. The 7182 * invalidate needs to happen so that reads after a write do not 7183 * get stale data. 7184 */ 7185 if (!ordered && 7186 (!writing || !filemap_range_has_page(inode->i_mapping, 7187 lockstart, lockend))) 7188 break; 7189 7190 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7191 cached_state); 7192 7193 if (ordered) { 7194 /* 7195 * If we are doing a DIO read and the ordered extent we 7196 * found is for a buffered write, we can not wait for it 7197 * to complete and retry, because if we do so we can 7198 * deadlock with concurrent buffered writes on page 7199 * locks. This happens only if our DIO read covers more 7200 * than one extent map, if at this point has already 7201 * created an ordered extent for a previous extent map 7202 * and locked its range in the inode's io tree, and a 7203 * concurrent write against that previous extent map's 7204 * range and this range started (we unlock the ranges 7205 * in the io tree only when the bios complete and 7206 * buffered writes always lock pages before attempting 7207 * to lock range in the io tree). 7208 */ 7209 if (writing || 7210 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7211 btrfs_start_ordered_extent(ordered, 1); 7212 else 7213 ret = -ENOTBLK; 7214 btrfs_put_ordered_extent(ordered); 7215 } else { 7216 /* 7217 * We could trigger writeback for this range (and wait 7218 * for it to complete) and then invalidate the pages for 7219 * this range (through invalidate_inode_pages2_range()), 7220 * but that can lead us to a deadlock with a concurrent 7221 * call to readahead (a buffered read or a defrag call 7222 * triggered a readahead) on a page lock due to an 7223 * ordered dio extent we created before but did not have 7224 * yet a corresponding bio submitted (whence it can not 7225 * complete), which makes readahead wait for that 7226 * ordered extent to complete while holding a lock on 7227 * that page. 7228 */ 7229 ret = -ENOTBLK; 7230 } 7231 7232 if (ret) 7233 break; 7234 7235 cond_resched(); 7236 } 7237 7238 return ret; 7239} 7240 7241/* The callers of this must take lock_extent() */ 7242static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7243 u64 len, u64 orig_start, u64 block_start, 7244 u64 block_len, u64 orig_block_len, 7245 u64 ram_bytes, int compress_type, 7246 int type) 7247{ 7248 struct extent_map_tree *em_tree; 7249 struct extent_map *em; 7250 int ret; 7251 7252 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7253 type == BTRFS_ORDERED_COMPRESSED || 7254 type == BTRFS_ORDERED_NOCOW || 7255 type == BTRFS_ORDERED_REGULAR); 7256 7257 em_tree = &inode->extent_tree; 7258 em = alloc_extent_map(); 7259 if (!em) 7260 return ERR_PTR(-ENOMEM); 7261 7262 em->start = start; 7263 em->orig_start = orig_start; 7264 em->len = len; 7265 em->block_len = block_len; 7266 em->block_start = block_start; 7267 em->orig_block_len = orig_block_len; 7268 em->ram_bytes = ram_bytes; 7269 em->generation = -1; 7270 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7271 if (type == BTRFS_ORDERED_PREALLOC) { 7272 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7273 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7274 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7275 em->compress_type = compress_type; 7276 } 7277 7278 do { 7279 btrfs_drop_extent_cache(inode, em->start, 7280 em->start + em->len - 1, 0); 7281 write_lock(&em_tree->lock); 7282 ret = add_extent_mapping(em_tree, em, 1); 7283 write_unlock(&em_tree->lock); 7284 /* 7285 * The caller has taken lock_extent(), who could race with us 7286 * to add em? 7287 */ 7288 } while (ret == -EEXIST); 7289 7290 if (ret) { 7291 free_extent_map(em); 7292 return ERR_PTR(ret); 7293 } 7294 7295 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7296 return em; 7297} 7298 7299 7300static int btrfs_get_blocks_direct_write(struct extent_map **map, 7301 struct inode *inode, 7302 struct btrfs_dio_data *dio_data, 7303 u64 start, u64 len) 7304{ 7305 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7306 struct extent_map *em = *map; 7307 int ret = 0; 7308 7309 /* 7310 * We don't allocate a new extent in the following cases 7311 * 7312 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7313 * existing extent. 7314 * 2) The extent is marked as PREALLOC. We're good to go here and can 7315 * just use the extent. 7316 * 7317 */ 7318 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7319 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7320 em->block_start != EXTENT_MAP_HOLE)) { 7321 int type; 7322 u64 block_start, orig_start, orig_block_len, ram_bytes; 7323 7324 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7325 type = BTRFS_ORDERED_PREALLOC; 7326 else 7327 type = BTRFS_ORDERED_NOCOW; 7328 len = min(len, em->len - (start - em->start)); 7329 block_start = em->block_start + (start - em->start); 7330 7331 if (can_nocow_extent(inode, start, &len, &orig_start, 7332 &orig_block_len, &ram_bytes, false) == 1 && 7333 btrfs_inc_nocow_writers(fs_info, block_start)) { 7334 struct extent_map *em2; 7335 7336 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7337 orig_start, block_start, 7338 len, orig_block_len, 7339 ram_bytes, type); 7340 btrfs_dec_nocow_writers(fs_info, block_start); 7341 if (type == BTRFS_ORDERED_PREALLOC) { 7342 free_extent_map(em); 7343 *map = em = em2; 7344 } 7345 7346 if (em2 && IS_ERR(em2)) { 7347 ret = PTR_ERR(em2); 7348 goto out; 7349 } 7350 /* 7351 * For inode marked NODATACOW or extent marked PREALLOC, 7352 * use the existing or preallocated extent, so does not 7353 * need to adjust btrfs_space_info's bytes_may_use. 7354 */ 7355 btrfs_free_reserved_data_space_noquota(fs_info, len); 7356 goto skip_cow; 7357 } 7358 } 7359 7360 /* this will cow the extent */ 7361 free_extent_map(em); 7362 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7363 if (IS_ERR(em)) { 7364 ret = PTR_ERR(em); 7365 goto out; 7366 } 7367 7368 len = min(len, em->len - (start - em->start)); 7369 7370skip_cow: 7371 /* 7372 * Need to update the i_size under the extent lock so buffered 7373 * readers will get the updated i_size when we unlock. 7374 */ 7375 if (start + len > i_size_read(inode)) 7376 i_size_write(inode, start + len); 7377 7378 dio_data->reserve -= len; 7379out: 7380 return ret; 7381} 7382 7383static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7384 loff_t length, unsigned int flags, struct iomap *iomap, 7385 struct iomap *srcmap) 7386{ 7387 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7388 struct extent_map *em; 7389 struct extent_state *cached_state = NULL; 7390 struct btrfs_dio_data *dio_data = NULL; 7391 u64 lockstart, lockend; 7392 const bool write = !!(flags & IOMAP_WRITE); 7393 int ret = 0; 7394 u64 len = length; 7395 bool unlock_extents = false; 7396 bool sync = (current->journal_info == BTRFS_DIO_SYNC_STUB); 7397 7398 /* 7399 * We used current->journal_info here to see if we were sync, but 7400 * there's a lot of tests in the enospc machinery to not do flushing if 7401 * we have a journal_info set, so we need to clear this out and re-set 7402 * it in iomap_end. 7403 */ 7404 ASSERT(current->journal_info == NULL || 7405 current->journal_info == BTRFS_DIO_SYNC_STUB); 7406 current->journal_info = NULL; 7407 7408 if (!write) 7409 len = min_t(u64, len, fs_info->sectorsize); 7410 7411 lockstart = start; 7412 lockend = start + len - 1; 7413 7414 /* 7415 * The generic stuff only does filemap_write_and_wait_range, which 7416 * isn't enough if we've written compressed pages to this area, so we 7417 * need to flush the dirty pages again to make absolutely sure that any 7418 * outstanding dirty pages are on disk. 7419 */ 7420 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7421 &BTRFS_I(inode)->runtime_flags)) { 7422 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7423 start + length - 1); 7424 if (ret) 7425 return ret; 7426 } 7427 7428 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS); 7429 if (!dio_data) 7430 return -ENOMEM; 7431 7432 dio_data->sync = sync; 7433 dio_data->length = length; 7434 if (write) { 7435 dio_data->reserve = round_up(length, fs_info->sectorsize); 7436 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), 7437 &dio_data->data_reserved, 7438 start, dio_data->reserve); 7439 if (ret) { 7440 extent_changeset_free(dio_data->data_reserved); 7441 kfree(dio_data); 7442 return ret; 7443 } 7444 } 7445 iomap->private = dio_data; 7446 7447 7448 /* 7449 * If this errors out it's because we couldn't invalidate pagecache for 7450 * this range and we need to fallback to buffered. 7451 */ 7452 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) { 7453 ret = -ENOTBLK; 7454 goto err; 7455 } 7456 7457 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7458 if (IS_ERR(em)) { 7459 ret = PTR_ERR(em); 7460 goto unlock_err; 7461 } 7462 7463 /* 7464 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7465 * io. INLINE is special, and we could probably kludge it in here, but 7466 * it's still buffered so for safety lets just fall back to the generic 7467 * buffered path. 7468 * 7469 * For COMPRESSED we _have_ to read the entire extent in so we can 7470 * decompress it, so there will be buffering required no matter what we 7471 * do, so go ahead and fallback to buffered. 7472 * 7473 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7474 * to buffered IO. Don't blame me, this is the price we pay for using 7475 * the generic code. 7476 */ 7477 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7478 em->block_start == EXTENT_MAP_INLINE) { 7479 free_extent_map(em); 7480 /* 7481 * If we are in a NOWAIT context, return -EAGAIN in order to 7482 * fallback to buffered IO. This is not only because we can 7483 * block with buffered IO (no support for NOWAIT semantics at 7484 * the moment) but also to avoid returning short reads to user 7485 * space - this happens if we were able to read some data from 7486 * previous non-compressed extents and then when we fallback to 7487 * buffered IO, at btrfs_file_read_iter() by calling 7488 * filemap_read(), we fail to fault in pages for the read buffer, 7489 * in which case filemap_read() returns a short read (the number 7490 * of bytes previously read is > 0, so it does not return -EFAULT). 7491 */ 7492 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK; 7493 goto unlock_err; 7494 } 7495 7496 len = min(len, em->len - (start - em->start)); 7497 if (write) { 7498 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7499 start, len); 7500 if (ret < 0) 7501 goto unlock_err; 7502 unlock_extents = true; 7503 /* Recalc len in case the new em is smaller than requested */ 7504 len = min(len, em->len - (start - em->start)); 7505 } else { 7506 /* 7507 * We need to unlock only the end area that we aren't using. 7508 * The rest is going to be unlocked by the endio routine. 7509 */ 7510 lockstart = start + len; 7511 if (lockstart < lockend) 7512 unlock_extents = true; 7513 } 7514 7515 if (unlock_extents) 7516 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7517 lockstart, lockend, &cached_state); 7518 else 7519 free_extent_state(cached_state); 7520 7521 /* 7522 * Translate extent map information to iomap. 7523 * We trim the extents (and move the addr) even though iomap code does 7524 * that, since we have locked only the parts we are performing I/O in. 7525 */ 7526 if ((em->block_start == EXTENT_MAP_HOLE) || 7527 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7528 iomap->addr = IOMAP_NULL_ADDR; 7529 iomap->type = IOMAP_HOLE; 7530 } else { 7531 iomap->addr = em->block_start + (start - em->start); 7532 iomap->type = IOMAP_MAPPED; 7533 } 7534 iomap->offset = start; 7535 iomap->bdev = fs_info->fs_devices->latest_bdev; 7536 iomap->length = len; 7537 7538 free_extent_map(em); 7539 7540 return 0; 7541 7542unlock_err: 7543 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7544 &cached_state); 7545err: 7546 if (dio_data) { 7547 btrfs_delalloc_release_space(BTRFS_I(inode), 7548 dio_data->data_reserved, start, 7549 dio_data->reserve, true); 7550 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve); 7551 extent_changeset_free(dio_data->data_reserved); 7552 kfree(dio_data); 7553 } 7554 return ret; 7555} 7556 7557static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7558 ssize_t written, unsigned int flags, struct iomap *iomap) 7559{ 7560 int ret = 0; 7561 struct btrfs_dio_data *dio_data = iomap->private; 7562 size_t submitted = dio_data->submitted; 7563 const bool write = !!(flags & IOMAP_WRITE); 7564 7565 if (!write && (iomap->type == IOMAP_HOLE)) { 7566 /* If reading from a hole, unlock and return */ 7567 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); 7568 goto out; 7569 } 7570 7571 if (submitted < length) { 7572 pos += submitted; 7573 length -= submitted; 7574 if (write) 7575 __endio_write_update_ordered(BTRFS_I(inode), pos, 7576 length, false); 7577 else 7578 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7579 pos + length - 1); 7580 ret = -ENOTBLK; 7581 } 7582 7583 if (write) { 7584 if (dio_data->reserve) 7585 btrfs_delalloc_release_space(BTRFS_I(inode), 7586 dio_data->data_reserved, pos, 7587 dio_data->reserve, true); 7588 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length); 7589 extent_changeset_free(dio_data->data_reserved); 7590 } 7591out: 7592 /* 7593 * We're all done, we can re-set the current->journal_info now safely 7594 * for our endio. 