1// SPDX-License-Identifier: GPL-2.0 2 3#include <linux/bitops.h> 4#include <linux/slab.h> 5#include <linux/bio.h> 6#include <linux/mm.h> 7#include <linux/pagemap.h> 8#include <linux/page-flags.h> 9#include <linux/spinlock.h> 10#include <linux/blkdev.h> 11#include <linux/swap.h> 12#include <linux/writeback.h> 13#include <linux/pagevec.h> 14#include <linux/prefetch.h> 15#include <linux/cleancache.h> 16#include "extent_io.h" 17#include "extent-io-tree.h" 18#include "extent_map.h" 19#include "ctree.h" 20#include "btrfs_inode.h" 21#include "volumes.h" 22#include "check-integrity.h" 23#include "locking.h" 24#include "rcu-string.h" 25#include "backref.h" 26#include "disk-io.h" 27 28static struct kmem_cache *extent_state_cache; 29static struct kmem_cache *extent_buffer_cache; 30static struct bio_set btrfs_bioset; 31 32static inline bool extent_state_in_tree(const struct extent_state *state) 33{ 34 return !RB_EMPTY_NODE(&state->rb_node); 35} 36 37#ifdef CONFIG_BTRFS_DEBUG 38static LIST_HEAD(states); 39static DEFINE_SPINLOCK(leak_lock); 40 41static inline void btrfs_leak_debug_add(spinlock_t *lock, 42 struct list_head *new, 43 struct list_head *head) 44{ 45 unsigned long flags; 46 47 spin_lock_irqsave(lock, flags); 48 list_add(new, head); 49 spin_unlock_irqrestore(lock, flags); 50} 51 52static inline void btrfs_leak_debug_del(spinlock_t *lock, 53 struct list_head *entry) 54{ 55 unsigned long flags; 56 57 spin_lock_irqsave(lock, flags); 58 list_del(entry); 59 spin_unlock_irqrestore(lock, flags); 60} 61 62void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 63{ 64 struct extent_buffer *eb; 65 unsigned long flags; 66 67 /* 68 * If we didn't get into open_ctree our allocated_ebs will not be 69 * initialized, so just skip this. 70 */ 71 if (!fs_info->allocated_ebs.next) 72 return; 73 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 pr_err( 79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 kmem_cache_free(extent_buffer_cache, eb); 84 } 85 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 86} 87 88static inline void btrfs_extent_state_leak_debug_check(void) 89{ 90 struct extent_state *state; 91 92 while (!list_empty(&states)) { 93 state = list_entry(states.next, struct extent_state, leak_list); 94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 95 state->start, state->end, state->state, 96 extent_state_in_tree(state), 97 refcount_read(&state->refs)); 98 list_del(&state->leak_list); 99 kmem_cache_free(extent_state_cache, state); 100 } 101} 102 103#define btrfs_debug_check_extent_io_range(tree, start, end) \ 104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 105static inline void __btrfs_debug_check_extent_io_range(const char *caller, 106 struct extent_io_tree *tree, u64 start, u64 end) 107{ 108 struct inode *inode = tree->private_data; 109 u64 isize; 110 111 if (!inode || !is_data_inode(inode)) 112 return; 113 114 isize = i_size_read(inode); 115 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 116 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 117 "%s: ino %llu isize %llu odd range [%llu,%llu]", 118 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 119 } 120} 121#else 122#define btrfs_leak_debug_add(lock, new, head) do {} while (0) 123#define btrfs_leak_debug_del(lock, entry) do {} while (0) 124#define btrfs_extent_state_leak_debug_check() do {} while (0) 125#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 126#endif 127 128struct tree_entry { 129 u64 start; 130 u64 end; 131 struct rb_node rb_node; 132}; 133 134struct extent_page_data { 135 struct bio *bio; 136 /* tells writepage not to lock the state bits for this range 137 * it still does the unlocking 138 */ 139 unsigned int extent_locked:1; 140 141 /* tells the submit_bio code to use REQ_SYNC */ 142 unsigned int sync_io:1; 143}; 144 145static int add_extent_changeset(struct extent_state *state, unsigned bits, 146 struct extent_changeset *changeset, 147 int set) 148{ 149 int ret; 150 151 if (!changeset) 152 return 0; 153 if (set && (state->state & bits) == bits) 154 return 0; 155 if (!set && (state->state & bits) == 0) 156 return 0; 157 changeset->bytes_changed += state->end - state->start + 1; 158 ret = ulist_add(&changeset->range_changed, state->start, state->end, 159 GFP_ATOMIC); 160 return ret; 161} 162 163int __must_check submit_one_bio(struct bio *bio, int mirror_num, 164 unsigned long bio_flags) 165{ 166 blk_status_t ret = 0; 167 struct extent_io_tree *tree = bio->bi_private; 168 169 bio->bi_private = NULL; 170 171 if (is_data_inode(tree->private_data)) 172 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num, 173 bio_flags); 174 else 175 ret = btrfs_submit_metadata_bio(tree->private_data, bio, 176 mirror_num, bio_flags); 177 178 return blk_status_to_errno(ret); 179} 180 181/* Cleanup unsubmitted bios */ 182static void end_write_bio(struct extent_page_data *epd, int ret) 183{ 184 if (epd->bio) { 185 epd->bio->bi_status = errno_to_blk_status(ret); 186 bio_endio(epd->bio); 187 epd->bio = NULL; 188 } 189} 190 191/* 192 * Submit bio from extent page data via submit_one_bio 193 * 194 * Return 0 if everything is OK. 195 * Return <0 for error. 196 */ 197static int __must_check flush_write_bio(struct extent_page_data *epd) 198{ 199 int ret = 0; 200 201 if (epd->bio) { 202 ret = submit_one_bio(epd->bio, 0, 0); 203 /* 204 * Clean up of epd->bio is handled by its endio function. 205 * And endio is either triggered by successful bio execution 206 * or the error handler of submit bio hook. 207 * So at this point, no matter what happened, we don't need 208 * to clean up epd->bio. 209 */ 210 epd->bio = NULL; 211 } 212 return ret; 213} 214 215int __init extent_state_cache_init(void) 216{ 217 extent_state_cache = kmem_cache_create("btrfs_extent_state", 218 sizeof(struct extent_state), 0, 219 SLAB_MEM_SPREAD, NULL); 220 if (!extent_state_cache) 221 return -ENOMEM; 222 return 0; 223} 224 225int __init extent_io_init(void) 226{ 227 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 228 sizeof(struct extent_buffer), 0, 229 SLAB_MEM_SPREAD, NULL); 230 if (!extent_buffer_cache) 231 return -ENOMEM; 232 233 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 234 offsetof(struct btrfs_io_bio, bio), 235 BIOSET_NEED_BVECS)) 236 goto free_buffer_cache; 237 238 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 239 goto free_bioset; 240 241 return 0; 242 243free_bioset: 244 bioset_exit(&btrfs_bioset); 245 246free_buffer_cache: 247 kmem_cache_destroy(extent_buffer_cache); 248 extent_buffer_cache = NULL; 249 return -ENOMEM; 250} 251 252void __cold extent_state_cache_exit(void) 253{ 254 btrfs_extent_state_leak_debug_check(); 255 kmem_cache_destroy(extent_state_cache); 256} 257 258void __cold extent_io_exit(void) 259{ 260 /* 261 * Make sure all delayed rcu free are flushed before we 262 * destroy caches. 263 */ 264 rcu_barrier(); 265 kmem_cache_destroy(extent_buffer_cache); 266 bioset_exit(&btrfs_bioset); 267} 268 269/* 270 * For the file_extent_tree, we want to hold the inode lock when we lookup and 271 * update the disk_i_size, but lockdep will complain because our io_tree we hold 272 * the tree lock and get the inode lock when setting delalloc. These two things 273 * are unrelated, so make a class for the file_extent_tree so we don't get the 274 * two locking patterns mixed up. 275 */ 276static struct lock_class_key file_extent_tree_class; 277 278void extent_io_tree_init(struct btrfs_fs_info *fs_info, 279 struct extent_io_tree *tree, unsigned int owner, 280 void *private_data) 281{ 282 tree->fs_info = fs_info; 283 tree->state = RB_ROOT; 284 tree->dirty_bytes = 0; 285 spin_lock_init(&tree->lock); 286 tree->private_data = private_data; 287 tree->owner = owner; 288 if (owner == IO_TREE_INODE_FILE_EXTENT) 289 lockdep_set_class(&tree->lock, &file_extent_tree_class); 290} 291 292void extent_io_tree_release(struct extent_io_tree *tree) 293{ 294 spin_lock(&tree->lock); 295 /* 296 * Do a single barrier for the waitqueue_active check here, the state 297 * of the waitqueue should not change once extent_io_tree_release is 298 * called. 299 */ 300 smp_mb(); 301 while (!RB_EMPTY_ROOT(&tree->state)) { 302 struct rb_node *node; 303 struct extent_state *state; 304 305 node = rb_first(&tree->state); 306 state = rb_entry(node, struct extent_state, rb_node); 307 rb_erase(&state->rb_node, &tree->state); 308 RB_CLEAR_NODE(&state->rb_node); 309 /* 310 * btree io trees aren't supposed to have tasks waiting for 311 * changes in the flags of extent states ever. 312 */ 313 ASSERT(!waitqueue_active(&state->wq)); 314 free_extent_state(state); 315 316 cond_resched_lock(&tree->lock); 317 } 318 spin_unlock(&tree->lock); 319} 320 321static struct extent_state *alloc_extent_state(gfp_t mask) 322{ 323 struct extent_state *state; 324 325 /* 326 * The given mask might be not appropriate for the slab allocator, 327 * drop the unsupported bits 328 */ 329 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 330 state = kmem_cache_alloc(extent_state_cache, mask); 331 if (!state) 332 return state; 333 state->state = 0; 334 state->failrec = NULL; 335 RB_CLEAR_NODE(&state->rb_node); 336 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); 337 refcount_set(&state->refs, 1); 338 init_waitqueue_head(&state->wq); 339 trace_alloc_extent_state(state, mask, _RET_IP_); 340 return state; 341} 342 343void free_extent_state(struct extent_state *state) 344{ 345 if (!state) 346 return; 347 if (refcount_dec_and_test(&state->refs)) { 348 WARN_ON(extent_state_in_tree(state)); 349 btrfs_leak_debug_del(&leak_lock, &state->leak_list); 350 trace_free_extent_state(state, _RET_IP_); 351 kmem_cache_free(extent_state_cache, state); 352 } 353} 354 355static struct rb_node *tree_insert(struct rb_root *root, 356 struct rb_node *search_start, 357 u64 offset, 358 struct rb_node *node, 359 struct rb_node ***p_in, 360 struct rb_node **parent_in) 361{ 362 struct rb_node **p; 363 struct rb_node *parent = NULL; 364 struct tree_entry *entry; 365 366 if (p_in && parent_in) { 367 p = *p_in; 368 parent = *parent_in; 369 goto do_insert; 370 } 371 372 p = search_start ? &search_start : &root->rb_node; 373 while (*p) { 374 parent = *p; 375 entry = rb_entry(parent, struct tree_entry, rb_node); 376 377 if (offset < entry->start) 378 p = &(*p)->rb_left; 379 else if (offset > entry->end) 380 p = &(*p)->rb_right; 381 else 382 return parent; 383 } 384 385do_insert: 386 rb_link_node(node, parent, p); 387 rb_insert_color(node, root); 388 return NULL; 389} 390 391/** 392 * __etree_search - searche @tree for an entry that contains @offset. Such 393 * entry would have entry->start <= offset && entry->end >= offset. 394 * 395 * @tree - the tree to search 396 * @offset - offset that should fall within an entry in @tree 397 * @next_ret - pointer to the first entry whose range ends after @offset 398 * @prev - pointer to the first entry whose range begins before @offset 399 * @p_ret - pointer where new node should be anchored (used when inserting an 400 * entry in the tree) 401 * @parent_ret - points to entry which would have been the parent of the entry, 402 * containing @offset 403 * 404 * This function returns a pointer to the entry that contains @offset byte 405 * address. If no such entry exists, then NULL is returned and the other 406 * pointer arguments to the function are filled, otherwise the found entry is 407 * returned and other pointers are left untouched. 408 */ 409static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 410 struct rb_node **next_ret, 411 struct rb_node **prev_ret, 412 struct rb_node ***p_ret, 413 struct rb_node **parent_ret) 414{ 415 struct rb_root *root = &tree->state; 416 struct rb_node **n = &root->rb_node; 417 struct rb_node *prev = NULL; 418 struct rb_node *orig_prev = NULL; 419 struct tree_entry *entry; 420 struct tree_entry *prev_entry = NULL; 421 422 while (*n) { 423 prev = *n; 424 entry = rb_entry(prev, struct tree_entry, rb_node); 425 prev_entry = entry; 426 427 if (offset < entry->start) 428 n = &(*n)->rb_left; 429 else if (offset > entry->end) 430 n = &(*n)->rb_right; 431 else 432 return *n; 433 } 434 435 if (p_ret) 436 *p_ret = n; 437 if (parent_ret) 438 *parent_ret = prev; 439 440 if (next_ret) { 441 orig_prev = prev; 442 while (prev && offset > prev_entry->end) { 443 prev = rb_next(prev); 444 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 445 } 446 *next_ret = prev; 447 prev = orig_prev; 448 } 449 450 if (prev_ret) { 451 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 452 while (prev && offset < prev_entry->start) { 453 prev = rb_prev(prev); 454 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 455 } 456 *prev_ret = prev; 457 } 458 return NULL; 459} 460 461static inline struct rb_node * 462tree_search_for_insert(struct extent_io_tree *tree, 463 u64 offset, 464 struct rb_node ***p_ret, 465 struct rb_node **parent_ret) 466{ 467 struct rb_node *next= NULL; 468 struct rb_node *ret; 469 470 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 471 if (!ret) 472 return next; 473 return ret; 474} 475 476static inline struct rb_node *tree_search(struct extent_io_tree *tree, 477 u64 offset) 478{ 479 return tree_search_for_insert(tree, offset, NULL, NULL); 480} 481 482/* 483 * utility function to look for merge candidates inside a given range. 484 * Any extents with matching state are merged together into a single 485 * extent in the tree. Extents with EXTENT_IO in their state field 486 * are not merged because the end_io handlers need to be able to do 487 * operations on them without sleeping (or doing allocations/splits). 488 * 489 * This should be called with the tree lock held. 490 */ 491static void merge_state(struct extent_io_tree *tree, 492 struct extent_state *state) 493{ 494 struct extent_state *other; 495 struct rb_node *other_node; 496 497 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 498 return; 499 500 other_node = rb_prev(&state->rb_node); 501 if (other_node) { 502 other = rb_entry(other_node, struct extent_state, rb_node); 503 if (other->end == state->start - 1 && 504 other->state == state->state) { 505 if (tree->private_data && 506 is_data_inode(tree->private_data)) 507 btrfs_merge_delalloc_extent(tree->private_data, 508 state, other); 509 state->start = other->start; 510 rb_erase(&other->rb_node, &tree->state); 511 RB_CLEAR_NODE(&other->rb_node); 512 free_extent_state(other); 513 } 514 } 515 other_node = rb_next(&state->rb_node); 516 if (other_node) { 517 other = rb_entry(other_node, struct extent_state, rb_node); 518 if (other->start == state->end + 1 && 519 other->state == state->state) { 520 if (tree->private_data && 521 is_data_inode(tree->private_data)) 522 btrfs_merge_delalloc_extent(tree->private_data, 523 state, other); 524 state->end = other->end; 525 rb_erase(&other->rb_node, &tree->state); 526 RB_CLEAR_NODE(&other->rb_node); 527 free_extent_state(other); 528 } 529 } 530} 531 532static void set_state_bits(struct extent_io_tree *tree, 533 struct extent_state *state, unsigned *bits, 534 struct extent_changeset *changeset); 535 536/* 537 * insert an extent_state struct into the tree. 'bits' are set on the 538 * struct before it is inserted. 539 * 540 * This may return -EEXIST if the extent is already there, in which case the 541 * state struct is freed. 542 * 543 * The tree lock is not taken internally. This is a utility function and 544 * probably isn't what you want to call (see set/clear_extent_bit). 545 */ 546static int insert_state(struct extent_io_tree *tree, 547 struct extent_state *state, u64 start, u64 end, 548 struct rb_node ***p, 549 struct rb_node **parent, 550 unsigned *bits, struct extent_changeset *changeset) 551{ 552 struct rb_node *node; 553 554 if (end < start) { 555 btrfs_err(tree->fs_info, 556 "insert state: end < start %llu %llu", end, start); 557 WARN_ON(1); 558 } 559 state->start = start; 560 state->end = end; 561 562 set_state_bits(tree, state, bits, changeset); 563 564 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 565 if (node) { 566 struct extent_state *found; 567 found = rb_entry(node, struct extent_state, rb_node); 568 btrfs_err(tree->fs_info, 569 "found node %llu %llu on insert of %llu %llu", 570 found->start, found->end, start, end); 571 return -EEXIST; 572 } 573 merge_state(tree, state); 574 return 0; 575} 576 577/* 578 * split a given extent state struct in two, inserting the preallocated 579 * struct 'prealloc' as the newly created second half. 'split' indicates an 580 * offset inside 'orig' where it should be split. 581 * 582 * Before calling, 583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 584 * are two extent state structs in the tree: 585 * prealloc: [orig->start, split - 1] 586 * orig: [ split, orig->end ] 587 * 588 * The tree locks are not taken by this function. They need to be held 589 * by the caller. 590 */ 591static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 592 struct extent_state *prealloc, u64 split) 593{ 594 struct rb_node *node; 595 596 if (tree->private_data && is_data_inode(tree->private_data)) 597 btrfs_split_delalloc_extent(tree->private_data, orig, split); 598 599 prealloc->start = orig->start; 600 prealloc->end = split - 1; 601 prealloc->state = orig->state; 602 orig->start = split; 603 604 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 605 &prealloc->rb_node, NULL, NULL); 606 if (node) { 607 free_extent_state(prealloc); 608 return -EEXIST; 609 } 610 return 0; 611} 612 613static struct extent_state *next_state(struct extent_state *state) 614{ 615 struct rb_node *next = rb_next(&state->rb_node); 616 if (next) 617 return rb_entry(next, struct extent_state, rb_node); 618 else 619 return NULL; 620} 621 622/* 623 * utility function to clear some bits in an extent state struct. 624 * it will optionally wake up anyone waiting on this state (wake == 1). 625 * 626 * If no bits are set on the state struct after clearing things, the 627 * struct is freed and removed from the tree 628 */ 629static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 630 struct extent_state *state, 631 unsigned *bits, int wake, 632 struct extent_changeset *changeset) 633{ 634 struct extent_state *next; 635 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 636 int ret; 637 638 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 639 u64 range = state->end - state->start + 1; 640 WARN_ON(range > tree->dirty_bytes); 641 tree->dirty_bytes -= range; 642 } 643 644 if (tree->private_data && is_data_inode(tree->private_data)) 645 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 646 647 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 648 BUG_ON(ret < 0); 649 state->state &= ~bits_to_clear; 650 if (wake) 651 wake_up(&state->wq); 652 if (state->state == 0) { 653 next = next_state(state); 654 if (extent_state_in_tree(state)) { 655 rb_erase(&state->rb_node, &tree->state); 656 RB_CLEAR_NODE(&state->rb_node); 657 free_extent_state(state); 658 } else { 659 WARN_ON(1); 660 } 661 } else { 662 merge_state(tree, state); 663 next = next_state(state); 664 } 665 return next; 666} 667 668static struct extent_state * 669alloc_extent_state_atomic(struct extent_state *prealloc) 670{ 671 if (!prealloc) 672 prealloc = alloc_extent_state(GFP_ATOMIC); 673 674 return prealloc; 675} 676 677static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 678{ 679 btrfs_panic(tree->fs_info, err, 680 "locking error: extent tree was modified by another thread while locked"); 681} 682 683/* 684 * clear some bits on a range in the tree. This may require splitting 685 * or inserting elements in the tree, so the gfp mask is used to 686 * indicate which allocations or sleeping are allowed. 687 * 688 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 689 * the given range from the tree regardless of state (ie for truncate). 690 * 691 * the range [start, end] is inclusive. 692 * 693 * This takes the tree lock, and returns 0 on success and < 0 on error. 694 */ 695int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 696 unsigned bits, int wake, int delete, 697 struct extent_state **cached_state, 698 gfp_t mask, struct extent_changeset *changeset) 699{ 700 struct extent_state *state; 701 struct extent_state *cached; 702 struct extent_state *prealloc = NULL; 703 struct rb_node *node; 704 u64 last_end; 705 int err; 706 int clear = 0; 707 708 btrfs_debug_check_extent_io_range(tree, start, end); 709 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 710 711 if (bits & EXTENT_DELALLOC) 712 bits |= EXTENT_NORESERVE; 713 714 if (delete) 715 bits |= ~EXTENT_CTLBITS; 716 717 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 718 clear = 1; 719again: 720 if (!prealloc && gfpflags_allow_blocking(mask)) { 721 /* 722 * Don't care for allocation failure here because we might end 723 * up not needing the pre-allocated extent state at all, which 724 * is the case if we only have in the tree extent states that 725 * cover our input range and don't cover too any other range. 726 * If we end up needing a new extent state we allocate it later. 727 */ 728 prealloc = alloc_extent_state(mask); 729 } 730 731 spin_lock(&tree->lock); 732 if (cached_state) { 733 cached = *cached_state; 734 735 if (clear) { 736 *cached_state = NULL; 737 cached_state = NULL; 738 } 739 740 if (cached && extent_state_in_tree(cached) && 741 cached->start <= start && cached->end > start) { 742 if (clear) 743 refcount_dec(&cached->refs); 744 state = cached; 745 goto hit_next; 746 } 747 if (clear) 748 free_extent_state(cached); 749 } 750 /* 751 * this search will find the extents that end after 752 * our range starts 753 */ 754 node = tree_search(tree, start); 755 if (!node) 756 goto out; 757 state = rb_entry(node, struct extent_state, rb_node); 758hit_next: 759 if (state->start > end) 760 goto out; 761 WARN_ON(state->end < start); 762 last_end = state->end; 763 764 /* the state doesn't have the wanted bits, go ahead */ 765 if (!