1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6#include <linux/fs.h> 7#include <linux/pagemap.h> 8#include <linux/time.h> 9#include <linux/init.h> 10#include <linux/string.h> 11#include <linux/backing-dev.h> 12#include <linux/falloc.h> 13#include <linux/writeback.h> 14#include <linux/compat.h> 15#include <linux/slab.h> 16#include <linux/btrfs.h> 17#include <linux/uio.h> 18#include <linux/iversion.h> 19#include "ctree.h" 20#include "disk-io.h" 21#include "transaction.h" 22#include "btrfs_inode.h" 23#include "print-tree.h" 24#include "tree-log.h" 25#include "locking.h" 26#include "volumes.h" 27#include "qgroup.h" 28#include "compression.h" 29#include "delalloc-space.h" 30#include "reflink.h" 31 32static struct kmem_cache *btrfs_inode_defrag_cachep; 33/* 34 * when auto defrag is enabled we 35 * queue up these defrag structs to remember which 36 * inodes need defragging passes 37 */ 38struct inode_defrag { 39 struct rb_node rb_node; 40 /* objectid */ 41 u64 ino; 42 /* 43 * transid where the defrag was added, we search for 44 * extents newer than this 45 */ 46 u64 transid; 47 48 /* root objectid */ 49 u64 root; 50 51 /* last offset we were able to defrag */ 52 u64 last_offset; 53 54 /* if we've wrapped around back to zero once already */ 55 int cycled; 56}; 57 58static int __compare_inode_defrag(struct inode_defrag *defrag1, 59 struct inode_defrag *defrag2) 60{ 61 if (defrag1->root > defrag2->root) 62 return 1; 63 else if (defrag1->root < defrag2->root) 64 return -1; 65 else if (defrag1->ino > defrag2->ino) 66 return 1; 67 else if (defrag1->ino < defrag2->ino) 68 return -1; 69 else 70 return 0; 71} 72 73/* pop a record for an inode into the defrag tree. The lock 74 * must be held already 75 * 76 * If you're inserting a record for an older transid than an 77 * existing record, the transid already in the tree is lowered 78 * 79 * If an existing record is found the defrag item you 80 * pass in is freed 81 */ 82static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 83 struct inode_defrag *defrag) 84{ 85 struct btrfs_fs_info *fs_info = inode->root->fs_info; 86 struct inode_defrag *entry; 87 struct rb_node **p; 88 struct rb_node *parent = NULL; 89 int ret; 90 91 p = &fs_info->defrag_inodes.rb_node; 92 while (*p) { 93 parent = *p; 94 entry = rb_entry(parent, struct inode_defrag, rb_node); 95 96 ret = __compare_inode_defrag(defrag, entry); 97 if (ret < 0) 98 p = &parent->rb_left; 99 else if (ret > 0) 100 p = &parent->rb_right; 101 else { 102 /* if we're reinserting an entry for 103 * an old defrag run, make sure to 104 * lower the transid of our existing record 105 */ 106 if (defrag->transid < entry->transid) 107 entry->transid = defrag->transid; 108 if (defrag->last_offset > entry->last_offset) 109 entry->last_offset = defrag->last_offset; 110 return -EEXIST; 111 } 112 } 113 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 114 rb_link_node(&defrag->rb_node, parent, p); 115 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 116 return 0; 117} 118 119static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 120{ 121 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 122 return 0; 123 124 if (btrfs_fs_closing(fs_info)) 125 return 0; 126 127 return 1; 128} 129 130/* 131 * insert a defrag record for this inode if auto defrag is 132 * enabled 133 */ 134int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 135 struct btrfs_inode *inode) 136{ 137 struct btrfs_root *root = inode->root; 138 struct btrfs_fs_info *fs_info = root->fs_info; 139 struct inode_defrag *defrag; 140 u64 transid; 141 int ret; 142 143 if (!__need_auto_defrag(fs_info)) 144 return 0; 145 146 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 147 return 0; 148 149 if (trans) 150 transid = trans->transid; 151 else 152 transid = inode->root->last_trans; 153 154 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 155 if (!defrag) 156 return -ENOMEM; 157 158 defrag->ino = btrfs_ino(inode); 159 defrag->transid = transid; 160 defrag->root = root->root_key.objectid; 161 162 spin_lock(&fs_info->defrag_inodes_lock); 163 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 164 /* 165 * If we set IN_DEFRAG flag and evict the inode from memory, 166 * and then re-read this inode, this new inode doesn't have 167 * IN_DEFRAG flag. At the case, we may find the existed defrag. 168 */ 169 ret = __btrfs_add_inode_defrag(inode, defrag); 170 if (ret) 171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 172 } else { 173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 174 } 175 spin_unlock(&fs_info->defrag_inodes_lock); 176 return 0; 177} 178 179/* 180 * Requeue the defrag object. If there is a defrag object that points to 181 * the same inode in the tree, we will merge them together (by 182 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 183 */ 184static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 185 struct inode_defrag *defrag) 186{ 187 struct btrfs_fs_info *fs_info = inode->root->fs_info; 188 int ret; 189 190 if (!__need_auto_defrag(fs_info)) 191 goto out; 192 193 /* 194 * Here we don't check the IN_DEFRAG flag, because we need merge 195 * them together. 196 */ 197 spin_lock(&fs_info->defrag_inodes_lock); 198 ret = __btrfs_add_inode_defrag(inode, defrag); 199 spin_unlock(&fs_info->defrag_inodes_lock); 200 if (ret) 201 goto out; 202 return; 203out: 204 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 205} 206 207/* 208 * pick the defragable inode that we want, if it doesn't exist, we will get 209 * the next one. 210 */ 211static struct inode_defrag * 212btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 213{ 214 struct inode_defrag *entry = NULL; 215 struct inode_defrag tmp; 216 struct rb_node *p; 217 struct rb_node *parent = NULL; 218 int ret; 219 220 tmp.ino = ino; 221 tmp.root = root; 222 223 spin_lock(&fs_info->defrag_inodes_lock); 224 p = fs_info->defrag_inodes.rb_node; 225 while (p) { 226 parent = p; 227 entry = rb_entry(parent, struct inode_defrag, rb_node); 228 229 ret = __compare_inode_defrag(&tmp, entry); 230 if (ret < 0) 231 p = parent->rb_left; 232 else if (ret > 0) 233 p = parent->rb_right; 234 else 235 goto out; 236 } 237 238 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 239 parent = rb_next(parent); 240 if (parent) 241 entry = rb_entry(parent, struct inode_defrag, rb_node); 242 else 243 entry = NULL; 244 } 245out: 246 if (entry) 247 rb_erase(parent, &fs_info->defrag_inodes); 248 spin_unlock(&fs_info->defrag_inodes_lock); 249 return entry; 250} 251 252void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 253{ 254 struct inode_defrag *defrag; 255 struct rb_node *node; 256 257 spin_lock(&fs_info->defrag_inodes_lock); 258 node = rb_first(&fs_info->defrag_inodes); 259 while (node) { 260 rb_erase(node, &fs_info->defrag_inodes); 261 defrag = rb_entry(node, struct inode_defrag, rb_node); 262 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 263 264 cond_resched_lock(&fs_info->defrag_inodes_lock); 265 266 node = rb_first(&fs_info->defrag_inodes); 267 } 268 spin_unlock(&fs_info->defrag_inodes_lock); 269} 270 271#define BTRFS_DEFRAG_BATCH 1024 272 273static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 274 struct inode_defrag *defrag) 275{ 276 struct btrfs_root *inode_root; 277 struct inode *inode; 278 struct btrfs_ioctl_defrag_range_args range; 279 int num_defrag; 280 int ret; 281 282 /* get the inode */ 283 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 284 if (IS_ERR(inode_root)) { 285 ret = PTR_ERR(inode_root); 286 goto cleanup; 287 } 288 289 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); 290 btrfs_put_root(inode_root); 291 if (IS_ERR(inode)) { 292 ret = PTR_ERR(inode); 293 goto cleanup; 294 } 295 296 /* do a chunk of defrag */ 297 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 298 memset(&range, 0, sizeof(range)); 299 range.len = (u64)-1; 300 range.start = defrag->last_offset; 301 302 sb_start_write(fs_info->sb); 303 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 304 BTRFS_DEFRAG_BATCH); 305 sb_end_write(fs_info->sb); 306 /* 307 * if we filled the whole defrag batch, there 308 * must be more work to do. Queue this defrag 309 * again 310 */ 311 if (num_defrag == BTRFS_DEFRAG_BATCH) { 312 defrag->last_offset = range.start; 313 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 314 } else if (defrag->last_offset && !defrag->cycled) { 315 /* 316 * we didn't fill our defrag batch, but 317 * we didn't start at zero. Make sure we loop 318 * around to the start of the file. 319 */ 320 defrag->last_offset = 0; 321 defrag->cycled = 1; 322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 323 } else { 324 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 325 } 326 327 iput(inode); 328 return 0; 329cleanup: 330 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 331 return ret; 332} 333 334/* 335 * run through the list of inodes in the FS that need 336 * defragging 337 */ 338int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 339{ 340 struct inode_defrag *defrag; 341 u64 first_ino = 0; 342 u64 root_objectid = 0; 343 344 atomic_inc(&fs_info->defrag_running); 345 while (1) { 346 /* Pause the auto defragger. */ 347 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 348 &fs_info->fs_state)) 349 break; 350 351 if (!__need_auto_defrag(fs_info)) 352 break; 353 354 /* find an inode to defrag */ 355 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 356 first_ino); 357 if (!defrag) { 358 if (root_objectid || first_ino) { 359 root_objectid = 0; 360 first_ino = 0; 361 continue; 362 } else { 363 break; 364 } 365 } 366 367 first_ino = defrag->ino + 1; 368 root_objectid = defrag->root; 369 370 __btrfs_run_defrag_inode(fs_info, defrag); 371 } 372 atomic_dec(&fs_info->defrag_running); 373 374 /* 375 * during unmount, we use the transaction_wait queue to 376 * wait for the defragger to stop 377 */ 378 wake_up(&fs_info->transaction_wait); 379 return 0; 380} 381 382/* simple helper to fault in pages and copy. This should go away 383 * and be replaced with calls into generic code. 384 */ 385static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 386 struct page **prepared_pages, 387 struct iov_iter *i) 388{ 389 size_t copied = 0; 390 size_t total_copied = 0; 391 int pg = 0; 392 int offset = offset_in_page(pos); 393 394 while (write_bytes > 0) { 395 size_t count = min_t(size_t, 396 PAGE_SIZE - offset, write_bytes); 397 struct page *page = prepared_pages[pg]; 398 /* 399 * Copy data from userspace to the current page 400 */ 401 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 402 403 /* Flush processor's dcache for this page */ 404 flush_dcache_page(page); 405 406 /* 407 * if we get a partial write, we can end up with 408 * partially up to date pages. These add 409 * a lot of complexity, so make sure they don't 410 * happen by forcing this copy to be retried. 411 * 412 * The rest of the btrfs_file_write code will fall 413 * back to page at a time copies after we return 0. 414 */ 415 if (!PageUptodate(page) && copied < count) 416 copied = 0; 417 418 iov_iter_advance(i, copied); 419 write_bytes -= copied; 420 total_copied += copied; 421 422 /* Return to btrfs_file_write_iter to fault page */ 423 if (unlikely(copied == 0)) 424 break; 425 426 if (copied < PAGE_SIZE - offset) { 427 offset += copied; 428 } else { 429 pg++; 430 offset = 0; 431 } 432 } 433 return total_copied; 434} 435 436/* 437 * unlocks pages after btrfs_file_write is done with them 438 */ 439static void btrfs_drop_pages(struct page **pages, size_t num_pages) 440{ 441 size_t i; 442 for (i = 0; i < num_pages; i++) { 443 /* page checked is some magic around finding pages that 444 * have been modified without going through btrfs_set_page_dirty 445 * clear it here. There should be no need to mark the pages 446 * accessed as prepare_pages should have marked them accessed 447 * in prepare_pages via find_or_create_page() 448 */ 449 ClearPageChecked(pages[i]); 450 unlock_page(pages[i]); 451 put_page(pages[i]); 452 } 453} 454 455/* 456 * after copy_from_user, pages need to be dirtied and we need to make 457 * sure holes are created between the current EOF and the start of 458 * any next extents (if required). 459 * 460 * this also makes the decision about creating an inline extent vs 461 * doing real data extents, marking pages dirty and delalloc as required. 462 */ 463int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 464 size_t num_pages, loff_t pos, size_t write_bytes, 465 struct extent_state **cached) 466{ 467 struct btrfs_fs_info *fs_info = inode->root->fs_info; 468 int err = 0; 469 int i; 470 u64 num_bytes; 471 u64 start_pos; 472 u64 end_of_last_block; 473 u64 end_pos = pos + write_bytes; 474 loff_t isize = i_size_read(&inode->vfs_inode); 475 unsigned int extra_bits = 0; 476 477 start_pos = pos & ~((u64) fs_info->sectorsize - 1); 478 num_bytes = round_up(write_bytes + pos - start_pos, 479 fs_info->sectorsize); 480 481 end_of_last_block = start_pos + num_bytes - 1; 482 483 /* 484 * The pages may have already been dirty, clear out old accounting so 485 * we can set things up properly 486 */ 487 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 488 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 489 0, 0, cached); 490 491 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 492 extra_bits, cached); 493 if (err) 494 return err; 495 496 for (i = 0; i < num_pages; i++) { 497 struct page *p = pages[i]; 498 SetPageUptodate(p); 499 ClearPageChecked(p); 500 set_page_dirty(p); 501 } 502 503 /* 504 * we've only changed i_size in ram, and we haven't updated 505 * the disk i_size. There is no need to log the inode 506 * at this time. 507 */ 508 if (end_pos > isize) 509 i_size_write(&inode->vfs_inode, end_pos); 510 return 0; 511} 512 513/* 514 * this drops all the extents in the cache that intersect the range 515 * [start, end]. Existing extents are split as required. 