7595 */ 7596 if (dio_data->sync) { 7597 ASSERT(current->journal_info == NULL); 7598 current->journal_info = BTRFS_DIO_SYNC_STUB; 7599 } 7600 kfree(dio_data); 7601 iomap->private = NULL; 7602 7603 return ret; 7604} 7605 7606static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7607{ 7608 /* 7609 * This implies a barrier so that stores to dio_bio->bi_status before 7610 * this and loads of dio_bio->bi_status after this are fully ordered. 7611 */ 7612 if (!refcount_dec_and_test(&dip->refs)) 7613 return; 7614 7615 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) { 7616 __endio_write_update_ordered(BTRFS_I(dip->inode), 7617 dip->logical_offset, 7618 dip->bytes, 7619 !dip->dio_bio->bi_status); 7620 } else { 7621 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7622 dip->logical_offset, 7623 dip->logical_offset + dip->bytes - 1); 7624 } 7625 7626 bio_endio(dip->dio_bio); 7627 kfree(dip); 7628} 7629 7630static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7631 int mirror_num, 7632 unsigned long bio_flags) 7633{ 7634 struct btrfs_dio_private *dip = bio->bi_private; 7635 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7636 blk_status_t ret; 7637 7638 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7639 7640 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7641 if (ret) 7642 return ret; 7643 7644 refcount_inc(&dip->refs); 7645 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7646 if (ret) 7647 refcount_dec(&dip->refs); 7648 return ret; 7649} 7650 7651static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, 7652 struct btrfs_io_bio *io_bio, 7653 const bool uptodate) 7654{ 7655 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7656 const u32 sectorsize = fs_info->sectorsize; 7657 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7658 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7659 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7660 struct bio_vec bvec; 7661 struct bvec_iter iter; 7662 u64 start = io_bio->logical; 7663 int icsum = 0; 7664 blk_status_t err = BLK_STS_OK; 7665 7666 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { 7667 unsigned int i, nr_sectors, pgoff; 7668 7669 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7670 pgoff = bvec.bv_offset; 7671 for (i = 0; i < nr_sectors; i++) { 7672 ASSERT(pgoff < PAGE_SIZE); 7673 if (uptodate && 7674 (!csum || !check_data_csum(inode, io_bio, icsum, 7675 bvec.bv_page, pgoff, 7676 start, sectorsize))) { 7677 clean_io_failure(fs_info, failure_tree, io_tree, 7678 start, bvec.bv_page, 7679 btrfs_ino(BTRFS_I(inode)), 7680 pgoff); 7681 } else { 7682 blk_status_t status; 7683 7684 status = btrfs_submit_read_repair(inode, 7685 &io_bio->bio, 7686 start - io_bio->logical, 7687 bvec.bv_page, pgoff, 7688 start, 7689 start + sectorsize - 1, 7690 io_bio->mirror_num, 7691 submit_dio_repair_bio); 7692 if (status) 7693 err = status; 7694 } 7695 start += sectorsize; 7696 icsum++; 7697 pgoff += sectorsize; 7698 } 7699 } 7700 return err; 7701} 7702 7703static void __endio_write_update_ordered(struct btrfs_inode *inode, 7704 const u64 offset, const u64 bytes, 7705 const bool uptodate) 7706{ 7707 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7708 struct btrfs_ordered_extent *ordered = NULL; 7709 struct btrfs_workqueue *wq; 7710 u64 ordered_offset = offset; 7711 u64 ordered_bytes = bytes; 7712 u64 last_offset; 7713 7714 if (btrfs_is_free_space_inode(inode)) 7715 wq = fs_info->endio_freespace_worker; 7716 else 7717 wq = fs_info->endio_write_workers; 7718 7719 while (ordered_offset < offset + bytes) { 7720 last_offset = ordered_offset; 7721 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 7722 &ordered_offset, 7723 ordered_bytes, 7724 uptodate)) { 7725 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 7726 NULL); 7727 btrfs_queue_work(wq, &ordered->work); 7728 } 7729 /* 7730 * If btrfs_dec_test_ordered_pending does not find any ordered 7731 * extent in the range, we can exit. 7732 */ 7733 if (ordered_offset == last_offset) 7734 return; 7735 /* 7736 * Our bio might span multiple ordered extents. In this case 7737 * we keep going until we have accounted the whole dio. 7738 */ 7739 if (ordered_offset < offset + bytes) { 7740 ordered_bytes = offset + bytes - ordered_offset; 7741 ordered = NULL; 7742 } 7743 } 7744} 7745 7746static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 7747 struct bio *bio, u64 offset) 7748{ 7749 struct inode *inode = private_data; 7750 7751 return btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1); 7752} 7753 7754static void btrfs_end_dio_bio(struct bio *bio) 7755{ 7756 struct btrfs_dio_private *dip = bio->bi_private; 7757 blk_status_t err = bio->bi_status; 7758 7759 if (err) 7760 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7761 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7762 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7763 bio->bi_opf, 7764 (unsigned long long)bio->bi_iter.bi_sector, 7765 bio->bi_iter.bi_size, err); 7766 7767 if (bio_op(bio) == REQ_OP_READ) { 7768 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), 7769 !err); 7770 } 7771 7772 if (err) 7773 dip->dio_bio->bi_status = err; 7774 7775 bio_put(bio); 7776 btrfs_dio_private_put(dip); 7777} 7778 7779static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 7780 struct inode *inode, u64 file_offset, int async_submit) 7781{ 7782 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7783 struct btrfs_dio_private *dip = bio->bi_private; 7784 bool write = bio_op(bio) == REQ_OP_WRITE; 7785 blk_status_t ret; 7786 7787 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 7788 if (async_submit) 7789 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7790 7791 if (!write) { 7792 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7793 if (ret) 7794 goto err; 7795 } 7796 7797 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 7798 goto map; 7799 7800 if (write && async_submit) { 7801 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 7802 file_offset, inode, 7803 btrfs_submit_bio_start_direct_io); 7804 goto err; 7805 } else if (write) { 7806 /* 7807 * If we aren't doing async submit, calculate the csum of the 7808 * bio now. 7809 */ 7810 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1); 7811 if (ret) 7812 goto err; 7813 } else { 7814 u64 csum_offset; 7815 7816 csum_offset = file_offset - dip->logical_offset; 7817 csum_offset >>= inode->i_sb->s_blocksize_bits; 7818 csum_offset *= btrfs_super_csum_size(fs_info->super_copy); 7819 btrfs_io_bio(bio)->csum = dip->csums + csum_offset; 7820 } 7821map: 7822 ret = btrfs_map_bio(fs_info, bio, 0); 7823err: 7824 return ret; 7825} 7826 7827/* 7828 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 7829 * or ordered extents whether or not we submit any bios. 7830 */ 7831static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 7832 struct inode *inode, 7833 loff_t file_offset) 7834{ 7835 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7836 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7837 size_t dip_size; 7838 struct btrfs_dio_private *dip; 7839 7840 dip_size = sizeof(*dip); 7841 if (!write && csum) { 7842 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7843 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 7844 size_t nblocks; 7845 7846 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits; 7847 dip_size += csum_size * nblocks; 7848 } 7849 7850 dip = kzalloc(dip_size, GFP_NOFS); 7851 if (!dip) 7852 return NULL; 7853 7854 dip->inode = inode; 7855 dip->logical_offset = file_offset; 7856 dip->bytes = dio_bio->bi_iter.bi_size; 7857 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 7858 dip->dio_bio = dio_bio; 7859 refcount_set(&dip->refs, 1); 7860 return dip; 7861} 7862 7863static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap, 7864 struct bio *dio_bio, loff_t file_offset) 7865{ 7866 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7867 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7868 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7869 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 7870 BTRFS_BLOCK_GROUP_RAID56_MASK); 7871 struct btrfs_dio_private *dip; 7872 struct bio *bio; 7873 u64 start_sector; 7874 int async_submit = 0; 7875 u64 submit_len; 7876 int clone_offset = 0; 7877 int clone_len; 7878 int ret; 7879 blk_status_t status; 7880 struct btrfs_io_geometry geom; 7881 struct btrfs_dio_data *dio_data = iomap->private; 7882 7883 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 7884 if (!dip) { 7885 if (!write) { 7886 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 7887 file_offset + dio_bio->bi_iter.bi_size - 1); 7888 } 7889 dio_bio->bi_status = BLK_STS_RESOURCE; 7890 bio_endio(dio_bio); 7891 return BLK_QC_T_NONE; 7892 } 7893 7894 if (!write && csum) { 7895 /* 7896 * Load the csums up front to reduce csum tree searches and 7897 * contention when submitting bios. 7898 */ 7899 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset, 7900 dip->csums); 7901 if (status != BLK_STS_OK) 7902 goto out_err; 7903 } 7904 7905 start_sector = dio_bio->bi_iter.bi_sector; 7906 submit_len = dio_bio->bi_iter.bi_size; 7907 7908 do { 7909 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio), 7910 start_sector << 9, submit_len, 7911 &geom); 7912 if (ret) { 7913 status = errno_to_blk_status(ret); 7914 goto out_err; 7915 } 7916 ASSERT(geom.len <= INT_MAX); 7917 7918 clone_len = min_t(int, submit_len, geom.len); 7919 7920 /* 7921 * This will never fail as it's passing GPF_NOFS and 7922 * the allocation is backed by btrfs_bioset. 7923 */ 7924 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 7925 bio->bi_private = dip; 7926 bio->bi_end_io = btrfs_end_dio_bio; 7927 btrfs_io_bio(bio)->logical = file_offset; 7928 7929 ASSERT(submit_len >= clone_len); 7930 submit_len -= clone_len; 7931 7932 /* 7933 * Increase the count before we submit the bio so we know 7934 * the end IO handler won't happen before we increase the 7935 * count. Otherwise, the dip might get freed before we're 7936 * done setting it up. 7937 * 7938 * We transfer the initial reference to the last bio, so we 7939 * don't need to increment the reference count for the last one. 7940 */ 7941 if (submit_len > 0) { 7942 refcount_inc(&dip->refs); 7943 /* 7944 * If we are submitting more than one bio, submit them 7945 * all asynchronously. The exception is RAID 5 or 6, as 7946 * asynchronous checksums make it difficult to collect 7947 * full stripe writes. 7948 */ 7949 if (!raid56) 7950 async_submit = 1; 7951 } 7952 7953 status = btrfs_submit_dio_bio(bio, inode, file_offset, 7954 async_submit); 7955 if (status) { 7956 bio_put(bio); 7957 if (submit_len > 0) 7958 refcount_dec(&dip->refs); 7959 goto out_err; 7960 } 7961 7962 dio_data->submitted += clone_len; 7963 clone_offset += clone_len; 7964 start_sector += clone_len >> 9; 7965 file_offset += clone_len; 7966 } while (submit_len > 0); 7967 return BLK_QC_T_NONE; 7968 7969out_err: 7970 dip->dio_bio->bi_status = status; 7971 btrfs_dio_private_put(dip); 7972 return BLK_QC_T_NONE; 7973} 7974 7975static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 7976 const struct iov_iter *iter, loff_t offset) 7977{ 7978 int seg; 7979 int i; 7980 unsigned int blocksize_mask = fs_info->sectorsize - 1; 7981 ssize_t retval = -EINVAL; 7982 7983 if (offset & blocksize_mask) 7984 goto out; 7985 7986 if (iov_iter_alignment(iter) & blocksize_mask) 7987 goto out; 7988 7989 /* If this is a write we don't need to check anymore */ 7990 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 7991 return 0; 7992 /* 7993 * Check to make sure we don't have duplicate iov_base's in this 7994 * iovec, if so return EINVAL, otherwise we'll get csum errors 7995 * when reading back. 7996 */ 7997 for (seg = 0; seg < iter->nr_segs; seg++) { 7998 for (i = seg + 1; i < iter->nr_segs; i++) { 7999 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8000 goto out; 8001 } 8002 } 8003 retval = 0; 8004out: 8005 return retval; 8006} 8007 8008static inline int btrfs_maybe_fsync_end_io(struct kiocb *iocb, ssize_t size, 8009 int error, unsigned flags) 8010{ 8011 /* 8012 * Now if we're still in the context of our submitter we know we can't 8013 * safely run generic_write_sync(), so clear our flag here so that the 8014 * caller knows to follow up with a sync. 8015 */ 8016 if (current->journal_info == BTRFS_DIO_SYNC_STUB) { 8017 current->journal_info = NULL; 8018 return error; 8019 } 8020 8021 if (error) 8022 return error; 8023 8024 if (size) { 8025 