(state->state & bits)) { 766 state = next_state(state); 767 goto next; 768 } 769 770 /* 771 * | ---- desired range ---- | 772 * | state | or 773 * | ------------- state -------------- | 774 * 775 * We need to split the extent we found, and may flip 776 * bits on second half. 777 * 778 * If the extent we found extends past our range, we 779 * just split and search again. It'll get split again 780 * the next time though. 781 * 782 * If the extent we found is inside our range, we clear 783 * the desired bit on it. 784 */ 785 786 if (state->start < start) { 787 prealloc = alloc_extent_state_atomic(prealloc); 788 BUG_ON(!prealloc); 789 err = split_state(tree, state, prealloc, start); 790 if (err) 791 extent_io_tree_panic(tree, err); 792 793 prealloc = NULL; 794 if (err) 795 goto out; 796 if (state->end <= end) { 797 state = clear_state_bit(tree, state, &bits, wake, 798 changeset); 799 goto next; 800 } 801 goto search_again; 802 } 803 /* 804 * | ---- desired range ---- | 805 * | state | 806 * We need to split the extent, and clear the bit 807 * on the first half 808 */ 809 if (state->start <= end && state->end > end) { 810 prealloc = alloc_extent_state_atomic(prealloc); 811 BUG_ON(!prealloc); 812 err = split_state(tree, state, prealloc, end + 1); 813 if (err) 814 extent_io_tree_panic(tree, err); 815 816 if (wake) 817 wake_up(&state->wq); 818 819 clear_state_bit(tree, prealloc, &bits, wake, changeset); 820 821 prealloc = NULL; 822 goto out; 823 } 824 825 state = clear_state_bit(tree, state, &bits, wake, changeset); 826next: 827 if (last_end == (u64)-1) 828 goto out; 829 start = last_end + 1; 830 if (start <= end && state && !need_resched()) 831 goto hit_next; 832 833search_again: 834 if (start > end) 835 goto out; 836 spin_unlock(&tree->lock); 837 if (gfpflags_allow_blocking(mask)) 838 cond_resched(); 839 goto again; 840 841out: 842 spin_unlock(&tree->lock); 843 if (prealloc) 844 free_extent_state(prealloc); 845 846 return 0; 847 848} 849 850static void wait_on_state(struct extent_io_tree *tree, 851 struct extent_state *state) 852 __releases(tree->lock) 853 __acquires(tree->lock) 854{ 855 DEFINE_WAIT(wait); 856 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 857 spin_unlock(&tree->lock); 858 schedule(); 859 spin_lock(&tree->lock); 860 finish_wait(&state->wq, &wait); 861} 862 863/* 864 * waits for one or more bits to clear on a range in the state tree. 865 * The range [start, end] is inclusive. 866 * The tree lock is taken by this function 867 */ 868static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 869 unsigned long bits) 870{ 871 struct extent_state *state; 872 struct rb_node *node; 873 874 btrfs_debug_check_extent_io_range(tree, start, end); 875 876 spin_lock(&tree->lock); 877again: 878 while (1) { 879 /* 880 * this search will find all the extents that end after 881 * our range starts 882 */ 883 node = tree_search(tree, start); 884process_node: 885 if (!node) 886 break; 887 888 state = rb_entry(node, struct extent_state, rb_node); 889 890 if (state->start > end) 891 goto out; 892 893 if (state->state & bits) { 894 start = state->start; 895 refcount_inc(&state->refs); 896 wait_on_state(tree, state); 897 free_extent_state(state); 898 goto again; 899 } 900 start = state->end + 1; 901 902 if (start > end) 903 break; 904 905 if (!cond_resched_lock(&tree->lock)) { 906 node = rb_next(node); 907 goto process_node; 908 } 909 } 910out: 911 spin_unlock(&tree->lock); 912} 913 914static void set_state_bits(struct extent_io_tree *tree, 915 struct extent_state *state, 916 unsigned *bits, struct extent_changeset *changeset) 917{ 918 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 919 int ret; 920 921 if (tree->private_data && is_data_inode(tree->private_data)) 922 btrfs_set_delalloc_extent(tree->private_data, state, bits); 923 924 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 925 u64 range = state->end - state->start + 1; 926 tree->dirty_bytes += range; 927 } 928 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 929 BUG_ON(ret < 0); 930 state->state |= bits_to_set; 931} 932 933static void cache_state_if_flags(struct extent_state *state, 934 struct extent_state **cached_ptr, 935 unsigned flags) 936{ 937 if (cached_ptr && !(*cached_ptr)) { 938 if (!flags || (state->state & flags)) { 939 *cached_ptr = state; 940 refcount_inc(&state->refs); 941 } 942 } 943} 944 945static void cache_state(struct extent_state *state, 946 struct extent_state **cached_ptr) 947{ 948 return cache_state_if_flags(state, cached_ptr, 949 EXTENT_LOCKED | EXTENT_BOUNDARY); 950} 951 952/* 953 * set some bits on a range in the tree. This may require allocations or 954 * sleeping, so the gfp mask is used to indicate what is allowed. 955 * 956 * If any of the exclusive bits are set, this will fail with -EEXIST if some 957 * part of the range already has the desired bits set. The start of the 958 * existing range is returned in failed_start in this case. 959 * 960 * [start, end] is inclusive This takes the tree lock. 961 */ 962 963static int __must_check 964__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 965 unsigned bits, unsigned exclusive_bits, 966 u64 *failed_start, struct extent_state **cached_state, 967 gfp_t mask, struct extent_changeset *changeset) 968{ 969 struct extent_state *state; 970 struct extent_state *prealloc = NULL; 971 struct rb_node *node; 972 struct rb_node **p; 973 struct rb_node *parent; 974 int err = 0; 975 u64 last_start; 976 u64 last_end; 977 978 btrfs_debug_check_extent_io_range(tree, start, end); 979 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 980 981again: 982 if (!prealloc && gfpflags_allow_blocking(mask)) { 983 /* 984 * Don't care for allocation failure here because we might end 985 * up not needing the pre-allocated extent state at all, which 986 * is the case if we only have in the tree extent states that 987 * cover our input range and don't cover too any other range. 988 * If we end up needing a new extent state we allocate it later. 989 */ 990 prealloc = alloc_extent_state(mask); 991 } 992 993 spin_lock(&tree->lock); 994 if (cached_state && *cached_state) { 995 state = *cached_state; 996 if (state->start <= start && state->end > start && 997 extent_state_in_tree(state)) { 998 node = &state->rb_node; 999 goto hit_next; 1000 } 1001 } 1002 /* 1003 * this search will find all the extents that end after 1004 * our range starts. 1005 */ 1006 node = tree_search_for_insert(tree, start, &p, &parent); 1007 if (!node) { 1008 prealloc = alloc_extent_state_atomic(prealloc); 1009 BUG_ON(!prealloc); 1010 err = insert_state(tree, prealloc, start, end, 1011 &p, &parent, &bits, changeset); 1012 if (err) 1013 extent_io_tree_panic(tree, err); 1014 1015 cache_state(prealloc, cached_state); 1016 prealloc = NULL; 1017 goto out; 1018 } 1019 state = rb_entry(node, struct extent_state, rb_node); 1020hit_next: 1021 last_start = state->start; 1022 last_end = state->end; 1023 1024 /* 1025 * | ---- desired range ---- | 1026 * | state | 1027 * 1028 * Just lock what we found and keep going 1029 */ 1030 if (state->start == start && state->end <= end) { 1031 if (state->state & exclusive_bits) { 1032 *failed_start = state->start; 1033 err = -EEXIST; 1034 goto out; 1035 } 1036 1037 set_state_bits(tree, state, &bits, changeset); 1038 cache_state(state, cached_state); 1039 merge_state(tree, state); 1040 if (last_end == (u64)-1) 1041 goto out; 1042 start = last_end + 1; 1043 state = next_state(state); 1044 if (start < end && state && state->start == start && 1045 !need_resched()) 1046 goto hit_next; 1047 goto search_again; 1048 } 1049 1050 /* 1051 * | ---- desired range ---- | 1052 * | state | 1053 * or 1054 * | ------------- state -------------- | 1055 * 1056 * We need to split the extent we found, and may flip bits on 1057 * second half. 1058 * 1059 * If the extent we found extends past our 1060 * range, we just split and search again. It'll get split 1061 * again the next time though. 1062 * 1063 * If the extent we found is inside our range, we set the 1064 * desired bit on it. 1065 */ 1066 if (state->start < start) { 1067 if (state->state & exclusive_bits) { 1068 *failed_start = start; 1069 err = -EEXIST; 1070 goto out; 1071 } 1072 1073 /* 1074 * If this extent already has all the bits we want set, then 1075 * skip it, not necessary to split it or do anything with it. 1076 */ 1077 if ((state->state & bits) == bits) { 1078 start = state->end + 1; 1079 cache_state(state, cached_state); 1080 goto search_again; 1081 } 1082 1083 prealloc = alloc_extent_state_atomic(prealloc); 1084 BUG_ON(!prealloc); 1085 err = split_state(tree, state, prealloc, start); 1086 if (err) 1087 extent_io_tree_panic(tree, err); 1088 1089 prealloc = NULL; 1090 if (err) 1091 goto out; 1092 if (state->end <= end) { 1093 set_state_bits(tree, state, &bits, changeset); 1094 cache_state(state, cached_state); 1095 merge_state(tree, state); 1096 if (last_end == (u64)-1) 1097 goto out; 1098 start = last_end + 1; 1099 state = next_state(state); 1100 if (start < end && state && state->start == start && 1101 !need_resched()) 1102 goto hit_next; 1103 } 1104 goto search_again; 1105 } 1106 /* 1107 * | ---- desired range ---- | 1108 * | state | or | state | 1109 * 1110 * There's a hole, we need to insert something in it and 1111 * ignore the extent we found. 1112 */ 1113 if (state->start > start) { 1114 u64 this_end; 1115 if (end < last_start) 1116 this_end = end; 1117 else 1118 this_end = last_start - 1; 1119 1120 prealloc = alloc_extent_state_atomic(prealloc); 1121 BUG_ON(!prealloc); 1122 1123 /* 1124 * Avoid to free 'prealloc' if it can be merged with 1125 * the later extent. 1126 */ 1127 err = insert_state(tree, prealloc, start, this_end, 1128 NULL, NULL, &bits, changeset); 1129 if (err) 1130 extent_io_tree_panic(tree, err); 1131 1132 cache_state(prealloc, cached_state); 1133 prealloc = NULL; 1134 start = this_end + 1; 1135 goto search_again; 1136 } 1137 /* 1138 * | ---- desired range ---- | 1139 * | state | 1140 * We need to split the extent, and set the bit 1141 * on the first half 1142 */ 1143 if (state->start <= end && state->end > end) { 1144 if (state->state & exclusive_bits) { 1145 *failed_start = start; 1146 err = -EEXIST; 1147 goto out; 1148 } 1149 1150 prealloc = alloc_extent_state_atomic(prealloc); 1151 BUG_ON(!prealloc); 1152 err = split_state(tree, state, prealloc, end + 1); 1153 if (err) 1154 extent_io_tree_panic(tree, err); 1155 1156 set_state_bits(tree, prealloc, &bits, changeset); 1157 cache_state(prealloc, cached_state); 1158 merge_state(tree, prealloc); 1159 prealloc = NULL; 1160 goto out; 1161 } 1162 1163search_again: 1164 if (start > end) 1165 goto out; 1166 spin_unlock(&tree->lock); 1167 if (gfpflags_allow_blocking(mask)) 1168 cond_resched(); 1169 goto again; 1170 1171out: 1172 spin_unlock(&tree->lock); 1173 if (prealloc) 1174 free_extent_state(prealloc); 1175 1176 return err; 1177 1178} 1179 1180int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1181 unsigned bits, u64 * failed_start, 1182 struct extent_state **cached_state, gfp_t mask) 1183{ 1184 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1185 cached_state, mask, NULL); 1186} 1187 1188 1189/** 1190 * convert_extent_bit - convert all bits in a given range from one bit to 1191 * another 1192 * @tree: the io tree to search 1193 * @start: the start offset in bytes 1194 * @end: the end offset in bytes (inclusive) 1195 * @bits: the bits to set in this range 1196 * @clear_bits: the bits to clear in this range 1197 * @cached_state: state that we're going to cache 1198 * 1199 * This will go through and set bits for the given range. If any states exist 1200 * already in this range they are set with the given bit and cleared of the 1201 * clear_bits. This is only meant to be used by things that are mergeable, ie 1202 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1203 * boundary bits like LOCK. 1204 * 1205 * All allocations are done with GFP_NOFS. 1206 */ 1207int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1208 unsigned bits, unsigned clear_bits, 1209 struct extent_state **cached_state) 1210{ 1211 struct extent_state *state; 1212 struct extent_state *prealloc = NULL; 1213 struct rb_node *node; 1214 struct rb_node **p; 1215 struct rb_node *parent; 1216 int err = 0; 1217 u64 last_start; 1218 u64 last_end; 1219 bool first_iteration = true; 1220 1221 btrfs_debug_check_extent_io_range(tree, start, end); 1222 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1223 clear_bits); 1224 1225again: 1226 if (!prealloc) { 1227 /* 1228 * Best effort, don't worry if extent state allocation fails 1229 * here for the first iteration. We might have a cached state 1230 * that matches exactly the target range, in which case no 1231 * extent state allocations are needed. We'll only know this 1232 * after locking the tree. 1233 */ 1234 prealloc = alloc_extent_state(GFP_NOFS); 1235 if (!prealloc && !first_iteration) 1236 return -ENOMEM; 1237 } 1238 1239 spin_lock(&tree->lock); 1240 if (cached_state && *cached_state) { 1241 state = *cached_state; 1242 if (state->start <= start && state->end > start && 1243 extent_state_in_tree(state)) { 1244 node = &state->rb_node; 1245 goto hit_next; 1246 } 1247 } 1248 1249 /* 1250 * this search will find all the extents that end after 1251 * our range starts. 1252 */ 1253 node = tree_search_for_insert(tree, start, &p, &parent); 1254 if (!node) { 1255 prealloc = alloc_extent_state_atomic(prealloc); 1256 if (!prealloc) { 1257 err = -ENOMEM; 1258 goto out; 1259 } 1260 err = insert_state(tree, prealloc, start, end, 1261 &p, &parent, &bits, NULL); 1262 if (err) 1263 extent_io_tree_panic(tree, err); 1264 cache_state(prealloc, cached_state); 1265 prealloc = NULL; 1266 goto out; 1267 } 1268 state = rb_entry(node, struct extent_state, rb_node); 1269hit_next: 1270 last_start = state->start; 1271 last_end = state->end; 1272 1273 /* 1274 * | ---- desired range ---- | 1275 * | state | 1276 * 1277 * Just lock what we found and keep going 1278 */ 1279 if (state->start == start && state->end <= end) { 1280 set_state_bits(tree, state, &bits, NULL); 1281 cache_state(state, cached_state); 1282 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1283 if (last_end == (u64)-1) 1284 goto out; 1285 start = last_end + 1; 1286 if (start < end && state && state->start == start && 1287 !need_resched()) 1288 goto hit_next; 1289 goto search_again; 1290 } 1291 1292 /* 1293 * | ---- desired range ---- | 1294 * | state | 1295 * or 1296 * | ------------- state -------------- | 1297 * 1298 * We need to split the extent we found, and may flip bits on 1299 * second half. 1300 * 1301 * If the extent we found extends past our 1302 * range, we just split and search again. It'll get split 1303 * again the next time though. 1304 * 1305 * If the extent we found is inside our range, we set the 1306 * desired bit on it. 1307 */ 1308 if (state->start < start) { 1309 prealloc = alloc_extent_state_atomic(prealloc); 1310 if (!prealloc) { 1311 err = -ENOMEM; 1312 goto out; 1313 } 1314 err = split_state(tree, state, prealloc, start); 1315 if (err) 1316 extent_io_tree_panic(tree, err); 1317 prealloc = NULL; 1318 if (err) 1319 goto out; 1320 if (state->end <= end) { 1321 set_state_bits(tree, state, &bits, NULL); 1322 cache_state(state, cached_state); 1323 state = clear_state_bit(tree, state, &clear_bits, 0, 1324 NULL); 1325 if (last_end == (u64)-1) 1326 goto out; 1327 start = last_end + 1; 1328 if (start < end && state && state->start == start && 1329 !need_resched()) 1330 goto hit_next; 1331 } 1332 goto search_again; 1333 } 1334 /* 1335 * | ---- desired range ---- | 1336 * | state | or | state | 1337 * 1338 * There's a hole, we need to insert something in it and 1339 * ignore the extent we found. 1340 */ 1341 if (state->start > start) { 1342 u64 this_end; 1343 if (end < last_start) 1344 this_end = end; 1345 else 1346 this_end = last_start - 1; 1347 1348 prealloc = alloc_extent_state_atomic(prealloc); 1349 if (!prealloc) { 1350 err = -ENOMEM; 1351 goto out; 1352 } 1353 1354 /* 1355 * Avoid to free 'prealloc' if it can be merged with 1356 * the later extent. 1357 */ 1358 err = insert_state(tree, prealloc, start, this_end, 1359 NULL, NULL, &bits, NULL); 1360 if (err) 1361 extent_io_tree_panic(tree, err); 1362 cache_state(prealloc, cached_state); 1363 prealloc = NULL; 1364 start = this_end + 1; 1365 goto search_again; 1366 } 1367 /* 1368 * | ---- desired range ---- | 1369 * | state | 1370 * We need to split the extent, and set the bit 1371 * on the first half 1372 */ 1373 if (state->start <= end && state->end > end) { 1374 prealloc = alloc_extent_state_atomic(prealloc); 1375 if (!prealloc) { 1376 err = -ENOMEM; 1377 goto out; 1378 } 1379 1380 err = split_state(tree, state, prealloc, end + 1); 1381 if (err) 1382 extent_io_tree_panic(tree, err); 1383 1384 set_state_bits(tree, prealloc, &bits, NULL); 1385 cache_state(prealloc, cached_state); 1386 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1387 prealloc = NULL; 1388 goto out; 1389 } 1390 1391search_again: 1392 if (start > end) 1393 goto out; 1394 spin_unlock(&tree->lock); 1395 cond_resched(); 1396 first_iteration = false; 1397 goto again; 1398 1399out: 1400 spin_unlock(&tree->lock); 1401 if (prealloc) 1402 free_extent_state(prealloc); 1403 1404 return err; 1405} 1406 1407/* wrappers around set/clear extent bit */ 1408int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1409 unsigned bits, struct extent_changeset *changeset) 1410{ 1411 /* 1412 * We don't support EXTENT_LOCKED yet, as current changeset will 1413 * record any bits changed, so for EXTENT_LOCKED case, it will 1414 * either fail with -EEXIST or changeset will record the whole 1415 * range. 1416 */ 1417 BUG_ON(bits & EXTENT_LOCKED); 1418 1419 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1420 changeset); 1421} 1422 1423int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1424 unsigned bits) 1425{ 1426 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1427 GFP_NOWAIT, NULL); 1428} 1429 1430int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1431 unsigned bits, int wake, int delete, 1432 struct extent_state **cached) 1433{ 1434 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1435 cached, GFP_NOFS, NULL); 1436} 1437 1438int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1439 unsigned bits, struct extent_changeset *changeset) 1440{ 1441 /* 1442 * Don't support EXTENT_LOCKED case, same reason as 1443 * set_record_extent_bits(). 1444 */ 1445 BUG_ON(bits & EXTENT_LOCKED); 1446 1447 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1448 changeset); 1449} 1450 1451/* 1452 * either insert or lock state struct between start and end use mask to tell 1453 * us if waiting is desired. 1454 */ 1455int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1456 struct extent_state **cached_state) 1457{ 1458 int err; 1459 u64 failed_start; 1460 1461 while (1) { 1462 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1463 EXTENT_LOCKED, &failed_start, 1464 cached_state, GFP_NOFS, NULL); 1465 if (err == -EEXIST) { 1466 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1467 start = failed_start; 1468 } else 1469 break; 1470 WARN_ON(start > end); 1471 } 1472 return err; 1473} 1474 1475int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1476{ 1477 int err; 1478 u64 failed_start; 1479 1480 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1481 &failed_start, NULL, GFP_NOFS, NULL); 1482 if (err == -EEXIST) { 1483 if (failed_start > start) 1484 clear_extent_bit(tree, start, failed_start - 1, 1485 EXTENT_LOCKED, 1, 0, NULL); 1486 return 0; 1487 } 1488 return 1; 1489} 1490 1491void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1492{ 1493 unsigned long index = start >> PAGE_SHIFT; 1494 unsigned long end_index = end >> PAGE_SHIFT; 1495 struct page *page; 1496 1497 while (index <= end_index) { 1498 page = find_get_page(inode->i_mapping, index); 1499 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1500 clear_page_dirty_for_io(page); 1501 put_page(page); 1502 index++; 1503 } 1504} 1505 1506void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1507{ 1508 unsigned long index = start >> PAGE_SHIFT; 1509 unsigned long end_index = end >> PAGE_SHIFT; 1510 struct page *page; 1511 1512 while (index <= end_index) { 1513 page = find_get_page(inode->i_mapping, index); 1514 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1515 __set_page_dirty_nobuffers(page); 1516 account_page_redirty(page); 1517 put_page(page); 1518 index++; 1519 } 1520} 1521 1522/* find the first state struct with 'bits' set after 'start', and 1523 * return it. tree->lock must be held. NULL will returned if 1524 * nothing was found after 'start' 1525 */ 1526static struct extent_state * 1527find_first_extent_bit_state(struct extent_io_tree *tree, 1528 u64 start, unsigned bits) 1529{ 1530 struct rb_node *node; 1531 struct extent_state *state; 1532 1533 /* 1534 * this search will find all the extents that end after 1535 * our range starts. 1536 */ 1537 node = tree_search(tree, start); 1538 if (!node) 1539 goto out; 1540 1541 while (1) { 1542 state = rb_entry(node, struct extent_state, rb_node); 1543 if (state->end >= start && (state->state & bits)) 1544 return state; 1545 1546 node = rb_next(node); 1547 if (!node) 1548 break; 1549 } 1550out: 1551 return NULL; 1552} 1553 1554/* 1555 * find the first offset in the io tree with 'bits' set. zero is 1556 * returned if we find something, and *start_ret and *end_ret are 1557 * set to reflect the state struct that was found. 1558 * 1559 * If nothing was found, 1 is returned. If found something, return 0. 