516 */ 517void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 518 int skip_pinned) 519{ 520 struct extent_map *em; 521 struct extent_map *split = NULL; 522 struct extent_map *split2 = NULL; 523 struct extent_map_tree *em_tree = &inode->extent_tree; 524 u64 len = end - start + 1; 525 u64 gen; 526 int ret; 527 int testend = 1; 528 unsigned long flags; 529 int compressed = 0; 530 bool modified; 531 532 WARN_ON(end < start); 533 if (end == (u64)-1) { 534 len = (u64)-1; 535 testend = 0; 536 } 537 while (1) { 538 int no_splits = 0; 539 540 modified = false; 541 if (!split) 542 split = alloc_extent_map(); 543 if (!split2) 544 split2 = alloc_extent_map(); 545 if (!split || !split2) 546 no_splits = 1; 547 548 write_lock(&em_tree->lock); 549 em = lookup_extent_mapping(em_tree, start, len); 550 if (!em) { 551 write_unlock(&em_tree->lock); 552 break; 553 } 554 flags = em->flags; 555 gen = em->generation; 556 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 557 if (testend && em->start + em->len >= start + len) { 558 free_extent_map(em); 559 write_unlock(&em_tree->lock); 560 break; 561 } 562 start = em->start + em->len; 563 if (testend) 564 len = start + len - (em->start + em->len); 565 free_extent_map(em); 566 write_unlock(&em_tree->lock); 567 continue; 568 } 569 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 570 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 571 clear_bit(EXTENT_FLAG_LOGGING, &flags); 572 modified = !list_empty(&em->list); 573 if (no_splits) 574 goto next; 575 576 if (em->start < start) { 577 split->start = em->start; 578 split->len = start - em->start; 579 580 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 581 split->orig_start = em->orig_start; 582 split->block_start = em->block_start; 583 584 if (compressed) 585 split->block_len = em->block_len; 586 else 587 split->block_len = split->len; 588 split->orig_block_len = max(split->block_len, 589 em->orig_block_len); 590 split->ram_bytes = em->ram_bytes; 591 } else { 592 split->orig_start = split->start; 593 split->block_len = 0; 594 split->block_start = em->block_start; 595 split->orig_block_len = 0; 596 split->ram_bytes = split->len; 597 } 598 599 split->generation = gen; 600 split->flags = flags; 601 split->compress_type = em->compress_type; 602 replace_extent_mapping(em_tree, em, split, modified); 603 free_extent_map(split); 604 split = split2; 605 split2 = NULL; 606 } 607 if (testend && em->start + em->len > start + len) { 608 u64 diff = start + len - em->start; 609 610 split->start = start + len; 611 split->len = em->start + em->len - (start + len); 612 split->flags = flags; 613 split->compress_type = em->compress_type; 614 split->generation = gen; 615 616 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 617 split->orig_block_len = max(em->block_len, 618 em->orig_block_len); 619 620 split->ram_bytes = em->ram_bytes; 621 if (compressed) { 622 split->block_len = em->block_len; 623 split->block_start = em->block_start; 624 split->orig_start = em->orig_start; 625 } else { 626 split->block_len = split->len; 627 split->block_start = em->block_start 628 + diff; 629 split->orig_start = em->orig_start; 630 } 631 } else { 632 split->ram_bytes = split->len; 633 split->orig_start = split->start; 634 split->block_len = 0; 635 split->block_start = em->block_start; 636 split->orig_block_len = 0; 637 } 638 639 if (extent_map_in_tree(em)) { 640 replace_extent_mapping(em_tree, em, split, 641 modified); 642 } else { 643 ret = add_extent_mapping(em_tree, split, 644 modified); 645 ASSERT(ret == 0); /* Logic error */ 646 } 647 free_extent_map(split); 648 split = NULL; 649 } 650next: 651 if (extent_map_in_tree(em)) 652 remove_extent_mapping(em_tree, em); 653 write_unlock(&em_tree->lock); 654 655 /* once for us */ 656 free_extent_map(em); 657 /* once for the tree*/ 658 free_extent_map(em); 659 } 660 if (split) 661 free_extent_map(split); 662 if (split2) 663 free_extent_map(split2); 664} 665 666/* 667 * this is very complex, but the basic idea is to drop all extents 668 * in the range start - end. hint_block is filled in with a block number 669 * that would be a good hint to the block allocator for this file. 670 * 671 * If an extent intersects the range but is not entirely inside the range 672 * it is either truncated or split. Anything entirely inside the range 673 * is deleted from the tree. 674 */ 675int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 676 struct btrfs_root *root, struct btrfs_inode *inode, 677 struct btrfs_path *path, u64 start, u64 end, 678 u64 *drop_end, int drop_cache, 679 int replace_extent, 680 u32 extent_item_size, 681 int *key_inserted) 682{ 683 struct btrfs_fs_info *fs_info = root->fs_info; 684 struct extent_buffer *leaf; 685 struct btrfs_file_extent_item *fi; 686 struct btrfs_ref ref = { 0 }; 687 struct btrfs_key key; 688 struct btrfs_key new_key; 689 struct inode *vfs_inode = &inode->vfs_inode; 690 u64 ino = btrfs_ino(inode); 691 u64 search_start = start; 692 u64 disk_bytenr = 0; 693 u64 num_bytes = 0; 694 u64 extent_offset = 0; 695 u64 extent_end = 0; 696 u64 last_end = start; 697 int del_nr = 0; 698 int del_slot = 0; 699 int extent_type; 700 int recow; 701 int ret; 702 int modify_tree = -1; 703 int update_refs; 704 int found = 0; 705 int leafs_visited = 0; 706 707 if (drop_cache) 708 btrfs_drop_extent_cache(inode, start, end - 1, 0); 709 710 if (start >= inode->disk_i_size && !replace_extent) 711 modify_tree = 0; 712 713 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 714 while (1) { 715 recow = 0; 716 ret = btrfs_lookup_file_extent(trans, root, path, ino, 717 search_start, modify_tree); 718 if (ret < 0) 719 break; 720 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 721 leaf = path->nodes[0]; 722 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 723 if (key.objectid == ino && 724 key.type == BTRFS_EXTENT_DATA_KEY) 725 path->slots[0]--; 726 } 727 ret = 0; 728 leafs_visited++; 729next_slot: 730 leaf = path->nodes[0]; 731 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 732 BUG_ON(del_nr > 0); 733 ret = btrfs_next_leaf(root, path); 734 if (ret < 0) 735 break; 736 if (ret > 0) { 737 ret = 0; 738 break; 739 } 740 leafs_visited++; 741 leaf = path->nodes[0]; 742 recow = 1; 743 } 744 745 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 746 747 if (key.objectid > ino) 748 break; 749 if (WARN_ON_ONCE(key.objectid < ino) || 750 key.type < BTRFS_EXTENT_DATA_KEY) { 751 ASSERT(del_nr == 0); 752 path->slots[0]++; 753 goto next_slot; 754 } 755 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 756 break; 757 758 fi = btrfs_item_ptr(leaf, path->slots[0], 759 struct btrfs_file_extent_item); 760 extent_type = btrfs_file_extent_type(leaf, fi); 761 762 if (extent_type == BTRFS_FILE_EXTENT_REG || 763 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 764 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 765 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 766 extent_offset = btrfs_file_extent_offset(leaf, fi); 767 extent_end = key.offset + 768 btrfs_file_extent_num_bytes(leaf, fi); 769 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 770 extent_end = key.offset + 771 btrfs_file_extent_ram_bytes(leaf, fi); 772 } else { 773 /* can't happen */ 774 BUG(); 775 } 776 777 /* 778 * Don't skip extent items representing 0 byte lengths. They 779 * used to be created (bug) if while punching holes we hit 780 * -ENOSPC condition. So if we find one here, just ensure we 781 * delete it, otherwise we would insert a new file extent item 782 * with the same key (offset) as that 0 bytes length file 783 * extent item in the call to setup_items_for_insert() later 784 * in this function. 785 */ 786 if (extent_end == key.offset && extent_end >= search_start) { 787 last_end = extent_end; 788 goto delete_extent_item; 789 } 790 791 if (extent_end <= search_start) { 792 path->slots[0]++; 793 goto next_slot; 794 } 795 796 found = 1; 797 search_start = max(key.offset, start); 798 if (recow || !modify_tree) { 799 modify_tree = -1; 800 btrfs_release_path(path); 801 continue; 802 } 803 804 /* 805 * | - range to drop - | 806 * | -------- extent -------- | 807 */ 808 if (start > key.offset && end < extent_end) { 809 BUG_ON(del_nr > 0); 810 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 811 ret = -EOPNOTSUPP; 812 break; 813 } 814 815 memcpy(&new_key, &key, sizeof(new_key)); 816 new_key.offset = start; 817 ret = btrfs_duplicate_item(trans, root, path, 818 &new_key); 819 if (ret == -EAGAIN) { 820 btrfs_release_path(path); 821 continue; 822 } 823 if (ret < 0) 824 break; 825 826 leaf = path->nodes[0]; 827 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 828 struct btrfs_file_extent_item); 829 btrfs_set_file_extent_num_bytes(leaf, fi, 830 start - key.offset); 831 832 fi = btrfs_item_ptr(leaf, path->slots[0], 833 struct btrfs_file_extent_item); 834 835 extent_offset += start - key.offset; 836 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 837 btrfs_set_file_extent_num_bytes(leaf, fi, 838 extent_end - start); 839 btrfs_mark_buffer_dirty(leaf); 840 841 if (update_refs && disk_bytenr > 0) { 842 btrfs_init_generic_ref(&ref, 843 BTRFS_ADD_DELAYED_REF, 844 disk_bytenr, num_bytes, 0); 845 btrfs_init_data_ref(&ref, 846 root->root_key.objectid, 847 new_key.objectid, 848 start - extent_offset); 849 ret = btrfs_inc_extent_ref(trans, &ref); 850 BUG_ON(ret); /* -ENOMEM */ 851 } 852 key.offset = start; 853 } 854 /* 855 * From here on out we will have actually dropped something, so 856 * last_end can be updated. 857 */ 858 last_end = extent_end; 859 860 /* 861 * | ---- range to drop ----- | 862 * | -------- extent -------- | 863 */ 864 if (start <= key.offset && end < extent_end) { 865 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 866 ret = -EOPNOTSUPP; 867 break; 868 } 869 870 memcpy(&new_key, &key, sizeof(new_key)); 871 new_key.offset = end; 872 btrfs_set_item_key_safe(fs_info, path, &new_key); 873 874 extent_offset += end - key.offset; 875 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 876 btrfs_set_file_extent_num_bytes(leaf, fi, 877 extent_end - end); 878 btrfs_mark_buffer_dirty(leaf); 879 if (update_refs && disk_bytenr > 0) 880 inode_sub_bytes(vfs_inode, end - key.offset); 881 break; 882 } 883 884 search_start = extent_end; 885 /* 886 * | ---- range to drop ----- | 887 * | -------- extent -------- | 888 */ 889 if (start > key.offset && end >= extent_end) { 890 BUG_ON(del_nr > 0); 891 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 892 ret = -EOPNOTSUPP; 893 break; 894 } 895 896 btrfs_set_file_extent_num_bytes(leaf, fi, 897 start - key.offset); 898 btrfs_mark_buffer_dirty(leaf); 899 if (update_refs && disk_bytenr > 0) 900 inode_sub_bytes(vfs_inode, extent_end - start); 901 if (end == extent_end) 902 break; 903 904 path->slots[0]++; 905 goto next_slot; 906 } 907 908 /* 909 * | ---- range to drop ----- | 910 * | ------ extent ------ | 911 */ 912 if (start <= key.offset && end >= extent_end) { 913delete_extent_item: 914 if (del_nr == 0) { 915 del_slot = path->slots[0]; 916 del_nr = 1; 917 } else { 918 BUG_ON(del_slot + del_nr != path->slots[0]); 919 del_nr++; 920 } 921 922 if (update_refs && 923 extent_type == BTRFS_FILE_EXTENT_INLINE) { 924 inode_sub_bytes(vfs_inode, 925 extent_end - key.offset); 926 extent_end = ALIGN(extent_end, 927 fs_info->sectorsize); 928 } else if (update_refs && disk_bytenr > 0) { 929 btrfs_init_generic_ref(&ref, 930 BTRFS_DROP_DELAYED_REF, 931 disk_bytenr, num_bytes, 0); 932 btrfs_init_data_ref(&ref, 933 root->root_key.objectid, 934 key.objectid, 935 key.offset - extent_offset); 936 ret = btrfs_free_extent(trans, &ref); 937 BUG_ON(ret); /* -ENOMEM */ 938 inode_sub_bytes(vfs_inode, 939 extent_end - key.offset); 940 } 941 942 if (end == extent_end) 943 break; 944 945 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 946 path->slots[0]++; 947 goto next_slot; 948 } 949 950 ret = btrfs_del_items(trans, root, path, del_slot, 951 del_nr); 952 if (ret) { 953 btrfs_abort_transaction(trans, ret); 954 break; 955 } 956 957 del_nr = 0; 958 del_slot = 0; 959 960 btrfs_release_path(path); 961 continue; 962 } 963 964 BUG(); 965 } 966 967 if (!ret && del_nr > 0) { 968 /* 969 * Set path->slots[0] to first slot, so that after the delete 970 * if items are move off from our leaf to its immediate left or 971 * right neighbor leafs, we end up with a correct and adjusted 972 * path->slots[0] for our insertion (if replace_extent != 0). 973 */ 974 path->slots[0] = del_slot; 975 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 976 if (ret) 977 btrfs_abort_transaction(trans, ret); 978 } 979 980 leaf = path->nodes[0]; 981 /* 982 * If btrfs_del_items() was called, it might have deleted a leaf, in 983 * which case it unlocked our path, so check path->locks[0] matches a 984 * write lock. 985 */ 986 if (!ret && replace_extent && leafs_visited == 1 && 987 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 988 path->locks[0] == BTRFS_WRITE_LOCK) && 989 btrfs_leaf_free_space(leaf) >= 990 sizeof(struct btrfs_item) + extent_item_size) { 991 992 key.objectid = ino; 993 key.type = BTRFS_EXTENT_DATA_KEY; 994 key.offset = start; 995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 996 struct btrfs_key slot_key; 997 998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1000 path->slots[0]++; 1001 } 1002 setup_items_for_insert(root, path, &key, &extent_item_size, 1); 1003 *key_inserted = 1; 1004 } 1005 1006 if (!replace_extent || !