xref: /kernel/linux/linux-5.10/fs/btrfs/file-item.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/bio.h>
7#include <linux/slab.h>
8#include <linux/pagemap.h>
9#include <linux/highmem.h>
10#include <linux/sched/mm.h>
11#include <crypto/hash.h>
12#include "ctree.h"
13#include "disk-io.h"
14#include "transaction.h"
15#include "volumes.h"
16#include "print-tree.h"
17#include "compression.h"
18
19#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
20				   sizeof(struct btrfs_item) * 2) / \
21				  size) - 1))
22
23#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
24				       PAGE_SIZE))
25
26/**
27 * @inode - the inode we want to update the disk_i_size for
28 * @new_i_size - the i_size we want to set to, 0 if we use i_size
29 *
30 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
31 * returns as it is perfectly fine with a file that has holes without hole file
32 * extent items.
33 *
34 * However without NO_HOLES we need to only return the area that is contiguous
35 * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
36 * to an extent that has a gap in between.
37 *
38 * Finally new_i_size should only be set in the case of truncate where we're not
39 * ready to use i_size_read() as the limiter yet.
40 */
41void btrfs_inode_safe_disk_i_size_write(struct inode *inode, u64 new_i_size)
42{
43	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44	u64 start, end, i_size;
45	int ret;
46
47	i_size = new_i_size ?: i_size_read(inode);
48	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
49		BTRFS_I(inode)->disk_i_size = i_size;
50		return;
51	}
52
53	spin_lock(&BTRFS_I(inode)->lock);
54	ret = find_contiguous_extent_bit(&BTRFS_I(inode)->file_extent_tree, 0,
55					 &start, &end, EXTENT_DIRTY);
56	if (!ret && start == 0)
57		i_size = min(i_size, end + 1);
58	else
59		i_size = 0;
60	BTRFS_I(inode)->disk_i_size = i_size;
61	spin_unlock(&BTRFS_I(inode)->lock);
62}
63
64/**
65 * @inode - the inode we're modifying
66 * @start - the start file offset of the file extent we've inserted
67 * @len - the logical length of the file extent item
68 *
69 * Call when we are inserting a new file extent where there was none before.
70 * Does not need to call this in the case where we're replacing an existing file
71 * extent, however if not sure it's fine to call this multiple times.
72 *
73 * The start and len must match the file extent item, so thus must be sectorsize
74 * aligned.
75 */
76int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
77				      u64 len)
78{
79	if (len == 0)
80		return 0;
81
82	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
83
84	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
85		return 0;
86	return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
87			       EXTENT_DIRTY);
88}
89
90/**
91 * @inode - the inode we're modifying
92 * @start - the start file offset of the file extent we've inserted
93 * @len - the logical length of the file extent item
94 *
95 * Called when we drop a file extent, for example when we truncate.  Doesn't
96 * need to be called for cases where we're replacing a file extent, like when
97 * we've COWed a file extent.
98 *
99 * The start and len must match the file extent item, so thus must be sectorsize
100 * aligned.
101 */
102int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
103					u64 len)
104{
105	if (len == 0)
106		return 0;
107
108	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
109	       len == (u64)-1);
110
111	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
112		return 0;
113	return clear_extent_bit(&inode->file_extent_tree, start,
114				start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
115}
116
117static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
118					u16 csum_size)
119{
120	u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
121
122	return ncsums * fs_info->sectorsize;
123}
124
125int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
126			     struct btrfs_root *root,
127			     u64 objectid, u64 pos,
128			     u64 disk_offset, u64 disk_num_bytes,
129			     u64 num_bytes, u64 offset, u64 ram_bytes,
130			     u8 compression, u8 encryption, u16 other_encoding)
131{
132	int ret = 0;
133	struct btrfs_file_extent_item *item;
134	struct btrfs_key file_key;
135	struct btrfs_path *path;
136	struct extent_buffer *leaf;
137
138	path = btrfs_alloc_path();
139	if (!path)
140		return -ENOMEM;
141	file_key.objectid = objectid;
142	file_key.offset = pos;
143	file_key.type = BTRFS_EXTENT_DATA_KEY;
144
145	path->leave_spinning = 1;
146	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
147				      sizeof(*item));
148	if (ret < 0)
149		goto out;
150	BUG_ON(ret); /* Can't happen */
151	leaf = path->nodes[0];
152	item = btrfs_item_ptr(leaf, path->slots[0],
153			      struct btrfs_file_extent_item);
154	btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
