1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6#include <linux/bio.h> 7#include <linux/slab.h> 8#include <linux/pagemap.h> 9#include <linux/highmem.h> 10#include <linux/sched/mm.h> 11#include <crypto/hash.h> 12#include "ctree.h" 13#include "disk-io.h" 14#include "transaction.h" 15#include "volumes.h" 16#include "print-tree.h" 17#include "compression.h" 18 19#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ 20 sizeof(struct btrfs_item) * 2) / \ 21 size) - 1)) 22 23#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ 24 PAGE_SIZE)) 25 26/** 27 * @inode - the inode we want to update the disk_i_size for 28 * @new_i_size - the i_size we want to set to, 0 if we use i_size 29 * 30 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read() 31 * returns as it is perfectly fine with a file that has holes without hole file 32 * extent items. 33 * 34 * However without NO_HOLES we need to only return the area that is contiguous 35 * from the 0 offset of the file. Otherwise we could end up adjust i_size up 36 * to an extent that has a gap in between. 37 * 38 * Finally new_i_size should only be set in the case of truncate where we're not 39 * ready to use i_size_read() as the limiter yet. 40 */ 41void btrfs_inode_safe_disk_i_size_write(struct inode *inode, u64 new_i_size) 42{ 43 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 44 u64 start, end, i_size; 45 int ret; 46 47 i_size = new_i_size ?: i_size_read(inode); 48 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 49 BTRFS_I(inode)->disk_i_size = i_size; 50 return; 51 } 52 53 spin_lock(&BTRFS_I(inode)->lock); 54 ret = find_contiguous_extent_bit(&BTRFS_I(inode)->file_extent_tree, 0, 55 &start, &end, EXTENT_DIRTY); 56 if (!ret && start == 0) 57 i_size = min(i_size, end + 1); 58 else 59 i_size = 0; 60 BTRFS_I(inode)->disk_i_size = i_size; 61 spin_unlock(&BTRFS_I(inode)->lock); 62} 63 64/** 65 * @inode - the inode we're modifying 66 * @start - the start file offset of the file extent we've inserted 67 * @len - the logical length of the file extent item 68 * 69 * Call when we are inserting a new file extent where there was none before. 70 * Does not need to call this in the case where we're replacing an existing file 71 * extent, however if not sure it's fine to call this multiple times. 72 * 73 * The start and len must match the file extent item, so thus must be sectorsize 74 * aligned. 75 */ 76int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 77 u64 len) 78{ 79 if (len == 0) 80 return 0; 81 82 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize)); 83 84 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 85 return 0; 86 return set_extent_bits(&inode->file_extent_tree, start, start + len - 1, 87 EXTENT_DIRTY); 88} 89 90/** 91 * @inode - the inode we're modifying 92 * @start - the start file offset of the file extent we've inserted 93 * @len - the logical length of the file extent item 94 * 95 * Called when we drop a file extent, for example when we truncate. Doesn't 96 * need to be called for cases where we're replacing a file extent, like when 97 * we've COWed a file extent. 98 * 99 * The start and len must match the file extent item, so thus must be sectorsize 100 * aligned. 101 */ 102int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 103 u64 len) 104{ 105 if (len == 0) 106 return 0; 107 108 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) || 109 len == (u64)-1); 110 111 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 112 return 0; 113 return clear_extent_bit(&inode->file_extent_tree, start, 114 start + len - 1, EXTENT_DIRTY, 0, 0, NULL); 115} 116 117static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info, 118 u16 csum_size) 119{ 120 u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size; 121 122 return ncsums * fs_info->sectorsize; 123} 124 125int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 126 struct btrfs_root *root, 127 u64 objectid, u64 pos, 128 u64 disk_offset, u64 disk_num_bytes, 129 u64 num_bytes, u64 offset, u64 ram_bytes, 130 u8 compression, u8 encryption, u16 other_encoding) 131{ 132 int ret = 0; 133 struct btrfs_file_extent_item *item; 134 struct btrfs_key file_key; 135 struct btrfs_path *path; 136 struct