1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Red Hat.  All rights reserved.
4 */
5
6#include <linux/pagemap.h>
7#include <linux/sched.h>
8#include <linux/sched/signal.h>
9#include <linux/slab.h>
10#include <linux/math64.h>
11#include <linux/ratelimit.h>
12#include <linux/error-injection.h>
13#include <linux/sched/mm.h>
14#include "ctree.h"
15#include "free-space-cache.h"
16#include "transaction.h"
17#include "disk-io.h"
18#include "extent_io.h"
19#include "inode-map.h"
20#include "volumes.h"
21#include "space-info.h"
22#include "delalloc-space.h"
23#include "block-group.h"
24#include "discard.h"
25
26#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
27#define MAX_CACHE_BYTES_PER_GIG	SZ_64K
28#define FORCE_EXTENT_THRESHOLD	SZ_1M
29
30struct btrfs_trim_range {
31	u64 start;
32	u64 bytes;
33	struct list_head list;
34};
35
36static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
37				struct btrfs_free_space *bitmap_info);
38static int link_free_space(struct btrfs_free_space_ctl *ctl,
39			   struct btrfs_free_space *info);
40static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
41			      struct btrfs_free_space *info);
42static int btrfs_wait_cache_io_root(struct btrfs_root *root,
43			     struct btrfs_trans_handle *trans,
44			     struct btrfs_io_ctl *io_ctl,
45			     struct btrfs_path *path);
46
47static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
48					       struct btrfs_path *path,
49					       u64 offset)
50{
51	struct btrfs_fs_info *fs_info = root->fs_info;
52	struct btrfs_key key;
53	struct btrfs_key location;
54	struct btrfs_disk_key disk_key;
55	struct btrfs_free_space_header *header;
56	struct extent_buffer *leaf;
57	struct inode *inode = NULL;
58	unsigned nofs_flag;
59	int ret;
60
61	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
62	key.offset = offset;
63	key.type = 0;
64
65	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66	if (ret < 0)
67		return ERR_PTR(ret);
68	if (ret > 0) {
69		btrfs_release_path(path);
70		return ERR_PTR(-ENOENT);
71	}
72
73	leaf = path->nodes[0];
74	header = btrfs_item_ptr(leaf, path->slots[0],
75				struct btrfs_free_space_header);
76	btrfs_free_space_key(leaf, header, &disk_key);
77	btrfs_disk_key_to_cpu(&location, &disk_key);
78	btrfs_release_path(path);
79
80	/*
81	 * We are often under a trans handle at this point, so we need to make
82	 * sure NOFS is set to keep us from deadlocking.
83	 */
84	nofs_flag = memalloc_nofs_save();
85	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
86	btrfs_release_path(path);
87	memalloc_nofs_restore(nofs_flag);
88	if (IS_ERR(inode))
89		return inode;
90
91	mapping_set_gfp_mask(inode->i_mapping,
92			mapping_gfp_constraint(inode->i_mapping,
93			~(__GFP_FS | __GFP_HIGHMEM)));
94
95	return inode;
96}
97
98struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
99		struct btrfs_path *path)
100{
101	struct btrfs_fs_info *fs_info = block_group->fs_info;
102	struct inode *inode = NULL;
103	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
104
105	spin_lock(&block_group->lock);
106	if (block_group->inode)
107		inode = igrab(block_group->inode);
108	spin_unlock(&block_group->lock);
109	if (inode)
110		return inode;
111
112	inode = __lookup_free_space_inode(fs_info->tree_root, path,
113					  block_group->start);
114	if (IS_ERR(inode))
115		return inode;
116
117	spin_lock(&block_group->lock);
118	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
119		btrfs_info(fs_info, "Old style space inode found, converting.");
120		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
121			BTRFS_INODE_NODATACOW;
122		block_group->disk_cache_state = BTRFS_DC_CLEAR;
123	}
124
125	if (!block_group->iref) {
126		block_group->inode = igrab(inode);
127		block_group->iref = 1;
128	}
129	spin_unlock(&block_group->lock);
130
131	return inode;
132}
133
134static int __create_free_space_inode(struct btrfs_root *root,
135				     struct btrfs_trans_handle *trans,
136				     struct btrfs_path *path,
137				     u64 ino, u64 offset)
138{
139	struct btrfs_key key;
140	struct btrfs_disk_key disk_key;
141	struct btrfs_free_space_header *header;
142	struct btrfs_inode_item *inode_item;
143	struct extent_buffer *leaf;
144	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
145	int ret;
146
147	ret = btrfs_insert_empty_inode(trans, root, path, ino);
148	if (ret)
149		return ret;
150
151	/* We inline crc's for the free disk space cache */
152	if (ino != BTRFS_FREE_INO_OBJECTID)
153		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
154
155	leaf = path->nodes[0];
156	inode_item = btrfs_item_ptr(leaf, path->slots[0],
157				    struct btrfs_inode_item);
158	btrfs_item_key(leaf, &disk_key, path->slots[0]);
159	memzero_extent_buffer(leaf, (unsigned long)inode_item,
160			     sizeof(*inode_item));
161	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
162	btrfs_set_inode_size(leaf, inode_item, 0);
163	btrfs_set_inode_nbytes(leaf, inode_item, 0);
164	btrfs_set_inode_uid(leaf, inode_item, 0);
165	btrfs_set_inode_gid(leaf, inode_item, 0);
166	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
167	btrfs_set_inode_flags(leaf, inode_item, flags);
168	btrfs_set_inode_nlink(leaf, inode_item, 1);
169	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
170	btrfs_set_inode_block_group(leaf, inode_item, offset);
171	btrfs_mark_buffer_dirty(leaf);
172	btrfs_release_path(path);
173
174	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
175	key.offset = offset;
176	key.type = 0;
177	ret = btrfs_insert_empty_item(trans, root, path, &key,
178				      sizeof(struct btrfs_free_space_header));
179	if (ret < 0) {
180		btrfs_release_path(path);
181		return ret;
182	}
183
184	leaf = path->nodes[0];
185	header = btrfs_item_ptr(leaf, path->slots[0],
186				struct btrfs_free_space_header);
187	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
188	btrfs_set_free_space_key(leaf, header, &disk_key);
189	btrfs_mark_buffer_dirty(leaf);
190	btrfs_release_path(path);
191
192	return 0;
193}
194
195int create_free_space_inode(struct btrfs_trans_handle *trans,
196			    struct btrfs_block_group *block_group,
197			    struct btrfs_path *path)
198{
199	int ret;
200	u64 ino;
201
202	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
203	if (ret < 0)
204		return ret;
205
206	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
207					 ino, block_group->start);
208}
209
210int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
211				       struct btrfs_block_rsv *rsv)
212{
213	u64 needed_bytes;
214	int ret;
215
216	/* 1 for slack space, 1 for updating the inode */
217	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
218		btrfs_calc_metadata_size(fs_info, 1);
219
220	spin_lock(&rsv->lock);
221	if (rsv->reserved < needed_bytes)
222		ret = -ENOSPC;
223	else
224		ret = 0;
225	spin_unlock(&rsv->lock);
226	return ret;
227}
228
229int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
230				    struct btrfs_block_group *block_group,
231				    struct inode *inode)
232{
233	struct btrfs_root *root = BTRFS_I(inode)->root;
234	int ret = 0;
235	bool locked = false;
236
237	if (block_group) {
238		struct btrfs_path *path = btrfs_alloc_path();
239
240		if (!path) {
241			ret = -ENOMEM;
242			goto fail;
243		}
244		locked = true;
245		mutex_lock(&trans->transaction->cache_write_mutex);
246		if (!list_empty(&block_group->io_list)) {
247			list_del_init(&block_group->io_list);
248
249			btrfs_wait_cache_io(trans, block_group, path);
250			btrfs_put_block_group(block_group);
251		}
252
253		/*
254		 * now that we've truncated the cache away, its no longer
255		 * setup or written
256		 */
257		spin_lock(&block_group->lock);
258		block_group->disk_cache_state = BTRFS_DC_CLEAR;
259		spin_unlock(&block_group->lock);
260		btrfs_free_path(path);
261	}
262
263	btrfs_i_size_write(BTRFS_I(inode), 0);
264	truncate_pagecache(inode, 0);
265
266	/*
267	 * We skip the throttling logic for free space cache inodes, so we don't
268	 * need to check for -EAGAIN.
269	 */
270	ret = btrfs_truncate_inode_items(trans, root, inode,
271					 0, BTRFS_EXTENT_DATA_KEY);
272	if (ret)
273		goto fail;
274
275	ret = btrfs_update_inode(trans, root, inode);
276
277fail:
278	if (locked)
279		mutex_unlock(&trans->transaction->cache_write_mutex);
280	if (ret)
281		btrfs_abort_transaction(trans, ret);
282
283	return ret;
284}
285
286static void readahead_cache(struct inode *inode)
287{
288	struct file_ra_state *ra;
289	unsigned long last_index;
290
291	ra = kzalloc(sizeof(*ra), GFP_NOFS);
292	if (!ra)
293		return;
294
295	file_ra_state_init(ra, inode->i_mapping);
296	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
297
298	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
299
300	kfree(ra);
301}
302
303static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
304		       int write)
305{
306	int num_pages;
307	int check_crcs = 0;
308
309	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
310
311	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
312		check_crcs = 1;
313
314	/* Make sure we can fit our crcs and generation into the first page */
315	if (write && check_crcs &&
316	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
317		return -ENOSPC;
318
319	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
320
321	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
322	if (!io_ctl->pages)
323		return -ENOMEM;
324
325	io_ctl->num_pages = num_pages;
326	io_ctl->fs_info = btrfs_sb(inode->i_sb);
327	io_ctl->check_crcs = check_crcs;
328	io_ctl->inode = inode;
329
330	return 0;
331}
332ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
333
334static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
335{
336	kfree(io_ctl->pages);
337	io_ctl->pages = NULL;
338}
339
340static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
341{
342	if (io_ctl->cur) {
343		io_ctl->cur = NULL;
344		io_ctl->orig = NULL;
345	}
346}
347
348static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
349{
350	ASSERT(io_ctl->index < io_ctl->num_pages);
351	io_ctl->page = io_ctl->pages[io_ctl->index++];
352	io_ctl->cur = page_address(io_ctl->page);
353	io_ctl->orig = io_ctl->cur;
354	io_ctl->size = PAGE_SIZE;
355	if (clear)
356		clear_page(io_ctl->cur);
357}
358
359static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
360{
361	int i;
362
363	io_ctl_unmap_page(io_ctl);
364
365	for (i = 0; i < io_ctl->num_pages; i++) {
366		if (io_ctl->pages[i]) {
367			ClearPageChecked(io_ctl->pages[i]);
368			unlock_page(io_ctl->pages[i]);
369			put_page(io_ctl->pages[i]);
370		}
371	}
372}
373
374static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
375{
376	struct page *page;
377	struct inode *inode = io_ctl->inode;
378	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
379	int i;
380
381	for (i = 0; i < io_ctl->num_pages; i++) {
382		page = find_or_create_page(inode->i_mapping, i, mask);
383		if (!page) {
384			io_ctl_drop_pages(io_ctl);
385			return -ENOMEM;
386		}
387		io_ctl->pages[i] = page;
388		if (uptodate && !PageUptodate(page)) {
389			btrfs_readpage(NULL, page);
390			lock_page(page);
391			if (page->mapping != inode->i_mapping) {
392				btrfs_err(BTRFS_I(inode)->root->fs_info,
393					  "free space cache page truncated");
394				io_ctl_drop_pages(io_ctl);
395				return -EIO;
396			}
397			if (!PageUptodate(page)) {
398				btrfs_err(BTRFS_I(inode)->root->fs_info,
399					   "error reading free space cache");
400				io_ctl_drop_pages(io_ctl);
401				return -EIO;
402			}
403		}
404	}
405
406	for (i = 0; i < io_ctl->num_pages; i++) {
407		clear_page_dirty_for_io(io_ctl->pages[i]);
408		set_page_extent_mapped(io_ctl->pages[i]);
409	}
410
411	return 0;
412}
413
414static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
415{
416	io_ctl_map_page(io_ctl, 1);
417
418	/*
419	 * Skip the csum areas.  If we don't check crcs then we just have a
420	 * 64bit chunk at the front of the first page.
421	 */
422	if (io_ctl->check_crcs) {
423		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
424		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
425	} else {
426		io_ctl->cur += sizeof(u64);
427		io_ctl->size -= sizeof(u64) * 2;
428	}
429
430	put_unaligned_le64(generation, io_ctl->cur);
431	io_ctl->cur += sizeof(u64);
432}
433
434static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
435{
436	u64 cache_gen;
437
438	/*
439	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
440	 * chunk at the front of the first page.
441	 */
442	if (io_ctl->check_crcs) {
443		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
444		io_ctl->size -= sizeof(u64) +
445			(sizeof(u32) * io_ctl->num_pages);
446	} else {
447		io_ctl->cur += sizeof(u64);
448		io_ctl->size -= sizeof(u64) * 2;
449	}
450
451	cache_gen = get_unaligned_le64(io_ctl->cur);
452	if (cache_gen != generation) {
453		btrfs_err_rl(io_ctl->fs_info,
454			"space cache generation (%llu) does not match inode (%llu)",
455				cache_gen, generation);
456		io_ctl_unmap_page(io_ctl);
457		return -EIO;
458	}
459	io_ctl->cur += sizeof(u64);
460	return 0;
461}
462
463static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
464{
465	u32 *tmp;
466	u32 crc = ~(u32)0;
467	unsigned offset = 0;
468
469	if (!io_ctl->check_crcs) {
470		io_ctl_unmap_page(io_ctl);
471		return;
472	}
473
474	if (index == 0)
475		offset = sizeof(u32) * io_ctl->num_pages;
476
477	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
478	btrfs_crc32c_final(crc, (u8 *)&crc);
479	io_ctl_unmap_page(io_ctl);
480	tmp = page_address(io_ctl->pages[0]);
481	tmp += index;
482	*tmp = crc;
483}
484
485static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
486{
487	u32 *tmp, val;
488	u32 crc = ~(u32)0;
489	unsigned offset = 0;
490
491	if (!io_ctl->check_crcs) {
492		io_ctl_map_page(io_ctl, 0);
493		return 0;
494	}
495
496	if (index == 0)
497		offset = sizeof(u32) * io_ctl->num_pages;
498
499	tmp = page_address(io_ctl->pages[0]);
500	tmp += index;
501	val = *tmp;
502
503	io_ctl_map_page(io_ctl, 0);
504	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
505	btrfs_crc32c_final(crc, (u8 *)&crc);
506	if (val != crc) {
507		btrfs_err_rl(io_ctl->fs_info,
508			"csum mismatch on free space cache");
509		io_ctl_unmap_page(io_ctl);
510		return -EIO;
511	}
512
513	return 0;
514}
515
516static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
517			    void *bitmap)
518{
519	struct btrfs_free_space_entry *entry;
520
521	if (!io_ctl->cur)
522		return -ENOSPC;
523
524	entry = io_ctl->cur;
525	put_unaligned_le64(offset, &entry->offset);
526	put_unaligned_le64(bytes, &entry->bytes);
527	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
528		BTRFS_FREE_SPACE_EXTENT;
529	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
530	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
531
532	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
533		return 0;
534
535	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
536
537	/* No more pages to map */
538	if (io_ctl->index >= io_ctl->num_pages)
539		return 0;
540
541	/* map the next page */
542	io_ctl_map_page(io_ctl, 1);
543	return 0;
544}
545
546static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
547{
548	if (!io_ctl->cur)
549		return -ENOSPC;
550
551	/*
552	 * If we aren't at the start of the current page, unmap this one and
553	 * map the next one if there is any left.