155	btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
156	btrfs_set_file_extent_offset(leaf, item, offset);
157	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
158	btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
159	btrfs_set_file_extent_generation(leaf, item, trans->transid);
160	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
161	btrfs_set_file_extent_compression(leaf, item, compression);
162	btrfs_set_file_extent_encryption(leaf, item, encryption);
163	btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
164
165	btrfs_mark_buffer_dirty(leaf);
166out:
167	btrfs_free_path(path);
168	return ret;
169}
170
171static struct btrfs_csum_item *
172btrfs_lookup_csum(struct btrfs_trans_handle *trans,
173		  struct btrfs_root *root,
174		  struct btrfs_path *path,
175		  u64 bytenr, int cow)
176{
177	struct btrfs_fs_info *fs_info = root->fs_info;
178	int ret;
179	struct btrfs_key file_key;
180	struct btrfs_key found_key;
181	struct btrfs_csum_item *item;
182	struct extent_buffer *leaf;
183	u64 csum_offset = 0;
184	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
185	int csums_in_item;
186
187	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
188	file_key.offset = bytenr;
189	file_key.type = BTRFS_EXTENT_CSUM_KEY;
190	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
191	if (ret < 0)
192		goto fail;
193	leaf = path->nodes[0];
194	if (ret > 0) {
195		ret = 1;
196		if (path->slots[0] == 0)
197			goto fail;
198		path->slots[0]--;
199		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
200		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
201			goto fail;
202
203		csum_offset = (bytenr - found_key.offset) >>
204				fs_info->sb->s_blocksize_bits;
205		csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
206		csums_in_item /= csum_size;
207
208		if (csum_offset == csums_in_item) {
209			ret = -EFBIG;
210			goto fail;
211		} else if (csum_offset > csums_in_item) {
212			goto fail;
213		}
214	}
215	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
216	item = (struct btrfs_csum_item *)((unsigned char *)item +
217					  csum_offset * csum_size);
218	return item;
219fail:
220	if (ret > 0)
221		ret = -ENOENT;
222	return ERR_PTR(ret);
223}
224
225int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
226			     struct btrfs_root *root,
227			     struct btrfs_path *path, u64 objectid,
228			     u64 offset, int mod)
229{
230	int ret;
231	struct btrfs_key file_key;
232	int ins_len = mod < 0 ? -1 : 0;
233	int cow = mod != 0;
234
235	file_key.objectid = objectid;
236	file_key.offset = offset;
237	file_key.type = BTRFS_EXTENT_DATA_KEY;
238	ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
239	return ret;
240}
241
242/**
243 * btrfs_lookup_bio_sums - Look up checksums for a bio.
244 * @inode: inode that the bio is for.
245 * @bio: bio to look up.
246 * @offset: Unless (u64)-1, look up checksums for this offset in the file.
247 *          If (u64)-1, use the page offsets from the bio instead.
248 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
249 *       checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
250 *       NULL, the checksum buffer is allocated and returned in
251 *       btrfs_io_bio(bio)->csum instead.
252 *
253 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
254 */
255blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio,
256				   u64 offset, u8 *dst)
257{
258	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
259	struct bio_vec bvec;
260	struct bvec_iter iter;
261	struct btrfs_csum_item *item = NULL;
262	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
263	struct btrfs_path *path;
264	const bool page_offsets = (offset == (u64)-1);
265	u8 *csum;
266	u64 item_start_offset = 0;
267	u64 item_last_offset = 0;
268	u64 disk_bytenr;
269	u64 page_bytes_left;
270	u32 diff;
271	int nblocks;
272	int count = 0;
273	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
274
275	path = btrfs_alloc_path();
276	if (!path)
277		return BLK_STS_RESOURCE;
278
279	nblocks = bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
280	if (!dst) {
281		struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
282
283		if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
284			btrfs_bio->csum = kmalloc_array(nblocks, csum_size,
285							GFP_NOFS);
286			if (!btrfs_bio->csum) {
287				btrfs_free_path(path);
288				return BLK_STS_RESOURCE;
289			}
290		} else {
291			btrfs_bio->csum = btrfs_bio->csum_inline;
292		}
293		csum = btrfs_bio->csum;
294	} else {
295		csum = dst;
296	}
297
298	if (bio->bi_iter.bi_size > PAGE_SIZE * 8)
299		path->reada = READA_FORWARD;
300
301	/*
302	 * the free space stuff is only read when it hasn't been
303	 * updated in the current transaction.  So, we can safely
304	 * read from the commit root and sidestep a nasty deadlock
305	 * between reading the free space cache and updating the csum tree.
