xref: /kernel/linux/linux-5.10/fs/btrfs/extent_io.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
14#include <linux/prefetch.h>
15#include <linux/cleancache.h>
16#include "extent_io.h"
17#include "extent-io-tree.h"
18#include "extent_map.h"
19#include "ctree.h"
20#include "btrfs_inode.h"
21#include "volumes.h"
22#include "check-integrity.h"
23#include "locking.h"
24#include "rcu-string.h"
25#include "backref.h"
26#include "disk-io.h"
27
28static struct kmem_cache *extent_state_cache;
29static struct kmem_cache *extent_buffer_cache;
30static struct bio_set btrfs_bioset;
31
32static inline bool extent_state_in_tree(const struct extent_state *state)
33{
34	return !RB_EMPTY_NODE(&state->rb_node);
35}
36
37#ifdef CONFIG_BTRFS_DEBUG
38static LIST_HEAD(states);
39static DEFINE_SPINLOCK(leak_lock);
40
41static inline void btrfs_leak_debug_add(spinlock_t *lock,
42					struct list_head *new,
43					struct list_head *head)
44{
45	unsigned long flags;
46
47	spin_lock_irqsave(lock, flags);
48	list_add(new, head);
49	spin_unlock_irqrestore(lock, flags);
50}
51
52static inline void btrfs_leak_debug_del(spinlock_t *lock,
53					struct list_head *entry)
54{
55	unsigned long flags;
56
57	spin_lock_irqsave(lock, flags);
58	list_del(entry);
59	spin_unlock_irqrestore(lock, flags);
60}
61
62void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63{
64	struct extent_buffer *eb;
65	unsigned long flags;
66
67	/*
68	 * If we didn't get into open_ctree our allocated_ebs will not be
69	 * initialized, so just skip this.
70	 */
71	if (!fs_info->allocated_ebs.next)
72		return;
73
74	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75	while (!list_empty(&fs_info->allocated_ebs)) {
76		eb = list_first_entry(&fs_info->allocated_ebs,
77				      struct extent_buffer, leak_list);
78		pr_err(
79	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81		       btrfs_header_owner(eb));
82		list_del(&eb->leak_list);
83		kmem_cache_free(extent_buffer_cache, eb);
84	}
85	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86}
87
88static inline void btrfs_extent_state_leak_debug_check(void)
89{
90	struct extent_state *state;
91
92	while (!list_empty(&states)) {
93		state = list_entry(states.next, struct extent_state, leak_list);
94		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95		       state->start, state->end, state->state,
96		       extent_state_in_tree(state),
97		       refcount_read(&state->refs));
98		list_del(&state->leak_list);
99		kmem_cache_free(extent_state_cache, state);
100	}
101}
102
103#define btrfs_debug_check_extent_io_range(tree, start, end)		\
104	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106		struct extent_io_tree *tree, u64 start, u64 end)
107{
108	struct inode *inode = tree->private_data;
109	u64 isize;
110
111	if (!inode || !is_data_inode(inode))
112		return;
113
114	isize = i_size_read(inode);
115	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
118			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119	}
120}
121#else
122#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
123#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
124#define btrfs_extent_state_leak_debug_check()	do {} while (0)
125#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
126#endif
127
128struct tree_entry {
129	u64 start;
130	u64 end;
131	struct rb_node rb_node;
132};
133
134struct extent_page_data {
135	struct bio *bio;
136	/* tells writepage not to lock the state bits for this range
137	 * it still does the unlocking
138	 */
139	unsigned int extent_locked:1;
140
141	/* tells the submit_bio code to use REQ_SYNC */
142	unsigned int sync_io:1;
143};
144
145static int add_extent_changeset(struct extent_state *state, unsigned bits,
146				 struct extent_changeset *changeset,
147				 int set)
148{
149	int ret;
150
151	if (!changeset)
152		return 0;
153	if (set && (state->state & bits) == bits)
154		return 0;
155	if (!set && (state->state & bits) == 0)
156		return 0;
157	changeset->bytes_changed += state->end - state->start + 1;
158	ret = ulist_add(&changeset->range_changed, state->start, state->end,
159			GFP_ATOMIC);
160	return ret;
161}
162
163int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164				unsigned long bio_flags)
165{
166	blk_status_t ret = 0;
167	struct extent_io_tree *tree = bio->bi_private;
168
169	bio->bi_private = NULL;
170
171	if (is_data_inode(tree->private_data))
172		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
173					    bio_flags);
174	else
175		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
176						mirror_num, bio_flags);
177
178	return blk_status_to_errno(ret);
179}
180
181/* Cleanup unsubmitted bios */
182static void end_write_bio(struct extent_page_data *epd, int ret)
183{
184	if (epd->bio) {
185		epd->bio->bi_status = errno_to_blk_status(ret);
186		bio_endio(epd->bio);
187		epd->bio = NULL;
188	}
189}
190
191/*
192 * Submit bio from extent page data via submit_one_bio
193 *
194 * Return 0 if everything is OK.
195 * Return <0 for error.
196 */
197static int __must_check flush_write_bio(struct extent_page_data *epd)
198{
199	int ret = 0;
200
201	if (epd->bio) {
202		ret = submit_one_bio(epd->bio, 0, 0);
203		/*
204		 * Clean up of epd->bio is handled by its endio function.
205		 * And endio is either triggered by successful bio execution
206		 * or the error handler of submit bio hook.
207		 * So at this point, no matter what happened, we don't need
208		 * to clean up epd->bio.
209		 */
210		epd->bio = NULL;
211	}
212	return ret;
213}
214
215int __init extent_state_cache_init(void)
216{
217	extent_state_cache = kmem_cache_create("btrfs_extent_state",
218			sizeof(struct extent_state), 0,
219			SLAB_MEM_SPREAD, NULL);
220	if (!extent_state_cache)
221		return -ENOMEM;
222	return 0;
223}
224
225int __init extent_io_init(void)
226{
227	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
228			sizeof(struct extent_buffer), 0,
229			SLAB_MEM_SPREAD, NULL);
230	if (!extent_buffer_cache)
231		return -ENOMEM;
232
233	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
234			offsetof(struct btrfs_io_bio, bio),
235			BIOSET_NEED_BVECS))
236		goto free_buffer_cache;
237
238	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
239		goto free_bioset;
240
241	return 0;
242
243free_bioset:
244	bioset_exit(&btrfs_bioset);
245
246free_buffer_cache:
247	kmem_cache_destroy(extent_buffer_cache);
248	extent_buffer_cache = NULL;
249	return -ENOMEM;
250}
251
252void __cold extent_state_cache_exit(void)
253{
254	btrfs_extent_state_leak_debug_check();
255	kmem_cache_destroy(extent_state_cache);
256}
257
258void __cold extent_io_exit(void)
259{
260	/*
261	 * Make sure all delayed rcu free are flushed before we
262	 * destroy caches.
263	 */
264	rcu_barrier();
265	kmem_cache_destroy(extent_buffer_cache);
266	bioset_exit(&btrfs_bioset);
267}
268
269/*
270 * For the file_extent_tree, we want to hold the inode lock when we lookup and
271 * update the disk_i_size, but lockdep will complain because our io_tree we hold
272 * the tree lock and get the inode lock when setting delalloc.  These two things
273 * are unrelated, so make a class for the file_extent_tree so we don't get the
274 * two locking patterns mixed up.
275 */
276static struct lock_class_key file_extent_tree_class;
277
278void extent_io_tree_init(struct btrfs_fs_info *fs_info,
279			 struct extent_io_tree *tree, unsigned int owner,
280			 void *private_data)
281{
282	tree->fs_info = fs_info;
283	tree->state = RB_ROOT;
284	tree->dirty_bytes = 0;
285	spin_lock_init(&tree->lock);
286	tree->private_data = private_data;
287	tree->owner = owner;
288	if (owner == IO_TREE_INODE_FILE_EXTENT)
289		lockdep_set_class(&tree->lock, &file_extent_tree_class);
290}
291
292void extent_io_tree_release(struct extent_io_tree *tree)
293{
294	spin_lock(&tree->lock);
295	/*
296	 * Do a single barrier for the waitqueue_active check here, the state
297	 * of the waitqueue should not change once extent_io_tree_release is
298	 * called.
299	 */
300	smp_mb();
301	while (!RB_EMPTY_ROOT(&tree->state)) {
302		struct rb_node *node;
303		struct extent_state *state;
304
305		node = rb_first(&tree->state);
306		state = rb_entry(node, struct extent_state, rb_node);
307		rb_erase(&state->rb_node, &tree->state);
308		RB_CLEAR_NODE(&state->rb_node);
309		/*
310		 * btree io trees aren't supposed to have tasks waiting for
311		 * changes in the flags of extent states ever.
312		 */
313		ASSERT(!waitqueue_active(&state->wq));
314		free_extent_state(state);
315
316		cond_resched_lock(&tree->lock);
317	}
318	spin_unlock(&tree->lock);
319}
320
321static struct extent_state *alloc_extent_state(gfp_t mask)
322{
323	struct extent_state *state;
324
325	/*
326	 * The given mask might be not appropriate for the slab allocator,
327	 * drop the unsupported bits
328	 */
329	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330	state = kmem_cache_alloc(extent_state_cache, mask);
331	if (!state)
332		return state;
333	state->state = 0;
334	state->failrec = NULL;
335	RB_CLEAR_NODE(&state->rb_node);
336	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337	refcount_set(&state->refs, 1);
338	init_waitqueue_head(&state->wq);
339	trace_alloc_extent_state(state, mask, _RET_IP_);
340	return state;
341}
342
343void free_extent_state(struct extent_state *state)
344{
345	if (!state)
346		return;
347	if (refcount_dec_and_test(&state->refs)) {
348		WARN_ON(extent_state_in_tree(state));
349		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350		trace_free_extent_state(state, _RET_IP_);
351		kmem_cache_free(extent_state_cache, state);
352	}
353}
354
355static struct rb_node *tree_insert(struct rb_root *root,
356				   struct rb_node *search_start,
357				   u64 offset,
358				   struct rb_node *node,
359				   struct rb_node ***p_in,
360				   struct rb_node **parent_in)
361{
362	struct rb_node **p;
363	struct rb_node *parent = NULL;
364	struct tree_entry *entry;
365
366	if (p_in && parent_in) {
367		p = *p_in;
368		parent = *parent_in;
369		goto do_insert;
370	}
371
372	p = search_start ? &search_start : &root->rb_node;
373	while (*p) {
374		parent = *p;
375		entry = rb_entry(parent, struct tree_entry, rb_node);
376
377		if (offset < entry->start)
378			p = &(*p)->rb_left;
379		else if (offset > entry->end)
380			p = &(*p)->rb_right;
381		else
382			return parent;
383	}
384
385do_insert:
386	rb_link_node(node, parent, p);
387	rb_insert_color(node, root);
388	return NULL;
389}
390
391/**
392 * __etree_search - searche @tree for an entry that contains @offset. Such
393 * entry would have entry->start <= offset && entry->end >= offset.
394 *
395 * @tree - the tree to search
396 * @offset - offset that should fall within an entry in @tree
397 * @next_ret - pointer to the first entry whose range ends after @offset
398 * @prev - pointer to the first entry whose range begins before @offset
399 * @p_ret - pointer where new node should be anchored (used when inserting an
400 *	    entry in the tree)
401 * @parent_ret - points to entry which would have been the parent of the entry,
402 *               containing @offset
403 *
404 * This function returns a pointer to the entry that contains @offset byte
405 * address. If no such entry exists, then NULL is returned and the other
406 * pointer arguments to the function are filled, otherwise the found entry is
407 * returned and other pointers are left untouched.
408 */
409static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410				      struct rb_node **next_ret,
411				      struct rb_node **prev_ret,
412				      struct rb_node ***p_ret,
413				      struct rb_node **parent_ret)
414{
415	struct rb_root *root = &tree->state;
416	struct rb_node **n = &root->rb_node;
417	struct rb_node *prev = NULL;
418	struct rb_node *orig_prev = NULL;
419	struct tree_entry *entry;
420	struct tree_entry *prev_entry = NULL;
421
422	while (*n) {
423		prev = *n;
424		entry = rb_entry(prev, struct tree_entry, rb_node);
425		prev_entry = entry;
426
427		if (offset < entry->start)
428			n = &(*n)->rb_left;
429		else if (offset > entry->end)
430			n = &(*n)->rb_right;
431		else
432			return *n;
433	}
434
435	if (p_ret)
436		*p_ret = n;
437	if (parent_ret)
438		*parent_ret = prev;
439
440	if (next_ret) {
441		orig_prev = prev;
442		while (prev && offset > prev_entry->end) {
443			prev = rb_next(prev);
444			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445		}
446		*next_ret = prev;
447		prev = orig_prev;
448	}
449
450	if (prev_ret) {
451		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452		while (prev && offset < prev_entry->start) {
453			prev = rb_prev(prev);
454			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455		}
456		*prev_ret = prev;
457	}
458	return NULL;
459}
460
461static inline struct rb_node *
462tree_search_for_insert(struct extent_io_tree *tree,
463		       u64 offset,
464		       struct rb_node ***p_ret,
465		       struct rb_node **parent_ret)
466{
467	struct rb_node *next= NULL;
468	struct rb_node *ret;
469
470	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471	if (!ret)
472		return next;
473	return ret;
474}
475
476static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477					  u64 offset)
478{
479	return tree_search_for_insert(tree, offset, NULL, NULL);
480}
481
482/*
483 * utility function to look for merge candidates inside a given range.
484 * Any extents with matching state are merged together into a single
485 * extent in the tree.  Extents with EXTENT_IO in their state field
486 * are not merged because the end_io handlers need to be able to do
487 * operations on them without sleeping (or doing allocations/splits).
488 *
489 * This should be called with the tree lock held.
490 */
491static void merge_state(struct extent_io_tree *tree,
492		        struct extent_state *state)
493{
494	struct extent_state *other;
495	struct rb_node *other_node;
496
497	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498		return;
499
500	other_node = rb_prev(&state->rb_node);
501	if (other_node) {
502		other = rb_entry(other_node, struct extent_state, rb_node);
503		if (other->end == state->start - 1 &&
504		    other->state == state->state) {
505			if (tree->private_data &&
506			    is_data_inode(tree->private_data))
507				btrfs_merge_delalloc_extent(tree->private_data,
508							    state, other);
509			state->start = other->start;
510			rb_erase(&other->rb_node, &tree->state);
511			RB_CLEAR_NODE(&other->rb_node);
512			free_extent_state(other);
513		}
514	}
515	other_node = rb_next(&state->rb_node);
516	if (other_node) {
517		other = rb_entry(other_node, struct extent_state, rb_node);
518		if (other->start == state->end + 1 &&
519		    other->state == state->state) {
520			if (tree->private_data &&
521			    is_data_inode(tree->private_data))
522				btrfs_merge_delalloc_extent(tree->private_data,
523							    state, other);
524			state->end = other->end;
525			rb_erase(&other->rb_node, &tree->state);
526			RB_CLEAR_NODE(&other->rb_node);
527			free_extent_state(other);
528		}
529	}
530}
531
532static void set_state_bits(struct extent_io_tree *tree,
533			   struct extent_state *state, unsigned *bits,
534			   struct extent_changeset *changeset);
535
536/*
537 * insert an extent_state struct into the tree.  'bits' are set on the
538 * struct before it is inserted.
539 *
540 * This may return -EEXIST if the extent is already there, in which case the
541 * state struct is freed.
542 *
543 * The tree lock is not taken internally.  This is a utility function and
544 * probably isn't what you want to call (see set/clear_extent_bit).
545 */
546static int insert_state(struct extent_io_tree *tree,
547			struct extent_state *state, u64 start, u64 end,
548			struct rb_node ***p,
549			struct rb_node **parent,
550			unsigned *bits, struct extent_changeset *changeset)
551{
552	struct rb_node *node;
553
554	if (end < start) {
555		btrfs_err(tree->fs_info,
556			"insert state: end < start %llu %llu", end, start);
557		WARN_ON(1);
558	}
559	state->start = start;
560	state->end = end;
561
562	set_state_bits(tree, state, bits, changeset);
563
564	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565	if (node) {
566		struct extent_state *found;
567		found = rb_entry(node, struct extent_state, rb_node);
568		btrfs_err(tree->fs_info,
569		       "found node %llu %llu on insert of %llu %llu",
570		       found->start, found->end, start, end);
571		return -EEXIST;
572	}
573	merge_state(tree, state);
574	return 0;
575}
576
577/*
578 * split a given extent state struct in two, inserting the preallocated
579 * struct 'prealloc' as the newly created second half.  'split' indicates an
580 * offset inside 'orig' where it should be split.
581 *
582 * Before calling,
583 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
584 * are two extent state structs in the tree:
585 * prealloc: [orig->start, split - 1]
586 * orig: [ split, orig->end ]
587 *
588 * The tree locks are not taken by this function. They need to be held
589 * by the caller.
590 */
591static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592		       struct extent_state *prealloc, u64 split)
593{
594	struct rb_node *node;
595
596	if (tree->private_data && is_data_inode(tree->private_data))
597		btrfs_split_delalloc_extent(tree->private_data, orig, split);
598
599	prealloc->start = orig->start;
600	prealloc->end = split - 1;
601	prealloc->state = orig->state;
602	orig->start = split;
603
604	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605			   &prealloc->rb_node, NULL, NULL);
606	if (node) {
607		free_extent_state(prealloc);
608		return -EEXIST;
609	}
610	return 0;
611}
612
613static struct extent_state *next_state(struct extent_state *state)
614{
615	struct rb_node *next = rb_next(&state->rb_node);
616	if (next)
617		return rb_entry(next, struct extent_state, rb_node);
618	else
619		return NULL;
620}
621
622/*
623 * utility function to clear some bits in an extent state struct.
624 * it will optionally wake up anyone waiting on this state (wake == 1).
625 *
626 * If no bits are set on the state struct after clearing things, the
627 * struct is freed and removed from the tree
628 */
629static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630					    struct extent_state *state,
631					    unsigned *bits, int wake,
632					    struct extent_changeset *changeset)
633{
634	struct extent_state *next;
635	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636	int ret;
637
638	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639		u64 range = state->end - state->start + 1;
640		WARN_ON(range > tree->dirty_bytes);
641		tree->dirty_bytes -= range;
642	}
643
644	if (tree->private_data && is_data_inode(tree->private_data))
645		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646
647	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648	BUG_ON(ret < 0);
649	state->state &= ~bits_to_clear;
650	if (wake)
651		wake_up(&state->wq);
652	if (state->state == 0) {
653		next = next_state(state);
654		if (extent_state_in_tree(state)) {
655			rb_erase(&state->rb_node, &tree->state);
656			RB_CLEAR_NODE(&state->rb_node);
657			free_extent_state(state);
658		} else {
659			WARN_ON(1);
660		}
661	} else {
662		merge_state(tree, state);
663		next = next_state(state);
664	}
665	return next;
666}
667
668static struct extent_state *
669alloc_extent_state_atomic(struct extent_state *prealloc)
670{
671	if (!prealloc)
672		prealloc = alloc_extent_state(GFP_ATOMIC);
673
674	return prealloc;
675}
676
677static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678{
679	btrfs_panic(tree->fs_info, err,
680	"locking error: extent tree was modified by another thread while locked");
681}
682
683/*
684 * clear some bits on a range in the tree.  This may require splitting
685 * or inserting elements in the tree, so the gfp mask is used to
686 * indicate which allocations or sleeping are allowed.
687 *
688 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
689 * the given range from the tree regardless of state (ie for truncate).
690 *
691 * the range [start, end] is inclusive.
692 *
693 * This takes the tree lock, and returns 0 on success and < 0 on error.
694 */
695int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
696			      unsigned bits, int wake, int delete,
697			      struct extent_state **cached_state,
698			      gfp_t mask, struct extent_changeset *changeset)
699{
700	struct extent_state *state;
701	struct extent_state *cached;
702	struct extent_state *prealloc = NULL;
703	struct rb_node *node;
704	u64 last_end;
705	int err;
706	int clear = 0;
707
708	btrfs_debug_check_extent_io_range(tree, start, end);
709	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
710
711	if (bits & EXTENT_DELALLOC)
712		bits |= EXTENT_NORESERVE;
713
714	if (delete)
715		bits |= ~EXTENT_CTLBITS;
716
717	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
718		clear = 1;
719again:
720	if (!prealloc && gfpflags_allow_blocking(mask)) {
721		/*
722		 * Don't care for allocation failure here because we might end
723		 * up not needing the pre-allocated extent state at all, which
724		 * is the case if we only have in the tree extent states that
725		 * cover our input range and don't cover too any other range.
726		 * If we end up needing a new extent state we allocate it later.
727		 */
728		prealloc = alloc_extent_state(mask);
729	}
730
731	spin_lock(&tree->lock);
732	if (cached_state) {
733		cached = *cached_state;
734
735		if (clear) {
736			*cached_state = NULL;
737			cached_state = NULL;
738		}
739
740		if (cached && extent_state_in_tree(cached) &&
741		    cached->start <= start && cached->end > start) {
742			if (clear)
743				refcount_dec(&cached->refs);
744			state = cached;
745			goto hit_next;
746		}
747		if (clear)
748			free_extent_state(cached);
749	}
750	/*
751	 * this search will find the extents that end after
752	 * our range starts
753	 */
754	node = tree_search(tree, start);
755	if (!node)
756		goto out;
757	state = rb_entry(node, struct extent_state, rb_node);
758hit_next:
759	if (state->start > end)
760		goto out;
761	WARN_ON(state->end < start);
762	last_end = state->end;
763
764	/* the state doesn't have the wanted bits, go ahead */
765	if (!(state->state & bits)) {
766		state = next_state(state);
767		goto next;
768	}
769
770	/*
771	 *     | ---- desired range ---- |
772	 *  | state | or
773	 *  | ------------- state -------------- |
774	 *
775	 * We need to split the extent we found, and may flip
776	 * bits on second half.
777	 *
778	 * If the extent we found extends past our range, we
779	 * just split and search again.  It'll get split again
780	 * the next time though.
781	 *
782	 * If the extent we found is inside our range, we clear
783	 * the desired bit on it.