extent_buffer *leaf; 137 138 path = btrfs_alloc_path(); 139 if (!path) 140 return -ENOMEM; 141 file_key.objectid = objectid; 142 file_key.offset = pos; 143 file_key.type = BTRFS_EXTENT_DATA_KEY; 144 145 path->leave_spinning = 1; 146 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 147 sizeof(*item)); 148 if (ret < 0) 149 goto out; 150 BUG_ON(ret); /* Can't happen */ 151 leaf = path->nodes[0]; 152 item = btrfs_item_ptr(leaf, path->slots[0], 153 struct btrfs_file_extent_item); 154 btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset); 155 btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes); 156 btrfs_set_file_extent_offset(leaf, item, offset); 157 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); 158 btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes); 159 btrfs_set_file_extent_generation(leaf, item, trans->transid); 160 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 161 btrfs_set_file_extent_compression(leaf, item, compression); 162 btrfs_set_file_extent_encryption(leaf, item, encryption); 163 btrfs_set_file_extent_other_encoding(leaf, item, other_encoding); 164 165 btrfs_mark_buffer_dirty(leaf); 166out: 167 btrfs_free_path(path); 168 return ret; 169} 170 171static struct btrfs_csum_item * 172btrfs_lookup_csum(struct btrfs_trans_handle *trans, 173 struct btrfs_root *root, 174 struct btrfs_path *path, 175 u64 bytenr, int cow) 176{ 177 struct btrfs_fs_info *fs_info = root->fs_info; 178 int ret; 179 struct btrfs_key file_key; 180 struct btrfs_key found_key; 181 struct btrfs_csum_item *item; 182 struct extent_buffer *leaf; 183 u64 csum_offset = 0; 184 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 185 int csums_in_item; 186 187 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 188 file_key.offset = bytenr; 189 file_key.type = BTRFS_EXTENT_CSUM_KEY; 190 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); 191 if (ret < 0) 192 goto fail; 193 leaf = path->nodes[0]; 194 if (ret > 0) { 195 ret = 1; 196 if (path->slots[0] == 0) 197 goto fail; 198 path->slots[0]--; 199 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 200 if (found_key.type != BTRFS_EXTENT_CSUM_KEY) 201 goto fail; 202 203 csum_offset = (bytenr - found_key.offset) >> 204 fs_info->sb->s_blocksize_bits; 205 csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]); 206 csums_in_item /= csum_size; 207 208 if (csum_offset == csums_in_item) { 209 ret = -EFBIG; 210 goto fail; 211 } else if (csum_offset > csums_in_item) { 212 goto fail; 213 } 214 } 215 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 216 item = (struct btrfs_csum_item *)((unsigned char *)item + 217 csum_offset * csum_size); 218 return item; 219fail: 220 if (ret > 0) 221 ret = -ENOENT; 222 return ERR_PTR(ret); 223} 224 225int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 226 struct btrfs_root *root, 227 struct btrfs_path *path, u64 objectid, 228 u64 offset, int mod) 229{ 230 int ret; 231 struct btrfs_key file_key; 232 int ins_len = mod < 0 ? -1 : 0; 233 int cow = mod != 0; 234 235 file_key.objectid = objectid; 236 file_key.offset = offset; 237 file_key.type = BTRFS_EXTENT_DATA_KEY; 238 ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); 239 return ret; 240} 241 242/** 243 * btrfs_lookup_bio_sums - Look up checksums for a bio. 244 * @inode: inode that the bio is for. 245 * @bio: bio to look up. 246 * @offset: Unless (u64)-1, look up checksums for this offset in the file. 247 * If (u64)-1, use the page offsets from the bio instead. 248 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return 249 * checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If 250 * NULL, the checksum buffer is allocated and returned in 251 * btrfs_io_bio(bio)->csum instead. 