iocb->ki_flags |= IOCB_DSYNC; 8026 return generic_write_sync(iocb, size); 8027 } 8028 8029 return 0; 8030} 8031 8032static const struct iomap_ops btrfs_dio_iomap_ops = { 8033 .iomap_begin = btrfs_dio_iomap_begin, 8034 .iomap_end = btrfs_dio_iomap_end, 8035}; 8036 8037static const struct iomap_dio_ops btrfs_dio_ops = { 8038 .submit_io = btrfs_submit_direct, 8039}; 8040 8041static const struct iomap_dio_ops btrfs_sync_dops = { 8042 .submit_io = btrfs_submit_direct, 8043 .end_io = btrfs_maybe_fsync_end_io, 8044}; 8045 8046ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8047{ 8048 struct file *file = iocb->ki_filp; 8049 struct inode *inode = file->f_mapping->host; 8050 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8051 struct extent_changeset *data_reserved = NULL; 8052 loff_t offset = iocb->ki_pos; 8053 size_t count = 0; 8054 bool relock = false; 8055 ssize_t ret; 8056 8057 if (check_direct_IO(fs_info, iter, offset)) { 8058 ASSERT(current->journal_info == NULL || 8059 current->journal_info == BTRFS_DIO_SYNC_STUB); 8060 current->journal_info = NULL; 8061 return 0; 8062 } 8063 8064 count = iov_iter_count(iter); 8065 if (iov_iter_rw(iter) == WRITE) { 8066 /* 8067 * If the write DIO is beyond the EOF, we need update 8068 * the isize, but it is protected by i_mutex. So we can 8069 * not unlock the i_mutex at this case. 8070 */ 8071 if (offset + count <= inode->i_size) { 8072 inode_unlock(inode); 8073 relock = true; 8074 } 8075 down_read(&BTRFS_I(inode)->dio_sem); 8076 } 8077 8078 /* 8079 * We have are actually a sync iocb, so we need our fancy endio to know 8080 * if we need to sync. 8081 */ 8082 if (current->journal_info) 8083 ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, 8084 &btrfs_sync_dops, is_sync_kiocb(iocb)); 8085 else 8086 ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, 8087 &btrfs_dio_ops, is_sync_kiocb(iocb)); 8088 8089 if (ret == -ENOTBLK) 8090 ret = 0; 8091 8092 if (iov_iter_rw(iter) == WRITE) 8093 up_read(&BTRFS_I(inode)->dio_sem); 8094 8095 if (relock) 8096 inode_lock(inode); 8097 8098 extent_changeset_free(data_reserved); 8099 return ret; 8100} 8101 8102static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8103 u64 start, u64 len) 8104{ 8105 int ret; 8106 8107 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8108 if (ret) 8109 return ret; 8110 8111 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 8112} 8113 8114int btrfs_readpage(struct file *file, struct page *page) 8115{ 8116 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8117 u64 start = page_offset(page); 8118 u64 end = start + PAGE_SIZE - 1; 8119 unsigned long bio_flags = 0; 8120 struct bio *bio = NULL; 8121 int ret; 8122 8123 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 8124 8125 ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL); 8126 if (bio) 8127 ret = submit_one_bio(bio, 0, bio_flags); 8128 return ret; 8129} 8130 8131static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8132{ 8133 struct inode *inode = page->mapping->host; 8134 int ret; 8135 8136 if (current->flags & PF_MEMALLOC) { 8137 redirty_page_for_writepage(wbc, page); 8138 unlock_page(page); 8139 return 0; 8140 } 8141 8142 /* 8143 * If we are under memory pressure we will call this directly from the 8144 * VM, we need to make sure we have the inode referenced for the ordered 8145 * extent. If not just return like we didn't do anything. 8146 */ 8147 if (!igrab(inode)) { 8148 redirty_page_for_writepage(wbc, page); 8149 return AOP_WRITEPAGE_ACTIVATE; 8150 } 8151 ret = extent_write_full_page(page, wbc); 8152 btrfs_add_delayed_iput(inode); 8153 return ret; 8154} 8155 8156static int btrfs_writepages(struct address_space *mapping, 8157 struct writeback_control *wbc) 8158{ 8159 return extent_writepages(mapping, wbc); 8160} 8161 8162static void btrfs_readahead(struct readahead_control *rac) 8163{ 8164 extent_readahead(rac); 8165} 8166 8167static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8168{ 8169 int ret = try_release_extent_mapping(page, gfp_flags); 8170 if (ret == 1) 8171 detach_page_private(page); 8172 return ret; 8173} 8174 8175static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8176{ 8177 if (PageWriteback(page) || PageDirty(page)) 8178 return 0; 8179 return __btrfs_releasepage(page, gfp_flags); 8180} 8181 8182#ifdef CONFIG_MIGRATION 8183static int btrfs_migratepage(struct address_space *mapping, 8184 struct page *newpage, struct page *page, 8185 enum migrate_mode mode) 8186{ 8187 int ret; 8188 8189 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8190 if (ret != MIGRATEPAGE_SUCCESS) 8191 return ret; 8192 8193 if (page_has_private(page)) 8194 attach_page_private(newpage, detach_page_private(page)); 8195 8196 if (PagePrivate2(page)) { 8197 ClearPagePrivate2(page); 8198 SetPagePrivate2(newpage); 8199 } 8200 8201 if (mode != MIGRATE_SYNC_NO_COPY) 8202 migrate_page_copy(newpage, page); 8203 else 8204 migrate_page_states(newpage, page); 8205 return MIGRATEPAGE_SUCCESS; 8206} 8207#endif 8208 8209static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8210 unsigned int length) 8211{ 8212 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8213 struct extent_io_tree *tree = &inode->io_tree; 8214 struct btrfs_ordered_extent *ordered; 8215 struct extent_state *cached_state = NULL; 8216 u64 page_start = page_offset(page); 8217 u64 page_end = page_start + PAGE_SIZE - 1; 8218 u64 start; 8219 u64 end; 8220 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8221 8222 /* 8223 * we have the page locked, so new writeback can't start, 8224 * and the dirty bit won't be cleared while we are here. 8225 * 8226 * Wait for IO on this page so that we can safely clear 8227 * the PagePrivate2 bit and do ordered accounting 8228 */ 8229 wait_on_page_writeback(page); 8230 8231 /* 8232 * For subpage case, we have call sites like 8233 * btrfs_punch_hole_lock_range() which passes range not aligned to 8234 * sectorsize. 8235 * If the range doesn't cover the full page, we don't need to and 8236 * shouldn't clear page extent mapped, as page->private can still 8237 * record subpage dirty bits for other part of the range. 8238 * 8239 * For cases that can invalidate the full even the range doesn't 8240 * cover the full page, like invalidating the last page, we're 8241 * still safe to wait for ordered extent to finish. 8242 */ 8243 if (!(offset == 0 && length == PAGE_SIZE)) { 8244 btrfs_releasepage(page, GFP_NOFS); 8245 return; 8246 } 8247 8248 if (!inode_evicting) 8249 lock_extent_bits(tree, page_start, page_end, &cached_state); 8250 8251 start = page_start; 8252again: 8253 ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1); 8254 if (ordered) { 8255 end = min(page_end, 8256 ordered->file_offset + ordered->num_bytes - 1); 8257 /* 8258 * IO on this page will never be started, so we need 8259 * to account for any ordered extents now 8260 */ 8261 if (!inode_evicting) 8262 clear_extent_bit(tree, start, end, 8263 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8264 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8265 EXTENT_DEFRAG, 1, 0, &cached_state); 8266 /* 8267 * whoever cleared the private bit is responsible 8268 * for the finish_ordered_io 8269 */ 8270 if (TestClearPagePrivate2(page)) { 8271 struct btrfs_ordered_inode_tree *tree; 8272 u64 new_len; 8273 8274 tree = &inode->ordered_tree; 8275 8276 spin_lock_irq(&tree->lock); 8277 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8278 new_len = start - ordered->file_offset; 8279 if (new_len < ordered->truncated_len) 8280 ordered->truncated_len = new_len; 8281 spin_unlock_irq(&tree->lock); 8282 8283 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8284 start, 8285 end - start + 1, 1)) 8286 btrfs_finish_ordered_io(ordered); 8287 } 8288 btrfs_put_ordered_extent(ordered); 8289 if (!inode_evicting) { 8290 cached_state = NULL; 8291 lock_extent_bits(tree, start, end, 8292 &cached_state); 8293 } 8294 8295 start = end + 1; 8296 if (start < page_end) 8297 goto again; 8298 } 8299 8300 /* 8301 * Qgroup reserved space handler 8302 * Page here will be either 8303 * 1) Already written to disk or ordered extent already submitted 8304 * Then its QGROUP_RESERVED bit in io_tree is already cleaned. 8305 * Qgroup will be handled by its qgroup_record then. 8306 * btrfs_qgroup_free_data() call will do nothing here. 8307 * 8308 * 2) Not written to disk yet 8309 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED 8310 * bit of its io_tree, and free the qgroup reserved data space. 8311 * Since the IO will never happen for this page. 8312 */ 8313 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8314 if (!inode_evicting) { 8315 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8316 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8317 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8318 &cached_state); 8319 8320 __btrfs_releasepage(page, GFP_NOFS); 8321 } 8322 8323 ClearPageChecked(page); 8324 detach_page_private(page); 8325} 8326 8327/* 8328 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8329 * called from a page fault handler when a page is first dirtied. Hence we must 8330 * be careful to check for EOF conditions here. We set the page up correctly 8331 * for a written page which means we get ENOSPC checking when writing into 8332 * holes and correct delalloc and unwritten extent mapping on filesystems that 8333 * support these features. 8334 * 8335 * We are not allowed to take the i_mutex here so we have to play games to 8336 * protect against truncate races as the page could now be beyond EOF. Because 8337 * truncate_setsize() writes the inode size before removing pages, once we have 8338 * the page lock we can determine safely if the page is beyond EOF. If it is not 8339 * beyond EOF, then the page is guaranteed safe against truncation until we 8340 * unlock the page. 8341 */ 8342vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8343{ 8344 struct page *page = vmf->page; 8345 struct inode *inode = file_inode(vmf->vma->vm_file); 8346 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8347 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8348 struct btrfs_ordered_extent *ordered; 8349 struct extent_state *cached_state = NULL; 8350 struct extent_changeset *data_reserved = NULL; 8351 char *kaddr; 8352 unsigned long zero_start; 8353 loff_t size; 8354 vm_fault_t ret; 8355 int ret2; 8356 int reserved = 0; 8357 u64 reserved_space; 8358 u64 page_start; 8359 u64 page_end; 8360 u64 end; 8361 8362 reserved_space = PAGE_SIZE; 8363 8364 sb_start_pagefault(inode->i_sb); 8365 page_start = page_offset(page); 8366 page_end = page_start + PAGE_SIZE - 1; 8367 end = page_end; 8368 8369 /* 8370 * Reserving delalloc space after obtaining the page lock can lead to 8371 * deadlock. For example, if a dirty page is locked by this function 8372 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8373 * dirty page write out, then the btrfs_writepage() function could 8374 * end up waiting indefinitely to get a lock on the page currently 8375 * being processed by btrfs_page_mkwrite() function. 8376 */ 8377 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8378 page_start, reserved_space); 8379 if (!ret2) { 8380 ret2 = file_update_time(vmf->vma->vm_file); 8381 reserved = 1; 8382 } 8383 if (ret2) { 8384 ret = vmf_error(ret2); 8385 if (reserved) 8386 goto out; 8387 goto out_noreserve; 8388 } 8389 8390 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8391again: 8392 lock_page(page); 8393 size = i_size_read(inode); 8394 8395 if ((page->mapping != inode->i_mapping) || 8396 (page_start >= size)) { 8397 /* page got truncated out from underneath us */ 8398 goto out_unlock; 8399 } 8400 wait_on_page_writeback(page); 8401 8402 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8403 set_page_extent_mapped(page); 8404 8405 /* 8406 * we can't set the delalloc bits if there are pending ordered 8407 * extents. Drop our locks and wait for them to finish 8408 */ 8409 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8410 PAGE_SIZE); 8411 if (ordered) { 8412 unlock_extent_cached(io_tree, page_start, page_end, 8413 &cached_state); 8414 unlock_page(page); 8415 btrfs_start_ordered_extent(ordered, 1); 8416 btrfs_put_ordered_extent(ordered); 8417 goto again; 8418 } 8419 8420 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8421 reserved_space = round_up(size - page_start, 8422 fs_info->sectorsize); 8423 if (reserved_space < PAGE_SIZE) { 8424 end = page_start + reserved_space - 1; 8425 btrfs_delalloc_release_space(BTRFS_I(inode), 8426 data_reserved, page_start, 8427 PAGE_SIZE - reserved_space, true); 8428 } 8429 } 8430 8431 /* 8432 * page_mkwrite gets called when the page is firstly dirtied after it's 8433 * faulted in, but write(2) could also dirty a page and set delalloc 8434 * bits, thus in this case for space account reason, we still need to 8435 * clear any delalloc bits within this page range since we have to 8436 * reserve data&meta space before lock_page() (see above comments). 