554	 */
555	if (io_ctl->cur != io_ctl->orig) {
556		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
557		if (io_ctl->index >= io_ctl->num_pages)
558			return -ENOSPC;
559		io_ctl_map_page(io_ctl, 0);
560	}
561
562	copy_page(io_ctl->cur, bitmap);
563	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
564	if (io_ctl->index < io_ctl->num_pages)
565		io_ctl_map_page(io_ctl, 0);
566	return 0;
567}
568
569static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
570{
571	/*
572	 * If we're not on the boundary we know we've modified the page and we
573	 * need to crc the page.
574	 */
575	if (io_ctl->cur != io_ctl->orig)
576		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
577	else
578		io_ctl_unmap_page(io_ctl);
579
580	while (io_ctl->index < io_ctl->num_pages) {
581		io_ctl_map_page(io_ctl, 1);
582		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
583	}
584}
585
586static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
587			    struct btrfs_free_space *entry, u8 *type)
588{
589	struct btrfs_free_space_entry *e;
590	int ret;
591
592	if (!io_ctl->cur) {
593		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
594		if (ret)
595			return ret;
596	}
597
598	e = io_ctl->cur;
599	entry->offset = get_unaligned_le64(&e->offset);
600	entry->bytes = get_unaligned_le64(&e->bytes);
601	*type = e->type;
602	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
603	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
604
605	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
606		return 0;
607
608	io_ctl_unmap_page(io_ctl);
609
610	return 0;
611}
612
613static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
614			      struct btrfs_free_space *entry)
615{
616	int ret;
617
618	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
619	if (ret)
620		return ret;
621
622	copy_page(entry->bitmap, io_ctl->cur);
623	io_ctl_unmap_page(io_ctl);
624
625	return 0;
626}
627
628/*
629 * Since we attach pinned extents after the fact we can have contiguous sections
630 * of free space that are split up in entries.  This poses a problem with the
631 * tree logging stuff since it could have allocated across what appears to be 2
632 * entries since we would have merged the entries when adding the pinned extents
633 * back to the free space cache.  So run through the space cache that we just
634 * loaded and merge contiguous entries.  This will make the log replay stuff not
635 * blow up and it will make for nicer allocator behavior.
636 */
637static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
638{
639	struct btrfs_free_space *e, *prev = NULL;
640	struct rb_node *n;
641
642again:
643	spin_lock(&ctl->tree_lock);
644	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
645		e = rb_entry(n, struct btrfs_free_space, offset_index);
646		if (!prev)
647			goto next;
648		if (e->bitmap || prev->bitmap)
649			goto next;
650		if (prev->offset + prev->bytes == e->offset) {
651			unlink_free_space(ctl, prev);
652			unlink_free_space(ctl, e);
653			prev->bytes += e->bytes;
654			kmem_cache_free(btrfs_free_space_cachep, e);
655			link_free_space(ctl, prev);
656			prev = NULL;
657			spin_unlock(&ctl->tree_lock);
658			goto again;
659		}
660next:
661		prev = e;
662	}
663	spin_unlock(&ctl->tree_lock);
664}
665
666static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
667				   struct btrfs_free_space_ctl *ctl,
668				   struct btrfs_path *path, u64 offset)
669{
670	struct btrfs_fs_info *fs_info = root->fs_info;
671	struct btrfs_free_space_header *header;
672	struct extent_buffer *leaf;
673	struct btrfs_io_ctl io_ctl;
674	struct btrfs_key key;
675	struct btrfs_free_space *e, *n;
676	LIST_HEAD(bitmaps);
677	u64 num_entries;
678	u64 num_bitmaps;
679	u64 generation;
680	u8 type;
681	int ret = 0;
682
683	/* Nothing in the space cache, goodbye */
684	if (!i_size_read(inode))
685		return 0;
686
687	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
688	key.offset = offset;
689	key.type = 0;
690
691	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
692	if (ret < 0)
693		return 0;
694	else if (ret > 0) {
695		btrfs_release_path(path);
696		return 0;
697	}
698
699	ret = -1;
700
701	leaf = path->nodes[0];
702	header = btrfs_item_ptr(leaf, path->slots[0],
703				struct btrfs_free_space_header);
704	num_entries = btrfs_free_space_entries(leaf, header);
705	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
706	generation = btrfs_free_space_generation(leaf, header);
707	btrfs_release_path(path);
708
709	if (!BTRFS_I(inode)->generation) {
710		btrfs_info(fs_info,
711			   "the free space cache file (%llu) is invalid, skip it",
712			   offset);
713		return 0;
714	}
715
716	if (BTRFS_I(inode)->generation != generation) {
717		btrfs_err(fs_info,
718			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
719			  BTRFS_I(inode)->generation, generation);
720		return 0;
721	}
722
723	if (!num_entries)
724		return 0;
725
726	ret = io_ctl_init(&io_ctl, inode, 0);
727	if (ret)
728		return ret;
729
730	readahead_cache(inode);
731
732	ret = io_ctl_prepare_pages(&io_ctl, true);
733	if (ret)
734		goto out;
735
736	ret = io_ctl_check_crc(&io_ctl, 0);
737	if (ret)
738		goto free_cache;
739
740	ret = io_ctl_check_generation(&io_ctl, generation);
741	if (ret)
742		goto free_cache;
743
744	while (num_entries) {
745		e = kmem_cache_zalloc(btrfs_free_space_cachep,
746				      GFP_NOFS);
747		if (!e) {
748			ret = -ENOMEM;
749			goto free_cache;
750		}
751
752		ret = io_ctl_read_entry(&io_ctl, e, &type);
753		if (ret) {
754			kmem_cache_free(btrfs_free_space_cachep, e);
755			goto free_cache;
756		}
757
758		/*
759		 * Sync discard ensures that the free space cache is always
760		 * trimmed.  So when reading this in, the state should reflect
761		 * that.  We also do this for async as a stop gap for lack of
762		 * persistence.
763		 */
764		if (btrfs_test_opt(fs_info, DISCARD_SYNC) ||
765		    btrfs_test_opt(fs_info, DISCARD_ASYNC))
766			e->trim_state = BTRFS_TRIM_STATE_TRIMMED;
767
768		if (!e->bytes) {
769			ret = -1;
770			kmem_cache_free(btrfs_free_space_cachep, e);
771			goto free_cache;
772		}
773
774		if (type == BTRFS_FREE_SPACE_EXTENT) {
775			spin_lock(&ctl->tree_lock);
776			ret = link_free_space(ctl, e);
777			spin_unlock(&ctl->tree_lock);
778			if (ret) {
779				btrfs_err(fs_info,
780					"Duplicate entries in free space cache, dumping");
781				kmem_cache_free(btrfs_free_space_cachep, e);
782				goto free_cache;
783			}
784		} else {
785			ASSERT(num_bitmaps);
786			num_bitmaps--;
787			e->bitmap = kmem_cache_zalloc(
788					btrfs_free_space_bitmap_cachep, GFP_NOFS);
789			if (!e->bitmap) {
790				ret = -ENOMEM;
791				kmem_cache_free(
792					btrfs_free_space_cachep, e);
793				goto free_cache;
794			}
795			spin_lock(&ctl->tree_lock);
796			ret = link_free_space(ctl, e);
797			if (ret) {
798				spin_unlock(&ctl->tree_lock);
799				btrfs_err(fs_info,
800					"Duplicate entries in free space cache, dumping");
801				kmem_cache_free(btrfs_free_space_cachep, e);
802				goto free_cache;
803			}
804			ctl->total_bitmaps++;
805			ctl->op->recalc_thresholds(ctl);
806			spin_unlock(&ctl->tree_lock);
807			list_add_tail(&e->list, &bitmaps);
808		}
809
810		num_entries--;
811	}
812
813	io_ctl_unmap_page(&io_ctl);
814
815	/*
816	 * We add the bitmaps at the end of the entries in order that
817	 * the bitmap entries are added to the cache.
818	 */
819	list_for_each_entry_safe(e, n, &bitmaps, list) {
820		list_del_init(&e->list);
821		ret = io_ctl_read_bitmap(&io_ctl, e);
822		if (ret)
823			goto free_cache;
824		e->bitmap_extents = count_bitmap_extents(ctl, e);
825		if (!btrfs_free_space_trimmed(e)) {
826			ctl->discardable_extents[BTRFS_STAT_CURR] +=
827				e->bitmap_extents;
828			ctl->discardable_bytes[BTRFS_STAT_CURR] += e->bytes;
829		}
830	}
831
832	io_ctl_drop_pages(&io_ctl);
833	merge_space_tree(ctl);
834	ret = 1;
835out:
836	btrfs_discard_update_discardable(ctl->private, ctl);
837	io_ctl_free(&io_ctl);
838	return ret;
839free_cache:
840	io_ctl_drop_pages(&io_ctl);
841	__btrfs_remove_free_space_cache(ctl);
842	goto out;
843}
844
845int load_free_space_cache(struct btrfs_block_group *block_group)
846{
847	struct btrfs_fs_info *fs_info = block_group->fs_info;
848	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
849	struct inode *inode;
850	struct btrfs_path *path;
851	int ret = 0;
852	bool matched;
853	u64 used = block_group->used;
854
855	/*
856	 * If this block group has been marked to be cleared for one reason or
857	 * another then we can't trust the on disk cache, so just return.
858	 */
859	spin_lock(&block_group->lock);
860	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
861		spin_unlock(&block_group->lock);
862		return 0;
863	}
864	spin_unlock(&block_group->lock);
865
866	path = btrfs_alloc_path();
867	if (!path)
868		return 0;
869	path->search_commit_root = 1;
870	path->skip_locking = 1;
871
872	/*
873	 * We must pass a path with search_commit_root set to btrfs_iget in
874	 * order to avoid a deadlock when allocating extents for the tree root.
875	 *
876	 * When we are COWing an extent buffer from the tree root, when looking
877	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
878	 * block group without its free space cache loaded. When we find one
879	 * we must load its space cache which requires reading its free space
880	 * cache's inode item from the root tree. If this inode item is located
881	 * in the same leaf that we started COWing before, then we end up in
882	 * deadlock on the extent buffer (trying to read lock it when we
883	 * previously write locked it).
884	 *
885	 * It's safe to read the inode item using the commit root because
886	 * block groups, once loaded, stay in memory forever (until they are
887	 * removed) as well as their space caches once loaded. New block groups
888	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
889	 * we will never try to read their inode item while the fs is mounted.
890	 */
891	inode = lookup_free_space_inode(block_group, path);
892	if (IS_ERR(inode)) {
893		btrfs_free_path(path);
894		return 0;
895	}
896
897	/* We may have converted the inode and made the cache invalid. */
898	spin_lock(&block_group->lock);
899	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
900		spin_unlock(&block_group->lock);
901		btrfs_free_path(path);
902		goto out;
903	}
904	spin_unlock(&block_group->lock);
905
906	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
907				      path, block_group->start);
908	btrfs_free_path(path);
909	if (ret <= 0)
910		goto out;
911
912	spin_lock(&ctl->tree_lock);
913	matched = (ctl->free_space == (block_group->length - used -
914				       block_group->bytes_super));
915	spin_unlock(&ctl->tree_lock);
916
917	if (!matched) {
918		__btrfs_remove_free_space_cache(ctl);
919		btrfs_warn(fs_info,
920			   "block group %llu has wrong amount of free space",
921			   block_group->start);
922		ret = -1;
923	}
924out:
925	if (ret < 0) {
926		/* This cache is bogus, make sure it gets cleared */
927		spin_lock(&block_group->lock);
928		block_group->disk_cache_state = BTRFS_DC_CLEAR;
929		spin_unlock(&block_group->lock);
930		ret = 0;
931
932		btrfs_warn(fs_info,
933			   "failed to load free space cache for block group %llu, rebuilding it now",
934			   block_group->start);
935	}
936
937	iput(inode);
938	return ret;
939}
940
941static noinline_for_stack
942int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
943			      struct btrfs_free_space_ctl *ctl,
944			      struct btrfs_block_group *block_group,
945			      int *entries, int *bitmaps,
946			      struct list_head *bitmap_list)
947{
948	int ret;
949	struct btrfs_free_cluster *cluster = NULL;
950	struct btrfs_free_cluster *cluster_locked = NULL;
951	struct rb_node *node = rb_first(&ctl->free_space_offset);
952	struct btrfs_trim_range *trim_entry;
953
954	/* Get the cluster for this block_group if it exists */
955	if (block_group && !list_empty(&block_group->cluster_list)) {
956		cluster = list_entry(block_group->cluster_list.next,
957				     struct btrfs_free_cluster,
958				     block_group_list);
959	}
960
961	if (!node && cluster) {
962		cluster_locked = cluster;
963		spin_lock(&cluster_locked->lock);
964		node = rb_first(&cluster->root);
965		cluster = NULL;
966	}
967
968	/* Write out the extent entries */
969	while (node) {
970		struct btrfs_free_space *e;
971
972		e = rb_entry(node, struct btrfs_free_space, offset_index);
973		*entries += 1;
974
975		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
976				       e->bitmap);
977		if (ret)
978			goto fail;
979
980		if (e->bitmap) {
981			list_add_tail(&e->list, bitmap_list);
982			*bitmaps += 1;
983		}
984		node = rb_next(node);
985		if (!node && cluster) {
986			node = rb_first(&cluster->root);
987			cluster_locked = cluster;
988			spin_lock(&cluster_locked->lock);
989			cluster = NULL;
990		}
991	}
992	if (cluster_locked) {
993		spin_unlock(&cluster_locked->lock);
994		cluster_locked = NULL;
995	}
996
997	/*
998	 * Make sure we don't miss any range that was removed from our rbtree
999	 * because trimming is running. Otherwise after a umount+mount (or crash
1000	 * after committing the transaction) we would leak free space and get
1001	 * an inconsistent free space cache report from fsck.