784	 */
785
786	if (state->start < start) {
787		prealloc = alloc_extent_state_atomic(prealloc);
788		BUG_ON(!prealloc);
789		err = split_state(tree, state, prealloc, start);
790		if (err)
791			extent_io_tree_panic(tree, err);
792
793		prealloc = NULL;
794		if (err)
795			goto out;
796		if (state->end <= end) {
797			state = clear_state_bit(tree, state, &bits, wake,
798						changeset);
799			goto next;
800		}
801		goto search_again;
802	}
803	/*
804	 * | ---- desired range ---- |
805	 *                        | state |
806	 * We need to split the extent, and clear the bit
807	 * on the first half
808	 */
809	if (state->start <= end && state->end > end) {
810		prealloc = alloc_extent_state_atomic(prealloc);
811		BUG_ON(!prealloc);
812		err = split_state(tree, state, prealloc, end + 1);
813		if (err)
814			extent_io_tree_panic(tree, err);
815
816		if (wake)
817			wake_up(&state->wq);
818
819		clear_state_bit(tree, prealloc, &bits, wake, changeset);
820
821		prealloc = NULL;
822		goto out;
823	}
824
825	state = clear_state_bit(tree, state, &bits, wake, changeset);
826next:
827	if (last_end == (u64)-1)
828		goto out;
829	start = last_end + 1;
830	if (start <= end && state && !need_resched())
831		goto hit_next;
832
833search_again:
834	if (start > end)
835		goto out;
836	spin_unlock(&tree->lock);
837	if (gfpflags_allow_blocking(mask))
838		cond_resched();
839	goto again;
840
841out:
842	spin_unlock(&tree->lock);
843	if (prealloc)
844		free_extent_state(prealloc);
845
846	return 0;
847
848}
849
850static void wait_on_state(struct extent_io_tree *tree,
851			  struct extent_state *state)
852		__releases(tree->lock)
853		__acquires(tree->lock)
854{
855	DEFINE_WAIT(wait);
856	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
857	spin_unlock(&tree->lock);
858	schedule();
859	spin_lock(&tree->lock);
860	finish_wait(&state->wq, &wait);
861}
862
863/*
864 * waits for one or more bits to clear on a range in the state tree.
865 * The range [start, end] is inclusive.
866 * The tree lock is taken by this function
867 */
868static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
869			    unsigned long bits)
870{
871	struct extent_state *state;
872	struct rb_node *node;
873
874	btrfs_debug_check_extent_io_range(tree, start, end);
875
876	spin_lock(&tree->lock);
877again:
878	while (1) {
879		/*
880		 * this search will find all the extents that end after
881		 * our range starts
882		 */
883		node = tree_search(tree, start);
884process_node:
885		if (!node)
886			break;
887
888		state = rb_entry(node, struct extent_state, rb_node);
889
890		if (state->start > end)
891			goto out;
892
893		if (state->state & bits) {
894			start = state->start;
895			refcount_inc(&state->refs);
896			wait_on_state(tree, state);
897			free_extent_state(state);
898			goto again;
899		}
900		start = state->end + 1;
901
902		if (start > end)
903			break;
904
905		if (!cond_resched_lock(&tree->lock)) {
906			node = rb_next(node);
907			goto process_node;
908		}
909	}
910out:
911	spin_unlock(&tree->lock);
912}
913
914static void set_state_bits(struct extent_io_tree *tree,
915			   struct extent_state *state,
916			   unsigned *bits, struct extent_changeset *changeset)
917{
918	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
919	int ret;
920
921	if (tree->private_data && is_data_inode(tree->private_data))
922		btrfs_set_delalloc_extent(tree->private_data, state, bits);
923
924	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
925		u64 range = state->end - state->start + 1;
926		tree->dirty_bytes += range;
927	}
928	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
929	BUG_ON(ret < 0);
930	state->state |= bits_to_set;
931}
932
933static void cache_state_if_flags(struct extent_state *state,
934				 struct extent_state **cached_ptr,
935				 unsigned flags)
936{
937	if (cached_ptr && !(*cached_ptr)) {
938		if (!flags || (state->state & flags)) {
939			*cached_ptr = state;
940			refcount_inc(&state->refs);
941		}
942	}
943}
944
945static void cache_state(struct extent_state *state,
946			struct extent_state **cached_ptr)
947{
948	return cache_state_if_flags(state, cached_ptr,
949				    EXTENT_LOCKED | EXTENT_BOUNDARY);
950}
951
952/*
953 * set some bits on a range in the tree.  This may require allocations or
954 * sleeping, so the gfp mask is used to indicate what is allowed.
955 *
956 * If any of the exclusive bits are set, this will fail with -EEXIST if some
957 * part of the range already has the desired bits set.  The start of the
958 * existing range is returned in failed_start in this case.
959 *
960 * [start, end] is inclusive This takes the tree lock.
961 */
962
963static int __must_check
964__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
965		 unsigned bits, unsigned exclusive_bits,
966		 u64 *failed_start, struct extent_state **cached_state,
967		 gfp_t mask, struct extent_changeset *changeset)
968{
969	struct extent_state *state;
970	struct extent_state *prealloc = NULL;
971	struct rb_node *node;
972	struct rb_node **p;
973	struct rb_node *parent;
974	int err = 0;
975	u64 last_start;
976	u64 last_end;
977
978	btrfs_debug_check_extent_io_range(tree, start, end);
979	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
980
981again:
982	if (!prealloc && gfpflags_allow_blocking(mask)) {
983		/*
984		 * Don't care for allocation failure here because we might end
985		 * up not needing the pre-allocated extent state at all, which
986		 * is the case if we only have in the tree extent states that
987		 * cover our input range and don't cover too any other range.
988		 * If we end up needing a new extent state we allocate it later.
989		 */
990		prealloc = alloc_extent_state(mask);
991	}
992
993	spin_lock(&tree->lock);
994	if (cached_state && *cached_state) {
995		state = *cached_state;
996		if (state->start <= start && state->end > start &&
997		    extent_state_in_tree(state)) {
998			node = &state->rb_node;
999			goto hit_next;
1000		}
1001	}
1002	/*
1003	 * this search will find all the extents that end after
1004	 * our range starts.
1005	 */
1006	node = tree_search_for_insert(tree, start, &p, &parent);
1007	if (!node) {
1008		prealloc = alloc_extent_state_atomic(prealloc);
1009		BUG_ON(!prealloc);
1010		err = insert_state(tree, prealloc, start, end,
1011				   &p, &parent, &bits, changeset);
1012		if (err)
1013			extent_io_tree_panic(tree, err);
1014
1015		cache_state(prealloc, cached_state);
1016		prealloc = NULL;
1017		goto out;
1018	}
1019	state = rb_entry(node, struct extent_state, rb_node);
1020hit_next:
1021	last_start = state->start;
1022	last_end = state->end;
1023
1024	/*
1025	 * | ---- desired range ---- |
1026	 * | state |
1027	 *
1028	 * Just lock what we found and keep going
1029	 */
1030	if (state->start == start && state->end <= end) {
1031		if (state->state & exclusive_bits) {
1032			*failed_start = state->start;
1033			err = -EEXIST;
1034			goto out;
1035		}
1036
1037		set_state_bits(tree, state, &bits, changeset);
1038		cache_state(state, cached_state);
1039		merge_state(tree, state);
1040		if (last_end == (u64)-1)
1041			goto out;
1042		start = last_end + 1;
1043		state = next_state(state);
1044		if (start < end && state && state->start == start &&
1045		    !need_resched())
1046			goto hit_next;
1047		goto search_again;
1048	}
1049
1050	/*
1051	 *     | ---- desired range ---- |
1052	 * | state |
1053	 *   or
1054	 * | ------------- state -------------- |
1055	 *
1056	 * We need to split the extent we found, and may flip bits on
1057	 * second half.
1058	 *
1059	 * If the extent we found extends past our
1060	 * range, we just split and search again.  It'll get split
1061	 * again the next time though.
1062	 *
1063	 * If the extent we found is inside our range, we set the
1064	 * desired bit on it.
1065	 */
1066	if (state->start < start) {
1067		if (state->state & exclusive_bits) {
1068			*failed_start = start;
1069			err = -EEXIST;
1070			goto out;
1071		}
1072
1073		/*
1074		 * If this extent already has all the bits we want set, then
1075		 * skip it, not necessary to split it or do anything with it.
1076		 */
1077		if ((state->state & bits) == bits) {
1078			start = state->end + 1;
1079			cache_state(state, cached_state);
1080			goto search_again;
1081		}
1082
1083		prealloc = alloc_extent_state_atomic(prealloc);
1084		BUG_ON(!prealloc);
1085		err = split_state(tree, state, prealloc, start);
1086		if (err)
1087			extent_io_tree_panic(tree, err);
1088
1089		prealloc = NULL;
1090		if (err)
1091			goto out;
1092		if (state->end <= end) {
1093			set_state_bits(tree, state, &bits, changeset);
1094			cache_state(state, cached_state);
1095			merge_state(tree, state);
1096			if (last_end == (u64)-1)
1097				goto out;
1098			start = last_end + 1;
1099			state = next_state(state);
1100			if (start < end && state && state->start == start &&
1101			    !need_resched())
1102				goto hit_next;
1103		}
1104		goto search_again;
1105	}
1106	/*
1107	 * | ---- desired range ---- |
1108	 *     | state | or               | state |
1109	 *
1110	 * There's a hole, we need to insert something in it and
1111	 * ignore the extent we found.
1112	 */
1113	if (state->start > start) {
1114		u64 this_end;
1115		if (end < last_start)
1116			this_end = end;
1117		else
1118			this_end = last_start - 1;
1119
1120		prealloc = alloc_extent_state_atomic(prealloc);
1121		BUG_ON(!prealloc);
1122
1123		/*
1124		 * Avoid to free 'prealloc' if it can be merged with
1125		 * the later extent.
1126		 */
1127		err = insert_state(tree, prealloc, start, this_end,
1128				   NULL, NULL, &bits, changeset);
1129		if (err)
1130			extent_io_tree_panic(tree, err);
1131
1132		cache_state(prealloc, cached_state);
1133		prealloc = NULL;
1134		start = this_end + 1;
1135		goto search_again;
1136	}
1137	/*
1138	 * | ---- desired range ---- |
1139	 *                        | state |
1140	 * We need to split the extent, and set the bit
1141	 * on the first half
1142	 */
1143	if (state->start <= end && state->end > end) {
1144		if (state->state & exclusive_bits) {
1145			*failed_start = start;
1146			err = -EEXIST;
1147			goto out;
1148		}
1149
1150		prealloc = alloc_extent_state_atomic(prealloc);
1151		BUG_ON(!prealloc);
1152		err = split_state(tree, state, prealloc, end + 1);
1153		if (err)
1154			extent_io_tree_panic(tree, err);
1155
1156		set_state_bits(tree, prealloc, &bits, changeset);
1157		cache_state(prealloc, cached_state);
1158		merge_state(tree, prealloc);
1159		prealloc = NULL;
1160		goto out;
1161	}
1162
1163search_again:
1164	if (start > end)
1165		goto out;
1166	spin_unlock(&tree->lock);
1167	if (gfpflags_allow_blocking(mask))
1168		cond_resched();
1169	goto again;
1170
1171out:
1172	spin_unlock(&tree->lock);
1173	if (prealloc)
1174		free_extent_state(prealloc);
1175
1176	return err;
1177
1178}
1179
1180int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1181		   unsigned bits, u64 * failed_start,
1182		   struct extent_state **cached_state, gfp_t mask)
1183{
1184	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1185				cached_state, mask, NULL);
1186}
1187
1188
1189/**
1190 * convert_extent_bit - convert all bits in a given range from one bit to
1191 * 			another
1192 * @tree:	the io tree to search
1193 * @start:	the start offset in bytes
1194 * @end:	the end offset in bytes (inclusive)
1195 * @bits:	the bits to set in this range
1196 * @clear_bits:	the bits to clear in this range
1197 * @cached_state:	state that we're going to cache
1198 *
1199 * This will go through and set bits for the given range.  If any states exist
1200 * already in this range they are set with the given bit and cleared of the
1201 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1202 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1203 * boundary bits like LOCK.
1204 *
1205 * All allocations are done with GFP_NOFS.
1206 */
1207int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1208		       unsigned bits, unsigned clear_bits,
1209		       struct extent_state **cached_state)
1210{
1211	struct extent_state *state;
1212	struct extent_state *prealloc = NULL;
1213	struct rb_node *node;
1214	struct rb_node **p;
1215	struct rb_node *parent;
1216	int err = 0;
1217	u64 last_start;
1218	u64 last_end;
1219	bool first_iteration = true;
1220
1221	btrfs_debug_check_extent_io_range(tree, start, end);
1222	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1223				       clear_bits);
1224
1225again:
1226	if (!prealloc) {
1227		/*
1228		 * Best effort, don't worry if extent state allocation fails
1229		 * here for the first iteration. We might have a cached state
1230		 * that matches exactly the target range, in which case no
1231		 * extent state allocations are needed. We'll only know this
1232		 * after locking the tree.
1233		 */
1234		prealloc = alloc_extent_state(GFP_NOFS);
1235		if (!prealloc && !first_iteration)
1236			return -ENOMEM;
1237	}
1238
1239	spin_lock(&tree->lock);
1240	if (cached_state && *cached_state) {
1241		state = *cached_state;
1242		if (state->start <= start && state->end > start &&
1243		    extent_state_in_tree(state)) {
1244			node = &state->rb_node;
1245			goto hit_next;
1246		}
1247	}
1248
1249	/*
1250	 * this search will find all the extents that end after
1251	 * our range starts.
1252	 */
1253	node = tree_search_for_insert(tree, start, &p, &parent);
1254	if (!node) {
1255		prealloc = alloc_extent_state_atomic(prealloc);
1256		if (!prealloc) {
1257			err = -ENOMEM;
1258			goto out;
1259		}
1260		err = insert_state(tree, prealloc, start, end,
1261				   &p, &parent, &bits, NULL);
1262		if (err)
1263			extent_io_tree_panic(tree, err);
1264		cache_state(prealloc, cached_state);
1265		prealloc = NULL;
1266		goto out;
1267	}
1268	state = rb_entry(node, struct extent_state, rb_node);
1269hit_next:
1270	last_start = state->start;
1271	last_end = state->end;
1272
1273	/*
1274	 * | ---- desired range ---- |
1275	 * | state |
1276	 *
1277	 * Just lock what we found and keep going
1278	 */
1279	if (state->start == start && state->end <= end) {
1280		set_state_bits(tree, state, &bits, NULL);
1281		cache_state(state, cached_state);
1282		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1283		if (last_end == (u64)-1)
1284			goto out;
1285		start = last_end + 1;
1286		if (start < end && state && state->start == start &&
1287		    !need_resched())
1288			goto hit_next;
1289		goto search_again;
1290	}
1291
1292	/*
1293	 *     | ---- desired range ---- |
1294	 * | state |
1295	 *   or
1296	 * | ------------- state -------------- |
1297	 *
1298	 * We need to split the extent we found, and may flip bits on
1299	 * second half.
1300	 *
1301	 * If the extent we found extends past our
1302	 * range, we just split and search again.  It'll get split
1303	 * again the next time though.
1304	 *
1305	 * If the extent we found is inside our range, we set the
1306	 * desired bit on it.
1307	 */
1308	if (state->start < start) {
1309		prealloc = alloc_extent_state_atomic(prealloc);
1310		if (!prealloc) {
1311			err = -ENOMEM;
1312			goto out;
1313		}
1314		err = split_state(tree, state, prealloc, start);
1315		if (err)
1316			extent_io_tree_panic(tree, err);
1317		prealloc = NULL;
1318		if (err)
1319			goto out;
1320		if (state->end <= end) {
1321			set_state_bits(tree, state, &bits, NULL);
1322			cache_state(state, cached_state);
1323			state = clear_state_bit(tree, state, &clear_bits, 0,
1324						NULL);
1325			if (last_end == (u64)-1)
1326				goto out;
1327			start = last_end + 1;
1328			if (start < end && state && state->start == start &&
1329			    !need_resched())
1330				goto hit_next;
1331		}
1332		goto search_again;
1333	}
1334	/*
1335	 * | ---- desired range ---- |
1336	 *     | state | or               | state |
1337	 *
1338	 * There's a hole, we need to insert something in it and
1339	 * ignore the extent we found.
1340	 */
1341	if (state->start > start) {
1342		u64 this_end;
1343		if (end < last_start)
1344			this_end = end;
1345		else
1346			this_end = last_start - 1;
1347
1348		prealloc = alloc_extent_state_atomic(prealloc);
1349		if (!prealloc) {
1350			err = -ENOMEM;
1351			goto out;
1352		}
1353
1354		/*
1355		 * Avoid to free 'prealloc' if it can be merged with
1356		 * the later extent.
1357		 */
1358		err = insert_state(tree, prealloc, start, this_end,
1359				   NULL, NULL, &bits, NULL);
1360		if (err)
1361			extent_io_tree_panic(tree, err);
1362		cache_state(prealloc, cached_state);
1363		prealloc = NULL;
1364		start = this_end + 1;
1365		goto search_again;
1366	}
1367	/*
1368	 * | ---- desired range ---- |
1369	 *                        | state |
1370	 * We need to split the extent, and set the bit
1371	 * on the first half
1372	 */
1373	if (state->start <= end && state->end > end) {
1374		prealloc = alloc_extent_state_atomic(prealloc);
1375		if (!prealloc) {
1376			err = -ENOMEM;
1377			goto out;
1378		}
1379
1380		err = split_state(tree, state, prealloc, end + 1);
1381		if (err)
1382			extent_io_tree_panic(tree, err);
1383
1384		set_state_bits(tree, prealloc, &bits, NULL);
1385		cache_state(prealloc, cached_state);
1386		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1387		prealloc = NULL;
1388		goto out;
1389	}
1390
1391search_again:
1392	if (start > end)
1393		goto out;
1394	spin_unlock(&tree->lock);
1395	cond_resched();
1396	first_iteration = false;
1397	goto again;
1398
1399out:
1400	spin_unlock(&tree->lock);
1401	if (prealloc)
1402		free_extent_state(prealloc);
1403
1404	return err;
1405}
1406
1407/* wrappers around set/clear extent bit */
1408int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1409			   unsigned bits, struct extent_changeset *changeset)
1410{
1411	/*
1412	 * We don't support EXTENT_LOCKED yet, as current changeset will
1413	 * record any bits changed, so for EXTENT_LOCKED case, it will
1414	 * either fail with -EEXIST or changeset will record the whole
1415	 * range.
1416	 */
1417	BUG_ON(bits & EXTENT_LOCKED);
1418
1419	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1420				changeset);
1421}
1422
1423int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1424			   unsigned bits)
1425{
1426	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1427				GFP_NOWAIT, NULL);
1428}
1429
1430int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1431		     unsigned bits, int wake, int delete,
1432		     struct extent_state **cached)
1433{
1434	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1435				  cached, GFP_NOFS, NULL);
1436}
1437
1438int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1439		unsigned bits, struct extent_changeset *changeset)
1440{
1441	/*
1442	 * Don't support EXTENT_LOCKED case, same reason as
1443	 * set_record_extent_bits().
1444	 */
1445	BUG_ON(bits & EXTENT_LOCKED);
1446
1447	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1448				  changeset);
1449}
1450
1451/*
1452 * either insert or lock state struct between start and end use mask to tell
1453 * us if waiting is desired.
1454 */
1455int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1456		     struct extent_state **cached_state)
1457{
1458	int err;
1459	u64 failed_start;
1460
1461	while (1) {
1462		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1463				       EXTENT_LOCKED, &failed_start,
1464				       cached_state, GFP_NOFS, NULL);
1465		if (err == -EEXIST) {
1466			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1467			start = failed_start;
1468		} else
1469			break;
1470		WARN_ON(start > end);
1471	}
1472	return err;
1473}
1474
1475int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1476{
1477	int err;
1478	u64 failed_start;
1479
1480	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1481			       &failed_start, NULL, GFP_NOFS, NULL);
1482	if (err == -EEXIST) {
1483		if (failed_start > start)
1484			clear_extent_bit(tree, start, failed_start - 1,
1485					 EXTENT_LOCKED, 1, 0, NULL);
1486		return 0;
1487	}
1488	return 1;
1489}
1490
1491void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1492{
1493	unsigned long index = start >> PAGE_SHIFT;
1494	unsigned long end_index = end >> PAGE_SHIFT;
1495	struct page *page;
1496
1497	while (index <= end_index) {
1498		page = find_get_page(inode->i_mapping, index);
1499		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1500		clear_page_dirty_for_io(page);
1501		put_page(page);
1502		index++;
1503	}
1504}
1505
1506void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1507{
1508	unsigned long index = start >> PAGE_SHIFT;
1509	unsigned long end_index = end >> PAGE_SHIFT;
1510	struct page *page;
1511
1512	while (index <= end_index) {
1513		page = find_get_page(inode->i_mapping, index);
1514		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1515		__set_page_dirty_nobuffers(page);
1516		account_page_redirty(page);
1517		put_page(page);
1518		index++;
1519	}
1520}
1521
1522/* find the first state struct with 'bits' set after 'start', and
1523 * return it.  tree->lock must be held.  NULL will returned if
1524 * nothing was found after 'start'
1525 */
1526static struct extent_state *
1527find_first_extent_bit_state(struct extent_io_tree *tree,
1528			    u64 start, unsigned bits)
1529{
1530	struct rb_node *node;
1531	struct extent_state *state;
1532
1533	/*
1534	 * this search will find all the extents that end after
1535	 * our range starts.
1536	 */
1537	node = tree_search(tree, start);
1538	if (!node)
1539		goto out;
1540
1541	while (1) {
1542		state = rb_entry(node, struct extent_state, rb_node);
1543		if (state->end >= start && (state->state & bits))
1544			return state;
1545
1546		node = rb_next(node);
1547		if (!node)
1548			break;
1549	}
1550out:
1551	return NULL;
1552}
1553
1554/*
1555 * find the first offset in the io tree with 'bits' set. zero is
1556 * returned if we find something, and *start_ret and *end_ret are
1557 * set to reflect the state struct that was found.
1558 *
1559 * If nothing was found, 1 is returned. If found something, return 0.
1560 */
1561int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1562			  u64 *start_ret, u64 *end_ret, unsigned bits,
1563			  struct extent_state **cached_state)
1564{
1565	struct extent_state *state;
1566	int ret = 1;
1567
1568	spin_lock(&tree->lock);
1569	if (cached_state && *cached_state) {
1570		state = *cached_state;
1571		if (state->end == start - 1 && extent_state_in_tree(state)) {
1572			while ((state = next_state(state)) != NULL) {
1573				if (state->state & bits)
1574					goto got_it;
1575			}
1576			free_extent_state(*cached_state);
1577			*cached_state = NULL;
1578			goto out;
1579		}
1580		free_extent_state(*cached_state);
1581		*cached_state = NULL;
1582	}
1583
1584	state = find_first_extent_bit_state(tree, start, bits);
1585got_it:
1586	if (state) {
1587		cache_state_if_flags(state, cached_state, 0);
1588		*start_ret = state->start;
1589		*end_ret = state->end;
1590		ret = 0;
1591	}
1592out:
1593	spin_unlock(&tree->lock);
1594	return ret;
1595}
1596
1597/**
1598 * find_contiguous_extent_bit: find a contiguous area of bits
1599 * @tree - io tree to check
1600 * @start - offset to start the search from
1601 * @start_ret - the first offset we found with the bits set
1602 * @end_ret - the final contiguous range of the bits that were set
1603 * @bits - bits to look for
1604 *
1605 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1606 * to set bits appropriately, and then merge them again.  During this time it
1607 * will drop the tree->lock, so use this helper if you want to find the actual
1608 * contiguous area for given bits.  We will search to the first bit we find, and
1609 * then walk down the tree until we find a non-contiguous area.  The area
1610 * returned will be the full contiguous area with the bits set.