252 * 253 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise. 254 */ 255blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, 256 u64 offset, u8 *dst) 257{ 258 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 259 struct bio_vec bvec; 260 struct bvec_iter iter; 261 struct btrfs_csum_item *item = NULL; 262 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 263 struct btrfs_path *path; 264 const bool page_offsets = (offset == (u64)-1); 265 u8 *csum; 266 u64 item_start_offset = 0; 267 u64 item_last_offset = 0; 268 u64 disk_bytenr; 269 u64 page_bytes_left; 270 u32 diff; 271 int nblocks; 272 int count = 0; 273 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 274 275 path = btrfs_alloc_path(); 276 if (!path) 277 return BLK_STS_RESOURCE; 278 279 nblocks = bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits; 280 if (!dst) { 281 struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio); 282 283 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { 284 btrfs_bio->csum = kmalloc_array(nblocks, csum_size, 285 GFP_NOFS); 286 if (!btrfs_bio->csum) { 287 btrfs_free_path(path); 288 return BLK_STS_RESOURCE; 289 } 290 } else { 291 btrfs_bio->csum = btrfs_bio->csum_inline; 292 } 293 csum = btrfs_bio->csum; 294 } else { 295 csum = dst; 296 } 297 298 if (bio->bi_iter.bi_size > PAGE_SIZE * 8) 299 path->reada = READA_FORWARD; 300 301 /* 302 * the free space stuff is only read when it hasn't been 303 * updated in the current transaction. So, we can safely 304 * read from the commit root and sidestep a nasty deadlock 305 * between reading the free space cache and updating the csum tree. 306 */ 307 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 308 path->search_commit_root = 1; 309 path->skip_locking = 1; 310 } 311 312 disk_bytenr = (u64)bio->bi_iter.bi_sector << 9; 313 314 bio_for_each_segment(bvec, bio, iter) { 315 page_bytes_left = bvec.bv_len; 316 if (count) 317 goto next; 318 319 if (page_offsets) 320 offset = page_offset(bvec.bv_page) + bvec.bv_offset; 321 count = btrfs_find_ordered_sum(BTRFS_I(inode), offset, 322 disk_bytenr, csum, nblocks); 323 if (count) 324 goto found; 325 326 if (!item || disk_bytenr < item_start_offset || 327 disk_bytenr >= item_last_offset) { 328 struct btrfs_key found_key; 329 u32 item_size; 330 331 if (item) 332 btrfs_release_path(path); 333 item = btrfs_lookup_csum(NULL, fs_info->csum_root, 334 path, disk_bytenr, 0); 335 if (IS_ERR(item)) { 336 count = 1; 337 memset(csum, 0, csum_size); 338 if (BTRFS_I(inode)->root->root_key.objectid == 339 BTRFS_DATA_RELOC_TREE_OBJECTID) { 340 set_extent_bits(io_tree, offset, 341 offset + fs_info->sectorsize - 1, 342 EXTENT_NODATASUM); 343 } else { 344 btrfs_info_rl(fs_info, 345 "no csum found for inode %llu start %llu", 346 btrfs_ino(BTRFS_I(inode)), offset); 347 } 348 item = NULL; 349 btrfs_release_path(path); 350 goto found; 351 } 352 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 353 path->slots[0]); 354 355 item_start_offset = found_key.offset; 356 item_size = btrfs_item_size_nr(path->nodes[0], 357 path->slots[0]); 358 item_last_offset = item_start_offset + 359 (item_size / csum_size) * 360 fs_info->sectorsize; 361 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 362 struct btrfs_csum_item); 363 } 364 /* 365 * this byte range must be able to fit inside 366 * a single leaf so it will also fit inside a u32 367 */ 368 diff = disk_bytenr - item_start_offset; 369 diff = diff / fs_info->sectorsize; 370 diff = diff * csum_size; 371 count = min_t(int, nblocks, (item_last_offset - disk_bytenr) >> 372 inode->i_sb->s_blocksize_bits); 373 read_extent_buffer(path->nodes[0], csum, 374 ((unsigned long)item) + diff, 375 csum_size * count); 376found: 377 csum += count * csum_size; 378 nblocks -= count; 379next: 380 while (count > 0) { 381 count--; 382 disk_bytenr += fs_info->sectorsize; 383 offset += fs_info->sectorsize; 384 page_bytes_left -= fs_info->sectorsize; 385 if (!page_bytes_left) 386 break; /* move to next bio */ 387 } 388 } 389 390 WARN_ON_ONCE(count); 391 btrfs_free_path(path); 392 return BLK_STS_OK; 393} 394 395int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 396 struct list_head *list, int search_commit) 397{ 398 struct btrfs_fs_info *fs_info = root->fs_info; 399 struct btrfs_key key; 400 struct btrfs_path *path; 401 struct extent_buffer *leaf; 402 struct btrfs_ordered_sum *sums; 403 struct btrfs_csum_item *item; 404 LIST_HEAD(tmplist); 405 unsigned long offset; 406 int ret; 407 size_t size; 408 u64 csum_end; 409 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 410 411 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 412 IS_ALIGNED(end + 1, fs_info->sectorsize)); 413 414 path = btrfs_alloc_path(); 415 if (!path) 