(*key_inserted)) 1007 btrfs_release_path(path); 1008 if (drop_end) 1009 *drop_end = found ? min(end, last_end) : end; 1010 return ret; 1011} 1012 1013int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1014 struct btrfs_root *root, struct inode *inode, u64 start, 1015 u64 end, int drop_cache) 1016{ 1017 struct btrfs_path *path; 1018 int ret; 1019 1020 path = btrfs_alloc_path(); 1021 if (!path) 1022 return -ENOMEM; 1023 ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path, start, 1024 end, NULL, drop_cache, 0, 0, NULL); 1025 btrfs_free_path(path); 1026 return ret; 1027} 1028 1029static int extent_mergeable(struct extent_buffer *leaf, int slot, 1030 u64 objectid, u64 bytenr, u64 orig_offset, 1031 u64 *start, u64 *end) 1032{ 1033 struct btrfs_file_extent_item *fi; 1034 struct btrfs_key key; 1035 u64 extent_end; 1036 1037 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1038 return 0; 1039 1040 btrfs_item_key_to_cpu(leaf, &key, slot); 1041 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1042 return 0; 1043 1044 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1045 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1046 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1047 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1048 btrfs_file_extent_compression(leaf, fi) || 1049 btrfs_file_extent_encryption(leaf, fi) || 1050 btrfs_file_extent_other_encoding(leaf, fi)) 1051 return 0; 1052 1053 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1054 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1055 return 0; 1056 1057 *start = key.offset; 1058 *end = extent_end; 1059 return 1; 1060} 1061 1062/* 1063 * Mark extent in the range start - end as written. 1064 * 1065 * This changes extent type from 'pre-allocated' to 'regular'. If only 1066 * part of extent is marked as written, the extent will be split into 1067 * two or three. 1068 */ 1069int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1070 struct btrfs_inode *inode, u64 start, u64 end) 1071{ 1072 struct btrfs_fs_info *fs_info = trans->fs_info; 1073 struct btrfs_root *root = inode->root; 1074 struct extent_buffer *leaf; 1075 struct btrfs_path *path; 1076 struct btrfs_file_extent_item *fi; 1077 struct btrfs_ref ref = { 0 }; 1078 struct btrfs_key key; 1079 struct btrfs_key new_key; 1080 u64 bytenr; 1081 u64 num_bytes; 1082 u64 extent_end; 1083 u64 orig_offset; 1084 u64 other_start; 1085 u64 other_end; 1086 u64 split; 1087 int del_nr = 0; 1088 int del_slot = 0; 1089 int recow; 1090 int ret = 0; 1091 u64 ino = btrfs_ino(inode); 1092 1093 path = btrfs_alloc_path(); 1094 if (!path) 1095 return -ENOMEM; 1096again: 1097 recow = 0; 1098 split = start; 1099 key.objectid = ino; 1100 key.type = BTRFS_EXTENT_DATA_KEY; 1101 key.offset = split; 1102 1103 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1104 if (ret < 0) 1105 goto out; 1106 if (ret > 0 && path->slots[0] > 0) 1107 path->slots[0]--; 1108 1109 leaf = path->nodes[0]; 1110 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1111 if (key.objectid != ino || 1112 key.type != BTRFS_EXTENT_DATA_KEY) { 1113 ret = -EINVAL; 1114 btrfs_abort_transaction(trans, ret); 1115 goto out; 1116 } 1117 fi = btrfs_item_ptr(leaf, path->slots[0], 1118 struct btrfs_file_extent_item); 1119 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1120 ret = -EINVAL; 1121 btrfs_abort_transaction(trans, ret); 1122 goto out; 1123 } 1124 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1125 if (key.offset > start || extent_end < end) { 1126 ret = -EINVAL; 1127 btrfs_abort_transaction(trans, ret); 1128 goto out; 1129 } 1130 1131 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1132 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1133 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1134 memcpy(&new_key, &key, sizeof(new_key)); 1135 1136 if (start == key.offset && end < extent_end) { 1137 other_start = 0; 1138 other_end = start; 1139 if (extent_mergeable(leaf, path->slots[0] - 1, 1140 ino, bytenr, orig_offset, 1141 &other_start, &other_end)) { 1142 new_key.offset = end; 1143 btrfs_set_item_key_safe(fs_info, path, &new_key); 1144 fi = btrfs_item_ptr(leaf, path->slots[0], 1145 struct btrfs_file_extent_item); 1146 btrfs_set_file_extent_generation(leaf, fi, 1147 trans->transid); 1148 btrfs_set_file_extent_num_bytes(leaf, fi, 1149 extent_end - end); 1150 btrfs_set_file_extent_offset(leaf, fi, 1151 end - orig_offset); 1152 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1153 struct btrfs_file_extent_item); 1154 btrfs_set_file_extent_generation(leaf, fi, 1155 trans->transid); 1156 btrfs_set_file_extent_num_bytes(leaf, fi, 1157 end - other_start); 1158 btrfs_mark_buffer_dirty(leaf); 1159 goto out; 1160 } 1161 } 1162 1163 if (start > key.offset && end == extent_end) { 1164 other_start = end; 1165 other_end = 0; 1166 if (extent_mergeable(leaf, path->slots[0] + 1, 1167 ino, bytenr, orig_offset, 1168 &other_start, &other_end)) { 1169 fi = btrfs_item_ptr(leaf, path->slots[0], 1170 struct btrfs_file_extent_item); 1171 btrfs_set_file_extent_num_bytes(leaf, fi, 1172 start - key.offset); 1173 btrfs_set_file_extent_generation(leaf, fi, 1174 trans->transid); 1175 path->slots[0]++; 1176 new_key.offset = start; 1177 btrfs_set_item_key_safe(fs_info, path, &new_key); 1178 1179 fi = btrfs_item_ptr(leaf, path->slots[0], 1180 struct btrfs_file_extent_item); 1181 btrfs_set_file_extent_generation(leaf, fi, 1182 trans->transid); 1183 btrfs_set_file_extent_num_bytes(leaf, fi, 1184 other_end - start); 1185 btrfs_set_file_extent_offset(leaf, fi, 1186 start - orig_offset); 1187 btrfs_mark_buffer_dirty(leaf); 1188 goto out; 1189 } 1190 } 1191 1192 while (start > key.offset || end < extent_end) { 1193 if (key.offset == start) 1194 split = end; 1195 1196 new_key.offset = split; 1197 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1198 if (ret == -EAGAIN) { 1199 btrfs_release_path(path); 1200 goto again; 1201 } 1202 if (ret < 0) { 1203 btrfs_abort_transaction(trans, ret); 1204 goto out; 1205 } 1206 1207 leaf = path->nodes[0]; 1208 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1209 struct btrfs_file_extent_item); 1210 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1211 btrfs_set_file_extent_num_bytes(leaf, fi, 1212 split - key.offset); 1213 1214 fi = btrfs_item_ptr(leaf, path->slots[0], 1215 struct btrfs_file_extent_item); 1216 1217 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1218 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1219 btrfs_set_file_extent_num_bytes(leaf, fi, 1220 extent_end - split); 1221 btrfs_mark_buffer_dirty(leaf); 1222 1223 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1224 num_bytes, 0); 1225 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1226 orig_offset); 1227 ret = btrfs_inc_extent_ref(trans, &ref); 1228 if (ret) { 1229 btrfs_abort_transaction(trans, ret); 1230 goto out; 1231 } 1232 1233 if (split == start) { 1234 key.offset = start; 1235 } else { 1236 if (start != key.offset) { 1237 ret = -EINVAL; 1238 btrfs_abort_transaction(trans, ret); 1239 goto out; 1240 } 1241 path->slots[0]--; 1242 extent_end = end; 1243 } 1244 recow = 1; 1245 } 1246 1247 other_start = end; 1248 other_end = 0; 1249 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1250 num_bytes, 0); 1251 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset); 1252 if (extent_mergeable(leaf, path->slots[0] + 1, 1253 ino, bytenr, orig_offset, 1254 &other_start, &other_end)) { 1255 if (recow) { 1256 btrfs_release_path(path); 1257 goto again; 1258 } 1259 extent_end = other_end; 1260 del_slot = path->slots[0] + 1; 1261 del_nr++; 1262 ret = btrfs_free_extent(trans, &ref); 1263 if (ret) { 1264 btrfs_abort_transaction(trans, ret); 1265 goto out; 1266 } 1267 } 1268 other_start = 0; 1269 other_end = start; 1270 if (extent_mergeable(leaf, path->slots[0] - 1, 1271 ino, bytenr, orig_offset, 1272 &other_start, &other_end)) { 1273 if (recow) { 1274 btrfs_release_path(path); 1275 goto again; 1276 } 1277 key.offset = other_start; 1278 del_slot = path->slots[0]; 1279 del_nr++; 1280 ret = btrfs_free_extent(trans, &ref); 1281 if (ret) { 1282 btrfs_abort_transaction(trans, ret); 1283 goto out; 1284 } 1285 } 1286 if (del_nr == 0) { 1287 fi = btrfs_item_ptr(leaf, path->slots[0], 1288 struct btrfs_file_extent_item); 1289 btrfs_set_file_extent_type(leaf, fi, 1290 BTRFS_FILE_EXTENT_REG); 1291 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1292 btrfs_mark_buffer_dirty(leaf); 1293 } else { 1294 fi = btrfs_item_ptr(leaf, del_slot - 1, 1295 struct btrfs_file_extent_item); 1296 btrfs_set_file_extent_type(leaf, fi, 1297 BTRFS_FILE_EXTENT_REG); 1298 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1299 btrfs_set_file_extent_num_bytes(leaf, fi, 1300 extent_end - key.offset); 1301 btrfs_mark_buffer_dirty(leaf); 1302 1303 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1304 if (ret < 0) { 1305 btrfs_abort_transaction(trans, ret); 1306 goto out; 1307 } 1308 } 1309out: 1310 btrfs_free_path(path); 1311 return ret; 1312} 1313 1314/* 1315 * on error we return an unlocked page and the error value 1316 * on success we return a locked page and 0 1317 */ 1318static int prepare_uptodate_page(struct inode *inode, 1319 struct page *page, u64 pos, 1320 bool force_uptodate) 1321{ 1322 int ret = 0; 1323 1324 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1325 !PageUptodate(page)) { 1326 ret = btrfs_readpage(NULL, page); 1327 if (ret) 1328 return ret; 1329 lock_page(page); 1330 if (!PageUptodate(page)) { 1331 unlock_page(page); 1332 return -EIO; 1333 } 1334 if (page->mapping != inode->i_mapping) { 1335 unlock_page(page); 1336 return -EAGAIN; 1337 } 1338 } 1339 return 0; 1340} 1341 1342/* 1343 * this just gets pages into the page cache and locks them down. 1344 */ 1345static noinline int prepare_pages(struct inode *inode, struct page **pages, 1346 size_t num_pages, loff_t pos, 1347 size_t write_bytes, bool force_uptodate) 1348{ 1349 int i; 1350 unsigned long index = pos >> PAGE_SHIFT; 1351 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1352 int err = 0; 1353 int faili; 1354 1355 for (i = 0; i < num_pages; i++) { 1356again: 1357 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1358 mask | __GFP_WRITE); 1359 if (!pages[i]) { 1360 faili = i - 1; 1361 err = -ENOMEM; 1362 goto fail; 1363 } 1364 1365 if (i == 0) 1366 err = prepare_uptodate_page(inode, pages[i], pos, 1367 force_uptodate); 1368 if (!err && i == num_pages - 1) 1369 err = prepare_uptodate_page(inode, pages[i], 1370 pos + write_bytes, false); 1371 if (err) { 1372 put_page(pages[i]); 1373 if (err == -EAGAIN) { 1374 err = 0; 1375 goto again; 1376 } 1377 faili = i - 1; 1378 goto fail; 1379 } 1380 wait_on_page_writeback(pages[i]); 1381 } 1382 1383 return 0; 1384fail: 1385 while (faili >= 0) { 1386 unlock_page(pages[faili]); 1387 put_page(pages[faili]); 1388 faili--; 1389 } 1390 return err; 1391 1392} 1393 1394/* 1395 * This function locks the extent and properly waits for data=ordered extents 1396 * to finish before allowing the pages to be modified if need. 1397 * 1398 * The return value: 1399 * 1 - the extent is locked 1400 * 0 - the extent is not locked, and everything is OK 1401 * -EAGAIN - need re-prepare the pages 1402 * the other < 0 number - Something wrong happens 1403 */ 1404static noinline int 1405lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1406 size_t num_pages, loff_t pos, 1407 size_t write_bytes, 1408 u64 *lockstart, u64 *lockend, 1409 struct extent_state **cached_state) 1410{ 1411 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1412 u64 start_pos; 1413 u64 last_pos; 1414 int i; 1415 int ret = 0; 1416 1417 start_pos = round_down(pos, fs_info->sectorsize); 1418 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 1419 1420 if (start_pos < inode->vfs_inode.i_size) { 1421 struct btrfs_ordered_extent *ordered; 1422 1423 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1424 cached_state); 1425 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1426 last_pos - start_pos + 1); 1427 if (ordered && 1428 ordered->file_offset + ordered->num_bytes > start_pos && 1429 ordered->file_offset <= last_pos) { 1430 unlock_extent_cached(&inode->io_tree, start_pos, 1431 last_pos, cached_state); 1432 for (i = 0; i < num_pages; i++) { 1433 unlock_page(pages[i]); 1434 put_page(pages[i]); 1435 } 1436 btrfs_start_ordered_extent(ordered, 1); 1437 btrfs_put_ordered_extent(ordered); 1438 return -EAGAIN; 1439 } 1440 if (ordered) 1441 btrfs_put_ordered_extent(ordered); 1442 1443 *lockstart = start_pos; 1444 *lockend = last_pos; 1445 ret = 1; 1446 } 1447 1448 /* 1449 * It's possible the pages are dirty right now, but we don't want 1450 * to clean them yet because copy_from_user may catch a page fault 1451 * and we might have to fall back to one page at a time. If that 1452 * happens, we'll unlock these pages and we'd have a window where 1453 * reclaim could sneak in and drop the once-dirty page on the floor 1454 * without writing it. 1455 * 1456 * We have the pages locked and the extent range locked, so there's 1457 * no way someone can start IO on any dirty pages in this range. 