8437 */ 8438 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8439 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8440 EXTENT_DEFRAG, 0, 0, &cached_state); 8441 8442 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8443 &cached_state); 8444 if (ret2) { 8445 unlock_extent_cached(io_tree, page_start, page_end, 8446 &cached_state); 8447 ret = VM_FAULT_SIGBUS; 8448 goto out_unlock; 8449 } 8450 8451 /* page is wholly or partially inside EOF */ 8452 if (page_start + PAGE_SIZE > size) 8453 zero_start = offset_in_page(size); 8454 else 8455 zero_start = PAGE_SIZE; 8456 8457 if (zero_start != PAGE_SIZE) { 8458 kaddr = kmap(page); 8459 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8460 flush_dcache_page(page); 8461 kunmap(page); 8462 } 8463 ClearPageChecked(page); 8464 set_page_dirty(page); 8465 SetPageUptodate(page); 8466 8467 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8468 8469 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8470 8471 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8472 sb_end_pagefault(inode->i_sb); 8473 extent_changeset_free(data_reserved); 8474 return VM_FAULT_LOCKED; 8475 8476out_unlock: 8477 unlock_page(page); 8478out: 8479 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8480 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8481 reserved_space, (ret != 0)); 8482out_noreserve: 8483 sb_end_pagefault(inode->i_sb); 8484 extent_changeset_free(data_reserved); 8485 return ret; 8486} 8487 8488static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8489{ 8490 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8491 struct btrfs_root *root = BTRFS_I(inode)->root; 8492 struct btrfs_block_rsv *rsv; 8493 int ret; 8494 struct btrfs_trans_handle *trans; 8495 u64 mask = fs_info->sectorsize - 1; 8496 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8497 8498 if (!skip_writeback) { 8499 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8500 (u64)-1); 8501 if (ret) 8502 return ret; 8503 } 8504 8505 /* 8506 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8507 * things going on here: 8508 * 8509 * 1) We need to reserve space to update our inode. 8510 * 8511 * 2) We need to have something to cache all the space that is going to 8512 * be free'd up by the truncate operation, but also have some slack 8513 * space reserved in case it uses space during the truncate (thank you 8514 * very much snapshotting). 8515 * 8516 * And we need these to be separate. The fact is we can use a lot of 8517 * space doing the truncate, and we have no earthly idea how much space 8518 * we will use, so we need the truncate reservation to be separate so it 8519 * doesn't end up using space reserved for updating the inode. We also 8520 * need to be able to stop the transaction and start a new one, which 8521 * means we need to be able to update the inode several times, and we 8522 * have no idea of knowing how many times that will be, so we can't just 8523 * reserve 1 item for the entirety of the operation, so that has to be 8524 * done separately as well. 8525 * 8526 * So that leaves us with 8527 * 8528 * 1) rsv - for the truncate reservation, which we will steal from the 8529 * transaction reservation. 8530 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8531 * updating the inode. 8532 */ 8533 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8534 if (!rsv) 8535 return -ENOMEM; 8536 rsv->size = min_size; 8537 rsv->failfast = 1; 8538 8539 /* 8540 * 1 for the truncate slack space 8541 * 1 for updating the inode. 8542 */ 8543 trans = btrfs_start_transaction(root, 2); 8544 if (IS_ERR(trans)) { 8545 ret = PTR_ERR(trans); 8546 goto out; 8547 } 8548 8549 /* Migrate the slack space for the truncate to our reserve */ 8550 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8551 min_size, false); 8552 BUG_ON(ret); 8553 8554 /* 8555 * So if we truncate and then write and fsync we normally would just 8556 * write the extents that changed, which is a problem if we need to 8557 * first truncate that entire inode. So set this flag so we write out 8558 * all of the extents in the inode to the sync log so we're completely 8559 * safe. 8560 */ 8561 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8562 trans->block_rsv = rsv; 8563 8564 while (1) { 8565 ret = btrfs_truncate_inode_items(trans, root, inode, 8566 inode->i_size, 8567 BTRFS_EXTENT_DATA_KEY); 8568 trans->block_rsv = &fs_info->trans_block_rsv; 8569 if (ret != -ENOSPC && ret != -EAGAIN) 8570 break; 8571 8572 ret = btrfs_update_inode(trans, root, inode); 8573 if (ret) 8574 break; 8575 8576 btrfs_end_transaction(trans); 8577 btrfs_btree_balance_dirty(fs_info); 8578 8579 trans = btrfs_start_transaction(root, 2); 8580 if (IS_ERR(trans)) { 8581 ret = PTR_ERR(trans); 8582 trans = NULL; 8583 break; 8584 } 8585 8586 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8587 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8588 rsv, min_size, false); 8589 BUG_ON(ret); /* shouldn't happen */ 8590 trans->block_rsv = rsv; 8591 } 8592 8593 /* 8594 * We can't call btrfs_truncate_block inside a trans handle as we could 8595 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8596 * we've truncated everything except the last little bit, and can do 8597 * btrfs_truncate_block and then update the disk_i_size. 8598 */ 8599 if (ret == NEED_TRUNCATE_BLOCK) { 8600 btrfs_end_transaction(trans); 8601 btrfs_btree_balance_dirty(fs_info); 8602 8603 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 8604 if (ret) 8605 goto out; 8606 trans = btrfs_start_transaction(root, 1); 8607 if (IS_ERR(trans)) { 8608 ret = PTR_ERR(trans); 8609 goto out; 8610 } 8611 btrfs_inode_safe_disk_i_size_write(inode, 0); 8612 } 8613 8614 if (trans) { 8615 int ret2; 8616 8617 trans->block_rsv = &fs_info->trans_block_rsv; 8618 ret2 = btrfs_update_inode(trans, root, inode); 8619 if (ret2 && !ret) 8620 ret = ret2; 8621 8622 ret2 = btrfs_end_transaction(trans); 8623 if (ret2 && !ret) 8624 ret = ret2; 8625 btrfs_btree_balance_dirty(fs_info); 8626 } 8627out: 8628 btrfs_free_block_rsv(fs_info, rsv); 8629 8630 return ret; 8631} 8632 8633/* 8634 * create a new subvolume directory/inode (helper for the ioctl). 8635 */ 8636int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8637 struct btrfs_root *new_root, 8638 struct btrfs_root *parent_root, 8639 u64 new_dirid) 8640{ 8641 struct inode *inode; 8642 int err; 8643 u64 index = 0; 8644 8645 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8646 new_dirid, new_dirid, 8647 S_IFDIR | (~current_umask() & S_IRWXUGO), 8648 &index); 8649 if (IS_ERR(inode)) 8650 return PTR_ERR(inode); 8651 inode->i_op = &btrfs_dir_inode_operations; 8652 inode->i_fop = &btrfs_dir_file_operations; 8653 8654 set_nlink(inode, 1); 8655 btrfs_i_size_write(BTRFS_I(inode), 0); 8656 unlock_new_inode(inode); 8657 8658 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8659 if (err) 8660 btrfs_err(new_root->fs_info, 8661 "error inheriting subvolume %llu properties: %d", 8662 new_root->root_key.objectid, err); 8663 8664 err = btrfs_update_inode(trans, new_root, inode); 8665 8666 iput(inode); 8667 return err; 8668} 8669 8670struct inode *btrfs_alloc_inode(struct super_block *sb) 8671{ 8672 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8673 struct btrfs_inode *ei; 8674 struct inode *inode; 8675 8676 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8677 if (!ei) 8678 return NULL; 8679 8680 ei->root = NULL; 8681 ei->generation = 0; 8682 ei->last_trans = 0; 8683 ei->last_sub_trans = 0; 8684 ei->logged_trans = 0; 8685 ei->delalloc_bytes = 0; 8686 ei->new_delalloc_bytes = 0; 8687 ei->defrag_bytes = 0; 8688 ei->disk_i_size = 0; 8689 ei->flags = 0; 8690 ei->csum_bytes = 0; 8691 ei->index_cnt = (u64)-1; 8692 ei->dir_index = 0; 8693 ei->last_unlink_trans = 0; 8694 ei->last_reflink_trans = 0; 8695 ei->last_log_commit = 0; 8696 8697 spin_lock_init(&ei->lock); 8698 ei->outstanding_extents = 0; 8699 if (sb->s_magic != BTRFS_TEST_MAGIC) 8700 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8701 BTRFS_BLOCK_RSV_DELALLOC); 8702 ei->runtime_flags = 0; 8703 ei->prop_compress = BTRFS_COMPRESS_NONE; 8704 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8705 8706 ei->delayed_node = NULL; 8707 8708 ei->i_otime.tv_sec = 0; 8709 ei->i_otime.tv_nsec = 0; 8710 8711 inode = &ei->vfs_inode; 8712 extent_map_tree_init(&ei->extent_tree); 8713 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8714 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8715 IO_TREE_INODE_IO_FAILURE, inode); 8716 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8717 IO_TREE_INODE_FILE_EXTENT, inode); 8718 ei->io_tree.track_uptodate = true; 8719 ei->io_failure_tree.track_uptodate = true; 8720 atomic_set(&ei->sync_writers, 0); 8721 mutex_init(&ei->log_mutex); 8722 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8723 INIT_LIST_HEAD(&ei->delalloc_inodes); 8724 INIT_LIST_HEAD(&ei->delayed_iput); 8725 RB_CLEAR_NODE(&ei->rb_node); 8726 init_rwsem(&ei->dio_sem); 8727 8728 return inode; 8729} 8730 8731#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8732void btrfs_test_destroy_inode(struct inode *inode) 8733{ 8734 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8735 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8736} 8737#endif 8738 8739void btrfs_free_inode(struct inode *inode) 8740{ 8741 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8742} 8743 8744void btrfs_destroy_inode(struct inode *vfs_inode) 8745{ 8746 struct btrfs_ordered_extent *ordered; 8747 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8748 struct btrfs_root *root = inode->root; 8749 8750 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8751 WARN_ON(vfs_inode->i_data.nrpages); 8752 WARN_ON(inode->block_rsv.reserved); 8753 WARN_ON(inode->block_rsv.size); 8754 WARN_ON(inode->outstanding_extents); 8755 WARN_ON(inode->delalloc_bytes); 8756 WARN_ON(inode->new_delalloc_bytes); 8757 WARN_ON(inode->csum_bytes); 8758 WARN_ON(inode->defrag_bytes); 8759 8760 /* 8761 * This can happen where we create an inode, but somebody else also 8762 * created the same inode and we need to destroy the one we already 8763 * created. 8764 */ 8765 if (!root) 8766 return; 8767 8768 while (1) { 8769 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8770 if (!ordered) 8771 break; 8772 else { 8773 btrfs_err(root->fs_info, 8774 "found ordered extent %llu %llu on inode cleanup", 8775 ordered->file_offset, ordered->num_bytes); 8776 btrfs_remove_ordered_extent(inode, ordered); 8777 btrfs_put_ordered_extent(ordered); 8778 btrfs_put_ordered_extent(ordered); 8779 } 8780 } 8781 btrfs_qgroup_check_reserved_leak(inode); 8782 inode_tree_del(inode); 8783 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8784 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8785 btrfs_put_root(inode->root); 8786} 8787 8788int btrfs_drop_inode(struct inode *inode) 8789{ 8790 struct btrfs_root *root = BTRFS_I(inode)->root; 8791 8792 if (root == NULL) 8793 return 1; 8794 8795 /* the snap/subvol tree is on deleting */ 8796 if (btrfs_root_refs(&root->root_item) == 0) 8797 return 1; 8798 else 8799 return generic_drop_inode(inode); 8800} 8801 8802static void init_once(void *foo) 8803{ 8804 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8805 8806 inode_init_once(&ei->vfs_inode); 8807} 8808 8809void __cold btrfs_destroy_cachep(void) 8810{ 8811 /* 8812 * Make sure all delayed rcu free inodes are flushed before we 8813 * destroy cache. 