1560 */ 1561int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1562 u64 *start_ret, u64 *end_ret, unsigned bits, 1563 struct extent_state **cached_state) 1564{ 1565 struct extent_state *state; 1566 int ret = 1; 1567 1568 spin_lock(&tree->lock); 1569 if (cached_state && *cached_state) { 1570 state = *cached_state; 1571 if (state->end == start - 1 && extent_state_in_tree(state)) { 1572 while ((state = next_state(state)) != NULL) { 1573 if (state->state & bits) 1574 goto got_it; 1575 } 1576 free_extent_state(*cached_state); 1577 *cached_state = NULL; 1578 goto out; 1579 } 1580 free_extent_state(*cached_state); 1581 *cached_state = NULL; 1582 } 1583 1584 state = find_first_extent_bit_state(tree, start, bits); 1585got_it: 1586 if (state) { 1587 cache_state_if_flags(state, cached_state, 0); 1588 *start_ret = state->start; 1589 *end_ret = state->end; 1590 ret = 0; 1591 } 1592out: 1593 spin_unlock(&tree->lock); 1594 return ret; 1595} 1596 1597/** 1598 * find_contiguous_extent_bit: find a contiguous area of bits 1599 * @tree - io tree to check 1600 * @start - offset to start the search from 1601 * @start_ret - the first offset we found with the bits set 1602 * @end_ret - the final contiguous range of the bits that were set 1603 * @bits - bits to look for 1604 * 1605 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges 1606 * to set bits appropriately, and then merge them again. During this time it 1607 * will drop the tree->lock, so use this helper if you want to find the actual 1608 * contiguous area for given bits. We will search to the first bit we find, and 1609 * then walk down the tree until we find a non-contiguous area. The area 1610 * returned will be the full contiguous area with the bits set. 1611 */ 1612int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, 1613 u64 *start_ret, u64 *end_ret, unsigned bits) 1614{ 1615 struct extent_state *state; 1616 int ret = 1; 1617 1618 spin_lock(&tree->lock); 1619 state = find_first_extent_bit_state(tree, start, bits); 1620 if (state) { 1621 *start_ret = state->start; 1622 *end_ret = state->end; 1623 while ((state = next_state(state)) != NULL) { 1624 if (state->start > (*end_ret + 1)) 1625 break; 1626 *end_ret = state->end; 1627 } 1628 ret = 0; 1629 } 1630 spin_unlock(&tree->lock); 1631 return ret; 1632} 1633 1634/** 1635 * find_first_clear_extent_bit - find the first range that has @bits not set. 1636 * This range could start before @start. 1637 * 1638 * @tree - the tree to search 1639 * @start - the offset at/after which the found extent should start 1640 * @start_ret - records the beginning of the range 1641 * @end_ret - records the end of the range (inclusive) 1642 * @bits - the set of bits which must be unset 1643 * 1644 * Since unallocated range is also considered one which doesn't have the bits 1645 * set it's possible that @end_ret contains -1, this happens in case the range 1646 * spans (last_range_end, end of device]. In this case it's up to the caller to 1647 * trim @end_ret to the appropriate size. 1648 */ 1649void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1650 u64 *start_ret, u64 *end_ret, unsigned bits) 1651{ 1652 struct extent_state *state; 1653 struct rb_node *node, *prev = NULL, *next; 1654 1655 spin_lock(&tree->lock); 1656 1657 /* Find first extent with bits cleared */ 1658 while (1) { 1659 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1660 if (!node && !next && !prev) { 1661 /* 1662 * Tree is completely empty, send full range and let 1663 * caller deal with it 1664 */ 1665 *start_ret = 0; 1666 *end_ret = -1; 1667 goto out; 1668 } else if (!node && !next) { 1669 /* 1670 * We are past the last allocated chunk, set start at 1671 * the end of the last extent. 1672 */ 1673 state = rb_entry(prev, struct extent_state, rb_node); 1674 *start_ret = state->end + 1; 1675 *end_ret = -1; 1676 goto out; 1677 } else if (!node) { 1678 node = next; 1679 } 1680 /* 1681 * At this point 'node' either contains 'start' or start is 1682 * before 'node' 1683 */ 1684 state = rb_entry(node, struct extent_state, rb_node); 1685 1686 if (in_range(start, state->start, state->end - state->start + 1)) { 1687 if (state->state & bits) { 1688 /* 1689 * |--range with bits sets--| 1690 * | 1691 * start 1692 */ 1693 start = state->end + 1; 1694 } else { 1695 /* 1696 * 'start' falls within a range that doesn't 1697 * have the bits set, so take its start as 1698 * the beginning of the desired range 1699 * 1700 * |--range with bits cleared----| 1701 * | 1702 * start 1703 */ 1704 *start_ret = state->start; 1705 break; 1706 } 1707 } else { 1708 /* 1709 * |---prev range---|---hole/unset---|---node range---| 1710 * | 1711 * start 1712 * 1713 * or 1714 * 1715 * |---hole/unset--||--first node--| 1716 * 0 | 1717 * start 1718 */ 1719 if (prev) { 1720 state = rb_entry(prev, struct extent_state, 1721 rb_node); 1722 *start_ret = state->end + 1; 1723 } else { 1724 *start_ret = 0; 1725 } 1726 break; 1727 } 1728 } 1729 1730 /* 1731 * Find the longest stretch from start until an entry which has the 1732 * bits set 1733 */ 1734 while (1) { 1735 state = rb_entry(node, struct extent_state, rb_node); 1736 if (state->end >= start && !(state->state & bits)) { 1737 *end_ret = state->end; 1738 } else { 1739 *end_ret = state->start - 1; 1740 break; 1741 } 1742 1743 node = rb_next(node); 1744 if (!node) 1745 break; 1746 } 1747out: 1748 spin_unlock(&tree->lock); 1749} 1750 1751/* 1752 * find a contiguous range of bytes in the file marked as delalloc, not 1753 * more than 'max_bytes'. start and end are used to return the range, 1754 * 1755 * true is returned if we find something, false if nothing was in the tree 1756 */ 1757bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, 1758 u64 *end, u64 max_bytes, 1759 struct extent_state **cached_state) 1760{ 1761 struct rb_node *node; 1762 struct extent_state *state; 1763 u64 cur_start = *start; 1764 bool found = false; 1765 u64 total_bytes = 0; 1766 1767 spin_lock(&tree->lock); 1768 1769 /* 1770 * this search will find all the extents that end after 1771 * our range starts. 1772 */ 1773 node = tree_search(tree, cur_start); 1774 if (!node) { 1775 *end = (u64)-1; 1776 goto out; 1777 } 1778 1779 while (1) { 1780 state = rb_entry(node, struct extent_state, rb_node); 1781 if (found && (state->start != cur_start || 1782 (state->state & EXTENT_BOUNDARY))) { 1783 goto out; 1784 } 1785 if (!(state->state & EXTENT_DELALLOC)) { 1786 if (!found) 1787 *end = state->end; 1788 goto out; 1789 } 1790 if (!found) { 1791 *start = state->start; 1792 *cached_state = state; 1793 refcount_inc(&state->refs); 1794 } 1795 found = true; 1796 *end = state->end; 1797 cur_start = state->end + 1; 1798 node = rb_next(node); 1799 total_bytes += state->end - state->start + 1; 1800 if (total_bytes >= max_bytes) 1801 break; 1802 if (!node) 1803 break; 1804 } 1805out: 1806 spin_unlock(&tree->lock); 1807 return found; 1808} 1809 1810static int __process_pages_contig(struct address_space *mapping, 1811 struct page *locked_page, 1812 pgoff_t start_index, pgoff_t end_index, 1813 unsigned long page_ops, pgoff_t *index_ret); 1814 1815static noinline void __unlock_for_delalloc(struct inode *inode, 1816 struct page *locked_page, 1817 u64 start, u64 end) 1818{ 1819 unsigned long index = start >> PAGE_SHIFT; 1820 unsigned long end_index = end >> PAGE_SHIFT; 1821 1822 ASSERT(locked_page); 1823 if (index == locked_page->index && end_index == index) 1824 return; 1825 1826 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1827 PAGE_UNLOCK, NULL); 1828} 1829 1830static noinline int lock_delalloc_pages(struct inode *inode, 1831 struct page *locked_page, 1832 u64 delalloc_start, 1833 u64 delalloc_end) 1834{ 1835 unsigned long index = delalloc_start >> PAGE_SHIFT; 1836 unsigned long index_ret = index; 1837 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1838 int ret; 1839 1840 ASSERT(locked_page); 1841 if (index == locked_page->index && index == end_index) 1842 return 0; 1843 1844 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1845 end_index, PAGE_LOCK, &index_ret); 1846 if (ret == -EAGAIN) 1847 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1848 (u64)index_ret << PAGE_SHIFT); 1849 return ret; 1850} 1851 1852/* 1853 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1854 * more than @max_bytes. @Start and @end are used to return the range, 1855 * 1856 * Return: true if we find something 1857 * false if nothing was in the tree 1858 */ 1859EXPORT_FOR_TESTS 1860noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1861 struct page *locked_page, u64 *start, 1862 u64 *end) 1863{ 1864 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1865 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 1866 u64 delalloc_start; 1867 u64 delalloc_end; 1868 bool found; 1869 struct extent_state *cached_state = NULL; 1870 int ret; 1871 int loops = 0; 1872 1873again: 1874 /* step one, find a bunch of delalloc bytes starting at start */ 1875 delalloc_start = *start; 1876 delalloc_end = 0; 1877 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1878 max_bytes, &cached_state); 1879 if (!found || delalloc_end <= *start) { 1880 *start = delalloc_start; 1881 *end = delalloc_end; 1882 free_extent_state(cached_state); 1883 return false; 1884 } 1885 1886 /* 1887 * start comes from the offset of locked_page. We have to lock 1888 * pages in order, so we can't process delalloc bytes before 1889 * locked_page 1890 */ 1891 if (delalloc_start < *start) 1892 delalloc_start = *start; 1893 1894 /* 1895 * make sure to limit the number of pages we try to lock down 1896 */ 1897 if (delalloc_end + 1 - delalloc_start > max_bytes) 1898 delalloc_end = delalloc_start + max_bytes - 1; 1899 1900 /* step two, lock all the pages after the page that has start */ 1901 ret = lock_delalloc_pages(inode, locked_page, 1902 delalloc_start, delalloc_end); 1903 ASSERT(!ret || ret == -EAGAIN); 1904 if (ret == -EAGAIN) { 1905 /* some of the pages are gone, lets avoid looping by 1906 * shortening the size of the delalloc range we're searching 1907 */ 1908 free_extent_state(cached_state); 1909 cached_state = NULL; 1910 if (!loops) { 1911 max_bytes = PAGE_SIZE; 1912 loops = 1; 1913 goto again; 1914 } else { 1915 found = false; 1916 goto out_failed; 1917 } 1918 } 1919 1920 /* step three, lock the state bits for the whole range */ 1921 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1922 1923 /* then test to make sure it is all still delalloc */ 1924 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1925 EXTENT_DELALLOC, 1, cached_state); 1926 if (!ret) { 1927 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1928 &cached_state); 1929 __unlock_for_delalloc(inode, locked_page, 1930 delalloc_start, delalloc_end); 1931 cond_resched(); 1932 goto again; 1933 } 1934 free_extent_state(cached_state); 1935 *start = delalloc_start; 1936 *end = delalloc_end; 1937out_failed: 1938 return found; 1939} 1940 1941static int __process_pages_contig(struct address_space *mapping, 1942 struct page *locked_page, 1943 pgoff_t start_index, pgoff_t end_index, 1944 unsigned long page_ops, pgoff_t *index_ret) 1945{ 1946 unsigned long nr_pages = end_index - start_index + 1; 1947 unsigned long pages_locked = 0; 1948 pgoff_t index = start_index; 1949 struct page *pages[16]; 1950 unsigned ret; 1951 int err = 0; 1952 int i; 1953 1954 if (page_ops & PAGE_LOCK) { 1955 ASSERT(page_ops == PAGE_LOCK); 1956 ASSERT(index_ret && *index_ret == start_index); 1957 } 1958 1959 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1960 mapping_set_error(mapping, -EIO); 1961 1962 while (nr_pages > 0) { 1963 ret = find_get_pages_contig(mapping, index, 1964 min_t(unsigned long, 1965 nr_pages, ARRAY_SIZE(pages)), pages); 1966 if (ret == 0) { 1967 /* 1968 * Only if we're going to lock these pages, 1969 * can we find nothing at @index. 1970 */ 1971 ASSERT(page_ops & PAGE_LOCK); 1972 err = -EAGAIN; 1973 goto out; 1974 } 1975 1976 for (i = 0; i < ret; i++) { 1977 if (page_ops & PAGE_SET_PRIVATE2) 1978 SetPagePrivate2(pages[i]); 1979 1980 if (locked_page && pages[i] == locked_page) { 1981 put_page(pages[i]); 1982 pages_locked++; 1983 continue; 1984 } 1985 if (page_ops & PAGE_CLEAR_DIRTY) 1986 clear_page_dirty_for_io(pages[i]); 1987 if (page_ops & PAGE_SET_WRITEBACK) 1988 set_page_writeback(pages[i]); 1989 if (page_ops & PAGE_SET_ERROR) 1990 SetPageError(pages[i]); 1991 if (page_ops & PAGE_END_WRITEBACK) 1992 end_page_writeback(pages[i]); 1993 if (page_ops & PAGE_UNLOCK) 1994 unlock_page(pages[i]); 1995 if (page_ops & PAGE_LOCK) { 1996 lock_page(pages[i]); 1997 if (!PageDirty(pages[i]) || 1998 pages[i]->mapping != mapping) { 1999 unlock_page(pages[i]); 2000 for (; i < ret; i++) 2001 put_page(pages[i]); 2002 err = -EAGAIN; 2003 goto out; 2004 } 2005 } 2006 put_page(pages[i]); 2007 pages_locked++; 2008 } 2009 nr_pages -= ret; 2010 index += ret; 2011 cond_resched(); 2012 } 2013out: 2014 if (err && index_ret) 2015 *index_ret = start_index + pages_locked - 1; 2016 return err; 2017} 2018 2019void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2020 struct page *locked_page, 2021 unsigned clear_bits, 2022 unsigned long page_ops) 2023{ 2024 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL); 2025 2026 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 2027 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 2028 page_ops, NULL); 2029} 2030 2031/* 2032 * count the number of bytes in the tree that have a given bit(s) 2033 * set. This can be fairly slow, except for EXTENT_DIRTY which is 2034 * cached. The total number found is returned. 2035 */ 2036u64 count_range_bits(struct extent_io_tree *tree, 2037 u64 *start, u64 search_end, u64 max_bytes, 2038 unsigned bits, int contig) 2039{ 2040 struct rb_node *node; 2041 struct extent_state *state; 2042 u64 cur_start = *start; 2043 u64 total_bytes = 0; 2044 u64 last = 0; 2045 int found = 0; 2046 2047 if (WARN_ON(search_end <= cur_start)) 2048 return 0; 2049 2050 spin_lock(&tree->lock); 2051 if (cur_start == 0 && bits == EXTENT_DIRTY) { 2052 total_bytes = tree->dirty_bytes; 2053 goto out; 2054 } 2055 /* 2056 * this search will find all the extents that end after 2057 * our range starts. 2058 */ 2059 node = tree_search(tree, cur_start); 2060 if (!node) 2061 goto out; 2062 2063 while (1) { 2064 state = rb_entry(node, struct extent_state, rb_node); 2065 if (state->start > search_end) 2066 break; 2067 if (contig && found && state->start > last + 1) 2068 break; 2069 if (state->end >= cur_start && (state->state & bits) == bits) { 2070 total_bytes += min(search_end, state->end) + 1 - 2071 max(cur_start, state->start); 2072 if (total_bytes >= max_bytes) 2073 break; 2074 if (!found) { 2075 *start = max(cur_start, state->start); 2076 found = 1; 2077 } 2078 last = state->end; 2079 } else if (contig && found) { 2080 break; 2081 } 2082 node = rb_next(node); 2083 if (!node) 2084 break; 2085 } 2086out: 2087 spin_unlock(&tree->lock); 2088 return total_bytes; 2089} 2090 2091/* 2092 * set the private field for a given byte offset in the tree. If there isn't 2093 * an extent_state there already, this does nothing. 2094 */ 2095int set_state_failrec(struct extent_io_tree *tree, u64 start, 2096 struct io_failure_record *failrec) 2097{ 2098 struct rb_node *node; 2099 struct extent_state *state; 2100 int ret = 0; 2101 2102 spin_lock(&tree->lock); 2103 /* 2104 * this search will find all the extents that end after 2105 * our range starts. 2106 */ 2107 node = tree_search(tree, start); 2108 if (!node) { 2109 ret = -ENOENT; 2110 goto out; 2111 } 2112 state = rb_entry(node, struct extent_state, rb_node); 2113 if (state->start != start) { 2114 ret = -ENOENT; 2115 goto out; 2116 } 2117 state->failrec = failrec; 2118out: 2119 spin_unlock(&tree->lock); 2120 return ret; 2121} 2122 2123struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start) 2124{ 2125 struct rb_node *node; 2126 struct extent_state *state; 2127 struct io_failure_record *failrec; 2128 2129 spin_lock(&tree->lock); 2130 /* 2131 * this search will find all the extents that end after 2132 * our range starts. 2133 */ 2134 node = tree_search(tree, start); 2135 if (!node) { 2136 failrec = ERR_PTR(-ENOENT); 2137 goto out; 2138 } 2139 state = rb_entry(node, struct extent_state, rb_node); 2140 if (state->start != start) { 2141 failrec = ERR_PTR(-ENOENT); 2142 goto out; 2143 } 2144 2145 failrec = state->failrec; 2146out: 2147 spin_unlock(&tree->lock); 2148 return failrec; 2149} 2150 2151/* 2152 * searches a range in the state tree for a given mask. 2153 * If 'filled' == 1, this returns 1 only if every extent in the tree 2154 * has the bits set. Otherwise, 1 is returned if any bit in the 2155 * range is found set. 2156 */ 2157int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2158 unsigned bits, int filled, struct extent_state *cached) 2159{ 2160 struct extent_state *state = NULL; 2161 struct rb_node *node; 2162 int bitset = 0; 2163 2164 spin_lock(&tree->lock); 2165 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2166 cached->end > start) 2167 node = &cached->rb_node; 2168 else 2169 node = tree_search(tree, start); 2170 while (node && start <= end) { 2171 state = rb_entry(node, struct extent_state, rb_node); 2172 2173 if (filled && state->start > start) { 2174 bitset = 0; 2175 break; 2176 } 2177 2178 if (state->start > end) 2179 break; 2180 2181 if (state->state & bits) { 2182 bitset = 1; 2183 if (!filled) 2184 break; 2185 } else if (filled) { 2186 bitset = 0; 2187 break; 2188 } 2189 2190 if (state->end == (u64)-1) 2191 break; 2192 2193 start = state->end + 1; 2194 if (start > end) 2195 break; 2196 node = rb_next(node); 2197 if (!node) { 2198 if (filled) 2199 bitset = 0; 2200 break; 2201 } 2202 } 2203 spin_unlock(&tree->lock); 2204 return bitset; 2205} 2206 2207/* 2208 * helper function to set a given page up to date if all the 2209 * extents in the tree for that page are up to date 2210 */ 2211static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 2212{ 2213 u64 start = page_offset(page); 2214 u64 end = start + PAGE_SIZE - 1; 2215 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 2216 SetPageUptodate(page); 2217} 2218 2219int free_io_failure(struct extent_io_tree *failure_tree, 2220 struct extent_io_tree *io_tree, 2221 struct io_failure_record *rec) 2222{ 2223 int ret; 2224 int err = 0; 2225 2226 set_state_failrec(failure_tree, rec->start, NULL); 2227 ret = clear_extent_bits(failure_tree, rec->start, 2228 rec->start + rec->len - 1, 2229 EXTENT_LOCKED | EXTENT_DIRTY); 2230 if (ret) 2231 err = ret; 2232 2233 ret = clear_extent_bits(io_tree, rec->start, 2234 rec->start + rec->len - 1, 2235 EXTENT_DAMAGED); 2236 if (ret && !err) 2237 err = ret; 2238 2239 kfree(rec); 2240 return err; 2241} 2242 2243/* 2244 * this bypasses the standard btrfs submit functions deliberately, as 2245 * the standard behavior is to write all copies in a raid setup. here we only 2246 * want to write the one bad copy. so we do the mapping for ourselves and issue 2247 * submit_bio directly. 2248 * to avoid any synchronization issues, wait for the data after writing, which 2249 * actually prevents the read that triggered the error from finishing. 2250 * currently, there can be no more than two copies of every data bit. thus, 2251 * exactly one rewrite is required. 2252 */ 2253int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2254 u64 length, u64 logical, struct page *page, 2255 unsigned int pg_offset, int mirror_num) 2256{ 2257 struct bio *bio; 2258 struct btrfs_device *dev; 2259 u64 map_length = 0; 2260 u64 sector; 2261 struct btrfs_bio *bbio = NULL; 2262 int ret; 2263 2264 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2265 BUG_ON(!mirror_num); 2266 2267 bio = btrfs_io_bio_alloc(1); 2268 bio->bi_iter.bi_size = 0; 2269 map_length = length; 2270 2271 /* 2272 * Avoid races with device replace and make sure our bbio has devices 2273 * associated to its stripes that don't go away while we are doing the 2274 * read repair operation. 2275 */ 2276 btrfs_bio_counter_inc_blocked(fs_info); 2277 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2278 /* 2279 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2280 * to update all raid stripes, but here we just want to correct 2281 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2282 * stripe's dev and sector. 