xref: /kernel/linux/linux-5.10/fs/btrfs/inode-map.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/kthread.h>
7#include <linux/pagemap.h>
8
9#include "ctree.h"
10#include "disk-io.h"
11#include "free-space-cache.h"
12#include "inode-map.h"
13#include "transaction.h"
14#include "delalloc-space.h"
15
16static void fail_caching_thread(struct btrfs_root *root)
17{
18	struct btrfs_fs_info *fs_info = root->fs_info;
19
20	btrfs_warn(fs_info, "failed to start inode caching task");
21	btrfs_clear_pending_and_info(fs_info, INODE_MAP_CACHE,
22				     "disabling inode map caching");
23	spin_lock(&root->ino_cache_lock);
24	root->ino_cache_state = BTRFS_CACHE_ERROR;
25	spin_unlock(&root->ino_cache_lock);
26	wake_up(&root->ino_cache_wait);
27}
28
29static int caching_kthread(void *data)
30{
31	struct btrfs_root *root = data;
32	struct btrfs_fs_info *fs_info = root->fs_info;
33	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
34	struct btrfs_key key;
35	struct btrfs_path *path;
36	struct extent_buffer *leaf;
37	u64 last = (u64)-1;
38	int slot;
39	int ret;
40
41	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
42		return 0;
43
44	path = btrfs_alloc_path();
45	if (!path) {
46		fail_caching_thread(root);
47		return -ENOMEM;
48	}
49
50	/* Since the commit root is read-only, we can safely skip locking. */
51	path->skip_locking = 1;
52	path->search_commit_root = 1;
53	path->reada = READA_FORWARD;
54
55	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
56	key.offset = 0;
57	key.type = BTRFS_INODE_ITEM_KEY;
58again:
59	/* need to make sure the commit_root doesn't disappear */
60	down_read(&fs_info->commit_root_sem);
61
62	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
63	if (ret < 0)
64		goto out;
65
66	while (1) {
67		if (btrfs_fs_closing(fs_info))
68			goto out;
69
70		leaf = path->nodes[0];
71		slot = path->slots[0];
72		if (slot >= btrfs_header_nritems(leaf)) {
73			ret = btrfs_next_leaf(root, path);
74			if (ret < 0)
75				goto out;
76			else if (ret > 0)
77				break;
78
79			if (need_resched() ||
80			    btrfs_transaction_in_commit(fs_info)) {
81				leaf = path->nodes[0];
82
83				if (WARN_ON(btrfs_header_nritems(leaf) == 0))
84					break;
85
86				/*
87				 * Save the key so we can advances forward
88				 * in the next search.
89				 */
90				btrfs_item_key_to_cpu(leaf, &key, 0);
91				btrfs_release_path(path);
92				root->ino_cache_progress = last;
93				up_read(&fs_info->commit_root_sem);
94				schedule_timeout(1);
95				goto again;
96			} else
97				continue;
98		}
99
100		btrfs_item_key_to_cpu(leaf, &key, slot);
101
102		if (key.type != BTRFS_INODE_ITEM_KEY)
103			goto next;
104
105		if (key.objectid >= root->highest_objectid)
106			break;
107
108		if (last != (u64)-1 && last + 1 != key.objectid) {
109			__btrfs_add_free_space(fs_info, ctl, last + 1,
110					       key.objectid - last - 1, 0);
111			wake_up(&root->ino_cache_wait);
112		}
113
114		last = key.objectid;
115next:
116		path->slots[0]++;
117	}
118
119	if (last < root->highest_objectid - 1) {
120		__btrfs_add_free_space(fs_info, ctl, last + 1,
121				       root->highest_objectid - last - 1, 0);
122	}
123
124	spin_lock(&root->ino_cache_lock);
125	root->ino_cache_state = BTRFS_CACHE_FINISHED;
126	spin_unlock(&root->ino_cache_lock);
127
128	root->ino_cache_progress = (u64)-1;
129	btrfs_unpin_free_ino(root);
130out:
131	wake_up(&root->ino_cache_wait);
132	up_read(&fs_info->commit_root_sem);
133
134	btrfs_free_path(path);
135
136	return ret;