8814 */ 8815 rcu_barrier(); 8816 kmem_cache_destroy(btrfs_inode_cachep); 8817 kmem_cache_destroy(btrfs_trans_handle_cachep); 8818 kmem_cache_destroy(btrfs_path_cachep); 8819 kmem_cache_destroy(btrfs_free_space_cachep); 8820 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8821} 8822 8823int __init btrfs_init_cachep(void) 8824{ 8825 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8826 sizeof(struct btrfs_inode), 0, 8827 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8828 init_once); 8829 if (!btrfs_inode_cachep) 8830 goto fail; 8831 8832 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8833 sizeof(struct btrfs_trans_handle), 0, 8834 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8835 if (!btrfs_trans_handle_cachep) 8836 goto fail; 8837 8838 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8839 sizeof(struct btrfs_path), 0, 8840 SLAB_MEM_SPREAD, NULL); 8841 if (!btrfs_path_cachep) 8842 goto fail; 8843 8844 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8845 sizeof(struct btrfs_free_space), 0, 8846 SLAB_MEM_SPREAD, NULL); 8847 if (!btrfs_free_space_cachep) 8848 goto fail; 8849 8850 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 8851 PAGE_SIZE, PAGE_SIZE, 8852 SLAB_MEM_SPREAD, NULL); 8853 if (!btrfs_free_space_bitmap_cachep) 8854 goto fail; 8855 8856 return 0; 8857fail: 8858 btrfs_destroy_cachep(); 8859 return -ENOMEM; 8860} 8861 8862static int btrfs_getattr(const struct path *path, struct kstat *stat, 8863 u32 request_mask, unsigned int flags) 8864{ 8865 u64 delalloc_bytes; 8866 struct inode *inode = d_inode(path->dentry); 8867 u32 blocksize = inode->i_sb->s_blocksize; 8868 u32 bi_flags = BTRFS_I(inode)->flags; 8869 8870 stat->result_mask |= STATX_BTIME; 8871 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 8872 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 8873 if (bi_flags & BTRFS_INODE_APPEND) 8874 stat->attributes |= STATX_ATTR_APPEND; 8875 if (bi_flags & BTRFS_INODE_COMPRESS) 8876 stat->attributes |= STATX_ATTR_COMPRESSED; 8877 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8878 stat->attributes |= STATX_ATTR_IMMUTABLE; 8879 if (bi_flags & BTRFS_INODE_NODUMP) 8880 stat->attributes |= STATX_ATTR_NODUMP; 8881 8882 stat->attributes_mask |= (STATX_ATTR_APPEND | 8883 STATX_ATTR_COMPRESSED | 8884 STATX_ATTR_IMMUTABLE | 8885 STATX_ATTR_NODUMP); 8886 8887 generic_fillattr(inode, stat); 8888 stat->dev = BTRFS_I(inode)->root->anon_dev; 8889 8890 spin_lock(&BTRFS_I(inode)->lock); 8891 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8892 spin_unlock(&BTRFS_I(inode)->lock); 8893 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8894 ALIGN(delalloc_bytes, blocksize)) >> 9; 8895 return 0; 8896} 8897 8898static int btrfs_rename_exchange(struct inode *old_dir, 8899 struct dentry *old_dentry, 8900 struct inode *new_dir, 8901 struct dentry *new_dentry) 8902{ 8903 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8904 struct btrfs_trans_handle *trans; 8905 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8906 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8907 struct inode *new_inode = new_dentry->d_inode; 8908 struct inode *old_inode = old_dentry->d_inode; 8909 struct timespec64 ctime = current_time(old_inode); 8910 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8911 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8912 u64 old_idx = 0; 8913 u64 new_idx = 0; 8914 int ret; 8915 int ret2; 8916 bool root_log_pinned = false; 8917 bool dest_log_pinned = false; 8918 bool need_abort = false; 8919 8920 /* 8921 * For non-subvolumes allow exchange only within one subvolume, in the 8922 * same inode namespace. Two subvolumes (represented as directory) can 8923 * be exchanged as they're a logical link and have a fixed inode number. 8924 */ 8925 if (root != dest && 8926 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8927 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8928 return -EXDEV; 8929 8930 /* close the race window with snapshot create/destroy ioctl */ 8931 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8932 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8933 down_read(&fs_info->subvol_sem); 8934 8935 /* 8936 * We want to reserve the absolute worst case amount of items. So if 8937 * both inodes are subvols and we need to unlink them then that would 8938 * require 4 item modifications, but if they are both normal inodes it 8939 * would require 5 item modifications, so we'll assume their normal 8940 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 8941 * should cover the worst case number of items we'll modify. 8942 */ 8943 trans = btrfs_start_transaction(root, 12); 8944 if (IS_ERR(trans)) { 8945 ret = PTR_ERR(trans); 8946 goto out_notrans; 8947 } 8948 8949 if (dest != root) 8950 btrfs_record_root_in_trans(trans, dest); 8951 8952 /* 8953 * We need to find a free sequence number both in the source and 8954 * in the destination directory for the exchange. 8955 */ 8956 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8957 if (ret) 8958 goto out_fail; 8959 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8960 if (ret) 8961 goto out_fail; 8962 8963 BTRFS_I(old_inode)->dir_index = 0ULL; 8964 BTRFS_I(new_inode)->dir_index = 0ULL; 8965 8966 /* Reference for the source. */ 8967 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8968 /* force full log commit if subvolume involved. */ 8969 btrfs_set_log_full_commit(trans); 8970 } else { 8971 btrfs_pin_log_trans(root); 8972 root_log_pinned = true; 8973 ret = btrfs_insert_inode_ref(trans, dest, 8974 new_dentry->d_name.name, 8975 new_dentry->d_name.len, 8976 old_ino, 8977 btrfs_ino(BTRFS_I(new_dir)), 8978 old_idx); 8979 if (ret) 8980 goto out_fail; 8981 need_abort = true; 8982 } 8983 8984 /* And now for the dest. */ 8985 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8986 /* force full log commit if subvolume involved. */ 8987 btrfs_set_log_full_commit(trans); 8988 } else { 8989 btrfs_pin_log_trans(dest); 8990 dest_log_pinned = true; 8991 ret = btrfs_insert_inode_ref(trans, root, 8992 old_dentry->d_name.name, 8993 old_dentry->d_name.len, 8994 new_ino, 8995 btrfs_ino(BTRFS_I(old_dir)), 8996 new_idx); 8997 if (ret) { 8998 if (need_abort) 8999 btrfs_abort_transaction(trans, ret); 9000 goto out_fail; 9001 } 9002 } 9003 9004 /* Update inode version and ctime/mtime. */ 9005 inode_inc_iversion(old_dir); 9006 inode_inc_iversion(new_dir); 9007 inode_inc_iversion(old_inode); 9008 inode_inc_iversion(new_inode); 9009 old_dir->i_ctime = old_dir->i_mtime = ctime; 9010 new_dir->i_ctime = new_dir->i_mtime = ctime; 9011 old_inode->i_ctime = ctime; 9012 new_inode->i_ctime = ctime; 9013 9014 if (old_dentry->d_parent != new_dentry->d_parent) { 9015 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9016 BTRFS_I(old_inode), 1); 9017 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9018 BTRFS_I(new_inode), 1); 9019 } 9020 9021 /* src is a subvolume */ 9022 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9023 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9024 } else { /* src is an inode */ 9025 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9026 BTRFS_I(old_dentry->d_inode), 9027 old_dentry->d_name.name, 9028 old_dentry->d_name.len); 9029 if (!ret) 9030 ret = btrfs_update_inode(trans, root, old_inode); 9031 } 9032 if (ret) { 9033 btrfs_abort_transaction(trans, ret); 9034 goto out_fail; 9035 } 9036 9037 /* dest is a subvolume */ 9038 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9039 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9040 } else { /* dest is an inode */ 9041 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9042 BTRFS_I(new_dentry->d_inode), 9043 new_dentry->d_name.name, 9044 new_dentry->d_name.len); 9045 if (!ret) 9046 ret = btrfs_update_inode(trans, dest, new_inode); 9047 } 9048 if (ret) { 9049 btrfs_abort_transaction(trans, ret); 9050 goto out_fail; 9051 } 9052 9053 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9054 new_dentry->d_name.name, 9055 new_dentry->d_name.len, 0, old_idx); 9056 if (ret) { 9057 btrfs_abort_transaction(trans, ret); 9058 goto out_fail; 9059 } 9060 9061 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9062 old_dentry->d_name.name, 9063 old_dentry->d_name.len, 0, new_idx); 9064 if (ret) { 9065 btrfs_abort_transaction(trans, ret); 9066 goto out_fail; 9067 } 9068 9069 if (old_inode->i_nlink == 1) 9070 BTRFS_I(old_inode)->dir_index = old_idx; 9071 if (new_inode->i_nlink == 1) 9072 BTRFS_I(new_inode)->dir_index = new_idx; 9073 9074 if (root_log_pinned) { 9075 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9076 new_dentry->d_parent); 9077 btrfs_end_log_trans(root); 9078 root_log_pinned = false; 9079 } 9080 if (dest_log_pinned) { 9081 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9082 old_dentry->d_parent); 9083 btrfs_end_log_trans(dest); 9084 dest_log_pinned = false; 9085 } 9086out_fail: 9087 /* 9088 * If we have pinned a log and an error happened, we unpin tasks 9089 * trying to sync the log and force them to fallback to a transaction 9090 * commit if the log currently contains any of the inodes involved in 9091 * this rename operation (to ensure we do not persist a log with an 9092 * inconsistent state for any of these inodes or leading to any 9093 * inconsistencies when replayed). If the transaction was aborted, the 9094 * abortion reason is propagated to userspace when attempting to commit 9095 * the transaction. If the log does not contain any of these inodes, we 9096 * allow the tasks to sync it. 9097 */ 9098 if (ret && (root_log_pinned || dest_log_pinned)) { 9099 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9100 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9101 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9102 (new_inode && 9103 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9104 btrfs_set_log_full_commit(trans); 9105 9106 if (root_log_pinned) { 9107 btrfs_end_log_trans(root); 9108 root_log_pinned = false; 9109 } 9110 if (dest_log_pinned) { 9111 btrfs_end_log_trans(dest); 9112 dest_log_pinned = false; 9113 } 9114 } 9115 ret2 = btrfs_end_transaction(trans); 9116 ret = ret ? ret : ret2; 9117out_notrans: 9118 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9119 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9120 up_read(&fs_info->subvol_sem); 9121 9122 return ret; 9123} 9124 9125static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9126 struct btrfs_root *root, 9127 struct inode *dir, 9128 struct dentry *dentry) 9129{ 9130 int ret; 9131 struct inode *inode; 9132 u64 objectid; 9133 u64 index; 9134 9135 ret = btrfs_find_free_objectid(root, &objectid); 9136 if (ret) 9137 return ret; 9138 9139 inode = btrfs_new_inode(trans, root, dir, 9140 dentry->d_name.name, 9141 dentry->d_name.len, 9142 btrfs_ino(BTRFS_I(dir)), 9143 objectid, 9144 S_IFCHR | WHITEOUT_MODE, 9145 &index); 9146 9147 if (IS_ERR(inode)) { 9148 ret = PTR_ERR(inode); 9149 return ret; 9150 } 9151 9152 inode->i_op = &btrfs_special_inode_operations; 9153 init_special_inode(inode, inode->i_mode, 9154 WHITEOUT_DEV); 9155 9156 ret = btrfs_init_inode_security(trans, inode, dir, 9157 &dentry->d_name); 9158 if (ret) 9159 goto out; 9160 9161 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9162 BTRFS_I(inode), 0, index); 9163 if (ret) 9164 goto out; 9165 9166 ret = btrfs_update_inode(trans, root, inode); 9167out: 9168 unlock_new_inode(inode); 9169 if (ret) 9170 inode_dec_link_count(inode); 9171 iput(inode); 9172 9173 return ret; 9174} 9175 9176static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9177 struct inode *new_dir, struct dentry *new_dentry, 9178 unsigned int flags) 9179{ 9180 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9181 struct btrfs_trans_handle *trans; 9182 unsigned int trans_num_items; 9183 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9184 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9185 struct inode *new_inode = d_inode(new_dentry); 9186 struct inode *old_inode = d_inode(old_dentry); 9187 u64 index = 0; 9188 int ret; 9189 int ret2; 9190 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9191 bool log_pinned = false; 9192 9193 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9194 return -EPERM; 9195 9196 /* we only allow rename subvolume link between subvolumes */ 9197 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9198 return -EXDEV; 9199 9200 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9201 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9202 return -ENOTEMPTY; 9203 9204 if (S_ISDIR(old_inode->i_mode) && new_inode && 9205 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9206 return -ENOTEMPTY; 9207 9208 9209 /* check for collisions, even if the name isn't there */ 9210 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9211 new_dentry->d_name.name, 9212 new_dentry->d_name.len); 9213 9214 if (ret) { 9215 if (ret == -EEXIST) { 9216 /* we shouldn't get 9217 * eexist without a new_inode */ 9218 if (WARN_ON(!new_inode)) { 9219 return ret; 9220 } 9221 } else { 9222 /* maybe -EOVERFLOW */ 9223 return ret; 9224 } 9225 } 9226 ret = 0; 9227 9228 /* 9229 * we're using rename to replace one file with another. Start IO on it 9230 * now so we don't add too much work to the end of the transaction 9231 */ 9232 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9233 filemap_flush(old_inode->i_mapping); 9234 9235 /* close the racy window with snapshot create/destroy ioctl */ 9236 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9237 down_read(&fs_info->subvol_sem); 9238 /* 9239 * We want to reserve the absolute worst case amount of items. So if 9240 * both inodes are subvols and we need to unlink them then that would 9241 * require 4 item modifications, but if they are both normal inodes it 9242 * would require 5 item modifications, so we'll assume they are normal 9243 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9244 * should cover the worst case number of items we'll modify. 9245 * If our rename has the whiteout flag, we need more 5 units for the 9246 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9247 * when selinux is enabled). 