306	 */
307	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
308		path->search_commit_root = 1;
309		path->skip_locking = 1;
310	}
311
312	disk_bytenr = (u64)bio->bi_iter.bi_sector << 9;
313
314	bio_for_each_segment(bvec, bio, iter) {
315		page_bytes_left = bvec.bv_len;
316		if (count)
317			goto next;
318
319		if (page_offsets)
320			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
321		count = btrfs_find_ordered_sum(BTRFS_I(inode), offset,
322					       disk_bytenr, csum, nblocks);
323		if (count)
324			goto found;
325
326		if (!item || disk_bytenr < item_start_offset ||
327		    disk_bytenr >= item_last_offset) {
328			struct btrfs_key found_key;
329			u32 item_size;
330
331			if (item)
332				btrfs_release_path(path);
333			item = btrfs_lookup_csum(NULL, fs_info->csum_root,
334						 path, disk_bytenr, 0);
335			if (IS_ERR(item)) {
336				count = 1;
337				memset(csum, 0, csum_size);
338				if (BTRFS_I(inode)->root->root_key.objectid ==
339				    BTRFS_DATA_RELOC_TREE_OBJECTID) {
340					set_extent_bits(io_tree, offset,
341						offset + fs_info->sectorsize - 1,
342						EXTENT_NODATASUM);
343				} else {
344					btrfs_info_rl(fs_info,
345						   "no csum found for inode %llu start %llu",
346					       btrfs_ino(BTRFS_I(inode)), offset);
347				}
348				item = NULL;
349				btrfs_release_path(path);
350				goto found;
351			}
352			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
353					      path->slots[0]);
354
355			item_start_offset = found_key.offset;
356			item_size = btrfs_item_size_nr(path->nodes[0],
357						       path->slots[0]);
358			item_last_offset = item_start_offset +
359				(item_size / csum_size) *
360				fs_info->sectorsize;
361			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
362					      struct btrfs_csum_item);
363		}
364		/*
365		 * this byte range must be able to fit inside
366		 * a single leaf so it will also fit inside a u32
367		 */
368		diff = disk_bytenr - item_start_offset;
369		diff = diff / fs_info->sectorsize;
370		diff = diff * csum_size;
371		count = min_t(int, nblocks, (item_last_offset - disk_bytenr) >>
372					    inode->i_sb->s_blocksize_bits);
373		read_extent_buffer(path->nodes[0], csum,
374				   ((unsigned long)item) + diff,
375				   csum_size * count);
376found:
377		csum += count * csum_size;
378		nblocks -= count;
379next:
380		while (count > 0) {
381			count--;
382			disk_bytenr += fs_info->sectorsize;
383			offset += fs_info->sectorsize;
384			page_bytes_left -= fs_info->sectorsize;
385			if (!page_bytes_left)
386				break; /* move to next bio */
387		}
388	}
389
390	WARN_ON_ONCE(count);
391	btrfs_free_path(path);
392	return BLK_STS_OK;
393}
394
395int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
396			     struct list_head *list, int search_commit)
397{
398	struct btrfs_fs_info *fs_info = root->fs_info;
399	struct btrfs_key key;
400	struct btrfs_path *path;
401	struct extent_buffer *leaf;
402	struct btrfs_ordered_sum *sums;
403	struct btrfs_csum_item *item;
404	LIST_HEAD(tmplist);
405	unsigned long offset;
406	int ret;
407	size_t size;
408	u64 csum_end;
409	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
410
411	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
412	       IS_ALIGNED(end + 1, fs_info->sectorsize));
413
414	path = btrfs_alloc_path();
415	if (!path)
416		return -ENOMEM;
417
418	if (search_commit) {
419		path->skip_locking = 1;
420		path->reada = READA_FORWARD;
421		path->search_commit_root = 1;
422	}
423
424	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
425	key.offset = start;
426	key.type = BTRFS_EXTENT_CSUM_KEY;
427
428	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
429	if (ret < 0)
430		goto fail;
431	if (ret > 0 && path->slots[0] > 0) {
432		leaf = path->nodes[0];
433		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
434		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
435		    key.type == BTRFS_EXTENT_CSUM_KEY) {
436			offset = (start - key.offset) >>