137}
138
139static void start_caching(struct btrfs_root *root)
140{
141	struct btrfs_fs_info *fs_info = root->fs_info;
142	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
143	struct task_struct *tsk;
144	int ret;
145	u64 objectid;
146
147	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
148		return;
149
150	spin_lock(&root->ino_cache_lock);
151	if (root->ino_cache_state != BTRFS_CACHE_NO) {
152		spin_unlock(&root->ino_cache_lock);
153		return;
154	}
155
156	root->ino_cache_state = BTRFS_CACHE_STARTED;
157	spin_unlock(&root->ino_cache_lock);
158
159	ret = load_free_ino_cache(fs_info, root);
160	if (ret == 1) {
161		spin_lock(&root->ino_cache_lock);
162		root->ino_cache_state = BTRFS_CACHE_FINISHED;
163		spin_unlock(&root->ino_cache_lock);
164		wake_up(&root->ino_cache_wait);
165		return;
166	}
167
168	/*
169	 * It can be quite time-consuming to fill the cache by searching
170	 * through the extent tree, and this can keep ino allocation path
171	 * waiting. Therefore at start we quickly find out the highest
172	 * inode number and we know we can use inode numbers which fall in
173	 * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
174	 */
175	ret = btrfs_find_free_objectid(root, &objectid);
176	if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
177		__btrfs_add_free_space(fs_info, ctl, objectid,
178				       BTRFS_LAST_FREE_OBJECTID - objectid + 1,
179				       0);
180		wake_up(&root->ino_cache_wait);
181	}
182
183	tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
184			  root->root_key.objectid);
185	if (IS_ERR(tsk))
186		fail_caching_thread(root);
187}
188
189int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
190{
191	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
192		return btrfs_find_free_objectid(root, objectid);
193
194again:
195	*objectid = btrfs_find_ino_for_alloc(root);
196
197	if (*objectid != 0)
198		return 0;
199
200	start_caching(root);
201
202	wait_event(root->ino_cache_wait,
203		   root->ino_cache_state == BTRFS_CACHE_FINISHED ||
204		   root->ino_cache_state == BTRFS_CACHE_ERROR ||
205		   root->free_ino_ctl->free_space > 0);
206
207	if (root->ino_cache_state == BTRFS_CACHE_FINISHED &&
208	    root->free_ino_ctl->free_space == 0)
209		return -ENOSPC;
210	else if (root->ino_cache_state == BTRFS_CACHE_ERROR)
211		return btrfs_find_free_objectid(root, objectid);
212	else
213		goto again;
214}
215
216void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
217{
218	struct btrfs_fs_info *fs_info = root->fs_info;
219	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
220
221	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
222		return;
223again:
224	if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
225		__btrfs_add_free_space(fs_info, pinned, objectid, 1, 0);
226	} else {
227		down_write(&fs_info->commit_root_sem);
228		spin_lock(&root->ino_cache_lock);
229		if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
230			spin_unlock(&root->ino_cache_lock);
231			up_write(&fs_info->commit_root_sem);
232			goto again;
233		}
234		spin_unlock(&root->ino_cache_lock);
235
236		start_caching(root);
237
238		__btrfs_add_free_space(fs_info, pinned, objectid, 1, 0);
239
240		up_write(&fs_info->commit_root_sem);
241	}
242}
243
244/*
245 * When a transaction is committed, we'll move those inode numbers which are
246 * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
247 * others will just be dropped, because the commit root we were searching has
248 * changed.