1611 */
1612int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1613			       u64 *start_ret, u64 *end_ret, unsigned bits)
1614{
1615	struct extent_state *state;
1616	int ret = 1;
1617
1618	spin_lock(&tree->lock);
1619	state = find_first_extent_bit_state(tree, start, bits);
1620	if (state) {
1621		*start_ret = state->start;
1622		*end_ret = state->end;
1623		while ((state = next_state(state)) != NULL) {
1624			if (state->start > (*end_ret + 1))
1625				break;
1626			*end_ret = state->end;
1627		}
1628		ret = 0;
1629	}
1630	spin_unlock(&tree->lock);
1631	return ret;
1632}
1633
1634/**
1635 * find_first_clear_extent_bit - find the first range that has @bits not set.
1636 * This range could start before @start.
1637 *
1638 * @tree - the tree to search
1639 * @start - the offset at/after which the found extent should start
1640 * @start_ret - records the beginning of the range
1641 * @end_ret - records the end of the range (inclusive)
1642 * @bits - the set of bits which must be unset
1643 *
1644 * Since unallocated range is also considered one which doesn't have the bits
1645 * set it's possible that @end_ret contains -1, this happens in case the range
1646 * spans (last_range_end, end of device]. In this case it's up to the caller to
1647 * trim @end_ret to the appropriate size.
1648 */
1649void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1650				 u64 *start_ret, u64 *end_ret, unsigned bits)
1651{
1652	struct extent_state *state;
1653	struct rb_node *node, *prev = NULL, *next;
1654
1655	spin_lock(&tree->lock);
1656
1657	/* Find first extent with bits cleared */
1658	while (1) {
1659		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1660		if (!node && !next && !prev) {
1661			/*
1662			 * Tree is completely empty, send full range and let
1663			 * caller deal with it
1664			 */
1665			*start_ret = 0;
1666			*end_ret = -1;
1667			goto out;
1668		} else if (!node && !next) {
1669			/*
1670			 * We are past the last allocated chunk, set start at
1671			 * the end of the last extent.
1672			 */
1673			state = rb_entry(prev, struct extent_state, rb_node);
1674			*start_ret = state->end + 1;
1675			*end_ret = -1;
1676			goto out;
1677		} else if (!node) {
1678			node = next;
1679		}
1680		/*
1681		 * At this point 'node' either contains 'start' or start is
1682		 * before 'node'
1683		 */
1684		state = rb_entry(node, struct extent_state, rb_node);
1685
1686		if (in_range(start, state->start, state->end - state->start + 1)) {
1687			if (state->state & bits) {
1688				/*
1689				 * |--range with bits sets--|
1690				 *    |
1691				 *    start
1692				 */
1693				start = state->end + 1;
1694			} else {
1695				/*
1696				 * 'start' falls within a range that doesn't
1697				 * have the bits set, so take its start as
1698				 * the beginning of the desired range
1699				 *
1700				 * |--range with bits cleared----|
1701				 *      |
1702				 *      start
1703				 */
1704				*start_ret = state->start;
1705				break;
1706			}
1707		} else {
1708			/*
1709			 * |---prev range---|---hole/unset---|---node range---|
1710			 *                          |
1711			 *                        start
1712			 *
1713			 *                        or
1714			 *
1715			 * |---hole/unset--||--first node--|
1716			 * 0   |
1717			 *    start
1718			 */
1719			if (prev) {
1720				state = rb_entry(prev, struct extent_state,
1721						 rb_node);
1722				*start_ret = state->end + 1;
1723			} else {
1724				*start_ret = 0;
1725			}
1726			break;
1727		}
1728	}
1729
1730	/*
1731	 * Find the longest stretch from start until an entry which has the
1732	 * bits set
1733	 */
1734	while (1) {
1735		state = rb_entry(node, struct extent_state, rb_node);
1736		if (state->end >= start && !(state->state & bits)) {
1737			*end_ret = state->end;
1738		} else {
1739			*end_ret = state->start - 1;
1740			break;
1741		}
1742
1743		node = rb_next(node);
1744		if (!node)
1745			break;
1746	}
1747out:
1748	spin_unlock(&tree->lock);
1749}
1750
1751/*
1752 * find a contiguous range of bytes in the file marked as delalloc, not
1753 * more than 'max_bytes'.  start and end are used to return the range,
1754 *
1755 * true is returned if we find something, false if nothing was in the tree
1756 */
1757bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1758			       u64 *end, u64 max_bytes,
1759			       struct extent_state **cached_state)
1760{
1761	struct rb_node *node;
1762	struct extent_state *state;
1763	u64 cur_start = *start;
1764	bool found = false;
1765	u64 total_bytes = 0;
1766
1767	spin_lock(&tree->lock);
1768
1769	/*
1770	 * this search will find all the extents that end after
1771	 * our range starts.
1772	 */
1773	node = tree_search(tree, cur_start);
1774	if (!node) {
1775		*end = (u64)-1;
1776		goto out;
1777	}
1778
1779	while (1) {
1780		state = rb_entry(node, struct extent_state, rb_node);
1781		if (found && (state->start != cur_start ||
1782			      (state->state & EXTENT_BOUNDARY))) {
1783			goto out;
1784		}
1785		if (!(state->state & EXTENT_DELALLOC)) {
1786			if (!found)
1787				*end = state->end;
1788			goto out;
1789		}
1790		if (!found) {
1791			*start = state->start;
1792			*cached_state = state;
1793			refcount_inc(&state->refs);
1794		}
1795		found = true;
1796		*end = state->end;
1797		cur_start = state->end + 1;
1798		node = rb_next(node);
1799		total_bytes += state->end - state->start + 1;
1800		if (total_bytes >= max_bytes)
1801			break;
1802		if (!node)
1803			break;
1804	}
1805out:
1806	spin_unlock(&tree->lock);
1807	return found;
1808}
1809
1810static int __process_pages_contig(struct address_space *mapping,
1811				  struct page *locked_page,
1812				  pgoff_t start_index, pgoff_t end_index,
1813				  unsigned long page_ops, pgoff_t *index_ret);
1814
1815static noinline void __unlock_for_delalloc(struct inode *inode,
1816					   struct page *locked_page,
1817					   u64 start, u64 end)
1818{
1819	unsigned long index = start >> PAGE_SHIFT;
1820	unsigned long end_index = end >> PAGE_SHIFT;
1821
1822	ASSERT(locked_page);
1823	if (index == locked_page->index && end_index == index)
1824		return;
1825
1826	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1827			       PAGE_UNLOCK, NULL);
1828}
1829
1830static noinline int lock_delalloc_pages(struct inode *inode,
1831					struct page *locked_page,
1832					u64 delalloc_start,
1833					u64 delalloc_end)
1834{
1835	unsigned long index = delalloc_start >> PAGE_SHIFT;
1836	unsigned long index_ret = index;
1837	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1838	int ret;
1839
1840	ASSERT(locked_page);
1841	if (index == locked_page->index && index == end_index)
1842		return 0;
1843
1844	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1845				     end_index, PAGE_LOCK, &index_ret);
1846	if (ret == -EAGAIN)
1847		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1848				      (u64)index_ret << PAGE_SHIFT);
1849	return ret;
1850}
1851
1852/*
1853 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1854 * more than @max_bytes.  @Start and @end are used to return the range,
1855 *
1856 * Return: true if we find something
1857 *         false if nothing was in the tree
1858 */
1859EXPORT_FOR_TESTS
1860noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1861				    struct page *locked_page, u64 *start,
1862				    u64 *end)
1863{
1864	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1865	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1866	u64 delalloc_start;
1867	u64 delalloc_end;
1868	bool found;
1869	struct extent_state *cached_state = NULL;
1870	int ret;
1871	int loops = 0;
1872
1873again:
1874	/* step one, find a bunch of delalloc bytes starting at start */
1875	delalloc_start = *start;
1876	delalloc_end = 0;
1877	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1878					  max_bytes, &cached_state);
1879	if (!found || delalloc_end <= *start) {
1880		*start = delalloc_start;
1881		*end = delalloc_end;
1882		free_extent_state(cached_state);
1883		return false;
1884	}
1885
1886	/*
1887	 * start comes from the offset of locked_page.  We have to lock
1888	 * pages in order, so we can't process delalloc bytes before
1889	 * locked_page
1890	 */
1891	if (delalloc_start < *start)
1892		delalloc_start = *start;
1893
1894	/*
1895	 * make sure to limit the number of pages we try to lock down
1896	 */
1897	if (delalloc_end + 1 - delalloc_start > max_bytes)
1898		delalloc_end = delalloc_start + max_bytes - 1;
1899
1900	/* step two, lock all the pages after the page that has start */
1901	ret = lock_delalloc_pages(inode, locked_page,
1902				  delalloc_start, delalloc_end);
1903	ASSERT(!ret || ret == -EAGAIN);
1904	if (ret == -EAGAIN) {
1905		/* some of the pages are gone, lets avoid looping by
1906		 * shortening the size of the delalloc range we're searching
1907		 */
1908		free_extent_state(cached_state);
1909		cached_state = NULL;
1910		if (!loops) {
1911			max_bytes = PAGE_SIZE;
1912			loops = 1;
1913			goto again;
1914		} else {
1915			found = false;
1916			goto out_failed;
1917		}
1918	}
1919
1920	/* step three, lock the state bits for the whole range */
1921	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1922
1923	/* then test to make sure it is all still delalloc */
1924	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1925			     EXTENT_DELALLOC, 1, cached_state);
1926	if (!ret) {
1927		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1928				     &cached_state);
1929		__unlock_for_delalloc(inode, locked_page,
1930			      delalloc_start, delalloc_end);
1931		cond_resched();
1932		goto again;
1933	}
1934	free_extent_state(cached_state);
1935	*start = delalloc_start;
1936	*end = delalloc_end;
1937out_failed:
1938	return found;
1939}
1940
1941static int __process_pages_contig(struct address_space *mapping,
1942				  struct page *locked_page,
1943				  pgoff_t start_index, pgoff_t end_index,
1944				  unsigned long page_ops, pgoff_t *index_ret)
1945{
1946	unsigned long nr_pages = end_index - start_index + 1;
1947	unsigned long pages_locked = 0;
1948	pgoff_t index = start_index;
1949	struct page *pages[16];
1950	unsigned ret;
1951	int err = 0;
1952	int i;
1953
1954	if (page_ops & PAGE_LOCK) {
1955		ASSERT(page_ops == PAGE_LOCK);
1956		ASSERT(index_ret && *index_ret == start_index);
1957	}
1958
1959	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1960		mapping_set_error(mapping, -EIO);
1961
1962	while (nr_pages > 0) {
1963		ret = find_get_pages_contig(mapping, index,
1964				     min_t(unsigned long,
1965				     nr_pages, ARRAY_SIZE(pages)), pages);
1966		if (ret == 0) {
1967			/*
1968			 * Only if we're going to lock these pages,
1969			 * can we find nothing at @index.
1970			 */
1971			ASSERT(page_ops & PAGE_LOCK);
1972			err = -EAGAIN;
1973			goto out;
1974		}
1975
1976		for (i = 0; i < ret; i++) {
1977			if (page_ops & PAGE_SET_PRIVATE2)
1978				SetPagePrivate2(pages[i]);
1979
1980			if (locked_page && pages[i] == locked_page) {
1981				put_page(pages[i]);
1982				pages_locked++;
1983				continue;
1984			}
1985			if (page_ops & PAGE_CLEAR_DIRTY)
1986				clear_page_dirty_for_io(pages[i]);
1987			if (page_ops & PAGE_SET_WRITEBACK)
1988				set_page_writeback(pages[i]);
1989			if (page_ops & PAGE_SET_ERROR)
1990				SetPageError(pages[i]);
1991			if (page_ops & PAGE_END_WRITEBACK)
1992				end_page_writeback(pages[i]);
1993			if (page_ops & PAGE_UNLOCK)
1994				unlock_page(pages[i]);
1995			if (page_ops & PAGE_LOCK) {
1996				lock_page(pages[i]);
1997				if (!PageDirty(pages[i]) ||
1998				    pages[i]->mapping != mapping) {
1999					unlock_page(pages[i]);
2000					for (; i < ret; i++)
2001						put_page(pages[i]);
2002					err = -EAGAIN;
2003					goto out;
2004				}
2005			}
2006			put_page(pages[i]);
2007			pages_locked++;
2008		}
2009		nr_pages -= ret;
2010		index += ret;
2011		cond_resched();
2012	}
2013out:
2014	if (err && index_ret)
2015		*index_ret = start_index + pages_locked - 1;
2016	return err;
2017}
2018
2019void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2020				  struct page *locked_page,
2021				  unsigned clear_bits,
2022				  unsigned long page_ops)
2023{
2024	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2025
2026	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2027			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2028			       page_ops, NULL);
2029}
2030
2031/*
2032 * count the number of bytes in the tree that have a given bit(s)
2033 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2034 * cached.  The total number found is returned.
2035 */
2036u64 count_range_bits(struct extent_io_tree *tree,
2037		     u64 *start, u64 search_end, u64 max_bytes,
2038		     unsigned bits, int contig)
2039{
2040	struct rb_node *node;
2041	struct extent_state *state;
2042	u64 cur_start = *start;
2043	u64 total_bytes = 0;
2044	u64 last = 0;
2045	int found = 0;
2046
2047	if (WARN_ON(search_end <= cur_start))
2048		return 0;
2049
2050	spin_lock(&tree->lock);
2051	if (cur_start == 0 && bits == EXTENT_DIRTY) {
2052		total_bytes = tree->dirty_bytes;
2053		goto out;
2054	}
2055	/*
2056	 * this search will find all the extents that end after
2057	 * our range starts.
2058	 */
2059	node = tree_search(tree, cur_start);
2060	if (!node)
2061		goto out;
2062
2063	while (1) {
2064		state = rb_entry(node, struct extent_state, rb_node);
2065		if (state->start > search_end)
2066			break;
2067		if (contig && found && state->start > last + 1)
2068			break;
2069		if (state->end >= cur_start && (state->state & bits) == bits) {
2070			total_bytes += min(search_end, state->end) + 1 -
2071				       max(cur_start, state->start);
2072			if (total_bytes >= max_bytes)
2073				break;
2074			if (!found) {
2075				*start = max(cur_start, state->start);
2076				found = 1;
2077			}
2078			last = state->end;
2079		} else if (contig && found) {
2080			break;
2081		}
2082		node = rb_next(node);
2083		if (!node)
2084			break;
2085	}
2086out:
2087	spin_unlock(&tree->lock);
2088	return total_bytes;
2089}
2090
2091/*
2092 * set the private field for a given byte offset in the tree.  If there isn't
2093 * an extent_state there already, this does nothing.
2094 */
2095int set_state_failrec(struct extent_io_tree *tree, u64 start,
2096		      struct io_failure_record *failrec)
2097{
2098	struct rb_node *node;
2099	struct extent_state *state;
2100	int ret = 0;
2101
2102	spin_lock(&tree->lock);
2103	/*
2104	 * this search will find all the extents that end after
2105	 * our range starts.
2106	 */
2107	node = tree_search(tree, start);
2108	if (!node) {
2109		ret = -ENOENT;
2110		goto out;
2111	}
2112	state = rb_entry(node, struct extent_state, rb_node);
2113	if (state->start != start) {
2114		ret = -ENOENT;
2115		goto out;
2116	}
2117	state->failrec = failrec;
2118out:
2119	spin_unlock(&tree->lock);
2120	return ret;
2121}
2122
2123struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2124{
2125	struct rb_node *node;
2126	struct extent_state *state;
2127	struct io_failure_record *failrec;
2128
2129	spin_lock(&tree->lock);
2130	/*
2131	 * this search will find all the extents that end after
2132	 * our range starts.
2133	 */
2134	node = tree_search(tree, start);
2135	if (!node) {
2136		failrec = ERR_PTR(-ENOENT);
2137		goto out;
2138	}
2139	state = rb_entry(node, struct extent_state, rb_node);
2140	if (state->start != start) {
2141		failrec = ERR_PTR(-ENOENT);
2142		goto out;
2143	}
2144
2145	failrec = state->failrec;
2146out:
2147	spin_unlock(&tree->lock);
2148	return failrec;
2149}
2150
2151/*
2152 * searches a range in the state tree for a given mask.
2153 * If 'filled' == 1, this returns 1 only if every extent in the tree
2154 * has the bits set.  Otherwise, 1 is returned if any bit in the
2155 * range is found set.
2156 */
2157int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2158		   unsigned bits, int filled, struct extent_state *cached)
2159{
2160	struct extent_state *state = NULL;
2161	struct rb_node *node;
2162	int bitset = 0;
2163
2164	spin_lock(&tree->lock);
2165	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2166	    cached->end > start)
2167		node = &cached->rb_node;
2168	else
2169		node = tree_search(tree, start);
2170	while (node && start <= end) {
2171		state = rb_entry(node, struct extent_state, rb_node);
2172
2173		if (filled && state->start > start) {
2174			bitset = 0;
2175			break;
2176		}
2177
2178		if (state->start > end)
2179			break;
2180
2181		if (state->state & bits) {
2182			bitset = 1;
2183			if (!filled)
2184				break;
2185		} else if (filled) {
2186			bitset = 0;
2187			break;
2188		}
2189
2190		if (state->end == (u64)-1)
2191			break;
2192
2193		start = state->end + 1;
2194		if (start > end)
2195			break;
2196		node = rb_next(node);
2197		if (!node) {
2198			if (filled)
2199				bitset = 0;
2200			break;
2201		}
2202	}
2203	spin_unlock(&tree->lock);
2204	return bitset;
2205}
2206
2207/*
2208 * helper function to set a given page up to date if all the
2209 * extents in the tree for that page are up to date
2210 */
2211static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2212{
2213	u64 start = page_offset(page);
2214	u64 end = start + PAGE_SIZE - 1;
2215	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2216		SetPageUptodate(page);
2217}
2218
2219int free_io_failure(struct extent_io_tree *failure_tree,
2220		    struct extent_io_tree *io_tree,
2221		    struct io_failure_record *rec)
2222{
2223	int ret;
2224	int err = 0;
2225
2226	set_state_failrec(failure_tree, rec->start, NULL);
2227	ret = clear_extent_bits(failure_tree, rec->start,
2228				rec->start + rec->len - 1,
2229				EXTENT_LOCKED | EXTENT_DIRTY);
2230	if (ret)
2231		err = ret;
2232
2233	ret = clear_extent_bits(io_tree, rec->start,
2234				rec->start + rec->len - 1,
2235				EXTENT_DAMAGED);
2236	if (ret && !err)
2237		err = ret;
2238
2239	kfree(rec);
2240	return err;
2241}
2242
2243/*
2244 * this bypasses the standard btrfs submit functions deliberately, as
2245 * the standard behavior is to write all copies in a raid setup. here we only
2246 * want to write the one bad copy. so we do the mapping for ourselves and issue
2247 * submit_bio directly.
2248 * to avoid any synchronization issues, wait for the data after writing, which
2249 * actually prevents the read that triggered the error from finishing.
2250 * currently, there can be no more than two copies of every data bit. thus,
2251 * exactly one rewrite is required.
2252 */
2253int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2254		      u64 length, u64 logical, struct page *page,
2255		      unsigned int pg_offset, int mirror_num)
2256{
2257	struct bio *bio;
2258	struct btrfs_device *dev;
2259	u64 map_length = 0;
2260	u64 sector;
2261	struct btrfs_bio *bbio = NULL;
2262	int ret;
2263
2264	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2265	BUG_ON(!mirror_num);
2266
2267	bio = btrfs_io_bio_alloc(1);
2268	bio->bi_iter.bi_size = 0;
2269	map_length = length;
2270
2271	/*
2272	 * Avoid races with device replace and make sure our bbio has devices
2273	 * associated to its stripes that don't go away while we are doing the
2274	 * read repair operation.
2275	 */
2276	btrfs_bio_counter_inc_blocked(fs_info);
2277	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2278		/*
2279		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2280		 * to update all raid stripes, but here we just want to correct
2281		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2282		 * stripe's dev and sector.