437				 fs_info->sb->s_blocksize_bits;
438			if (offset * csum_size <
439			    btrfs_item_size_nr(leaf, path->slots[0] - 1))
440				path->slots[0]--;
441		}
442	}
443
444	while (start <= end) {
445		leaf = path->nodes[0];
446		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
447			ret = btrfs_next_leaf(root, path);
448			if (ret < 0)
449				goto fail;
450			if (ret > 0)
451				break;
452			leaf = path->nodes[0];
453		}
454
455		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
456		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
457		    key.type != BTRFS_EXTENT_CSUM_KEY ||
458		    key.offset > end)
459			break;
460
461		if (key.offset > start)
462			start = key.offset;
463
464		size = btrfs_item_size_nr(leaf, path->slots[0]);
465		csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
466		if (csum_end <= start) {
467			path->slots[0]++;
468			continue;
469		}
470
471		csum_end = min(csum_end, end + 1);
472		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
473				      struct btrfs_csum_item);
474		while (start < csum_end) {
475			size = min_t(size_t, csum_end - start,
476				     max_ordered_sum_bytes(fs_info, csum_size));
477			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
478				       GFP_NOFS);
479			if (!sums) {
480				ret = -ENOMEM;
481				goto fail;
482			}
483
484			sums->bytenr = start;
485			sums->len = (int)size;
486
487			offset = (start - key.offset) >>
488				fs_info->sb->s_blocksize_bits;
489			offset *= csum_size;
490			size >>= fs_info->sb->s_blocksize_bits;
491
492			read_extent_buffer(path->nodes[0],
493					   sums->sums,
494					   ((unsigned long)item) + offset,
495					   csum_size * size);
496
497			start += fs_info->sectorsize * size;
498			list_add_tail(&sums->list, &tmplist);
499		}
500		path->slots[0]++;
501	}
502	ret = 0;
503fail:
504	while (ret < 0 && !list_empty(&tmplist)) {
505		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
506		list_del(&sums->list);
507		kfree(sums);
508	}
509	list_splice_tail(&tmplist, list);
510
511	btrfs_free_path(path);
512	return ret;
513}
514
515/*
516 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
517 * @inode:	 Owner of the data inside the bio
518 * @bio:	 Contains the data to be checksummed
519 * @file_start:  offset in file this bio begins to describe
520 * @contig:	 Boolean. If true/1 means all bio vecs in this bio are
521 *		 contiguous and they begin at @file_start in the file. False/0
522 *		 means this bio can contains potentially discontigous bio vecs
523 *		 so the logical offset of each should be calculated separately.
524 */
525blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
526		       u64 file_start, int contig)
527{
528	struct btrfs_fs_info *fs_info = inode->root->fs_info;
529	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
530	struct btrfs_ordered_sum *sums;
531	struct btrfs_ordered_extent *ordered = NULL;
532	char *data;
533	struct bvec_iter iter;
534	struct bio_vec bvec;
535	int index;
536	int nr_sectors;
537	unsigned long total_bytes = 0;
538	unsigned long this_sum_bytes = 0;
539	int i;
540	u64 offset;
541	unsigned nofs_flag;
542	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
543
544	nofs_flag = memalloc_nofs_save();
545	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
546		       GFP_KERNEL);
547	memalloc_nofs_restore(nofs_flag);
548
549	if (!sums)
550		return BLK_STS_RESOURCE;
551
552	sums->len = bio->bi_iter.bi_size;
553	INIT_LIST_HEAD(&sums->list);
554
555	if (contig)
556		offset = file_start;
557	else
558		offset = 0; /* shut up gcc */
559
560	sums->bytenr = (u64)bio->bi_iter.bi_sector << 9;
561	index = 0;
562
563	shash->tfm = fs_info->csum_shash;
564
565	bio_for_each_segment(bvec, bio, iter) {
566		if (!contig)
567			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
568
569		if (!ordered) {
570			ordered = btrfs_lookup_ordered_extent(inode, offset);
571			/*
572			 * The bio range is not covered by any ordered extent,
573			 * must be a code logic error.