1458 * 1459 * We'll call btrfs_dirty_pages() later on, and that will flip around 1460 * delalloc bits and dirty the pages as required. 1461 */ 1462 for (i = 0; i < num_pages; i++) { 1463 set_page_extent_mapped(pages[i]); 1464 WARN_ON(!PageLocked(pages[i])); 1465 } 1466 1467 return ret; 1468} 1469 1470static int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1471 size_t *write_bytes, bool nowait) 1472{ 1473 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1474 struct btrfs_root *root = inode->root; 1475 u64 lockstart, lockend; 1476 u64 num_bytes; 1477 int ret; 1478 1479 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1480 return 0; 1481 1482 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock)) 1483 return -EAGAIN; 1484 1485 lockstart = round_down(pos, fs_info->sectorsize); 1486 lockend = round_up(pos + *write_bytes, 1487 fs_info->sectorsize) - 1; 1488 num_bytes = lockend - lockstart + 1; 1489 1490 if (nowait) { 1491 struct btrfs_ordered_extent *ordered; 1492 1493 if (!try_lock_extent(&inode->io_tree, lockstart, lockend)) 1494 return -EAGAIN; 1495 1496 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1497 num_bytes); 1498 if (ordered) { 1499 btrfs_put_ordered_extent(ordered); 1500 ret = -EAGAIN; 1501 goto out_unlock; 1502 } 1503 } else { 1504 btrfs_lock_and_flush_ordered_range(inode, lockstart, 1505 lockend, NULL); 1506 } 1507 1508 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1509 NULL, NULL, NULL, false); 1510 if (ret <= 0) { 1511 ret = 0; 1512 if (!nowait) 1513 btrfs_drew_write_unlock(&root->snapshot_lock); 1514 } else { 1515 *write_bytes = min_t(size_t, *write_bytes , 1516 num_bytes - pos + lockstart); 1517 } 1518out_unlock: 1519 unlock_extent(&inode->io_tree, lockstart, lockend); 1520 1521 return ret; 1522} 1523 1524static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos, 1525 size_t *write_bytes) 1526{ 1527 return check_can_nocow(inode, pos, write_bytes, true); 1528} 1529 1530/* 1531 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1532 * 1533 * @pos: File offset 1534 * @write_bytes: The length to write, will be updated to the nocow writeable 1535 * range 1536 * 1537 * This function will flush ordered extents in the range to ensure proper 1538 * nocow checks. 1539 * 1540 * Return: 1541 * >0 and update @write_bytes if we can do nocow write 1542 * 0 if we can't do nocow write 1543 * -EAGAIN if we can't get the needed lock or there are ordered extents 1544 * for * (nowait == true) case 1545 * <0 if other error happened 1546 * 1547 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock(). 1548 */ 1549int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1550 size_t *write_bytes) 1551{ 1552 return check_can_nocow(inode, pos, write_bytes, false); 1553} 1554 1555void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1556{ 1557 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1558} 1559 1560static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1561 struct iov_iter *i) 1562{ 1563 struct file *file = iocb->ki_filp; 1564 loff_t pos = iocb->ki_pos; 1565 struct inode *inode = file_inode(file); 1566 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1567 struct page **pages = NULL; 1568 struct extent_changeset *data_reserved = NULL; 1569 u64 release_bytes = 0; 1570 u64 lockstart; 1571 u64 lockend; 1572 size_t num_written = 0; 1573 int nrptrs; 1574 int ret = 0; 1575 bool only_release_metadata = false; 1576 bool force_page_uptodate = false; 1577 1578 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1579 PAGE_SIZE / (sizeof(struct page *))); 1580 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1581 nrptrs = max(nrptrs, 8); 1582 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1583 if (!pages) 1584 return -ENOMEM; 1585 1586 while (iov_iter_count(i) > 0) { 1587 struct extent_state *cached_state = NULL; 1588 size_t offset = offset_in_page(pos); 1589 size_t sector_offset; 1590 size_t write_bytes = min(iov_iter_count(i), 1591 nrptrs * (size_t)PAGE_SIZE - 1592 offset); 1593 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1594 PAGE_SIZE); 1595 size_t reserve_bytes; 1596 size_t dirty_pages; 1597 size_t copied; 1598 size_t dirty_sectors; 1599 size_t num_sectors; 1600 int extents_locked; 1601 1602 WARN_ON(num_pages > nrptrs); 1603 1604 /* 1605 * Fault pages before locking them in prepare_pages 1606 * to avoid recursive lock 1607 */ 1608 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1609 ret = -EFAULT; 1610 break; 1611 } 1612 1613 only_release_metadata = false; 1614 sector_offset = pos & (fs_info->sectorsize - 1); 1615 reserve_bytes = round_up(write_bytes + sector_offset, 1616 fs_info->sectorsize); 1617 1618 extent_changeset_release(data_reserved); 1619 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1620 &data_reserved, pos, 1621 write_bytes); 1622 if (ret < 0) { 1623 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1624 &write_bytes) > 0) { 1625 /* 1626 * For nodata cow case, no need to reserve 1627 * data space. 1628 */ 1629 only_release_metadata = true; 1630 /* 1631 * our prealloc extent may be smaller than 1632 * write_bytes, so scale down. 1633 */ 1634 num_pages = DIV_ROUND_UP(write_bytes + offset, 1635 PAGE_SIZE); 1636 reserve_bytes = round_up(write_bytes + 1637 sector_offset, 1638 fs_info->sectorsize); 1639 } else { 1640 break; 1641 } 1642 } 1643 1644 WARN_ON(reserve_bytes == 0); 1645 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1646 reserve_bytes); 1647 if (ret) { 1648 if (!only_release_metadata) 1649 btrfs_free_reserved_data_space(BTRFS_I(inode), 1650 data_reserved, pos, 1651 write_bytes); 1652 else 1653 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1654 break; 1655 } 1656 1657 release_bytes = reserve_bytes; 1658again: 1659 /* 1660 * This is going to setup the pages array with the number of 1661 * pages we want, so we don't really need to worry about the 1662 * contents of pages from loop to loop 1663 */ 1664 ret = prepare_pages(inode, pages, num_pages, 1665 pos, write_bytes, 1666 force_page_uptodate); 1667 if (ret) { 1668 btrfs_delalloc_release_extents(BTRFS_I(inode), 1669 reserve_bytes); 1670 break; 1671 } 1672 1673 extents_locked = lock_and_cleanup_extent_if_need( 1674 BTRFS_I(inode), pages, 1675 num_pages, pos, write_bytes, &lockstart, 1676 &lockend, &cached_state); 1677 if (extents_locked < 0) { 1678 if (extents_locked == -EAGAIN) 1679 goto again; 1680 btrfs_delalloc_release_extents(BTRFS_I(inode), 1681 reserve_bytes); 1682 ret = extents_locked; 1683 break; 1684 } 1685 1686 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1687 1688 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1689 dirty_sectors = round_up(copied + sector_offset, 1690 fs_info->sectorsize); 1691 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1692 1693 /* 1694 * if we have trouble faulting in the pages, fall 1695 * back to one page at a time 1696 */ 1697 if (copied < write_bytes) 1698 nrptrs = 1; 1699 1700 if (copied == 0) { 1701 force_page_uptodate = true; 1702 dirty_sectors = 0; 1703 dirty_pages = 0; 1704 } else { 1705 force_page_uptodate = false; 1706 dirty_pages = DIV_ROUND_UP(copied + offset, 1707 PAGE_SIZE); 1708 } 1709 1710 if (num_sectors > dirty_sectors) { 1711 /* release everything except the sectors we dirtied */ 1712 release_bytes -= dirty_sectors << 1713 fs_info->sb->s_blocksize_bits; 1714 if (only_release_metadata) { 1715 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1716 release_bytes, true); 1717 } else { 1718 u64 __pos; 1719 1720 __pos = round_down(pos, 1721 fs_info->sectorsize) + 1722 (dirty_pages << PAGE_SHIFT); 1723 btrfs_delalloc_release_space(BTRFS_I(inode), 1724 data_reserved, __pos, 1725 release_bytes, true); 1726 } 1727 } 1728 1729 release_bytes = round_up(copied + sector_offset, 1730 fs_info->sectorsize); 1731 1732 if (copied > 0) 1733 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1734 dirty_pages, pos, copied, 1735 &cached_state); 1736 1737 /* 1738 * If we have not locked the extent range, because the range's 1739 * start offset is >= i_size, we might still have a non-NULL 1740 * cached extent state, acquired while marking the extent range 1741 * as delalloc through btrfs_dirty_pages(). Therefore free any 1742 * possible cached extent state to avoid a memory leak. 1743 */ 1744 if (extents_locked) 1745 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1746 lockstart, lockend, &cached_state); 1747 else 1748 free_extent_state(cached_state); 1749 1750 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1751 if (ret) { 1752 btrfs_drop_pages(pages, num_pages); 1753 break; 1754 } 1755 1756 release_bytes = 0; 1757 if (only_release_metadata) 1758 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1759 1760 if (only_release_metadata && copied > 0) { 1761 lockstart = round_down(pos, 1762 fs_info->sectorsize); 1763 lockend = round_up(pos + copied, 1764 fs_info->sectorsize) - 1; 1765 1766 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1767 lockend, EXTENT_NORESERVE, NULL, 1768 NULL, GFP_NOFS); 1769 } 1770 1771 btrfs_drop_pages(pages, num_pages); 1772 1773 cond_resched(); 1774 1775 balance_dirty_pages_ratelimited(inode->i_mapping); 1776 1777 pos += copied; 1778 num_written += copied; 1779 } 1780 1781 kfree(pages); 1782 1783 if (release_bytes) { 1784 if (only_release_metadata) { 1785 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1786 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1787 release_bytes, true); 1788 } else { 1789 btrfs_delalloc_release_space(BTRFS_I(inode), 1790 data_reserved, 1791 round_down(pos, fs_info->sectorsize), 1792 release_bytes, true); 1793 } 1794 } 1795 1796 extent_changeset_free(data_reserved); 1797 return num_written ? num_written : ret; 1798} 1799 1800static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1801{ 1802 struct file *file = iocb->ki_filp; 1803 struct inode *inode = file_inode(file); 1804 loff_t pos; 1805 ssize_t written; 1806 ssize_t written_buffered; 1807 loff_t endbyte; 1808 int err; 1809 1810 written = btrfs_direct_IO(iocb, from); 1811 1812 if (written < 0 || !iov_iter_count(from)) 1813 return written; 1814 1815 pos = iocb->ki_pos; 1816 written_buffered = btrfs_buffered_write(iocb, from); 1817 if (written_buffered < 0) { 1818 err = written_buffered; 1819 goto out; 1820 } 1821 /* 1822 * Ensure all data is persisted. We want the next direct IO read to be 1823 * able to read what was just written. 1824 */ 1825 endbyte = pos + written_buffered - 1; 1826 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1827 if (err) 1828 goto out; 1829 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1830 if (err) 1831 goto out; 1832 written += written_buffered; 1833 iocb->ki_pos = pos + written_buffered; 1834 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1835 endbyte >> PAGE_SHIFT); 1836out: 1837 return written ? written : err; 1838} 1839 1840static void update_time_for_write(struct inode *inode) 1841{ 1842 struct timespec64 now; 1843 1844 if (IS_NOCMTIME(inode)) 1845 return; 1846 1847 now = current_time(inode); 1848 if (!timespec64_equal(&inode->i_mtime, &now)) 1849 inode->i_mtime = now; 1850 1851 if (!timespec64_equal(&inode->i_ctime, &now)) 1852 inode->i_ctime = now; 1853 1854 if (IS_I_VERSION(inode)) 1855 inode_inc_iversion(inode); 1856} 1857 1858static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1859 struct iov_iter *from) 1860{ 1861 struct file *file = iocb->ki_filp; 1862 struct inode *inode = file_inode(file); 1863 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1864 u64 start_pos; 1865 u64 end_pos; 1866 ssize_t num_written = 0; 1867 const bool sync = iocb->ki_flags & IOCB_DSYNC; 1868 ssize_t err; 1869 loff_t pos; 1870 size_t count; 1871 loff_t oldsize; 1872 int clean_page = 0; 1873 1874 if (!(iocb->ki_flags & IOCB_DIRECT) && 1875 (iocb->ki_flags & IOCB_NOWAIT)) 1876 return -EOPNOTSUPP; 1877 1878 if (iocb->ki_flags & IOCB_NOWAIT) { 1879 if (!inode_trylock(inode)) 1880 return -EAGAIN; 1881 } else { 1882 inode_lock(inode); 1883 } 1884 1885 err = generic_write_checks(iocb, from); 1886 if (err <= 0) { 1887 inode_unlock(inode); 1888 return err; 1889 } 1890 1891 pos = iocb->ki_pos; 1892 count = iov_iter_count(from); 1893 if (iocb->ki_flags & IOCB_NOWAIT) { 1894 size_t nocow_bytes = count; 1895 1896 /* 1897 * We will allocate space in case nodatacow is not set, 1898 * so bail 1899 */ 1900 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) 1901 <= 0) { 1902 inode_unlock(inode); 1903 return -EAGAIN; 1904 } 1905 /* 1906 * There are holes in the range or parts of the range that must 1907 * be COWed (shared extents, RO block groups, etc), so just bail 1908 * out. 1909 */ 1910 if (nocow_bytes < count) { 1911 inode_unlock(inode); 1912 return -EAGAIN; 1913 } 1914 } 1915 1916 current->backing_dev_info = inode_to_bdi(inode); 1917 err = file_remove_privs(file); 1918 if (err) { 1919 inode_unlock(inode); 1920 goto out; 1921 } 1922 1923 /* 1924 * If BTRFS flips readonly due to some impossible error 1925 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1926 * although we have opened a file as writable, we have 1927 * to stop this write operation to ensure FS consistency. 1928 */ 1929 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1930 inode_unlock(inode); 1931 err = -EROFS; 1932 goto out; 1933 } 1934 1935 /* 1936 * We reserve space for updating the inode when we reserve space for the 1937 * extent we are going to write, so we will enospc out there. We don't 1938 * need to start yet another transaction to update the inode as we will 1939 * update the inode when we finish writing whatever data we write. 