9248 */ 9249 trans_num_items = 11; 9250 if (flags & RENAME_WHITEOUT) 9251 trans_num_items += 5; 9252 trans = btrfs_start_transaction(root, trans_num_items); 9253 if (IS_ERR(trans)) { 9254 ret = PTR_ERR(trans); 9255 goto out_notrans; 9256 } 9257 9258 if (dest != root) 9259 btrfs_record_root_in_trans(trans, dest); 9260 9261 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9262 if (ret) 9263 goto out_fail; 9264 9265 BTRFS_I(old_inode)->dir_index = 0ULL; 9266 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9267 /* force full log commit if subvolume involved. */ 9268 btrfs_set_log_full_commit(trans); 9269 } else { 9270 btrfs_pin_log_trans(root); 9271 log_pinned = true; 9272 ret = btrfs_insert_inode_ref(trans, dest, 9273 new_dentry->d_name.name, 9274 new_dentry->d_name.len, 9275 old_ino, 9276 btrfs_ino(BTRFS_I(new_dir)), index); 9277 if (ret) 9278 goto out_fail; 9279 } 9280 9281 inode_inc_iversion(old_dir); 9282 inode_inc_iversion(new_dir); 9283 inode_inc_iversion(old_inode); 9284 old_dir->i_ctime = old_dir->i_mtime = 9285 new_dir->i_ctime = new_dir->i_mtime = 9286 old_inode->i_ctime = current_time(old_dir); 9287 9288 if (old_dentry->d_parent != new_dentry->d_parent) 9289 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9290 BTRFS_I(old_inode), 1); 9291 9292 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9293 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9294 } else { 9295 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9296 BTRFS_I(d_inode(old_dentry)), 9297 old_dentry->d_name.name, 9298 old_dentry->d_name.len); 9299 if (!ret) 9300 ret = btrfs_update_inode(trans, root, old_inode); 9301 } 9302 if (ret) { 9303 btrfs_abort_transaction(trans, ret); 9304 goto out_fail; 9305 } 9306 9307 if (new_inode) { 9308 inode_inc_iversion(new_inode); 9309 new_inode->i_ctime = current_time(new_inode); 9310 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9311 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9312 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9313 BUG_ON(new_inode->i_nlink == 0); 9314 } else { 9315 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9316 BTRFS_I(d_inode(new_dentry)), 9317 new_dentry->d_name.name, 9318 new_dentry->d_name.len); 9319 } 9320 if (!ret && new_inode->i_nlink == 0) 9321 ret = btrfs_orphan_add(trans, 9322 BTRFS_I(d_inode(new_dentry))); 9323 if (ret) { 9324 btrfs_abort_transaction(trans, ret); 9325 goto out_fail; 9326 } 9327 } 9328 9329 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9330 new_dentry->d_name.name, 9331 new_dentry->d_name.len, 0, index); 9332 if (ret) { 9333 btrfs_abort_transaction(trans, ret); 9334 goto out_fail; 9335 } 9336 9337 if (old_inode->i_nlink == 1) 9338 BTRFS_I(old_inode)->dir_index = index; 9339 9340 if (log_pinned) { 9341 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9342 new_dentry->d_parent); 9343 btrfs_end_log_trans(root); 9344 log_pinned = false; 9345 } 9346 9347 if (flags & RENAME_WHITEOUT) { 9348 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9349 old_dentry); 9350 9351 if (ret) { 9352 btrfs_abort_transaction(trans, ret); 9353 goto out_fail; 9354 } 9355 } 9356out_fail: 9357 /* 9358 * If we have pinned the log and an error happened, we unpin tasks 9359 * trying to sync the log and force them to fallback to a transaction 9360 * commit if the log currently contains any of the inodes involved in 9361 * this rename operation (to ensure we do not persist a log with an 9362 * inconsistent state for any of these inodes or leading to any 9363 * inconsistencies when replayed). If the transaction was aborted, the 9364 * abortion reason is propagated to userspace when attempting to commit 9365 * the transaction. If the log does not contain any of these inodes, we 9366 * allow the tasks to sync it. 9367 */ 9368 if (ret && log_pinned) { 9369 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9370 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9371 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9372 (new_inode && 9373 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9374 btrfs_set_log_full_commit(trans); 9375 9376 btrfs_end_log_trans(root); 9377 log_pinned = false; 9378 } 9379 ret2 = btrfs_end_transaction(trans); 9380 ret = ret ? ret : ret2; 9381out_notrans: 9382 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9383 up_read(&fs_info->subvol_sem); 9384 9385 return ret; 9386} 9387 9388static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9389 struct inode *new_dir, struct dentry *new_dentry, 9390 unsigned int flags) 9391{ 9392 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9393 return -EINVAL; 9394 9395 if (flags & RENAME_EXCHANGE) 9396 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9397 new_dentry); 9398 9399 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9400} 9401 9402struct btrfs_delalloc_work { 9403 struct inode *inode; 9404 struct completion completion; 9405 struct list_head list; 9406 struct btrfs_work work; 9407}; 9408 9409static void btrfs_run_delalloc_work(struct btrfs_work *work) 9410{ 9411 struct btrfs_delalloc_work *delalloc_work; 9412 struct inode *inode; 9413 9414 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9415 work); 9416 inode = delalloc_work->inode; 9417 filemap_flush(inode->i_mapping); 9418 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9419 &BTRFS_I(inode)->runtime_flags)) 9420 filemap_flush(inode->i_mapping); 9421 9422 iput(inode); 9423 complete(&delalloc_work->completion); 9424} 9425 9426static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9427{ 9428 struct btrfs_delalloc_work *work; 9429 9430 work = kmalloc(sizeof(*work), GFP_NOFS); 9431 if (!work) 9432 return NULL; 9433 9434 init_completion(&work->completion); 9435 INIT_LIST_HEAD(&work->list); 9436 work->inode = inode; 9437 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9438 9439 return work; 9440} 9441 9442/* 9443 * some fairly slow code that needs optimization. This walks the list 9444 * of all the inodes with pending delalloc and forces them to disk. 9445 */ 9446static int start_delalloc_inodes(struct btrfs_root *root, 9447 struct writeback_control *wbc, bool snapshot, 9448 bool in_reclaim_context) 9449{ 9450 struct btrfs_inode *binode; 9451 struct inode *inode; 9452 struct btrfs_delalloc_work *work, *next; 9453 struct list_head works; 9454 struct list_head splice; 9455 int ret = 0; 9456 bool full_flush = wbc->nr_to_write == LONG_MAX; 9457 9458 INIT_LIST_HEAD(&works); 9459 INIT_LIST_HEAD(&splice); 9460 9461 mutex_lock(&root->delalloc_mutex); 9462 spin_lock(&root->delalloc_lock); 9463 list_splice_init(&root->delalloc_inodes, &splice); 9464 while (!list_empty(&splice)) { 9465 binode = list_entry(splice.next, struct btrfs_inode, 9466 delalloc_inodes); 9467 9468 list_move_tail(&binode->delalloc_inodes, 9469 &root->delalloc_inodes); 9470 9471 if (in_reclaim_context && 9472 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9473 continue; 9474 9475 inode = igrab(&binode->vfs_inode); 9476 if (!inode) { 9477 cond_resched_lock(&root->delalloc_lock); 9478 continue; 9479 } 9480 spin_unlock(&root->delalloc_lock); 9481 9482 if (snapshot) 9483 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9484 &binode->runtime_flags); 9485 if (full_flush) { 9486 work = btrfs_alloc_delalloc_work(inode); 9487 if (!work) { 9488 iput(inode); 9489 ret = -ENOMEM; 9490 goto out; 9491 } 9492 list_add_tail(&work->list, &works); 9493 btrfs_queue_work(root->fs_info->flush_workers, 9494 &work->work); 9495 } else { 9496 ret = sync_inode(inode, wbc); 9497 if (!ret && 9498 test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9499 &BTRFS_I(inode)->runtime_flags)) 9500 ret = sync_inode(inode, wbc); 9501 btrfs_add_delayed_iput(inode); 9502 if (ret || wbc->nr_to_write <= 0) 9503 goto out; 9504 } 9505 cond_resched(); 9506 spin_lock(&root->delalloc_lock); 9507 } 9508 spin_unlock(&root->delalloc_lock); 9509 9510out: 9511 list_for_each_entry_safe(work, next, &works, list) { 9512 list_del_init(&work->list); 9513 wait_for_completion(&work->completion); 9514 kfree(work); 9515 } 9516 9517 if (!list_empty(&splice)) { 9518 spin_lock(&root->delalloc_lock); 9519 list_splice_tail(&splice, &root->delalloc_inodes); 9520 spin_unlock(&root->delalloc_lock); 9521 } 9522 mutex_unlock(&root->delalloc_mutex); 9523 return ret; 9524} 9525 9526int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 9527{ 9528 struct writeback_control wbc = { 9529 .nr_to_write = LONG_MAX, 9530 .sync_mode = WB_SYNC_NONE, 9531 .range_start = 0, 9532 .range_end = LLONG_MAX, 9533 }; 9534 struct btrfs_fs_info *fs_info = root->fs_info; 9535 9536 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9537 return -EROFS; 9538 9539 return start_delalloc_inodes(root, &wbc, true, false); 9540} 9541 9542int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, u64 nr, 9543 bool in_reclaim_context) 9544{ 9545 struct writeback_control wbc = { 9546 .nr_to_write = (nr == U64_MAX) ? LONG_MAX : (unsigned long)nr, 9547 .sync_mode = WB_SYNC_NONE, 9548 .range_start = 0, 9549 .range_end = LLONG_MAX, 9550 }; 9551 struct btrfs_root *root; 9552 struct list_head splice; 9553 int ret; 9554 9555 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9556 return -EROFS; 9557 9558 INIT_LIST_HEAD(&splice); 9559 9560 mutex_lock(&fs_info->delalloc_root_mutex); 9561 spin_lock(&fs_info->delalloc_root_lock); 9562 list_splice_init(&fs_info->delalloc_roots, &splice); 9563 while (!list_empty(&splice) && nr) { 9564 /* 9565 * Reset nr_to_write here so we know that we're doing a full 9566 * flush. 9567 */ 9568 if (nr == U64_MAX) 9569 wbc.nr_to_write = LONG_MAX; 9570 9571 root = list_first_entry(&splice, struct btrfs_root, 9572 delalloc_root); 9573 root = btrfs_grab_root(root); 9574 BUG_ON(!root); 9575 list_move_tail(&root->delalloc_root, 9576 &fs_info->delalloc_roots); 9577 spin_unlock(&fs_info->delalloc_root_lock); 9578 9579 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9580 btrfs_put_root(root); 9581 if (ret < 0 || wbc.nr_to_write <= 0) 9582 goto out; 9583 spin_lock(&fs_info->delalloc_root_lock); 9584 } 9585 spin_unlock(&fs_info->delalloc_root_lock); 9586 9587 ret = 0; 9588out: 9589 if (!list_empty(&splice)) { 9590 spin_lock(&fs_info->delalloc_root_lock); 9591 list_splice_tail(&splice, &fs_info->delalloc_roots); 9592 spin_unlock(&fs_info->delalloc_root_lock); 9593 } 9594 mutex_unlock(&fs_info->delalloc_root_mutex); 9595 return ret; 9596} 9597 9598static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9599 const char *symname) 9600{ 9601 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9602 struct btrfs_trans_handle *trans; 9603 struct btrfs_root *root = BTRFS_I(dir)->root; 9604 struct btrfs_path *path; 9605 struct btrfs_key key; 9606 struct inode *inode = NULL; 9607 int err; 9608 u64 objectid; 9609 u64 index = 0; 9610 int name_len; 9611 int datasize; 9612 unsigned long ptr; 9613 struct btrfs_file_extent_item *ei; 9614 struct extent_buffer *leaf; 9615 9616 name_len = strlen(symname); 9617 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9618 return -ENAMETOOLONG; 9619 9620 /* 9621 * 2 items for inode item and ref 9622 * 2 items for dir items 9623 * 1 item for updating parent inode item 9624 * 1 item for the inline extent item 9625 * 1 item for xattr if selinux is on 9626 */ 9627 trans = btrfs_start_transaction(root, 7); 9628 if (IS_ERR(trans)) 9629 return PTR_ERR(trans); 9630 9631 err = btrfs_find_free_objectid(root, &objectid); 9632 if (err) 9633 goto out_unlock; 9634 9635 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9636 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9637 objectid, S_IFLNK|S_IRWXUGO, &index); 9638 if (IS_ERR(inode)) { 9639 err = PTR_ERR(inode); 9640 inode = NULL; 9641 goto out_unlock; 9642 } 9643 9644 /* 9645 * If the active LSM wants to access the inode during 9646 * d_instantiate it needs these. Smack checks to see 9647 * if the filesystem supports xattrs by looking at the 9648 * ops vector. 9649 */ 9650 inode->i_fop = &btrfs_file_operations; 9651 inode->i_op = &btrfs_file_inode_operations; 9652 inode->i_mapping->a_ops = &btrfs_aops; 9653 9654 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9655 if (err) 9656 goto out_unlock; 9657 9658 path = btrfs_alloc_path(); 9659 if (!path) { 9660 err = -ENOMEM; 9661 goto out_unlock; 9662 } 9663 key.objectid = btrfs_ino(BTRFS_I(inode)); 9664 key.offset = 0; 9665 key.type = BTRFS_EXTENT_DATA_KEY; 9666 datasize = btrfs_file_extent_calc_inline_size(name_len); 9667 err = btrfs_insert_empty_item(trans, root, path, &key, 9668 datasize); 9669 if (err) { 9670 btrfs_free_path(path); 9671 goto out_unlock; 9672 } 9673 leaf = path->nodes[0]; 9674 ei = btrfs_item_ptr(leaf, path->slots[0], 9675 struct btrfs_file_extent_item); 9676 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9677 btrfs_set_file_extent_type(leaf, ei, 9678 BTRFS_FILE_EXTENT_INLINE); 9679 btrfs_set_file_extent_encryption(leaf, ei, 0); 9680 btrfs_set_file_extent_compression(leaf, ei, 0); 9681 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9682 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9683 9684 ptr = btrfs_file_extent_inline_start(ei); 9685 write_extent_buffer(leaf, symname, ptr, name_len); 9686 btrfs_mark_buffer_dirty(leaf); 9687 btrfs_free_path(path); 9688 9689 inode->i_op = &btrfs_symlink_inode_operations; 9690 inode_nohighmem(inode); 9691 inode_set_bytes(inode, name_len); 9692 btrfs_i_size_write(BTRFS_I(inode), name_len); 9693 err = btrfs_update_inode(trans, root, inode); 9694 /* 9695 * Last step, add directory indexes for our symlink inode. This is the 9696 * last step to avoid extra cleanup of these indexes if an error happens 9697 * elsewhere above. 