574			 */
575			if (unlikely(!ordered)) {
576				WARN(1, KERN_WARNING
577			"no ordered extent for root %llu ino %llu offset %llu\n",
578				     inode->root->root_key.objectid,
579				     btrfs_ino(inode), offset);
580				kvfree(sums);
581				return BLK_STS_IOERR;
582			}
583		}
584
585		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
586						 bvec.bv_len + fs_info->sectorsize
587						 - 1);
588
589		for (i = 0; i < nr_sectors; i++) {
590			if (offset >= ordered->file_offset + ordered->num_bytes ||
591			    offset < ordered->file_offset) {
592				unsigned long bytes_left;
593
594				sums->len = this_sum_bytes;
595				this_sum_bytes = 0;
596				btrfs_add_ordered_sum(ordered, sums);
597				btrfs_put_ordered_extent(ordered);
598
599				bytes_left = bio->bi_iter.bi_size - total_bytes;
600
601				nofs_flag = memalloc_nofs_save();
602				sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
603						      bytes_left), GFP_KERNEL);
604				memalloc_nofs_restore(nofs_flag);
605				if (!sums)
606					return BLK_STS_RESOURCE;
607
608				sums->len = bytes_left;
609				ordered = btrfs_lookup_ordered_extent(inode,
610								offset);
611				ASSERT(ordered); /* Logic error */
612				sums->bytenr = ((u64)bio->bi_iter.bi_sector << 9)
613					+ total_bytes;
614				index = 0;
615			}
616
617			data = kmap_atomic(bvec.bv_page);
618			crypto_shash_digest(shash, data + bvec.bv_offset
619					    + (i * fs_info->sectorsize),
620					    fs_info->sectorsize,
621					    sums->sums + index);
622			kunmap_atomic(data);
623			index += csum_size;
624			offset += fs_info->sectorsize;
625			this_sum_bytes += fs_info->sectorsize;
626			total_bytes += fs_info->sectorsize;
627		}
628
629	}
630	this_sum_bytes = 0;
631	btrfs_add_ordered_sum(ordered, sums);
632	btrfs_put_ordered_extent(ordered);
633	return 0;
634}
635
636/*
637 * helper function for csum removal, this expects the
638 * key to describe the csum pointed to by the path, and it expects
639 * the csum to overlap the range [bytenr, len]
640 *
641 * The csum should not be entirely contained in the range and the
642 * range should not be entirely contained in the csum.
643 *
644 * This calls btrfs_truncate_item with the correct args based on the
645 * overlap, and fixes up the key as required.
646 */
647static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
648				       struct btrfs_path *path,
649				       struct btrfs_key *key,
650				       u64 bytenr, u64 len)
651{
652	struct extent_buffer *leaf;
653	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
654	u64 csum_end;
655	u64 end_byte = bytenr + len;
656	u32 blocksize_bits = fs_info->sb->s_blocksize_bits;
657
658	leaf = path->nodes[0];
659	csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
660	csum_end <<= fs_info->sb->s_blocksize_bits;
661	csum_end += key->offset;
662
663	if (key->offset < bytenr && csum_end <= end_byte) {
664		/*
665		 *         [ bytenr - len ]
666		 *         [   ]
667		 *   [csum     ]
668		 *   A simple truncate off the end of the item
669		 */
670		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
671		new_size *= csum_size;
672		btrfs_truncate_item(path, new_size, 1);
673	} else if (key->offset >= bytenr && csum_end > end_byte &&
674		   end_byte > key->offset) {
675		/*
676		 *         [ bytenr - len ]
677		 *                 [ ]
678		 *                 [csum     ]
679		 * we need to truncate from the beginning of the csum
680		 */
681		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
682		new_size *= csum_size;
683
684		btrfs_truncate_item(path, new_size, 0);
685
686		key->offset = end_byte;
687		btrfs_set_item_key_safe(fs_info, path, key);
688	} else {
689		BUG();
690	}
691}
692
693/*
694 * deletes the csum items from the csum tree for a given
695 * range of bytes.