1940 */ 1941 update_time_for_write(inode); 1942 1943 start_pos = round_down(pos, fs_info->sectorsize); 1944 oldsize = i_size_read(inode); 1945 if (start_pos > oldsize) { 1946 /* Expand hole size to cover write data, preventing empty gap */ 1947 end_pos = round_up(pos + count, 1948 fs_info->sectorsize); 1949 err = btrfs_cont_expand(inode, oldsize, end_pos); 1950 if (err) { 1951 inode_unlock(inode); 1952 goto out; 1953 } 1954 if (start_pos > round_up(oldsize, fs_info->sectorsize)) 1955 clean_page = 1; 1956 } 1957 1958 if (sync) 1959 atomic_inc(&BTRFS_I(inode)->sync_writers); 1960 1961 if (iocb->ki_flags & IOCB_DIRECT) { 1962 /* 1963 * 1. We must always clear IOCB_DSYNC in order to not deadlock 1964 * in iomap, as it calls generic_write_sync() in this case. 1965 * 2. If we are async, we can call iomap_dio_complete() either 1966 * in 1967 * 1968 * 2.1. A worker thread from the last bio completed. In this 1969 * case we need to mark the btrfs_dio_data that it is 1970 * async in order to call generic_write_sync() properly. 1971 * This is handled by setting BTRFS_DIO_SYNC_STUB in the 1972 * current->journal_info. 1973 * 2.2 The submitter context, because all IO completed 1974 * before we exited iomap_dio_rw(). In this case we can 1975 * just re-set the IOCB_DSYNC on the iocb and we'll do 1976 * the sync below. If our ->end_io() gets called and 1977 * current->journal_info is set, then we know we're in 1978 * our current context and we will clear 1979 * current->journal_info to indicate that we need to 1980 * sync below. 1981 */ 1982 if (sync) { 1983 ASSERT(current->journal_info == NULL); 1984 iocb->ki_flags &= ~IOCB_DSYNC; 1985 current->journal_info = BTRFS_DIO_SYNC_STUB; 1986 } 1987 num_written = __btrfs_direct_write(iocb, from); 1988 1989 /* 1990 * As stated above, we cleared journal_info, so we need to do 1991 * the sync ourselves. 1992 */ 1993 if (sync && current->journal_info == NULL) 1994 iocb->ki_flags |= IOCB_DSYNC; 1995 current->journal_info = NULL; 1996 } else { 1997 num_written = btrfs_buffered_write(iocb, from); 1998 if (num_written > 0) 1999 iocb->ki_pos = pos + num_written; 2000 if (clean_page) 2001 pagecache_isize_extended(inode, oldsize, 2002 i_size_read(inode)); 2003 } 2004 2005 inode_unlock(inode); 2006 2007 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 2008 2009 if (num_written > 0) 2010 num_written = generic_write_sync(iocb, num_written); 2011 2012 if (sync) 2013 atomic_dec(&BTRFS_I(inode)->sync_writers); 2014out: 2015 current->backing_dev_info = NULL; 2016 return num_written ? num_written : err; 2017} 2018 2019int btrfs_release_file(struct inode *inode, struct file *filp) 2020{ 2021 struct btrfs_file_private *private = filp->private_data; 2022 2023 if (private && private->filldir_buf) 2024 kfree(private->filldir_buf); 2025 kfree(private); 2026 filp->private_data = NULL; 2027 2028 /* 2029 * Set by setattr when we are about to truncate a file from a non-zero 2030 * size to a zero size. This tries to flush down new bytes that may 2031 * have been written if the application were using truncate to replace 2032 * a file in place. 2033 */ 2034 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 2035 &BTRFS_I(inode)->runtime_flags)) 2036 filemap_flush(inode->i_mapping); 2037 return 0; 2038} 2039 2040static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2041{ 2042 int ret; 2043 struct blk_plug plug; 2044 2045 /* 2046 * This is only called in fsync, which would do synchronous writes, so 2047 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2048 * multiple disks using raid profile, a large IO can be split to 2049 * several segments of stripe length (currently 64K). 2050 */ 2051 blk_start_plug(&plug); 2052 atomic_inc(&BTRFS_I(inode)->sync_writers); 2053 ret = btrfs_fdatawrite_range(inode, start, end); 2054 atomic_dec(&BTRFS_I(inode)->sync_writers); 2055 blk_finish_plug(&plug); 2056 2057 return ret; 2058} 2059 2060static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 2061{ 2062 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 2063 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2064 2065 if (btrfs_inode_in_log(inode, fs_info->generation) && 2066 list_empty(&ctx->ordered_extents)) 2067 return true; 2068 2069 /* 2070 * If we are doing a fast fsync we can not bail out if the inode's 2071 * last_trans is <= then the last committed transaction, because we only 2072 * update the last_trans of the inode during ordered extent completion, 2073 * and for a fast fsync we don't wait for that, we only wait for the 2074 * writeback to complete. 2075 */ 2076 if (inode->last_trans <= fs_info->last_trans_committed && 2077 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 2078 list_empty(&ctx->ordered_extents))) 2079 return true; 2080 2081 return false; 2082} 2083 2084/* 2085 * fsync call for both files and directories. This logs the inode into 2086 * the tree log instead of forcing full commits whenever possible. 2087 * 2088 * It needs to call filemap_fdatawait so that all ordered extent updates are 2089 * in the metadata btree are up to date for copying to the log. 2090 * 2091 * It drops the inode mutex before doing the tree log commit. This is an 2092 * important optimization for directories because holding the mutex prevents 2093 * new operations on the dir while we write to disk. 2094 */ 2095int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2096{ 2097 struct dentry *dentry = file_dentry(file); 2098 struct inode *inode = d_inode(dentry); 2099 struct btrfs_root *root = BTRFS_I(inode)->root; 2100 struct btrfs_trans_handle *trans; 2101 struct btrfs_log_ctx ctx; 2102 int ret = 0, err; 2103 u64 len; 2104 bool full_sync; 2105 2106 trace_btrfs_sync_file(file, datasync); 2107 2108 btrfs_init_log_ctx(&ctx, inode); 2109 2110 /* 2111 * Always set the range to a full range, otherwise we can get into 2112 * several problems, from missing file extent items to represent holes 2113 * when not using the NO_HOLES feature, to log tree corruption due to 2114 * races between hole detection during logging and completion of ordered 2115 * extents outside the range, to missing checksums due to ordered extents 2116 * for which we flushed only a subset of their pages. 2117 */ 2118 start = 0; 2119 end = LLONG_MAX; 2120 len = (u64)LLONG_MAX + 1; 2121 2122 /* 2123 * We write the dirty pages in the range and wait until they complete 2124 * out of the ->i_mutex. If so, we can flush the dirty pages by 2125 * multi-task, and make the performance up. See 2126 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2127 */ 2128 ret = start_ordered_ops(inode, start, end); 2129 if (ret) 2130 goto out; 2131 2132 inode_lock(inode); 2133 2134 /* 2135 * We take the dio_sem here because the tree log stuff can race with 2136 * lockless dio writes and get an extent map logged for an extent we 2137 * never waited on. We need it this high up for lockdep reasons. 2138 */ 2139 down_write(&BTRFS_I(inode)->dio_sem); 2140 2141 atomic_inc(&root->log_batch); 2142 2143 /* 2144 * Always check for the full sync flag while holding the inode's lock, 2145 * to avoid races with other tasks. The flag must be either set all the 2146 * time during logging or always off all the time while logging. 2147 */ 2148 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2149 &BTRFS_I(inode)->runtime_flags); 2150 2151 /* 2152 * Before we acquired the inode's lock, someone may have dirtied more 2153 * pages in the target range. We need to make sure that writeback for 2154 * any such pages does not start while we are logging the inode, because 2155 * if it does, any of the following might happen when we are not doing a 2156 * full inode sync: 2157 * 2158 * 1) We log an extent after its writeback finishes but before its 2159 * checksums are added to the csum tree, leading to -EIO errors 2160 * when attempting to read the extent after a log replay. 2161 * 2162 * 2) We can end up logging an extent before its writeback finishes. 2163 * Therefore after the log replay we will have a file extent item 2164 * pointing to an unwritten extent (and no data checksums as well). 2165 * 2166 * So trigger writeback for any eventual new dirty pages and then we 2167 * wait for all ordered extents to complete below. 2168 */ 2169 ret = start_ordered_ops(inode, start, end); 2170 if (ret) { 2171 up_write(&BTRFS_I(inode)->dio_sem); 2172 inode_unlock(inode); 2173 goto out; 2174 } 2175 2176 /* 2177 * We have to do this here to avoid the priority inversion of waiting on 2178 * IO of a lower priority task while holding a transaction open. 2179 * 2180 * For a full fsync we wait for the ordered extents to complete while 2181 * for a fast fsync we wait just for writeback to complete, and then 2182 * attach the ordered extents to the transaction so that a transaction 2183 * commit waits for their completion, to avoid data loss if we fsync, 2184 * the current transaction commits before the ordered extents complete 2185 * and a power failure happens right after that. 2186 */ 2187 if (full_sync) { 2188 ret = btrfs_wait_ordered_range(inode, start, len); 2189 } else { 2190 /* 2191 * Get our ordered extents as soon as possible to avoid doing 2192 * checksum lookups in the csum tree, and use instead the 2193 * checksums attached to the ordered extents. 2194 */ 2195 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 2196 &ctx.ordered_extents); 2197 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 2198 } 2199 2200 if (ret) 2201 goto out_release_extents; 2202 2203 atomic_inc(&root->log_batch); 2204 2205 smp_mb(); 2206 if (skip_inode_logging(&ctx)) { 2207 /* 2208 * We've had everything committed since the last time we were 2209 * modified so clear this flag in case it was set for whatever 2210 * reason, it's no longer relevant. 2211 */ 2212 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2213 &BTRFS_I(inode)->runtime_flags); 2214 /* 2215 * An ordered extent might have started before and completed 2216 * already with io errors, in which case the inode was not 2217 * updated and we end up here. So check the inode's mapping 2218 * for any errors that might have happened since we last 2219 * checked called fsync. 2220 */ 2221 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2222 goto out_release_extents; 2223 } 2224 2225 /* 2226 * We use start here because we will need to wait on the IO to complete 2227 * in btrfs_sync_log, which could require joining a transaction (for 2228 * example checking cross references in the nocow path). If we use join 2229 * here we could get into a situation where we're waiting on IO to 2230 * happen that is blocked on a transaction trying to commit. With start 2231 * we inc the extwriter counter, so we wait for all extwriters to exit 2232 * before we start blocking joiners. This comment is to keep somebody 2233 * from thinking they are super smart and changing this to 2234 * btrfs_join_transaction *cough*Josef*cough*. 2235 */ 2236 trans = btrfs_start_transaction(root, 0); 2237 if (IS_ERR(trans)) { 2238 ret = PTR_ERR(trans); 2239 goto out_release_extents; 2240 } 2241 2242 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 2243 btrfs_release_log_ctx_extents(&ctx); 2244 if (ret < 0) { 2245 /* Fallthrough and commit/free transaction. */ 2246 ret = 1; 2247 } 2248 2249 /* we've logged all the items and now have a consistent 2250 * version of the file in the log. It is possible that 2251 * someone will come in and modify the file, but that's 2252 * fine because the log is consistent on disk, and we 2253 * have references to all of the file's extents 2254 * 2255 * It is possible that someone will come in and log the 2256 * file again, but that will end up using the synchronization 2257 * inside btrfs_sync_log to keep things safe. 2258 */ 2259 up_write(&BTRFS_I(inode)->dio_sem); 2260 inode_unlock(inode); 2261 2262 if (ret != BTRFS_NO_LOG_SYNC) { 2263 if (!ret) { 2264 ret = btrfs_sync_log(trans, root, &ctx); 2265 if (!ret) { 2266 ret = btrfs_end_transaction(trans); 2267 goto out; 2268 } 2269 } 2270 if (!full_sync) { 2271 ret = btrfs_wait_ordered_range(inode, start, len); 2272 if (ret) { 2273 btrfs_end_transaction(trans); 2274 goto out; 2275 } 2276 } 2277 ret = btrfs_commit_transaction(trans); 2278 } else { 2279 ret = btrfs_end_transaction(trans); 2280 } 2281out: 2282 ASSERT(list_empty(&ctx.list)); 2283 err = file_check_and_advance_wb_err(file); 2284 if (!ret) 2285 ret = err; 2286 return ret > 0 ? -EIO : ret; 2287 2288out_release_extents: 2289 btrfs_release_log_ctx_extents(&ctx); 2290 up_write(&BTRFS_I(inode)->dio_sem); 2291 inode_unlock(inode); 2292 goto out; 2293} 2294 2295static const struct vm_operations_struct btrfs_file_vm_ops = { 2296 .fault = filemap_fault, 2297 .map_pages = filemap_map_pages, 2298 .page_mkwrite = btrfs_page_mkwrite, 2299}; 2300 2301static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2302{ 2303 struct address_space *mapping = filp->f_mapping; 2304 2305 if (!mapping->a_ops->readpage) 2306 return -ENOEXEC; 2307 2308 file_accessed(filp); 2309 vma->vm_ops = &btrfs_file_vm_ops; 2310 2311 return 0; 2312} 2313 2314static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2315 int slot, u64 start, u64 end) 2316{ 2317 struct btrfs_file_extent_item *fi; 2318 struct btrfs_key key; 2319 2320 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2321 return 0; 2322 2323 btrfs_item_key_to_cpu(leaf, &key, slot); 2324 if (key.objectid != btrfs_ino(inode) || 2325 key.type != BTRFS_EXTENT_DATA_KEY) 2326 return 0; 2327 2328 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2329 2330 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2331 return 0; 2332 2333 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2334 return 0; 2335 2336 if (key.offset == end) 2337 return 1; 2338 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2339 return 1; 2340 return 0; 2341} 2342 2343static int fill_holes(struct btrfs_trans_handle *trans, 2344 struct btrfs_inode *inode, 2345 struct btrfs_path *path, u64 offset, u64 end) 2346{ 2347 struct btrfs_fs_info *fs_info = trans->fs_info; 2348 struct btrfs_root *root = inode->root; 2349 struct extent_buffer *leaf; 2350 struct btrfs_file_extent_item *fi; 2351 struct extent_map *hole_em; 2352 struct extent_map_tree *em_tree = &inode->extent_tree; 2353 struct btrfs_key key; 2354 int ret; 2355 2356 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2357 goto out; 2358 2359 key.objectid = btrfs_ino(inode); 2360 key.type = BTRFS_EXTENT_DATA_KEY; 2361 key.offset = offset; 2362 2363 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2364 if (ret <= 0) { 2365 /* 2366 * We should have dropped this offset, so if we find it then 2367 * something has gone horribly wrong. 