416 return -ENOMEM; 417 418 if (search_commit) { 419 path->skip_locking = 1; 420 path->reada = READA_FORWARD; 421 path->search_commit_root = 1; 422 } 423 424 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 425 key.offset = start; 426 key.type = BTRFS_EXTENT_CSUM_KEY; 427 428 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 429 if (ret < 0) 430 goto fail; 431 if (ret > 0 && path->slots[0] > 0) { 432 leaf = path->nodes[0]; 433 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 434 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 435 key.type == BTRFS_EXTENT_CSUM_KEY) { 436 offset = (start - key.offset) >> 437 fs_info->sb->s_blocksize_bits; 438 if (offset * csum_size < 439 btrfs_item_size_nr(leaf, path->slots[0] - 1)) 440 path->slots[0]--; 441 } 442 } 443 444 while (start <= end) { 445 leaf = path->nodes[0]; 446 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 447 ret = btrfs_next_leaf(root, path); 448 if (ret < 0) 449 goto fail; 450 if (ret > 0) 451 break; 452 leaf = path->nodes[0]; 453 } 454 455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 456 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 457 key.type != BTRFS_EXTENT_CSUM_KEY || 458 key.offset > end) 459 break; 460 461 if (key.offset > start) 462 start = key.offset; 463 464 size = btrfs_item_size_nr(leaf, path->slots[0]); 465 csum_end = key.offset + (size / csum_size) * fs_info->sectorsize; 466 if (csum_end <= start) { 467 path->slots[0]++; 468 continue; 469 } 470 471 csum_end = min(csum_end, end + 1); 472 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 473 struct btrfs_csum_item); 474 while (start < csum_end) { 475 size = min_t(size_t, csum_end - start, 476 max_ordered_sum_bytes(fs_info, csum_size)); 477 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size), 478 GFP_NOFS); 479 if (!sums) { 480 ret = -ENOMEM; 481 goto fail; 482 } 483 484 sums->bytenr = start; 485 sums->len = (int)size; 486 487 offset = (start - key.offset) >> 488 fs_info->sb->s_blocksize_bits; 489 offset *= csum_size; 490 size >>= fs_info->sb->s_blocksize_bits; 491 492 read_extent_buffer(path->nodes[0], 493 sums->sums, 494 ((unsigned long)item) + offset, 495 csum_size * size); 496 497 start += fs_info->sectorsize * size; 498 list_add_tail(&sums->list, &tmplist); 499 } 500 path->slots[0]++; 501 } 502 ret = 0; 503fail: 504 while (ret < 0 && !list_empty(&tmplist)) { 505 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list); 506 list_del(&sums->list); 507 kfree(sums); 508 } 509 list_splice_tail(&tmplist, list); 510 511 btrfs_free_path(path); 512 return ret; 513} 514 515/* 516 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio 517 * @inode: Owner of the data inside the bio 518 * @bio: Contains the data to be checksummed 519 * @file_start: offset in file this bio begins to describe 520 * @contig: Boolean. If true/1 means all bio vecs in this bio are 521 * contiguous and they begin at @file_start in the file. False/0 522 * means this bio can contains potentially discontigous bio vecs 523 * so the logical offset of each should be calculated separately. 524 */ 525blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 526 u64 file_start, int contig) 527{ 528 struct btrfs_fs_info *fs_info = inode->root->fs_info; 529 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 530 struct btrfs_ordered_sum *sums; 531 struct btrfs_ordered_extent *ordered = NULL; 532 char *data; 533 struct bvec_iter iter; 534 struct bio_vec bvec; 535 int index; 536 int nr_sectors; 537 unsigned long total_bytes = 0; 538 unsigned long this_sum_bytes = 0; 539 int i; 540 u64 offset; 541 unsigned nofs_flag; 542 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 543 544 nofs_flag = memalloc_nofs_save(); 545 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size), 546 GFP_KERNEL); 547 memalloc_nofs_restore(nofs_flag); 548 549 if (!sums) 550 return BLK_STS_RESOURCE; 551 552 sums->len = bio->bi_iter.bi_size; 553 INIT_LIST_HEAD(&sums->list); 554 555 if (contig) 556 offset = file_start; 557 else 558 offset = 0; /* shut up gcc */ 559 560 sums->bytenr = (u64)bio->bi_iter.bi_sector << 9; 561 index = 0; 562 563 shash->tfm = fs_info->csum_shash; 564 565 bio_for_each_segment(bvec, bio, iter) { 566 if (!contig) 567 offset = page_offset(bvec.bv_page) + bvec.bv_offset; 568 569 if (!ordered) { 570 ordered = btrfs_lookup_ordered_extent(inode, offset); 571 /* 572 * The bio range is not covered by any ordered extent, 573 * must be a code logic error. 