696 */
697int btrfs_del_csums(struct btrfs_trans_handle *trans,
698		    struct btrfs_root *root, u64 bytenr, u64 len)
699{
700	struct btrfs_fs_info *fs_info = trans->fs_info;
701	struct btrfs_path *path;
702	struct btrfs_key key;
703	u64 end_byte = bytenr + len;
704	u64 csum_end;
705	struct extent_buffer *leaf;
706	int ret = 0;
707	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
708	int blocksize_bits = fs_info->sb->s_blocksize_bits;
709
710	ASSERT(root == fs_info->csum_root ||
711	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
712
713	path = btrfs_alloc_path();
714	if (!path)
715		return -ENOMEM;
716
717	while (1) {
718		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
719		key.offset = end_byte - 1;
720		key.type = BTRFS_EXTENT_CSUM_KEY;
721
722		path->leave_spinning = 1;
723		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
724		if (ret > 0) {
725			ret = 0;
726			if (path->slots[0] == 0)
727				break;
728			path->slots[0]--;
729		} else if (ret < 0) {
730			break;
731		}
732
733		leaf = path->nodes[0];
734		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
735
736		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
737		    key.type != BTRFS_EXTENT_CSUM_KEY) {
738			break;
739		}
740
741		if (key.offset >= end_byte)
742			break;
743
744		csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
745		csum_end <<= blocksize_bits;
746		csum_end += key.offset;
747
748		/* this csum ends before we start, we're done */
749		if (csum_end <= bytenr)
750			break;
751
752		/* delete the entire item, it is inside our range */
753		if (key.offset >= bytenr && csum_end <= end_byte) {
754			int del_nr = 1;
755
756			/*
757			 * Check how many csum items preceding this one in this
758			 * leaf correspond to our range and then delete them all
759			 * at once.
760			 */
761			if (key.offset > bytenr && path->slots[0] > 0) {
762				int slot = path->slots[0] - 1;
763
764				while (slot >= 0) {
765					struct btrfs_key pk;
766
767					btrfs_item_key_to_cpu(leaf, &pk, slot);
768					if (pk.offset < bytenr ||
769					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
770					    pk.objectid !=
771					    BTRFS_EXTENT_CSUM_OBJECTID)
772						break;
773					path->slots[0] = slot;
774					del_nr++;
775					key.offset = pk.offset;
776					slot--;
777				}
778			}
779			ret = btrfs_del_items(trans, root, path,
780					      path->slots[0], del_nr);
781			if (ret)
782				break;
783			if (key.offset == bytenr)
784				break;
785		} else if (key.offset < bytenr && csum_end > end_byte) {
786			unsigned long offset;
787			unsigned long shift_len;
788			unsigned long item_offset;
789			/*
790			 *        [ bytenr - len ]
791			 *     [csum                ]
792			 *
793			 * Our bytes are in the middle of the csum,
794			 * we need to split this item and insert a new one.
795			 *
796			 * But we can't drop the path because the
797			 * csum could change, get removed, extended etc.
798			 *
799			 * The trick here is the max size of a csum item leaves
800			 * enough room in the tree block for a single
801			 * item header.  So, we split the item in place,
802			 * adding a new header pointing to the existing
803			 * bytes.  Then we loop around again and we have
804			 * a nicely formed csum item that we can neatly
805			 * truncate.
806			 */
807			offset = (bytenr - key.offset) >> blocksize_bits;
808			offset *= csum_size;
809
810			shift_len = (len >> blocksize_bits) * csum_size;
811
812			item_offset = btrfs_item_ptr_offset(leaf,
813							    path->slots[0]);
814
815			memzero_extent_buffer(leaf, item_offset + offset,
816					     shift_len);
817			key.offset = bytenr;
818
819			/*
820			 * btrfs_split_item returns -EAGAIN when the
821			 * item changed size or key
822			 */
823			ret = btrfs_split_item(trans, root, path, &key, offset);
824			if (ret && ret != -EAGAIN) {
825				btrfs_abort_transaction(trans, ret);
826				break;
827			}
828			ret = 0;
829
830			key.offset = end_byte - 1;
831		} else {
832			truncate_one_csum(fs_info, path, &key, bytenr, len);
833			if (key.offset < bytenr)
834				break;
835		}
836		btrfs_release_path(path);
837	}
838	btrfs_free_path(path);
839	return ret;
840}
841
842int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
843			   struct btrfs_root *root,
844			   struct btrfs_ordered_sum *sums)
845{
846	struct btrfs_fs_info *fs_info = root->fs_info;
847	struct btrfs_key file_key;
848	struct btrfs_key found_key;
849	struct btrfs_path *path;
850	struct btrfs_csum_item *item;
851	struct btrfs_csum_item *item_end;
852	struct extent_buffer *leaf = NULL;