2368 */ 2369 if (ret == 0) 2370 ret = -EINVAL; 2371 return ret; 2372 } 2373 2374 leaf = path->nodes[0]; 2375 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2376 u64 num_bytes; 2377 2378 path->slots[0]--; 2379 fi = btrfs_item_ptr(leaf, path->slots[0], 2380 struct btrfs_file_extent_item); 2381 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2382 end - offset; 2383 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2384 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2385 btrfs_set_file_extent_offset(leaf, fi, 0); 2386 btrfs_mark_buffer_dirty(leaf); 2387 goto out; 2388 } 2389 2390 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2391 u64 num_bytes; 2392 2393 key.offset = offset; 2394 btrfs_set_item_key_safe(fs_info, path, &key); 2395 fi = btrfs_item_ptr(leaf, path->slots[0], 2396 struct btrfs_file_extent_item); 2397 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2398 offset; 2399 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2400 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2401 btrfs_set_file_extent_offset(leaf, fi, 0); 2402 btrfs_mark_buffer_dirty(leaf); 2403 goto out; 2404 } 2405 btrfs_release_path(path); 2406 2407 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2408 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2409 if (ret) 2410 return ret; 2411 2412out: 2413 btrfs_release_path(path); 2414 2415 hole_em = alloc_extent_map(); 2416 if (!hole_em) { 2417 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2418 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2419 } else { 2420 hole_em->start = offset; 2421 hole_em->len = end - offset; 2422 hole_em->ram_bytes = hole_em->len; 2423 hole_em->orig_start = offset; 2424 2425 hole_em->block_start = EXTENT_MAP_HOLE; 2426 hole_em->block_len = 0; 2427 hole_em->orig_block_len = 0; 2428 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2429 hole_em->generation = trans->transid; 2430 2431 do { 2432 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2433 write_lock(&em_tree->lock); 2434 ret = add_extent_mapping(em_tree, hole_em, 1); 2435 write_unlock(&em_tree->lock); 2436 } while (ret == -EEXIST); 2437 free_extent_map(hole_em); 2438 if (ret) 2439 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2440 &inode->runtime_flags); 2441 } 2442 2443 return 0; 2444} 2445 2446/* 2447 * Find a hole extent on given inode and change start/len to the end of hole 2448 * extent.(hole/vacuum extent whose em->start <= start && 2449 * em->start + em->len > start) 2450 * When a hole extent is found, return 1 and modify start/len. 2451 */ 2452static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2453{ 2454 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2455 struct extent_map *em; 2456 int ret = 0; 2457 2458 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2459 round_down(*start, fs_info->sectorsize), 2460 round_up(*len, fs_info->sectorsize)); 2461 if (IS_ERR(em)) 2462 return PTR_ERR(em); 2463 2464 /* Hole or vacuum extent(only exists in no-hole mode) */ 2465 if (em->block_start == EXTENT_MAP_HOLE) { 2466 ret = 1; 2467 *len = em->start + em->len > *start + *len ? 2468 0 : *start + *len - em->start - em->len; 2469 *start = em->start + em->len; 2470 } 2471 free_extent_map(em); 2472 return ret; 2473} 2474 2475static int btrfs_punch_hole_lock_range(struct inode *inode, 2476 const u64 lockstart, 2477 const u64 lockend, 2478 struct extent_state **cached_state) 2479{ 2480 while (1) { 2481 struct btrfs_ordered_extent *ordered; 2482 int ret; 2483 2484 truncate_pagecache_range(inode, lockstart, lockend); 2485 2486 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2487 cached_state); 2488 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), 2489 lockend); 2490 2491 /* 2492 * We need to make sure we have no ordered extents in this range 2493 * and nobody raced in and read a page in this range, if we did 2494 * we need to try again. 2495 */ 2496 if ((!ordered || 2497 (ordered->file_offset + ordered->num_bytes <= lockstart || 2498 ordered->file_offset > lockend)) && 2499 !filemap_range_has_page(inode->i_mapping, 2500 lockstart, lockend)) { 2501 if (ordered) 2502 btrfs_put_ordered_extent(ordered); 2503 break; 2504 } 2505 if (ordered) 2506 btrfs_put_ordered_extent(ordered); 2507 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2508 lockend, cached_state); 2509 ret = btrfs_wait_ordered_range(inode, lockstart, 2510 lockend - lockstart + 1); 2511 if (ret) 2512 return ret; 2513 } 2514 return 0; 2515} 2516 2517static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2518 struct inode *inode, 2519 struct btrfs_path *path, 2520 struct btrfs_replace_extent_info *extent_info, 2521 const u64 replace_len) 2522{ 2523 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2524 struct btrfs_root *root = BTRFS_I(inode)->root; 2525 struct btrfs_file_extent_item *extent; 2526 struct extent_buffer *leaf; 2527 struct btrfs_key key; 2528 int slot; 2529 struct btrfs_ref ref = { 0 }; 2530 int ret; 2531 2532 if (replace_len == 0) 2533 return 0; 2534 2535 if (extent_info->disk_offset == 0 && 2536 btrfs_fs_incompat(fs_info, NO_HOLES)) 2537 return 0; 2538 2539 key.objectid = btrfs_ino(BTRFS_I(inode)); 2540 key.type = BTRFS_EXTENT_DATA_KEY; 2541 key.offset = extent_info->file_offset; 2542 ret = btrfs_insert_empty_item(trans, root, path, &key, 2543 sizeof(struct btrfs_file_extent_item)); 2544 if (ret) 2545 return ret; 2546 leaf = path->nodes[0]; 2547 slot = path->slots[0]; 2548 write_extent_buffer(leaf, extent_info->extent_buf, 2549 btrfs_item_ptr_offset(leaf, slot), 2550 sizeof(struct btrfs_file_extent_item)); 2551 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2552 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2553 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2554 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2555 if (extent_info->is_new_extent) 2556 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2557 btrfs_mark_buffer_dirty(leaf); 2558 btrfs_release_path(path); 2559 2560 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 2561 extent_info->file_offset, replace_len); 2562 if (ret) 2563 return ret; 2564 2565 /* If it's a hole, nothing more needs to be done. */ 2566 if (extent_info->disk_offset == 0) 2567 return 0; 2568 2569 inode_add_bytes(inode, replace_len); 2570 2571 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2572 key.objectid = extent_info->disk_offset; 2573 key.type = BTRFS_EXTENT_ITEM_KEY; 2574 key.offset = extent_info->disk_len; 2575 ret = btrfs_alloc_reserved_file_extent(trans, root, 2576 btrfs_ino(BTRFS_I(inode)), 2577 extent_info->file_offset, 2578 extent_info->qgroup_reserved, 2579 &key); 2580 } else { 2581 u64 ref_offset; 2582 2583 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2584 extent_info->disk_offset, 2585 extent_info->disk_len, 0); 2586 ref_offset = extent_info->file_offset - extent_info->data_offset; 2587 btrfs_init_data_ref(&ref, root->root_key.objectid, 2588 btrfs_ino(BTRFS_I(inode)), ref_offset); 2589 ret = btrfs_inc_extent_ref(trans, &ref); 2590 } 2591 2592 extent_info->insertions++; 2593 2594 return ret; 2595} 2596 2597/* 2598 * The respective range must have been previously locked, as well as the inode. 2599 * The end offset is inclusive (last byte of the range). 2600 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2601 * the file range with an extent. 2602 * When not punching a hole, we don't want to end up in a state where we dropped 2603 * extents without inserting a new one, so we must abort the transaction to avoid 2604 * a corruption. 2605 */ 2606int btrfs_replace_file_extents(struct inode *inode, struct btrfs_path *path, 2607 const u64 start, const u64 end, 2608 struct btrfs_replace_extent_info *extent_info, 2609 struct btrfs_trans_handle **trans_out) 2610{ 2611 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2612 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2613 u64 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2614 struct btrfs_root *root = BTRFS_I(inode)->root; 2615 struct btrfs_trans_handle *trans = NULL; 2616 struct btrfs_block_rsv *rsv; 2617 unsigned int rsv_count; 2618 u64 cur_offset; 2619 u64 drop_end; 2620 u64 len = end - start; 2621 int ret = 0; 2622 2623 if (end <= start) 2624 return -EINVAL; 2625 2626 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2627 if (!rsv) { 2628 ret = -ENOMEM; 2629 goto out; 2630 } 2631 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2632 rsv->failfast = 1; 2633 2634 /* 2635 * 1 - update the inode 2636 * 1 - removing the extents in the range 2637 * 1 - adding the hole extent if no_holes isn't set or if we are 2638 * replacing the range with a new extent 2639 */ 2640 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2641 rsv_count = 3; 2642 else 2643 rsv_count = 2; 2644 2645 trans = btrfs_start_transaction(root, rsv_count); 2646 if (IS_ERR(trans)) { 2647 ret = PTR_ERR(trans); 2648 trans = NULL; 2649 goto out_free; 2650 } 2651 2652 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2653 min_size, false); 2654 BUG_ON(ret); 2655 trans->block_rsv = rsv; 2656 2657 cur_offset = start; 2658 while (cur_offset < end) { 2659 ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path, 2660 cur_offset, end + 1, &drop_end, 2661 1, 0, 0, NULL); 2662 if (ret != -ENOSPC) { 2663 /* 2664 * The only time we don't want to abort is if we are 2665 * attempting to clone a partial inline extent, in which 2666 * case we'll get EOPNOTSUPP. However if we aren't 2667 * clone we need to abort no matter what, because if we 2668 * got EOPNOTSUPP via prealloc then we messed up and 2669 * need to abort. 2670 */ 2671 if (ret && 2672 (ret != -EOPNOTSUPP || 2673 (extent_info && extent_info->is_new_extent))) 2674 btrfs_abort_transaction(trans, ret); 2675 break; 2676 } 2677 2678 trans->block_rsv = &fs_info->trans_block_rsv; 2679 2680 if (!extent_info && cur_offset < drop_end && 2681 cur_offset < ino_size) { 2682 ret = fill_holes(trans, BTRFS_I(inode), path, 2683 cur_offset, drop_end); 2684 if (ret) { 2685 /* 2686 * If we failed then we didn't insert our hole 2687 * entries for the area we dropped, so now the 2688 * fs is corrupted, so we must abort the 2689 * transaction. 2690 */ 2691 btrfs_abort_transaction(trans, ret); 2692 break; 2693 } 2694 } else if (!extent_info && cur_offset < drop_end) { 2695 /* 2696 * We are past the i_size here, but since we didn't 2697 * insert holes we need to clear the mapped area so we 2698 * know to not set disk_i_size in this area until a new 2699 * file extent is inserted here. 2700 */ 2701 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 2702 cur_offset, drop_end - cur_offset); 2703 if (ret) { 2704 /* 2705 * We couldn't clear our area, so we could 2706 * presumably adjust up and corrupt the fs, so 2707 * we need to abort. 2708 */ 2709 btrfs_abort_transaction(trans, ret); 2710 break; 2711 } 2712 } 2713 2714 if (extent_info && drop_end > extent_info->file_offset) { 2715 u64 replace_len = drop_end - extent_info->file_offset; 2716 2717 ret = btrfs_insert_replace_extent(trans, inode, path, 2718 extent_info, replace_len); 2719 if (ret) { 2720 btrfs_abort_transaction(trans, ret); 2721 break; 2722 } 2723 extent_info->data_len -= replace_len; 2724 extent_info->data_offset += replace_len; 2725 extent_info->file_offset += replace_len; 2726 } 2727 2728 cur_offset = drop_end; 2729 2730 ret = btrfs_update_inode(trans, root, inode); 2731 if (ret) 2732 break; 2733 2734 btrfs_end_transaction(trans); 2735 btrfs_btree_balance_dirty(fs_info); 2736 2737 trans = btrfs_start_transaction(root, rsv_count); 2738 if (IS_ERR(trans)) { 2739 ret = PTR_ERR(trans); 2740 trans = NULL; 2741 break; 2742 } 2743 2744 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2745 rsv, min_size, false); 2746 BUG_ON(ret); /* shouldn't happen */ 2747 trans->block_rsv = rsv; 2748 2749 if (!extent_info) { 2750 ret = find_first_non_hole(inode, &cur_offset, &len); 2751 if (unlikely(ret < 0)) 2752 break; 2753 if (ret && !len) { 2754 ret = 0; 2755 break; 2756 } 2757 } 2758 } 2759 2760 /* 2761 * If we were cloning, force the next fsync to be a full one since we 2762 * we replaced (or just dropped in the case of cloning holes when 2763 * NO_HOLES is enabled) extents and extent maps. 2764 * This is for the sake of simplicity, and cloning into files larger 2765 * than 16Mb would force the full fsync any way (when 2766 * try_release_extent_mapping() is invoked during page cache truncation. 