1002	 */
1003	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1004		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1005				       trim_entry->bytes, NULL);
1006		if (ret)
1007			goto fail;
1008		*entries += 1;
1009	}
1010
1011	return 0;
1012fail:
1013	if (cluster_locked)
1014		spin_unlock(&cluster_locked->lock);
1015	return -ENOSPC;
1016}
1017
1018static noinline_for_stack int
1019update_cache_item(struct btrfs_trans_handle *trans,
1020		  struct btrfs_root *root,
1021		  struct inode *inode,
1022		  struct btrfs_path *path, u64 offset,
1023		  int entries, int bitmaps)
1024{
1025	struct btrfs_key key;
1026	struct btrfs_free_space_header *header;
1027	struct extent_buffer *leaf;
1028	int ret;
1029
1030	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1031	key.offset = offset;
1032	key.type = 0;
1033
1034	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1035	if (ret < 0) {
1036		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1037				 EXTENT_DELALLOC, 0, 0, NULL);
1038		goto fail;
1039	}
1040	leaf = path->nodes[0];
1041	if (ret > 0) {
1042		struct btrfs_key found_key;
1043		ASSERT(path->slots[0]);
1044		path->slots[0]--;
1045		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1046		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1047		    found_key.offset != offset) {
1048			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1049					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1050					 0, NULL);
1051			btrfs_release_path(path);
1052			goto fail;
1053		}
1054	}
1055
1056	BTRFS_I(inode)->generation = trans->transid;
1057	header = btrfs_item_ptr(leaf, path->slots[0],
1058				struct btrfs_free_space_header);
1059	btrfs_set_free_space_entries(leaf, header, entries);
1060	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1061	btrfs_set_free_space_generation(leaf, header, trans->transid);
1062	btrfs_mark_buffer_dirty(leaf);
1063	btrfs_release_path(path);
1064
1065	return 0;
1066
1067fail:
1068	return -1;
1069}
1070
1071static noinline_for_stack int write_pinned_extent_entries(
1072			    struct btrfs_trans_handle *trans,
1073			    struct btrfs_block_group *block_group,
1074			    struct btrfs_io_ctl *io_ctl,
1075			    int *entries)
1076{
1077	u64 start, extent_start, extent_end, len;
1078	struct extent_io_tree *unpin = NULL;
1079	int ret;
1080
1081	if (!block_group)
1082		return 0;
1083
1084	/*
1085	 * We want to add any pinned extents to our free space cache
1086	 * so we don't leak the space
1087	 *
1088	 * We shouldn't have switched the pinned extents yet so this is the
1089	 * right one
1090	 */
1091	unpin = &trans->transaction->pinned_extents;
1092
1093	start = block_group->start;
1094
1095	while (start < block_group->start + block_group->length) {
1096		ret = find_first_extent_bit(unpin, start,
1097					    &extent_start, &extent_end,
1098					    EXTENT_DIRTY, NULL);
1099		if (ret)
1100			return 0;
1101
1102		/* This pinned extent is out of our range */
1103		if (extent_start >= block_group->start + block_group->length)
1104			return 0;
1105
1106		extent_start = max(extent_start, start);
1107		extent_end = min(block_group->start + block_group->length,
1108				 extent_end + 1);
1109		len = extent_end - extent_start;
1110
1111		*entries += 1;
1112		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1113		if (ret)
1114			return -ENOSPC;
1115
1116		start = extent_end;
1117	}
1118
1119	return 0;
1120}
1121
1122static noinline_for_stack int
1123write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1124{
1125	struct btrfs_free_space *entry, *next;
1126	int ret;
1127
1128	/* Write out the bitmaps */
1129	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1130		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1131		if (ret)
1132			return -ENOSPC;
1133		list_del_init(&entry->list);
1134	}
1135
1136	return 0;
1137}
1138
1139static int flush_dirty_cache(struct inode *inode)
1140{
1141	int ret;
1142
1143	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1144	if (ret)
1145		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1146				 EXTENT_DELALLOC, 0, 0, NULL);
1147
1148	return ret;
1149}
1150
1151static void noinline_for_stack
1152cleanup_bitmap_list(struct list_head *bitmap_list)
1153{
1154	struct btrfs_free_space *entry, *next;
1155
1156	list_for_each_entry_safe(entry, next, bitmap_list, list)
1157		list_del_init(&entry->list);
1158}
1159
1160static void noinline_for_stack
1161cleanup_write_cache_enospc(struct inode *inode,
1162			   struct btrfs_io_ctl *io_ctl,
1163			   struct extent_state **cached_state)
1164{
1165	io_ctl_drop_pages(io_ctl);
1166	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1167			     i_size_read(inode) - 1, cached_state);
1168}
1169
1170static int __btrfs_wait_cache_io(struct btrfs_root *root,
1171				 struct btrfs_trans_handle *trans,
1172				 struct btrfs_block_group *block_group,
1173				 struct btrfs_io_ctl *io_ctl,
1174				 struct btrfs_path *path, u64 offset)
1175{
1176	int ret;
1177	struct inode *inode = io_ctl->inode;
1178
1179	if (!inode)
1180		return 0;
1181
1182	/* Flush the dirty pages in the cache file. */
1183	ret = flush_dirty_cache(inode);
1184	if (ret)
1185		goto out;
1186
1187	/* Update the cache item to tell everyone this cache file is valid. */
1188	ret = update_cache_item(trans, root, inode, path, offset,
1189				io_ctl->entries, io_ctl->bitmaps);
1190out:
1191	if (ret) {
1192		invalidate_inode_pages2(inode->i_mapping);
1193		BTRFS_I(inode)->generation = 0;
1194		if (block_group)
1195			btrfs_debug(root->fs_info,
1196	  "failed to write free space cache for block group %llu error %d",
1197				  block_group->start, ret);
1198	}
1199	btrfs_update_inode(trans, root, inode);
1200
1201	if (block_group) {
1202		/* the dirty list is protected by the dirty_bgs_lock */
1203		spin_lock(&trans->transaction->dirty_bgs_lock);
1204
1205		/* the disk_cache_state is protected by the block group lock */
1206		spin_lock(&block_group->lock);
1207
1208		/*
1209		 * only mark this as written if we didn't get put back on
1210		 * the dirty list while waiting for IO.   Otherwise our
1211		 * cache state won't be right, and we won't get written again
1212		 */
1213		if (!ret && list_empty(&block_group->dirty_list))
1214			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1215		else if (ret)
1216			block_group->disk_cache_state = BTRFS_DC_ERROR;
1217
1218		spin_unlock(&block_group->lock);
1219		spin_unlock(&trans->transaction->dirty_bgs_lock);
1220		io_ctl->inode = NULL;
1221		iput(inode);
1222	}
1223
1224	return ret;
1225
1226}
1227
1228static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1229				    struct btrfs_trans_handle *trans,
1230				    struct btrfs_io_ctl *io_ctl,
1231				    struct btrfs_path *path)
1232{
1233	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1234}
1235
1236int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1237			struct btrfs_block_group *block_group,
1238			struct btrfs_path *path)
1239{
1240	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1241				     block_group, &block_group->io_ctl,
1242				     path, block_group->start);
1243}
1244
1245/**
1246 * __btrfs_write_out_cache - write out cached info to an inode
1247 * @root - the root the inode belongs to
1248 * @ctl - the free space cache we are going to write out
1249 * @block_group - the block_group for this cache if it belongs to a block_group
1250 * @trans - the trans handle
1251 *
1252 * This function writes out a free space cache struct to disk for quick recovery
1253 * on mount.  This will return 0 if it was successful in writing the cache out,
1254 * or an errno if it was not.
1255 */
1256static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1257				   struct btrfs_free_space_ctl *ctl,
1258				   struct btrfs_block_group *block_group,
1259				   struct btrfs_io_ctl *io_ctl,
1260				   struct btrfs_trans_handle *trans)
1261{
1262	struct extent_state *cached_state = NULL;
1263	LIST_HEAD(bitmap_list);
1264	int entries = 0;
1265	int bitmaps = 0;
1266	int ret;
1267	int must_iput = 0;
1268
1269	if (!i_size_read(inode))
1270		return -EIO;
1271
1272	WARN_ON(io_ctl->pages);
1273	ret = io_ctl_init(io_ctl, inode, 1);
1274	if (ret)
1275		return ret;
1276
1277	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1278		down_write(&block_group->data_rwsem);
1279		spin_lock(&block_group->lock);
1280		if (block_group->delalloc_bytes) {
1281			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1282			spin_unlock(&block_group->lock);
1283			up_write(&block_group->data_rwsem);
1284			BTRFS_I(inode)->generation = 0;
1285			ret = 0;
1286			must_iput = 1;
1287			goto out;
1288		}
1289		spin_unlock(&block_group->lock);
1290	}
1291
1292	/* Lock all pages first so we can lock the extent safely. */
1293	ret = io_ctl_prepare_pages(io_ctl, false);
1294	if (ret)
1295		goto out_unlock;
1296
1297	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1298			 &cached_state);
1299
1300	io_ctl_set_generation(io_ctl, trans->transid);
1301
1302	mutex_lock(&ctl->cache_writeout_mutex);
1303	/* Write out the extent entries in the free space cache */
1304	spin_lock(&ctl->tree_lock);
1305	ret = write_cache_extent_entries(io_ctl, ctl,
1306					 block_group, &entries, &bitmaps,
1307					 &bitmap_list);
1308	if (ret)
1309		goto out_nospc_locked;
1310
1311	/*
1312	 * Some spaces that are freed in the current transaction are pinned,
1313	 * they will be added into free space cache after the transaction is
1314	 * committed, we shouldn't lose them.
1315	 *
1316	 * If this changes while we are working we'll get added back to
1317	 * the dirty list and redo it.  No locking needed
1318	 */
1319	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1320	if (ret)
1321		goto out_nospc_locked;
1322
1323	/*
1324	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1325	 * locked while doing it because a concurrent trim can be manipulating
1326	 * or freeing the bitmap.
1327	 */
1328	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1329	spin_unlock(&ctl->tree_lock);
1330	mutex_unlock(&ctl->cache_writeout_mutex);
1331	if (ret)
1332		goto out_nospc;
1333
1334	/* Zero out the rest of the pages just to make sure */
1335	io_ctl_zero_remaining_pages(io_ctl);
1336
1337	/* Everything is written out, now we dirty the pages in the file. */
1338	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1339				io_ctl->num_pages, 0, i_size_read(inode),
1340				&cached_state);
1341	if (ret)
1342		goto out_nospc;
1343
1344	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1345		up_write(&block_group->data_rwsem);
1346	/*
1347	 * Release the pages and unlock the extent, we will flush
1348	 * them out later
1349	 */
1350	io_ctl_drop_pages(io_ctl);
1351	io_ctl_free(io_ctl);
1352
1353	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1354			     i_size_read(inode) - 1, &cached_state);
1355
1356	/*
1357	 * at this point the pages are under IO and we're happy,
1358	 * The caller is responsible for waiting on them and updating
1359	 * the cache and the inode
1360	 */
1361	io_ctl->entries = entries;
1362	io_ctl->bitmaps = bitmaps;
1363
1364	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1365	if (ret)
1366		goto out;
1367
1368	return 0;
1369
1370out_nospc_locked:
1371	cleanup_bitmap_list(&bitmap_list);
1372	spin_unlock(&ctl->tree_lock);
1373	mutex_unlock(&ctl->cache_writeout_mutex);
1374
1375out_nospc:
1376	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1377
1378out_unlock:
1379	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1380		up_write(&block_group->data_rwsem);
1381
1382out:
1383	io_ctl->inode = NULL;
1384	io_ctl_free(io_ctl);
1385	if (ret) {
1386		invalidate_inode_pages2(inode->i_mapping);
1387		BTRFS_I(inode)->generation = 0;
1388	}
1389	btrfs_update_inode(trans, root, inode);
1390	if (must_iput)
1391		iput(inode);
1392	return ret;
1393}
1394
1395int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1396			  struct btrfs_block_group *block_group,
1397			  struct btrfs_path *path)
1398{
1399	struct btrfs_fs_info *fs_info = trans->fs_info;
1400	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1401	struct inode *inode;
1402	int ret = 0;
1403
1404	spin_lock(&block_group->lock);
1405	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1406		spin_unlock(&block_group->lock);
1407		return 0;
1408	}
1409	spin_unlock(&block_group->lock);
1410
1411	inode = lookup_free_space_inode(block_group, path);
1412	if (IS_ERR(inode))
1413		return 0;
1414
1415	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1416				block_group, &block_group->io_ctl, trans);
1417	if (ret) {
1418		btrfs_debug(fs_info,
1419	  "failed to write free space cache for block group %llu error %d",
1420			  block_group->start, ret);
1421		spin_lock(&block_group->lock);
1422		block_group->disk_cache_state = BTRFS_DC_ERROR;
1423		spin_unlock(&block_group->lock);
1424
1425		block_group->io_ctl.inode = NULL;
1426		iput(inode);
1427	}
1428
1429	/*
1430	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1431	 * to wait for IO and put the inode
1432	 */
1433
1434	return ret;
1435}
1436
1437static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1438					  u64 offset)
1439{
1440	ASSERT(offset >= bitmap_start);
1441	offset -= bitmap_start;
1442	return (unsigned long)(div_u64(offset, unit));
1443}
1444
1445static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1446{
1447	return (unsigned long)(div_u64(bytes, unit));
1448}
1449
1450static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1451				   u64 offset)
1452{
1453	u64 bitmap_start;
1454	u64 bytes_per_bitmap;
1455
1456	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1457	bitmap_start = offset - ctl->start;
1458	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1459	bitmap_start *= bytes_per_bitmap;
1460	bitmap_start += ctl->start;
1461
1462	return bitmap_start;
1463}
1464
1465static int tree_insert_offset(struct rb_root *root, u64 offset,
1466			      struct rb_node *node, int bitmap)
1467{
1468	struct rb_node **p = &root->rb_node;
1469	struct rb_node *parent = NULL;
1470	struct btrfs_free_space *info;
1471
1472	while (*p) {
1473		parent = *p;
1474		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1475
1476		if (offset < info->offset) {
1477			p = &(*p)->rb_left;
1478		} else if (offset > info->offset) {
1479			p = &(*p)->rb_right;
1480		} else {
1481			/*
1482			 * we could have a bitmap entry and an extent entry
1483			 * share the same offset.  If this is the case, we want
1484			 * the extent entry to always be found first if we do a
1485			 * linear search through the tree, since we want to have
1486			 * the quickest allocation time, and allocating from an
1487			 * extent is faster than allocating from a bitmap.  So
1488			 * if we're inserting a bitmap and we find an entry at
1489			 * this offset, we want to go right, or after this entry
1490			 * logically.  If we are inserting an extent and we've
1491			 * found a bitmap, we want to go left, or before
1492			 * logically.
1493			 */
1494			if (bitmap) {
1495				if (info->bitmap) {
1496					WARN_ON_ONCE(1);
1497					return -EEXIST;
1498				}
1499				p = &(*p)->rb_right;
1500			} else {
1501				if (!info->bitmap) {
1502					WARN_ON_ONCE(1);
1503					return -EEXIST;
1504				}
1505				p = &(*p)->rb_left;
1506			}
1507		}
1508	}
1509
1510	rb_link_node(node, parent, p);
1511	rb_insert_color(node, root);
1512
1513	return 0;
1514}
1515
1516/*
1517 * searches the tree for the given offset.
1518 *
1519 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1520 * want a section that has at least bytes size and comes at or after the given
1521 * offset.
1522 */
1523static struct btrfs_free_space *
1524tree_search_offset(struct btrfs_free_space_ctl *ctl,
1525		   u64 offset, int bitmap_only, int fuzzy)
1526{
1527	struct rb_node *n = ctl->free_space_offset.rb_node;
1528	struct btrfs_free_space *entry, *prev = NULL;
1529
1530	/* find entry that is closest to the 'offset' */
1531	while (1) {
1532		if (!n) {
1533			entry = NULL;
1534			break;
1535		}
1536
1537		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1538		prev = entry;
1539
1540		if (offset < entry->offset)
1541			n = n->rb_left;
1542		else if (offset > entry->offset)
1543			n = n->rb_right;
1544		else
1545			break;
1546	}
1547
1548	if (bitmap_only) {
1549		if (!entry)
1550			return NULL;
1551		if (entry->bitmap)
1552			return entry;
1553
1554		/*
1555		 * bitmap entry and extent entry may share same offset,
1556		 * in that case, bitmap entry comes after extent entry.