853	u64 next_offset;
854	u64 total_bytes = 0;
855	u64 csum_offset;
856	u64 bytenr;
857	u32 nritems;
858	u32 ins_size;
859	int index = 0;
860	int found_next;
861	int ret;
862	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
863
864	path = btrfs_alloc_path();
865	if (!path)
866		return -ENOMEM;
867again:
868	next_offset = (u64)-1;
869	found_next = 0;
870	bytenr = sums->bytenr + total_bytes;
871	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
872	file_key.offset = bytenr;
873	file_key.type = BTRFS_EXTENT_CSUM_KEY;
874
875	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
876	if (!IS_ERR(item)) {
877		ret = 0;
878		leaf = path->nodes[0];
879		item_end = btrfs_item_ptr(leaf, path->slots[0],
880					  struct btrfs_csum_item);
881		item_end = (struct btrfs_csum_item *)((char *)item_end +
882			   btrfs_item_size_nr(leaf, path->slots[0]));
883		goto found;
884	}
885	ret = PTR_ERR(item);
886	if (ret != -EFBIG && ret != -ENOENT)
887		goto out;
888
889	if (ret == -EFBIG) {
890		u32 item_size;
891		/* we found one, but it isn't big enough yet */
892		leaf = path->nodes[0];
893		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
894		if ((item_size / csum_size) >=
895		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
896			/* already at max size, make a new one */
897			goto insert;
898		}
899	} else {
900		int slot = path->slots[0] + 1;
901		/* we didn't find a csum item, insert one */
902		nritems = btrfs_header_nritems(path->nodes[0]);
903		if (!nritems || (path->slots[0] >= nritems - 1)) {
904			ret = btrfs_next_leaf(root, path);
905			if (ret < 0) {
906				goto out;
907			} else if (ret > 0) {
908				found_next = 1;
909				goto insert;
910			}
911			slot = path->slots[0];
912		}
913		btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
914		if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
915		    found_key.type != BTRFS_EXTENT_CSUM_KEY) {
916			found_next = 1;
917			goto insert;
918		}
919		next_offset = found_key.offset;
920		found_next = 1;
921		goto insert;
922	}
923
924	/*
925	 * At this point, we know the tree has a checksum item that ends at an
926	 * offset matching the start of the checksum range we want to insert.
927	 * We try to extend that item as much as possible and then add as many
928	 * checksums to it as they fit.
929	 *
930	 * First check if the leaf has enough free space for at least one
931	 * checksum. If it has go directly to the item extension code, otherwise
932	 * release the path and do a search for insertion before the extension.
933	 */
934	if (btrfs_leaf_free_space(leaf) >= csum_size) {
935		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
936		csum_offset = (bytenr - found_key.offset) >>
937			fs_info->sb->s_blocksize_bits;
938		goto extend_csum;
939	}
940
941	btrfs_release_path(path);
942	ret = btrfs_search_slot(trans, root, &file_key, path,
943				csum_size, 1);
944	if (ret < 0)
945		goto out;
946
947	if (ret > 0) {
948		if (path->slots[0] == 0)
949			goto insert;
950		path->slots[0]--;
951	}
952
953	leaf = path->nodes[0];
954	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
955	csum_offset = (bytenr - found_key.offset) >>
956			fs_info->sb->s_blocksize_bits;
957
958	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
959	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
960	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
961		goto insert;
962	}
963
964extend_csum:
965	if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
966	    csum_size) {
967		int extend_nr;
968		u64 tmp;
969		u32 diff;
970
971		tmp = sums->len - total_bytes;
972		tmp >>= fs_info->sb->s_blocksize_bits;
973		WARN_ON(tmp < 1);
974
975		extend_nr = max_t(int, 1, (int)tmp);
976		diff = (csum_offset + extend_nr) * csum_size;
977		diff = min(diff,
978			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
979
980		diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
981		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
982		diff /= csum_size;
983		diff *= csum_size;
984
985		btrfs_extend_item(path, diff);
986		ret = 0;
987		goto csum;
988	}
989
990insert:
991	btrfs_release_path(path);
992	csum_offset = 0;
993	if (found_next) {
994		u64 tmp;
995
996		tmp = sums->len - total_bytes;
997		tmp >>= fs_info->sb->s_blocksize_bits;
998		tmp = min(tmp, (next_offset - file_key.offset) >>
999					 fs_info->sb->s_blocksize_bits);
1000
1001		tmp = max_t(u64, 1, tmp);
1002		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1003		ins_size = csum_size * tmp;
1004	} else {
1005		ins_size = csum_size;
1006	}
1007	path->leave_spinning = 1;