2283		 */
2284		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2285				      &map_length, &bbio, 0);
2286		if (ret) {
2287			btrfs_bio_counter_dec(fs_info);
2288			bio_put(bio);
2289			return -EIO;
2290		}
2291		ASSERT(bbio->mirror_num == 1);
2292	} else {
2293		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2294				      &map_length, &bbio, mirror_num);
2295		if (ret) {
2296			btrfs_bio_counter_dec(fs_info);
2297			bio_put(bio);
2298			return -EIO;
2299		}
2300		BUG_ON(mirror_num != bbio->mirror_num);
2301	}
2302
2303	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2304	bio->bi_iter.bi_sector = sector;
2305	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2306	btrfs_put_bbio(bbio);
2307	if (!dev || !dev->bdev ||
2308	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2309		btrfs_bio_counter_dec(fs_info);
2310		bio_put(bio);
2311		return -EIO;
2312	}
2313	bio_set_dev(bio, dev->bdev);
2314	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2315	bio_add_page(bio, page, length, pg_offset);
2316
2317	if (btrfsic_submit_bio_wait(bio)) {
2318		/* try to remap that extent elsewhere? */
2319		btrfs_bio_counter_dec(fs_info);
2320		bio_put(bio);
2321		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2322		return -EIO;
2323	}
2324
2325	btrfs_info_rl_in_rcu(fs_info,
2326		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2327				  ino, start,
2328				  rcu_str_deref(dev->name), sector);
2329	btrfs_bio_counter_dec(fs_info);
2330	bio_put(bio);
2331	return 0;
2332}
2333
2334int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2335{
2336	struct btrfs_fs_info *fs_info = eb->fs_info;
2337	u64 start = eb->start;
2338	int i, num_pages = num_extent_pages(eb);
2339	int ret = 0;
2340
2341	if (sb_rdonly(fs_info->sb))
2342		return -EROFS;
2343
2344	for (i = 0; i < num_pages; i++) {
2345		struct page *p = eb->pages[i];
2346
2347		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2348					start - page_offset(p), mirror_num);
2349		if (ret)
2350			break;
2351		start += PAGE_SIZE;
2352	}
2353
2354	return ret;
2355}
2356
2357/*
2358 * each time an IO finishes, we do a fast check in the IO failure tree
2359 * to see if we need to process or clean up an io_failure_record
2360 */
2361int clean_io_failure(struct btrfs_fs_info *fs_info,
2362		     struct extent_io_tree *failure_tree,
2363		     struct extent_io_tree *io_tree, u64 start,
2364		     struct page *page, u64 ino, unsigned int pg_offset)
2365{
2366	u64 private;
2367	struct io_failure_record *failrec;
2368	struct extent_state *state;
2369	int num_copies;
2370	int ret;
2371
2372	private = 0;
2373	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2374			       EXTENT_DIRTY, 0);
2375	if (!ret)
2376		return 0;
2377
2378	failrec = get_state_failrec(failure_tree, start);
2379	if (IS_ERR(failrec))
2380		return 0;
2381
2382	BUG_ON(!failrec->this_mirror);
2383
2384	if (failrec->in_validation) {
2385		/* there was no real error, just free the record */
2386		btrfs_debug(fs_info,
2387			"clean_io_failure: freeing dummy error at %llu",
2388			failrec->start);
2389		goto out;
2390	}
2391	if (sb_rdonly(fs_info->sb))
2392		goto out;
2393
2394	spin_lock(&io_tree->lock);
2395	state = find_first_extent_bit_state(io_tree,
2396					    failrec->start,
2397					    EXTENT_LOCKED);
2398	spin_unlock(&io_tree->lock);
2399
2400	if (state && state->start <= failrec->start &&
2401	    state->end >= failrec->start + failrec->len - 1) {
2402		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2403					      failrec->len);
2404		if (num_copies > 1)  {
2405			repair_io_failure(fs_info, ino, start, failrec->len,
2406					  failrec->logical, page, pg_offset,
2407					  failrec->failed_mirror);
2408		}
2409	}
2410
2411out:
2412	free_io_failure(failure_tree, io_tree, failrec);
2413
2414	return 0;
2415}
2416
2417/*
2418 * Can be called when
2419 * - hold extent lock
2420 * - under ordered extent
2421 * - the inode is freeing
2422 */
2423void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2424{
2425	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2426	struct io_failure_record *failrec;
2427	struct extent_state *state, *next;
2428
2429	if (RB_EMPTY_ROOT(&failure_tree->state))
2430		return;
2431
2432	spin_lock(&failure_tree->lock);
2433	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2434	while (state) {
2435		if (state->start > end)
2436			break;
2437
2438		ASSERT(state->end <= end);
2439
2440		next = next_state(state);
2441
2442		failrec = state->failrec;
2443		free_extent_state(state);
2444		kfree(failrec);
2445
2446		state = next;
2447	}
2448	spin_unlock(&failure_tree->lock);
2449}
2450
2451static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2452							     u64 start, u64 end)
2453{
2454	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2455	struct io_failure_record *failrec;
2456	struct extent_map *em;
2457	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2458	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2459	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2460	int ret;
2461	u64 logical;
2462
2463	failrec = get_state_failrec(failure_tree, start);
2464	if (!IS_ERR(failrec)) {
2465		btrfs_debug(fs_info,
2466			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2467			failrec->logical, failrec->start, failrec->len,
2468			failrec->in_validation);
2469		/*
2470		 * when data can be on disk more than twice, add to failrec here
2471		 * (e.g. with a list for failed_mirror) to make
2472		 * clean_io_failure() clean all those errors at once.
2473		 */
2474
2475		return failrec;
2476	}
2477
2478	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2479	if (!failrec)
2480		return ERR_PTR(-ENOMEM);
2481
2482	failrec->start = start;
2483	failrec->len = end - start + 1;
2484	failrec->this_mirror = 0;
2485	failrec->bio_flags = 0;
2486	failrec->in_validation = 0;
2487
2488	read_lock(&em_tree->lock);
2489	em = lookup_extent_mapping(em_tree, start, failrec->len);
2490	if (!em) {
2491		read_unlock(&em_tree->lock);
2492		kfree(failrec);
2493		return ERR_PTR(-EIO);
2494	}
2495
2496	if (em->start > start || em->start + em->len <= start) {
2497		free_extent_map(em);
2498		em = NULL;
2499	}
2500	read_unlock(&em_tree->lock);
2501	if (!em) {
2502		kfree(failrec);
2503		return ERR_PTR(-EIO);
2504	}
2505
2506	logical = start - em->start;
2507	logical = em->block_start + logical;
2508	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2509		logical = em->block_start;
2510		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2511		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2512	}
2513
2514	btrfs_debug(fs_info,
2515		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2516		    logical, start, failrec->len);
2517
2518	failrec->logical = logical;
2519	free_extent_map(em);
2520
2521	/* Set the bits in the private failure tree */
2522	ret = set_extent_bits(failure_tree, start, end,
2523			      EXTENT_LOCKED | EXTENT_DIRTY);
2524	if (ret >= 0) {
2525		ret = set_state_failrec(failure_tree, start, failrec);
2526		/* Set the bits in the inode's tree */
2527		ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2528	} else if (ret < 0) {
2529		kfree(failrec);
2530		return ERR_PTR(ret);
2531	}
2532
2533	return failrec;
2534}
2535
2536static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2537				   struct io_failure_record *failrec,
2538				   int failed_mirror)
2539{
2540	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2541	int num_copies;
2542
2543	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2544	if (num_copies == 1) {
2545		/*
2546		 * we only have a single copy of the data, so don't bother with
2547		 * all the retry and error correction code that follows. no
2548		 * matter what the error is, it is very likely to persist.
2549		 */
2550		btrfs_debug(fs_info,
2551			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2552			num_copies, failrec->this_mirror, failed_mirror);
2553		return false;
2554	}
2555
2556	/*
2557	 * there are two premises:
2558	 *	a) deliver good data to the caller
2559	 *	b) correct the bad sectors on disk
2560	 */
2561	if (needs_validation) {
2562		/*
2563		 * to fulfill b), we need to know the exact failing sectors, as
2564		 * we don't want to rewrite any more than the failed ones. thus,
2565		 * we need separate read requests for the failed bio
2566		 *
2567		 * if the following BUG_ON triggers, our validation request got
2568		 * merged. we need separate requests for our algorithm to work.
2569		 */
2570		BUG_ON(failrec->in_validation);
2571		failrec->in_validation = 1;
2572		failrec->this_mirror = failed_mirror;
2573	} else {
2574		/*
2575		 * we're ready to fulfill a) and b) alongside. get a good copy
2576		 * of the failed sector and if we succeed, we have setup
2577		 * everything for repair_io_failure to do the rest for us.
2578		 */
2579		if (failrec->in_validation) {
2580			BUG_ON(failrec->this_mirror != failed_mirror);
2581			failrec->in_validation = 0;
2582			failrec->this_mirror = 0;
2583		}
2584		failrec->failed_mirror = failed_mirror;
2585		failrec->this_mirror++;
2586		if (failrec->this_mirror == failed_mirror)
2587			failrec->this_mirror++;
2588	}
2589
2590	if (failrec->this_mirror > num_copies) {
2591		btrfs_debug(fs_info,
2592			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2593			num_copies, failrec->this_mirror, failed_mirror);
2594		return false;
2595	}
2596
2597	return true;
2598}
2599
2600static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2601{
2602	u64 len = 0;
2603	const u32 blocksize = inode->i_sb->s_blocksize;
2604
2605	/*
2606	 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2607	 * I/O error. In this case, we already know exactly which sector was
2608	 * bad, so we don't need to validate.
2609	 */
2610	if (bio->bi_status == BLK_STS_OK)
2611		return false;
2612
2613	/*
2614	 * We need to validate each sector individually if the failed I/O was
2615	 * for multiple sectors.
2616	 *
2617	 * There are a few possible bios that can end up here:
2618	 * 1. A buffered read bio, which is not cloned.
2619	 * 2. A direct I/O read bio, which is cloned.
2620	 * 3. A (buffered or direct) repair bio, which is not cloned.
2621	 *
2622	 * For cloned bios (case 2), we can get the size from
2623	 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2624	 * it from the bvecs.
2625	 */
2626	if (bio_flagged(bio, BIO_CLONED)) {
2627		if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2628			return true;
2629	} else {
2630		struct bio_vec *bvec;
2631		int i;
2632
2633		bio_for_each_bvec_all(bvec, bio, i) {
2634			len += bvec->bv_len;
2635			if (len > blocksize)
2636				return true;
2637		}
2638	}
2639	return false;
2640}
2641
2642blk_status_t btrfs_submit_read_repair(struct inode *inode,
2643				      struct bio *failed_bio, u64 phy_offset,
2644				      struct page *page, unsigned int pgoff,
2645				      u64 start, u64 end, int failed_mirror,
2646				      submit_bio_hook_t *submit_bio_hook)
2647{
2648	struct io_failure_record *failrec;
2649	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2650	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2651	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2652	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2653	const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits;
2654	bool need_validation;
2655	struct bio *repair_bio;
2656	struct btrfs_io_bio *repair_io_bio;
2657	blk_status_t status;
2658
2659	btrfs_debug(fs_info,
2660		   "repair read error: read error at %llu", start);
2661
2662	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2663
2664	failrec = btrfs_get_io_failure_record(inode, start, end);
2665	if (IS_ERR(failrec))
2666		return errno_to_blk_status(PTR_ERR(failrec));
2667
2668	need_validation = btrfs_io_needs_validation(inode, failed_bio);
2669
2670	if (!btrfs_check_repairable(inode, need_validation, failrec,
2671				    failed_mirror)) {
2672		free_io_failure(failure_tree, tree, failrec);
2673		return BLK_STS_IOERR;
2674	}
2675
2676	repair_bio = btrfs_io_bio_alloc(1);
2677	repair_io_bio = btrfs_io_bio(repair_bio);
2678	repair_bio->bi_opf = REQ_OP_READ;
2679	if (need_validation)
2680		repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2681	repair_bio->bi_end_io = failed_bio->bi_end_io;
2682	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2683	repair_bio->bi_private = failed_bio->bi_private;
2684
2685	if (failed_io_bio->csum) {
2686		const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2687
2688		repair_io_bio->csum = repair_io_bio->csum_inline;
2689		memcpy(repair_io_bio->csum,
2690		       failed_io_bio->csum + csum_size * icsum, csum_size);
2691	}
2692
2693	bio_add_page(repair_bio, page, failrec->len, pgoff);
2694	repair_io_bio->logical = failrec->start;
2695	repair_io_bio->iter = repair_bio->bi_iter;
2696
2697	btrfs_debug(btrfs_sb(inode->i_sb),
2698"repair read error: submitting new read to mirror %d, in_validation=%d",
2699		    failrec->this_mirror, failrec->in_validation);
2700
2701	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2702				 failrec->bio_flags);
2703	if (status) {
2704		free_io_failure(failure_tree, tree, failrec);
2705		bio_put(repair_bio);
2706	}
2707	return status;
2708}
2709
2710/* lots and lots of room for performance fixes in the end_bio funcs */
2711
2712void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2713{
2714	int uptodate = (err == 0);
2715	int ret = 0;
2716
2717	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2718
2719	if (!uptodate) {
2720		ClearPageUptodate(page);
2721		SetPageError(page);
2722		ret = err < 0 ? err : -EIO;
2723		mapping_set_error(page->mapping, ret);
2724	}
2725}
2726
2727/*
2728 * after a writepage IO is done, we need to:
2729 * clear the uptodate bits on error
2730 * clear the writeback bits in the extent tree for this IO
2731 * end_page_writeback if the page has no more pending IO
2732 *
2733 * Scheduling is not allowed, so the extent state tree is expected
2734 * to have one and only one object corresponding to this IO.
2735 */
2736static void end_bio_extent_writepage(struct bio *bio)
2737{
2738	int error = blk_status_to_errno(bio->bi_status);
2739	struct bio_vec *bvec;
2740	u64 start;
2741	u64 end;
2742	struct bvec_iter_all iter_all;
2743
2744	ASSERT(!bio_flagged(bio, BIO_CLONED));
2745	bio_for_each_segment_all(bvec, bio, iter_all) {
2746		struct page *page = bvec->bv_page;
2747		struct inode *inode = page->mapping->host;
2748		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2749
2750		/* We always issue full-page reads, but if some block
2751		 * in a page fails to read, blk_update_request() will
2752		 * advance bv_offset and adjust bv_len to compensate.
2753		 * Print a warning for nonzero offsets, and an error
2754		 * if they don't add up to a full page.  */
2755		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2756			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2757				btrfs_err(fs_info,
2758				   "partial page write in btrfs with offset %u and length %u",
2759					bvec->bv_offset, bvec->bv_len);
2760			else
2761				btrfs_info(fs_info,
2762				   "incomplete page write in btrfs with offset %u and length %u",
2763					bvec->bv_offset, bvec->bv_len);
2764		}
2765
2766		start = page_offset(page);
2767		end = start + bvec->bv_offset + bvec->bv_len - 1;
2768
2769		end_extent_writepage(page, error, start, end);
2770		end_page_writeback(page);
2771	}
2772
2773	bio_put(bio);
2774}
2775
2776static void
2777endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2778			      int uptodate)
2779{
2780	struct extent_state *cached = NULL;
2781	u64 end = start + len - 1;
2782
2783	if (uptodate && tree->track_uptodate)
2784		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2785	unlock_extent_cached_atomic(tree, start, end, &cached);
2786}
2787
2788/*
2789 * after a readpage IO is done, we need to:
2790 * clear the uptodate bits on error
2791 * set the uptodate bits if things worked
2792 * set the page up to date if all extents in the tree are uptodate
2793 * clear the lock bit in the extent tree
2794 * unlock the page if there are no other extents locked for it
2795 *
2796 * Scheduling is not allowed, so the extent state tree is expected
2797 * to have one and only one object corresponding to this IO.
2798 */
2799static void end_bio_extent_readpage(struct bio *bio)
2800{
2801	struct bio_vec *bvec;
2802	int uptodate = !bio->bi_status;
2803	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2804	struct extent_io_tree *tree, *failure_tree;
2805	u64 offset = 0;
2806	u64 start;
2807	u64 end;
2808	u64 len;
2809	u64 extent_start = 0;
2810	u64 extent_len = 0;
2811	int mirror;
2812	int ret;
2813	struct bvec_iter_all iter_all;
2814
2815	ASSERT(!bio_flagged(bio, BIO_CLONED));
2816	bio_for_each_segment_all(bvec, bio, iter_all) {
2817		struct page *page = bvec->bv_page;
2818		struct inode *inode = page->mapping->host;
2819		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2820
2821		btrfs_debug(fs_info,
2822			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2823			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2824			io_bio->mirror_num);
2825		tree = &BTRFS_I(inode)->io_tree;
2826		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2827
2828		/* We always issue full-page reads, but if some block
2829		 * in a page fails to read, blk_update_request() will
2830		 * advance bv_offset and adjust bv_len to compensate.
2831		 * Print a warning for nonzero offsets, and an error
2832		 * if they don't add up to a full page.  */
2833		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2834			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2835				btrfs_err(fs_info,
2836					"partial page read in btrfs with offset %u and length %u",
2837					bvec->bv_offset, bvec->bv_len);
2838			else
2839				btrfs_info(fs_info,
2840					"incomplete page read in btrfs with offset %u and length %u",
2841					bvec->bv_offset, bvec->bv_len);
2842		}
2843
2844		start = page_offset(page);
2845		end = start + bvec->bv_offset + bvec->bv_len - 1;
2846		len = bvec->bv_len;
2847
2848		mirror = io_bio->mirror_num;
2849		if (likely(uptodate)) {
2850			if (is_data_inode(inode))
2851				ret = btrfs_verify_data_csum(io_bio, offset, page,
2852							     start, end, mirror);
2853			else
2854				ret = btrfs_validate_metadata_buffer(io_bio,
2855					offset, page, start, end, mirror);
2856			if (ret)
2857				uptodate = 0;
2858			else
2859				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2860						 failure_tree, tree, start,
2861						 page,
2862						 btrfs_ino(BTRFS_I(inode)), 0);
2863		}
2864
2865		if (likely(uptodate))
2866			goto readpage_ok;
2867
2868		if (is_data_inode(inode)) {
2869
2870			/*
2871			 * The generic bio_readpage_error handles errors the
2872			 * following way: If possible, new read requests are
2873			 * created and submitted and will end up in
2874			 * end_bio_extent_readpage as well (if we're lucky,
2875			 * not in the !uptodate case). In that case it returns
2876			 * 0 and we just go on with the next page in our bio.
2877			 * If it can't handle the error it will return -EIO and
2878			 * we remain responsible for that page.
2879			 */
2880			if (!btrfs_submit_read_repair(inode, bio, offset, page,
2881						start - page_offset(page),
2882						start, end, mirror,
2883						btrfs_submit_data_bio)) {
2884				uptodate = !bio->bi_status;
2885				offset += len;
2886				continue;
2887			}
2888		} else {
2889			struct extent_buffer *eb;
2890
2891			eb = (struct extent_buffer *)page->private;
2892			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2893			eb->read_mirror = mirror;
2894			atomic_dec(&eb->io_pages);
2895			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2896					       &eb->bflags))
2897				btree_readahead_hook(eb, -EIO);
2898		}
2899readpage_ok:
2900		if (likely(uptodate)) {
2901			loff_t i_size = i_size_read(inode);
2902			pgoff_t end_index = i_size >> PAGE_SHIFT;
2903			unsigned off;
2904
2905			/* Zero out the end if this page straddles i_size */
2906			off = offset_in_page(i_size);
2907			if (page->index == end_index && off)
2908				zero_user_segment(page, off, PAGE_SIZE);
2909			SetPageUptodate(page);
2910		} else {
2911			ClearPageUptodate(page);
2912			SetPageError(page);
2913		}
2914		unlock_page(page);
2915		offset += len;
2916
2917		if (unlikely(!uptodate)) {
2918			if (extent_len) {
2919				endio_readpage_release_extent(tree,
2920							      extent_start,
2921							      extent_len, 1);
2922				extent_start = 0;
2923				extent_len = 0;
2924			}
2925			endio_readpage_release_extent(tree, start,
2926						      end - start + 1, 0);
2927		} else if (!extent_len) {
2928			extent_start = start;
2929			extent_len = end + 1 - start;
2930		} else if (extent_start + extent_len == start) {
2931			extent_len += end + 1 - start;
2932		} else {
2933			endio_readpage_release_extent(tree, extent_start,
2934						      extent_len, uptodate);
2935			extent_start = start;
2936			extent_len = end + 1 - start;
2937		}
2938	}
2939
2940	if (extent_len)
2941		endio_readpage_release_extent(tree, extent_start, extent_len,
2942					      uptodate);
2943	btrfs_io_bio_free_csum(io_bio);
2944	bio_put(bio);
2945}
2946
2947/*
2948 * Initialize the members up to but not including 'bio'. Use after allocating a
2949 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2950 * 'bio' because use of __GFP_ZERO is not supported.