1557		 */
1558		n = rb_next(n);
1559		if (!n)
1560			return NULL;
1561		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1562		if (entry->offset != offset)
1563			return NULL;
1564
1565		WARN_ON(!entry->bitmap);
1566		return entry;
1567	} else if (entry) {
1568		if (entry->bitmap) {
1569			/*
1570			 * if previous extent entry covers the offset,
1571			 * we should return it instead of the bitmap entry
1572			 */
1573			n = rb_prev(&entry->offset_index);
1574			if (n) {
1575				prev = rb_entry(n, struct btrfs_free_space,
1576						offset_index);
1577				if (!prev->bitmap &&
1578				    prev->offset + prev->bytes > offset)
1579					entry = prev;
1580			}
1581		}
1582		return entry;
1583	}
1584
1585	if (!prev)
1586		return NULL;
1587
1588	/* find last entry before the 'offset' */
1589	entry = prev;
1590	if (entry->offset > offset) {
1591		n = rb_prev(&entry->offset_index);
1592		if (n) {
1593			entry = rb_entry(n, struct btrfs_free_space,
1594					offset_index);
1595			ASSERT(entry->offset <= offset);
1596		} else {
1597			if (fuzzy)
1598				return entry;
1599			else
1600				return NULL;
1601		}
1602	}
1603
1604	if (entry->bitmap) {
1605		n = rb_prev(&entry->offset_index);
1606		if (n) {
1607			prev = rb_entry(n, struct btrfs_free_space,
1608					offset_index);
1609			if (!prev->bitmap &&
1610			    prev->offset + prev->bytes > offset)
1611				return prev;
1612		}
1613		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1614			return entry;
1615	} else if (entry->offset + entry->bytes > offset)
1616		return entry;
1617
1618	if (!fuzzy)
1619		return NULL;
1620
1621	while (1) {
1622		if (entry->bitmap) {
1623			if (entry->offset + BITS_PER_BITMAP *
1624			    ctl->unit > offset)
1625				break;
1626		} else {
1627			if (entry->offset + entry->bytes > offset)
1628				break;
1629		}
1630
1631		n = rb_next(&entry->offset_index);
1632		if (!n)
1633			return NULL;
1634		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1635	}
1636	return entry;
1637}
1638
1639static inline void
1640__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1641		    struct btrfs_free_space *info)
1642{
1643	rb_erase(&info->offset_index, &ctl->free_space_offset);
1644	ctl->free_extents--;
1645
1646	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1647		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1648		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1649	}
1650}
1651
1652static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1653			      struct btrfs_free_space *info)
1654{
1655	__unlink_free_space(ctl, info);
1656	ctl->free_space -= info->bytes;
1657}
1658
1659static int link_free_space(struct btrfs_free_space_ctl *ctl,
1660			   struct btrfs_free_space *info)
1661{
1662	int ret = 0;
1663
1664	ASSERT(info->bytes || info->bitmap);
1665	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1666				 &info->offset_index, (info->bitmap != NULL));
1667	if (ret)
1668		return ret;
1669
1670	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1671		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1672		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1673	}
1674
1675	ctl->free_space += info->bytes;
1676	ctl->free_extents++;
1677	return ret;
1678}
1679
1680static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1681{
1682	struct btrfs_block_group *block_group = ctl->private;
1683	u64 max_bytes;
1684	u64 bitmap_bytes;
1685	u64 extent_bytes;
1686	u64 size = block_group->length;
1687	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1688	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1689
1690	max_bitmaps = max_t(u64, max_bitmaps, 1);
1691
1692	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1693
1694	/*
1695	 * We are trying to keep the total amount of memory used per 1GiB of
1696	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
1697	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
1698	 * bitmaps, we may end up using more memory than this.
1699	 */
1700	if (size < SZ_1G)
1701		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1702	else
1703		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1704
1705	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
1706
1707	/*
1708	 * we want the extent entry threshold to always be at most 1/2 the max
1709	 * bytes we can have, or whatever is less than that.
1710	 */
1711	extent_bytes = max_bytes - bitmap_bytes;
1712	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1713
1714	ctl->extents_thresh =
1715		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1716}
1717
1718static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1719				       struct btrfs_free_space *info,
1720				       u64 offset, u64 bytes)
1721{
1722	unsigned long start, count, end;
1723	int extent_delta = -1;
1724
1725	start = offset_to_bit(info->offset, ctl->unit, offset);
1726	count = bytes_to_bits(bytes, ctl->unit);
1727	end = start + count;
1728	ASSERT(end <= BITS_PER_BITMAP);
1729
1730	bitmap_clear(info->bitmap, start, count);
1731
1732	info->bytes -= bytes;
1733	if (info->max_extent_size > ctl->unit)
1734		info->max_extent_size = 0;
1735
1736	if (start && test_bit(start - 1, info->bitmap))
1737		extent_delta++;
1738
1739	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1740		extent_delta++;
1741
1742	info->bitmap_extents += extent_delta;
1743	if (!btrfs_free_space_trimmed(info)) {
1744		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1745		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1746	}
1747}
1748
1749static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1750			      struct btrfs_free_space *info, u64 offset,
1751			      u64 bytes)
1752{
1753	__bitmap_clear_bits(ctl, info, offset, bytes);
1754	ctl->free_space -= bytes;
1755}
1756
1757static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1758			    struct btrfs_free_space *info, u64 offset,
1759			    u64 bytes)
1760{
1761	unsigned long start, count, end;
1762	int extent_delta = 1;
1763
1764	start = offset_to_bit(info->offset, ctl->unit, offset);
1765	count = bytes_to_bits(bytes, ctl->unit);
1766	end = start + count;
1767	ASSERT(end <= BITS_PER_BITMAP);
1768
1769	bitmap_set(info->bitmap, start, count);
1770
1771	info->bytes += bytes;
1772	ctl->free_space += bytes;
1773
1774	if (start && test_bit(start - 1, info->bitmap))
1775		extent_delta--;
1776
1777	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1778		extent_delta--;
1779
1780	info->bitmap_extents += extent_delta;
1781	if (!btrfs_free_space_trimmed(info)) {
1782		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1783		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1784	}
1785}
1786
1787/*
1788 * If we can not find suitable extent, we will use bytes to record
1789 * the size of the max extent.
1790 */
1791static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1792			 struct btrfs_free_space *bitmap_info, u64 *offset,
1793			 u64 *bytes, bool for_alloc)
1794{
1795	unsigned long found_bits = 0;
1796	unsigned long max_bits = 0;
1797	unsigned long bits, i;
1798	unsigned long next_zero;
1799	unsigned long extent_bits;
1800
1801	/*
1802	 * Skip searching the bitmap if we don't have a contiguous section that
1803	 * is large enough for this allocation.
1804	 */
1805	if (for_alloc &&
1806	    bitmap_info->max_extent_size &&
1807	    bitmap_info->max_extent_size < *bytes) {
1808		*bytes = bitmap_info->max_extent_size;
1809		return -1;
1810	}
1811
1812	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1813			  max_t(u64, *offset, bitmap_info->offset));
1814	bits = bytes_to_bits(*bytes, ctl->unit);
1815
1816	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1817		if (for_alloc && bits == 1) {
1818			found_bits = 1;
1819			break;
1820		}
1821		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1822					       BITS_PER_BITMAP, i);
1823		extent_bits = next_zero - i;
1824		if (extent_bits >= bits) {
1825			found_bits = extent_bits;
1826			break;
1827		} else if (extent_bits > max_bits) {
1828			max_bits = extent_bits;
1829		}
1830		i = next_zero;
1831	}
1832
1833	if (found_bits) {
1834		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1835		*bytes = (u64)(found_bits) * ctl->unit;
1836		return 0;
1837	}
1838
1839	*bytes = (u64)(max_bits) * ctl->unit;
1840	bitmap_info->max_extent_size = *bytes;
1841	return -1;
1842}
1843
1844static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1845{
1846	if (entry->bitmap)
1847		return entry->max_extent_size;
1848	return entry->bytes;
1849}
1850
1851/* Cache the size of the max extent in bytes */
1852static struct btrfs_free_space *
1853find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1854		unsigned long align, u64 *max_extent_size)
1855{
1856	struct btrfs_free_space *entry;
1857	struct rb_node *node;
1858	u64 tmp;
1859	u64 align_off;
1860	int ret;
1861
1862	if (!ctl->free_space_offset.rb_node)
1863		goto out;
1864
1865	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1866	if (!entry)
1867		goto out;
1868
1869	for (node = &entry->offset_index; node; node = rb_next(node)) {
1870		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1871		if (entry->bytes < *bytes) {
1872			*max_extent_size = max(get_max_extent_size(entry),
1873					       *max_extent_size);
1874			continue;
1875		}
1876
1877		/* make sure the space returned is big enough
1878		 * to match our requested alignment
1879		 */
1880		if (*bytes >= align) {
1881			tmp = entry->offset - ctl->start + align - 1;
1882			tmp = div64_u64(tmp, align);
1883			tmp = tmp * align + ctl->start;
1884			align_off = tmp - entry->offset;
1885		} else {
1886			align_off = 0;
1887			tmp = entry->offset;
1888		}
1889
1890		if (entry->bytes < *bytes + align_off) {
1891			*max_extent_size = max(get_max_extent_size(entry),
1892					       *max_extent_size);
1893			continue;
1894		}
1895
1896		if (entry->bitmap) {
1897			u64 size = *bytes;
1898
1899			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1900			if (!ret) {
1901				*offset = tmp;
1902				*bytes = size;
1903				return entry;
1904			} else {
1905				*max_extent_size =
1906					max(get_max_extent_size(entry),
1907					    *max_extent_size);
1908			}
1909			continue;
1910		}
1911
1912		*offset = tmp;
1913		*bytes = entry->bytes - align_off;
1914		return entry;
1915	}
1916out:
1917	return NULL;
1918}
1919
1920static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
1921				struct btrfs_free_space *bitmap_info)
1922{
1923	struct btrfs_block_group *block_group = ctl->private;
1924	u64 bytes = bitmap_info->bytes;
1925	unsigned int rs, re;
1926	int count = 0;
1927
1928	if (!block_group || !bytes)
1929		return count;
1930
1931	bitmap_for_each_set_region(bitmap_info->bitmap, rs, re, 0,
1932				   BITS_PER_BITMAP) {
1933		bytes -= (rs - re) * ctl->unit;
1934		count++;
1935
1936		if (!bytes)
1937			break;
1938	}
1939
1940	return count;
1941}
1942
1943static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1944			   struct btrfs_free_space *info, u64 offset)
1945{
1946	info->offset = offset_to_bitmap(ctl, offset);
1947	info->bytes = 0;
1948	info->bitmap_extents = 0;
1949	INIT_LIST_HEAD(&info->list);
1950	link_free_space(ctl, info);
1951	ctl->total_bitmaps++;
1952
1953	ctl->op->recalc_thresholds(ctl);
1954}
1955
1956static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1957			struct btrfs_free_space *bitmap_info)
1958{
1959	/*
1960	 * Normally when this is called, the bitmap is completely empty. However,
1961	 * if we are blowing up the free space cache for one reason or another
1962	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
1963	 * we may leave stats on the table.
1964	 */
1965	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
1966		ctl->discardable_extents[BTRFS_STAT_CURR] -=
1967			bitmap_info->bitmap_extents;
1968		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
1969
1970	}
1971	unlink_free_space(ctl, bitmap_info);
1972	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1973	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1974	ctl->total_bitmaps--;
1975	ctl->op->recalc_thresholds(ctl);
1976}
1977
1978static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1979			      struct btrfs_free_space *bitmap_info,
1980			      u64 *offset, u64 *bytes)
1981{
1982	u64 end;
1983	u64 search_start, search_bytes;
1984	int ret;
1985
1986again:
1987	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1988
1989	/*
1990	 * We need to search for bits in this bitmap.  We could only cover some
1991	 * of the extent in this bitmap thanks to how we add space, so we need
1992	 * to search for as much as it as we can and clear that amount, and then
1993	 * go searching for the next bit.
1994	 */
1995	search_start = *offset;
1996	search_bytes = ctl->unit;
1997	search_bytes = min(search_bytes, end - search_start + 1);
1998	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1999			    false);
2000	if (ret < 0 || search_start != *offset)
2001		return -EINVAL;
2002
2003	/* We may have found more bits than what we need */
2004	search_bytes = min(search_bytes, *bytes);
2005
2006	/* Cannot clear past the end of the bitmap */
2007	search_bytes = min(search_bytes, end - search_start + 1);
2008
2009	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
2010	*offset += search_bytes;
2011	*bytes -= search_bytes;
2012
2013	if (*bytes) {
2014		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2015		if (!bitmap_info->bytes)
2016			free_bitmap(ctl, bitmap_info);
2017
2018		/*
2019		 * no entry after this bitmap, but we still have bytes to
2020		 * remove, so something has gone wrong.
2021		 */
2022		if (!next)
2023			return -EINVAL;
2024
2025		bitmap_info = rb_entry(next, struct btrfs_free_space,
2026				       offset_index);
2027
2028		/*
2029		 * if the next entry isn't a bitmap we need to return to let the
2030		 * extent stuff do its work.
2031		 */
2032		if (!bitmap_info->bitmap)
2033			return -EAGAIN;
2034
2035		/*
2036		 * Ok the next item is a bitmap, but it may not actually hold
2037		 * the information for the rest of this free space stuff, so
2038		 * look for it, and if we don't find it return so we can try
2039		 * everything over again.
2040		 */
2041		search_start = *offset;
2042		search_bytes = ctl->unit;
2043		ret = search_bitmap(ctl, bitmap_info, &search_start,
2044				    &search_bytes, false);
2045		if (ret < 0 || search_start != *offset)
2046			return -EAGAIN;
2047
2048		goto again;
2049	} else if (!bitmap_info->bytes)
2050		free_bitmap(ctl, bitmap_info);
2051
2052	return 0;
2053}
2054
2055static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2056			       struct btrfs_free_space *info, u64 offset,
2057			       u64 bytes, enum btrfs_trim_state trim_state)
2058{
2059	u64 bytes_to_set = 0;
2060	u64 end;
2061
2062	/*
2063	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2064	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2065	 */
2066	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2067		if (btrfs_free_space_trimmed(info)) {
2068			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2069				info->bitmap_extents;
2070			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2071		}
2072		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2073	}
2074
2075	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2076
2077	bytes_to_set = min(end - offset, bytes);
2078
2079	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2080
2081	/*
2082	 * We set some bytes, we have no idea what the max extent size is
2083	 * anymore.
2084	 */
2085	info->max_extent_size = 0;
2086
2087	return bytes_to_set;
2088
2089}
2090
2091static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2092		      struct btrfs_free_space *info)
2093{
2094	struct btrfs_block_group *block_group = ctl->private;
2095	struct btrfs_fs_info *fs_info = block_group->fs_info;
2096	bool forced = false;
2097
2098#ifdef CONFIG_BTRFS_DEBUG
2099	if (btrfs_should_fragment_free_space(block_group))
2100		forced = true;
2101#endif
2102
2103	/* This is a way to reclaim large regions from the bitmaps. */
2104	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2105		return false;
2106
2107	/*
2108	 * If we are below the extents threshold then we can add this as an
2109	 * extent, and don't have to deal with the bitmap
2110	 */
2111	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2112		/*
2113		 * If this block group has some small extents we don't want to
2114		 * use up all of our free slots in the cache with them, we want
2115		 * to reserve them to larger extents, however if we have plenty
2116		 * of cache left then go ahead an dadd them, no sense in adding
2117		 * the overhead of a bitmap if we don't have to.