574 */ 575 if (unlikely(!ordered)) { 576 WARN(1, KERN_WARNING 577 "no ordered extent for root %llu ino %llu offset %llu\n", 578 inode->root->root_key.objectid, 579 btrfs_ino(inode), offset); 580 kvfree(sums); 581 return BLK_STS_IOERR; 582 } 583 } 584 585 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, 586 bvec.bv_len + fs_info->sectorsize 587 - 1); 588 589 for (i = 0; i < nr_sectors; i++) { 590 if (offset >= ordered->file_offset + ordered->num_bytes || 591 offset < ordered->file_offset) { 592 unsigned long bytes_left; 593 594 sums->len = this_sum_bytes; 595 this_sum_bytes = 0; 596 btrfs_add_ordered_sum(ordered, sums); 597 btrfs_put_ordered_extent(ordered); 598 599 bytes_left = bio->bi_iter.bi_size - total_bytes; 600 601 nofs_flag = memalloc_nofs_save(); 602 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, 603 bytes_left), GFP_KERNEL); 604 memalloc_nofs_restore(nofs_flag); 605 if (!sums) 606 return BLK_STS_RESOURCE; 607 608 sums->len = bytes_left; 609 ordered = btrfs_lookup_ordered_extent(inode, 610 offset); 611 ASSERT(ordered); /* Logic error */ 612 sums->bytenr = ((u64)bio->bi_iter.bi_sector << 9) 613 + total_bytes; 614 index = 0; 615 } 616 617 data = kmap_atomic(bvec.bv_page); 618 crypto_shash_digest(shash, data + bvec.bv_offset 619 + (i * fs_info->sectorsize), 620 fs_info->sectorsize, 621 sums->sums + index); 622 kunmap_atomic(data); 623 index += csum_size; 624 offset += fs_info->sectorsize; 625 this_sum_bytes += fs_info->sectorsize; 626 total_bytes += fs_info->sectorsize; 627 } 628 629 } 630 this_sum_bytes = 0; 631 btrfs_add_ordered_sum(ordered, sums); 632 btrfs_put_ordered_extent(ordered); 633 return 0; 634} 635 636/* 637 * helper function for csum removal, this expects the 638 * key to describe the csum pointed to by the path, and it expects 639 * the csum to overlap the range [bytenr, len] 640 * 641 * The csum should not be entirely contained in the range and the 642 * range should not be entirely contained in the csum. 643 * 644 * This calls btrfs_truncate_item with the correct args based on the 645 * overlap, and fixes up the key as required. 646 */ 647static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info, 648 struct btrfs_path *path, 649 struct btrfs_key *key, 650 u64 bytenr, u64 len) 651{ 652 struct extent_buffer *leaf; 653 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 654 u64 csum_end; 655 u64 end_byte = bytenr + len; 656 u32 blocksize_bits = fs_info->sb->s_blocksize_bits; 657 658 leaf = path->nodes[0]; 659 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size; 660 csum_end <<= fs_info->sb->s_blocksize_bits; 661 csum_end += key->offset; 662 663 if (key->offset < bytenr && csum_end <= end_byte) { 664 /* 665 * [ bytenr - len ] 666 * [ ] 667 * [csum ] 668 * A simple truncate off the end of the item 669 */ 670 u32 new_size = (bytenr - key->offset) >> blocksize_bits; 671 new_size *= csum_size; 672 btrfs_truncate_item(path, new_size, 1); 673 } else if (key->offset >= bytenr && csum_end > end_byte && 674 end_byte > key->offset) { 675 /* 676 * [ bytenr - len ] 677 * [ ] 678 * [csum ] 679 * we need to truncate from the beginning of the csum 680 */ 681 u32 new_size = (csum_end - end_byte) >> blocksize_bits; 682 new_size *= csum_size; 683 684 btrfs_truncate_item(path, new_size, 0); 685 686 key->offset = end_byte; 687 btrfs_set_item_key_safe(fs_info, path, key); 688 } else { 689 BUG(); 690 } 691} 692 693/* 694 * deletes the csum items from the csum tree for a given 695 * range of bytes. 