2283 */ 2284 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2285 &map_length, &bbio, 0); 2286 if (ret) { 2287 btrfs_bio_counter_dec(fs_info); 2288 bio_put(bio); 2289 return -EIO; 2290 } 2291 ASSERT(bbio->mirror_num == 1); 2292 } else { 2293 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2294 &map_length, &bbio, mirror_num); 2295 if (ret) { 2296 btrfs_bio_counter_dec(fs_info); 2297 bio_put(bio); 2298 return -EIO; 2299 } 2300 BUG_ON(mirror_num != bbio->mirror_num); 2301 } 2302 2303 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2304 bio->bi_iter.bi_sector = sector; 2305 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2306 btrfs_put_bbio(bbio); 2307 if (!dev || !dev->bdev || 2308 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2309 btrfs_bio_counter_dec(fs_info); 2310 bio_put(bio); 2311 return -EIO; 2312 } 2313 bio_set_dev(bio, dev->bdev); 2314 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2315 bio_add_page(bio, page, length, pg_offset); 2316 2317 if (btrfsic_submit_bio_wait(bio)) { 2318 /* try to remap that extent elsewhere? */ 2319 btrfs_bio_counter_dec(fs_info); 2320 bio_put(bio); 2321 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2322 return -EIO; 2323 } 2324 2325 btrfs_info_rl_in_rcu(fs_info, 2326 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2327 ino, start, 2328 rcu_str_deref(dev->name), sector); 2329 btrfs_bio_counter_dec(fs_info); 2330 bio_put(bio); 2331 return 0; 2332} 2333 2334int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 2335{ 2336 struct btrfs_fs_info *fs_info = eb->fs_info; 2337 u64 start = eb->start; 2338 int i, num_pages = num_extent_pages(eb); 2339 int ret = 0; 2340 2341 if (sb_rdonly(fs_info->sb)) 2342 return -EROFS; 2343 2344 for (i = 0; i < num_pages; i++) { 2345 struct page *p = eb->pages[i]; 2346 2347 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2348 start - page_offset(p), mirror_num); 2349 if (ret) 2350 break; 2351 start += PAGE_SIZE; 2352 } 2353 2354 return ret; 2355} 2356 2357/* 2358 * each time an IO finishes, we do a fast check in the IO failure tree 2359 * to see if we need to process or clean up an io_failure_record 2360 */ 2361int clean_io_failure(struct btrfs_fs_info *fs_info, 2362 struct extent_io_tree *failure_tree, 2363 struct extent_io_tree *io_tree, u64 start, 2364 struct page *page, u64 ino, unsigned int pg_offset) 2365{ 2366 u64 private; 2367 struct io_failure_record *failrec; 2368 struct extent_state *state; 2369 int num_copies; 2370 int ret; 2371 2372 private = 0; 2373 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2374 EXTENT_DIRTY, 0); 2375 if (!ret) 2376 return 0; 2377 2378 failrec = get_state_failrec(failure_tree, start); 2379 if (IS_ERR(failrec)) 2380 return 0; 2381 2382 BUG_ON(!failrec->this_mirror); 2383 2384 if (failrec->in_validation) { 2385 /* there was no real error, just free the record */ 2386 btrfs_debug(fs_info, 2387 "clean_io_failure: freeing dummy error at %llu", 2388 failrec->start); 2389 goto out; 2390 } 2391 if (sb_rdonly(fs_info->sb)) 2392 goto out; 2393 2394 spin_lock(&io_tree->lock); 2395 state = find_first_extent_bit_state(io_tree, 2396 failrec->start, 2397 EXTENT_LOCKED); 2398 spin_unlock(&io_tree->lock); 2399 2400 if (state && state->start <= failrec->start && 2401 state->end >= failrec->start + failrec->len - 1) { 2402 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2403 failrec->len); 2404 if (num_copies > 1) { 2405 repair_io_failure(fs_info, ino, start, failrec->len, 2406 failrec->logical, page, pg_offset, 2407 failrec->failed_mirror); 2408 } 2409 } 2410 2411out: 2412 free_io_failure(failure_tree, io_tree, failrec); 2413 2414 return 0; 2415} 2416 2417/* 2418 * Can be called when 2419 * - hold extent lock 2420 * - under ordered extent 2421 * - the inode is freeing 2422 */ 2423void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2424{ 2425 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2426 struct io_failure_record *failrec; 2427 struct extent_state *state, *next; 2428 2429 if (RB_EMPTY_ROOT(&failure_tree->state)) 2430 return; 2431 2432 spin_lock(&failure_tree->lock); 2433 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2434 while (state) { 2435 if (state->start > end) 2436 break; 2437 2438 ASSERT(state->end <= end); 2439 2440 next = next_state(state); 2441 2442 failrec = state->failrec; 2443 free_extent_state(state); 2444 kfree(failrec); 2445 2446 state = next; 2447 } 2448 spin_unlock(&failure_tree->lock); 2449} 2450 2451static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 2452 u64 start, u64 end) 2453{ 2454 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2455 struct io_failure_record *failrec; 2456 struct extent_map *em; 2457 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2458 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2459 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2460 int ret; 2461 u64 logical; 2462 2463 failrec = get_state_failrec(failure_tree, start); 2464 if (!IS_ERR(failrec)) { 2465 btrfs_debug(fs_info, 2466 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2467 failrec->logical, failrec->start, failrec->len, 2468 failrec->in_validation); 2469 /* 2470 * when data can be on disk more than twice, add to failrec here 2471 * (e.g. with a list for failed_mirror) to make 2472 * clean_io_failure() clean all those errors at once. 2473 */ 2474 2475 return failrec; 2476 } 2477 2478 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2479 if (!failrec) 2480 return ERR_PTR(-ENOMEM); 2481 2482 failrec->start = start; 2483 failrec->len = end - start + 1; 2484 failrec->this_mirror = 0; 2485 failrec->bio_flags = 0; 2486 failrec->in_validation = 0; 2487 2488 read_lock(&em_tree->lock); 2489 em = lookup_extent_mapping(em_tree, start, failrec->len); 2490 if (!em) { 2491 read_unlock(&em_tree->lock); 2492 kfree(failrec); 2493 return ERR_PTR(-EIO); 2494 } 2495 2496 if (em->start > start || em->start + em->len <= start) { 2497 free_extent_map(em); 2498 em = NULL; 2499 } 2500 read_unlock(&em_tree->lock); 2501 if (!em) { 2502 kfree(failrec); 2503 return ERR_PTR(-EIO); 2504 } 2505 2506 logical = start - em->start; 2507 logical = em->block_start + logical; 2508 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2509 logical = em->block_start; 2510 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2511 extent_set_compress_type(&failrec->bio_flags, em->compress_type); 2512 } 2513 2514 btrfs_debug(fs_info, 2515 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2516 logical, start, failrec->len); 2517 2518 failrec->logical = logical; 2519 free_extent_map(em); 2520 2521 /* Set the bits in the private failure tree */ 2522 ret = set_extent_bits(failure_tree, start, end, 2523 EXTENT_LOCKED | EXTENT_DIRTY); 2524 if (ret >= 0) { 2525 ret = set_state_failrec(failure_tree, start, failrec); 2526 /* Set the bits in the inode's tree */ 2527 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2528 } else if (ret < 0) { 2529 kfree(failrec); 2530 return ERR_PTR(ret); 2531 } 2532 2533 return failrec; 2534} 2535 2536static bool btrfs_check_repairable(struct inode *inode, bool needs_validation, 2537 struct io_failure_record *failrec, 2538 int failed_mirror) 2539{ 2540 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2541 int num_copies; 2542 2543 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2544 if (num_copies == 1) { 2545 /* 2546 * we only have a single copy of the data, so don't bother with 2547 * all the retry and error correction code that follows. no 2548 * matter what the error is, it is very likely to persist. 2549 */ 2550 btrfs_debug(fs_info, 2551 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2552 num_copies, failrec->this_mirror, failed_mirror); 2553 return false; 2554 } 2555 2556 /* 2557 * there are two premises: 2558 * a) deliver good data to the caller 2559 * b) correct the bad sectors on disk 2560 */ 2561 if (needs_validation) { 2562 /* 2563 * to fulfill b), we need to know the exact failing sectors, as 2564 * we don't want to rewrite any more than the failed ones. thus, 2565 * we need separate read requests for the failed bio 2566 * 2567 * if the following BUG_ON triggers, our validation request got 2568 * merged. we need separate requests for our algorithm to work. 2569 */ 2570 BUG_ON(failrec->in_validation); 2571 failrec->in_validation = 1; 2572 failrec->this_mirror = failed_mirror; 2573 } else { 2574 /* 2575 * we're ready to fulfill a) and b) alongside. get a good copy 2576 * of the failed sector and if we succeed, we have setup 2577 * everything for repair_io_failure to do the rest for us. 2578 */ 2579 if (failrec->in_validation) { 2580 BUG_ON(failrec->this_mirror != failed_mirror); 2581 failrec->in_validation = 0; 2582 failrec->this_mirror = 0; 2583 } 2584 failrec->failed_mirror = failed_mirror; 2585 failrec->this_mirror++; 2586 if (failrec->this_mirror == failed_mirror) 2587 failrec->this_mirror++; 2588 } 2589 2590 if (failrec->this_mirror > num_copies) { 2591 btrfs_debug(fs_info, 2592 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2593 num_copies, failrec->this_mirror, failed_mirror); 2594 return false; 2595 } 2596 2597 return true; 2598} 2599 2600static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio) 2601{ 2602 u64 len = 0; 2603 const u32 blocksize = inode->i_sb->s_blocksize; 2604 2605 /* 2606 * If bi_status is BLK_STS_OK, then this was a checksum error, not an 2607 * I/O error. In this case, we already know exactly which sector was 2608 * bad, so we don't need to validate. 2609 */ 2610 if (bio->bi_status == BLK_STS_OK) 2611 return false; 2612 2613 /* 2614 * We need to validate each sector individually if the failed I/O was 2615 * for multiple sectors. 2616 * 2617 * There are a few possible bios that can end up here: 2618 * 1. A buffered read bio, which is not cloned. 2619 * 2. A direct I/O read bio, which is cloned. 2620 * 3. A (buffered or direct) repair bio, which is not cloned. 2621 * 2622 * For cloned bios (case 2), we can get the size from 2623 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get 2624 * it from the bvecs. 2625 */ 2626 if (bio_flagged(bio, BIO_CLONED)) { 2627 if (btrfs_io_bio(bio)->iter.bi_size > blocksize) 2628 return true; 2629 } else { 2630 struct bio_vec *bvec; 2631 int i; 2632 2633 bio_for_each_bvec_all(bvec, bio, i) { 2634 len += bvec->bv_len; 2635 if (len > blocksize) 2636 return true; 2637 } 2638 } 2639 return false; 2640} 2641 2642blk_status_t btrfs_submit_read_repair(struct inode *inode, 2643 struct bio *failed_bio, u64 phy_offset, 2644 struct page *page, unsigned int pgoff, 2645 u64 start, u64 end, int failed_mirror, 2646 submit_bio_hook_t *submit_bio_hook) 2647{ 2648 struct io_failure_record *failrec; 2649 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2650 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2651 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2652 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio); 2653 const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits; 2654 bool need_validation; 2655 struct bio *repair_bio; 2656 struct btrfs_io_bio *repair_io_bio; 2657 blk_status_t status; 2658 2659 btrfs_debug(fs_info, 2660 "repair read error: read error at %llu", start); 2661 2662 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2663 2664 failrec = btrfs_get_io_failure_record(inode, start, end); 2665 if (IS_ERR(failrec)) 2666 return errno_to_blk_status(PTR_ERR(failrec)); 2667 2668 need_validation = btrfs_io_needs_validation(inode, failed_bio); 2669 2670 if (!btrfs_check_repairable(inode, need_validation, failrec, 2671 failed_mirror)) { 2672 free_io_failure(failure_tree, tree, failrec); 2673 return BLK_STS_IOERR; 2674 } 2675 2676 repair_bio = btrfs_io_bio_alloc(1); 2677 repair_io_bio = btrfs_io_bio(repair_bio); 2678 repair_bio->bi_opf = REQ_OP_READ; 2679 if (need_validation) 2680 repair_bio->bi_opf |= REQ_FAILFAST_DEV; 2681 repair_bio->bi_end_io = failed_bio->bi_end_io; 2682 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 2683 repair_bio->bi_private = failed_bio->bi_private; 2684 2685 if (failed_io_bio->csum) { 2686 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2687 2688 repair_io_bio->csum = repair_io_bio->csum_inline; 2689 memcpy(repair_io_bio->csum, 2690 failed_io_bio->csum + csum_size * icsum, csum_size); 2691 } 2692 2693 bio_add_page(repair_bio, page, failrec->len, pgoff); 2694 repair_io_bio->logical = failrec->start; 2695 repair_io_bio->iter = repair_bio->bi_iter; 2696 2697 btrfs_debug(btrfs_sb(inode->i_sb), 2698"repair read error: submitting new read to mirror %d, in_validation=%d", 2699 failrec->this_mirror, failrec->in_validation); 2700 2701 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror, 2702 failrec->bio_flags); 2703 if (status) { 2704 free_io_failure(failure_tree, tree, failrec); 2705 bio_put(repair_bio); 2706 } 2707 return status; 2708} 2709 2710/* lots and lots of room for performance fixes in the end_bio funcs */ 2711 2712void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2713{ 2714 int uptodate = (err == 0); 2715 int ret = 0; 2716 2717 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate); 2718 2719 if (!uptodate) { 2720 ClearPageUptodate(page); 2721 SetPageError(page); 2722 ret = err < 0 ? err : -EIO; 2723 mapping_set_error(page->mapping, ret); 2724 } 2725} 2726 2727/* 2728 * after a writepage IO is done, we need to: 2729 * clear the uptodate bits on error 2730 * clear the writeback bits in the extent tree for this IO 2731 * end_page_writeback if the page has no more pending IO 2732 * 2733 * Scheduling is not allowed, so the extent state tree is expected 2734 * to have one and only one object corresponding to this IO. 2735 */ 2736static void end_bio_extent_writepage(struct bio *bio) 2737{ 2738 int error = blk_status_to_errno(bio->bi_status); 2739 struct bio_vec *bvec; 2740 u64 start; 2741 u64 end; 2742 struct bvec_iter_all iter_all; 2743 2744 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2745 bio_for_each_segment_all(bvec, bio, iter_all) { 2746 struct page *page = bvec->bv_page; 2747 struct inode *inode = page->mapping->host; 2748 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2749 2750 /* We always issue full-page reads, but if some block 2751 * in a page fails to read, blk_update_request() will 2752 * advance bv_offset and adjust bv_len to compensate. 2753 * Print a warning for nonzero offsets, and an error 2754 * if they don't add up to a full page. */ 2755 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2756 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2757 btrfs_err(fs_info, 2758 "partial page write in btrfs with offset %u and length %u", 2759 bvec->bv_offset, bvec->bv_len); 2760 else 2761 btrfs_info(fs_info, 2762 "incomplete page write in btrfs with offset %u and length %u", 2763 bvec->bv_offset, bvec->bv_len); 2764 } 2765 2766 start = page_offset(page); 2767 end = start + bvec->bv_offset + bvec->bv_len - 1; 2768 2769 end_extent_writepage(page, error, start, end); 2770 end_page_writeback(page); 2771 } 2772 2773 bio_put(bio); 2774} 2775 2776static void 2777endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2778 int uptodate) 2779{ 2780 struct extent_state *cached = NULL; 2781 u64 end = start + len - 1; 2782 2783 if (uptodate && tree->track_uptodate) 2784 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2785 unlock_extent_cached_atomic(tree, start, end, &cached); 2786} 2787 2788/* 2789 * after a readpage IO is done, we need to: 2790 * clear the uptodate bits on error 2791 * set the uptodate bits if things worked 2792 * set the page up to date if all extents in the tree are uptodate 2793 * clear the lock bit in the extent tree 2794 * unlock the page if there are no other extents locked for it 2795 * 2796 * Scheduling is not allowed, so the extent state tree is expected 2797 * to have one and only one object corresponding to this IO. 2798 */ 2799static void end_bio_extent_readpage(struct bio *bio) 2800{ 2801 struct bio_vec *bvec; 2802 int uptodate = !bio->bi_status; 2803 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2804 struct extent_io_tree *tree, *failure_tree; 2805 u64 offset = 0; 2806 u64 start; 2807 u64 end; 2808 u64 len; 2809 u64 extent_start = 0; 2810 u64 extent_len = 0; 2811 int mirror; 2812 int ret; 2813 struct bvec_iter_all iter_all; 2814 2815 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2816 bio_for_each_segment_all(bvec, bio, iter_all) { 2817 struct page *page = bvec->bv_page; 2818 struct inode *inode = page->mapping->host; 2819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2820 2821 btrfs_debug(fs_info, 2822 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2823 (u64)bio->bi_iter.bi_sector, bio->bi_status, 2824 io_bio->mirror_num); 2825 tree = &BTRFS_I(inode)->io_tree; 2826 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2827 2828 /* We always issue full-page reads, but if some block 2829 * in a page fails to read, blk_update_request() will 2830 * advance bv_offset and adjust bv_len to compensate. 2831 * Print a warning for nonzero offsets, and an error 2832 * if they don't add up to a full page. */ 2833 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2834 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2835 btrfs_err(fs_info, 2836 "partial page read in btrfs with offset %u and length %u", 2837 bvec->bv_offset, bvec->bv_len); 2838 else 2839 btrfs_info(fs_info, 2840 "incomplete page read in btrfs with offset %u and length %u", 2841 bvec->bv_offset, bvec->bv_len); 2842 } 2843 2844 start = page_offset(page); 2845 end = start + bvec->bv_offset + bvec->bv_len - 1; 2846 len = bvec->bv_len; 2847 2848 mirror = io_bio->mirror_num; 2849 if (likely(uptodate)) { 2850 if (is_data_inode(inode)) 2851 ret = btrfs_verify_data_csum(io_bio, offset, page, 2852 start, end, mirror); 2853 else 2854 ret = btrfs_validate_metadata_buffer(io_bio, 2855 offset, page, start, end, mirror); 2856 if (ret) 2857 uptodate = 0; 2858 else 2859 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2860 failure_tree, tree, start, 2861 page, 2862 btrfs_ino(BTRFS_I(inode)), 0); 2863 } 2864 2865 if (likely(uptodate)) 2866 goto readpage_ok; 2867 2868 if (is_data_inode(inode)) { 2869 2870 /* 2871 * The generic bio_readpage_error handles errors the 2872 * following way: If possible, new read requests are 2873 * created and submitted and will end up in 2874 * end_bio_extent_readpage as well (if we're lucky, 2875 * not in the !uptodate case). In that case it returns 2876 * 0 and we just go on with the next page in our bio. 2877 * If it can't handle the error it will return -EIO and 2878 * we remain responsible for that page. 2879 */ 2880 if (!btrfs_submit_read_repair(inode, bio, offset, page, 2881 start - page_offset(page), 2882 start, end, mirror, 2883 btrfs_submit_data_bio)) { 2884 uptodate = !bio->bi_status; 2885 offset += len; 2886 continue; 2887 } 2888 } else { 2889 struct extent_buffer *eb; 2890 2891 eb = (struct extent_buffer *)page->private; 2892 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 2893 eb->read_mirror = mirror; 2894 atomic_dec(&eb->io_pages); 2895 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, 2896 &eb->bflags)) 2897 btree_readahead_hook(eb, -EIO); 2898 } 2899readpage_ok: 2900 if (likely(uptodate)) { 2901 loff_t i_size = i_size_read(inode); 2902 pgoff_t end_index = i_size >> PAGE_SHIFT; 2903 unsigned off; 2904 2905 /* Zero out the end if this page straddles i_size */ 2906 off = offset_in_page(i_size); 2907 if (page->index == end_index && off) 2908 zero_user_segment(page, off, PAGE_SIZE); 2909 SetPageUptodate(page); 2910 } else { 2911 ClearPageUptodate(page); 2912 SetPageError(page); 2913 } 2914 unlock_page(page); 2915 offset += len; 2916 2917 if (unlikely(!uptodate)) { 2918 if (extent_len) { 2919 endio_readpage_release_extent(tree, 2920 extent_start, 2921 extent_len, 1); 2922 extent_start = 0; 2923 extent_len = 0; 2924 } 2925 endio_readpage_release_extent(tree, start, 2926 end - start + 1, 0); 2927 } else if (!extent_len) { 2928 extent_start = start; 2929 extent_len = end + 1 - start; 2930 } else if (extent_start + extent_len == start) { 2931 extent_len += end + 1 - start; 2932 } else { 2933 endio_readpage_release_extent(tree, extent_start, 2934 extent_len, uptodate); 2935 extent_start = start; 2936 extent_len = end + 1 - start; 2937 } 2938 } 2939 2940 if (extent_len) 2941 endio_readpage_release_extent(tree, extent_start, extent_len, 2942 uptodate); 2943 btrfs_io_bio_free_csum(io_bio); 2944 bio_put(bio); 2945} 2946 2947/* 2948 * Initialize the members up to but not including 'bio'. Use after allocating a 2949 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2950 * 'bio' because use of __GFP_ZERO is not supported. 2951 */ 2952static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 2953{ 2954 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 2955} 2956 2957/* 2958 * The following helpers allocate a bio. As it's backed by a bioset, it'll 2959 * never fail. We're returning a bio right now but you can call btrfs_io_bio 2960 * for the appropriate container_of magic 2961 */ 2962struct bio *btrfs_bio_alloc(u64 first_byte) 2963{ 2964 struct bio *bio; 2965 2966 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset); 2967 bio->bi_iter.bi_sector = first_byte >> 9; 2968 btrfs_io_bio_init(btrfs_io_bio(bio)); 2969 return bio; 2970} 2971 2972struct bio *btrfs_bio_clone(struct bio *bio) 2973{ 2974 struct btrfs_io_bio *btrfs_bio; 2975 struct bio *new; 2976 2977 /* Bio allocation backed by a bioset does not fail */ 2978 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 2979 btrfs_bio = btrfs_io_bio(new); 2980 btrfs_io_bio_init(btrfs_bio); 2981 btrfs_bio->iter = bio->bi_iter; 2982 return new; 2983} 2984 2985struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 2986{ 2987 struct bio *bio; 2988 2989 /* Bio allocation backed by a bioset does not fail */ 2990 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 2991 btrfs_io_bio_init(btrfs_io_bio(bio)); 2992 return bio; 2993} 2994 2995struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 2996{ 2997 struct bio *bio; 2998 struct btrfs_io_bio *btrfs_bio; 2999 3000 /* this will never fail when it's backed by a bioset */ 3001 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 3002 ASSERT(bio); 3003 3004 btrfs_bio = btrfs_io_bio(bio); 3005 btrfs_io_bio_init(btrfs_bio); 3006 3007 bio_trim(bio, offset >> 9, size >> 9); 3008 btrfs_bio->iter = bio->bi_iter; 3009 return bio; 3010} 3011 3012/* 3013 * @opf: bio REQ_OP_* and REQ_* flags as one value 3014 * @wbc: optional writeback control for io accounting 3015 * @page: page to add to the bio 3016 * @pg_offset: offset of the new bio or to check whether we are adding 3017 * a contiguous page to the previous one 3018 * @size: portion of page that we want to write 3019 * @offset: starting offset in the page 3020 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 3021 * @end_io_func: end_io callback for new bio 3022 * @mirror_num: desired mirror to read/write 3023 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3024 * @bio_flags: flags of the current bio to see if we can merge them 3025 */ 3026static int submit_extent_page(unsigned int opf, 3027 struct writeback_control *wbc, 3028 struct page *page, u64 offset, 3029 size_t size, unsigned long pg_offset, 3030 struct bio **bio_ret, 3031 bio_end_io_t end_io_func, 3032 int mirror_num, 3033 unsigned long prev_bio_flags, 3034 unsigned long bio_flags, 3035 bool force_bio_submit) 3036{ 3037 int ret = 0; 3038 struct bio *bio; 3039 size_t page_size = min_t(size_t, size, PAGE_SIZE); 3040 sector_t sector = offset >> 9; 3041 struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree; 3042 3043 ASSERT(bio_ret); 3044 3045 if (*bio_ret) { 3046 bool contig; 3047 bool can_merge = true; 3048 3049 bio = *bio_ret; 3050 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 3051 contig = bio->bi_iter.bi_sector == sector; 3052 else 3053 contig = bio_end_sector(bio) == sector; 3054 3055 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags)) 3056 can_merge = false; 3057 3058 if (prev_bio_flags != bio_flags || !contig || !can_merge || 3059 force_bio_submit || 3060 