1008	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1009				      ins_size);
1010	path->leave_spinning = 0;
1011	if (ret < 0)
1012		goto out;
1013	if (WARN_ON(ret != 0))
1014		goto out;
1015	leaf = path->nodes[0];
1016csum:
1017	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1018	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1019				      btrfs_item_size_nr(leaf, path->slots[0]));
1020	item = (struct btrfs_csum_item *)((unsigned char *)item +
1021					  csum_offset * csum_size);
1022found:
1023	ins_size = (u32)(sums->len - total_bytes) >>
1024		   fs_info->sb->s_blocksize_bits;
1025	ins_size *= csum_size;
1026	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1027			      ins_size);
1028	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1029			    ins_size);
1030
1031	index += ins_size;
1032	ins_size /= csum_size;
1033	total_bytes += ins_size * fs_info->sectorsize;
1034
1035	btrfs_mark_buffer_dirty(path->nodes[0]);
1036	if (total_bytes < sums->len) {
1037		btrfs_release_path(path);
1038		cond_resched();
1039		goto again;
1040	}
1041out:
1042	btrfs_free_path(path);
1043	return ret;
1044}
1045
1046void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1047				     const struct btrfs_path *path,
1048				     struct btrfs_file_extent_item *fi,
1049				     const bool new_inline,
1050				     struct extent_map *em)
1051{
1052	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1053	struct btrfs_root *root = inode->root;
1054	struct extent_buffer *leaf = path->nodes[0];
1055	const int slot = path->slots[0];
1056	struct btrfs_key key;
1057	u64 extent_start, extent_end;
1058	u64 bytenr;
1059	u8 type = btrfs_file_extent_type(leaf, fi);
1060	int compress_type = btrfs_file_extent_compression(leaf, fi);
1061
1062	btrfs_item_key_to_cpu(leaf, &key, slot);
1063	extent_start = key.offset;
1064	extent_end = btrfs_file_extent_end(path);
1065	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1066	if (type == BTRFS_FILE_EXTENT_REG ||
1067	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1068		em->start = extent_start;
1069		em->len = extent_end - extent_start;
1070		em->orig_start = extent_start -
1071			btrfs_file_extent_offset(leaf, fi);
1072		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1073		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1074		if (bytenr == 0) {
1075			em->block_start = EXTENT_MAP_HOLE;
1076			return;
1077		}
1078		if (compress_type != BTRFS_COMPRESS_NONE) {
1079			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1080			em->compress_type = compress_type;
1081			em->block_start = bytenr;
1082			em->block_len = em->orig_block_len;
1083		} else {
1084			bytenr += btrfs_file_extent_offset(leaf, fi);
1085			em->block_start = bytenr;
1086			em->block_len = em->len;
1087			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1088				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1089		}
1090	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1091		em->block_start = EXTENT_MAP_INLINE;
1092		em->start = extent_start;
1093		em->len = extent_end - extent_start;
1094		/*
1095		 * Initialize orig_start and block_len with the same values
1096		 * as in inode.c:btrfs_get_extent().
1097		 */
1098		em->orig_start = EXTENT_MAP_HOLE;
1099		em->block_len = (u64)-1;
1100		if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1101			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1102			em->compress_type = compress_type;
1103		}
1104	} else {
1105		btrfs_err(fs_info,
1106			  "unknown file extent item type %d, inode %llu, offset %llu, "
1107			  "root %llu", type, btrfs_ino(inode), extent_start,
1108			  root->root_key.objectid);
1109	}
1110}
1111
1112/*
1113 * Returns the end offset (non inclusive) of the file extent item the given path
1114 * points to. If it points to an inline extent, the returned offset is rounded
1115 * up to the sector size.
1116 */
1117u64 btrfs_file_extent_end(const struct btrfs_path *path)
1118{
1119	const struct extent_buffer *leaf = path->nodes[0];
1120	const int slot = path->slots[0];
1121	struct btrfs_file_extent_item *fi;
1122	struct btrfs_key key;
1123	u64 end;
1124
1125	btrfs_item_key_to_cpu(leaf, &key, slot);
1126	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1127	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1128
1129	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1130		end = btrfs_file_extent_ram_bytes(leaf, fi);
1131		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1132	} else {
1133		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1134	}
1135
1136	return end;
1137}
1138