2118		 */
2119		if (info->bytes <= fs_info->sectorsize * 8) {
2120			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2121				return false;
2122		} else {
2123			return false;
2124		}
2125	}
2126
2127	/*
2128	 * The original block groups from mkfs can be really small, like 8
2129	 * megabytes, so don't bother with a bitmap for those entries.  However
2130	 * some block groups can be smaller than what a bitmap would cover but
2131	 * are still large enough that they could overflow the 32k memory limit,
2132	 * so allow those block groups to still be allowed to have a bitmap
2133	 * entry.
2134	 */
2135	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2136		return false;
2137
2138	return true;
2139}
2140
2141static const struct btrfs_free_space_op free_space_op = {
2142	.recalc_thresholds	= recalculate_thresholds,
2143	.use_bitmap		= use_bitmap,
2144};
2145
2146static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2147			      struct btrfs_free_space *info)
2148{
2149	struct btrfs_free_space *bitmap_info;
2150	struct btrfs_block_group *block_group = NULL;
2151	int added = 0;
2152	u64 bytes, offset, bytes_added;
2153	enum btrfs_trim_state trim_state;
2154	int ret;
2155
2156	bytes = info->bytes;
2157	offset = info->offset;
2158	trim_state = info->trim_state;
2159
2160	if (!ctl->op->use_bitmap(ctl, info))
2161		return 0;
2162
2163	if (ctl->op == &free_space_op)
2164		block_group = ctl->private;
2165again:
2166	/*
2167	 * Since we link bitmaps right into the cluster we need to see if we
2168	 * have a cluster here, and if so and it has our bitmap we need to add
2169	 * the free space to that bitmap.
2170	 */
2171	if (block_group && !list_empty(&block_group->cluster_list)) {
2172		struct btrfs_free_cluster *cluster;
2173		struct rb_node *node;
2174		struct btrfs_free_space *entry;
2175
2176		cluster = list_entry(block_group->cluster_list.next,
2177				     struct btrfs_free_cluster,
2178				     block_group_list);
2179		spin_lock(&cluster->lock);
2180		node = rb_first(&cluster->root);
2181		if (!node) {
2182			spin_unlock(&cluster->lock);
2183			goto no_cluster_bitmap;
2184		}
2185
2186		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2187		if (!entry->bitmap) {
2188			spin_unlock(&cluster->lock);
2189			goto no_cluster_bitmap;
2190		}
2191
2192		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2193			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2194							  bytes, trim_state);
2195			bytes -= bytes_added;
2196			offset += bytes_added;
2197		}
2198		spin_unlock(&cluster->lock);
2199		if (!bytes) {
2200			ret = 1;
2201			goto out;
2202		}
2203	}
2204
2205no_cluster_bitmap:
2206	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2207					 1, 0);
2208	if (!bitmap_info) {
2209		ASSERT(added == 0);
2210		goto new_bitmap;
2211	}
2212
2213	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2214					  trim_state);
2215	bytes -= bytes_added;
2216	offset += bytes_added;
2217	added = 0;
2218
2219	if (!bytes) {
2220		ret = 1;
2221		goto out;
2222	} else
2223		goto again;
2224
2225new_bitmap:
2226	if (info && info->bitmap) {
2227		add_new_bitmap(ctl, info, offset);
2228		added = 1;
2229		info = NULL;
2230		goto again;
2231	} else {
2232		spin_unlock(&ctl->tree_lock);
2233
2234		/* no pre-allocated info, allocate a new one */
2235		if (!info) {
2236			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2237						 GFP_NOFS);
2238			if (!info) {
2239				spin_lock(&ctl->tree_lock);
2240				ret = -ENOMEM;
2241				goto out;
2242			}
2243		}
2244
2245		/* allocate the bitmap */
2246		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2247						 GFP_NOFS);
2248		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2249		spin_lock(&ctl->tree_lock);
2250		if (!info->bitmap) {
2251			ret = -ENOMEM;
2252			goto out;
2253		}
2254		goto again;
2255	}
2256
2257out:
2258	if (info) {
2259		if (info->bitmap)
2260			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2261					info->bitmap);
2262		kmem_cache_free(btrfs_free_space_cachep, info);
2263	}
2264
2265	return ret;
2266}
2267
2268/*
2269 * Free space merging rules:
2270 *  1) Merge trimmed areas together
2271 *  2) Let untrimmed areas coalesce with trimmed areas
2272 *  3) Always pull neighboring regions from bitmaps
2273 *
2274 * The above rules are for when we merge free space based on btrfs_trim_state.
2275 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2276 * same reason: to promote larger extent regions which makes life easier for
2277 * find_free_extent().  Rule 2 enables coalescing based on the common path
2278 * being returning free space from btrfs_finish_extent_commit().  So when free
2279 * space is trimmed, it will prevent aggregating trimmed new region and
2280 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2281 * and provide find_free_extent() with the largest extents possible hoping for
2282 * the reuse path.
2283 */
2284static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2285			  struct btrfs_free_space *info, bool update_stat)
2286{
2287	struct btrfs_free_space *left_info = NULL;
2288	struct btrfs_free_space *right_info;
2289	bool merged = false;
2290	u64 offset = info->offset;
2291	u64 bytes = info->bytes;
2292	const bool is_trimmed = btrfs_free_space_trimmed(info);
2293
2294	/*
2295	 * first we want to see if there is free space adjacent to the range we
2296	 * are adding, if there is remove that struct and add a new one to
2297	 * cover the entire range
2298	 */
2299	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2300	if (right_info && rb_prev(&right_info->offset_index))
2301		left_info = rb_entry(rb_prev(&right_info->offset_index),
2302				     struct btrfs_free_space, offset_index);
2303	else if (!right_info)
2304		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2305
2306	/* See try_merge_free_space() comment. */
2307	if (right_info && !right_info->bitmap &&
2308	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2309		if (update_stat)
2310			unlink_free_space(ctl, right_info);
2311		else
2312			__unlink_free_space(ctl, right_info);
2313		info->bytes += right_info->bytes;
2314		kmem_cache_free(btrfs_free_space_cachep, right_info);
2315		merged = true;
2316	}
2317
2318	/* See try_merge_free_space() comment. */
2319	if (left_info && !left_info->bitmap &&
2320	    left_info->offset + left_info->bytes == offset &&
2321	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2322		if (update_stat)
2323			unlink_free_space(ctl, left_info);
2324		else
2325			__unlink_free_space(ctl, left_info);
2326		info->offset = left_info->offset;
2327		info->bytes += left_info->bytes;
2328		kmem_cache_free(btrfs_free_space_cachep, left_info);
2329		merged = true;
2330	}
2331
2332	return merged;
2333}
2334
2335static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2336				     struct btrfs_free_space *info,
2337				     bool update_stat)
2338{
2339	struct btrfs_free_space *bitmap;
2340	unsigned long i;
2341	unsigned long j;
2342	const u64 end = info->offset + info->bytes;
2343	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2344	u64 bytes;
2345
2346	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2347	if (!bitmap)
2348		return false;
2349
2350	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2351	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2352	if (j == i)
2353		return false;
2354	bytes = (j - i) * ctl->unit;
2355	info->bytes += bytes;
2356
2357	/* See try_merge_free_space() comment. */
2358	if (!btrfs_free_space_trimmed(bitmap))
2359		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2360
2361	if (update_stat)
2362		bitmap_clear_bits(ctl, bitmap, end, bytes);
2363	else
2364		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2365
2366	if (!bitmap->bytes)
2367		free_bitmap(ctl, bitmap);
2368
2369	return true;
2370}
2371
2372static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2373				       struct btrfs_free_space *info,
2374				       bool update_stat)
2375{
2376	struct btrfs_free_space *bitmap;
2377	u64 bitmap_offset;
2378	unsigned long i;
2379	unsigned long j;
2380	unsigned long prev_j;
2381	u64 bytes;
2382
2383	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2384	/* If we're on a boundary, try the previous logical bitmap. */
2385	if (bitmap_offset == info->offset) {
2386		if (info->offset == 0)
2387			return false;
2388		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2389	}
2390
2391	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2392	if (!bitmap)
2393		return false;
2394
2395	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2396	j = 0;
2397	prev_j = (unsigned long)-1;
2398	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2399		if (j > i)
2400			break;
2401		prev_j = j;
2402	}
2403	if (prev_j == i)
2404		return false;
2405
2406	if (prev_j == (unsigned long)-1)
2407		bytes = (i + 1) * ctl->unit;
2408	else
2409		bytes = (i - prev_j) * ctl->unit;
2410
2411	info->offset -= bytes;
2412	info->bytes += bytes;
2413
2414	/* See try_merge_free_space() comment. */
2415	if (!btrfs_free_space_trimmed(bitmap))
2416		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2417
2418	if (update_stat)
2419		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2420	else
2421		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2422
2423	if (!bitmap->bytes)
2424		free_bitmap(ctl, bitmap);
2425
2426	return true;
2427}
2428
2429/*
2430 * We prefer always to allocate from extent entries, both for clustered and
2431 * non-clustered allocation requests. So when attempting to add a new extent
2432 * entry, try to see if there's adjacent free space in bitmap entries, and if
2433 * there is, migrate that space from the bitmaps to the extent.
2434 * Like this we get better chances of satisfying space allocation requests
2435 * because we attempt to satisfy them based on a single cache entry, and never
2436 * on 2 or more entries - even if the entries represent a contiguous free space
2437 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2438 * ends).
2439 */
2440static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2441			      struct btrfs_free_space *info,
2442			      bool update_stat)
2443{
2444	/*
2445	 * Only work with disconnected entries, as we can change their offset,
2446	 * and must be extent entries.
2447	 */
2448	ASSERT(!info->bitmap);
2449	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2450
2451	if (ctl->total_bitmaps > 0) {
2452		bool stole_end;
2453		bool stole_front = false;
2454
2455		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2456		if (ctl->total_bitmaps > 0)
2457			stole_front = steal_from_bitmap_to_front(ctl, info,
2458								 update_stat);
2459
2460		if (stole_end || stole_front)
2461			try_merge_free_space(ctl, info, update_stat);
2462	}
2463}
2464
2465int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2466			   struct btrfs_free_space_ctl *ctl,
2467			   u64 offset, u64 bytes,
2468			   enum btrfs_trim_state trim_state)
2469{
2470	struct btrfs_block_group *block_group = ctl->private;
2471	struct btrfs_free_space *info;
2472	int ret = 0;
2473	u64 filter_bytes = bytes;
2474
2475	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2476	if (!info)
2477		return -ENOMEM;
2478
2479	info->offset = offset;
2480	info->bytes = bytes;
2481	info->trim_state = trim_state;
2482	RB_CLEAR_NODE(&info->offset_index);
2483
2484	spin_lock(&ctl->tree_lock);
2485
2486	if (try_merge_free_space(ctl, info, true))
2487		goto link;
2488
2489	/*
2490	 * There was no extent directly to the left or right of this new
2491	 * extent then we know we're going to have to allocate a new extent, so
2492	 * before we do that see if we need to drop this into a bitmap
2493	 */
2494	ret = insert_into_bitmap(ctl, info);
2495	if (ret < 0) {
2496		goto out;
2497	} else if (ret) {
2498		ret = 0;
2499		goto out;
2500	}
2501link:
2502	/*
2503	 * Only steal free space from adjacent bitmaps if we're sure we're not
2504	 * going to add the new free space to existing bitmap entries - because
2505	 * that would mean unnecessary work that would be reverted. Therefore
2506	 * attempt to steal space from bitmaps if we're adding an extent entry.
2507	 */
2508	steal_from_bitmap(ctl, info, true);
2509
2510	filter_bytes = max(filter_bytes, info->bytes);
2511
2512	ret = link_free_space(ctl, info);
2513	if (ret)
2514		kmem_cache_free(btrfs_free_space_cachep, info);
2515out:
2516	btrfs_discard_update_discardable(block_group, ctl);
2517	spin_unlock(&ctl->tree_lock);
2518
2519	if (ret) {
2520		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2521		ASSERT(ret != -EEXIST);
2522	}
2523
2524	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2525		btrfs_discard_check_filter(block_group, filter_bytes);
2526		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2527	}
2528
2529	return ret;
2530}
2531
2532int btrfs_add_free_space(struct btrfs_block_group *block_group,
2533			 u64 bytenr, u64 size)
2534{
2535	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2536
2537	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2538		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2539
2540	return __btrfs_add_free_space(block_group->fs_info,
2541				      block_group->free_space_ctl,
2542				      bytenr, size, trim_state);
2543}
2544
2545/*
2546 * This is a subtle distinction because when adding free space back in general,
2547 * we want it to be added as untrimmed for async. But in the case where we add
2548 * it on loading of a block group, we want to consider it trimmed.
2549 */
2550int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2551				       u64 bytenr, u64 size)
2552{
2553	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2554
2555	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2556	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2557		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2558
2559	return __btrfs_add_free_space(block_group->fs_info,
2560				      block_group->free_space_ctl,
2561				      bytenr, size, trim_state);
2562}
2563
2564int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2565			    u64 offset, u64 bytes)
2566{
2567	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2568	struct btrfs_free_space *info;
2569	int ret;
2570	bool re_search = false;
2571
2572	spin_lock(&ctl->tree_lock);
2573
2574again:
2575	ret = 0;
2576	if (!bytes)
2577		goto out_lock;
2578
2579	info = tree_search_offset(ctl, offset, 0, 0);
2580	if (!info) {
2581		/*
2582		 * oops didn't find an extent that matched the space we wanted
2583		 * to remove, look for a bitmap instead
2584		 */
2585		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2586					  1, 0);
2587		if (!info) {
2588			/*
2589			 * If we found a partial bit of our free space in a
2590			 * bitmap but then couldn't find the other part this may
2591			 * be a problem, so WARN about it.