bio_add_page(bio, page, page_size, pg_offset) < page_size) { 3061 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 3062 if (ret < 0) { 3063 *bio_ret = NULL; 3064 return ret; 3065 } 3066 bio = NULL; 3067 } else { 3068 if (wbc) 3069 wbc_account_cgroup_owner(wbc, page, page_size); 3070 return 0; 3071 } 3072 } 3073 3074 bio = btrfs_bio_alloc(offset); 3075 bio_add_page(bio, page, page_size, pg_offset); 3076 bio->bi_end_io = end_io_func; 3077 bio->bi_private = tree; 3078 bio->bi_write_hint = page->mapping->host->i_write_hint; 3079 bio->bi_opf = opf; 3080 if (wbc) { 3081 struct block_device *bdev; 3082 3083 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev; 3084 bio_set_dev(bio, bdev); 3085 wbc_init_bio(wbc, bio); 3086 wbc_account_cgroup_owner(wbc, page, page_size); 3087 } 3088 3089 *bio_ret = bio; 3090 3091 return ret; 3092} 3093 3094static void attach_extent_buffer_page(struct extent_buffer *eb, 3095 struct page *page) 3096{ 3097 if (!PagePrivate(page)) 3098 attach_page_private(page, eb); 3099 else 3100 WARN_ON(page->private != (unsigned long)eb); 3101} 3102 3103void set_page_extent_mapped(struct page *page) 3104{ 3105 if (!PagePrivate(page)) 3106 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 3107} 3108 3109static struct extent_map * 3110__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3111 u64 start, u64 len, struct extent_map **em_cached) 3112{ 3113 struct extent_map *em; 3114 3115 if (em_cached && *em_cached) { 3116 em = *em_cached; 3117 if (extent_map_in_tree(em) && start >= em->start && 3118 start < extent_map_end(em)) { 3119 refcount_inc(&em->refs); 3120 return em; 3121 } 3122 3123 free_extent_map(em); 3124 *em_cached = NULL; 3125 } 3126 3127 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 3128 if (em_cached && !IS_ERR_OR_NULL(em)) { 3129 BUG_ON(*em_cached); 3130 refcount_inc(&em->refs); 3131 *em_cached = em; 3132 } 3133 return em; 3134} 3135/* 3136 * basic readpage implementation. Locked extent state structs are inserted 3137 * into the tree that are removed when the IO is done (by the end_io 3138 * handlers) 3139 * XXX JDM: This needs looking at to ensure proper page locking 3140 * return 0 on success, otherwise return error 3141 */ 3142int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 3143 struct bio **bio, unsigned long *bio_flags, 3144 unsigned int read_flags, u64 *prev_em_start) 3145{ 3146 struct inode *inode = page->mapping->host; 3147 u64 start = page_offset(page); 3148 const u64 end = start + PAGE_SIZE - 1; 3149 u64 cur = start; 3150 u64 extent_offset; 3151 u64 last_byte = i_size_read(inode); 3152 u64 block_start; 3153 u64 cur_end; 3154 struct extent_map *em; 3155 int ret = 0; 3156 int nr = 0; 3157 size_t pg_offset = 0; 3158 size_t iosize; 3159 size_t disk_io_size; 3160 size_t blocksize = inode->i_sb->s_blocksize; 3161 unsigned long this_bio_flag = 0; 3162 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3163 3164 set_page_extent_mapped(page); 3165 3166 if (!PageUptodate(page)) { 3167 if (cleancache_get_page(page) == 0) { 3168 BUG_ON(blocksize != PAGE_SIZE); 3169 unlock_extent(tree, start, end); 3170 goto out; 3171 } 3172 } 3173 3174 if (page->index == last_byte >> PAGE_SHIFT) { 3175 char *userpage; 3176 size_t zero_offset = offset_in_page(last_byte); 3177 3178 if (zero_offset) { 3179 iosize = PAGE_SIZE - zero_offset; 3180 userpage = kmap_atomic(page); 3181 memset(userpage + zero_offset, 0, iosize); 3182 flush_dcache_page(page); 3183 kunmap_atomic(userpage); 3184 } 3185 } 3186 while (cur <= end) { 3187 bool force_bio_submit = false; 3188 u64 offset; 3189 3190 if (cur >= last_byte) { 3191 char *userpage; 3192 struct extent_state *cached = NULL; 3193 3194 iosize = PAGE_SIZE - pg_offset; 3195 userpage = kmap_atomic(page); 3196 memset(userpage + pg_offset, 0, iosize); 3197 flush_dcache_page(page); 3198 kunmap_atomic(userpage); 3199 set_extent_uptodate(tree, cur, cur + iosize - 1, 3200 &cached, GFP_NOFS); 3201 unlock_extent_cached(tree, cur, 3202 cur + iosize - 1, &cached); 3203 break; 3204 } 3205 em = __get_extent_map(inode, page, pg_offset, cur, 3206 end - cur + 1, em_cached); 3207 if (IS_ERR_OR_NULL(em)) { 3208 SetPageError(page); 3209 unlock_extent(tree, cur, end); 3210 break; 3211 } 3212 extent_offset = cur - em->start; 3213 BUG_ON(extent_map_end(em) <= cur); 3214 BUG_ON(end < cur); 3215 3216 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3217 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3218 extent_set_compress_type(&this_bio_flag, 3219 em->compress_type); 3220 } 3221 3222 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3223 cur_end = min(extent_map_end(em) - 1, end); 3224 iosize = ALIGN(iosize, blocksize); 3225 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 3226 disk_io_size = em->block_len; 3227 offset = em->block_start; 3228 } else { 3229 offset = em->block_start + extent_offset; 3230 disk_io_size = iosize; 3231 } 3232 block_start = em->block_start; 3233 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3234 block_start = EXTENT_MAP_HOLE; 3235 3236 /* 3237 * If we have a file range that points to a compressed extent 3238 * and it's followed by a consecutive file range that points 3239 * to the same compressed extent (possibly with a different 3240 * offset and/or length, so it either points to the whole extent 3241 * or only part of it), we must make sure we do not submit a 3242 * single bio to populate the pages for the 2 ranges because 3243 * this makes the compressed extent read zero out the pages 3244 * belonging to the 2nd range. Imagine the following scenario: 3245 * 3246 * File layout 3247 * [0 - 8K] [8K - 24K] 3248 * | | 3249 * | | 3250 * points to extent X, points to extent X, 3251 * offset 4K, length of 8K offset 0, length 16K 3252 * 3253 * [extent X, compressed length = 4K uncompressed length = 16K] 3254 * 3255 * If the bio to read the compressed extent covers both ranges, 3256 * it will decompress extent X into the pages belonging to the 3257 * first range and then it will stop, zeroing out the remaining 3258 * pages that belong to the other range that points to extent X. 3259 * So here we make sure we submit 2 bios, one for the first 3260 * range and another one for the third range. Both will target 3261 * the same physical extent from disk, but we can't currently 3262 * make the compressed bio endio callback populate the pages 3263 * for both ranges because each compressed bio is tightly 3264 * coupled with a single extent map, and each range can have 3265 * an extent map with a different offset value relative to the 3266 * uncompressed data of our extent and different lengths. This 3267 * is a corner case so we prioritize correctness over 3268 * non-optimal behavior (submitting 2 bios for the same extent). 3269 */ 3270 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3271 prev_em_start && *prev_em_start != (u64)-1 && 3272 *prev_em_start != em->start) 3273 force_bio_submit = true; 3274 3275 if (prev_em_start) 3276 *prev_em_start = em->start; 3277 3278 free_extent_map(em); 3279 em = NULL; 3280 3281 /* we've found a hole, just zero and go on */ 3282 if (block_start == EXTENT_MAP_HOLE) { 3283 char *userpage; 3284 struct extent_state *cached = NULL; 3285 3286 userpage = kmap_atomic(page); 3287 memset(userpage + pg_offset, 0, iosize); 3288 flush_dcache_page(page); 3289 kunmap_atomic(userpage); 3290 3291 set_extent_uptodate(tree, cur, cur + iosize - 1, 3292 &cached, GFP_NOFS); 3293 unlock_extent_cached(tree, cur, 3294 cur + iosize - 1, &cached); 3295 cur = cur + iosize; 3296 pg_offset += iosize; 3297 continue; 3298 } 3299 /* the get_extent function already copied into the page */ 3300 if (test_range_bit(tree, cur, cur_end, 3301 EXTENT_UPTODATE, 1, NULL)) { 3302 check_page_uptodate(tree, page); 3303 unlock_extent(tree, cur, cur + iosize - 1); 3304 cur = cur + iosize; 3305 pg_offset += iosize; 3306 continue; 3307 } 3308 /* we have an inline extent but it didn't get marked up 3309 * to date. Error out 3310 */ 3311 if (block_start == EXTENT_MAP_INLINE) { 3312 SetPageError(page); 3313 unlock_extent(tree, cur, cur + iosize - 1); 3314 cur = cur + iosize; 3315 pg_offset += iosize; 3316 continue; 3317 } 3318 3319 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 3320 page, offset, disk_io_size, 3321 pg_offset, bio, 3322 end_bio_extent_readpage, 0, 3323 *bio_flags, 3324 this_bio_flag, 3325 force_bio_submit); 3326 if (!ret) { 3327 nr++; 3328 *bio_flags = this_bio_flag; 3329 } else { 3330 SetPageError(page); 3331 unlock_extent(tree, cur, cur + iosize - 1); 3332 goto out; 3333 } 3334 cur = cur + iosize; 3335 pg_offset += iosize; 3336 } 3337out: 3338 if (!nr) { 3339 if (!PageError(page)) 3340 SetPageUptodate(page); 3341 unlock_page(page); 3342 } 3343 return ret; 3344} 3345 3346static inline void contiguous_readpages(struct page *pages[], int nr_pages, 3347 u64 start, u64 end, 3348 struct extent_map **em_cached, 3349 struct bio **bio, 3350 unsigned long *bio_flags, 3351 u64 *prev_em_start) 3352{ 3353 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3354 int index; 3355 3356 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3357 3358 for (index = 0; index < nr_pages; index++) { 3359 btrfs_do_readpage(pages[index], em_cached, bio, bio_flags, 3360 REQ_RAHEAD, prev_em_start); 3361 put_page(pages[index]); 3362 } 3363} 3364 3365static void update_nr_written(struct writeback_control *wbc, 3366 unsigned long nr_written) 3367{ 3368 wbc->nr_to_write -= nr_written; 3369} 3370 3371/* 3372 * helper for __extent_writepage, doing all of the delayed allocation setup. 3373 * 3374 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3375 * to write the page (copy into inline extent). In this case the IO has 3376 * been started and the page is already unlocked. 3377 * 3378 * This returns 0 if all went well (page still locked) 3379 * This returns < 0 if there were errors (page still locked) 3380 */ 3381static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 3382 struct page *page, struct writeback_control *wbc, 3383 u64 delalloc_start, unsigned long *nr_written) 3384{ 3385 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3386 bool found; 3387 u64 delalloc_to_write = 0; 3388 u64 delalloc_end = 0; 3389 int ret; 3390 int page_started = 0; 3391 3392 3393 while (delalloc_end < page_end) { 3394 found = find_lock_delalloc_range(&inode->vfs_inode, page, 3395 &delalloc_start, 3396 &delalloc_end); 3397 if (!found) { 3398 delalloc_start = delalloc_end + 1; 3399 continue; 3400 } 3401 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3402 delalloc_end, &page_started, nr_written, wbc); 3403 if (ret) { 3404 SetPageError(page); 3405 /* 3406 * btrfs_run_delalloc_range should return < 0 for error 3407 * but just in case, we use > 0 here meaning the IO is 3408 * started, so we don't want to return > 0 unless 3409 * things are going well. 3410 */ 3411 return ret < 0 ? ret : -EIO; 3412 } 3413 /* 3414 * delalloc_end is already one less than the total length, so 3415 * we don't subtract one from PAGE_SIZE 3416 */ 3417 delalloc_to_write += (delalloc_end - delalloc_start + 3418 PAGE_SIZE) >> PAGE_SHIFT; 3419 delalloc_start = delalloc_end + 1; 3420 } 3421 if (wbc->nr_to_write < delalloc_to_write) { 3422 int thresh = 8192; 3423 3424 if (delalloc_to_write < thresh * 2) 3425 thresh = delalloc_to_write; 3426 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3427 thresh); 3428 } 3429 3430 /* did the fill delalloc function already unlock and start 3431 * the IO? 3432 */ 3433 if (page_started) { 3434 /* 3435 * we've unlocked the page, so we can't update 3436 * the mapping's writeback index, just update 3437 * nr_to_write. 3438 */ 3439 wbc->nr_to_write -= *nr_written; 3440 return 1; 3441 } 3442 3443 return 0; 3444} 3445 3446/* 3447 * helper for __extent_writepage. This calls the writepage start hooks, 3448 * and does the loop to map the page into extents and bios. 3449 * 3450 * We return 1 if the IO is started and the page is unlocked, 3451 * 0 if all went well (page still locked) 3452 * < 0 if there were errors (page still locked) 3453 */ 3454static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 3455 struct page *page, 3456 struct writeback_control *wbc, 3457 struct extent_page_data *epd, 3458 loff_t i_size, 3459 unsigned long nr_written, 3460 int *nr_ret) 3461{ 3462 struct extent_io_tree *tree = &inode->io_tree; 3463 u64 start = page_offset(page); 3464 u64 page_end = start + PAGE_SIZE - 1; 3465 u64 end; 3466 u64 cur = start; 3467 u64 extent_offset; 3468 u64 block_start; 3469 u64 iosize; 3470 struct extent_map *em; 3471 size_t pg_offset = 0; 3472 size_t blocksize; 3473 int ret = 0; 3474 int nr = 0; 3475 const unsigned int write_flags = wbc_to_write_flags(wbc); 3476 bool compressed; 3477 3478 ret = btrfs_writepage_cow_fixup(page, start, page_end); 3479 if (ret) { 3480 /* Fixup worker will requeue */ 3481 redirty_page_for_writepage(wbc, page); 3482 update_nr_written(wbc, nr_written); 3483 unlock_page(page); 3484 return 1; 3485 } 3486 3487 /* 3488 * we don't want to touch the inode after unlocking the page, 3489 * so we update the mapping writeback index now 3490 */ 3491 update_nr_written(wbc, nr_written + 1); 3492 3493 end = page_end; 3494 blocksize = inode->vfs_inode.i_sb->s_blocksize; 3495 3496 while (cur <= end) { 3497 u64 em_end; 3498 u64 offset; 3499 3500 if (cur >= i_size) { 3501 btrfs_writepage_endio_finish_ordered(page, cur, 3502 page_end, 1); 3503 break; 3504 } 3505 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 3506 if (IS_ERR_OR_NULL(em)) { 3507 SetPageError(page); 3508 ret = PTR_ERR_OR_ZERO(em); 3509 break; 3510 } 3511 3512 extent_offset = cur - em->start; 3513 em_end = extent_map_end(em); 3514 BUG_ON(em_end <= cur); 3515 BUG_ON(end < cur); 3516 iosize = min(em_end - cur, end - cur + 1); 3517 iosize = ALIGN(iosize, blocksize); 3518 offset = em->block_start + extent_offset; 3519 block_start = em->block_start; 3520 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3521 free_extent_map(em); 3522 em = NULL; 3523 3524 /* 3525 * compressed and inline extents are written through other 3526 * paths in the FS 3527 */ 3528 if (compressed || block_start == EXTENT_MAP_HOLE || 3529 block_start == EXTENT_MAP_INLINE) { 3530 if (compressed) 3531 nr++; 3532 else 3533 btrfs_writepage_endio_finish_ordered(page, cur, 3534 cur + iosize - 1, 1); 3535 cur += iosize; 3536 pg_offset += iosize; 3537 continue; 3538 } 3539 3540 btrfs_set_range_writeback(tree, cur, cur + iosize - 1); 3541 if (!PageWriteback(page)) { 3542 btrfs_err(inode->root->fs_info, 3543 "page %lu not writeback, cur %llu end %llu", 3544 page->index, cur, end); 3545 } 3546 3547 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 3548 page, offset, iosize, pg_offset, 3549 &epd->bio, 3550 end_bio_extent_writepage, 3551 0, 0, 0, false); 3552 if (ret) { 3553 SetPageError(page); 3554 if (PageWriteback(page)) 3555 end_page_writeback(page); 3556 } 3557 3558 cur = cur + iosize; 3559 pg_offset += iosize; 3560 nr++; 3561 } 3562 *nr_ret = nr; 3563 return ret; 3564} 3565 3566/* 3567 * the writepage semantics are similar to regular writepage. extent 3568 * records are inserted to lock ranges in the tree, and as dirty areas 3569 * are found, they are marked writeback. Then the lock bits are removed 3570 * and the end_io handler clears the writeback ranges 3571 * 3572 * Return 0 if everything goes well. 3573 * Return <0 for error. 3574 */ 3575static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3576 struct extent_page_data *epd) 3577{ 3578 struct inode *inode = page->mapping->host; 3579 u64 start = page_offset(page); 3580 u64 page_end = start + PAGE_SIZE - 1; 3581 int ret; 3582 int nr = 0; 3583 size_t pg_offset; 3584 loff_t i_size = i_size_read(inode); 3585 unsigned long end_index = i_size >> PAGE_SHIFT; 3586 unsigned long nr_written = 0; 3587 3588 trace___extent_writepage(page, inode, wbc); 3589 3590 WARN_ON(!PageLocked(page)); 3591 3592 ClearPageError(page); 3593 3594 pg_offset = offset_in_page(i_size); 3595 if (page->index > end_index || 3596 (page->index == end_index && !pg_offset)) { 3597 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3598 unlock_page(page); 3599 return 0; 3600 } 3601 3602 if (page->index == end_index) { 3603 char *userpage; 3604 3605 userpage = kmap_atomic(page); 3606 memset(userpage + pg_offset, 0, 3607 PAGE_SIZE - pg_offset); 3608 kunmap_atomic(userpage); 3609 flush_dcache_page(page); 3610 } 3611 3612 set_page_extent_mapped(page); 3613 3614 if (!epd->extent_locked) { 3615 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start, 3616 &nr_written); 3617 if (ret == 1) 3618 return 0; 3619 if (ret) 3620 goto done; 3621 } 3622 3623 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, 3624 nr_written, &nr); 3625 if (ret == 1) 3626 return 0; 3627 3628done: 3629 if (nr == 0) { 3630 /* make sure the mapping tag for page dirty gets cleared */ 3631 set_page_writeback(page); 3632 end_page_writeback(page); 3633 } 3634 if (PageError(page)) { 3635 ret = ret < 0 ? ret : -EIO; 3636 end_extent_writepage(page, ret, start, page_end); 3637 } 3638 unlock_page(page); 3639 ASSERT(ret <= 0); 3640 return ret; 3641} 3642 3643void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3644{ 3645 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3646 TASK_UNINTERRUPTIBLE); 3647} 3648 3649static void end_extent_buffer_writeback(struct extent_buffer *eb) 3650{ 3651 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3652 smp_mb__after_atomic(); 3653 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3654} 3655 3656/* 3657 * Lock eb pages and flush the bio if we can't the locks 3658 * 3659 * Return 0 if nothing went wrong 3660 * Return >0 is same as 0, except bio is not submitted 3661 * Return <0 if something went wrong, no page is locked 3662 */ 3663static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 3664 struct extent_page_data *epd) 3665{ 3666 struct btrfs_fs_info *fs_info = eb->fs_info; 3667 int i, num_pages, failed_page_nr; 3668 int flush = 0; 3669 int ret = 0; 3670 3671 if (!btrfs_try_tree_write_lock(eb)) { 3672 ret = flush_write_bio(epd); 3673 if (ret < 0) 3674 return ret; 3675 flush = 1; 3676 btrfs_tree_lock(eb); 3677 } 3678 3679 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3680 btrfs_tree_unlock(eb); 3681 if (!epd->sync_io) 3682 return 0; 3683 if (!flush) { 3684 ret = flush_write_bio(epd); 3685 if (ret < 0) 3686 return ret; 3687 flush = 1; 3688 } 3689 while (1) { 3690 wait_on_extent_buffer_writeback(eb); 3691 btrfs_tree_lock(eb); 3692 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3693 break; 3694 btrfs_tree_unlock(eb); 3695 } 3696 } 3697 3698 /* 3699 * We need to do this to prevent races in people who check if the eb is 3700 * under IO since we can end up having no IO bits set for a short period 3701 * of time. 3702 */ 3703 spin_lock(&eb->refs_lock); 3704 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3705 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3706 spin_unlock(&eb->refs_lock); 3707 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3708 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3709 -eb->len, 3710 fs_info->dirty_metadata_batch); 3711 ret = 1; 3712 } else { 3713 spin_unlock(&eb->refs_lock); 3714 } 3715 3716 btrfs_tree_unlock(eb); 3717 3718 if (!ret) 3719 return ret; 3720 3721 num_pages = num_extent_pages(eb); 3722 for (i = 0; i < num_pages; i++) { 3723 struct page *p = eb->pages[i]; 3724 3725 if (!trylock_page(p)) { 3726 if (!flush) { 3727 int err; 3728 3729 err = flush_write_bio(epd); 3730 if (err < 0) { 3731 ret = err; 3732 failed_page_nr = i; 3733 goto err_unlock; 3734 } 3735 flush = 1; 3736 } 3737 lock_page(p); 3738 } 3739 } 3740 3741 return ret; 3742err_unlock: 3743 /* Unlock already locked pages */ 3744 for (i = 0; i < failed_page_nr; i++) 3745 unlock_page(eb->pages[i]); 3746 /* 3747 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. 3748 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can 3749 * be made and undo everything done before. 3750 */ 3751 btrfs_tree_lock(eb); 3752 spin_lock(&eb->refs_lock); 3753 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3754 end_extent_buffer_writeback(eb); 3755 spin_unlock(&eb->refs_lock); 3756 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, 3757 fs_info->dirty_metadata_batch); 3758 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3759 btrfs_tree_unlock(eb); 3760 return ret; 3761} 3762 3763static void set_btree_ioerr(struct page *page) 3764{ 3765 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3766 struct btrfs_fs_info *fs_info; 3767 3768 SetPageError(page); 3769 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3770 return; 3771 3772 /* 3773 * A read may stumble upon this buffer later, make sure that it gets an 3774 * error and knows there was an error. 3775 */ 3776 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3777 3778 /* 3779 * If we error out, we should add back the dirty_metadata_bytes 3780 * to make it consistent. 3781 */ 3782 fs_info = eb->fs_info; 3783 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3784 eb->len, fs_info->dirty_metadata_batch); 3785 3786 /* 3787 * If writeback for a btree extent that doesn't belong to a log tree 3788 * failed, increment the counter transaction->eb_write_errors. 3789 * We do this because while the transaction is running and before it's 3790 * committing (when we call filemap_fdata[write|wait]_range against 3791 * the btree inode), we might have 3792 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3793 * returns an error or an error happens during writeback, when we're 3794 * committing the transaction we wouldn't know about it, since the pages 3795 * can be no longer dirty nor marked anymore for writeback (if a 3796 * subsequent modification to the extent buffer didn't happen before the 3797 * transaction commit), which makes filemap_fdata[write|wait]_range not 3798 * able to find the pages tagged with SetPageError at transaction 3799 * commit time. So if this happens we must abort the transaction, 3800 * otherwise we commit a super block with btree roots that point to 3801 * btree nodes/leafs whose content on disk is invalid - either garbage 3802 * or the content of some node/leaf from a past generation that got 3803 * cowed or deleted and is no longer valid. 