9698 */ 9699 if (!err) 9700 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9701 BTRFS_I(inode), 0, index); 9702 if (err) 9703 goto out_unlock; 9704 9705 d_instantiate_new(dentry, inode); 9706 9707out_unlock: 9708 btrfs_end_transaction(trans); 9709 if (err && inode) { 9710 inode_dec_link_count(inode); 9711 discard_new_inode(inode); 9712 } 9713 btrfs_btree_balance_dirty(fs_info); 9714 return err; 9715} 9716 9717static struct btrfs_trans_handle *insert_prealloc_file_extent( 9718 struct btrfs_trans_handle *trans_in, 9719 struct inode *inode, struct btrfs_key *ins, 9720 u64 file_offset) 9721{ 9722 struct btrfs_file_extent_item stack_fi; 9723 struct btrfs_replace_extent_info extent_info; 9724 struct btrfs_trans_handle *trans = trans_in; 9725 struct btrfs_path *path; 9726 u64 start = ins->objectid; 9727 u64 len = ins->offset; 9728 int ret; 9729 9730 memset(&stack_fi, 0, sizeof(stack_fi)); 9731 9732 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9733 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9734 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9735 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9736 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9737 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9738 /* Encryption and other encoding is reserved and all 0 */ 9739 9740 ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len); 9741 if (ret < 0) 9742 return ERR_PTR(ret); 9743 9744 if (trans) { 9745 ret = insert_reserved_file_extent(trans, BTRFS_I(inode), 9746 file_offset, &stack_fi, ret); 9747 if (ret) 9748 return ERR_PTR(ret); 9749 return trans; 9750 } 9751 9752 extent_info.disk_offset = start; 9753 extent_info.disk_len = len; 9754 extent_info.data_offset = 0; 9755 extent_info.data_len = len; 9756 extent_info.file_offset = file_offset; 9757 extent_info.extent_buf = (char *)&stack_fi; 9758 extent_info.is_new_extent = true; 9759 extent_info.qgroup_reserved = ret; 9760 extent_info.insertions = 0; 9761 9762 path = btrfs_alloc_path(); 9763 if (!path) 9764 return ERR_PTR(-ENOMEM); 9765 9766 ret = btrfs_replace_file_extents(inode, path, file_offset, 9767 file_offset + len - 1, &extent_info, 9768 &trans); 9769 btrfs_free_path(path); 9770 if (ret) 9771 return ERR_PTR(ret); 9772 9773 return trans; 9774} 9775 9776static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9777 u64 start, u64 num_bytes, u64 min_size, 9778 loff_t actual_len, u64 *alloc_hint, 9779 struct btrfs_trans_handle *trans) 9780{ 9781 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9782 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9783 struct extent_map *em; 9784 struct btrfs_root *root = BTRFS_I(inode)->root; 9785 struct btrfs_key ins; 9786 u64 cur_offset = start; 9787 u64 clear_offset = start; 9788 u64 i_size; 9789 u64 cur_bytes; 9790 u64 last_alloc = (u64)-1; 9791 int ret = 0; 9792 bool own_trans = true; 9793 u64 end = start + num_bytes - 1; 9794 9795 if (trans) 9796 own_trans = false; 9797 while (num_bytes > 0) { 9798 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9799 cur_bytes = max(cur_bytes, min_size); 9800 /* 9801 * If we are severely fragmented we could end up with really 9802 * small allocations, so if the allocator is returning small 9803 * chunks lets make its job easier by only searching for those 9804 * sized chunks. 9805 */ 9806 cur_bytes = min(cur_bytes, last_alloc); 9807 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9808 min_size, 0, *alloc_hint, &ins, 1, 0); 9809 if (ret) 9810 break; 9811 9812 /* 9813 * We've reserved this space, and thus converted it from 9814 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9815 * from here on out we will only need to clear our reservation 9816 * for the remaining unreserved area, so advance our 9817 * clear_offset by our extent size. 9818 */ 9819 clear_offset += ins.offset; 9820 9821 last_alloc = ins.offset; 9822 trans = insert_prealloc_file_extent(trans, inode, &ins, cur_offset); 9823 /* 9824 * Now that we inserted the prealloc extent we can finally 9825 * decrement the number of reservations in the block group. 9826 * If we did it before, we could race with relocation and have 9827 * relocation miss the reserved extent, making it fail later. 9828 */ 9829 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9830 if (IS_ERR(trans)) { 9831 ret = PTR_ERR(trans); 9832 btrfs_free_reserved_extent(fs_info, ins.objectid, 9833 ins.offset, 0); 9834 break; 9835 } 9836 9837 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9838 cur_offset + ins.offset -1, 0); 9839 9840 em = alloc_extent_map(); 9841 if (!em) { 9842 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9843 &BTRFS_I(inode)->runtime_flags); 9844 goto next; 9845 } 9846 9847 em->start = cur_offset; 9848 em->orig_start = cur_offset; 9849 em->len = ins.offset; 9850 em->block_start = ins.objectid; 9851 em->block_len = ins.offset; 9852 em->orig_block_len = ins.offset; 9853 em->ram_bytes = ins.offset; 9854 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9855 em->generation = trans->transid; 9856 9857 while (1) { 9858 write_lock(&em_tree->lock); 9859 ret = add_extent_mapping(em_tree, em, 1); 9860 write_unlock(&em_tree->lock); 9861 if (ret != -EEXIST) 9862 break; 9863 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9864 cur_offset + ins.offset - 1, 9865 0); 9866 } 9867 free_extent_map(em); 9868next: 9869 num_bytes -= ins.offset; 9870 cur_offset += ins.offset; 9871 *alloc_hint = ins.objectid + ins.offset; 9872 9873 inode_inc_iversion(inode); 9874 inode->i_ctime = current_time(inode); 9875 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9876 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9877 (actual_len > inode->i_size) && 9878 (cur_offset > inode->i_size)) { 9879 if (cur_offset > actual_len) 9880 i_size = actual_len; 9881 else 9882 i_size = cur_offset; 9883 i_size_write(inode, i_size); 9884 btrfs_inode_safe_disk_i_size_write(inode, 0); 9885 } 9886 9887 ret = btrfs_update_inode(trans, root, inode); 9888 9889 if (ret) { 9890 btrfs_abort_transaction(trans, ret); 9891 if (own_trans) 9892 btrfs_end_transaction(trans); 9893 break; 9894 } 9895 9896 if (own_trans) { 9897 btrfs_end_transaction(trans); 9898 trans = NULL; 9899 } 9900 } 9901 if (clear_offset < end) 9902 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9903 end - clear_offset + 1); 9904 return ret; 9905} 9906 9907int btrfs_prealloc_file_range(struct inode *inode, int mode, 9908 u64 start, u64 num_bytes, u64 min_size, 9909 loff_t actual_len, u64 *alloc_hint) 9910{ 9911 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9912 min_size, actual_len, alloc_hint, 9913 NULL); 9914} 9915 9916int btrfs_prealloc_file_range_trans(struct inode *inode, 9917 struct btrfs_trans_handle *trans, int mode, 9918 u64 start, u64 num_bytes, u64 min_size, 9919 loff_t actual_len, u64 *alloc_hint) 9920{ 9921 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9922 min_size, actual_len, alloc_hint, trans); 9923} 9924 9925static int btrfs_set_page_dirty(struct page *page) 9926{ 9927 return __set_page_dirty_nobuffers(page); 9928} 9929 9930static int btrfs_permission(struct inode *inode, int mask) 9931{ 9932 struct btrfs_root *root = BTRFS_I(inode)->root; 9933 umode_t mode = inode->i_mode; 9934 9935 if (mask & MAY_WRITE && 9936 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9937 if (btrfs_root_readonly(root)) 9938 return -EROFS; 9939 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9940 return -EACCES; 9941 } 9942 return generic_permission(inode, mask); 9943} 9944 9945static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9946{ 9947 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9948 struct btrfs_trans_handle *trans; 9949 struct btrfs_root *root = BTRFS_I(dir)->root; 9950 struct inode *inode = NULL; 9951 u64 objectid; 9952 u64 index; 9953 int ret = 0; 9954 9955 /* 9956 * 5 units required for adding orphan entry 9957 */ 9958 trans = btrfs_start_transaction(root, 5); 9959 if (IS_ERR(trans)) 9960 return PTR_ERR(trans); 9961 9962 ret = btrfs_find_free_objectid(root, &objectid); 9963 if (ret) 9964 goto out; 9965 9966 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 9967 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 9968 if (IS_ERR(inode)) { 9969 ret = PTR_ERR(inode); 9970 inode = NULL; 9971 goto out; 9972 } 9973 9974 inode->i_fop = &btrfs_file_operations; 9975 inode->i_op = &btrfs_file_inode_operations; 9976 9977 inode->i_mapping->a_ops = &btrfs_aops; 9978 9979 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 9980 if (ret) 9981 goto out; 9982 9983 ret = btrfs_update_inode(trans, root, inode); 9984 if (ret) 9985 goto out; 9986 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 9987 if (ret) 9988 goto out; 9989 9990 /* 9991 * We set number of links to 0 in btrfs_new_inode(), and here we set 9992 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 9993 * through: 9994 * 9995 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9996 */ 9997 set_nlink(inode, 1); 9998 d_tmpfile(dentry, inode); 9999 unlock_new_inode(inode); 10000 mark_inode_dirty(inode); 10001out: 10002 btrfs_end_transaction(trans); 10003 if (ret && inode) 10004 discard_new_inode(inode); 10005 btrfs_btree_balance_dirty(fs_info); 10006 return ret; 10007} 10008 10009void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10010{ 10011 struct inode *inode = tree->private_data; 10012 unsigned long index = start >> PAGE_SHIFT; 10013 unsigned long end_index = end >> PAGE_SHIFT; 10014 struct page *page; 10015 10016 while (index <= end_index) { 10017 page = find_get_page(inode->i_mapping, index); 10018 ASSERT(page); /* Pages should be in the extent_io_tree */ 10019 set_page_writeback(page); 10020 put_page(page); 10021 index++; 10022 } 10023} 10024 10025#ifdef CONFIG_SWAP 10026/* 10027 * Add an entry indicating a block group or device which is pinned by a 10028 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10029 * negative errno on failure. 10030 */ 10031static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10032 bool is_block_group) 10033{ 10034 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10035 struct btrfs_swapfile_pin *sp, *entry; 10036 struct rb_node **p; 10037 struct rb_node *parent = NULL; 10038 10039 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10040 if (!sp) 10041 return -ENOMEM; 10042 sp->ptr = ptr; 10043 sp->inode = inode; 10044 sp->is_block_group = is_block_group; 10045 sp->bg_extent_count = 1; 10046 10047 spin_lock(&fs_info->swapfile_pins_lock); 10048 p = &fs_info->swapfile_pins.rb_node; 10049 while (*p) { 10050 parent = *p; 10051 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10052 if (sp->ptr < entry->ptr || 10053 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10054 p = &(*p)->rb_left; 10055 } else if (sp->ptr > entry->ptr || 10056 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10057 p = &(*p)->rb_right; 10058 } else { 10059 if (is_block_group) 10060 entry->bg_extent_count++; 10061 spin_unlock(&fs_info->swapfile_pins_lock); 10062 kfree(sp); 10063 return 1; 10064 } 10065 } 10066 rb_link_node(&sp->node, parent, p); 10067 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10068 spin_unlock(&fs_info->swapfile_pins_lock); 10069 return 0; 10070} 10071 10072/* Free all of the entries pinned by this swapfile. */ 10073static void btrfs_free_swapfile_pins(struct inode *inode) 10074{ 10075 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10076 struct btrfs_swapfile_pin *sp; 10077 struct rb_node *node, *next; 10078 10079 spin_lock(&fs_info->swapfile_pins_lock); 10080 node = rb_first(&fs_info->swapfile_pins); 10081 while (node) { 10082 next = rb_next(node); 10083 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10084 if (sp->inode == inode) { 10085 rb_erase(&sp->node, &fs_info->swapfile_pins); 10086 if (sp->is_block_group) { 10087 btrfs_dec_block_group_swap_extents(sp->ptr, 10088 sp->bg_extent_count); 10089 btrfs_put_block_group(sp->ptr); 10090 } 10091 kfree(sp); 10092 } 10093 node = next; 10094 } 10095 spin_unlock(&fs_info->swapfile_pins_lock); 10096} 10097 10098struct btrfs_swap_info { 10099 u64 start; 10100 u64 block_start; 10101 u64 block_len; 10102 u64 lowest_ppage; 10103 u64 highest_ppage; 10104 unsigned long nr_pages; 10105 int nr_extents; 10106}; 10107 10108static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10109 struct btrfs_swap_info *bsi) 10110{ 10111 unsigned long nr_pages; 10112 unsigned long max_pages; 10113 u64 first_ppage, first_ppage_reported, next_ppage; 10114 int ret; 10115 10116 /* 10117 * Our swapfile may have had its size extended after the swap header was 10118 * written. In that case activating the swapfile should not go beyond 10119 * the max size set in the swap header. 