696 */ 697int btrfs_del_csums(struct btrfs_trans_handle *trans, 698 struct btrfs_root *root, u64 bytenr, u64 len) 699{ 700 struct btrfs_fs_info *fs_info = trans->fs_info; 701 struct btrfs_path *path; 702 struct btrfs_key key; 703 u64 end_byte = bytenr + len; 704 u64 csum_end; 705 struct extent_buffer *leaf; 706 int ret = 0; 707 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 708 int blocksize_bits = fs_info->sb->s_blocksize_bits; 709 710 ASSERT(root == fs_info->csum_root || 711 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 712 713 path = btrfs_alloc_path(); 714 if (!path) 715 return -ENOMEM; 716 717 while (1) { 718 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 719 key.offset = end_byte - 1; 720 key.type = BTRFS_EXTENT_CSUM_KEY; 721 722 path->leave_spinning = 1; 723 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 724 if (ret > 0) { 725 ret = 0; 726 if (path->slots[0] == 0) 727 break; 728 path->slots[0]--; 729 } else if (ret < 0) { 730 break; 731 } 732 733 leaf = path->nodes[0]; 734 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 735 736 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 737 key.type != BTRFS_EXTENT_CSUM_KEY) { 738 break; 739 } 740 741 if (key.offset >= end_byte) 742 break; 743 744 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size; 745 csum_end <<= blocksize_bits; 746 csum_end += key.offset; 747 748 /* this csum ends before we start, we're done */ 749 if (csum_end <= bytenr) 750 break; 751 752 /* delete the entire item, it is inside our range */ 753 if (key.offset >= bytenr && csum_end <= end_byte) { 754 int del_nr = 1; 755 756 /* 757 * Check how many csum items preceding this one in this 758 * leaf correspond to our range and then delete them all 759 * at once. 760 */ 761 if (key.offset > bytenr && path->slots[0] > 0) { 762 int slot = path->slots[0] - 1; 763 764 while (slot >= 0) { 765 struct btrfs_key pk; 766 767 btrfs_item_key_to_cpu(leaf, &pk, slot); 768 if (pk.offset < bytenr || 769 pk.type != BTRFS_EXTENT_CSUM_KEY || 770 pk.objectid != 771 BTRFS_EXTENT_CSUM_OBJECTID) 772 break; 773 path->slots[0] = slot; 774 del_nr++; 775 key.offset = pk.offset; 776 slot--; 777 } 778 } 779 ret = btrfs_del_items(trans, root, path, 780 path->slots[0], del_nr); 781 if (ret) 782 break; 783 if (key.offset == bytenr) 784 break; 785 } else if (key.offset < bytenr && csum_end > end_byte) { 786 unsigned long offset; 787 unsigned long shift_len; 788 unsigned long item_offset; 789 /* 790 * [ bytenr - len ] 791 * [csum ] 792 * 793 * Our bytes are in the middle of the csum, 794 * we need to split this item and insert a new one. 795 * 796 * But we can't drop the path because the 797 * csum could change, get removed, extended etc. 798 * 799 * The trick here is the max size of a csum item leaves 800 * enough room in the tree block for a single 801 * item header. So, we split the item in place, 802 * adding a new header pointing to the existing 803 * bytes. Then we loop around again and we have 804 * a nicely formed csum item that we can neatly 805 * truncate. 806 */ 807 offset = (bytenr - key.offset) >> blocksize_bits; 808 offset *= csum_size; 809 810 shift_len = (len >> blocksize_bits) * csum_size; 811 812 item_offset = btrfs_item_ptr_offset(leaf, 813 path->slots[0]); 814 815 memzero_extent_buffer(leaf, item_offset + offset, 816 shift_len); 817 key.offset = bytenr; 818 819 /* 820 * btrfs_split_item returns -EAGAIN when the 821 * item changed size or key 822 */ 823 ret = btrfs_split_item(trans, root, path, &key, offset); 824 if (ret && ret != -EAGAIN) { 825 btrfs_abort_transaction(trans, ret); 826 break; 827 } 828 ret = 0; 829 830 key.offset = end_byte - 1; 831 } else { 832 truncate_one_csum(fs_info, path, &key, bytenr, len); 833 if (key.offset < bytenr) 834 break; 835 } 836 btrfs_release_path(path); 837 } 838 btrfs_free_path(path); 839 return ret; 840} 841 842int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 843 struct btrfs_root *root, 844 struct btrfs_ordered_sum *sums) 845{ 846 struct btrfs_fs_info *fs_info = root->fs_info; 847 struct btrfs_key file_key; 848 struct btrfs_key found_key; 849 struct btrfs_path *path; 850 struct btrfs_csum_item *item; 851 struct btrfs_csum_item *item_end; 852 struct extent_buffer *leaf = NULL; 853 u64 next_offset; 854 u64 total_bytes = 0; 855 u64 csum_offset; 856 u64 bytenr; 857 u32 nritems; 858 u32 ins_size; 859 int index = 0; 860 int found_next; 861 int ret; 862 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 863 864 path = btrfs_alloc_path(); 865 if (!path) 866 return -ENOMEM; 867again: 868 next_offset = (u64)-1; 869 found_next = 0; 870 bytenr = sums->bytenr + total_bytes; 871 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 