2767 */ 2768 if (extent_info && !extent_info->is_new_extent) 2769 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2770 &BTRFS_I(inode)->runtime_flags); 2771 2772 if (ret) 2773 goto out_trans; 2774 2775 trans->block_rsv = &fs_info->trans_block_rsv; 2776 /* 2777 * If we are using the NO_HOLES feature we might have had already an 2778 * hole that overlaps a part of the region [lockstart, lockend] and 2779 * ends at (or beyond) lockend. Since we have no file extent items to 2780 * represent holes, drop_end can be less than lockend and so we must 2781 * make sure we have an extent map representing the existing hole (the 2782 * call to __btrfs_drop_extents() might have dropped the existing extent 2783 * map representing the existing hole), otherwise the fast fsync path 2784 * will not record the existence of the hole region 2785 * [existing_hole_start, lockend]. 2786 */ 2787 if (drop_end <= end) 2788 drop_end = end + 1; 2789 /* 2790 * Don't insert file hole extent item if it's for a range beyond eof 2791 * (because it's useless) or if it represents a 0 bytes range (when 2792 * cur_offset == drop_end). 2793 */ 2794 if (!extent_info && cur_offset < ino_size && cur_offset < drop_end) { 2795 ret = fill_holes(trans, BTRFS_I(inode), path, 2796 cur_offset, drop_end); 2797 if (ret) { 2798 /* Same comment as above. */ 2799 btrfs_abort_transaction(trans, ret); 2800 goto out_trans; 2801 } 2802 } else if (!extent_info && cur_offset < drop_end) { 2803 /* See the comment in the loop above for the reasoning here. */ 2804 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 2805 cur_offset, drop_end - cur_offset); 2806 if (ret) { 2807 btrfs_abort_transaction(trans, ret); 2808 goto out_trans; 2809 } 2810 2811 } 2812 if (extent_info) { 2813 ret = btrfs_insert_replace_extent(trans, inode, path, extent_info, 2814 extent_info->data_len); 2815 if (ret) { 2816 btrfs_abort_transaction(trans, ret); 2817 goto out_trans; 2818 } 2819 } 2820 2821out_trans: 2822 if (!trans) 2823 goto out_free; 2824 2825 trans->block_rsv = &fs_info->trans_block_rsv; 2826 if (ret) 2827 btrfs_end_transaction(trans); 2828 else 2829 *trans_out = trans; 2830out_free: 2831 btrfs_free_block_rsv(fs_info, rsv); 2832out: 2833 return ret; 2834} 2835 2836static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2837{ 2838 struct inode *inode = file_inode(file); 2839 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2840 struct btrfs_root *root = BTRFS_I(inode)->root; 2841 struct extent_state *cached_state = NULL; 2842 struct btrfs_path *path; 2843 struct btrfs_trans_handle *trans = NULL; 2844 u64 lockstart; 2845 u64 lockend; 2846 u64 tail_start; 2847 u64 tail_len; 2848 u64 orig_start = offset; 2849 int ret = 0; 2850 bool same_block; 2851 u64 ino_size; 2852 bool truncated_block = false; 2853 bool updated_inode = false; 2854 2855 ret = btrfs_wait_ordered_range(inode, offset, len); 2856 if (ret) 2857 return ret; 2858 2859 inode_lock(inode); 2860 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2861 ret = find_first_non_hole(inode, &offset, &len); 2862 if (ret < 0) 2863 goto out_only_mutex; 2864 if (ret && !len) { 2865 /* Already in a large hole */ 2866 ret = 0; 2867 goto out_only_mutex; 2868 } 2869 2870 ret = file_modified(file); 2871 if (ret) 2872 goto out_only_mutex; 2873 2874 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode))); 2875 lockend = round_down(offset + len, 2876 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1; 2877 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2878 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2879 /* 2880 * We needn't truncate any block which is beyond the end of the file 2881 * because we are sure there is no data there. 2882 */ 2883 /* 2884 * Only do this if we are in the same block and we aren't doing the 2885 * entire block. 2886 */ 2887 if (same_block && len < fs_info->sectorsize) { 2888 if (offset < ino_size) { 2889 truncated_block = true; 2890 ret = btrfs_truncate_block(inode, offset, len, 0); 2891 } else { 2892 ret = 0; 2893 } 2894 goto out_only_mutex; 2895 } 2896 2897 /* zero back part of the first block */ 2898 if (offset < ino_size) { 2899 truncated_block = true; 2900 ret = btrfs_truncate_block(inode, offset, 0, 0); 2901 if (ret) { 2902 inode_unlock(inode); 2903 return ret; 2904 } 2905 } 2906 2907 /* Check the aligned pages after the first unaligned page, 2908 * if offset != orig_start, which means the first unaligned page 2909 * including several following pages are already in holes, 2910 * the extra check can be skipped */ 2911 if (offset == orig_start) { 2912 /* after truncate page, check hole again */ 2913 len = offset + len - lockstart; 2914 offset = lockstart; 2915 ret = find_first_non_hole(inode, &offset, &len); 2916 if (ret < 0) 2917 goto out_only_mutex; 2918 if (ret && !len) { 2919 ret = 0; 2920 goto out_only_mutex; 2921 } 2922 lockstart = offset; 2923 } 2924 2925 /* Check the tail unaligned part is in a hole */ 2926 tail_start = lockend + 1; 2927 tail_len = offset + len - tail_start; 2928 if (tail_len) { 2929 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2930 if (unlikely(ret < 0)) 2931 goto out_only_mutex; 2932 if (!ret) { 2933 /* zero the front end of the last page */ 2934 if (tail_start + tail_len < ino_size) { 2935 truncated_block = true; 2936 ret = btrfs_truncate_block(inode, 2937 tail_start + tail_len, 2938 0, 1); 2939 if (ret) 2940 goto out_only_mutex; 2941 } 2942 } 2943 } 2944 2945 if (lockend < lockstart) { 2946 ret = 0; 2947 goto out_only_mutex; 2948 } 2949 2950 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2951 &cached_state); 2952 if (ret) 2953 goto out_only_mutex; 2954 2955 path = btrfs_alloc_path(); 2956 if (!path) { 2957 ret = -ENOMEM; 2958 goto out; 2959 } 2960 2961 ret = btrfs_replace_file_extents(inode, path, lockstart, lockend, NULL, 2962 &trans); 2963 btrfs_free_path(path); 2964 if (ret) 2965 goto out; 2966 2967 ASSERT(trans != NULL); 2968 inode_inc_iversion(inode); 2969 inode->i_mtime = inode->i_ctime = current_time(inode); 2970 ret = btrfs_update_inode(trans, root, inode); 2971 updated_inode = true; 2972 btrfs_end_transaction(trans); 2973 btrfs_btree_balance_dirty(fs_info); 2974out: 2975 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2976 &cached_state); 2977out_only_mutex: 2978 if (!updated_inode && truncated_block && !ret) { 2979 /* 2980 * If we only end up zeroing part of a page, we still need to 2981 * update the inode item, so that all the time fields are 2982 * updated as well as the necessary btrfs inode in memory fields 2983 * for detecting, at fsync time, if the inode isn't yet in the 2984 * log tree or it's there but not up to date. 2985 */ 2986 struct timespec64 now = current_time(inode); 2987 2988 inode_inc_iversion(inode); 2989 inode->i_mtime = now; 2990 inode->i_ctime = now; 2991 trans = btrfs_start_transaction(root, 1); 2992 if (IS_ERR(trans)) { 2993 ret = PTR_ERR(trans); 2994 } else { 2995 int ret2; 2996 2997 ret = btrfs_update_inode(trans, root, inode); 2998 ret2 = btrfs_end_transaction(trans); 2999 if (!ret) 3000 ret = ret2; 3001 } 3002 } 3003 inode_unlock(inode); 3004 return ret; 3005} 3006 3007/* Helper structure to record which range is already reserved */ 3008struct falloc_range { 3009 struct list_head list; 3010 u64 start; 3011 u64 len; 3012}; 3013 3014/* 3015 * Helper function to add falloc range 3016 * 3017 * Caller should have locked the larger range of extent containing 3018 * [start, len) 3019 */ 3020static int add_falloc_range(struct list_head *head, u64 start, u64 len) 3021{ 3022 struct falloc_range *prev = NULL; 3023 struct falloc_range *range = NULL; 3024 3025 if (list_empty(head)) 3026 goto insert; 3027 3028 /* 3029 * As fallocate iterate by bytenr order, we only need to check 3030 * the last range. 3031 */ 3032 prev = list_entry(head->prev, struct falloc_range, list); 3033 if (prev->start + prev->len == start) { 3034 prev->len += len; 3035 return 0; 3036 } 3037insert: 3038 range = kmalloc(sizeof(*range), GFP_KERNEL); 3039 if (!range) 3040 return -ENOMEM; 3041 range->start = start; 3042 range->len = len; 3043 list_add_tail(&range->list, head); 3044 return 0; 3045} 3046 3047static int btrfs_fallocate_update_isize(struct inode *inode, 3048 const u64 end, 3049 const int mode) 3050{ 3051 struct btrfs_trans_handle *trans; 3052 struct btrfs_root *root = BTRFS_I(inode)->root; 3053 int ret; 3054 int ret2; 3055 3056 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 3057 return 0; 3058 3059 trans = btrfs_start_transaction(root, 1); 3060 if (IS_ERR(trans)) 3061 return PTR_ERR(trans); 3062 3063 inode->i_ctime = current_time(inode); 3064 i_size_write(inode, end); 3065 btrfs_inode_safe_disk_i_size_write(inode, 0); 3066 ret = btrfs_update_inode(trans, root, inode); 3067 ret2 = btrfs_end_transaction(trans); 3068 3069 return ret ? ret : ret2; 3070} 3071 3072enum { 3073 RANGE_BOUNDARY_WRITTEN_EXTENT, 3074 RANGE_BOUNDARY_PREALLOC_EXTENT, 3075 RANGE_BOUNDARY_HOLE, 3076}; 3077 3078static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 3079 u64 offset) 3080{ 3081 const u64 sectorsize = btrfs_inode_sectorsize(inode); 3082 struct extent_map *em; 3083 int ret; 3084 3085 offset = round_down(offset, sectorsize); 3086 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 3087 if (IS_ERR(em)) 3088 return PTR_ERR(em); 3089 3090 if (em->block_start == EXTENT_MAP_HOLE) 3091 ret = RANGE_BOUNDARY_HOLE; 3092 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3093 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 3094 else 3095 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 3096 3097 free_extent_map(em); 3098 return ret; 3099} 3100 3101static int btrfs_zero_range(struct inode *inode, 3102 loff_t offset, 3103 loff_t len, 3104 const int mode) 3105{ 3106 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3107 struct extent_map *em; 3108 struct extent_changeset *data_reserved = NULL; 3109 int ret; 3110 u64 alloc_hint = 0; 3111 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3112 u64 alloc_start = round_down(offset, sectorsize); 3113 u64 alloc_end = round_up(offset + len, sectorsize); 3114 u64 bytes_to_reserve = 0; 3115 bool space_reserved = false; 3116 3117 inode_dio_wait(inode); 3118 3119 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3120 alloc_end - alloc_start); 3121 if (IS_ERR(em)) { 3122 ret = PTR_ERR(em); 3123 goto out; 3124 } 3125 3126 /* 3127 * Avoid hole punching and extent allocation for some cases. More cases 3128 * could be considered, but these are unlikely common and we keep things 3129 * as simple as possible for now. Also, intentionally, if the target 3130 * range contains one or more prealloc extents together with regular 3131 * extents and holes, we drop all the existing extents and allocate a 3132 * new prealloc extent, so that we get a larger contiguous disk extent. 3133 */ 3134 if (em->start <= alloc_start && 3135 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3136 const u64 em_end = em->start + em->len; 3137 3138 if (em_end >= offset + len) { 3139 /* 3140 * The whole range is already a prealloc extent, 3141 * do nothing except updating the inode's i_size if 3142 * needed. 3143 */ 3144 free_extent_map(em); 3145 ret = btrfs_fallocate_update_isize(inode, offset + len, 3146 mode); 3147 goto out; 3148 } 3149 /* 3150 * Part of the range is already a prealloc extent, so operate 3151 * only on the remaining part of the range. 