3804 * 3805 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3806 * not be enough - we need to distinguish between log tree extents vs 3807 * non-log tree extents, and the next filemap_fdatawait_range() call 3808 * will catch and clear such errors in the mapping - and that call might 3809 * be from a log sync and not from a transaction commit. Also, checking 3810 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3811 * not done and would not be reliable - the eb might have been released 3812 * from memory and reading it back again means that flag would not be 3813 * set (since it's a runtime flag, not persisted on disk). 3814 * 3815 * Using the flags below in the btree inode also makes us achieve the 3816 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3817 * writeback for all dirty pages and before filemap_fdatawait_range() 3818 * is called, the writeback for all dirty pages had already finished 3819 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3820 * filemap_fdatawait_range() would return success, as it could not know 3821 * that writeback errors happened (the pages were no longer tagged for 3822 * writeback). 3823 */ 3824 switch (eb->log_index) { 3825 case -1: 3826 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3827 break; 3828 case 0: 3829 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3830 break; 3831 case 1: 3832 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3833 break; 3834 default: 3835 BUG(); /* unexpected, logic error */ 3836 } 3837} 3838 3839static void end_bio_extent_buffer_writepage(struct bio *bio) 3840{ 3841 struct bio_vec *bvec; 3842 struct extent_buffer *eb; 3843 int done; 3844 struct bvec_iter_all iter_all; 3845 3846 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3847 bio_for_each_segment_all(bvec, bio, iter_all) { 3848 struct page *page = bvec->bv_page; 3849 3850 eb = (struct extent_buffer *)page->private; 3851 BUG_ON(!eb); 3852 done = atomic_dec_and_test(&eb->io_pages); 3853 3854 if (bio->bi_status || 3855 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3856 ClearPageUptodate(page); 3857 set_btree_ioerr(page); 3858 } 3859 3860 end_page_writeback(page); 3861 3862 if (!done) 3863 continue; 3864 3865 end_extent_buffer_writeback(eb); 3866 } 3867 3868 bio_put(bio); 3869} 3870 3871static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3872 struct writeback_control *wbc, 3873 struct extent_page_data *epd) 3874{ 3875 u64 offset = eb->start; 3876 u32 nritems; 3877 int i, num_pages; 3878 unsigned long start, end; 3879 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3880 int ret = 0; 3881 3882 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3883 num_pages = num_extent_pages(eb); 3884 atomic_set(&eb->io_pages, num_pages); 3885 3886 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3887 nritems = btrfs_header_nritems(eb); 3888 if (btrfs_header_level(eb) > 0) { 3889 end = btrfs_node_key_ptr_offset(nritems); 3890 3891 memzero_extent_buffer(eb, end, eb->len - end); 3892 } else { 3893 /* 3894 * leaf: 3895 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3896 */ 3897 start = btrfs_item_nr_offset(nritems); 3898 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 3899 memzero_extent_buffer(eb, start, end - start); 3900 } 3901 3902 for (i = 0; i < num_pages; i++) { 3903 struct page *p = eb->pages[i]; 3904 3905 clear_page_dirty_for_io(p); 3906 set_page_writeback(p); 3907 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 3908 p, offset, PAGE_SIZE, 0, 3909 &epd->bio, 3910 end_bio_extent_buffer_writepage, 3911 0, 0, 0, false); 3912 if (ret) { 3913 set_btree_ioerr(p); 3914 if (PageWriteback(p)) 3915 end_page_writeback(p); 3916 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3917 end_extent_buffer_writeback(eb); 3918 ret = -EIO; 3919 break; 3920 } 3921 offset += PAGE_SIZE; 3922 update_nr_written(wbc, 1); 3923 unlock_page(p); 3924 } 3925 3926 if (unlikely(ret)) { 3927 for (; i < num_pages; i++) { 3928 struct page *p = eb->pages[i]; 3929 clear_page_dirty_for_io(p); 3930 unlock_page(p); 3931 } 3932 } 3933 3934 return ret; 3935} 3936 3937int btree_write_cache_pages(struct address_space *mapping, 3938 struct writeback_control *wbc) 3939{ 3940 struct extent_buffer *eb, *prev_eb = NULL; 3941 struct extent_page_data epd = { 3942 .bio = NULL, 3943 .extent_locked = 0, 3944 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3945 }; 3946 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3947 int ret = 0; 3948 int done = 0; 3949 int nr_to_write_done = 0; 3950 struct pagevec pvec; 3951 int nr_pages; 3952 pgoff_t index; 3953 pgoff_t end; /* Inclusive */ 3954 int scanned = 0; 3955 xa_mark_t tag; 3956 3957 pagevec_init(&pvec); 3958 if (wbc->range_cyclic) { 3959 index = mapping->writeback_index; /* Start from prev offset */ 3960 end = -1; 3961 /* 3962 * Start from the beginning does not need to cycle over the 3963 * range, mark it as scanned. 3964 */ 3965 scanned = (index == 0); 3966 } else { 3967 index = wbc->range_start >> PAGE_SHIFT; 3968 end = wbc->range_end >> PAGE_SHIFT; 3969 scanned = 1; 3970 } 3971 if (wbc->sync_mode == WB_SYNC_ALL) 3972 tag = PAGECACHE_TAG_TOWRITE; 3973 else 3974 tag = PAGECACHE_TAG_DIRTY; 3975retry: 3976 if (wbc->sync_mode == WB_SYNC_ALL) 3977 tag_pages_for_writeback(mapping, index, end); 3978 while (!done && !nr_to_write_done && (index <= end) && 3979 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 3980 tag))) { 3981 unsigned i; 3982 3983 for (i = 0; i < nr_pages; i++) { 3984 struct page *page = pvec.pages[i]; 3985 3986 if (!PagePrivate(page)) 3987 continue; 3988 3989 spin_lock(&mapping->private_lock); 3990 if (!PagePrivate(page)) { 3991 spin_unlock(&mapping->private_lock); 3992 continue; 3993 } 3994 3995 eb = (struct extent_buffer *)page->private; 3996 3997 /* 3998 * Shouldn't happen and normally this would be a BUG_ON 3999 * but no sense in crashing the users box for something 4000 * we can survive anyway. 4001 */ 4002 if (WARN_ON(!eb)) { 4003 spin_unlock(&mapping->private_lock); 4004 continue; 4005 } 4006 4007 if (eb == prev_eb) { 4008 spin_unlock(&mapping->private_lock); 4009 continue; 4010 } 4011 4012 ret = atomic_inc_not_zero(&eb->refs); 4013 spin_unlock(&mapping->private_lock); 4014 if (!ret) 4015 continue; 4016 4017 prev_eb = eb; 4018 ret = lock_extent_buffer_for_io(eb, &epd); 4019 if (!ret) { 4020 free_extent_buffer(eb); 4021 continue; 4022 } else if (ret < 0) { 4023 done = 1; 4024 free_extent_buffer(eb); 4025 break; 4026 } 4027 4028 ret = write_one_eb(eb, wbc, &epd); 4029 if (ret) { 4030 done = 1; 4031 free_extent_buffer(eb); 4032 break; 4033 } 4034 free_extent_buffer(eb); 4035 4036 /* 4037 * The filesystem may choose to bump up nr_to_write. 4038 * We have to make sure to honor the new nr_to_write 4039 * at any time. 4040 */ 4041 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 4042 wbc->nr_to_write <= 0); 4043 } 4044 pagevec_release(&pvec); 4045 cond_resched(); 4046 } 4047 if (!scanned && !done) { 4048 /* 4049 * We hit the last page and there is more work to be done: wrap 4050 * back to the start of the file 4051 */ 4052 scanned = 1; 4053 index = 0; 4054 goto retry; 4055 } 4056 ASSERT(ret <= 0); 4057 if (ret < 0) { 4058 end_write_bio(&epd, ret); 4059 return ret; 4060 } 4061 /* 4062 * If something went wrong, don't allow any metadata write bio to be 4063 * submitted. 4064 * 4065 * This would prevent use-after-free if we had dirty pages not 4066 * cleaned up, which can still happen by fuzzed images. 4067 * 4068 * - Bad extent tree 4069 * Allowing existing tree block to be allocated for other trees. 4070 * 4071 * - Log tree operations 4072 * Exiting tree blocks get allocated to log tree, bumps its 4073 * generation, then get cleaned in tree re-balance. 4074 * Such tree block will not be written back, since it's clean, 4075 * thus no WRITTEN flag set. 4076 * And after log writes back, this tree block is not traced by 4077 * any dirty extent_io_tree. 4078 * 4079 * - Offending tree block gets re-dirtied from its original owner 4080 * Since it has bumped generation, no WRITTEN flag, it can be 4081 * reused without COWing. This tree block will not be traced 4082 * by btrfs_transaction::dirty_pages. 4083 * 4084 * Now such dirty tree block will not be cleaned by any dirty 4085 * extent io tree. Thus we don't want to submit such wild eb 4086 * if the fs already has error. 4087 */ 4088 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 4089 ret = flush_write_bio(&epd); 4090 } else { 4091 ret = -EROFS; 4092 end_write_bio(&epd, ret); 4093 } 4094 return ret; 4095} 4096 4097/** 4098 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 4099 * @mapping: address space structure to write 4100 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4101 * @data: data passed to __extent_writepage function 4102 * 4103 * If a page is already under I/O, write_cache_pages() skips it, even 4104 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4105 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4106 * and msync() need to guarantee that all the data which was dirty at the time 4107 * the call was made get new I/O started against them. If wbc->sync_mode is 4108 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4109 * existing IO to complete. 4110 */ 4111static int extent_write_cache_pages(struct address_space *mapping, 4112 struct writeback_control *wbc, 4113 struct extent_page_data *epd) 4114{ 4115 struct inode *inode = mapping->host; 4116 int ret = 0; 4117 int done = 0; 4118 int nr_to_write_done = 0; 4119 struct pagevec pvec; 4120 int nr_pages; 4121 pgoff_t index; 4122 pgoff_t end; /* Inclusive */ 4123 pgoff_t done_index; 4124 int range_whole = 0; 4125 int scanned = 0; 4126 xa_mark_t tag; 4127 4128 /* 4129 * We have to hold onto the inode so that ordered extents can do their 4130 * work when the IO finishes. The alternative to this is failing to add 4131 * an ordered extent if the igrab() fails there and that is a huge pain 4132 * to deal with, so instead just hold onto the inode throughout the 4133 * writepages operation. If it fails here we are freeing up the inode 4134 * anyway and we'd rather not waste our time writing out stuff that is 4135 * going to be truncated anyway. 4136 */ 4137 if (!igrab(inode)) 4138 return 0; 4139 4140 pagevec_init(&pvec); 4141 if (wbc->range_cyclic) { 4142 index = mapping->writeback_index; /* Start from prev offset */ 4143 end = -1; 4144 /* 4145 * Start from the beginning does not need to cycle over the 4146 * range, mark it as scanned. 4147 */ 4148 scanned = (index == 0); 4149 } else { 4150 index = wbc->range_start >> PAGE_SHIFT; 4151 end = wbc->range_end >> PAGE_SHIFT; 4152 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 4153 range_whole = 1; 4154 scanned = 1; 4155 } 4156 4157 /* 4158 * We do the tagged writepage as long as the snapshot flush bit is set 4159 * and we are the first one who do the filemap_flush() on this inode. 4160 * 4161 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 4162 * not race in and drop the bit. 4163 */ 4164 if (range_whole && wbc->nr_to_write == LONG_MAX && 4165 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 4166 &BTRFS_I(inode)->runtime_flags)) 4167 wbc->tagged_writepages = 1; 4168 4169 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4170 tag = PAGECACHE_TAG_TOWRITE; 4171 else 4172 tag = PAGECACHE_TAG_DIRTY; 4173retry: 4174 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4175 tag_pages_for_writeback(mapping, index, end); 4176 done_index = index; 4177 while (!done && !nr_to_write_done && (index <= end) && 4178 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 4179 &index, end, tag))) { 4180 unsigned i; 4181 4182 for (i = 0; i < nr_pages; i++) { 4183 struct page *page = pvec.pages[i]; 4184 4185 done_index = page->index + 1; 4186 /* 4187 * At this point we hold neither the i_pages lock nor 4188 * the page lock: the page may be truncated or 4189 * invalidated (changing page->mapping to NULL), 4190 * or even swizzled back from swapper_space to 4191 * tmpfs file mapping 4192 */ 4193 if (!trylock_page(page)) { 4194 ret = flush_write_bio(epd); 4195 BUG_ON(ret < 0); 4196 lock_page(page); 4197 } 4198 4199 if (unlikely(page->mapping != mapping)) { 4200 unlock_page(page); 4201 continue; 4202 } 4203 4204 if (wbc->sync_mode != WB_SYNC_NONE) { 4205 if (PageWriteback(page)) { 4206 ret = flush_write_bio(epd); 4207 BUG_ON(ret < 0); 4208 } 4209 wait_on_page_writeback(page); 4210 } 4211 4212 if (PageWriteback(page) || 4213 !clear_page_dirty_for_io(page)) { 4214 unlock_page(page); 4215 continue; 4216 } 4217 4218 ret = __extent_writepage(page, wbc, epd); 4219 if (ret < 0) { 4220 done = 1; 4221 break; 4222 } 4223 4224 /* 4225 * the filesystem may choose to bump up nr_to_write. 4226 * We have to make sure to honor the new nr_to_write 4227 * at any time 4228 */ 4229 nr_to_write_done = wbc->nr_to_write <= 0; 4230 } 4231 pagevec_release(&pvec); 4232 cond_resched(); 4233 } 4234 if (!scanned && !done) { 4235 /* 4236 * We hit the last page and there is more work to be done: wrap 4237 * back to the start of the file 4238 */ 4239 scanned = 1; 4240 index = 0; 4241 4242 /* 4243 * If we're looping we could run into a page that is locked by a 4244 * writer and that writer could be waiting on writeback for a 4245 * page in our current bio, and thus deadlock, so flush the 4246 * write bio here. 4247 */ 4248 ret = flush_write_bio(epd); 4249 if (!ret) 4250 goto retry; 4251 } 4252 4253 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4254 mapping->writeback_index = done_index; 4255 4256 btrfs_add_delayed_iput(inode); 4257 return ret; 4258} 4259 4260int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4261{ 4262 int ret; 4263 struct extent_page_data epd = { 4264 .bio = NULL, 4265 .extent_locked = 0, 4266 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4267 }; 4268 4269 ret = __extent_writepage(page, wbc, &epd); 4270 ASSERT(ret <= 0); 4271 if (ret < 0) { 4272 end_write_bio(&epd, ret); 4273 return ret; 4274 } 4275 4276 ret = flush_write_bio(&epd); 4277 ASSERT(ret <= 0); 4278 return ret; 4279} 4280 4281int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4282 int mode) 4283{ 4284 int ret = 0; 4285 struct address_space *mapping = inode->i_mapping; 4286 struct page *page; 4287 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4288 PAGE_SHIFT; 4289 4290 struct extent_page_data epd = { 4291 .bio = NULL, 4292 .extent_locked = 1, 4293 .sync_io = mode == WB_SYNC_ALL, 4294 }; 4295 struct writeback_control wbc_writepages = { 4296 .sync_mode = mode, 4297 .nr_to_write = nr_pages * 2, 4298 .range_start = start, 4299 .range_end = end + 1, 4300 /* We're called from an async helper function */ 4301 .punt_to_cgroup = 1, 4302 .no_cgroup_owner = 1, 4303 }; 4304 4305 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 4306 while (start <= end) { 4307 page = find_get_page(mapping, start >> PAGE_SHIFT); 4308 if (clear_page_dirty_for_io(page)) 4309 ret = __extent_writepage(page, &wbc_writepages, &epd); 4310 else { 4311 btrfs_writepage_endio_finish_ordered(page, start, 4312 start + PAGE_SIZE - 1, 1); 4313 unlock_page(page); 4314 } 4315 put_page(page); 4316 start += PAGE_SIZE; 4317 } 4318 4319 ASSERT(ret <= 0); 4320 if (ret == 0) 4321 ret = flush_write_bio(&epd); 4322 else 4323 end_write_bio(&epd, ret); 4324 4325 wbc_detach_inode(&wbc_writepages); 4326 return ret; 4327} 4328 4329int extent_writepages(struct address_space *mapping, 4330 struct writeback_control *wbc) 4331{ 4332 int ret = 0; 4333 struct extent_page_data epd = { 4334 .bio = NULL, 4335 .extent_locked = 0, 4336 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4337 }; 4338 4339 ret = extent_write_cache_pages(mapping, wbc, &epd); 4340 ASSERT(ret <= 0); 4341 if (ret < 0) { 4342 end_write_bio(&epd, ret); 4343 return ret; 4344 } 4345 ret = flush_write_bio(&epd); 4346 return ret; 4347} 4348 4349void extent_readahead(struct readahead_control *rac) 4350{ 4351 struct bio *bio = NULL; 4352 unsigned long bio_flags = 0; 4353 struct page *pagepool[16]; 4354 struct extent_map *em_cached = NULL; 4355 u64 prev_em_start = (u64)-1; 4356 int nr; 4357 4358 while ((nr = readahead_page_batch(rac, pagepool))) { 4359 u64 contig_start = page_offset(pagepool[0]); 4360 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1; 4361 4362 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end); 4363 4364 contiguous_readpages(pagepool, nr, contig_start, contig_end, 4365 &em_cached, &bio, &bio_flags, &prev_em_start); 4366 } 4367 4368 if (em_cached) 4369 free_extent_map(em_cached); 4370 4371 if (bio) { 4372 if (submit_one_bio(bio, 0, bio_flags)) 4373 return; 4374 } 4375} 4376 4377/* 4378 * basic invalidatepage code, this waits on any locked or writeback 4379 * ranges corresponding to the page, and then deletes any extent state 4380 * records from the tree 4381 */ 4382int extent_invalidatepage(struct extent_io_tree *tree, 4383 struct page *page, unsigned long offset) 4384{ 4385 struct extent_state *cached_state = NULL; 4386 u64 start = page_offset(page); 4387 u64 end = start + PAGE_SIZE - 1; 4388 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4389 4390 start += ALIGN(offset, blocksize); 4391 if (start > end) 4392 return 0; 4393 4394 lock_extent_bits(tree, start, end, &cached_state); 4395 wait_on_page_writeback(page); 4396 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC | 4397 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state); 4398 return 0; 4399} 4400 4401/* 4402 * a helper for releasepage, this tests for areas of the page that 4403 * are locked or under IO and drops the related state bits if it is safe 4404 * to drop the page. 4405 */ 4406static int try_release_extent_state(struct extent_io_tree *tree, 4407 struct page *page, gfp_t mask) 4408{ 4409 u64 start = page_offset(page); 4410 u64 end = start + PAGE_SIZE - 1; 4411 int ret = 1; 4412 4413 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 4414 ret = 0; 4415 } else { 4416 /* 4417 * at this point we can safely clear everything except the 4418 * locked bit and the nodatasum bit 4419 */ 4420 ret = __clear_extent_bit(tree, start, end, 4421 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4422 0, 0, NULL, mask, NULL); 4423 4424 /* if clear_extent_bit failed for enomem reasons, 4425 * we can't allow the release to continue. 4426 */ 4427 if (ret < 0) 4428 ret = 0; 4429 else 4430 ret = 1; 4431 } 4432 return ret; 4433} 4434 4435/* 4436 * a helper for releasepage. As long as there are no locked extents 4437 * in the range corresponding to the page, both state records and extent 4438 * map records are removed 4439 */ 4440int try_release_extent_mapping(struct page *page, gfp_t mask) 4441{ 4442 struct extent_map *em; 4443 u64 start = page_offset(page); 4444 u64 end = start + PAGE_SIZE - 1; 4445 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 4446 struct extent_io_tree *tree = &btrfs_inode->io_tree; 4447 struct extent_map_tree *map = &btrfs_inode->extent_tree; 4448 4449 if (gfpflags_allow_blocking(mask) && 4450 page->mapping->host->i_size > SZ_16M) { 4451 u64 len; 4452 while (start <= end) { 4453 struct btrfs_fs_info *fs_info; 4454 u64 cur_gen; 4455 4456 len = end - start + 1; 4457 write_lock(&map->lock); 4458 em = lookup_extent_mapping(map, start, len); 4459 if (!em) { 4460 write_unlock(&map->lock); 4461 break; 4462 } 4463 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4464 em->start != start) { 4465 write_unlock(&map->lock); 4466 free_extent_map(em); 4467 break; 4468 } 4469 if (test_range_bit(tree, em->start, 4470 extent_map_end(em) - 1, 4471 EXTENT_LOCKED, 0, NULL)) 4472 goto next; 4473 /* 4474 * If it's not in the list of modified extents, used 4475 * by a fast fsync, we can remove it. If it's being 4476 * logged we can safely remove it since fsync took an 4477 * extra reference on the em. 4478 */ 4479 if (list_empty(&em->list) || 4480 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 4481 goto remove_em; 4482 /* 4483 * If it's in the list of modified extents, remove it 4484 * only if its generation is older then the current one, 4485 * in which case we don't need it for a fast fsync. 4486 * Otherwise don't remove it, we could be racing with an 4487 * ongoing fast fsync that could miss the new extent. 4488 */ 4489 fs_info = btrfs_inode->root->fs_info; 4490 spin_lock(&fs_info->trans_lock); 4491 cur_gen = fs_info->generation; 4492 spin_unlock(&fs_info->trans_lock); 4493 if (em->generation >= cur_gen) 4494 goto next; 4495remove_em: 4496 /* 4497 * We only remove extent maps that are not in the list of 4498 * modified extents or that are in the list but with a 4499 * generation lower then the current generation, so there 4500 * is no need to set the full fsync flag on the inode (it 4501 * hurts the fsync performance for workloads with a data 4502 * size that exceeds or is close to the system's memory). 4503 */ 4504 remove_extent_mapping(map, em); 4505 /* once for the rb tree */ 4506 free_extent_map(em); 4507next: 4508 start = extent_map_end(em); 4509 write_unlock(&map->lock); 4510 4511 /* once for us */ 4512 free_extent_map(em); 4513 4514 cond_resched(); /* Allow large-extent preemption. */ 4515 } 4516 } 4517 return try_release_extent_state(tree, page, mask); 4518} 4519 4520/* 4521 * helper function for fiemap, which doesn't want to see any holes. 