2951 */
2952static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2953{
2954	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2955}
2956
2957/*
2958 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2959 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2960 * for the appropriate container_of magic
2961 */
2962struct bio *btrfs_bio_alloc(u64 first_byte)
2963{
2964	struct bio *bio;
2965
2966	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2967	bio->bi_iter.bi_sector = first_byte >> 9;
2968	btrfs_io_bio_init(btrfs_io_bio(bio));
2969	return bio;
2970}
2971
2972struct bio *btrfs_bio_clone(struct bio *bio)
2973{
2974	struct btrfs_io_bio *btrfs_bio;
2975	struct bio *new;
2976
2977	/* Bio allocation backed by a bioset does not fail */
2978	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2979	btrfs_bio = btrfs_io_bio(new);
2980	btrfs_io_bio_init(btrfs_bio);
2981	btrfs_bio->iter = bio->bi_iter;
2982	return new;
2983}
2984
2985struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2986{
2987	struct bio *bio;
2988
2989	/* Bio allocation backed by a bioset does not fail */
2990	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2991	btrfs_io_bio_init(btrfs_io_bio(bio));
2992	return bio;
2993}
2994
2995struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2996{
2997	struct bio *bio;
2998	struct btrfs_io_bio *btrfs_bio;
2999
3000	/* this will never fail when it's backed by a bioset */
3001	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3002	ASSERT(bio);
3003
3004	btrfs_bio = btrfs_io_bio(bio);
3005	btrfs_io_bio_init(btrfs_bio);
3006
3007	bio_trim(bio, offset >> 9, size >> 9);
3008	btrfs_bio->iter = bio->bi_iter;
3009	return bio;
3010}
3011
3012/*
3013 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3014 * @wbc:	optional writeback control for io accounting
3015 * @page:	page to add to the bio
3016 * @pg_offset:	offset of the new bio or to check whether we are adding
3017 *              a contiguous page to the previous one
3018 * @size:	portion of page that we want to write
3019 * @offset:	starting offset in the page
3020 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3021 * @end_io_func:     end_io callback for new bio
3022 * @mirror_num:	     desired mirror to read/write
3023 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3024 * @bio_flags:	flags of the current bio to see if we can merge them
3025 */
3026static int submit_extent_page(unsigned int opf,
3027			      struct writeback_control *wbc,
3028			      struct page *page, u64 offset,
3029			      size_t size, unsigned long pg_offset,
3030			      struct bio **bio_ret,
3031			      bio_end_io_t end_io_func,
3032			      int mirror_num,
3033			      unsigned long prev_bio_flags,
3034			      unsigned long bio_flags,
3035			      bool force_bio_submit)
3036{
3037	int ret = 0;
3038	struct bio *bio;
3039	size_t page_size = min_t(size_t, size, PAGE_SIZE);
3040	sector_t sector = offset >> 9;
3041	struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3042
3043	ASSERT(bio_ret);
3044
3045	if (*bio_ret) {
3046		bool contig;
3047		bool can_merge = true;
3048
3049		bio = *bio_ret;
3050		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3051			contig = bio->bi_iter.bi_sector == sector;
3052		else
3053			contig = bio_end_sector(bio) == sector;
3054
3055		if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3056			can_merge = false;
3057
3058		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3059		    force_bio_submit ||
3060		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3061			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3062			if (ret < 0) {
3063				*bio_ret = NULL;
3064				return ret;
3065			}
3066			bio = NULL;
3067		} else {
3068			if (wbc)
3069				wbc_account_cgroup_owner(wbc, page, page_size);
3070			return 0;
3071		}
3072	}
3073
3074	bio = btrfs_bio_alloc(offset);
3075	bio_add_page(bio, page, page_size, pg_offset);
3076	bio->bi_end_io = end_io_func;
3077	bio->bi_private = tree;
3078	bio->bi_write_hint = page->mapping->host->i_write_hint;
3079	bio->bi_opf = opf;
3080	if (wbc) {
3081		struct block_device *bdev;
3082
3083		bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3084		bio_set_dev(bio, bdev);
3085		wbc_init_bio(wbc, bio);
3086		wbc_account_cgroup_owner(wbc, page, page_size);
3087	}
3088
3089	*bio_ret = bio;
3090
3091	return ret;
3092}
3093
3094static void attach_extent_buffer_page(struct extent_buffer *eb,
3095				      struct page *page)
3096{
3097	if (!PagePrivate(page))
3098		attach_page_private(page, eb);
3099	else
3100		WARN_ON(page->private != (unsigned long)eb);
3101}
3102
3103void set_page_extent_mapped(struct page *page)
3104{
3105	if (!PagePrivate(page))
3106		attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3107}
3108
3109static struct extent_map *
3110__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3111		 u64 start, u64 len, struct extent_map **em_cached)
3112{
3113	struct extent_map *em;
3114
3115	if (em_cached && *em_cached) {
3116		em = *em_cached;
3117		if (extent_map_in_tree(em) && start >= em->start &&
3118		    start < extent_map_end(em)) {
3119			refcount_inc(&em->refs);
3120			return em;
3121		}
3122
3123		free_extent_map(em);
3124		*em_cached = NULL;
3125	}
3126
3127	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3128	if (em_cached && !IS_ERR_OR_NULL(em)) {
3129		BUG_ON(*em_cached);
3130		refcount_inc(&em->refs);
3131		*em_cached = em;
3132	}
3133	return em;
3134}
3135/*
3136 * basic readpage implementation.  Locked extent state structs are inserted
3137 * into the tree that are removed when the IO is done (by the end_io
3138 * handlers)
3139 * XXX JDM: This needs looking at to ensure proper page locking
3140 * return 0 on success, otherwise return error
3141 */
3142int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3143		      struct bio **bio, unsigned long *bio_flags,
3144		      unsigned int read_flags, u64 *prev_em_start)
3145{
3146	struct inode *inode = page->mapping->host;
3147	u64 start = page_offset(page);
3148	const u64 end = start + PAGE_SIZE - 1;
3149	u64 cur = start;
3150	u64 extent_offset;
3151	u64 last_byte = i_size_read(inode);
3152	u64 block_start;
3153	u64 cur_end;
3154	struct extent_map *em;
3155	int ret = 0;
3156	int nr = 0;
3157	size_t pg_offset = 0;
3158	size_t iosize;
3159	size_t disk_io_size;
3160	size_t blocksize = inode->i_sb->s_blocksize;
3161	unsigned long this_bio_flag = 0;
3162	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3163
3164	set_page_extent_mapped(page);
3165
3166	if (!PageUptodate(page)) {
3167		if (cleancache_get_page(page) == 0) {
3168			BUG_ON(blocksize != PAGE_SIZE);
3169			unlock_extent(tree, start, end);
3170			goto out;
3171		}
3172	}
3173
3174	if (page->index == last_byte >> PAGE_SHIFT) {
3175		char *userpage;
3176		size_t zero_offset = offset_in_page(last_byte);
3177
3178		if (zero_offset) {
3179			iosize = PAGE_SIZE - zero_offset;
3180			userpage = kmap_atomic(page);
3181			memset(userpage + zero_offset, 0, iosize);
3182			flush_dcache_page(page);
3183			kunmap_atomic(userpage);
3184		}
3185	}
3186	while (cur <= end) {
3187		bool force_bio_submit = false;
3188		u64 offset;
3189
3190		if (cur >= last_byte) {
3191			char *userpage;
3192			struct extent_state *cached = NULL;
3193
3194			iosize = PAGE_SIZE - pg_offset;
3195			userpage = kmap_atomic(page);
3196			memset(userpage + pg_offset, 0, iosize);
3197			flush_dcache_page(page);
3198			kunmap_atomic(userpage);
3199			set_extent_uptodate(tree, cur, cur + iosize - 1,
3200					    &cached, GFP_NOFS);
3201			unlock_extent_cached(tree, cur,
3202					     cur + iosize - 1, &cached);
3203			break;
3204		}
3205		em = __get_extent_map(inode, page, pg_offset, cur,
3206				      end - cur + 1, em_cached);
3207		if (IS_ERR_OR_NULL(em)) {
3208			SetPageError(page);
3209			unlock_extent(tree, cur, end);
3210			break;
3211		}
3212		extent_offset = cur - em->start;
3213		BUG_ON(extent_map_end(em) <= cur);
3214		BUG_ON(end < cur);
3215
3216		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3217			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3218			extent_set_compress_type(&this_bio_flag,
3219						 em->compress_type);
3220		}
3221
3222		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3223		cur_end = min(extent_map_end(em) - 1, end);
3224		iosize = ALIGN(iosize, blocksize);
3225		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3226			disk_io_size = em->block_len;
3227			offset = em->block_start;
3228		} else {
3229			offset = em->block_start + extent_offset;
3230			disk_io_size = iosize;
3231		}
3232		block_start = em->block_start;
3233		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3234			block_start = EXTENT_MAP_HOLE;
3235
3236		/*
3237		 * If we have a file range that points to a compressed extent
3238		 * and it's followed by a consecutive file range that points
3239		 * to the same compressed extent (possibly with a different
3240		 * offset and/or length, so it either points to the whole extent
3241		 * or only part of it), we must make sure we do not submit a
3242		 * single bio to populate the pages for the 2 ranges because
3243		 * this makes the compressed extent read zero out the pages
3244		 * belonging to the 2nd range. Imagine the following scenario:
3245		 *
3246		 *  File layout
3247		 *  [0 - 8K]                     [8K - 24K]
3248		 *    |                               |
3249		 *    |                               |
3250		 * points to extent X,         points to extent X,
3251		 * offset 4K, length of 8K     offset 0, length 16K
3252		 *
3253		 * [extent X, compressed length = 4K uncompressed length = 16K]
3254		 *
3255		 * If the bio to read the compressed extent covers both ranges,
3256		 * it will decompress extent X into the pages belonging to the
3257		 * first range and then it will stop, zeroing out the remaining
3258		 * pages that belong to the other range that points to extent X.
3259		 * So here we make sure we submit 2 bios, one for the first
3260		 * range and another one for the third range. Both will target
3261		 * the same physical extent from disk, but we can't currently
3262		 * make the compressed bio endio callback populate the pages
3263		 * for both ranges because each compressed bio is tightly
3264		 * coupled with a single extent map, and each range can have
3265		 * an extent map with a different offset value relative to the
3266		 * uncompressed data of our extent and different lengths. This
3267		 * is a corner case so we prioritize correctness over
3268		 * non-optimal behavior (submitting 2 bios for the same extent).
3269		 */
3270		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3271		    prev_em_start && *prev_em_start != (u64)-1 &&
3272		    *prev_em_start != em->start)
3273			force_bio_submit = true;
3274
3275		if (prev_em_start)
3276			*prev_em_start = em->start;
3277
3278		free_extent_map(em);
3279		em = NULL;
3280
3281		/* we've found a hole, just zero and go on */
3282		if (block_start == EXTENT_MAP_HOLE) {
3283			char *userpage;
3284			struct extent_state *cached = NULL;
3285
3286			userpage = kmap_atomic(page);
3287			memset(userpage + pg_offset, 0, iosize);
3288			flush_dcache_page(page);
3289			kunmap_atomic(userpage);
3290
3291			set_extent_uptodate(tree, cur, cur + iosize - 1,
3292					    &cached, GFP_NOFS);
3293			unlock_extent_cached(tree, cur,
3294					     cur + iosize - 1, &cached);
3295			cur = cur + iosize;
3296			pg_offset += iosize;
3297			continue;
3298		}
3299		/* the get_extent function already copied into the page */
3300		if (test_range_bit(tree, cur, cur_end,
3301				   EXTENT_UPTODATE, 1, NULL)) {
3302			check_page_uptodate(tree, page);
3303			unlock_extent(tree, cur, cur + iosize - 1);
3304			cur = cur + iosize;
3305			pg_offset += iosize;
3306			continue;
3307		}
3308		/* we have an inline extent but it didn't get marked up
3309		 * to date.  Error out
3310		 */
3311		if (block_start == EXTENT_MAP_INLINE) {
3312			SetPageError(page);
3313			unlock_extent(tree, cur, cur + iosize - 1);
3314			cur = cur + iosize;
3315			pg_offset += iosize;
3316			continue;
3317		}
3318
3319		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3320					 page, offset, disk_io_size,
3321					 pg_offset, bio,
3322					 end_bio_extent_readpage, 0,
3323					 *bio_flags,
3324					 this_bio_flag,
3325					 force_bio_submit);
3326		if (!ret) {
3327			nr++;
3328			*bio_flags = this_bio_flag;
3329		} else {
3330			SetPageError(page);
3331			unlock_extent(tree, cur, cur + iosize - 1);
3332			goto out;
3333		}
3334		cur = cur + iosize;
3335		pg_offset += iosize;
3336	}
3337out:
3338	if (!nr) {
3339		if (!PageError(page))
3340			SetPageUptodate(page);
3341		unlock_page(page);
3342	}
3343	return ret;
3344}
3345
3346static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3347					     u64 start, u64 end,
3348					     struct extent_map **em_cached,
3349					     struct bio **bio,
3350					     unsigned long *bio_flags,
3351					     u64 *prev_em_start)
3352{
3353	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3354	int index;
3355
3356	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3357
3358	for (index = 0; index < nr_pages; index++) {
3359		btrfs_do_readpage(pages[index], em_cached, bio, bio_flags,
3360				  REQ_RAHEAD, prev_em_start);
3361		put_page(pages[index]);
3362	}
3363}
3364
3365static void update_nr_written(struct writeback_control *wbc,
3366			      unsigned long nr_written)
3367{
3368	wbc->nr_to_write -= nr_written;
3369}
3370
3371/*
3372 * helper for __extent_writepage, doing all of the delayed allocation setup.
3373 *
3374 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3375 * to write the page (copy into inline extent).  In this case the IO has
3376 * been started and the page is already unlocked.
3377 *
3378 * This returns 0 if all went well (page still locked)
3379 * This returns < 0 if there were errors (page still locked)
3380 */
3381static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3382		struct page *page, struct writeback_control *wbc,
3383		u64 delalloc_start, unsigned long *nr_written)
3384{
3385	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3386	bool found;
3387	u64 delalloc_to_write = 0;
3388	u64 delalloc_end = 0;
3389	int ret;
3390	int page_started = 0;
3391
3392
3393	while (delalloc_end < page_end) {
3394		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3395					       &delalloc_start,
3396					       &delalloc_end);
3397		if (!found) {
3398			delalloc_start = delalloc_end + 1;
3399			continue;
3400		}
3401		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3402				delalloc_end, &page_started, nr_written, wbc);
3403		if (ret) {
3404			SetPageError(page);
3405			/*
3406			 * btrfs_run_delalloc_range should return < 0 for error
3407			 * but just in case, we use > 0 here meaning the IO is
3408			 * started, so we don't want to return > 0 unless
3409			 * things are going well.
3410			 */
3411			return ret < 0 ? ret : -EIO;
3412		}
3413		/*
3414		 * delalloc_end is already one less than the total length, so
3415		 * we don't subtract one from PAGE_SIZE
3416		 */
3417		delalloc_to_write += (delalloc_end - delalloc_start +
3418				      PAGE_SIZE) >> PAGE_SHIFT;
3419		delalloc_start = delalloc_end + 1;
3420	}
3421	if (wbc->nr_to_write < delalloc_to_write) {
3422		int thresh = 8192;
3423
3424		if (delalloc_to_write < thresh * 2)
3425			thresh = delalloc_to_write;
3426		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3427					 thresh);
3428	}
3429
3430	/* did the fill delalloc function already unlock and start
3431	 * the IO?
3432	 */
3433	if (page_started) {
3434		/*
3435		 * we've unlocked the page, so we can't update
3436		 * the mapping's writeback index, just update
3437		 * nr_to_write.
3438		 */
3439		wbc->nr_to_write -= *nr_written;
3440		return 1;
3441	}
3442
3443	return 0;
3444}
3445
3446/*
3447 * helper for __extent_writepage.  This calls the writepage start hooks,
3448 * and does the loop to map the page into extents and bios.
3449 *
3450 * We return 1 if the IO is started and the page is unlocked,
3451 * 0 if all went well (page still locked)
3452 * < 0 if there were errors (page still locked)
3453 */
3454static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3455				 struct page *page,
3456				 struct writeback_control *wbc,
3457				 struct extent_page_data *epd,
3458				 loff_t i_size,
3459				 unsigned long nr_written,
3460				 int *nr_ret)
3461{
3462	struct extent_io_tree *tree = &inode->io_tree;
3463	u64 start = page_offset(page);
3464	u64 page_end = start + PAGE_SIZE - 1;
3465	u64 end;
3466	u64 cur = start;
3467	u64 extent_offset;
3468	u64 block_start;
3469	u64 iosize;
3470	struct extent_map *em;
3471	size_t pg_offset = 0;
3472	size_t blocksize;
3473	int ret = 0;
3474	int nr = 0;
3475	const unsigned int write_flags = wbc_to_write_flags(wbc);
3476	bool compressed;
3477
3478	ret = btrfs_writepage_cow_fixup(page, start, page_end);
3479	if (ret) {
3480		/* Fixup worker will requeue */
3481		redirty_page_for_writepage(wbc, page);
3482		update_nr_written(wbc, nr_written);
3483		unlock_page(page);
3484		return 1;
3485	}
3486
3487	/*
3488	 * we don't want to touch the inode after unlocking the page,
3489	 * so we update the mapping writeback index now
3490	 */
3491	update_nr_written(wbc, nr_written + 1);
3492
3493	end = page_end;
3494	blocksize = inode->vfs_inode.i_sb->s_blocksize;
3495
3496	while (cur <= end) {
3497		u64 em_end;
3498		u64 offset;
3499
3500		if (cur >= i_size) {
3501			btrfs_writepage_endio_finish_ordered(page, cur,
3502							     page_end, 1);
3503			break;
3504		}
3505		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3506		if (IS_ERR_OR_NULL(em)) {
3507			SetPageError(page);
3508			ret = PTR_ERR_OR_ZERO(em);
3509			break;
3510		}
3511
3512		extent_offset = cur - em->start;
3513		em_end = extent_map_end(em);
3514		BUG_ON(em_end <= cur);
3515		BUG_ON(end < cur);
3516		iosize = min(em_end - cur, end - cur + 1);
3517		iosize = ALIGN(iosize, blocksize);
3518		offset = em->block_start + extent_offset;
3519		block_start = em->block_start;
3520		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3521		free_extent_map(em);
3522		em = NULL;
3523
3524		/*
3525		 * compressed and inline extents are written through other
3526		 * paths in the FS
3527		 */
3528		if (compressed || block_start == EXTENT_MAP_HOLE ||
3529		    block_start == EXTENT_MAP_INLINE) {
3530			if (compressed)
3531				nr++;
3532			else
3533				btrfs_writepage_endio_finish_ordered(page, cur,
3534							cur + iosize - 1, 1);
3535			cur += iosize;
3536			pg_offset += iosize;
3537			continue;
3538		}
3539
3540		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3541		if (!PageWriteback(page)) {
3542			btrfs_err(inode->root->fs_info,
3543				   "page %lu not writeback, cur %llu end %llu",
3544			       page->index, cur, end);
3545		}
3546
3547		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3548					 page, offset, iosize, pg_offset,
3549					 &epd->bio,
3550					 end_bio_extent_writepage,
3551					 0, 0, 0, false);
3552		if (ret) {
3553			SetPageError(page);
3554			if (PageWriteback(page))
3555				end_page_writeback(page);
3556		}
3557
3558		cur = cur + iosize;
3559		pg_offset += iosize;
3560		nr++;
3561	}
3562	*nr_ret = nr;
3563	return ret;
3564}
3565
3566/*
3567 * the writepage semantics are similar to regular writepage.  extent
3568 * records are inserted to lock ranges in the tree, and as dirty areas
3569 * are found, they are marked writeback.  Then the lock bits are removed
3570 * and the end_io handler clears the writeback ranges
3571 *
3572 * Return 0 if everything goes well.
3573 * Return <0 for error.
3574 */
3575static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3576			      struct extent_page_data *epd)
3577{
3578	struct inode *inode = page->mapping->host;
3579	u64 start = page_offset(page);
3580	u64 page_end = start + PAGE_SIZE - 1;
3581	int ret;
3582	int nr = 0;
3583	size_t pg_offset;
3584	loff_t i_size = i_size_read(inode);
3585	unsigned long end_index = i_size >> PAGE_SHIFT;
3586	unsigned long nr_written = 0;
3587
3588	trace___extent_writepage(page, inode, wbc);
3589
3590	WARN_ON(!PageLocked(page));
3591
3592	ClearPageError(page);
3593
3594	pg_offset = offset_in_page(i_size);
3595	if (page->index > end_index ||
3596	   (page->index == end_index && !pg_offset)) {
3597		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3598		unlock_page(page);
3599		return 0;
3600	}
3601
3602	if (page->index == end_index) {
3603		char *userpage;
3604
3605		userpage = kmap_atomic(page);
3606		memset(userpage + pg_offset, 0,
3607		       PAGE_SIZE - pg_offset);
3608		kunmap_atomic(userpage);
3609		flush_dcache_page(page);
3610	}
3611
3612	set_page_extent_mapped(page);
3613
3614	if (!epd->extent_locked) {
3615		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3616					 &nr_written);
3617		if (ret == 1)
3618			return 0;
3619		if (ret)
3620			goto done;
3621	}
3622
3623	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3624				    nr_written, &nr);
3625	if (ret == 1)
3626		return 0;
3627
3628done:
3629	if (nr == 0) {
3630		/* make sure the mapping tag for page dirty gets cleared */
3631		set_page_writeback(page);
3632		end_page_writeback(page);
3633	}
3634	if (PageError(page)) {
3635		ret = ret < 0 ? ret : -EIO;
3636		end_extent_writepage(page, ret, start, page_end);
3637	}
3638	unlock_page(page);
3639	ASSERT(ret <= 0);
3640	return ret;
3641}
3642
3643void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3644{
3645	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3646		       TASK_UNINTERRUPTIBLE);
3647}
3648
3649static void end_extent_buffer_writeback(struct extent_buffer *eb)
3650{
3651	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3652	smp_mb__after_atomic();
3653	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3654}
3655
3656/*
3657 * Lock eb pages and flush the bio if we can't the locks
3658 *
3659 * Return  0 if nothing went wrong
3660 * Return >0 is same as 0, except bio is not submitted
3661 * Return <0 if something went wrong, no page is locked
3662 */
3663static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3664			  struct extent_page_data *epd)
3665{
3666	struct btrfs_fs_info *fs_info = eb->fs_info;
3667	int i, num_pages, failed_page_nr;
3668	int flush = 0;
3669	int ret = 0;
3670
3671	if (!btrfs_try_tree_write_lock(eb)) {
3672		ret = flush_write_bio(epd);
3673		if (ret < 0)
3674			return ret;
3675		flush = 1;
3676		btrfs_tree_lock(eb);
3677	}
3678
3679	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3680		btrfs_tree_unlock(eb);
3681		if (!epd->sync_io)
3682			return 0;
3683		if (!flush) {
3684			ret = flush_write_bio(epd);
3685			if (ret < 0)
3686				return ret;
3687			flush = 1;
3688		}
3689		while (1) {
3690			wait_on_extent_buffer_writeback(eb);
3691			btrfs_tree_lock(eb);
3692			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3693				break;
3694			btrfs_tree_unlock(eb);
3695		}
3696	}
3697
3698	/*
3699	 * We need to do this to prevent races in people who check if the eb is
3700	 * under IO since we can end up having no IO bits set for a short period
3701	 * of time.
3702	 */
3703	spin_lock(&eb->refs_lock);
3704	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3705		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3706		spin_unlock(&eb->refs_lock);
3707		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3708		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3709					 -eb->len,
3710					 fs_info->dirty_metadata_batch);
3711		ret = 1;
3712	} else {
3713		spin_unlock(&eb->refs_lock);
3714	}
3715
3716	btrfs_tree_unlock(eb);
3717
3718	if (!ret)
3719		return ret;
3720
3721	num_pages = num_extent_pages(eb);
3722	for (i = 0; i < num_pages; i++) {
3723		struct page *p = eb->pages[i];
3724
3725		if (!trylock_page(p)) {
3726			if (!flush) {
3727				int err;
3728
3729				err = flush_write_bio(epd);
3730				if (err < 0) {
3731					ret = err;
3732					failed_page_nr = i;
3733					goto err_unlock;
3734				}
3735				flush = 1;
3736			}
3737			lock_page(p);
3738		}
3739	}
3740
3741	return ret;
3742err_unlock:
3743	/* Unlock already locked pages */
3744	for (i = 0; i < failed_page_nr; i++)
3745		unlock_page(eb->pages[i]);
3746	/*
3747	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3748	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3749	 * be made and undo everything done before.
3750	 */
3751	btrfs_tree_lock(eb);
3752	spin_lock(&eb->refs_lock);
3753	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3754	end_extent_buffer_writeback(eb);
3755	spin_unlock(&eb->refs_lock);
3756	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3757				 fs_info->dirty_metadata_batch);
3758	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3759	btrfs_tree_unlock(eb);
3760	return ret;
3761}
3762
3763static void set_btree_ioerr(struct page *page)
3764{
3765	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3766	struct btrfs_fs_info *fs_info;
3767
3768	SetPageError(page);
3769	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3770		return;
3771
3772	/*
3773	 * A read may stumble upon this buffer later, make sure that it gets an
3774	 * error and knows there was an error.
3775	 */
3776	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3777
3778	/*
3779	 * If we error out, we should add back the dirty_metadata_bytes
3780	 * to make it consistent.
3781	 */
3782	fs_info = eb->fs_info;
3783	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3784				 eb->len, fs_info->dirty_metadata_batch);
3785
3786	/*
3787	 * If writeback for a btree extent that doesn't belong to a log tree
3788	 * failed, increment the counter transaction->eb_write_errors.