10120 */ 10121 if (bsi->nr_pages >= sis->max) 10122 return 0; 10123 10124 max_pages = sis->max - bsi->nr_pages; 10125 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10126 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10127 PAGE_SIZE) >> PAGE_SHIFT; 10128 10129 if (first_ppage >= next_ppage) 10130 return 0; 10131 nr_pages = next_ppage - first_ppage; 10132 nr_pages = min(nr_pages, max_pages); 10133 10134 first_ppage_reported = first_ppage; 10135 if (bsi->start == 0) 10136 first_ppage_reported++; 10137 if (bsi->lowest_ppage > first_ppage_reported) 10138 bsi->lowest_ppage = first_ppage_reported; 10139 if (bsi->highest_ppage < (next_ppage - 1)) 10140 bsi->highest_ppage = next_ppage - 1; 10141 10142 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10143 if (ret < 0) 10144 return ret; 10145 bsi->nr_extents += ret; 10146 bsi->nr_pages += nr_pages; 10147 return 0; 10148} 10149 10150static void btrfs_swap_deactivate(struct file *file) 10151{ 10152 struct inode *inode = file_inode(file); 10153 10154 btrfs_free_swapfile_pins(inode); 10155 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10156} 10157 10158static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10159 sector_t *span) 10160{ 10161 struct inode *inode = file_inode(file); 10162 struct btrfs_root *root = BTRFS_I(inode)->root; 10163 struct btrfs_fs_info *fs_info = root->fs_info; 10164 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10165 struct extent_state *cached_state = NULL; 10166 struct extent_map *em = NULL; 10167 struct btrfs_device *device = NULL; 10168 struct btrfs_swap_info bsi = { 10169 .lowest_ppage = (sector_t)-1ULL, 10170 }; 10171 int ret = 0; 10172 u64 isize; 10173 u64 start; 10174 10175 /* 10176 * If the swap file was just created, make sure delalloc is done. If the 10177 * file changes again after this, the user is doing something stupid and 10178 * we don't really care. 10179 */ 10180 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10181 if (ret) 10182 return ret; 10183 10184 /* 10185 * The inode is locked, so these flags won't change after we check them. 10186 */ 10187 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10188 btrfs_warn(fs_info, "swapfile must not be compressed"); 10189 return -EINVAL; 10190 } 10191 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10192 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10193 return -EINVAL; 10194 } 10195 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10196 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10197 return -EINVAL; 10198 } 10199 10200 /* 10201 * Balance or device remove/replace/resize can move stuff around from 10202 * under us. The exclop protection makes sure they aren't running/won't 10203 * run concurrently while we are mapping the swap extents, and 10204 * fs_info->swapfile_pins prevents them from running while the swap 10205 * file is active and moving the extents. Note that this also prevents 10206 * a concurrent device add which isn't actually necessary, but it's not 10207 * really worth the trouble to allow it. 10208 */ 10209 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10210 btrfs_warn(fs_info, 10211 "cannot activate swapfile while exclusive operation is running"); 10212 return -EBUSY; 10213 } 10214 10215 /* 10216 * Prevent snapshot creation while we are activating the swap file. 10217 * We do not want to race with snapshot creation. If snapshot creation 10218 * already started before we bumped nr_swapfiles from 0 to 1 and 10219 * completes before the first write into the swap file after it is 10220 * activated, than that write would fallback to COW. 10221 */ 10222 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10223 btrfs_exclop_finish(fs_info); 10224 btrfs_warn(fs_info, 10225 "cannot activate swapfile because snapshot creation is in progress"); 10226 return -EINVAL; 10227 } 10228 /* 10229 * Snapshots can create extents which require COW even if NODATACOW is 10230 * set. We use this counter to prevent snapshots. We must increment it 10231 * before walking the extents because we don't want a concurrent 10232 * snapshot to run after we've already checked the extents. 10233 * 10234 * It is possible that subvolume is marked for deletion but still not 10235 * removed yet. To prevent this race, we check the root status before 10236 * activating the swapfile. 10237 */ 10238 spin_lock(&root->root_item_lock); 10239 if (btrfs_root_dead(root)) { 10240 spin_unlock(&root->root_item_lock); 10241 10242 btrfs_exclop_finish(fs_info); 10243 btrfs_warn(fs_info, 10244 "cannot activate swapfile because subvolume %llu is being deleted", 10245 root->root_key.objectid); 10246 return -EPERM; 10247 } 10248 atomic_inc(&root->nr_swapfiles); 10249 spin_unlock(&root->root_item_lock); 10250 10251 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10252 10253 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10254 start = 0; 10255 while (start < isize) { 10256 u64 logical_block_start, physical_block_start; 10257 struct btrfs_block_group *bg; 10258 u64 len = isize - start; 10259 10260 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10261 if (IS_ERR(em)) { 10262 ret = PTR_ERR(em); 10263 goto out; 10264 } 10265 10266 if (em->block_start == EXTENT_MAP_HOLE) { 10267 btrfs_warn(fs_info, "swapfile must not have holes"); 10268 ret = -EINVAL; 10269 goto out; 10270 } 10271 if (em->block_start == EXTENT_MAP_INLINE) { 10272 /* 10273 * It's unlikely we'll ever actually find ourselves 10274 * here, as a file small enough to fit inline won't be 10275 * big enough to store more than the swap header, but in 10276 * case something changes in the future, let's catch it 10277 * here rather than later. 10278 */ 10279 btrfs_warn(fs_info, "swapfile must not be inline"); 10280 ret = -EINVAL; 10281 goto out; 10282 } 10283 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10284 btrfs_warn(fs_info, "swapfile must not be compressed"); 10285 ret = -EINVAL; 10286 goto out; 10287 } 10288 10289 logical_block_start = em->block_start + (start - em->start); 10290 len = min(len, em->len - (start - em->start)); 10291 free_extent_map(em); 10292 em = NULL; 10293 10294 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); 10295 if (ret < 0) { 10296 goto out; 10297 } else if (ret) { 10298 ret = 0; 10299 } else { 10300 btrfs_warn(fs_info, 10301 "swapfile must not be copy-on-write"); 10302 ret = -EINVAL; 10303 goto out; 10304 } 10305 10306 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10307 if (IS_ERR(em)) { 10308 ret = PTR_ERR(em); 10309 goto out; 10310 } 10311 10312 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10313 btrfs_warn(fs_info, 10314 "swapfile must have single data profile"); 10315 ret = -EINVAL; 10316 goto out; 10317 } 10318 10319 if (device == NULL) { 10320 device = em->map_lookup->stripes[0].dev; 10321 ret = btrfs_add_swapfile_pin(inode, device, false); 10322 if (ret == 1) 10323 ret = 0; 10324 else if (ret) 10325 goto out; 10326 } else if (device != em->map_lookup->stripes[0].dev) { 10327 btrfs_warn(fs_info, "swapfile must be on one device"); 10328 ret = -EINVAL; 10329 goto out; 10330 } 10331 10332 physical_block_start = (em->map_lookup->stripes[0].physical + 10333 (logical_block_start - em->start)); 10334 len = min(len, em->len - (logical_block_start - em->start)); 10335 free_extent_map(em); 10336 em = NULL; 10337 10338 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10339 if (!bg) { 10340 btrfs_warn(fs_info, 10341 "could not find block group containing swapfile"); 10342 ret = -EINVAL; 10343 goto out; 10344 } 10345 10346 if (!btrfs_inc_block_group_swap_extents(bg)) { 10347 btrfs_warn(fs_info, 10348 "block group for swapfile at %llu is read-only%s", 10349 bg->start, 10350 atomic_read(&fs_info->scrubs_running) ? 10351 " (scrub running)" : ""); 10352 btrfs_put_block_group(bg); 10353 ret = -EINVAL; 10354 goto out; 10355 } 10356 10357 ret = btrfs_add_swapfile_pin(inode, bg, true); 10358 if (ret) { 10359 btrfs_put_block_group(bg); 10360 if (ret == 1) 10361 ret = 0; 10362 else 10363 goto out; 10364 } 10365 10366 if (bsi.block_len && 10367 bsi.block_start + bsi.block_len == physical_block_start) { 10368 bsi.block_len += len; 10369 } else { 10370 if (bsi.block_len) { 10371 ret = btrfs_add_swap_extent(sis, &bsi); 10372 if (ret) 10373 goto out; 10374 } 10375 bsi.start = start; 10376 bsi.block_start = physical_block_start; 10377 bsi.block_len = len; 10378 } 10379 10380 start += len; 10381 } 10382 10383 if (bsi.block_len) 10384 ret = btrfs_add_swap_extent(sis, &bsi); 10385 10386out: 10387 if (!IS_ERR_OR_NULL(em)) 10388 free_extent_map(em); 10389 10390 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10391 10392 if (ret) 10393 btrfs_swap_deactivate(file); 10394 10395 btrfs_drew_write_unlock(&root->snapshot_lock); 10396 10397 btrfs_exclop_finish(fs_info); 10398 10399 if (ret) 10400 return ret; 10401 10402 if (device) 10403 sis->bdev = device->bdev; 10404 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10405 sis->max = bsi.nr_pages; 10406 sis->pages = bsi.nr_pages - 1; 10407 sis->highest_bit = bsi.nr_pages - 1; 10408 return bsi.nr_extents; 10409} 10410#else 10411static void btrfs_swap_deactivate(struct file *file) 10412{ 10413} 10414 10415static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10416 sector_t *span) 10417{ 10418 return -EOPNOTSUPP; 10419} 10420#endif 10421 10422static const struct inode_operations btrfs_dir_inode_operations = { 10423 .getattr = btrfs_getattr, 10424 .lookup = btrfs_lookup, 10425 .create = btrfs_create, 10426 .unlink = btrfs_unlink, 10427 .link = btrfs_link, 10428 .mkdir = btrfs_mkdir, 10429 .rmdir = btrfs_rmdir, 10430 .rename = btrfs_rename2, 10431 .symlink = btrfs_symlink, 10432 .setattr = btrfs_setattr, 10433 .mknod = btrfs_mknod, 10434 .listxattr = btrfs_listxattr, 10435 .permission = btrfs_permission, 10436 .get_acl = btrfs_get_acl, 10437 .set_acl = btrfs_set_acl, 10438 .update_time = btrfs_update_time, 10439 .tmpfile = btrfs_tmpfile, 10440}; 10441 10442static const struct file_operations btrfs_dir_file_operations = { 10443 .llseek = generic_file_llseek, 10444 .read = generic_read_dir, 10445 .iterate_shared = btrfs_real_readdir, 10446 .open = btrfs_opendir, 10447 .unlocked_ioctl = btrfs_ioctl, 10448#ifdef CONFIG_COMPAT 10449 .compat_ioctl = btrfs_compat_ioctl, 10450#endif 10451 .release = btrfs_release_file, 10452 .fsync = btrfs_sync_file, 10453}; 10454 10455/* 10456 * btrfs doesn't support the bmap operation because swapfiles 10457 * use bmap to make a mapping of extents in the file. They assume 10458 * these extents won't change over the life of the file and they 10459 * use the bmap result to do IO directly to the drive. 10460 * 10461 * the btrfs bmap call would return logical addresses that aren't 10462 * suitable for IO and they also will change frequently as COW 10463 * operations happen. So, swapfile + btrfs == corruption. 10464 * 10465 * For now we're avoiding this by dropping bmap. 10466 */ 10467static const struct address_space_operations btrfs_aops = { 10468 .readpage = btrfs_readpage, 10469 .writepage = btrfs_writepage, 10470 .writepages = btrfs_writepages, 10471 .readahead = btrfs_readahead, 10472 .direct_IO = noop_direct_IO, 10473 .invalidatepage = btrfs_invalidatepage, 10474 .releasepage = btrfs_releasepage, 10475#ifdef CONFIG_MIGRATION 10476 .migratepage = btrfs_migratepage, 10477#endif 10478 .set_page_dirty = btrfs_set_page_dirty, 10479 .error_remove_page = generic_error_remove_page, 10480 .swap_activate = btrfs_swap_activate, 10481 .swap_deactivate = btrfs_swap_deactivate, 10482}; 10483 10484static const struct inode_operations btrfs_file_inode_operations = { 10485 .getattr = btrfs_getattr, 10486 .setattr = btrfs_setattr, 10487 .listxattr = btrfs_listxattr, 10488 .permission = btrfs_permission, 10489 .fiemap = btrfs_fiemap, 10490 .get_acl = btrfs_get_acl, 10491 .set_acl = btrfs_set_acl, 10492 .update_time = btrfs_update_time, 10493}; 10494static const struct inode_operations btrfs_special_inode_operations = { 10495 .getattr = btrfs_getattr, 10496 .setattr = btrfs_setattr, 10497 .permission = btrfs_permission, 10498 .listxattr = btrfs_listxattr, 10499 .get_acl = btrfs_get_acl, 10500 .set_acl = btrfs_set_acl, 10501 .update_time = btrfs_update_time, 10502}; 10503static const struct inode_operations btrfs_symlink_inode_operations = { 10504 .get_link = page_get_link, 10505 .getattr = btrfs_getattr, 10506 .setattr = btrfs_setattr, 10507 .permission = btrfs_permission, 10508 .listxattr = btrfs_listxattr, 10509 .update_time = btrfs_update_time, 10510}; 10511 10512const struct dentry_operations btrfs_dentry_operations = { 10513 .d_delete = btrfs_dentry_delete, 10514}; 10515