2592			 */
2593			WARN_ON(re_search);
2594			goto out_lock;
2595		}
2596	}
2597
2598	re_search = false;
2599	if (!info->bitmap) {
2600		unlink_free_space(ctl, info);
2601		if (offset == info->offset) {
2602			u64 to_free = min(bytes, info->bytes);
2603
2604			info->bytes -= to_free;
2605			info->offset += to_free;
2606			if (info->bytes) {
2607				ret = link_free_space(ctl, info);
2608				WARN_ON(ret);
2609			} else {
2610				kmem_cache_free(btrfs_free_space_cachep, info);
2611			}
2612
2613			offset += to_free;
2614			bytes -= to_free;
2615			goto again;
2616		} else {
2617			u64 old_end = info->bytes + info->offset;
2618
2619			info->bytes = offset - info->offset;
2620			ret = link_free_space(ctl, info);
2621			WARN_ON(ret);
2622			if (ret)
2623				goto out_lock;
2624
2625			/* Not enough bytes in this entry to satisfy us */
2626			if (old_end < offset + bytes) {
2627				bytes -= old_end - offset;
2628				offset = old_end;
2629				goto again;
2630			} else if (old_end == offset + bytes) {
2631				/* all done */
2632				goto out_lock;
2633			}
2634			spin_unlock(&ctl->tree_lock);
2635
2636			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
2637						     offset + bytes,
2638						     old_end - (offset + bytes),
2639						     info->trim_state);
2640			WARN_ON(ret);
2641			goto out;
2642		}
2643	}
2644
2645	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2646	if (ret == -EAGAIN) {
2647		re_search = true;
2648		goto again;
2649	}
2650out_lock:
2651	btrfs_discard_update_discardable(block_group, ctl);
2652	spin_unlock(&ctl->tree_lock);
2653out:
2654	return ret;
2655}
2656
2657void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2658			   u64 bytes)
2659{
2660	struct btrfs_fs_info *fs_info = block_group->fs_info;
2661	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2662	struct btrfs_free_space *info;
2663	struct rb_node *n;
2664	int count = 0;
2665
2666	spin_lock(&ctl->tree_lock);
2667	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2668		info = rb_entry(n, struct btrfs_free_space, offset_index);
2669		if (info->bytes >= bytes && !block_group->ro)
2670			count++;
2671		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2672			   info->offset, info->bytes,
2673		       (info->bitmap) ? "yes" : "no");
2674	}
2675	spin_unlock(&ctl->tree_lock);
2676	btrfs_info(fs_info, "block group has cluster?: %s",
2677	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2678	btrfs_info(fs_info,
2679		   "%d blocks of free space at or bigger than bytes is", count);
2680}
2681
2682void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group)
2683{
2684	struct btrfs_fs_info *fs_info = block_group->fs_info;
2685	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2686
2687	spin_lock_init(&ctl->tree_lock);
2688	ctl->unit = fs_info->sectorsize;
2689	ctl->start = block_group->start;
2690	ctl->private = block_group;
2691	ctl->op = &free_space_op;
2692	INIT_LIST_HEAD(&ctl->trimming_ranges);
2693	mutex_init(&ctl->cache_writeout_mutex);
2694
2695	/*
2696	 * we only want to have 32k of ram per block group for keeping
2697	 * track of free space, and if we pass 1/2 of that we want to
2698	 * start converting things over to using bitmaps
2699	 */
2700	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2701}
2702
2703/*
2704 * for a given cluster, put all of its extents back into the free
2705 * space cache.  If the block group passed doesn't match the block group
2706 * pointed to by the cluster, someone else raced in and freed the
2707 * cluster already.  In that case, we just return without changing anything
2708 */
2709static void __btrfs_return_cluster_to_free_space(
2710			     struct btrfs_block_group *block_group,
2711			     struct btrfs_free_cluster *cluster)
2712{
2713	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2714	struct btrfs_free_space *entry;
2715	struct rb_node *node;
2716
2717	spin_lock(&cluster->lock);
2718	if (cluster->block_group != block_group) {
2719		spin_unlock(&cluster->lock);
2720		return;
2721	}
2722
2723	cluster->block_group = NULL;
2724	cluster->window_start = 0;
2725	list_del_init(&cluster->block_group_list);
2726
2727	node = rb_first(&cluster->root);
2728	while (node) {
2729		bool bitmap;
2730
2731		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2732		node = rb_next(&entry->offset_index);
2733		rb_erase(&entry->offset_index, &cluster->root);
2734		RB_CLEAR_NODE(&entry->offset_index);
2735
2736		bitmap = (entry->bitmap != NULL);
2737		if (!bitmap) {
2738			/* Merging treats extents as if they were new */
2739			if (!btrfs_free_space_trimmed(entry)) {
2740				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2741				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2742					entry->bytes;
2743			}
2744
2745			try_merge_free_space(ctl, entry, false);
2746			steal_from_bitmap(ctl, entry, false);
2747
2748			/* As we insert directly, update these statistics */
2749			if (!btrfs_free_space_trimmed(entry)) {
2750				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2751				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
2752					entry->bytes;
2753			}
2754		}
2755		tree_insert_offset(&ctl->free_space_offset,
2756				   entry->offset, &entry->offset_index, bitmap);
2757	}
2758	cluster->root = RB_ROOT;
2759	spin_unlock(&cluster->lock);
2760	btrfs_put_block_group(block_group);
2761}
2762
2763static void __btrfs_remove_free_space_cache_locked(
2764				struct btrfs_free_space_ctl *ctl)
2765{
2766	struct btrfs_free_space *info;
2767	struct rb_node *node;
2768
2769	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2770		info = rb_entry(node, struct btrfs_free_space, offset_index);
2771		if (!info->bitmap) {
2772			unlink_free_space(ctl, info);
2773			kmem_cache_free(btrfs_free_space_cachep, info);
2774		} else {
2775			free_bitmap(ctl, info);
2776		}
2777
2778		cond_resched_lock(&ctl->tree_lock);
2779	}
2780}
2781
2782void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2783{
2784	spin_lock(&ctl->tree_lock);
2785	__btrfs_remove_free_space_cache_locked(ctl);
2786	if (ctl->private)
2787		btrfs_discard_update_discardable(ctl->private, ctl);
2788	spin_unlock(&ctl->tree_lock);
2789}
2790
2791void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2792{
2793	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2794	struct btrfs_free_cluster *cluster;
2795	struct list_head *head;
2796
2797	spin_lock(&ctl->tree_lock);
2798	while ((head = block_group->cluster_list.next) !=
2799	       &block_group->cluster_list) {
2800		cluster = list_entry(head, struct btrfs_free_cluster,
2801				     block_group_list);
2802
2803		WARN_ON(cluster->block_group != block_group);
2804		__btrfs_return_cluster_to_free_space(block_group, cluster);
2805
2806		cond_resched_lock(&ctl->tree_lock);
2807	}
2808	__btrfs_remove_free_space_cache_locked(ctl);
2809	btrfs_discard_update_discardable(block_group, ctl);
2810	spin_unlock(&ctl->tree_lock);
2811
2812}
2813
2814/**
2815 * btrfs_is_free_space_trimmed - see if everything is trimmed
2816 * @block_group: block_group of interest
2817 *
2818 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
2819 */
2820bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
2821{
2822	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2823	struct btrfs_free_space *info;
2824	struct rb_node *node;
2825	bool ret = true;
2826
2827	spin_lock(&ctl->tree_lock);
2828	node = rb_first(&ctl->free_space_offset);
2829
2830	while (node) {
2831		info = rb_entry(node, struct btrfs_free_space, offset_index);
2832
2833		if (!btrfs_free_space_trimmed(info)) {
2834			ret = false;
2835			break;
2836		}
2837
2838		node = rb_next(node);
2839	}
2840
2841	spin_unlock(&ctl->tree_lock);
2842	return ret;
2843}
2844
2845u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2846			       u64 offset, u64 bytes, u64 empty_size,
2847			       u64 *max_extent_size)
2848{
2849	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2850	struct btrfs_discard_ctl *discard_ctl =
2851					&block_group->fs_info->discard_ctl;
2852	struct btrfs_free_space *entry = NULL;
2853	u64 bytes_search = bytes + empty_size;
2854	u64 ret = 0;
2855	u64 align_gap = 0;
2856	u64 align_gap_len = 0;
2857	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2858
2859	spin_lock(&ctl->tree_lock);
2860	entry = find_free_space(ctl, &offset, &bytes_search,
2861				block_group->full_stripe_len, max_extent_size);
2862	if (!entry)
2863		goto out;
2864
2865	ret = offset;
2866	if (entry->bitmap) {
2867		bitmap_clear_bits(ctl, entry, offset, bytes);
2868
2869		if (!btrfs_free_space_trimmed(entry))
2870			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2871
2872		if (!entry->bytes)
2873			free_bitmap(ctl, entry);
2874	} else {
2875		unlink_free_space(ctl, entry);
2876		align_gap_len = offset - entry->offset;
2877		align_gap = entry->offset;
2878		align_gap_trim_state = entry->trim_state;
2879
2880		if (!btrfs_free_space_trimmed(entry))
2881			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2882
2883		entry->offset = offset + bytes;
2884		WARN_ON(entry->bytes < bytes + align_gap_len);
2885
2886		entry->bytes -= bytes + align_gap_len;
2887		if (!entry->bytes)
2888			kmem_cache_free(btrfs_free_space_cachep, entry);
2889		else
2890			link_free_space(ctl, entry);
2891	}
2892out:
2893	btrfs_discard_update_discardable(block_group, ctl);
2894	spin_unlock(&ctl->tree_lock);
2895
2896	if (align_gap_len)
2897		__btrfs_add_free_space(block_group->fs_info, ctl,
2898				       align_gap, align_gap_len,
2899				       align_gap_trim_state);
2900	return ret;
2901}
2902
2903/*
2904 * given a cluster, put all of its extents back into the free space
2905 * cache.  If a block group is passed, this function will only free
2906 * a cluster that belongs to the passed block group.
2907 *
2908 * Otherwise, it'll get a reference on the block group pointed to by the
2909 * cluster and remove the cluster from it.
2910 */
2911void btrfs_return_cluster_to_free_space(
2912			       struct btrfs_block_group *block_group,
2913			       struct btrfs_free_cluster *cluster)
2914{
2915	struct btrfs_free_space_ctl *ctl;
2916
2917	/* first, get a safe pointer to the block group */
2918	spin_lock(&cluster->lock);
2919	if (!block_group) {
2920		block_group = cluster->block_group;
2921		if (!block_group) {
2922			spin_unlock(&cluster->lock);
2923			return;
2924		}
2925	} else if (cluster->block_group != block_group) {
2926		/* someone else has already freed it don't redo their work */
2927		spin_unlock(&cluster->lock);
2928		return;
2929	}
2930	btrfs_get_block_group(block_group);
2931	spin_unlock(&cluster->lock);
2932
2933	ctl = block_group->free_space_ctl;
2934
2935	/* now return any extents the cluster had on it */
2936	spin_lock(&ctl->tree_lock);
2937	__btrfs_return_cluster_to_free_space(block_group, cluster);
2938	spin_unlock(&ctl->tree_lock);
2939
2940	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
2941
2942	/* finally drop our ref */
2943	btrfs_put_block_group(block_group);
2944}
2945
2946static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
2947				   struct btrfs_free_cluster *cluster,
2948				   struct btrfs_free_space *entry,
2949				   u64 bytes, u64 min_start,
2950				   u64 *max_extent_size)
2951{
2952	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2953	int err;
2954	u64 search_start = cluster->window_start;
2955	u64 search_bytes = bytes;
2956	u64 ret = 0;
2957
2958	search_start = min_start;
2959	search_bytes = bytes;
2960
2961	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2962	if (err) {
2963		*max_extent_size = max(get_max_extent_size(entry),
2964				       *max_extent_size);
2965		return 0;
2966	}
2967
2968	ret = search_start;
2969	__bitmap_clear_bits(ctl, entry, ret, bytes);
2970
2971	return ret;
2972}
2973
2974/*
2975 * given a cluster, try to allocate 'bytes' from it, returns 0
2976 * if it couldn't find anything suitably large, or a logical disk offset
2977 * if things worked out
2978 */
2979u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
2980			     struct btrfs_free_cluster *cluster, u64 bytes,
2981			     u64 min_start, u64 *max_extent_size)
2982{
2983	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2984	struct btrfs_discard_ctl *discard_ctl =
2985					&block_group->fs_info->discard_ctl;
2986	struct btrfs_free_space *entry = NULL;
2987	struct rb_node *node;
2988	u64 ret = 0;
2989
2990	spin_lock(&cluster->lock);
2991	if (bytes > cluster->max_size)
2992		goto out;
2993
2994	if (cluster->block_group != block_group)
2995		goto out;
2996
2997	node = rb_first(&cluster->root);
2998	if (!node)
2999		goto out;
3000
3001	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3002	while (1) {
3003		if (entry->bytes < bytes)
3004			*max_extent_size = max(get_max_extent_size(entry),
3005					       *max_extent_size);
3006
3007		if (entry->bytes < bytes ||
3008		    (!entry->bitmap && entry->offset < min_start)) {
3009			node = rb_next(&entry->offset_index);
3010			if (!node)
3011				break;
3012			entry = rb_entry(node, struct btrfs_free_space,
3013					 offset_index);
3014			continue;
3015		}
3016
3017		if (entry->bitmap) {
3018			ret = btrfs_alloc_from_bitmap(block_group,
3019						      cluster, entry, bytes,
3020						      cluster->window_start,
3021						      max_extent_size);
3022			if (ret == 0) {
3023				node = rb_next(&entry->offset_index);
3024				if (!node)
3025					break;
3026				entry = rb_entry(node, struct btrfs_free_space,
3027						 offset_index);
3028				continue;
3029			}
3030			cluster->window_start += bytes;
3031		} else {
3032			ret = entry->offset;
3033
3034			entry->offset += bytes;
3035			entry->bytes -= bytes;
3036		}
3037
3038		break;
3039	}
3040out:
3041	spin_unlock(&cluster->lock);
3042
3043	if (!ret)
3044		return 0;
3045
3046	spin_lock(&ctl->tree_lock);
3047
3048	if (!btrfs_free_space_trimmed(entry))
3049		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3050
3051	ctl->free_space -= bytes;
3052	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3053		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3054
3055	spin_lock(&cluster->lock);
3056	if (entry->bytes == 0) {
3057		rb_erase(&entry->offset_index, &cluster->root);
3058		ctl->free_extents--;
3059		if (entry->bitmap) {
3060			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3061					entry->bitmap);
3062			ctl->total_bitmaps--;
3063			ctl->op->recalc_thresholds(ctl);
3064		} else if (!btrfs_free_space_trimmed(entry)) {
3065			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3066		}
3067		kmem_cache_free(btrfs_free_space_cachep, entry);
3068	}
3069
3070	spin_unlock(&cluster->lock);
3071	spin_unlock(&ctl->tree_lock);
3072
3073	return ret;
3074}
3075
3076static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3077				struct btrfs_free_space *entry,
3078				struct btrfs_free_cluster *cluster,
3079				u64 offset, u64 bytes,
3080				u64 cont1_bytes, u64 min_bytes)
3081{
3082	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3083	unsigned long next_zero;
3084	unsigned long i;
3085	unsigned long want_bits;
3086	unsigned long min_bits;
3087	unsigned long found_bits;
3088	unsigned long max_bits = 0;
3089	unsigned long start = 0;
3090	unsigned long total_found = 0;
3091	int ret;
3092
3093	i = offset_to_bit(entry->offset, ctl->unit,
3094			  max_t(u64, offset, entry->offset));
3095	want_bits = bytes_to_bits(bytes, ctl->unit);
3096	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3097
3098	/*
3099	 * Don't bother looking for a cluster in this bitmap if it's heavily
3100	 * fragmented.
3101	 */
3102	if (entry->max_extent_size &&
3103	    entry->max_extent_size < cont1_bytes)
3104		return -ENOSPC;
3105again:
3106	found_bits = 0;
3107	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3108		next_zero = find_next_zero_bit(entry->bitmap,
3109					       BITS_PER_BITMAP, i);
3110		if (next_zero - i >= min_bits) {
3111			found_bits = next_zero - i;
3112			if (found_bits > max_bits)
3113				max_bits = found_bits;
3114			break;
3115		}
3116		if (next_zero - i > max_bits)
3117			max_bits = next_zero - i;
3118		i = next_zero;
3119	}
3120
3121	if (!found_bits) {
3122		entry->max_extent_size = (u64)max_bits * ctl->unit;
3123		return -ENOSPC;
3124	}
3125
3126	if (!total_found) {
3127		start = i;
3128		cluster->max_size = 0;
3129	}
3130
3131	total_found += found_bits;
3132
3133	if (cluster->max_size < found_bits * ctl->unit)
3134		cluster->max_size = found_bits * ctl->unit;
3135
3136	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3137		i = next_zero + 1;
3138		goto again;
3139	}
3140
3141	cluster->window_start = start * ctl->unit + entry->offset;
3142	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3143	ret = tree_insert_offset(&cluster->root, entry->offset,
3144				 &entry->offset_index, 1);
3145	ASSERT(!ret); /* -EEXIST; Logic error */
3146
3147	trace_btrfs_setup_cluster(block_group, cluster,
3148				  total_found * ctl->unit, 1);
3149	return 0;
3150}
3151
3152/*
3153 * This searches the block group for just extents to fill the cluster with.