3789	 * We do this because while the transaction is running and before it's
3790	 * committing (when we call filemap_fdata[write|wait]_range against
3791	 * the btree inode), we might have
3792	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3793	 * returns an error or an error happens during writeback, when we're
3794	 * committing the transaction we wouldn't know about it, since the pages
3795	 * can be no longer dirty nor marked anymore for writeback (if a
3796	 * subsequent modification to the extent buffer didn't happen before the
3797	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3798	 * able to find the pages tagged with SetPageError at transaction
3799	 * commit time. So if this happens we must abort the transaction,
3800	 * otherwise we commit a super block with btree roots that point to
3801	 * btree nodes/leafs whose content on disk is invalid - either garbage
3802	 * or the content of some node/leaf from a past generation that got
3803	 * cowed or deleted and is no longer valid.
3804	 *
3805	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3806	 * not be enough - we need to distinguish between log tree extents vs
3807	 * non-log tree extents, and the next filemap_fdatawait_range() call
3808	 * will catch and clear such errors in the mapping - and that call might
3809	 * be from a log sync and not from a transaction commit. Also, checking
3810	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3811	 * not done and would not be reliable - the eb might have been released
3812	 * from memory and reading it back again means that flag would not be
3813	 * set (since it's a runtime flag, not persisted on disk).
3814	 *
3815	 * Using the flags below in the btree inode also makes us achieve the
3816	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3817	 * writeback for all dirty pages and before filemap_fdatawait_range()
3818	 * is called, the writeback for all dirty pages had already finished
3819	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3820	 * filemap_fdatawait_range() would return success, as it could not know
3821	 * that writeback errors happened (the pages were no longer tagged for
3822	 * writeback).
3823	 */
3824	switch (eb->log_index) {
3825	case -1:
3826		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3827		break;
3828	case 0:
3829		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3830		break;
3831	case 1:
3832		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3833		break;
3834	default:
3835		BUG(); /* unexpected, logic error */
3836	}
3837}
3838
3839static void end_bio_extent_buffer_writepage(struct bio *bio)
3840{
3841	struct bio_vec *bvec;
3842	struct extent_buffer *eb;
3843	int done;
3844	struct bvec_iter_all iter_all;
3845
3846	ASSERT(!bio_flagged(bio, BIO_CLONED));
3847	bio_for_each_segment_all(bvec, bio, iter_all) {
3848		struct page *page = bvec->bv_page;
3849
3850		eb = (struct extent_buffer *)page->private;
3851		BUG_ON(!eb);
3852		done = atomic_dec_and_test(&eb->io_pages);
3853
3854		if (bio->bi_status ||
3855		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3856			ClearPageUptodate(page);
3857			set_btree_ioerr(page);
3858		}
3859
3860		end_page_writeback(page);
3861
3862		if (!done)
3863			continue;
3864
3865		end_extent_buffer_writeback(eb);
3866	}
3867
3868	bio_put(bio);
3869}
3870
3871static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3872			struct writeback_control *wbc,
3873			struct extent_page_data *epd)
3874{
3875	u64 offset = eb->start;
3876	u32 nritems;
3877	int i, num_pages;
3878	unsigned long start, end;
3879	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3880	int ret = 0;
3881
3882	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3883	num_pages = num_extent_pages(eb);
3884	atomic_set(&eb->io_pages, num_pages);
3885
3886	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3887	nritems = btrfs_header_nritems(eb);
3888	if (btrfs_header_level(eb) > 0) {
3889		end = btrfs_node_key_ptr_offset(nritems);
3890
3891		memzero_extent_buffer(eb, end, eb->len - end);
3892	} else {
3893		/*
3894		 * leaf:
3895		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3896		 */
3897		start = btrfs_item_nr_offset(nritems);
3898		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3899		memzero_extent_buffer(eb, start, end - start);
3900	}
3901
3902	for (i = 0; i < num_pages; i++) {
3903		struct page *p = eb->pages[i];
3904
3905		clear_page_dirty_for_io(p);
3906		set_page_writeback(p);
3907		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3908					 p, offset, PAGE_SIZE, 0,
3909					 &epd->bio,
3910					 end_bio_extent_buffer_writepage,
3911					 0, 0, 0, false);
3912		if (ret) {
3913			set_btree_ioerr(p);
3914			if (PageWriteback(p))
3915				end_page_writeback(p);
3916			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3917				end_extent_buffer_writeback(eb);
3918			ret = -EIO;
3919			break;
3920		}
3921		offset += PAGE_SIZE;
3922		update_nr_written(wbc, 1);
3923		unlock_page(p);
3924	}
3925
3926	if (unlikely(ret)) {
3927		for (; i < num_pages; i++) {
3928			struct page *p = eb->pages[i];
3929			clear_page_dirty_for_io(p);
3930			unlock_page(p);
3931		}
3932	}
3933
3934	return ret;
3935}
3936
3937int btree_write_cache_pages(struct address_space *mapping,
3938				   struct writeback_control *wbc)
3939{
3940	struct extent_buffer *eb, *prev_eb = NULL;
3941	struct extent_page_data epd = {
3942		.bio = NULL,
3943		.extent_locked = 0,
3944		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3945	};
3946	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3947	int ret = 0;
3948	int done = 0;
3949	int nr_to_write_done = 0;
3950	struct pagevec pvec;
3951	int nr_pages;
3952	pgoff_t index;
3953	pgoff_t end;		/* Inclusive */
3954	int scanned = 0;
3955	xa_mark_t tag;
3956
3957	pagevec_init(&pvec);
3958	if (wbc->range_cyclic) {
3959		index = mapping->writeback_index; /* Start from prev offset */
3960		end = -1;
3961		/*
3962		 * Start from the beginning does not need to cycle over the
3963		 * range, mark it as scanned.
3964		 */
3965		scanned = (index == 0);
3966	} else {
3967		index = wbc->range_start >> PAGE_SHIFT;
3968		end = wbc->range_end >> PAGE_SHIFT;
3969		scanned = 1;
3970	}
3971	if (wbc->sync_mode == WB_SYNC_ALL)
3972		tag = PAGECACHE_TAG_TOWRITE;
3973	else
3974		tag = PAGECACHE_TAG_DIRTY;
3975retry:
3976	if (wbc->sync_mode == WB_SYNC_ALL)
3977		tag_pages_for_writeback(mapping, index, end);
3978	while (!done && !nr_to_write_done && (index <= end) &&
3979	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3980			tag))) {
3981		unsigned i;
3982
3983		for (i = 0; i < nr_pages; i++) {
3984			struct page *page = pvec.pages[i];
3985
3986			if (!PagePrivate(page))
3987				continue;
3988
3989			spin_lock(&mapping->private_lock);
3990			if (!PagePrivate(page)) {
3991				spin_unlock(&mapping->private_lock);
3992				continue;
3993			}
3994
3995			eb = (struct extent_buffer *)page->private;
3996
3997			/*
3998			 * Shouldn't happen and normally this would be a BUG_ON
3999			 * but no sense in crashing the users box for something
4000			 * we can survive anyway.
4001			 */
4002			if (WARN_ON(!eb)) {
4003				spin_unlock(&mapping->private_lock);
4004				continue;
4005			}
4006
4007			if (eb == prev_eb) {
4008				spin_unlock(&mapping->private_lock);
4009				continue;
4010			}
4011
4012			ret = atomic_inc_not_zero(&eb->refs);
4013			spin_unlock(&mapping->private_lock);
4014			if (!ret)
4015				continue;
4016
4017			prev_eb = eb;
4018			ret = lock_extent_buffer_for_io(eb, &epd);
4019			if (!ret) {
4020				free_extent_buffer(eb);
4021				continue;
4022			} else if (ret < 0) {
4023				done = 1;
4024				free_extent_buffer(eb);
4025				break;
4026			}
4027
4028			ret = write_one_eb(eb, wbc, &epd);
4029			if (ret) {
4030				done = 1;
4031				free_extent_buffer(eb);
4032				break;
4033			}
4034			free_extent_buffer(eb);
4035
4036			/*
4037			 * The filesystem may choose to bump up nr_to_write.
4038			 * We have to make sure to honor the new nr_to_write
4039			 * at any time.
4040			 */
4041			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
4042					    wbc->nr_to_write <= 0);
4043		}
4044		pagevec_release(&pvec);
4045		cond_resched();
4046	}
4047	if (!scanned && !done) {
4048		/*
4049		 * We hit the last page and there is more work to be done: wrap
4050		 * back to the start of the file
4051		 */
4052		scanned = 1;
4053		index = 0;
4054		goto retry;
4055	}
4056	ASSERT(ret <= 0);
4057	if (ret < 0) {
4058		end_write_bio(&epd, ret);
4059		return ret;
4060	}
4061	/*
4062	 * If something went wrong, don't allow any metadata write bio to be
4063	 * submitted.
4064	 *
4065	 * This would prevent use-after-free if we had dirty pages not
4066	 * cleaned up, which can still happen by fuzzed images.
4067	 *
4068	 * - Bad extent tree
4069	 *   Allowing existing tree block to be allocated for other trees.
4070	 *
4071	 * - Log tree operations
4072	 *   Exiting tree blocks get allocated to log tree, bumps its
4073	 *   generation, then get cleaned in tree re-balance.
4074	 *   Such tree block will not be written back, since it's clean,
4075	 *   thus no WRITTEN flag set.
4076	 *   And after log writes back, this tree block is not traced by
4077	 *   any dirty extent_io_tree.
4078	 *
4079	 * - Offending tree block gets re-dirtied from its original owner
4080	 *   Since it has bumped generation, no WRITTEN flag, it can be
4081	 *   reused without COWing. This tree block will not be traced
4082	 *   by btrfs_transaction::dirty_pages.
4083	 *
4084	 *   Now such dirty tree block will not be cleaned by any dirty
4085	 *   extent io tree. Thus we don't want to submit such wild eb
4086	 *   if the fs already has error.
4087	 */
4088	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4089		ret = flush_write_bio(&epd);
4090	} else {
4091		ret = -EROFS;
4092		end_write_bio(&epd, ret);
4093	}
4094	return ret;
4095}
4096
4097/**
4098 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4099 * @mapping: address space structure to write
4100 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4101 * @data: data passed to __extent_writepage function
4102 *
4103 * If a page is already under I/O, write_cache_pages() skips it, even
4104 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4105 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4106 * and msync() need to guarantee that all the data which was dirty at the time
4107 * the call was made get new I/O started against them.  If wbc->sync_mode is
4108 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4109 * existing IO to complete.
4110 */
4111static int extent_write_cache_pages(struct address_space *mapping,
4112			     struct writeback_control *wbc,
4113			     struct extent_page_data *epd)
4114{
4115	struct inode *inode = mapping->host;
4116	int ret = 0;
4117	int done = 0;
4118	int nr_to_write_done = 0;
4119	struct pagevec pvec;
4120	int nr_pages;
4121	pgoff_t index;
4122	pgoff_t end;		/* Inclusive */
4123	pgoff_t done_index;
4124	int range_whole = 0;
4125	int scanned = 0;
4126	xa_mark_t tag;
4127
4128	/*
4129	 * We have to hold onto the inode so that ordered extents can do their
4130	 * work when the IO finishes.  The alternative to this is failing to add
4131	 * an ordered extent if the igrab() fails there and that is a huge pain
4132	 * to deal with, so instead just hold onto the inode throughout the
4133	 * writepages operation.  If it fails here we are freeing up the inode
4134	 * anyway and we'd rather not waste our time writing out stuff that is
4135	 * going to be truncated anyway.
4136	 */
4137	if (!igrab(inode))
4138		return 0;
4139
4140	pagevec_init(&pvec);
4141	if (wbc->range_cyclic) {
4142		index = mapping->writeback_index; /* Start from prev offset */
4143		end = -1;
4144		/*
4145		 * Start from the beginning does not need to cycle over the
4146		 * range, mark it as scanned.
4147		 */
4148		scanned = (index == 0);
4149	} else {
4150		index = wbc->range_start >> PAGE_SHIFT;
4151		end = wbc->range_end >> PAGE_SHIFT;
4152		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4153			range_whole = 1;
4154		scanned = 1;
4155	}
4156
4157	/*
4158	 * We do the tagged writepage as long as the snapshot flush bit is set
4159	 * and we are the first one who do the filemap_flush() on this inode.
4160	 *
4161	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4162	 * not race in and drop the bit.
4163	 */
4164	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4165	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4166			       &BTRFS_I(inode)->runtime_flags))
4167		wbc->tagged_writepages = 1;
4168
4169	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4170		tag = PAGECACHE_TAG_TOWRITE;
4171	else
4172		tag = PAGECACHE_TAG_DIRTY;
4173retry:
4174	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4175		tag_pages_for_writeback(mapping, index, end);
4176	done_index = index;
4177	while (!done && !nr_to_write_done && (index <= end) &&
4178			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4179						&index, end, tag))) {
4180		unsigned i;
4181
4182		for (i = 0; i < nr_pages; i++) {
4183			struct page *page = pvec.pages[i];
4184
4185			done_index = page->index + 1;
4186			/*
4187			 * At this point we hold neither the i_pages lock nor
4188			 * the page lock: the page may be truncated or
4189			 * invalidated (changing page->mapping to NULL),
4190			 * or even swizzled back from swapper_space to
4191			 * tmpfs file mapping
4192			 */
4193			if (!trylock_page(page)) {
4194				ret = flush_write_bio(epd);
4195				BUG_ON(ret < 0);
4196				lock_page(page);
4197			}
4198
4199			if (unlikely(page->mapping != mapping)) {
4200				unlock_page(page);
4201				continue;
4202			}
4203
4204			if (wbc->sync_mode != WB_SYNC_NONE) {
4205				if (PageWriteback(page)) {
4206					ret = flush_write_bio(epd);
4207					BUG_ON(ret < 0);
4208				}
4209				wait_on_page_writeback(page);
4210			}
4211
4212			if (PageWriteback(page) ||
4213			    !clear_page_dirty_for_io(page)) {
4214				unlock_page(page);
4215				continue;
4216			}
4217
4218			ret = __extent_writepage(page, wbc, epd);
4219			if (ret < 0) {
4220				done = 1;
4221				break;
4222			}
4223
4224			/*
4225			 * the filesystem may choose to bump up nr_to_write.
4226			 * We have to make sure to honor the new nr_to_write
4227			 * at any time
4228			 */
4229			nr_to_write_done = wbc->nr_to_write <= 0;
4230		}
4231		pagevec_release(&pvec);
4232		cond_resched();
4233	}
4234	if (!scanned && !done) {
4235		/*
4236		 * We hit the last page and there is more work to be done: wrap
4237		 * back to the start of the file
4238		 */
4239		scanned = 1;
4240		index = 0;
4241
4242		/*
4243		 * If we're looping we could run into a page that is locked by a
4244		 * writer and that writer could be waiting on writeback for a
4245		 * page in our current bio, and thus deadlock, so flush the
4246		 * write bio here.
4247		 */
4248		ret = flush_write_bio(epd);
4249		if (!ret)
4250			goto retry;
4251	}
4252
4253	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4254		mapping->writeback_index = done_index;
4255
4256	btrfs_add_delayed_iput(inode);
4257	return ret;
4258}
4259
4260int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4261{
4262	int ret;
4263	struct extent_page_data epd = {
4264		.bio = NULL,
4265		.extent_locked = 0,
4266		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4267	};
4268
4269	ret = __extent_writepage(page, wbc, &epd);
4270	ASSERT(ret <= 0);
4271	if (ret < 0) {
4272		end_write_bio(&epd, ret);
4273		return ret;
4274	}
4275
4276	ret = flush_write_bio(&epd);
4277	ASSERT(ret <= 0);
4278	return ret;
4279}
4280
4281int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4282			      int mode)
4283{
4284	int ret = 0;
4285	struct address_space *mapping = inode->i_mapping;
4286	struct page *page;
4287	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4288		PAGE_SHIFT;
4289
4290	struct extent_page_data epd = {
4291		.bio = NULL,
4292		.extent_locked = 1,
4293		.sync_io = mode == WB_SYNC_ALL,
4294	};
4295	struct writeback_control wbc_writepages = {
4296		.sync_mode	= mode,
4297		.nr_to_write	= nr_pages * 2,
4298		.range_start	= start,
4299		.range_end	= end + 1,
4300		/* We're called from an async helper function */
4301		.punt_to_cgroup	= 1,
4302		.no_cgroup_owner = 1,
4303	};
4304
4305	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4306	while (start <= end) {
4307		page = find_get_page(mapping, start >> PAGE_SHIFT);
4308		if (clear_page_dirty_for_io(page))
4309			ret = __extent_writepage(page, &wbc_writepages, &epd);
4310		else {
4311			btrfs_writepage_endio_finish_ordered(page, start,
4312						    start + PAGE_SIZE - 1, 1);
4313			unlock_page(page);
4314		}
4315		put_page(page);
4316		start += PAGE_SIZE;
4317	}
4318
4319	ASSERT(ret <= 0);
4320	if (ret == 0)
4321		ret = flush_write_bio(&epd);
4322	else
4323		end_write_bio(&epd, ret);
4324
4325	wbc_detach_inode(&wbc_writepages);
4326	return ret;
4327}
4328
4329int extent_writepages(struct address_space *mapping,
4330		      struct writeback_control *wbc)
4331{
4332	int ret = 0;
4333	struct extent_page_data epd = {
4334		.bio = NULL,
4335		.extent_locked = 0,
4336		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4337	};
4338
4339	ret = extent_write_cache_pages(mapping, wbc, &epd);
4340	ASSERT(ret <= 0);
4341	if (ret < 0) {
4342		end_write_bio(&epd, ret);
4343		return ret;
4344	}
4345	ret = flush_write_bio(&epd);
4346	return ret;
4347}
4348
4349void extent_readahead(struct readahead_control *rac)
4350{
4351	struct bio *bio = NULL;
4352	unsigned long bio_flags = 0;
4353	struct page *pagepool[16];
4354	struct extent_map *em_cached = NULL;
4355	u64 prev_em_start = (u64)-1;
4356	int nr;
4357
4358	while ((nr = readahead_page_batch(rac, pagepool))) {
4359		u64 contig_start = page_offset(pagepool[0]);
4360		u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4361
4362		ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4363
4364		contiguous_readpages(pagepool, nr, contig_start, contig_end,
4365				&em_cached, &bio, &bio_flags, &prev_em_start);
4366	}
4367
4368	if (em_cached)
4369		free_extent_map(em_cached);
4370
4371	if (bio) {
4372		if (submit_one_bio(bio, 0, bio_flags))
4373			return;
4374	}
4375}
4376
4377/*
4378 * basic invalidatepage code, this waits on any locked or writeback
4379 * ranges corresponding to the page, and then deletes any extent state
4380 * records from the tree
4381 */
4382int extent_invalidatepage(struct extent_io_tree *tree,
4383			  struct page *page, unsigned long offset)
4384{
4385	struct extent_state *cached_state = NULL;
4386	u64 start = page_offset(page);
4387	u64 end = start + PAGE_SIZE - 1;
4388	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4389
4390	start += ALIGN(offset, blocksize);
4391	if (start > end)
4392		return 0;
4393
4394	lock_extent_bits(tree, start, end, &cached_state);
4395	wait_on_page_writeback(page);
4396	clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4397			 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4398	return 0;
4399}
4400
4401/*
4402 * a helper for releasepage, this tests for areas of the page that
4403 * are locked or under IO and drops the related state bits if it is safe
4404 * to drop the page.
4405 */
4406static int try_release_extent_state(struct extent_io_tree *tree,
4407				    struct page *page, gfp_t mask)
4408{
4409	u64 start = page_offset(page);
4410	u64 end = start + PAGE_SIZE - 1;
4411	int ret = 1;
4412
4413	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4414		ret = 0;
4415	} else {
4416		/*
4417		 * at this point we can safely clear everything except the
4418		 * locked bit and the nodatasum bit
4419		 */
4420		ret = __clear_extent_bit(tree, start, end,
4421				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4422				 0, 0, NULL, mask, NULL);
4423
4424		/* if clear_extent_bit failed for enomem reasons,
4425		 * we can't allow the release to continue.
4426		 */
4427		if (ret < 0)
4428			ret = 0;
4429		else
4430			ret = 1;
4431	}
4432	return ret;
4433}
4434
4435/*
4436 * a helper for releasepage.  As long as there are no locked extents
4437 * in the range corresponding to the page, both state records and extent
4438 * map records are removed
4439 */
4440int try_release_extent_mapping(struct page *page, gfp_t mask)
4441{
4442	struct extent_map *em;
4443	u64 start = page_offset(page);
4444	u64 end = start + PAGE_SIZE - 1;
4445	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4446	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4447	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4448
4449	if (gfpflags_allow_blocking(mask) &&
4450	    page->mapping->host->i_size > SZ_16M) {
4451		u64 len;
4452		while (start <= end) {
4453			struct btrfs_fs_info *fs_info;
4454			u64 cur_gen;
4455
4456			len = end - start + 1;
4457			write_lock(&map->lock);
4458			em = lookup_extent_mapping(map, start, len);
4459			if (!em) {
4460				write_unlock(&map->lock);
4461				break;
4462			}
4463			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4464			    em->start != start) {
4465				write_unlock(&map->lock);
4466				free_extent_map(em);
4467				break;
4468			}
4469			if (test_range_bit(tree, em->start,
4470					   extent_map_end(em) - 1,
4471					   EXTENT_LOCKED, 0, NULL))
4472				goto next;
4473			/*
4474			 * If it's not in the list of modified extents, used
4475			 * by a fast fsync, we can remove it. If it's being
4476			 * logged we can safely remove it since fsync took an
4477			 * extra reference on the em.
4478			 */
4479			if (list_empty(&em->list) ||
4480			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
4481				goto remove_em;
4482			/*
4483			 * If it's in the list of modified extents, remove it
4484			 * only if its generation is older then the current one,
4485			 * in which case we don't need it for a fast fsync.
4486			 * Otherwise don't remove it, we could be racing with an
4487			 * ongoing fast fsync that could miss the new extent.
4488			 */
4489			fs_info = btrfs_inode->root->fs_info;
4490			spin_lock(&fs_info->trans_lock);
4491			cur_gen = fs_info->generation;
4492			spin_unlock(&fs_info->trans_lock);
4493			if (em->generation >= cur_gen)
4494				goto next;
4495remove_em:
4496			/*
4497			 * We only remove extent maps that are not in the list of
4498			 * modified extents or that are in the list but with a
4499			 * generation lower then the current generation, so there
4500			 * is no need to set the full fsync flag on the inode (it
4501			 * hurts the fsync performance for workloads with a data
4502			 * size that exceeds or is close to the system's memory).