872 file_key.offset = bytenr; 873 file_key.type = BTRFS_EXTENT_CSUM_KEY; 874 875 item = btrfs_lookup_csum(trans, root, path, bytenr, 1); 876 if (!IS_ERR(item)) { 877 ret = 0; 878 leaf = path->nodes[0]; 879 item_end = btrfs_item_ptr(leaf, path->slots[0], 880 struct btrfs_csum_item); 881 item_end = (struct btrfs_csum_item *)((char *)item_end + 882 btrfs_item_size_nr(leaf, path->slots[0])); 883 goto found; 884 } 885 ret = PTR_ERR(item); 886 if (ret != -EFBIG && ret != -ENOENT) 887 goto out; 888 889 if (ret == -EFBIG) { 890 u32 item_size; 891 /* we found one, but it isn't big enough yet */ 892 leaf = path->nodes[0]; 893 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 894 if ((item_size / csum_size) >= 895 MAX_CSUM_ITEMS(fs_info, csum_size)) { 896 /* already at max size, make a new one */ 897 goto insert; 898 } 899 } else { 900 int slot = path->slots[0] + 1; 901 /* we didn't find a csum item, insert one */ 902 nritems = btrfs_header_nritems(path->nodes[0]); 903 if (!nritems || (path->slots[0] >= nritems - 1)) { 904 ret = btrfs_next_leaf(root, path); 905 if (ret < 0) { 906 goto out; 907 } else if (ret > 0) { 908 found_next = 1; 909 goto insert; 910 } 911 slot = path->slots[0]; 912 } 913 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); 914 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 915 found_key.type != BTRFS_EXTENT_CSUM_KEY) { 916 found_next = 1; 917 goto insert; 918 } 919 next_offset = found_key.offset; 920 found_next = 1; 921 goto insert; 922 } 923 924 /* 925 * At this point, we know the tree has a checksum item that ends at an 926 * offset matching the start of the checksum range we want to insert. 927 * We try to extend that item as much as possible and then add as many 928 * checksums to it as they fit. 929 * 930 * First check if the leaf has enough free space for at least one 931 * checksum. If it has go directly to the item extension code, otherwise 932 * release the path and do a search for insertion before the extension. 933 */ 934 if (btrfs_leaf_free_space(leaf) >= csum_size) { 935 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 936 csum_offset = (bytenr - found_key.offset) >> 937 fs_info->sb->s_blocksize_bits; 938 goto extend_csum; 939 } 940 941 btrfs_release_path(path); 942 ret = btrfs_search_slot(trans, root, &file_key, path, 943 csum_size, 1); 944 if (ret < 0) 945 goto out; 946 947 if (ret > 0) { 948 if (path->slots[0] == 0) 949 goto insert; 950 path->slots[0]--; 951 } 952 953 leaf = path->nodes[0]; 954 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 955 csum_offset = (bytenr - found_key.offset) >> 956 fs_info->sb->s_blocksize_bits; 957 958 if (found_key.type != BTRFS_EXTENT_CSUM_KEY || 959 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 960 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) { 961 goto insert; 962 } 963 964extend_csum: 965 if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) / 966 csum_size) { 967 int extend_nr; 968 u64 tmp; 969 u32 diff; 970 971 tmp = sums->len - total_bytes; 972 tmp >>= fs_info->sb->s_blocksize_bits; 973 WARN_ON(tmp < 1); 974 975 extend_nr = max_t(int, 1, (int)tmp); 976 diff = (csum_offset + extend_nr) * csum_size; 977 diff = min(diff, 978 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size); 979 980 diff = diff - btrfs_item_size_nr(leaf, path->slots[0]); 981 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff); 982 diff /= csum_size; 983 diff *= csum_size; 984 985 btrfs_extend_item(path, diff); 986 ret = 0; 987 goto csum; 988 } 989 990insert: 991 btrfs_release_path(path); 992 csum_offset = 0; 993 if (found_next) { 994 u64 tmp; 995 996 tmp = sums->len - total_bytes; 997 tmp >>= fs_info->sb->s_blocksize_bits; 998 tmp = min(tmp, (next_offset - file_key.offset) >> 999 fs_info->sb->s_blocksize_bits); 1000 1001 tmp = max_t(u64, 1, tmp); 1002 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size)); 1003 ins_size = csum_size * tmp; 1004 } else { 1005 ins_size = csum_size; 1006 } 1007 path->leave_spinning = 1; 1008 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 1009 ins_size); 1010 path->leave_spinning = 0; 1011 if (ret < 0) 1012 goto out; 1013 if (WARN_ON(ret != 0)) 1014 goto out; 1015 leaf = path->nodes[0]; 