3154 * Try to find a cluster with at least bytes total bytes, at least one
3155 * extent of cont1_bytes, and other clusters of at least min_bytes.
3156 */
3157static noinline int
3158setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3159			struct btrfs_free_cluster *cluster,
3160			struct list_head *bitmaps, u64 offset, u64 bytes,
3161			u64 cont1_bytes, u64 min_bytes)
3162{
3163	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3164	struct btrfs_free_space *first = NULL;
3165	struct btrfs_free_space *entry = NULL;
3166	struct btrfs_free_space *last;
3167	struct rb_node *node;
3168	u64 window_free;
3169	u64 max_extent;
3170	u64 total_size = 0;
3171
3172	entry = tree_search_offset(ctl, offset, 0, 1);
3173	if (!entry)
3174		return -ENOSPC;
3175
3176	/*
3177	 * We don't want bitmaps, so just move along until we find a normal
3178	 * extent entry.
3179	 */
3180	while (entry->bitmap || entry->bytes < min_bytes) {
3181		if (entry->bitmap && list_empty(&entry->list))
3182			list_add_tail(&entry->list, bitmaps);
3183		node = rb_next(&entry->offset_index);
3184		if (!node)
3185			return -ENOSPC;
3186		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3187	}
3188
3189	window_free = entry->bytes;
3190	max_extent = entry->bytes;
3191	first = entry;
3192	last = entry;
3193
3194	for (node = rb_next(&entry->offset_index); node;
3195	     node = rb_next(&entry->offset_index)) {
3196		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3197
3198		if (entry->bitmap) {
3199			if (list_empty(&entry->list))
3200				list_add_tail(&entry->list, bitmaps);
3201			continue;
3202		}
3203
3204		if (entry->bytes < min_bytes)
3205			continue;
3206
3207		last = entry;
3208		window_free += entry->bytes;
3209		if (entry->bytes > max_extent)
3210			max_extent = entry->bytes;
3211	}
3212
3213	if (window_free < bytes || max_extent < cont1_bytes)
3214		return -ENOSPC;
3215
3216	cluster->window_start = first->offset;
3217
3218	node = &first->offset_index;
3219
3220	/*
3221	 * now we've found our entries, pull them out of the free space
3222	 * cache and put them into the cluster rbtree
3223	 */
3224	do {
3225		int ret;
3226
3227		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3228		node = rb_next(&entry->offset_index);
3229		if (entry->bitmap || entry->bytes < min_bytes)
3230			continue;
3231
3232		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3233		ret = tree_insert_offset(&cluster->root, entry->offset,
3234					 &entry->offset_index, 0);
3235		total_size += entry->bytes;
3236		ASSERT(!ret); /* -EEXIST; Logic error */
3237	} while (node && entry != last);
3238
3239	cluster->max_size = max_extent;
3240	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3241	return 0;
3242}
3243
3244/*
3245 * This specifically looks for bitmaps that may work in the cluster, we assume
3246 * that we have already failed to find extents that will work.
3247 */
3248static noinline int
3249setup_cluster_bitmap(struct btrfs_block_group *block_group,
3250		     struct btrfs_free_cluster *cluster,
3251		     struct list_head *bitmaps, u64 offset, u64 bytes,
3252		     u64 cont1_bytes, u64 min_bytes)
3253{
3254	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3255	struct btrfs_free_space *entry = NULL;
3256	int ret = -ENOSPC;
3257	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3258
3259	if (ctl->total_bitmaps == 0)
3260		return -ENOSPC;
3261
3262	/*
3263	 * The bitmap that covers offset won't be in the list unless offset
3264	 * is just its start offset.
3265	 */
3266	if (!list_empty(bitmaps))
3267		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3268
3269	if (!entry || entry->offset != bitmap_offset) {
3270		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3271		if (entry && list_empty(&entry->list))
3272			list_add(&entry->list, bitmaps);
3273	}
3274
3275	list_for_each_entry(entry, bitmaps, list) {
3276		if (entry->bytes < bytes)
3277			continue;
3278		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3279					   bytes, cont1_bytes, min_bytes);
3280		if (!ret)
3281			return 0;
3282	}
3283
3284	/*
3285	 * The bitmaps list has all the bitmaps that record free space
3286	 * starting after offset, so no more search is required.
3287	 */
3288	return -ENOSPC;
3289}
3290
3291/*
3292 * here we try to find a cluster of blocks in a block group.  The goal
3293 * is to find at least bytes+empty_size.
3294 * We might not find them all in one contiguous area.
3295 *
3296 * returns zero and sets up cluster if things worked out, otherwise
3297 * it returns -enospc
3298 */
3299int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3300			     struct btrfs_free_cluster *cluster,
3301			     u64 offset, u64 bytes, u64 empty_size)
3302{
3303	struct btrfs_fs_info *fs_info = block_group->fs_info;
3304	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3305	struct btrfs_free_space *entry, *tmp;
3306	LIST_HEAD(bitmaps);
3307	u64 min_bytes;
3308	u64 cont1_bytes;
3309	int ret;
3310
3311	/*
3312	 * Choose the minimum extent size we'll require for this
3313	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3314	 * For metadata, allow allocates with smaller extents.  For
3315	 * data, keep it dense.
3316	 */
3317	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3318		cont1_bytes = min_bytes = bytes + empty_size;
3319	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3320		cont1_bytes = bytes;
3321		min_bytes = fs_info->sectorsize;
3322	} else {
3323		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3324		min_bytes = fs_info->sectorsize;
3325	}
3326
3327	spin_lock(&ctl->tree_lock);
3328
3329	/*
3330	 * If we know we don't have enough space to make a cluster don't even
3331	 * bother doing all the work to try and find one.
3332	 */
3333	if (ctl->free_space < bytes) {
3334		spin_unlock(&ctl->tree_lock);
3335		return -ENOSPC;
3336	}
3337
3338	spin_lock(&cluster->lock);
3339
3340	/* someone already found a cluster, hooray */
3341	if (cluster->block_group) {
3342		ret = 0;
3343		goto out;
3344	}
3345
3346	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3347				 min_bytes);
3348
3349	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3350				      bytes + empty_size,
3351				      cont1_bytes, min_bytes);
3352	if (ret)
3353		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3354					   offset, bytes + empty_size,
3355					   cont1_bytes, min_bytes);
3356
3357	/* Clear our temporary list */
3358	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3359		list_del_init(&entry->list);
3360
3361	if (!ret) {
3362		btrfs_get_block_group(block_group);
3363		list_add_tail(&cluster->block_group_list,
3364			      &block_group->cluster_list);
3365		cluster->block_group = block_group;
3366	} else {
3367		trace_btrfs_failed_cluster_setup(block_group);
3368	}
3369out:
3370	spin_unlock(&cluster->lock);
3371	spin_unlock(&ctl->tree_lock);
3372
3373	return ret;
3374}
3375
3376/*
3377 * simple code to zero out a cluster
3378 */
3379void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3380{
3381	spin_lock_init(&cluster->lock);
3382	spin_lock_init(&cluster->refill_lock);
3383	cluster->root = RB_ROOT;
3384	cluster->max_size = 0;
3385	cluster->fragmented = false;
3386	INIT_LIST_HEAD(&cluster->block_group_list);
3387	cluster->block_group = NULL;
3388}
3389
3390static int do_trimming(struct btrfs_block_group *block_group,
3391		       u64 *total_trimmed, u64 start, u64 bytes,
3392		       u64 reserved_start, u64 reserved_bytes,
3393		       enum btrfs_trim_state reserved_trim_state,
3394		       struct btrfs_trim_range *trim_entry)
3395{
3396	struct btrfs_space_info *space_info = block_group->space_info;
3397	struct btrfs_fs_info *fs_info = block_group->fs_info;
3398	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3399	int ret;
3400	int update = 0;
3401	const u64 end = start + bytes;
3402	const u64 reserved_end = reserved_start + reserved_bytes;
3403	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3404	u64 trimmed = 0;
3405
3406	spin_lock(&space_info->lock);
3407	spin_lock(&block_group->lock);
3408	if (!block_group->ro) {
3409		block_group->reserved += reserved_bytes;
3410		space_info->bytes_reserved += reserved_bytes;
3411		update = 1;
3412	}
3413	spin_unlock(&block_group->lock);
3414	spin_unlock(&space_info->lock);
3415
3416	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3417	if (!ret) {
3418		*total_trimmed += trimmed;
3419		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3420	}
3421
3422	mutex_lock(&ctl->cache_writeout_mutex);
3423	if (reserved_start < start)
3424		__btrfs_add_free_space(fs_info, ctl, reserved_start,
3425				       start - reserved_start,
3426				       reserved_trim_state);
3427	if (start + bytes < reserved_start + reserved_bytes)
3428		__btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
3429				       reserved_trim_state);
3430	__btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3431	list_del(&trim_entry->list);
3432	mutex_unlock(&ctl->cache_writeout_mutex);
3433
3434	if (update) {
3435		spin_lock(&space_info->lock);
3436		spin_lock(&block_group->lock);
3437		if (block_group->ro)
3438			space_info->bytes_readonly += reserved_bytes;
3439		block_group->reserved -= reserved_bytes;
3440		space_info->bytes_reserved -= reserved_bytes;
3441		spin_unlock(&block_group->lock);
3442		spin_unlock(&space_info->lock);
3443	}
3444
3445	return ret;
3446}
3447
3448/*
3449 * If @async is set, then we will trim 1 region and return.
3450 */
3451static int trim_no_bitmap(struct btrfs_block_group *block_group,
3452			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3453			  bool async)
3454{
3455	struct btrfs_discard_ctl *discard_ctl =
3456					&block_group->fs_info->discard_ctl;
3457	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3458	struct btrfs_free_space *entry;
3459	struct rb_node *node;
3460	int ret = 0;
3461	u64 extent_start;
3462	u64 extent_bytes;
3463	enum btrfs_trim_state extent_trim_state;
3464	u64 bytes;
3465	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3466
3467	while (start < end) {
3468		struct btrfs_trim_range trim_entry;
3469
3470		mutex_lock(&ctl->cache_writeout_mutex);
3471		spin_lock(&ctl->tree_lock);
3472
3473		if (ctl->free_space < minlen)
3474			goto out_unlock;
3475
3476		entry = tree_search_offset(ctl, start, 0, 1);
3477		if (!entry)
3478			goto out_unlock;
3479
3480		/* Skip bitmaps and if async, already trimmed entries */
3481		while (entry->bitmap ||
3482		       (async && btrfs_free_space_trimmed(entry))) {
3483			node = rb_next(&entry->offset_index);
3484			if (!node)
3485				goto out_unlock;
3486			entry = rb_entry(node, struct btrfs_free_space,
3487					 offset_index);
3488		}
3489
3490		if (entry->offset >= end)
3491			goto out_unlock;
3492
3493		extent_start = entry->offset;
3494		extent_bytes = entry->bytes;
3495		extent_trim_state = entry->trim_state;
3496		if (async) {
3497			start = entry->offset;
3498			bytes = entry->bytes;
3499			if (bytes < minlen) {
3500				spin_unlock(&ctl->tree_lock);
3501				mutex_unlock(&ctl->cache_writeout_mutex);
3502				goto next;
3503			}
3504			unlink_free_space(ctl, entry);
3505			/*
3506			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3507			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3508			 * X when we come back around.  So trim it now.
3509			 */
3510			if (max_discard_size &&
3511			    bytes >= (max_discard_size +
3512				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3513				bytes = max_discard_size;
3514				extent_bytes = max_discard_size;
3515				entry->offset += max_discard_size;
3516				entry->bytes -= max_discard_size;
3517				link_free_space(ctl, entry);
3518			} else {
3519				kmem_cache_free(btrfs_free_space_cachep, entry);
3520			}
3521		} else {
3522			start = max(start, extent_start);
3523			bytes = min(extent_start + extent_bytes, end) - start;
3524			if (bytes < minlen) {
3525				spin_unlock(&ctl->tree_lock);
3526				mutex_unlock(&ctl->cache_writeout_mutex);
3527				goto next;
3528			}
3529
3530			unlink_free_space(ctl, entry);
3531			kmem_cache_free(btrfs_free_space_cachep, entry);
3532		}
3533
3534		spin_unlock(&ctl->tree_lock);
3535		trim_entry.start = extent_start;
3536		trim_entry.bytes = extent_bytes;
3537		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3538		mutex_unlock(&ctl->cache_writeout_mutex);
3539
3540		ret = do_trimming(block_group, total_trimmed, start, bytes,
3541				  extent_start, extent_bytes, extent_trim_state,
3542				  &trim_entry);
3543		if (ret) {
3544			block_group->discard_cursor = start + bytes;
3545			break;
3546		}
3547next:
3548		start += bytes;
3549		block_group->discard_cursor = start;
3550		if (async && *total_trimmed)
3551			break;
3552
3553		if (fatal_signal_pending(current)) {
3554			ret = -ERESTARTSYS;
3555			break;
3556		}
3557
3558		cond_resched();
3559	}
3560
3561	return ret;
3562
3563out_unlock:
3564	block_group->discard_cursor = btrfs_block_group_end(block_group);
3565	spin_unlock(&ctl->tree_lock);
3566	mutex_unlock(&ctl->cache_writeout_mutex);
3567
3568	return ret;
3569}
3570
3571/*
3572 * If we break out of trimming a bitmap prematurely, we should reset the
3573 * trimming bit.  In a rather contrieved case, it's possible to race here so
3574 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3575 *
3576 * start = start of bitmap
3577 * end = near end of bitmap
3578 *
3579 * Thread 1:			Thread 2:
3580 * trim_bitmaps(start)
3581 *				trim_bitmaps(end)
3582 *				end_trimming_bitmap()
3583 * reset_trimming_bitmap()
3584 */
3585static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3586{
3587	struct btrfs_free_space *entry;
3588
3589	spin_lock(&ctl->tree_lock);
3590	entry = tree_search_offset(ctl, offset, 1, 0);
3591	if (entry) {
3592		if (btrfs_free_space_trimmed(entry)) {
3593			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3594				entry->bitmap_extents;
3595			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3596		}
3597		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3598	}
3599
3600	spin_unlock(&ctl->tree_lock);
3601}
3602
3603static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3604				struct btrfs_free_space *entry)
3605{
3606	if (btrfs_free_space_trimming_bitmap(entry)) {
3607		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3608		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3609			entry->bitmap_extents;
3610		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3611	}
3612}
3613
3614/*
3615 * If @async is set, then we will trim 1 region and return.