4503			 */
4504			remove_extent_mapping(map, em);
4505			/* once for the rb tree */
4506			free_extent_map(em);
4507next:
4508			start = extent_map_end(em);
4509			write_unlock(&map->lock);
4510
4511			/* once for us */
4512			free_extent_map(em);
4513
4514			cond_resched(); /* Allow large-extent preemption. */
4515		}
4516	}
4517	return try_release_extent_state(tree, page, mask);
4518}
4519
4520/*
4521 * helper function for fiemap, which doesn't want to see any holes.
4522 * This maps until we find something past 'last'
4523 */
4524static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
4525						u64 offset, u64 last)
4526{
4527	u64 sectorsize = btrfs_inode_sectorsize(inode);
4528	struct extent_map *em;
4529	u64 len;
4530
4531	if (offset >= last)
4532		return NULL;
4533
4534	while (1) {
4535		len = last - offset;
4536		if (len == 0)
4537			break;
4538		len = ALIGN(len, sectorsize);
4539		em = btrfs_get_extent_fiemap(inode, offset, len);
4540		if (IS_ERR_OR_NULL(em))
4541			return em;
4542
4543		/* if this isn't a hole return it */
4544		if (em->block_start != EXTENT_MAP_HOLE)
4545			return em;
4546
4547		/* this is a hole, advance to the next extent */
4548		offset = extent_map_end(em);
4549		free_extent_map(em);
4550		if (offset >= last)
4551			break;
4552	}
4553	return NULL;
4554}
4555
4556/*
4557 * To cache previous fiemap extent
4558 *
4559 * Will be used for merging fiemap extent
4560 */
4561struct fiemap_cache {
4562	u64 offset;
4563	u64 phys;
4564	u64 len;
4565	u32 flags;
4566	bool cached;
4567};
4568
4569/*
4570 * Helper to submit fiemap extent.
4571 *
4572 * Will try to merge current fiemap extent specified by @offset, @phys,
4573 * @len and @flags with cached one.
4574 * And only when we fails to merge, cached one will be submitted as
4575 * fiemap extent.
4576 *
4577 * Return value is the same as fiemap_fill_next_extent().
4578 */
4579static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4580				struct fiemap_cache *cache,
4581				u64 offset, u64 phys, u64 len, u32 flags)
4582{
4583	int ret = 0;
4584
4585	if (!cache->cached)
4586		goto assign;
4587
4588	/*
4589	 * Sanity check, extent_fiemap() should have ensured that new
4590	 * fiemap extent won't overlap with cached one.
4591	 * Not recoverable.
4592	 *
4593	 * NOTE: Physical address can overlap, due to compression
4594	 */
4595	if (cache->offset + cache->len > offset) {
4596		WARN_ON(1);
4597		return -EINVAL;
4598	}
4599
4600	/*
4601	 * Only merges fiemap extents if
4602	 * 1) Their logical addresses are continuous
4603	 *
4604	 * 2) Their physical addresses are continuous
4605	 *    So truly compressed (physical size smaller than logical size)
4606	 *    extents won't get merged with each other
4607	 *
4608	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4609	 *    So regular extent won't get merged with prealloc extent
4610	 */
4611	if (cache->offset + cache->len  == offset &&
4612	    cache->phys + cache->len == phys  &&
4613	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4614			(flags & ~FIEMAP_EXTENT_LAST)) {
4615		cache->len += len;
4616		cache->flags |= flags;
4617		goto try_submit_last;
4618	}
4619
4620	/* Not mergeable, need to submit cached one */
4621	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4622				      cache->len, cache->flags);
4623	cache->cached = false;
4624	if (ret)
4625		return ret;
4626assign:
4627	cache->cached = true;
4628	cache->offset = offset;
4629	cache->phys = phys;
4630	cache->len = len;
4631	cache->flags = flags;
4632try_submit_last:
4633	if (cache->flags & FIEMAP_EXTENT_LAST) {
4634		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4635				cache->phys, cache->len, cache->flags);
4636		cache->cached = false;
4637	}
4638	return ret;
4639}
4640
4641/*
4642 * Emit last fiemap cache
4643 *
4644 * The last fiemap cache may still be cached in the following case:
4645 * 0		      4k		    8k
4646 * |<- Fiemap range ->|
4647 * |<------------  First extent ----------->|
4648 *
4649 * In this case, the first extent range will be cached but not emitted.
4650 * So we must emit it before ending extent_fiemap().
4651 */
4652static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4653				  struct fiemap_cache *cache)
4654{
4655	int ret;
4656
4657	if (!cache->cached)
4658		return 0;
4659
4660	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4661				      cache->len, cache->flags);
4662	cache->cached = false;
4663	if (ret > 0)
4664		ret = 0;
4665	return ret;
4666}
4667
4668int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
4669		  u64 start, u64 len)
4670{
4671	int ret = 0;
4672	u64 off;
4673	u64 max = start + len;
4674	u32 flags = 0;
4675	u32 found_type;
4676	u64 last;
4677	u64 last_for_get_extent = 0;
4678	u64 disko = 0;
4679	u64 isize = i_size_read(&inode->vfs_inode);
4680	struct btrfs_key found_key;
4681	struct extent_map *em = NULL;
4682	struct extent_state *cached_state = NULL;
4683	struct btrfs_path *path;
4684	struct btrfs_root *root = inode->root;
4685	struct fiemap_cache cache = { 0 };
4686	struct ulist *roots;
4687	struct ulist *tmp_ulist;
4688	int end = 0;
4689	u64 em_start = 0;
4690	u64 em_len = 0;
4691	u64 em_end = 0;
4692
4693	if (len == 0)
4694		return -EINVAL;
4695
4696	path = btrfs_alloc_path();
4697	if (!path)
4698		return -ENOMEM;
4699	path->leave_spinning = 1;
4700
4701	roots = ulist_alloc(GFP_KERNEL);
4702	tmp_ulist = ulist_alloc(GFP_KERNEL);
4703	if (!roots || !tmp_ulist) {
4704		ret = -ENOMEM;
4705		goto out_free_ulist;
4706	}
4707
4708	/*
4709	 * We can't initialize that to 'start' as this could miss extents due
4710	 * to extent item merging
4711	 */
4712	off = 0;
4713	start = round_down(start, btrfs_inode_sectorsize(inode));
4714	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4715
4716	/*
4717	 * lookup the last file extent.  We're not using i_size here
4718	 * because there might be preallocation past i_size
4719	 */
4720	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4721				       0);
4722	if (ret < 0) {
4723		goto out_free_ulist;
4724	} else {
4725		WARN_ON(!ret);
4726		if (ret == 1)
4727			ret = 0;
4728	}
4729
4730	path->slots[0]--;
4731	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4732	found_type = found_key.type;
4733
4734	/* No extents, but there might be delalloc bits */
4735	if (found_key.objectid != btrfs_ino(inode) ||
4736	    found_type != BTRFS_EXTENT_DATA_KEY) {
4737		/* have to trust i_size as the end */
4738		last = (u64)-1;
4739		last_for_get_extent = isize;
4740	} else {
4741		/*
4742		 * remember the start of the last extent.  There are a
4743		 * bunch of different factors that go into the length of the
4744		 * extent, so its much less complex to remember where it started
4745		 */
4746		last = found_key.offset;
4747		last_for_get_extent = last + 1;
4748	}
4749	btrfs_release_path(path);
4750
4751	/*
4752	 * we might have some extents allocated but more delalloc past those
4753	 * extents.  so, we trust isize unless the start of the last extent is
4754	 * beyond isize
4755	 */
4756	if (last < isize) {
4757		last = (u64)-1;
4758		last_for_get_extent = isize;
4759	}
4760
4761	lock_extent_bits(&inode->io_tree, start, start + len - 1,
4762			 &cached_state);
4763
4764	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4765	if (!em)
4766		goto out;
4767	if (IS_ERR(em)) {
4768		ret = PTR_ERR(em);
4769		goto out;
4770	}
4771
4772	while (!end) {
4773		u64 offset_in_extent = 0;
4774
4775		/* break if the extent we found is outside the range */
4776		if (em->start >= max || extent_map_end(em) < off)
4777			break;
4778
4779		/*
4780		 * get_extent may return an extent that starts before our
4781		 * requested range.  We have to make sure the ranges
4782		 * we return to fiemap always move forward and don't
4783		 * overlap, so adjust the offsets here
4784		 */
4785		em_start = max(em->start, off);
4786
4787		/*
4788		 * record the offset from the start of the extent
4789		 * for adjusting the disk offset below.  Only do this if the
4790		 * extent isn't compressed since our in ram offset may be past
4791		 * what we have actually allocated on disk.
4792		 */
4793		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4794			offset_in_extent = em_start - em->start;
4795		em_end = extent_map_end(em);
4796		em_len = em_end - em_start;
4797		flags = 0;
4798		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4799			disko = em->block_start + offset_in_extent;
4800		else
4801			disko = 0;
4802
4803		/*
4804		 * bump off for our next call to get_extent
4805		 */
4806		off = extent_map_end(em);
4807		if (off >= max)
4808			end = 1;
4809
4810		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4811			end = 1;
4812			flags |= FIEMAP_EXTENT_LAST;
4813		} else if (em->block_start == EXTENT_MAP_INLINE) {
4814			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4815				  FIEMAP_EXTENT_NOT_ALIGNED);
4816		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4817			flags |= (FIEMAP_EXTENT_DELALLOC |
4818				  FIEMAP_EXTENT_UNKNOWN);
4819		} else if (fieinfo->fi_extents_max) {
4820			u64 bytenr = em->block_start -
4821				(em->start - em->orig_start);
4822
4823			/*
4824			 * As btrfs supports shared space, this information
4825			 * can be exported to userspace tools via
4826			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4827			 * then we're just getting a count and we can skip the
4828			 * lookup stuff.
4829			 */
4830			ret = btrfs_check_shared(root, btrfs_ino(inode),
4831						 bytenr, roots, tmp_ulist);
4832			if (ret < 0)
4833				goto out_free;
4834			if (ret)
4835				flags |= FIEMAP_EXTENT_SHARED;
4836			ret = 0;
4837		}
4838		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4839			flags |= FIEMAP_EXTENT_ENCODED;
4840		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4841			flags |= FIEMAP_EXTENT_UNWRITTEN;
4842
4843		free_extent_map(em);
4844		em = NULL;
4845		if ((em_start >= last) || em_len == (u64)-1 ||
4846		   (last == (u64)-1 && isize <= em_end)) {
4847			flags |= FIEMAP_EXTENT_LAST;
4848			end = 1;
4849		}
4850
4851		/* now scan forward to see if this is really the last extent. */
4852		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4853		if (IS_ERR(em)) {
4854			ret = PTR_ERR(em);
4855			goto out;
4856		}
4857		if (!em) {
4858			flags |= FIEMAP_EXTENT_LAST;
4859			end = 1;
4860		}
4861		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4862					   em_len, flags);
4863		if (ret) {
4864			if (ret == 1)
4865				ret = 0;
4866			goto out_free;
4867		}
4868	}
4869out_free:
4870	if (!ret)
4871		ret = emit_last_fiemap_cache(fieinfo, &cache);
4872	free_extent_map(em);
4873out:
4874	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
4875			     &cached_state);
4876
4877out_free_ulist:
4878	btrfs_free_path(path);
4879	ulist_free(roots);
4880	ulist_free(tmp_ulist);
4881	return ret;
4882}
4883
4884static void __free_extent_buffer(struct extent_buffer *eb)
4885{
4886	kmem_cache_free(extent_buffer_cache, eb);
4887}
4888
4889int extent_buffer_under_io(const struct extent_buffer *eb)
4890{
4891	return (atomic_read(&eb->io_pages) ||
4892		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4893		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4894}
4895
4896/*
4897 * Release all pages attached to the extent buffer.
4898 */
4899static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4900{
4901	int i;
4902	int num_pages;
4903	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4904
4905	BUG_ON(extent_buffer_under_io(eb));
4906
4907	num_pages = num_extent_pages(eb);
4908	for (i = 0; i < num_pages; i++) {
4909		struct page *page = eb->pages[i];
4910
4911		if (!page)
4912			continue;
4913		if (mapped)
4914			spin_lock(&page->mapping->private_lock);
4915		/*
4916		 * We do this since we'll remove the pages after we've
4917		 * removed the eb from the radix tree, so we could race
4918		 * and have this page now attached to the new eb.  So
4919		 * only clear page_private if it's still connected to
4920		 * this eb.
4921		 */
4922		if (PagePrivate(page) &&
4923		    page->private == (unsigned long)eb) {
4924			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4925			BUG_ON(PageDirty(page));
4926			BUG_ON(PageWriteback(page));
4927			/*
4928			 * We need to make sure we haven't be attached
4929			 * to a new eb.
4930			 */
4931			detach_page_private(page);
4932		}
4933
4934		if (mapped)
4935			spin_unlock(&page->mapping->private_lock);
4936
4937		/* One for when we allocated the page */
4938		put_page(page);
4939	}
4940}
4941
4942/*
4943 * Helper for releasing the extent buffer.
4944 */
4945static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4946{
4947	btrfs_release_extent_buffer_pages(eb);
4948	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4949	__free_extent_buffer(eb);
4950}
4951
4952static struct extent_buffer *
4953__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4954		      unsigned long len)
4955{
4956	struct extent_buffer *eb = NULL;
4957
4958	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4959	eb->start = start;
4960	eb->len = len;
4961	eb->fs_info = fs_info;
4962	eb->bflags = 0;
4963	rwlock_init(&eb->lock);
4964	atomic_set(&eb->blocking_readers, 0);
4965	eb->blocking_writers = 0;
4966	eb->lock_recursed = false;
4967	init_waitqueue_head(&eb->write_lock_wq);
4968	init_waitqueue_head(&eb->read_lock_wq);
4969
4970	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4971			     &fs_info->allocated_ebs);
4972
4973	spin_lock_init(&eb->refs_lock);
4974	atomic_set(&eb->refs, 1);
4975	atomic_set(&eb->io_pages, 0);
4976
4977	/*
4978	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4979	 */
4980	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4981		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4982	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4983
4984#ifdef CONFIG_BTRFS_DEBUG
4985	eb->spinning_writers = 0;
4986	atomic_set(&eb->spinning_readers, 0);
4987	atomic_set(&eb->read_locks, 0);
4988	eb->write_locks = 0;
4989#endif
4990
4991	return eb;
4992}
4993
4994struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
4995{
4996	int i;
4997	struct page *p;
4998	struct extent_buffer *new;
4999	int num_pages = num_extent_pages(src);
5000
5001	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5002	if (new == NULL)
5003		return NULL;
5004
5005	for (i = 0; i < num_pages; i++) {
5006		p = alloc_page(GFP_NOFS);
5007		if (!p) {
5008			btrfs_release_extent_buffer(new);
5009			return NULL;
5010		}
5011		attach_extent_buffer_page(new, p);
5012		WARN_ON(PageDirty(p));
5013		SetPageUptodate(p);
5014		new->pages[i] = p;
5015		copy_page(page_address(p), page_address(src->pages[i]));
5016	}
5017
5018	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5019	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5020
5021	return new;
5022}
5023
5024struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5025						  u64 start, unsigned long len)
5026{
5027	struct extent_buffer *eb;
5028	int num_pages;
5029	int i;
5030
5031	eb = __alloc_extent_buffer(fs_info, start, len);
5032	if (!eb)
5033		return NULL;
5034
5035	num_pages = num_extent_pages(eb);
5036	for (i = 0; i < num_pages; i++) {
5037		eb->pages[i] = alloc_page(GFP_NOFS);
5038		if (!eb->pages[i])
5039			goto err;
5040	}
5041	set_extent_buffer_uptodate(eb);
5042	btrfs_set_header_nritems(eb, 0);
5043	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5044
5045	return eb;
5046err:
5047	for (; i > 0; i--)
5048		__free_page(eb->pages[i - 1]);
5049	__free_extent_buffer(eb);
5050	return NULL;
5051}
5052
5053struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5054						u64 start)
5055{
5056	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5057}
5058
5059static void check_buffer_tree_ref(struct extent_buffer *eb)
5060{
5061	int refs;
5062	/*
5063	 * The TREE_REF bit is first set when the extent_buffer is added
5064	 * to the radix tree. It is also reset, if unset, when a new reference
5065	 * is created by find_extent_buffer.
5066	 *
5067	 * It is only cleared in two cases: freeing the last non-tree
5068	 * reference to the extent_buffer when its STALE bit is set or
5069	 * calling releasepage when the tree reference is the only reference.
5070	 *
5071	 * In both cases, care is taken to ensure that the extent_buffer's
5072	 * pages are not under io. However, releasepage can be concurrently
5073	 * called with creating new references, which is prone to race
5074	 * conditions between the calls to check_buffer_tree_ref in those
5075	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5076	 *
5077	 * The actual lifetime of the extent_buffer in the radix tree is
5078	 * adequately protected by the refcount, but the TREE_REF bit and
5079	 * its corresponding reference are not. To protect against this
5080	 * class of races, we call check_buffer_tree_ref from the codepaths
5081	 * which trigger io after they set eb->io_pages. Note that once io is
5082	 * initiated, TREE_REF can no longer be cleared, so that is the
5083	 * moment at which any such race is best fixed.
5084	 */
5085	refs = atomic_read(&eb->refs);
5086	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5087		return;
5088
5089	spin_lock(&eb->refs_lock);
5090	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5091		atomic_inc(&eb->refs);
5092	spin_unlock(&eb->refs_lock);
5093}
5094
5095static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5096		struct page *accessed)
5097{
5098	int num_pages, i;
5099
5100	check_buffer_tree_ref(eb);
5101
5102	num_pages = num_extent_pages(eb);
5103	for (i = 0; i < num_pages; i++) {
5104		struct page *p = eb->pages[i];
5105
5106		if (p != accessed)
5107			mark_page_accessed(p);
5108	}
5109}
5110
5111struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5112					 u64 start)
5113{
5114	struct extent_buffer *eb;
5115
5116	rcu_read_lock();
5117	eb = radix_tree_lookup(&fs_info->buffer_radix,
5118			       start >> PAGE_SHIFT);
5119	if (eb && atomic_inc_not_zero(&eb->refs)) {
5120		rcu_read_unlock();
5121		/*
5122		 * Lock our eb's refs_lock to avoid races with
5123		 * free_extent_buffer. When we get our eb it might be flagged
5124		 * with EXTENT_BUFFER_STALE and another task running
5125		 * free_extent_buffer might have seen that flag set,
5126		 * eb->refs == 2, that the buffer isn't under IO (dirty and
5127		 * writeback flags not set) and it's still in the tree (flag
5128		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5129		 * of decrementing the extent buffer's reference count twice.
5130		 * So here we could race and increment the eb's reference count,
5131		 * clear its stale flag, mark it as dirty and drop our reference
5132		 * before the other task finishes executing free_extent_buffer,
5133		 * which would later result in an attempt to free an extent
5134		 * buffer that is dirty.
5135		 */
5136		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5137			spin_lock(&eb->refs_lock);
5138			spin_unlock(&eb->refs_lock);
5139		}
5140		mark_extent_buffer_accessed(eb, NULL);
5141		return eb;
5142	}
5143	rcu_read_unlock();
5144
5145	return NULL;
5146}
5147
5148#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5149struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5150					u64 start)
5151{
5152	struct extent_buffer *eb, *exists = NULL;
5153	int ret;
5154
5155	eb = find_extent_buffer(fs_info, start);
5156	if (eb)
5157		return eb;
5158	eb = alloc_dummy_extent_buffer(fs_info, start);
5159	if (!eb)
5160		return ERR_PTR(-ENOMEM);
5161	eb->fs_info = fs_info;
5162again:
5163	ret = radix_tree_preload(GFP_NOFS);
5164	if (ret) {
5165		exists = ERR_PTR(ret);
5166		goto free_eb;
5167	}
5168	spin_lock(&fs_info->buffer_lock);
5169	ret = radix_tree_insert(&fs_info->buffer_radix,
5170				start >> PAGE_SHIFT, eb);
5171	spin_unlock(&fs_info->buffer_lock);
5172	radix_tree_preload_end();
5173	if (ret == -EEXIST) {
5174		exists = find_extent_buffer(fs_info, start);
5175		if (exists)
5176			goto free_eb;
5177		else
5178			goto again;
5179	}
5180	check_buffer_tree_ref(eb);
5181	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5182
5183	return eb;
5184free_eb:
5185	btrfs_release_extent_buffer(eb);
5186	return exists;
5187}
5188#endif
5189
5190struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5191					  u64 start)
5192{
5193	unsigned long len = fs_info->nodesize;
5194	int num_pages;
5195	int i;
5196	unsigned long index = start >> PAGE_SHIFT;
5197	struct extent_buffer *eb;
5198	struct extent_buffer *exists = NULL;
5199	struct page *p;
5200	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5201	int uptodate = 1;
5202	int ret;
5203
5204	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5205		btrfs_err(fs_info, "bad tree block start %llu", start);
5206		return ERR_PTR(-EINVAL);
5207	}
5208
5209	eb = find_extent_buffer(fs_info, start);
5210	if (eb)
5211		return eb;
5212
5213	eb = __alloc_extent_buffer(fs_info, start, len);
5214	if (!eb)
5215		return ERR_PTR(-ENOMEM);
5216
5217	num_pages = num_extent_pages(eb);
5218	for (i = 0; i < num_pages; i++, index++) {
5219		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5220		if (!p) {
5221			exists = ERR_PTR(-ENOMEM);
5222			goto free_eb;
5223		}
5224
5225		spin_lock(&mapping->private_lock);
5226		if (PagePrivate(p)) {
5227			/*
5228			 * We could have already allocated an eb for this page
5229			 * and attached one so lets see if we can get a ref on
5230			 * the existing eb, and if we can we know it's good and
5231			 * we can just return that one, else we know we can just
5232			 * overwrite page->private.
5233			 */
5234			exists = (struct extent_buffer *)p->private;
5235			if (atomic_inc_not_zero(&exists->refs)) {
5236				spin_unlock(&mapping->private_lock);
5237				unlock_page(p);
5238				put_page(p);
5239				mark_extent_buffer_accessed(exists, p);
5240				goto free_eb;
5241			}
5242			exists = NULL;
5243
5244			/*
5245			 * Do this so attach doesn't complain and we need to
5246			 * drop the ref the old guy had.
5247			 */
5248			ClearPagePrivate(p);
5249			WARN_ON(PageDirty(p));
5250			put_page(p);
5251		}
5252		attach_extent_buffer_page(eb, p);
5253		spin_unlock(&mapping->private_lock);
5254		WARN_ON(PageDirty(p));
5255		eb->pages[i] = p;
5256		if (!PageUptodate(p))
5257			uptodate = 0;
5258
5259		/*
5260		 * We can't unlock the pages just yet since the extent buffer
5261		 * hasn't been properly inserted in the radix tree, this
5262		 * opens a race with btree_releasepage which can free a page
5263		 * while we are still filling in all pages for the buffer and
5264		 * we could crash.