1016csum: 1017 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 1018 item_end = (struct btrfs_csum_item *)((unsigned char *)item + 1019 btrfs_item_size_nr(leaf, path->slots[0])); 1020 item = (struct btrfs_csum_item *)((unsigned char *)item + 1021 csum_offset * csum_size); 1022found: 1023 ins_size = (u32)(sums->len - total_bytes) >> 1024 fs_info->sb->s_blocksize_bits; 1025 ins_size *= csum_size; 1026 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, 1027 ins_size); 1028 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, 1029 ins_size); 1030 1031 index += ins_size; 1032 ins_size /= csum_size; 1033 total_bytes += ins_size * fs_info->sectorsize; 1034 1035 btrfs_mark_buffer_dirty(path->nodes[0]); 1036 if (total_bytes < sums->len) { 1037 btrfs_release_path(path); 1038 cond_resched(); 1039 goto again; 1040 } 1041out: 1042 btrfs_free_path(path); 1043 return ret; 1044} 1045 1046void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 1047 const struct btrfs_path *path, 1048 struct btrfs_file_extent_item *fi, 1049 const bool new_inline, 1050 struct extent_map *em) 1051{ 1052 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1053 struct btrfs_root *root = inode->root; 1054 struct extent_buffer *leaf = path->nodes[0]; 1055 const int slot = path->slots[0]; 1056 struct btrfs_key key; 1057 u64 extent_start, extent_end; 1058 u64 bytenr; 1059 u8 type = btrfs_file_extent_type(leaf, fi); 1060 int compress_type = btrfs_file_extent_compression(leaf, fi); 1061 1062 btrfs_item_key_to_cpu(leaf, &key, slot); 1063 extent_start = key.offset; 1064 extent_end = btrfs_file_extent_end(path); 1065 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1066 if (type == BTRFS_FILE_EXTENT_REG || 1067 type == BTRFS_FILE_EXTENT_PREALLOC) { 1068 em->start = extent_start; 1069 em->len = extent_end - extent_start; 1070 em->orig_start = extent_start - 1071 btrfs_file_extent_offset(leaf, fi); 1072 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 1073 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1074 if (bytenr == 0) { 1075 em->block_start = EXTENT_MAP_HOLE; 1076 return; 1077 } 1078 if (compress_type != BTRFS_COMPRESS_NONE) { 1079 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1080 em->compress_type = compress_type; 1081 em->block_start = bytenr; 1082 em->block_len = em->orig_block_len; 1083 } else { 1084 bytenr += btrfs_file_extent_offset(leaf, fi); 1085 em->block_start = bytenr; 1086 em->block_len = em->len; 1087 if (type == BTRFS_FILE_EXTENT_PREALLOC) 1088 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 1089 } 1090 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1091 em->block_start = EXTENT_MAP_INLINE; 1092 em->start = extent_start; 1093 em->len = extent_end - extent_start; 1094 /* 1095 * Initialize orig_start and block_len with the same values 1096 * as in inode.c:btrfs_get_extent(). 1097 */ 1098 em->orig_start = EXTENT_MAP_HOLE; 1099 em->block_len = (u64)-1; 1100 if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) { 1101 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1102 em->compress_type = compress_type; 1103 } 1104 } else { 1105 btrfs_err(fs_info, 1106 "unknown file extent item type %d, inode %llu, offset %llu, " 1107 "root %llu", type, btrfs_ino(inode), extent_start, 1108 root->root_key.objectid); 1109 } 1110} 1111 1112/* 1113 * Returns the end offset (non inclusive) of the file extent item the given path 1114 * points to. If it points to an inline extent, the returned offset is rounded 1115 * up to the sector size. 1116 */ 1117u64 btrfs_file_extent_end(const struct btrfs_path *path) 1118{ 1119 const struct extent_buffer *leaf = path->nodes[0]; 1120 const int slot = path->slots[0]; 1121 struct btrfs_file_extent_item *fi; 1122 struct btrfs_key key; 1123 u64 end; 1124 1125 btrfs_item_key_to_cpu(leaf, &key, slot); 1126 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 1127 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1128 1129 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 1130 end = btrfs_file_extent_ram_bytes(leaf, fi); 1131 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize); 1132 } else { 1133 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1134 } 1135 1136 return end; 1137} 1138