249 *
250 * Must be called with root->fs_info->commit_root_sem held
251 */
252void btrfs_unpin_free_ino(struct btrfs_root *root)
253{
254	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
255	struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
256	spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock;
257	struct btrfs_free_space *info;
258	struct rb_node *n;
259	u64 count;
260
261	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
262		return;
263
264	while (1) {
265		spin_lock(rbroot_lock);
266		n = rb_first(rbroot);
267		if (!n) {
268			spin_unlock(rbroot_lock);
269			break;
270		}
271
272		info = rb_entry(n, struct btrfs_free_space, offset_index);
273		BUG_ON(info->bitmap); /* Logic error */
274
275		if (info->offset > root->ino_cache_progress)
276			count = 0;
277		else
278			count = min(root->ino_cache_progress - info->offset + 1,
279				    info->bytes);
280
281		rb_erase(&info->offset_index, rbroot);
282		spin_unlock(rbroot_lock);
283		if (count)
284			__btrfs_add_free_space(root->fs_info, ctl,
285					       info->offset, count, 0);
286		kmem_cache_free(btrfs_free_space_cachep, info);
287	}
288}
289
290#define INIT_THRESHOLD	((SZ_32K / 2) / sizeof(struct btrfs_free_space))
291#define INODES_PER_BITMAP (PAGE_SIZE * 8)
292
293/*
294 * The goal is to keep the memory used by the free_ino tree won't
295 * exceed the memory if we use bitmaps only.
296 */
297static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
298{
299	struct btrfs_free_space *info;
300	struct rb_node *n;
301	int max_ino;
302	int max_bitmaps;
303
304	n = rb_last(&ctl->free_space_offset);
305	if (!n) {
306		ctl->extents_thresh = INIT_THRESHOLD;
307		return;
308	}
309	info = rb_entry(n, struct btrfs_free_space, offset_index);
310
311	/*
312	 * Find the maximum inode number in the filesystem. Note we
313	 * ignore the fact that this can be a bitmap, because we are
314	 * not doing precise calculation.
315	 */
316	max_ino = info->bytes - 1;
317
318	max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
319	if (max_bitmaps <= ctl->total_bitmaps) {
320		ctl->extents_thresh = 0;
321		return;
322	}
323
324	ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
325				PAGE_SIZE / sizeof(*info);
326}
327
328/*
329 * We don't fall back to bitmap, if we are below the extents threshold
330 * or this chunk of inode numbers is a big one.
331 */
332static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
333		       struct btrfs_free_space *info)
334{
335	if (ctl->free_extents < ctl->extents_thresh ||
336	    info->bytes > INODES_PER_BITMAP / 10)
337		return false;
338
339	return true;
340}
341
342static const struct btrfs_free_space_op free_ino_op = {
343	.recalc_thresholds	= recalculate_thresholds,
344	.use_bitmap		= use_bitmap,
345};
346
347static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
348{
349}
350
351static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
352			      struct btrfs_free_space *info)
353{
354	/*
355	 * We always use extents for two reasons:
356	 *
357	 * - The pinned tree is only used during the process of caching
358	 *   work.
359	 * - Make code simpler. See btrfs_unpin_free_ino().
360	 */
361	return false;
362}
363
364static const struct btrfs_free_space_op pinned_free_ino_op = {
365	.recalc_thresholds	= pinned_recalc_thresholds,
366	.use_bitmap		= pinned_use_bitmap,
367};
368
369void btrfs_init_free_ino_ctl(struct btrfs_root *root)
370{
371	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
372	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
373
374	spin_lock_init(&ctl->tree_lock);
375	ctl->unit = 1;
376	ctl->start = 0;
377	ctl->private = NULL;
378	ctl->op = &free_ino_op;
379	INIT_LIST_HEAD(&ctl->trimming_ranges);
380	mutex_init(&ctl->cache_writeout_mutex);
381
382	/*
383	 * Initially we allow to use 16K of ram to cache chunks of
384	 * inode numbers before we resort to bitmaps. This is somewhat
385	 * arbitrary, but it will be adjusted in runtime.