4522 * This maps until we find something past 'last' 4523 */ 4524static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode, 4525 u64 offset, u64 last) 4526{ 4527 u64 sectorsize = btrfs_inode_sectorsize(inode); 4528 struct extent_map *em; 4529 u64 len; 4530 4531 if (offset >= last) 4532 return NULL; 4533 4534 while (1) { 4535 len = last - offset; 4536 if (len == 0) 4537 break; 4538 len = ALIGN(len, sectorsize); 4539 em = btrfs_get_extent_fiemap(inode, offset, len); 4540 if (IS_ERR_OR_NULL(em)) 4541 return em; 4542 4543 /* if this isn't a hole return it */ 4544 if (em->block_start != EXTENT_MAP_HOLE) 4545 return em; 4546 4547 /* this is a hole, advance to the next extent */ 4548 offset = extent_map_end(em); 4549 free_extent_map(em); 4550 if (offset >= last) 4551 break; 4552 } 4553 return NULL; 4554} 4555 4556/* 4557 * To cache previous fiemap extent 4558 * 4559 * Will be used for merging fiemap extent 4560 */ 4561struct fiemap_cache { 4562 u64 offset; 4563 u64 phys; 4564 u64 len; 4565 u32 flags; 4566 bool cached; 4567}; 4568 4569/* 4570 * Helper to submit fiemap extent. 4571 * 4572 * Will try to merge current fiemap extent specified by @offset, @phys, 4573 * @len and @flags with cached one. 4574 * And only when we fails to merge, cached one will be submitted as 4575 * fiemap extent. 4576 * 4577 * Return value is the same as fiemap_fill_next_extent(). 4578 */ 4579static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4580 struct fiemap_cache *cache, 4581 u64 offset, u64 phys, u64 len, u32 flags) 4582{ 4583 int ret = 0; 4584 4585 if (!cache->cached) 4586 goto assign; 4587 4588 /* 4589 * Sanity check, extent_fiemap() should have ensured that new 4590 * fiemap extent won't overlap with cached one. 4591 * Not recoverable. 4592 * 4593 * NOTE: Physical address can overlap, due to compression 4594 */ 4595 if (cache->offset + cache->len > offset) { 4596 WARN_ON(1); 4597 return -EINVAL; 4598 } 4599 4600 /* 4601 * Only merges fiemap extents if 4602 * 1) Their logical addresses are continuous 4603 * 4604 * 2) Their physical addresses are continuous 4605 * So truly compressed (physical size smaller than logical size) 4606 * extents won't get merged with each other 4607 * 4608 * 3) Share same flags except FIEMAP_EXTENT_LAST 4609 * So regular extent won't get merged with prealloc extent 4610 */ 4611 if (cache->offset + cache->len == offset && 4612 cache->phys + cache->len == phys && 4613 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4614 (flags & ~FIEMAP_EXTENT_LAST)) { 4615 cache->len += len; 4616 cache->flags |= flags; 4617 goto try_submit_last; 4618 } 4619 4620 /* Not mergeable, need to submit cached one */ 4621 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4622 cache->len, cache->flags); 4623 cache->cached = false; 4624 if (ret) 4625 return ret; 4626assign: 4627 cache->cached = true; 4628 cache->offset = offset; 4629 cache->phys = phys; 4630 cache->len = len; 4631 cache->flags = flags; 4632try_submit_last: 4633 if (cache->flags & FIEMAP_EXTENT_LAST) { 4634 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4635 cache->phys, cache->len, cache->flags); 4636 cache->cached = false; 4637 } 4638 return ret; 4639} 4640 4641/* 4642 * Emit last fiemap cache 4643 * 4644 * The last fiemap cache may still be cached in the following case: 4645 * 0 4k 8k 4646 * |<- Fiemap range ->| 4647 * |<------------ First extent ----------->| 4648 * 4649 * In this case, the first extent range will be cached but not emitted. 4650 * So we must emit it before ending extent_fiemap(). 4651 */ 4652static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 4653 struct fiemap_cache *cache) 4654{ 4655 int ret; 4656 4657 if (!cache->cached) 4658 return 0; 4659 4660 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4661 cache->len, cache->flags); 4662 cache->cached = false; 4663 if (ret > 0) 4664 ret = 0; 4665 return ret; 4666} 4667 4668int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 4669 u64 start, u64 len) 4670{ 4671 int ret = 0; 4672 u64 off; 4673 u64 max = start + len; 4674 u32 flags = 0; 4675 u32 found_type; 4676 u64 last; 4677 u64 last_for_get_extent = 0; 4678 u64 disko = 0; 4679 u64 isize = i_size_read(&inode->vfs_inode); 4680 struct btrfs_key found_key; 4681 struct extent_map *em = NULL; 4682 struct extent_state *cached_state = NULL; 4683 struct btrfs_path *path; 4684 struct btrfs_root *root = inode->root; 4685 struct fiemap_cache cache = { 0 }; 4686 struct ulist *roots; 4687 struct ulist *tmp_ulist; 4688 int end = 0; 4689 u64 em_start = 0; 4690 u64 em_len = 0; 4691 u64 em_end = 0; 4692 4693 if (len == 0) 4694 return -EINVAL; 4695 4696 path = btrfs_alloc_path(); 4697 if (!path) 4698 return -ENOMEM; 4699 path->leave_spinning = 1; 4700 4701 roots = ulist_alloc(GFP_KERNEL); 4702 tmp_ulist = ulist_alloc(GFP_KERNEL); 4703 if (!roots || !tmp_ulist) { 4704 ret = -ENOMEM; 4705 goto out_free_ulist; 4706 } 4707 4708 /* 4709 * We can't initialize that to 'start' as this could miss extents due 4710 * to extent item merging 4711 */ 4712 off = 0; 4713 start = round_down(start, btrfs_inode_sectorsize(inode)); 4714 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4715 4716 /* 4717 * lookup the last file extent. We're not using i_size here 4718 * because there might be preallocation past i_size 4719 */ 4720 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4721 0); 4722 if (ret < 0) { 4723 goto out_free_ulist; 4724 } else { 4725 WARN_ON(!ret); 4726 if (ret == 1) 4727 ret = 0; 4728 } 4729 4730 path->slots[0]--; 4731 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4732 found_type = found_key.type; 4733 4734 /* No extents, but there might be delalloc bits */ 4735 if (found_key.objectid != btrfs_ino(inode) || 4736 found_type != BTRFS_EXTENT_DATA_KEY) { 4737 /* have to trust i_size as the end */ 4738 last = (u64)-1; 4739 last_for_get_extent = isize; 4740 } else { 4741 /* 4742 * remember the start of the last extent. There are a 4743 * bunch of different factors that go into the length of the 4744 * extent, so its much less complex to remember where it started 4745 */ 4746 last = found_key.offset; 4747 last_for_get_extent = last + 1; 4748 } 4749 btrfs_release_path(path); 4750 4751 /* 4752 * we might have some extents allocated but more delalloc past those 4753 * extents. so, we trust isize unless the start of the last extent is 4754 * beyond isize 4755 */ 4756 if (last < isize) { 4757 last = (u64)-1; 4758 last_for_get_extent = isize; 4759 } 4760 4761 lock_extent_bits(&inode->io_tree, start, start + len - 1, 4762 &cached_state); 4763 4764 em = get_extent_skip_holes(inode, start, last_for_get_extent); 4765 if (!em) 4766 goto out; 4767 if (IS_ERR(em)) { 4768 ret = PTR_ERR(em); 4769 goto out; 4770 } 4771 4772 while (!end) { 4773 u64 offset_in_extent = 0; 4774 4775 /* break if the extent we found is outside the range */ 4776 if (em->start >= max || extent_map_end(em) < off) 4777 break; 4778 4779 /* 4780 * get_extent may return an extent that starts before our 4781 * requested range. We have to make sure the ranges 4782 * we return to fiemap always move forward and don't 4783 * overlap, so adjust the offsets here 4784 */ 4785 em_start = max(em->start, off); 4786 4787 /* 4788 * record the offset from the start of the extent 4789 * for adjusting the disk offset below. Only do this if the 4790 * extent isn't compressed since our in ram offset may be past 4791 * what we have actually allocated on disk. 4792 */ 4793 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4794 offset_in_extent = em_start - em->start; 4795 em_end = extent_map_end(em); 4796 em_len = em_end - em_start; 4797 flags = 0; 4798 if (em->block_start < EXTENT_MAP_LAST_BYTE) 4799 disko = em->block_start + offset_in_extent; 4800 else 4801 disko = 0; 4802 4803 /* 4804 * bump off for our next call to get_extent 4805 */ 4806 off = extent_map_end(em); 4807 if (off >= max) 4808 end = 1; 4809 4810 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4811 end = 1; 4812 flags |= FIEMAP_EXTENT_LAST; 4813 } else if (em->block_start == EXTENT_MAP_INLINE) { 4814 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4815 FIEMAP_EXTENT_NOT_ALIGNED); 4816 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4817 flags |= (FIEMAP_EXTENT_DELALLOC | 4818 FIEMAP_EXTENT_UNKNOWN); 4819 } else if (fieinfo->fi_extents_max) { 4820 u64 bytenr = em->block_start - 4821 (em->start - em->orig_start); 4822 4823 /* 4824 * As btrfs supports shared space, this information 4825 * can be exported to userspace tools via 4826 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4827 * then we're just getting a count and we can skip the 4828 * lookup stuff. 4829 */ 4830 ret = btrfs_check_shared(root, btrfs_ino(inode), 4831 bytenr, roots, tmp_ulist); 4832 if (ret < 0) 4833 goto out_free; 4834 if (ret) 4835 flags |= FIEMAP_EXTENT_SHARED; 4836 ret = 0; 4837 } 4838 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4839 flags |= FIEMAP_EXTENT_ENCODED; 4840 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4841 flags |= FIEMAP_EXTENT_UNWRITTEN; 4842 4843 free_extent_map(em); 4844 em = NULL; 4845 if ((em_start >= last) || em_len == (u64)-1 || 4846 (last == (u64)-1 && isize <= em_end)) { 4847 flags |= FIEMAP_EXTENT_LAST; 4848 end = 1; 4849 } 4850 4851 /* now scan forward to see if this is really the last extent. */ 4852 em = get_extent_skip_holes(inode, off, last_for_get_extent); 4853 if (IS_ERR(em)) { 4854 ret = PTR_ERR(em); 4855 goto out; 4856 } 4857 if (!em) { 4858 flags |= FIEMAP_EXTENT_LAST; 4859 end = 1; 4860 } 4861 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4862 em_len, flags); 4863 if (ret) { 4864 if (ret == 1) 4865 ret = 0; 4866 goto out_free; 4867 } 4868 } 4869out_free: 4870 if (!ret) 4871 ret = emit_last_fiemap_cache(fieinfo, &cache); 4872 free_extent_map(em); 4873out: 4874 unlock_extent_cached(&inode->io_tree, start, start + len - 1, 4875 &cached_state); 4876 4877out_free_ulist: 4878 btrfs_free_path(path); 4879 ulist_free(roots); 4880 ulist_free(tmp_ulist); 4881 return ret; 4882} 4883 4884static void __free_extent_buffer(struct extent_buffer *eb) 4885{ 4886 kmem_cache_free(extent_buffer_cache, eb); 4887} 4888 4889int extent_buffer_under_io(const struct extent_buffer *eb) 4890{ 4891 return (atomic_read(&eb->io_pages) || 4892 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4893 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4894} 4895 4896/* 4897 * Release all pages attached to the extent buffer. 4898 */ 4899static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 4900{ 4901 int i; 4902 int num_pages; 4903 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4904 4905 BUG_ON(extent_buffer_under_io(eb)); 4906 4907 num_pages = num_extent_pages(eb); 4908 for (i = 0; i < num_pages; i++) { 4909 struct page *page = eb->pages[i]; 4910 4911 if (!page) 4912 continue; 4913 if (mapped) 4914 spin_lock(&page->mapping->private_lock); 4915 /* 4916 * We do this since we'll remove the pages after we've 4917 * removed the eb from the radix tree, so we could race 4918 * and have this page now attached to the new eb. So 4919 * only clear page_private if it's still connected to 4920 * this eb. 4921 */ 4922 if (PagePrivate(page) && 4923 page->private == (unsigned long)eb) { 4924 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4925 BUG_ON(PageDirty(page)); 4926 BUG_ON(PageWriteback(page)); 4927 /* 4928 * We need to make sure we haven't be attached 4929 * to a new eb. 4930 */ 4931 detach_page_private(page); 4932 } 4933 4934 if (mapped) 4935 spin_unlock(&page->mapping->private_lock); 4936 4937 /* One for when we allocated the page */ 4938 put_page(page); 4939 } 4940} 4941 4942/* 4943 * Helper for releasing the extent buffer. 4944 */ 4945static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4946{ 4947 btrfs_release_extent_buffer_pages(eb); 4948 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 4949 __free_extent_buffer(eb); 4950} 4951 4952static struct extent_buffer * 4953__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4954 unsigned long len) 4955{ 4956 struct extent_buffer *eb = NULL; 4957 4958 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4959 eb->start = start; 4960 eb->len = len; 4961 eb->fs_info = fs_info; 4962 eb->bflags = 0; 4963 rwlock_init(&eb->lock); 4964 atomic_set(&eb->blocking_readers, 0); 4965 eb->blocking_writers = 0; 4966 eb->lock_recursed = false; 4967 init_waitqueue_head(&eb->write_lock_wq); 4968 init_waitqueue_head(&eb->read_lock_wq); 4969 4970 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, 4971 &fs_info->allocated_ebs); 4972 4973 spin_lock_init(&eb->refs_lock); 4974 atomic_set(&eb->refs, 1); 4975 atomic_set(&eb->io_pages, 0); 4976 4977 /* 4978 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4979 */ 4980 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4981 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4982 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4983 4984#ifdef CONFIG_BTRFS_DEBUG 4985 eb->spinning_writers = 0; 4986 atomic_set(&eb->spinning_readers, 0); 4987 atomic_set(&eb->read_locks, 0); 4988 eb->write_locks = 0; 4989#endif 4990 4991 return eb; 4992} 4993 4994struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 4995{ 4996 int i; 4997 struct page *p; 4998 struct extent_buffer *new; 4999 int num_pages = num_extent_pages(src); 5000 5001 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 5002 if (new == NULL) 5003 return NULL; 5004 5005 for (i = 0; i < num_pages; i++) { 5006 p = alloc_page(GFP_NOFS); 5007 if (!p) { 5008 btrfs_release_extent_buffer(new); 5009 return NULL; 5010 } 5011 attach_extent_buffer_page(new, p); 5012 WARN_ON(PageDirty(p)); 5013 SetPageUptodate(p); 5014 new->pages[i] = p; 5015 copy_page(page_address(p), page_address(src->pages[i])); 5016 } 5017 5018 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 5019 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 5020 5021 return new; 5022} 5023 5024struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5025 u64 start, unsigned long len) 5026{ 5027 struct extent_buffer *eb; 5028 int num_pages; 5029 int i; 5030 5031 eb = __alloc_extent_buffer(fs_info, start, len); 5032 if (!eb) 5033 return NULL; 5034 5035 num_pages = num_extent_pages(eb); 5036 for (i = 0; i < num_pages; i++) { 5037 eb->pages[i] = alloc_page(GFP_NOFS); 5038 if (!eb->pages[i]) 5039 goto err; 5040 } 5041 set_extent_buffer_uptodate(eb); 5042 btrfs_set_header_nritems(eb, 0); 5043 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5044 5045 return eb; 5046err: 5047 for (; i > 0; i--) 5048 __free_page(eb->pages[i - 1]); 5049 __free_extent_buffer(eb); 5050 return NULL; 5051} 5052 5053struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5054 u64 start) 5055{ 5056 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 5057} 5058 5059static void check_buffer_tree_ref(struct extent_buffer *eb) 5060{ 5061 int refs; 5062 /* 5063 * The TREE_REF bit is first set when the extent_buffer is added 5064 * to the radix tree. It is also reset, if unset, when a new reference 5065 * is created by find_extent_buffer. 5066 * 5067 * It is only cleared in two cases: freeing the last non-tree 5068 * reference to the extent_buffer when its STALE bit is set or 5069 * calling releasepage when the tree reference is the only reference. 5070 * 5071 * In both cases, care is taken to ensure that the extent_buffer's 5072 * pages are not under io. However, releasepage can be concurrently 5073 * called with creating new references, which is prone to race 5074 * conditions between the calls to check_buffer_tree_ref in those 5075 * codepaths and clearing TREE_REF in try_release_extent_buffer. 5076 * 5077 * The actual lifetime of the extent_buffer in the radix tree is 5078 * adequately protected by the refcount, but the TREE_REF bit and 5079 * its corresponding reference are not. To protect against this 5080 * class of races, we call check_buffer_tree_ref from the codepaths 5081 * which trigger io after they set eb->io_pages. Note that once io is 5082 * initiated, TREE_REF can no longer be cleared, so that is the 5083 * moment at which any such race is best fixed. 5084 */ 5085 refs = atomic_read(&eb->refs); 5086 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5087 return; 5088 5089 spin_lock(&eb->refs_lock); 5090 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5091 atomic_inc(&eb->refs); 5092 spin_unlock(&eb->refs_lock); 5093} 5094 5095static void mark_extent_buffer_accessed(struct extent_buffer *eb, 5096 struct page *accessed) 5097{ 5098 int num_pages, i; 5099 5100 check_buffer_tree_ref(eb); 5101 5102 num_pages = num_extent_pages(eb); 5103 for (i = 0; i < num_pages; i++) { 5104 struct page *p = eb->pages[i]; 5105 5106 if (p != accessed) 5107 mark_page_accessed(p); 5108 } 5109} 5110 5111struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 5112 u64 start) 5113{ 5114 struct extent_buffer *eb; 5115 5116 rcu_read_lock(); 5117 eb = radix_tree_lookup(&fs_info->buffer_radix, 5118 start >> PAGE_SHIFT); 5119 if (eb && atomic_inc_not_zero(&eb->refs)) { 5120 rcu_read_unlock(); 5121 /* 5122 * Lock our eb's refs_lock to avoid races with 5123 * free_extent_buffer. When we get our eb it might be flagged 5124 * with EXTENT_BUFFER_STALE and another task running 5125 * free_extent_buffer might have seen that flag set, 5126 * eb->refs == 2, that the buffer isn't under IO (dirty and 5127 * writeback flags not set) and it's still in the tree (flag 5128 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 5129 * of decrementing the extent buffer's reference count twice. 5130 * So here we could race and increment the eb's reference count, 5131 * clear its stale flag, mark it as dirty and drop our reference 5132 * before the other task finishes executing free_extent_buffer, 5133 * which would later result in an attempt to free an extent 5134 * buffer that is dirty. 5135 */ 5136 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 5137 spin_lock(&eb->refs_lock); 5138 spin_unlock(&eb->refs_lock); 5139 } 5140 mark_extent_buffer_accessed(eb, NULL); 5141 return eb; 5142 } 5143 rcu_read_unlock(); 5144 5145 return NULL; 5146} 5147 5148#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5149struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 5150 u64 start) 5151{ 5152 struct extent_buffer *eb, *exists = NULL; 5153 int ret; 5154 5155 eb = find_extent_buffer(fs_info, start); 5156 if (eb) 5157 return eb; 5158 eb = alloc_dummy_extent_buffer(fs_info, start); 5159 if (!eb) 5160 return ERR_PTR(-ENOMEM); 5161 eb->fs_info = fs_info; 5162again: 5163 ret = radix_tree_preload(GFP_NOFS); 5164 if (ret) { 5165 exists = ERR_PTR(ret); 5166 goto free_eb; 5167 } 5168 spin_lock(&fs_info->buffer_lock); 5169 ret = radix_tree_insert(&fs_info->buffer_radix, 5170 start >> PAGE_SHIFT, eb); 5171 spin_unlock(&fs_info->buffer_lock); 5172 radix_tree_preload_end(); 5173 if (ret == -EEXIST) { 5174 exists = find_extent_buffer(fs_info, start); 5175 if (exists) 5176 goto free_eb; 5177 else 5178 goto again; 5179 } 5180 check_buffer_tree_ref(eb); 5181 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5182 5183 return eb; 5184free_eb: 5185 btrfs_release_extent_buffer(eb); 5186 return exists; 5187} 5188#endif 5189 5190struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 5191 u64 start) 5192{ 5193 unsigned long len = fs_info->nodesize; 5194 int num_pages; 5195 int i; 5196 unsigned long index = start >> PAGE_SHIFT; 5197 struct extent_buffer *eb; 5198 struct extent_buffer *exists = NULL; 5199 struct page *p; 5200 struct address_space *mapping = fs_info->btree_inode->i_mapping; 5201 int uptodate = 1; 5202 int ret; 5203 5204 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 5205 btrfs_err(fs_info, "bad tree block start %llu", start); 5206 return ERR_PTR(-EINVAL); 5207 } 5208 5209 eb = find_extent_buffer(fs_info, start); 5210 if (eb) 5211 return eb; 5212 5213 eb = __alloc_extent_buffer(fs_info, start, len); 5214 if (!eb) 5215 return ERR_PTR(-ENOMEM); 5216 5217 num_pages = num_extent_pages(eb); 5218 for (i = 0; i < num_pages; i++, index++) { 5219 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 5220 if (!p) { 5221 exists = ERR_PTR(-ENOMEM); 5222 goto free_eb; 5223 } 5224 5225 spin_lock(&mapping->private_lock); 5226 if (PagePrivate(p)) { 5227 /* 5228 * We could have already allocated an eb for this page 5229 * and attached one so lets see if we can get a ref on 5230 * the existing eb, and if we can we know it's good and 5231 * we can just return that one, else we know we can just 5232 * overwrite page->private. 5233 */ 5234 exists = (struct extent_buffer *)p->private; 5235 if (atomic_inc_not_zero(&exists->refs)) { 5236 spin_unlock(&mapping->private_lock); 5237 unlock_page(p); 5238 put_page(p); 5239 mark_extent_buffer_accessed(exists, p); 5240 goto free_eb; 5241 } 5242 exists = NULL; 5243 5244 /* 5245 * Do this so attach doesn't complain and we need to 5246 * drop the ref the old guy had. 5247 */ 5248 ClearPagePrivate(p); 5249 WARN_ON(PageDirty(p)); 5250 put_page(p); 5251 } 5252 attach_extent_buffer_page(eb, p); 5253 spin_unlock(&mapping->private_lock); 5254 WARN_ON(PageDirty(p)); 5255 eb->pages[i] = p; 5256 if (!PageUptodate(p)) 5257 uptodate = 0; 5258 5259 /* 5260 * We can't unlock the pages just yet since the extent buffer 5261 * hasn't been properly inserted in the radix tree, this 5262 * opens a race with btree_releasepage which can free a page 5263 * while we are still filling in all pages for the buffer and 5264 * we could crash. 5265 */ 5266 } 5267 if (uptodate) 5268 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5269again: 5270 ret = radix_tree_preload(GFP_NOFS); 5271 if (ret) { 5272 exists = ERR_PTR(ret); 5273 goto free_eb; 5274 } 5275 5276 spin_lock(&fs_info->buffer_lock); 5277 ret = radix_tree_insert(&fs_info->buffer_radix, 5278 start >> PAGE_SHIFT, eb); 5279 spin_unlock(&fs_info->buffer_lock); 5280 radix_tree_preload_end(); 5281 if (ret == -EEXIST) { 5282 exists = find_extent_buffer(fs_info, start); 5283 if (exists) 5284 goto free_eb; 5285 else 5286 goto again; 5287 } 5288 /* add one reference for the tree */ 5289 check_buffer_tree_ref(eb); 5290 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5291 5292 /* 5293 * Now it's safe to unlock the pages because any calls to 5294 * btree_releasepage will correctly detect that a page belongs to a 5295 * live buffer and won't free them prematurely. 