3616 */
3617static int trim_bitmaps(struct btrfs_block_group *block_group,
3618			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3619			u64 maxlen, bool async)
3620{
3621	struct btrfs_discard_ctl *discard_ctl =
3622					&block_group->fs_info->discard_ctl;
3623	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3624	struct btrfs_free_space *entry;
3625	int ret = 0;
3626	int ret2;
3627	u64 bytes;
3628	u64 offset = offset_to_bitmap(ctl, start);
3629	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3630
3631	while (offset < end) {
3632		bool next_bitmap = false;
3633		struct btrfs_trim_range trim_entry;
3634
3635		mutex_lock(&ctl->cache_writeout_mutex);
3636		spin_lock(&ctl->tree_lock);
3637
3638		if (ctl->free_space < minlen) {
3639			block_group->discard_cursor =
3640				btrfs_block_group_end(block_group);
3641			spin_unlock(&ctl->tree_lock);
3642			mutex_unlock(&ctl->cache_writeout_mutex);
3643			break;
3644		}
3645
3646		entry = tree_search_offset(ctl, offset, 1, 0);
3647		/*
3648		 * Bitmaps are marked trimmed lossily now to prevent constant
3649		 * discarding of the same bitmap (the reason why we are bound
3650		 * by the filters).  So, retrim the block group bitmaps when we
3651		 * are preparing to punt to the unused_bgs list.  This uses
3652		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3653		 * which is the only discard index which sets minlen to 0.
3654		 */
3655		if (!entry || (async && minlen && start == offset &&
3656			       btrfs_free_space_trimmed(entry))) {
3657			spin_unlock(&ctl->tree_lock);
3658			mutex_unlock(&ctl->cache_writeout_mutex);
3659			next_bitmap = true;
3660			goto next;
3661		}
3662
3663		/*
3664		 * Async discard bitmap trimming begins at by setting the start
3665		 * to be key.objectid and the offset_to_bitmap() aligns to the
3666		 * start of the bitmap.  This lets us know we are fully
3667		 * scanning the bitmap rather than only some portion of it.
3668		 */
3669		if (start == offset)
3670			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3671
3672		bytes = minlen;
3673		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3674		if (ret2 || start >= end) {
3675			/*
3676			 * We lossily consider a bitmap trimmed if we only skip
3677			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3678			 */
3679			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3680				end_trimming_bitmap(ctl, entry);
3681			else
3682				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3683			spin_unlock(&ctl->tree_lock);
3684			mutex_unlock(&ctl->cache_writeout_mutex);
3685			next_bitmap = true;
3686			goto next;
3687		}
3688
3689		/*
3690		 * We already trimmed a region, but are using the locking above
3691		 * to reset the trim_state.
3692		 */
3693		if (async && *total_trimmed) {
3694			spin_unlock(&ctl->tree_lock);
3695			mutex_unlock(&ctl->cache_writeout_mutex);
3696			goto out;
3697		}
3698
3699		bytes = min(bytes, end - start);
3700		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3701			spin_unlock(&ctl->tree_lock);
3702			mutex_unlock(&ctl->cache_writeout_mutex);
3703			goto next;
3704		}
3705
3706		/*
3707		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3708		 * If X < @minlen, we won't trim X when we come back around.
3709		 * So trim it now.  We differ here from trimming extents as we
3710		 * don't keep individual state per bit.
3711		 */
3712		if (async &&
3713		    max_discard_size &&
3714		    bytes > (max_discard_size + minlen))
3715			bytes = max_discard_size;
3716
3717		bitmap_clear_bits(ctl, entry, start, bytes);
3718		if (entry->bytes == 0)
3719			free_bitmap(ctl, entry);
3720
3721		spin_unlock(&ctl->tree_lock);
3722		trim_entry.start = start;
3723		trim_entry.bytes = bytes;
3724		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3725		mutex_unlock(&ctl->cache_writeout_mutex);
3726
3727		ret = do_trimming(block_group, total_trimmed, start, bytes,
3728				  start, bytes, 0, &trim_entry);
3729		if (ret) {
3730			reset_trimming_bitmap(ctl, offset);
3731			block_group->discard_cursor =
3732				btrfs_block_group_end(block_group);
3733			break;
3734		}
3735next:
3736		if (next_bitmap) {
3737			offset += BITS_PER_BITMAP * ctl->unit;
3738			start = offset;
3739		} else {
3740			start += bytes;
3741		}
3742		block_group->discard_cursor = start;
3743
3744		if (fatal_signal_pending(current)) {
3745			if (start != offset)
3746				reset_trimming_bitmap(ctl, offset);
3747			ret = -ERESTARTSYS;
3748			break;
3749		}
3750
3751		cond_resched();
3752	}
3753
3754	if (offset >= end)
3755		block_group->discard_cursor = end;
3756
3757out:
3758	return ret;
3759}
3760
3761int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3762			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3763{
3764	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3765	int ret;
3766	u64 rem = 0;
3767
3768	*trimmed = 0;
3769
3770	spin_lock(&block_group->lock);
3771	if (block_group->removed) {
3772		spin_unlock(&block_group->lock);
3773		return 0;
3774	}
3775	btrfs_freeze_block_group(block_group);
3776	spin_unlock(&block_group->lock);
3777
3778	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3779	if (ret)
3780		goto out;
3781
3782	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3783	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
3784	/* If we ended in the middle of a bitmap, reset the trimming flag */
3785	if (rem)
3786		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3787out:
3788	btrfs_unfreeze_block_group(block_group);
3789	return ret;
3790}
3791
3792int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
3793				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3794				   bool async)
3795{
3796	int ret;
3797
3798	*trimmed = 0;
3799
3800	spin_lock(&block_group->lock);
3801	if (block_group->removed) {
3802		spin_unlock(&block_group->lock);
3803		return 0;
3804	}
3805	btrfs_freeze_block_group(block_group);
3806	spin_unlock(&block_group->lock);
3807
3808	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3809	btrfs_unfreeze_block_group(block_group);
3810
3811	return ret;
3812}
3813
3814int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
3815				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3816				   u64 maxlen, bool async)
3817{
3818	int ret;
3819
3820	*trimmed = 0;
3821
3822	spin_lock(&block_group->lock);
3823	if (block_group->removed) {
3824		spin_unlock(&block_group->lock);
3825		return 0;
3826	}
3827	btrfs_freeze_block_group(block_group);
3828	spin_unlock(&block_group->lock);
3829
3830	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
3831			   async);
3832
3833	btrfs_unfreeze_block_group(block_group);
3834
3835	return ret;
3836}
3837
3838/*
3839 * Find the left-most item in the cache tree, and then return the
3840 * smallest inode number in the item.
3841 *
3842 * Note: the returned inode number may not be the smallest one in
3843 * the tree, if the left-most item is a bitmap.
3844 */
3845u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3846{
3847	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3848	struct btrfs_free_space *entry = NULL;
3849	u64 ino = 0;
3850
3851	spin_lock(&ctl->tree_lock);
3852
3853	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3854		goto out;
3855
3856	entry = rb_entry(rb_first(&ctl->free_space_offset),
3857			 struct btrfs_free_space, offset_index);
3858
3859	if (!entry->bitmap) {
3860		ino = entry->offset;
3861
3862		unlink_free_space(ctl, entry);
3863		entry->offset++;
3864		entry->bytes--;
3865		if (!entry->bytes)
3866			kmem_cache_free(btrfs_free_space_cachep, entry);
3867		else
3868			link_free_space(ctl, entry);
3869	} else {
3870		u64 offset = 0;
3871		u64 count = 1;
3872		int ret;
3873
3874		ret = search_bitmap(ctl, entry, &offset, &count, true);
3875		/* Logic error; Should be empty if it can't find anything */
3876		ASSERT(!ret);
3877
3878		ino = offset;
3879		bitmap_clear_bits(ctl, entry, offset, 1);
3880		if (entry->bytes == 0)
3881			free_bitmap(ctl, entry);
3882	}
3883out:
3884	spin_unlock(&ctl->tree_lock);
3885
3886	return ino;
3887}
3888
3889struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3890				    struct btrfs_path *path)
3891{
3892	struct inode *inode = NULL;
3893
3894	spin_lock(&root->ino_cache_lock);
3895	if (root->ino_cache_inode)
3896		inode = igrab(root->ino_cache_inode);
3897	spin_unlock(&root->ino_cache_lock);
3898	if (inode)
3899		return inode;
3900
3901	inode = __lookup_free_space_inode(root, path, 0);
3902	if (IS_ERR(inode))
3903		return inode;
3904
3905	spin_lock(&root->ino_cache_lock);
3906	if (!btrfs_fs_closing(root->fs_info))
3907		root->ino_cache_inode = igrab(inode);
3908	spin_unlock(&root->ino_cache_lock);
3909
3910	return inode;
3911}
3912
3913int create_free_ino_inode(struct btrfs_root *root,
3914			  struct btrfs_trans_handle *trans,
3915			  struct btrfs_path *path)
3916{
3917	return __create_free_space_inode(root, trans, path,
3918					 BTRFS_FREE_INO_OBJECTID, 0);
3919}
3920
3921int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3922{
3923	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3924	struct btrfs_path *path;
3925	struct inode *inode;
3926	int ret = 0;
3927	u64 root_gen = btrfs_root_generation(&root->root_item);
3928
3929	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3930		return 0;
3931
3932	/*
3933	 * If we're unmounting then just return, since this does a search on the
3934	 * normal root and not the commit root and we could deadlock.
3935	 */
3936	if (btrfs_fs_closing(fs_info))
3937		return 0;
3938
3939	path = btrfs_alloc_path();
3940	if (!path)
3941		return 0;
3942
3943	inode = lookup_free_ino_inode(root, path);
3944	if (IS_ERR(inode))
3945		goto out;
3946
3947	if (root_gen != BTRFS_I(inode)->generation)
3948		goto out_put;
3949
3950	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3951
3952	if (ret < 0)
3953		btrfs_err(fs_info,
3954			"failed to load free ino cache for root %llu",
3955			root->root_key.objectid);
3956out_put:
3957	iput(inode);
3958out:
3959	btrfs_free_path(path);
3960	return ret;
3961}
3962
3963int btrfs_write_out_ino_cache(struct btrfs_root *root,
3964			      struct btrfs_trans_handle *trans,
3965			      struct btrfs_path *path,
3966			      struct inode *inode)
3967{
3968	struct btrfs_fs_info *fs_info = root->fs_info;
3969	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3970	int ret;
3971	struct btrfs_io_ctl io_ctl;
3972	bool release_metadata = true;
3973
3974	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3975		return 0;
3976
3977	memset(&io_ctl, 0, sizeof(io_ctl));
3978	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3979	if (!ret) {
3980		/*
3981		 * At this point writepages() didn't error out, so our metadata
3982		 * reservation is released when the writeback finishes, at
3983		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3984		 * with or without an error.
3985		 */
3986		release_metadata = false;
3987		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3988	}
3989
3990	if (ret) {
3991		if (release_metadata)
3992			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3993					inode->i_size, true);
3994		btrfs_debug(fs_info,
3995			  "failed to write free ino cache for root %llu error %d",
3996			  root->root_key.objectid, ret);
3997	}
3998
3999	return ret;
4000}
4001
4002#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4003/*
4004 * Use this if you need to make a bitmap or extent entry specifically, it
4005 * doesn't do any of the merging that add_free_space does, this acts a lot like
4006 * how the free space cache loading stuff works, so you can get really weird
4007 * configurations.
4008 */
4009int test_add_free_space_entry(struct btrfs_block_group *cache,
4010			      u64 offset, u64 bytes, bool bitmap)
4011{
4012	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4013	struct btrfs_free_space *info = NULL, *bitmap_info;
4014	void *map = NULL;
4015	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4016	u64 bytes_added;
4017	int ret;
4018
4019again:
4020	if (!info) {
4021		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4022		if (!info)
4023			return -ENOMEM;
4024	}
4025
4026	if (!bitmap) {
4027		spin_lock(&ctl->tree_lock);
4028		info->offset = offset;
4029		info->bytes = bytes;
4030		info->max_extent_size = 0;
4031		ret = link_free_space(ctl, info);
4032		spin_unlock(&ctl->tree_lock);
4033		if (ret)
4034			kmem_cache_free(btrfs_free_space_cachep, info);
4035		return ret;
4036	}
4037
4038	if (!map) {
4039		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4040		if (!map) {
4041			kmem_cache_free(btrfs_free_space_cachep, info);
4042			return -ENOMEM;
4043		}
4044	}
4045
4046	spin_lock(&ctl->tree_lock);
4047	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4048					 1, 0);
4049	if (!bitmap_info) {
4050		info->bitmap = map;
4051		map = NULL;
4052		add_new_bitmap(ctl, info, offset);
4053		bitmap_info = info;
4054		info = NULL;
4055	}
4056
4057	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4058					  trim_state);
4059
4060	bytes -= bytes_added;
4061	offset += bytes_added;
4062	spin_unlock(&ctl->tree_lock);
4063
4064	if (bytes)
4065		goto again;
4066
4067	if (info)
4068		kmem_cache_free(btrfs_free_space_cachep, info);
4069	if (map)
4070		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4071	return 0;
4072}
4073
4074/*
4075 * Checks to see if the given range is in the free space cache.  This is really
4076 * just used to check the absence of space, so if there is free space in the
4077 * range at all we will return 1.
4078 */
4079int test_check_exists(struct btrfs_block_group *cache,
4080		      u64 offset, u64 bytes)
4081{
4082	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4083	struct btrfs_free_space *info;
4084	int ret = 0;
4085
4086	spin_lock(&ctl->tree_lock);
4087	info = tree_search_offset(ctl, offset, 0, 0);
4088	if (!info) {
4089		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4090					  1, 0);
4091		if (!info)
4092			goto out;
4093	}
4094
4095have_info:
4096	if (info->bitmap) {
4097		u64 bit_off, bit_bytes;
4098		struct rb_node *n;
4099		struct btrfs_free_space *tmp;
4100
4101		bit_off = offset;
4102		bit_bytes = ctl->unit;
4103		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4104		if (!ret) {
4105			if (bit_off == offset) {
4106				ret = 1;
4107				goto out;
4108			} else if (bit_off > offset &&
4109				   offset + bytes > bit_off) {
4110				ret = 1;
4111				goto out;
4112			}
4113		}
4114
4115		n = rb_prev(&info->offset_index);
4116		while (n) {
4117			tmp = rb_entry(n, struct btrfs_free_space,
4118				       offset_index);
4119			if (tmp->offset + tmp->bytes < offset)
4120				break;
4121			if (offset + bytes < tmp->offset) {
4122				n = rb_prev(&tmp->offset_index);
4123				continue;
4124			}
4125			info = tmp;
4126			goto have_info;
4127		}
4128
4129		n = rb_next(&info->offset_index);
4130		while (n) {
4131			tmp = rb_entry(n, struct btrfs_free_space,
4132				       offset_index);
4133			if (offset + bytes < tmp->offset)
4134				break;
4135			if (tmp->offset + tmp->bytes < offset) {
4136				n = rb_next(&tmp->offset_index);
4137				continue;
4138			}
4139			info = tmp;
4140			goto have_info;
4141		}
4142
4143		ret = 0;
4144		goto out;
4145	}
4146
4147	if (info->offset == offset) {
4148		ret = 1;
4149		goto out;
4150	}
4151
4152	if (offset > info->offset && offset < info->offset + info->bytes)
4153		ret = 1;
4154out:
4155	spin_unlock(&ctl->tree_lock);
4156	return ret;
4157}
4158#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4159