386	 */
387	ctl->extents_thresh = INIT_THRESHOLD;
388
389	spin_lock_init(&pinned->tree_lock);
390	pinned->unit = 1;
391	pinned->start = 0;
392	pinned->private = NULL;
393	pinned->extents_thresh = 0;
394	pinned->op = &pinned_free_ino_op;
395}
396
397int btrfs_save_ino_cache(struct btrfs_root *root,
398			 struct btrfs_trans_handle *trans)
399{
400	struct btrfs_fs_info *fs_info = root->fs_info;
401	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
402	struct btrfs_path *path;
403	struct inode *inode;
404	struct btrfs_block_rsv *rsv;
405	struct extent_changeset *data_reserved = NULL;
406	u64 num_bytes;
407	u64 alloc_hint = 0;
408	int ret;
409	int prealloc;
410	bool retry = false;
411
412	/* only fs tree and subvol/snap needs ino cache */
413	if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
414	    (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
415	     root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
416		return 0;
417
418	/* Don't save inode cache if we are deleting this root */
419	if (btrfs_root_refs(&root->root_item) == 0)
420		return 0;
421
422	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
423		return 0;
424
425	path = btrfs_alloc_path();
426	if (!path)
427		return -ENOMEM;
428
429	rsv = trans->block_rsv;
430	trans->block_rsv = &fs_info->trans_block_rsv;
431
432	num_bytes = trans->bytes_reserved;
433	/*
434	 * 1 item for inode item insertion if need
435	 * 4 items for inode item update (in the worst case)
436	 * 1 items for slack space if we need do truncation
437	 * 1 item for free space object
438	 * 3 items for pre-allocation
439	 */
440	trans->bytes_reserved = btrfs_calc_insert_metadata_size(fs_info, 10);
441	ret = btrfs_block_rsv_add(root, trans->block_rsv,
442				  trans->bytes_reserved,
443				  BTRFS_RESERVE_NO_FLUSH);
444	if (ret)
445		goto out;
446	trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
447				      trans->bytes_reserved, 1);
448again:
449	inode = lookup_free_ino_inode(root, path);
450	if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
451		ret = PTR_ERR(inode);
452		goto out_release;
453	}
454
455	if (IS_ERR(inode)) {
456		BUG_ON(retry); /* Logic error */
457		retry = true;
458
459		ret = create_free_ino_inode(root, trans, path);
460		if (ret)
461			goto out_release;
462		goto again;
463	}
464
465	BTRFS_I(inode)->generation = 0;
466	ret = btrfs_update_inode(trans, root, inode);
467	if (ret) {
468		btrfs_abort_transaction(trans, ret);
469		goto out_put;
470	}
471
472	if (i_size_read(inode) > 0) {
473		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
474		if (ret) {
475			if (ret != -ENOSPC)
476				btrfs_abort_transaction(trans, ret);
477			goto out_put;
478		}
479	}
480
481	spin_lock(&root->ino_cache_lock);
482	if (root->ino_cache_state != BTRFS_CACHE_FINISHED) {
483		ret = -1;
484		spin_unlock(&root->ino_cache_lock);
485		goto out_put;
486	}
487	spin_unlock(&root->ino_cache_lock);
488
489	spin_lock(&ctl->tree_lock);
490	prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
491	prealloc = ALIGN(prealloc, PAGE_SIZE);
492	prealloc += ctl->total_bitmaps * PAGE_SIZE;
493	spin_unlock(&ctl->tree_lock);
494
495	/* Just to make sure we have enough space */
496	prealloc += 8 * PAGE_SIZE;
497
498	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 0,
499					   prealloc);
500	if (ret)
501		goto out_put;
502
503	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
504					      prealloc, prealloc, &alloc_hint);
505	if (ret) {
506		btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc);
507		btrfs_delalloc_release_metadata(BTRFS_I(inode), prealloc, true);
508		goto out_put;
509	}
510
511	ret = btrfs_write_out_ino_cache(root, trans, path, inode);
512	btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc);
513out_put:
514	iput(inode);
515out_release:
516	trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
517				      trans->bytes_reserved, 0);
518	btrfs_block_rsv_release(fs_info, trans->block_rsv,
519				trans->bytes_reserved, NULL);
520out:
521	trans->block_rsv = rsv;
522	trans->bytes_reserved = num_bytes;
523
524	btrfs_free_path(path);
525	extent_changeset_free(data_reserved);
526	return ret;
527}
528