3152 */ 3153 alloc_start = em_end; 3154 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3155 len = offset + len - alloc_start; 3156 offset = alloc_start; 3157 alloc_hint = em->block_start + em->len; 3158 } 3159 free_extent_map(em); 3160 3161 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3162 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3163 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3164 sectorsize); 3165 if (IS_ERR(em)) { 3166 ret = PTR_ERR(em); 3167 goto out; 3168 } 3169 3170 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3171 free_extent_map(em); 3172 ret = btrfs_fallocate_update_isize(inode, offset + len, 3173 mode); 3174 goto out; 3175 } 3176 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3177 free_extent_map(em); 3178 ret = btrfs_truncate_block(inode, offset, len, 0); 3179 if (!ret) 3180 ret = btrfs_fallocate_update_isize(inode, 3181 offset + len, 3182 mode); 3183 return ret; 3184 } 3185 free_extent_map(em); 3186 alloc_start = round_down(offset, sectorsize); 3187 alloc_end = alloc_start + sectorsize; 3188 goto reserve_space; 3189 } 3190 3191 alloc_start = round_up(offset, sectorsize); 3192 alloc_end = round_down(offset + len, sectorsize); 3193 3194 /* 3195 * For unaligned ranges, check the pages at the boundaries, they might 3196 * map to an extent, in which case we need to partially zero them, or 3197 * they might map to a hole, in which case we need our allocation range 3198 * to cover them. 3199 */ 3200 if (!IS_ALIGNED(offset, sectorsize)) { 3201 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3202 offset); 3203 if (ret < 0) 3204 goto out; 3205 if (ret == RANGE_BOUNDARY_HOLE) { 3206 alloc_start = round_down(offset, sectorsize); 3207 ret = 0; 3208 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3209 ret = btrfs_truncate_block(inode, offset, 0, 0); 3210 if (ret) 3211 goto out; 3212 } else { 3213 ret = 0; 3214 } 3215 } 3216 3217 if (!IS_ALIGNED(offset + len, sectorsize)) { 3218 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3219 offset + len); 3220 if (ret < 0) 3221 goto out; 3222 if (ret == RANGE_BOUNDARY_HOLE) { 3223 alloc_end = round_up(offset + len, sectorsize); 3224 ret = 0; 3225 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3226 ret = btrfs_truncate_block(inode, offset + len, 0, 1); 3227 if (ret) 3228 goto out; 3229 } else { 3230 ret = 0; 3231 } 3232 } 3233 3234reserve_space: 3235 if (alloc_start < alloc_end) { 3236 struct extent_state *cached_state = NULL; 3237 const u64 lockstart = alloc_start; 3238 const u64 lockend = alloc_end - 1; 3239 3240 bytes_to_reserve = alloc_end - alloc_start; 3241 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3242 bytes_to_reserve); 3243 if (ret < 0) 3244 goto out; 3245 space_reserved = true; 3246 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3247 &cached_state); 3248 if (ret) 3249 goto out; 3250 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3251 alloc_start, bytes_to_reserve); 3252 if (ret) { 3253 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3254 lockend, &cached_state); 3255 goto out; 3256 } 3257 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3258 alloc_end - alloc_start, 3259 i_blocksize(inode), 3260 offset + len, &alloc_hint); 3261 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3262 lockend, &cached_state); 3263 /* btrfs_prealloc_file_range releases reserved space on error */ 3264 if (ret) { 3265 space_reserved = false; 3266 goto out; 3267 } 3268 } 3269 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3270 out: 3271 if (ret && space_reserved) 3272 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3273 alloc_start, bytes_to_reserve); 3274 extent_changeset_free(data_reserved); 3275 3276 return ret; 3277} 3278 3279static long btrfs_fallocate(struct file *file, int mode, 3280 loff_t offset, loff_t len) 3281{ 3282 struct inode *inode = file_inode(file); 3283 struct extent_state *cached_state = NULL; 3284 struct extent_changeset *data_reserved = NULL; 3285 struct falloc_range *range; 3286 struct falloc_range *tmp; 3287 struct list_head reserve_list; 3288 u64 cur_offset; 3289 u64 last_byte; 3290 u64 alloc_start; 3291 u64 alloc_end; 3292 u64 alloc_hint = 0; 3293 u64 locked_end; 3294 u64 actual_end = 0; 3295 struct extent_map *em; 3296 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3297 int ret; 3298 3299 alloc_start = round_down(offset, blocksize); 3300 alloc_end = round_up(offset + len, blocksize); 3301 cur_offset = alloc_start; 3302 3303 /* Make sure we aren't being give some crap mode */ 3304 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3305 FALLOC_FL_ZERO_RANGE)) 3306 return -EOPNOTSUPP; 3307 3308 if (mode & FALLOC_FL_PUNCH_HOLE) 3309 return btrfs_punch_hole(file, offset, len); 3310 3311 /* 3312 * Only trigger disk allocation, don't trigger qgroup reserve 3313 * 3314 * For qgroup space, it will be checked later. 3315 */ 3316 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3317 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3318 alloc_end - alloc_start); 3319 if (ret < 0) 3320 return ret; 3321 } 3322 3323 inode_lock(inode); 3324 3325 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3326 ret = inode_newsize_ok(inode, offset + len); 3327 if (ret) 3328 goto out; 3329 } 3330 3331 ret = file_modified(file); 3332 if (ret) 3333 goto out; 3334 3335 /* 3336 * TODO: Move these two operations after we have checked 3337 * accurate reserved space, or fallocate can still fail but 3338 * with page truncated or size expanded. 3339 * 3340 * But that's a minor problem and won't do much harm BTW. 3341 */ 3342 if (alloc_start > inode->i_size) { 3343 ret = btrfs_cont_expand(inode, i_size_read(inode), 3344 alloc_start); 3345 if (ret) 3346 goto out; 3347 } else if (offset + len > inode->i_size) { 3348 /* 3349 * If we are fallocating from the end of the file onward we 3350 * need to zero out the end of the block if i_size lands in the 3351 * middle of a block. 3352 */ 3353 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 3354 if (ret) 3355 goto out; 3356 } 3357 3358 /* 3359 * wait for ordered IO before we have any locks. We'll loop again 3360 * below with the locks held. 3361 */ 3362 ret = btrfs_wait_ordered_range(inode, alloc_start, 3363 alloc_end - alloc_start); 3364 if (ret) 3365 goto out; 3366 3367 if (mode & FALLOC_FL_ZERO_RANGE) { 3368 ret = btrfs_zero_range(inode, offset, len, mode); 3369 inode_unlock(inode); 3370 return ret; 3371 } 3372 3373 locked_end = alloc_end - 1; 3374 while (1) { 3375 struct btrfs_ordered_extent *ordered; 3376 3377 /* the extent lock is ordered inside the running 3378 * transaction 3379 */ 3380 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3381 locked_end, &cached_state); 3382 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), 3383 locked_end); 3384 3385 if (ordered && 3386 ordered->file_offset + ordered->num_bytes > alloc_start && 3387 ordered->file_offset < alloc_end) { 3388 btrfs_put_ordered_extent(ordered); 3389 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3390 alloc_start, locked_end, 3391 &cached_state); 3392 /* 3393 * we can't wait on the range with the transaction 3394 * running or with the extent lock held 3395 */ 3396 ret = btrfs_wait_ordered_range(inode, alloc_start, 3397 alloc_end - alloc_start); 3398 if (ret) 3399 goto out; 3400 } else { 3401 if (ordered) 3402 btrfs_put_ordered_extent(ordered); 3403 break; 3404 } 3405 } 3406 3407 /* First, check if we exceed the qgroup limit */ 3408 INIT_LIST_HEAD(&reserve_list); 3409 while (cur_offset < alloc_end) { 3410 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3411 alloc_end - cur_offset); 3412 if (IS_ERR(em)) { 3413 ret = PTR_ERR(em); 3414 break; 3415 } 3416 last_byte = min(extent_map_end(em), alloc_end); 3417 actual_end = min_t(u64, extent_map_end(em), offset + len); 3418 last_byte = ALIGN(last_byte, blocksize); 3419 if (em->block_start == EXTENT_MAP_HOLE || 3420 (cur_offset >= inode->i_size && 3421 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3422 ret = add_falloc_range(&reserve_list, cur_offset, 3423 last_byte - cur_offset); 3424 if (ret < 0) { 3425 free_extent_map(em); 3426 break; 3427 } 3428 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3429 &data_reserved, cur_offset, 3430 last_byte - cur_offset); 3431 if (ret < 0) { 3432 cur_offset = last_byte; 3433 free_extent_map(em); 3434 break; 3435 } 3436 } else { 3437 /* 3438 * Do not need to reserve unwritten extent for this 3439 * range, free reserved data space first, otherwise 3440 * it'll result in false ENOSPC error. 3441 */ 3442 btrfs_free_reserved_data_space(BTRFS_I(inode), 3443 data_reserved, cur_offset, 3444 last_byte - cur_offset); 3445 } 3446 free_extent_map(em); 3447 cur_offset = last_byte; 3448 } 3449 3450 /* 3451 * If ret is still 0, means we're OK to fallocate. 3452 * Or just cleanup the list and exit. 3453 */ 3454 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3455 if (!ret) 3456 ret = btrfs_prealloc_file_range(inode, mode, 3457 range->start, 3458 range->len, i_blocksize(inode), 3459 offset + len, &alloc_hint); 3460 else 3461 btrfs_free_reserved_data_space(BTRFS_I(inode), 3462 data_reserved, range->start, 3463 range->len); 3464 list_del(&range->list); 3465 kfree(range); 3466 } 3467 if (ret < 0) 3468 goto out_unlock; 3469 3470 /* 3471 * We didn't need to allocate any more space, but we still extended the 3472 * size of the file so we need to update i_size and the inode item. 3473 */ 3474 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3475out_unlock: 3476 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3477 &cached_state); 3478out: 3479 inode_unlock(inode); 3480 /* Let go of our reservation. */ 3481 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3482 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3483 cur_offset, alloc_end - cur_offset); 3484 extent_changeset_free(data_reserved); 3485 return ret; 3486} 3487 3488static loff_t find_desired_extent(struct inode *inode, loff_t offset, 3489 int whence) 3490{ 3491 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3492 struct extent_map *em = NULL; 3493 struct extent_state *cached_state = NULL; 3494 loff_t i_size = inode->i_size; 3495 u64 lockstart; 3496 u64 lockend; 3497 u64 start; 3498 u64 len; 3499 int ret = 0; 3500 3501 if (i_size == 0 || offset >= i_size) 3502 return -ENXIO; 3503 3504 /* 3505 * offset can be negative, in this case we start finding DATA/HOLE from 3506 * the very start of the file. 3507 */ 3508 start = max_t(loff_t, 0, offset); 3509 3510 lockstart = round_down(start, fs_info->sectorsize); 3511 lockend = round_up(i_size, fs_info->sectorsize); 3512 if (lockend <= lockstart) 3513 lockend = lockstart + fs_info->sectorsize; 3514 lockend--; 3515 len = lockend - lockstart + 1; 3516 3517 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3518 &cached_state); 3519 3520 while (start < i_size) { 3521 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len); 3522 if (IS_ERR(em)) { 3523 ret = PTR_ERR(em); 3524 em = NULL; 3525 break; 3526 } 3527 3528 if (whence == SEEK_HOLE && 3529 (em->block_start == EXTENT_MAP_HOLE || 3530 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3531 break; 3532 else if (whence == SEEK_DATA && 3533 (em->block_start != EXTENT_MAP_HOLE && 3534 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3535 break; 3536 3537 start = em->start + em->len; 3538 free_extent_map(em); 3539 em = NULL; 3540 cond_resched(); 3541 } 3542 free_extent_map(em); 3543 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3544 &cached_state); 3545 if (ret) { 3546 offset = ret; 3547 } else { 3548 if (whence == SEEK_DATA && start >= i_size) 3549 offset = -ENXIO; 3550 else 3551 offset = min_t(loff_t, start, i_size); 3552 } 3553 3554 return offset; 3555} 3556 3557static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3558{ 3559 struct inode *inode = file->f_mapping->host; 3560 3561 switch (whence) { 3562 default: 3563 return generic_file_llseek(file, offset, whence); 3564 case SEEK_DATA: 3565 case SEEK_HOLE: 3566 inode_lock_shared(inode); 3567 offset = find_desired_extent(inode, offset, whence); 3568 inode_unlock_shared(inode); 3569 break; 3570 } 3571 3572 if (offset < 0) 3573 return offset; 3574 3575 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3576} 3577 3578static int btrfs_file_open(struct inode *inode, struct file *filp) 3579{ 3580 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 3581 return generic_file_open(inode, filp); 3582} 3583 3584static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3585{ 3586 ssize_t ret = 0; 3587 3588 if (iocb->ki_flags & IOCB_DIRECT) { 3589 struct inode *inode = file_inode(iocb->ki_filp); 3590 3591 inode_lock_shared(inode); 3592 ret = btrfs_direct_IO(iocb, to); 3593 inode_unlock_shared(inode); 3594 if (ret < 0 || !iov_iter_count(to) || 3595 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3596 return ret; 3597 } 3598 3599 return generic_file_buffered_read(iocb, to, ret); 3600} 3601 3602const struct file_operations btrfs_file_operations = { 3603 .llseek = btrfs_file_llseek, 3604 .read_iter = btrfs_file_read_iter, 3605 .splice_read = generic_file_splice_read, 3606 .write_iter = btrfs_file_write_iter, 3607 .splice_write = iter_file_splice_write, 3608 .mmap = btrfs_file_mmap, 3609 .open = btrfs_file_open, 3610 .release = btrfs_release_file, 3611 .fsync = btrfs_sync_file, 3612 .fallocate = btrfs_fallocate, 3613 .unlocked_ioctl = btrfs_ioctl, 3614#ifdef CONFIG_COMPAT 3615 .compat_ioctl = btrfs_compat_ioctl, 3616#endif 3617 .remap_file_range = btrfs_remap_file_range, 3618}; 3619 3620void __cold btrfs_auto_defrag_exit(void) 3621{ 3622 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3623} 3624 3625int __init btrfs_auto_defrag_init(void) 3626{ 3627 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3628 sizeof(struct inode_defrag), 0, 3629 SLAB_MEM_SPREAD, 3630 NULL); 3631 if (!btrfs_inode_defrag_cachep) 3632 return -ENOMEM; 3633 3634 return 0; 3635} 3636 3637int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3638{ 3639 int ret; 3640 3641 /* 3642 * So with compression we will find and lock a dirty page and clear the 3643 * first one as dirty, setup an async extent, and immediately return 3644 * with the entire range locked but with nobody actually marked with 3645 * writeback. So we can't just filemap_write_and_wait_range() and 3646 * expect it to work since it will just kick off a thread to do the 3647 * actual work. So we need to call filemap_fdatawrite_range _again_ 3648 * since it will wait on the page lock, which won't be unlocked until 3649 * after the pages have been marked as writeback and so we're good to go 3650 * from there. We have to do this otherwise we'll miss the ordered 3651 * extents and that results in badness. Please Josef, do not think you 3652 * know better and pull this out at some point in the future, it is 3653 * right and you are wrong. 3654 */ 3655 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3656 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3657 &BTRFS_I(inode)->runtime_flags)) 3658 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3659 3660 return ret; 3661} 3662