5296 */ 5297 for (i = 0; i < num_pages; i++) 5298 unlock_page(eb->pages[i]); 5299 return eb; 5300 5301free_eb: 5302 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5303 for (i = 0; i < num_pages; i++) { 5304 if (eb->pages[i]) 5305 unlock_page(eb->pages[i]); 5306 } 5307 5308 btrfs_release_extent_buffer(eb); 5309 return exists; 5310} 5311 5312static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5313{ 5314 struct extent_buffer *eb = 5315 container_of(head, struct extent_buffer, rcu_head); 5316 5317 __free_extent_buffer(eb); 5318} 5319 5320static int release_extent_buffer(struct extent_buffer *eb) 5321 __releases(&eb->refs_lock) 5322{ 5323 lockdep_assert_held(&eb->refs_lock); 5324 5325 WARN_ON(atomic_read(&eb->refs) == 0); 5326 if (atomic_dec_and_test(&eb->refs)) { 5327 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5328 struct btrfs_fs_info *fs_info = eb->fs_info; 5329 5330 spin_unlock(&eb->refs_lock); 5331 5332 spin_lock(&fs_info->buffer_lock); 5333 radix_tree_delete(&fs_info->buffer_radix, 5334 eb->start >> PAGE_SHIFT); 5335 spin_unlock(&fs_info->buffer_lock); 5336 } else { 5337 spin_unlock(&eb->refs_lock); 5338 } 5339 5340 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5341 /* Should be safe to release our pages at this point */ 5342 btrfs_release_extent_buffer_pages(eb); 5343#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5344 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 5345 __free_extent_buffer(eb); 5346 return 1; 5347 } 5348#endif 5349 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5350 return 1; 5351 } 5352 spin_unlock(&eb->refs_lock); 5353 5354 return 0; 5355} 5356 5357void free_extent_buffer(struct extent_buffer *eb) 5358{ 5359 int refs; 5360 int old; 5361 if (!eb) 5362 return; 5363 5364 while (1) { 5365 refs = atomic_read(&eb->refs); 5366 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 5367 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 5368 refs == 1)) 5369 break; 5370 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5371 if (old == refs) 5372 return; 5373 } 5374 5375 spin_lock(&eb->refs_lock); 5376 if (atomic_read(&eb->refs) == 2 && 5377 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5378 !extent_buffer_under_io(eb) && 5379 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5380 atomic_dec(&eb->refs); 5381 5382 /* 5383 * I know this is terrible, but it's temporary until we stop tracking 5384 * the uptodate bits and such for the extent buffers. 5385 */ 5386 release_extent_buffer(eb); 5387} 5388 5389void free_extent_buffer_stale(struct extent_buffer *eb) 5390{ 5391 if (!eb) 5392 return; 5393 5394 spin_lock(&eb->refs_lock); 5395 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5396 5397 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5398 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5399 atomic_dec(&eb->refs); 5400 release_extent_buffer(eb); 5401} 5402 5403void clear_extent_buffer_dirty(const struct extent_buffer *eb) 5404{ 5405 int i; 5406 int num_pages; 5407 struct page *page; 5408 5409 num_pages = num_extent_pages(eb); 5410 5411 for (i = 0; i < num_pages; i++) { 5412 page = eb->pages[i]; 5413 if (!PageDirty(page)) 5414 continue; 5415 5416 lock_page(page); 5417 WARN_ON(!PagePrivate(page)); 5418 5419 clear_page_dirty_for_io(page); 5420 xa_lock_irq(&page->mapping->i_pages); 5421 if (!PageDirty(page)) 5422 __xa_clear_mark(&page->mapping->i_pages, 5423 page_index(page), PAGECACHE_TAG_DIRTY); 5424 xa_unlock_irq(&page->mapping->i_pages); 5425 ClearPageError(page); 5426 unlock_page(page); 5427 } 5428 WARN_ON(atomic_read(&eb->refs) == 0); 5429} 5430 5431bool set_extent_buffer_dirty(struct extent_buffer *eb) 5432{ 5433 int i; 5434 int num_pages; 5435 bool was_dirty; 5436 5437 check_buffer_tree_ref(eb); 5438 5439 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5440 5441 num_pages = num_extent_pages(eb); 5442 WARN_ON(atomic_read(&eb->refs) == 0); 5443 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5444 5445 if (!was_dirty) 5446 for (i = 0; i < num_pages; i++) 5447 set_page_dirty(eb->pages[i]); 5448 5449#ifdef CONFIG_BTRFS_DEBUG 5450 for (i = 0; i < num_pages; i++) 5451 ASSERT(PageDirty(eb->pages[i])); 5452#endif 5453 5454 return was_dirty; 5455} 5456 5457void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5458{ 5459 int i; 5460 struct page *page; 5461 int num_pages; 5462 5463 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5464 num_pages = num_extent_pages(eb); 5465 for (i = 0; i < num_pages; i++) { 5466 page = eb->pages[i]; 5467 if (page) 5468 ClearPageUptodate(page); 5469 } 5470} 5471 5472void set_extent_buffer_uptodate(struct extent_buffer *eb) 5473{ 5474 int i; 5475 struct page *page; 5476 int num_pages; 5477 5478 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5479 num_pages = num_extent_pages(eb); 5480 for (i = 0; i < num_pages; i++) { 5481 page = eb->pages[i]; 5482 SetPageUptodate(page); 5483 } 5484} 5485 5486int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 5487{ 5488 int i; 5489 struct page *page; 5490 int err; 5491 int ret = 0; 5492 int locked_pages = 0; 5493 int all_uptodate = 1; 5494 int num_pages; 5495 unsigned long num_reads = 0; 5496 struct bio *bio = NULL; 5497 unsigned long bio_flags = 0; 5498 5499 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5500 return 0; 5501 5502 num_pages = num_extent_pages(eb); 5503 for (i = 0; i < num_pages; i++) { 5504 page = eb->pages[i]; 5505 if (wait == WAIT_NONE) { 5506 if (!trylock_page(page)) 5507 goto unlock_exit; 5508 } else { 5509 lock_page(page); 5510 } 5511 locked_pages++; 5512 } 5513 /* 5514 * We need to firstly lock all pages to make sure that 5515 * the uptodate bit of our pages won't be affected by 5516 * clear_extent_buffer_uptodate(). 5517 */ 5518 for (i = 0; i < num_pages; i++) { 5519 page = eb->pages[i]; 5520 if (!PageUptodate(page)) { 5521 num_reads++; 5522 all_uptodate = 0; 5523 } 5524 } 5525 5526 if (all_uptodate) { 5527 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5528 goto unlock_exit; 5529 } 5530 5531 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5532 eb->read_mirror = 0; 5533 atomic_set(&eb->io_pages, num_reads); 5534 /* 5535 * It is possible for releasepage to clear the TREE_REF bit before we 5536 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 5537 */ 5538 check_buffer_tree_ref(eb); 5539 for (i = 0; i < num_pages; i++) { 5540 page = eb->pages[i]; 5541 5542 if (!PageUptodate(page)) { 5543 if (ret) { 5544 atomic_dec(&eb->io_pages); 5545 unlock_page(page); 5546 continue; 5547 } 5548 5549 ClearPageError(page); 5550 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL, 5551 page, page_offset(page), PAGE_SIZE, 0, 5552 &bio, end_bio_extent_readpage, 5553 mirror_num, 0, 0, false); 5554 if (err) { 5555 /* 5556 * We failed to submit the bio so it's the 5557 * caller's responsibility to perform cleanup 5558 * i.e unlock page/set error bit. 5559 */ 5560 ret = err; 5561 SetPageError(page); 5562 unlock_page(page); 5563 atomic_dec(&eb->io_pages); 5564 } 5565 } else { 5566 unlock_page(page); 5567 } 5568 } 5569 5570 if (bio) { 5571 err = submit_one_bio(bio, mirror_num, bio_flags); 5572 if (err) 5573 return err; 5574 } 5575 5576 if (ret || wait != WAIT_COMPLETE) 5577 return ret; 5578 5579 for (i = 0; i < num_pages; i++) { 5580 page = eb->pages[i]; 5581 wait_on_page_locked(page); 5582 if (!PageUptodate(page)) 5583 ret = -EIO; 5584 } 5585 5586 return ret; 5587 5588unlock_exit: 5589 while (locked_pages > 0) { 5590 locked_pages--; 5591 page = eb->pages[locked_pages]; 5592 unlock_page(page); 5593 } 5594 return ret; 5595} 5596 5597static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 5598 unsigned long len) 5599{ 5600 btrfs_warn(eb->fs_info, 5601 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 5602 eb->start, eb->len, start, len); 5603 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5604 5605 return true; 5606} 5607 5608/* 5609 * Check if the [start, start + len) range is valid before reading/writing 5610 * the eb. 5611 * NOTE: @start and @len are offset inside the eb, not logical address. 5612 * 5613 * Caller should not touch the dst/src memory if this function returns error. 5614 */ 5615static inline int check_eb_range(const struct extent_buffer *eb, 5616 unsigned long start, unsigned long len) 5617{ 5618 unsigned long offset; 5619 5620 /* start, start + len should not go beyond eb->len nor overflow */ 5621 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 5622 return report_eb_range(eb, start, len); 5623 5624 return false; 5625} 5626 5627void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5628 unsigned long start, unsigned long len) 5629{ 5630 size_t cur; 5631 size_t offset; 5632 struct page *page; 5633 char *kaddr; 5634 char *dst = (char *)dstv; 5635 unsigned long i = start >> PAGE_SHIFT; 5636 5637 if (check_eb_range(eb, start, len)) { 5638 /* 5639 * Invalid range hit, reset the memory, so callers won't get 5640 * some random garbage for their uninitialzed memory. 5641 */ 5642 memset(dstv, 0, len); 5643 return; 5644 } 5645 5646 offset = offset_in_page(start); 5647 5648 while (len > 0) { 5649 page = eb->pages[i]; 5650 5651 cur = min(len, (PAGE_SIZE - offset)); 5652 kaddr = page_address(page); 5653 memcpy(dst, kaddr + offset, cur); 5654 5655 dst += cur; 5656 len -= cur; 5657 offset = 0; 5658 i++; 5659 } 5660} 5661 5662int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 5663 void __user *dstv, 5664 unsigned long start, unsigned long len) 5665{ 5666 size_t cur; 5667 size_t offset; 5668 struct page *page; 5669 char *kaddr; 5670 char __user *dst = (char __user *)dstv; 5671 unsigned long i = start >> PAGE_SHIFT; 5672 int ret = 0; 5673 5674 WARN_ON(start > eb->len); 5675 WARN_ON(start + len > eb->start + eb->len); 5676 5677 offset = offset_in_page(start); 5678 5679 while (len > 0) { 5680 page = eb->pages[i]; 5681 5682 cur = min(len, (PAGE_SIZE - offset)); 5683 kaddr = page_address(page); 5684 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 5685 ret = -EFAULT; 5686 break; 5687 } 5688 5689 dst += cur; 5690 len -= cur; 5691 offset = 0; 5692 i++; 5693 } 5694 5695 return ret; 5696} 5697 5698int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5699 unsigned long start, unsigned long len) 5700{ 5701 size_t cur; 5702 size_t offset; 5703 struct page *page; 5704 char *kaddr; 5705 char *ptr = (char *)ptrv; 5706 unsigned long i = start >> PAGE_SHIFT; 5707 int ret = 0; 5708 5709 if (check_eb_range(eb, start, len)) 5710 return -EINVAL; 5711 5712 offset = offset_in_page(start); 5713 5714 while (len > 0) { 5715 page = eb->pages[i]; 5716 5717 cur = min(len, (PAGE_SIZE - offset)); 5718 5719 kaddr = page_address(page); 5720 ret = memcmp(ptr, kaddr + offset, cur); 5721 if (ret) 5722 break; 5723 5724 ptr += cur; 5725 len -= cur; 5726 offset = 0; 5727 i++; 5728 } 5729 return ret; 5730} 5731 5732void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 5733 const void *srcv) 5734{ 5735 char *kaddr; 5736 5737 WARN_ON(!PageUptodate(eb->pages[0])); 5738 kaddr = page_address(eb->pages[0]); 5739 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5740 BTRFS_FSID_SIZE); 5741} 5742 5743void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 5744{ 5745 char *kaddr; 5746 5747 WARN_ON(!PageUptodate(eb->pages[0])); 5748 kaddr = page_address(eb->pages[0]); 5749 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5750 BTRFS_FSID_SIZE); 5751} 5752 5753void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 5754 unsigned long start, unsigned long len) 5755{ 5756 size_t cur; 5757 size_t offset; 5758 struct page *page; 5759 char *kaddr; 5760 char *src = (char *)srcv; 5761 unsigned long i = start >> PAGE_SHIFT; 5762 5763 if (check_eb_range(eb, start, len)) 5764 return; 5765 5766 offset = offset_in_page(start); 5767 5768 while (len > 0) { 5769 page = eb->pages[i]; 5770 WARN_ON(!PageUptodate(page)); 5771 5772 cur = min(len, PAGE_SIZE - offset); 5773 kaddr = page_address(page); 5774 memcpy(kaddr + offset, src, cur); 5775 5776 src += cur; 5777 len -= cur; 5778 offset = 0; 5779 i++; 5780 } 5781} 5782 5783void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 5784 unsigned long len) 5785{ 5786 size_t cur; 5787 size_t offset; 5788 struct page *page; 5789 char *kaddr; 5790 unsigned long i = start >> PAGE_SHIFT; 5791 5792 if (check_eb_range(eb, start, len)) 5793 return; 5794 5795 offset = offset_in_page(start); 5796 5797 while (len > 0) { 5798 page = eb->pages[i]; 5799 WARN_ON(!PageUptodate(page)); 5800 5801 cur = min(len, PAGE_SIZE - offset); 5802 kaddr = page_address(page); 5803 memset(kaddr + offset, 0, cur); 5804 5805 len -= cur; 5806 offset = 0; 5807 i++; 5808 } 5809} 5810 5811void copy_extent_buffer_full(const struct extent_buffer *dst, 5812 const struct extent_buffer *src) 5813{ 5814 int i; 5815 int num_pages; 5816 5817 ASSERT(dst->len == src->len); 5818 5819 num_pages = num_extent_pages(dst); 5820 for (i = 0; i < num_pages; i++) 5821 copy_page(page_address(dst->pages[i]), 5822 page_address(src->pages[i])); 5823} 5824 5825void copy_extent_buffer(const struct extent_buffer *dst, 5826 const struct extent_buffer *src, 5827 unsigned long dst_offset, unsigned long src_offset, 5828 unsigned long len) 5829{ 5830 u64 dst_len = dst->len; 5831 size_t cur; 5832 size_t offset; 5833 struct page *page; 5834 char *kaddr; 5835 unsigned long i = dst_offset >> PAGE_SHIFT; 5836 5837 if (check_eb_range(dst, dst_offset, len) || 5838 check_eb_range(src, src_offset, len)) 5839 return; 5840 5841 WARN_ON(src->len != dst_len); 5842 5843 offset = offset_in_page(dst_offset); 5844 5845 while (len > 0) { 5846 page = dst->pages[i]; 5847 WARN_ON(!PageUptodate(page)); 5848 5849 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5850 5851 kaddr = page_address(page); 5852 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5853 5854 src_offset += cur; 5855 len -= cur; 5856 offset = 0; 5857 i++; 5858 } 5859} 5860 5861/* 5862 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5863 * given bit number 5864 * @eb: the extent buffer 5865 * @start: offset of the bitmap item in the extent buffer 5866 * @nr: bit number 5867 * @page_index: return index of the page in the extent buffer that contains the 5868 * given bit number 5869 * @page_offset: return offset into the page given by page_index 5870 * 5871 * This helper hides the ugliness of finding the byte in an extent buffer which 5872 * contains a given bit. 5873 */ 5874static inline void eb_bitmap_offset(const struct extent_buffer *eb, 5875 unsigned long start, unsigned long nr, 5876 unsigned long *page_index, 5877 size_t *page_offset) 5878{ 5879 size_t byte_offset = BIT_BYTE(nr); 5880 size_t offset; 5881 5882 /* 5883 * The byte we want is the offset of the extent buffer + the offset of 5884 * the bitmap item in the extent buffer + the offset of the byte in the 5885 * bitmap item. 5886 */ 5887 offset = start + byte_offset; 5888 5889 *page_index = offset >> PAGE_SHIFT; 5890 *page_offset = offset_in_page(offset); 5891} 5892 5893/** 5894 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5895 * @eb: the extent buffer 5896 * @start: offset of the bitmap item in the extent buffer 5897 * @nr: bit number to test 5898 */ 5899int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 5900 unsigned long nr) 5901{ 5902 u8 *kaddr; 5903 struct page *page; 5904 unsigned long i; 5905 size_t offset; 5906 5907 eb_bitmap_offset(eb, start, nr, &i, &offset); 5908 page = eb->pages[i]; 5909 WARN_ON(!PageUptodate(page)); 5910 kaddr = page_address(page); 5911 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5912} 5913 5914/** 5915 * extent_buffer_bitmap_set - set an area of a bitmap 5916 * @eb: the extent buffer 5917 * @start: offset of the bitmap item in the extent buffer 5918 * @pos: bit number of the first bit 5919 * @len: number of bits to set 5920 */ 5921void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 5922 unsigned long pos, unsigned long len) 5923{ 5924 u8 *kaddr; 5925 struct page *page; 5926 unsigned long i; 5927 size_t offset; 5928 const unsigned int size = pos + len; 5929 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5930 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5931 5932 eb_bitmap_offset(eb, start, pos, &i, &offset); 5933 page = eb->pages[i]; 5934 WARN_ON(!PageUptodate(page)); 5935 kaddr = page_address(page); 5936 5937 while (len >= bits_to_set) { 5938 kaddr[offset] |= mask_to_set; 5939 len -= bits_to_set; 5940 bits_to_set = BITS_PER_BYTE; 5941 mask_to_set = ~0; 5942 if (++offset >= PAGE_SIZE && len > 0) { 5943 offset = 0; 5944 page = eb->pages[++i]; 5945 WARN_ON(!PageUptodate(page)); 5946 kaddr = page_address(page); 5947 } 5948 } 5949 if (len) { 5950 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5951 kaddr[offset] |= mask_to_set; 5952 } 5953} 5954 5955 5956/** 5957 * extent_buffer_bitmap_clear - clear an area of a bitmap 5958 * @eb: the extent buffer 5959 * @start: offset of the bitmap item in the extent buffer 5960 * @pos: bit number of the first bit 5961 * @len: number of bits to clear 5962 */ 5963void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 5964 unsigned long start, unsigned long pos, 5965 unsigned long len) 5966{ 5967 u8 *kaddr; 5968 struct page *page; 5969 unsigned long i; 5970 size_t offset; 5971 const unsigned int size = pos + len; 5972 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5973 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5974 5975 eb_bitmap_offset(eb, start, pos, &i, &offset); 5976 page = eb->pages[i]; 5977 WARN_ON(!PageUptodate(page)); 5978 kaddr = page_address(page); 5979 5980 while (len >= bits_to_clear) { 5981 kaddr[offset] &= ~mask_to_clear; 5982 len -= bits_to_clear; 5983 bits_to_clear = BITS_PER_BYTE; 5984 mask_to_clear = ~0; 5985 if (++offset >= PAGE_SIZE && len > 0) { 5986 offset = 0; 5987 page = eb->pages[++i]; 5988 WARN_ON(!PageUptodate(page)); 5989 kaddr = page_address(page); 5990 } 5991 } 5992 if (len) { 5993 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5994 kaddr[offset] &= ~mask_to_clear; 5995 } 5996} 5997 5998static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5999{ 6000 unsigned long distance = (src > dst) ? src - dst : dst - src; 6001 return distance < len; 6002} 6003 6004static void copy_pages(struct page *dst_page, struct page *src_page, 6005 unsigned long dst_off, unsigned long src_off, 6006 unsigned long len) 6007{ 6008 char *dst_kaddr = page_address(dst_page); 6009 char *src_kaddr; 6010 int must_memmove = 0; 6011 6012 if (dst_page != src_page) { 6013 src_kaddr = page_address(src_page); 6014 } else { 6015 src_kaddr = dst_kaddr; 6016 if (areas_overlap(src_off, dst_off, len)) 6017 must_memmove = 1; 6018 } 6019 6020 if (must_memmove) 6021 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 6022 else 6023 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 6024} 6025 6026void memcpy_extent_buffer(const struct extent_buffer *dst, 6027 unsigned long dst_offset, unsigned long src_offset, 6028 unsigned long len) 6029{ 6030 size_t cur; 6031 size_t dst_off_in_page; 6032 size_t src_off_in_page; 6033 unsigned long dst_i; 6034 unsigned long src_i; 6035 6036 if (check_eb_range(dst, dst_offset, len) || 6037 check_eb_range(dst, src_offset, len)) 6038 return; 6039 6040 while (len > 0) { 6041 dst_off_in_page = offset_in_page(dst_offset); 6042 src_off_in_page = offset_in_page(src_offset); 6043 6044 dst_i = dst_offset >> PAGE_SHIFT; 6045 src_i = src_offset >> PAGE_SHIFT; 6046 6047 cur = min(len, (unsigned long)(PAGE_SIZE - 6048 src_off_in_page)); 6049 cur = min_t(unsigned long, cur, 6050 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 6051 6052 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6053 dst_off_in_page, src_off_in_page, cur); 6054 6055 src_offset += cur; 6056 dst_offset += cur; 6057 len -= cur; 6058 } 6059} 6060 6061void memmove_extent_buffer(const struct extent_buffer *dst, 6062 unsigned long dst_offset, unsigned long src_offset, 6063 unsigned long len) 6064{ 6065 size_t cur; 6066 size_t dst_off_in_page; 6067 size_t src_off_in_page; 6068 unsigned long dst_end = dst_offset + len - 1; 6069 unsigned long src_end = src_offset + len - 1; 6070 unsigned long dst_i; 6071 unsigned long src_i; 6072 6073 if (check_eb_range(dst, dst_offset, len) || 6074 check_eb_range(dst, src_offset, len)) 6075 return; 6076 if (dst_offset < src_offset) { 6077 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 6078 return; 6079 } 6080 while (len > 0) { 6081 dst_i = dst_end >> PAGE_SHIFT; 6082 src_i = src_end >> PAGE_SHIFT; 6083 6084 dst_off_in_page = offset_in_page(dst_end); 6085 src_off_in_page = offset_in_page(src_end); 6086 6087 cur = min_t(unsigned long, len, src_off_in_page + 1); 6088 cur = min(cur, dst_off_in_page + 1); 6089 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6090 dst_off_in_page - cur + 1, 6091 src_off_in_page - cur + 1, cur); 6092 6093 dst_end -= cur; 6094 src_end -= cur; 6095 len -= cur; 6096 } 6097} 6098 6099int try_release_extent_buffer(struct page *page) 6100{ 6101 struct extent_buffer *eb; 6102 6103 /* 6104 * We need to make sure nobody is attaching this page to an eb right 6105 * now. 6106 */ 6107 spin_lock(&page->mapping->private_lock); 6108 if (!PagePrivate(page)) { 6109 spin_unlock(&page->mapping->private_lock); 6110 return 1; 6111 } 6112 6113 eb = (struct extent_buffer *)page->private; 6114 BUG_ON(!eb); 6115 6116 /* 6117 * This is a little awful but should be ok, we need to make sure that 6118 * the eb doesn't disappear out from under us while we're looking at 6119 * this page. 6120 */ 6121 spin_lock(&eb->refs_lock); 6122 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 6123 spin_unlock(&eb->refs_lock); 6124 spin_unlock(&page->mapping->private_lock); 6125 return 0; 6126 } 6127 spin_unlock(&page->mapping->private_lock); 6128 6129 /* 6130 * If tree ref isn't set then we know the ref on this eb is a real ref, 6131 * so just return, this page will likely be freed soon anyway. 6132 */ 6133 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 6134 spin_unlock(&eb->refs_lock); 6135 return 0; 6136 } 6137 6138 return release_extent_buffer(eb); 6139} 6140