5265		 */
5266	}
5267	if (uptodate)
5268		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5269again:
5270	ret = radix_tree_preload(GFP_NOFS);
5271	if (ret) {
5272		exists = ERR_PTR(ret);
5273		goto free_eb;
5274	}
5275
5276	spin_lock(&fs_info->buffer_lock);
5277	ret = radix_tree_insert(&fs_info->buffer_radix,
5278				start >> PAGE_SHIFT, eb);
5279	spin_unlock(&fs_info->buffer_lock);
5280	radix_tree_preload_end();
5281	if (ret == -EEXIST) {
5282		exists = find_extent_buffer(fs_info, start);
5283		if (exists)
5284			goto free_eb;
5285		else
5286			goto again;
5287	}
5288	/* add one reference for the tree */
5289	check_buffer_tree_ref(eb);
5290	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5291
5292	/*
5293	 * Now it's safe to unlock the pages because any calls to
5294	 * btree_releasepage will correctly detect that a page belongs to a
5295	 * live buffer and won't free them prematurely.
5296	 */
5297	for (i = 0; i < num_pages; i++)
5298		unlock_page(eb->pages[i]);
5299	return eb;
5300
5301free_eb:
5302	WARN_ON(!atomic_dec_and_test(&eb->refs));
5303	for (i = 0; i < num_pages; i++) {
5304		if (eb->pages[i])
5305			unlock_page(eb->pages[i]);
5306	}
5307
5308	btrfs_release_extent_buffer(eb);
5309	return exists;
5310}
5311
5312static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5313{
5314	struct extent_buffer *eb =
5315			container_of(head, struct extent_buffer, rcu_head);
5316
5317	__free_extent_buffer(eb);
5318}
5319
5320static int release_extent_buffer(struct extent_buffer *eb)
5321	__releases(&eb->refs_lock)
5322{
5323	lockdep_assert_held(&eb->refs_lock);
5324
5325	WARN_ON(atomic_read(&eb->refs) == 0);
5326	if (atomic_dec_and_test(&eb->refs)) {
5327		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5328			struct btrfs_fs_info *fs_info = eb->fs_info;
5329
5330			spin_unlock(&eb->refs_lock);
5331
5332			spin_lock(&fs_info->buffer_lock);
5333			radix_tree_delete(&fs_info->buffer_radix,
5334					  eb->start >> PAGE_SHIFT);
5335			spin_unlock(&fs_info->buffer_lock);
5336		} else {
5337			spin_unlock(&eb->refs_lock);
5338		}
5339
5340		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5341		/* Should be safe to release our pages at this point */
5342		btrfs_release_extent_buffer_pages(eb);
5343#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5344		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5345			__free_extent_buffer(eb);
5346			return 1;
5347		}
5348#endif
5349		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5350		return 1;
5351	}
5352	spin_unlock(&eb->refs_lock);
5353
5354	return 0;
5355}
5356
5357void free_extent_buffer(struct extent_buffer *eb)
5358{
5359	int refs;
5360	int old;
5361	if (!eb)
5362		return;
5363
5364	while (1) {
5365		refs = atomic_read(&eb->refs);
5366		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5367		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5368			refs == 1))
5369			break;
5370		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5371		if (old == refs)
5372			return;
5373	}
5374
5375	spin_lock(&eb->refs_lock);
5376	if (atomic_read(&eb->refs) == 2 &&
5377	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5378	    !extent_buffer_under_io(eb) &&
5379	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5380		atomic_dec(&eb->refs);
5381
5382	/*
5383	 * I know this is terrible, but it's temporary until we stop tracking
5384	 * the uptodate bits and such for the extent buffers.
5385	 */
5386	release_extent_buffer(eb);
5387}
5388
5389void free_extent_buffer_stale(struct extent_buffer *eb)
5390{
5391	if (!eb)
5392		return;
5393
5394	spin_lock(&eb->refs_lock);
5395	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5396
5397	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5398	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5399		atomic_dec(&eb->refs);
5400	release_extent_buffer(eb);
5401}
5402
5403void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5404{
5405	int i;
5406	int num_pages;
5407	struct page *page;
5408
5409	num_pages = num_extent_pages(eb);
5410
5411	for (i = 0; i < num_pages; i++) {
5412		page = eb->pages[i];
5413		if (!PageDirty(page))
5414			continue;
5415
5416		lock_page(page);
5417		WARN_ON(!PagePrivate(page));
5418
5419		clear_page_dirty_for_io(page);
5420		xa_lock_irq(&page->mapping->i_pages);
5421		if (!PageDirty(page))
5422			__xa_clear_mark(&page->mapping->i_pages,
5423					page_index(page), PAGECACHE_TAG_DIRTY);
5424		xa_unlock_irq(&page->mapping->i_pages);
5425		ClearPageError(page);
5426		unlock_page(page);
5427	}
5428	WARN_ON(atomic_read(&eb->refs) == 0);
5429}
5430
5431bool set_extent_buffer_dirty(struct extent_buffer *eb)
5432{
5433	int i;
5434	int num_pages;
5435	bool was_dirty;
5436
5437	check_buffer_tree_ref(eb);
5438
5439	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5440
5441	num_pages = num_extent_pages(eb);
5442	WARN_ON(atomic_read(&eb->refs) == 0);
5443	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5444
5445	if (!was_dirty)
5446		for (i = 0; i < num_pages; i++)
5447			set_page_dirty(eb->pages[i]);
5448
5449#ifdef CONFIG_BTRFS_DEBUG
5450	for (i = 0; i < num_pages; i++)
5451		ASSERT(PageDirty(eb->pages[i]));
5452#endif
5453
5454	return was_dirty;
5455}
5456
5457void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5458{
5459	int i;
5460	struct page *page;
5461	int num_pages;
5462
5463	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5464	num_pages = num_extent_pages(eb);
5465	for (i = 0; i < num_pages; i++) {
5466		page = eb->pages[i];
5467		if (page)
5468			ClearPageUptodate(page);
5469	}
5470}
5471
5472void set_extent_buffer_uptodate(struct extent_buffer *eb)
5473{
5474	int i;
5475	struct page *page;
5476	int num_pages;
5477
5478	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5479	num_pages = num_extent_pages(eb);
5480	for (i = 0; i < num_pages; i++) {
5481		page = eb->pages[i];
5482		SetPageUptodate(page);
5483	}
5484}
5485
5486int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5487{
5488	int i;
5489	struct page *page;
5490	int err;
5491	int ret = 0;
5492	int locked_pages = 0;
5493	int all_uptodate = 1;
5494	int num_pages;
5495	unsigned long num_reads = 0;
5496	struct bio *bio = NULL;
5497	unsigned long bio_flags = 0;
5498
5499	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5500		return 0;
5501
5502	num_pages = num_extent_pages(eb);
5503	for (i = 0; i < num_pages; i++) {
5504		page = eb->pages[i];
5505		if (wait == WAIT_NONE) {
5506			if (!trylock_page(page))
5507				goto unlock_exit;
5508		} else {
5509			lock_page(page);
5510		}
5511		locked_pages++;
5512	}
5513	/*
5514	 * We need to firstly lock all pages to make sure that
5515	 * the uptodate bit of our pages won't be affected by
5516	 * clear_extent_buffer_uptodate().
5517	 */
5518	for (i = 0; i < num_pages; i++) {
5519		page = eb->pages[i];
5520		if (!PageUptodate(page)) {
5521			num_reads++;
5522			all_uptodate = 0;
5523		}
5524	}
5525
5526	if (all_uptodate) {
5527		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5528		goto unlock_exit;
5529	}
5530
5531	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5532	eb->read_mirror = 0;
5533	atomic_set(&eb->io_pages, num_reads);
5534	/*
5535	 * It is possible for releasepage to clear the TREE_REF bit before we
5536	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5537	 */
5538	check_buffer_tree_ref(eb);
5539	for (i = 0; i < num_pages; i++) {
5540		page = eb->pages[i];
5541
5542		if (!PageUptodate(page)) {
5543			if (ret) {
5544				atomic_dec(&eb->io_pages);
5545				unlock_page(page);
5546				continue;
5547			}
5548
5549			ClearPageError(page);
5550			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
5551					 page, page_offset(page), PAGE_SIZE, 0,
5552					 &bio, end_bio_extent_readpage,
5553					 mirror_num, 0, 0, false);
5554			if (err) {
5555				/*
5556				 * We failed to submit the bio so it's the
5557				 * caller's responsibility to perform cleanup
5558				 * i.e unlock page/set error bit.
5559				 */
5560				ret = err;
5561				SetPageError(page);
5562				unlock_page(page);
5563				atomic_dec(&eb->io_pages);
5564			}
5565		} else {
5566			unlock_page(page);
5567		}
5568	}
5569
5570	if (bio) {
5571		err = submit_one_bio(bio, mirror_num, bio_flags);
5572		if (err)
5573			return err;
5574	}
5575
5576	if (ret || wait != WAIT_COMPLETE)
5577		return ret;
5578
5579	for (i = 0; i < num_pages; i++) {
5580		page = eb->pages[i];
5581		wait_on_page_locked(page);
5582		if (!PageUptodate(page))
5583			ret = -EIO;
5584	}
5585
5586	return ret;
5587
5588unlock_exit:
5589	while (locked_pages > 0) {
5590		locked_pages--;
5591		page = eb->pages[locked_pages];
5592		unlock_page(page);
5593	}
5594	return ret;
5595}
5596
5597static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5598			    unsigned long len)
5599{
5600	btrfs_warn(eb->fs_info,
5601		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
5602		eb->start, eb->len, start, len);
5603	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5604
5605	return true;
5606}
5607
5608/*
5609 * Check if the [start, start + len) range is valid before reading/writing
5610 * the eb.
5611 * NOTE: @start and @len are offset inside the eb, not logical address.
5612 *
5613 * Caller should not touch the dst/src memory if this function returns error.
5614 */
5615static inline int check_eb_range(const struct extent_buffer *eb,
5616				 unsigned long start, unsigned long len)
5617{
5618	unsigned long offset;
5619
5620	/* start, start + len should not go beyond eb->len nor overflow */
5621	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5622		return report_eb_range(eb, start, len);
5623
5624	return false;
5625}
5626
5627void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5628			unsigned long start, unsigned long len)
5629{
5630	size_t cur;
5631	size_t offset;
5632	struct page *page;
5633	char *kaddr;
5634	char *dst = (char *)dstv;
5635	unsigned long i = start >> PAGE_SHIFT;
5636
5637	if (check_eb_range(eb, start, len)) {
5638		/*
5639		 * Invalid range hit, reset the memory, so callers won't get
5640		 * some random garbage for their uninitialzed memory.
5641		 */
5642		memset(dstv, 0, len);
5643		return;
5644	}
5645
5646	offset = offset_in_page(start);
5647
5648	while (len > 0) {
5649		page = eb->pages[i];
5650
5651		cur = min(len, (PAGE_SIZE - offset));
5652		kaddr = page_address(page);
5653		memcpy(dst, kaddr + offset, cur);
5654
5655		dst += cur;
5656		len -= cur;
5657		offset = 0;
5658		i++;
5659	}
5660}
5661
5662int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5663				       void __user *dstv,
5664				       unsigned long start, unsigned long len)
5665{
5666	size_t cur;
5667	size_t offset;
5668	struct page *page;
5669	char *kaddr;
5670	char __user *dst = (char __user *)dstv;
5671	unsigned long i = start >> PAGE_SHIFT;
5672	int ret = 0;
5673
5674	WARN_ON(start > eb->len);
5675	WARN_ON(start + len > eb->start + eb->len);
5676
5677	offset = offset_in_page(start);
5678
5679	while (len > 0) {
5680		page = eb->pages[i];
5681
5682		cur = min(len, (PAGE_SIZE - offset));
5683		kaddr = page_address(page);
5684		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5685			ret = -EFAULT;
5686			break;
5687		}
5688
5689		dst += cur;
5690		len -= cur;
5691		offset = 0;
5692		i++;
5693	}
5694
5695	return ret;
5696}
5697
5698int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5699			 unsigned long start, unsigned long len)
5700{
5701	size_t cur;
5702	size_t offset;
5703	struct page *page;
5704	char *kaddr;
5705	char *ptr = (char *)ptrv;
5706	unsigned long i = start >> PAGE_SHIFT;
5707	int ret = 0;
5708
5709	if (check_eb_range(eb, start, len))
5710		return -EINVAL;
5711
5712	offset = offset_in_page(start);
5713
5714	while (len > 0) {
5715		page = eb->pages[i];
5716
5717		cur = min(len, (PAGE_SIZE - offset));
5718
5719		kaddr = page_address(page);
5720		ret = memcmp(ptr, kaddr + offset, cur);
5721		if (ret)
5722			break;
5723
5724		ptr += cur;
5725		len -= cur;
5726		offset = 0;
5727		i++;
5728	}
5729	return ret;
5730}
5731
5732void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5733		const void *srcv)
5734{
5735	char *kaddr;
5736
5737	WARN_ON(!PageUptodate(eb->pages[0]));
5738	kaddr = page_address(eb->pages[0]);
5739	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5740			BTRFS_FSID_SIZE);
5741}
5742
5743void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5744{
5745	char *kaddr;
5746
5747	WARN_ON(!PageUptodate(eb->pages[0]));
5748	kaddr = page_address(eb->pages[0]);
5749	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5750			BTRFS_FSID_SIZE);
5751}
5752
5753void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5754			 unsigned long start, unsigned long len)
5755{
5756	size_t cur;
5757	size_t offset;
5758	struct page *page;
5759	char *kaddr;
5760	char *src = (char *)srcv;
5761	unsigned long i = start >> PAGE_SHIFT;
5762
5763	if (check_eb_range(eb, start, len))
5764		return;
5765
5766	offset = offset_in_page(start);
5767
5768	while (len > 0) {
5769		page = eb->pages[i];
5770		WARN_ON(!PageUptodate(page));
5771
5772		cur = min(len, PAGE_SIZE - offset);
5773		kaddr = page_address(page);
5774		memcpy(kaddr + offset, src, cur);
5775
5776		src += cur;
5777		len -= cur;
5778		offset = 0;
5779		i++;
5780	}
5781}
5782
5783void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5784		unsigned long len)
5785{
5786	size_t cur;
5787	size_t offset;
5788	struct page *page;
5789	char *kaddr;
5790	unsigned long i = start >> PAGE_SHIFT;
5791
5792	if (check_eb_range(eb, start, len))
5793		return;
5794
5795	offset = offset_in_page(start);
5796
5797	while (len > 0) {
5798		page = eb->pages[i];
5799		WARN_ON(!PageUptodate(page));
5800
5801		cur = min(len, PAGE_SIZE - offset);
5802		kaddr = page_address(page);
5803		memset(kaddr + offset, 0, cur);
5804
5805		len -= cur;
5806		offset = 0;
5807		i++;
5808	}
5809}
5810
5811void copy_extent_buffer_full(const struct extent_buffer *dst,
5812			     const struct extent_buffer *src)
5813{
5814	int i;
5815	int num_pages;
5816
5817	ASSERT(dst->len == src->len);
5818
5819	num_pages = num_extent_pages(dst);
5820	for (i = 0; i < num_pages; i++)
5821		copy_page(page_address(dst->pages[i]),
5822				page_address(src->pages[i]));
5823}
5824
5825void copy_extent_buffer(const struct extent_buffer *dst,
5826			const struct extent_buffer *src,
5827			unsigned long dst_offset, unsigned long src_offset,
5828			unsigned long len)
5829{
5830	u64 dst_len = dst->len;
5831	size_t cur;
5832	size_t offset;
5833	struct page *page;
5834	char *kaddr;
5835	unsigned long i = dst_offset >> PAGE_SHIFT;
5836
5837	if (check_eb_range(dst, dst_offset, len) ||
5838	    check_eb_range(src, src_offset, len))
5839		return;
5840
5841	WARN_ON(src->len != dst_len);
5842
5843	offset = offset_in_page(dst_offset);
5844
5845	while (len > 0) {
5846		page = dst->pages[i];
5847		WARN_ON(!PageUptodate(page));
5848
5849		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5850
5851		kaddr = page_address(page);
5852		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5853
5854		src_offset += cur;
5855		len -= cur;
5856		offset = 0;
5857		i++;
5858	}
5859}
5860
5861/*
5862 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5863 * given bit number
5864 * @eb: the extent buffer
5865 * @start: offset of the bitmap item in the extent buffer
5866 * @nr: bit number
5867 * @page_index: return index of the page in the extent buffer that contains the
5868 * given bit number
5869 * @page_offset: return offset into the page given by page_index
5870 *
5871 * This helper hides the ugliness of finding the byte in an extent buffer which
5872 * contains a given bit.
5873 */
5874static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5875				    unsigned long start, unsigned long nr,
5876				    unsigned long *page_index,
5877				    size_t *page_offset)
5878{
5879	size_t byte_offset = BIT_BYTE(nr);
5880	size_t offset;
5881
5882	/*
5883	 * The byte we want is the offset of the extent buffer + the offset of
5884	 * the bitmap item in the extent buffer + the offset of the byte in the
5885	 * bitmap item.
5886	 */
5887	offset = start + byte_offset;
5888
5889	*page_index = offset >> PAGE_SHIFT;
5890	*page_offset = offset_in_page(offset);
5891}
5892
5893/**
5894 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5895 * @eb: the extent buffer
5896 * @start: offset of the bitmap item in the extent buffer
5897 * @nr: bit number to test
5898 */
5899int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5900			   unsigned long nr)
5901{
5902	u8 *kaddr;
5903	struct page *page;
5904	unsigned long i;
5905	size_t offset;
5906
5907	eb_bitmap_offset(eb, start, nr, &i, &offset);
5908	page = eb->pages[i];
5909	WARN_ON(!PageUptodate(page));
5910	kaddr = page_address(page);
5911	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5912}
5913
5914/**
5915 * extent_buffer_bitmap_set - set an area of a bitmap
5916 * @eb: the extent buffer
5917 * @start: offset of the bitmap item in the extent buffer
5918 * @pos: bit number of the first bit
5919 * @len: number of bits to set
5920 */
5921void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5922			      unsigned long pos, unsigned long len)
5923{
5924	u8 *kaddr;
5925	struct page *page;
5926	unsigned long i;
5927	size_t offset;
5928	const unsigned int size = pos + len;
5929	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5930	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5931
5932	eb_bitmap_offset(eb, start, pos, &i, &offset);
5933	page = eb->pages[i];
5934	WARN_ON(!PageUptodate(page));
5935	kaddr = page_address(page);
5936
5937	while (len >= bits_to_set) {
5938		kaddr[offset] |= mask_to_set;
5939		len -= bits_to_set;
5940		bits_to_set = BITS_PER_BYTE;
5941		mask_to_set = ~0;
5942		if (++offset >= PAGE_SIZE && len > 0) {
5943			offset = 0;
5944			page = eb->pages[++i];
5945			WARN_ON(!PageUptodate(page));
5946			kaddr = page_address(page);
5947		}
5948	}
5949	if (len) {
5950		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5951		kaddr[offset] |= mask_to_set;
5952	}
5953}
5954
5955
5956/**
5957 * extent_buffer_bitmap_clear - clear an area of a bitmap
5958 * @eb: the extent buffer
5959 * @start: offset of the bitmap item in the extent buffer
5960 * @pos: bit number of the first bit
5961 * @len: number of bits to clear
5962 */
5963void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5964				unsigned long start, unsigned long pos,
5965				unsigned long len)
5966{
5967	u8 *kaddr;
5968	struct page *page;
5969	unsigned long i;
5970	size_t offset;
5971	const unsigned int size = pos + len;
5972	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5973	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5974
5975	eb_bitmap_offset(eb, start, pos, &i, &offset);
5976	page = eb->pages[i];
5977	WARN_ON(!PageUptodate(page));
5978	kaddr = page_address(page);
5979
5980	while (len >= bits_to_clear) {
5981		kaddr[offset] &= ~mask_to_clear;
5982		len -= bits_to_clear;
5983		bits_to_clear = BITS_PER_BYTE;
5984		mask_to_clear = ~0;
5985		if (++offset >= PAGE_SIZE && len > 0) {
5986			offset = 0;
5987			page = eb->pages[++i];
5988			WARN_ON(!PageUptodate(page));
5989			kaddr = page_address(page);
5990		}
5991	}
5992	if (len) {
5993		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5994		kaddr[offset] &= ~mask_to_clear;
5995	}
5996}
5997
5998static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5999{
6000	unsigned long distance = (src > dst) ? src - dst : dst - src;
6001	return distance < len;
6002}
6003
6004static void copy_pages(struct page *dst_page, struct page *src_page,
6005		       unsigned long dst_off, unsigned long src_off,
6006		       unsigned long len)
6007{
6008	char *dst_kaddr = page_address(dst_page);
6009	char *src_kaddr;
6010	int must_memmove = 0;
6011
6012	if (dst_page != src_page) {
6013		src_kaddr = page_address(src_page);
6014	} else {
6015		src_kaddr = dst_kaddr;
6016		if (areas_overlap(src_off, dst_off, len))
6017			must_memmove = 1;
6018	}
6019
6020	if (must_memmove)
6021		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6022	else
6023		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6024}
6025
6026void memcpy_extent_buffer(const struct extent_buffer *dst,
6027			  unsigned long dst_offset, unsigned long src_offset,
6028			  unsigned long len)
6029{
6030	size_t cur;
6031	size_t dst_off_in_page;
6032	size_t src_off_in_page;
6033	unsigned long dst_i;
6034	unsigned long src_i;
6035
6036	if (check_eb_range(dst, dst_offset, len) ||
6037	    check_eb_range(dst, src_offset, len))
6038		return;
6039
6040	while (len > 0) {
6041		dst_off_in_page = offset_in_page(dst_offset);
6042		src_off_in_page = offset_in_page(src_offset);
6043
6044		dst_i = dst_offset >> PAGE_SHIFT;
6045		src_i = src_offset >> PAGE_SHIFT;
6046
6047		cur = min(len, (unsigned long)(PAGE_SIZE -
6048					       src_off_in_page));
6049		cur = min_t(unsigned long, cur,
6050			(unsigned long)(PAGE_SIZE - dst_off_in_page));
6051
6052		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6053			   dst_off_in_page, src_off_in_page, cur);
6054
6055		src_offset += cur;
6056		dst_offset += cur;
6057		len -= cur;
6058	}
6059}
6060
6061void memmove_extent_buffer(const struct extent_buffer *dst,
6062			   unsigned long dst_offset, unsigned long src_offset,
6063			   unsigned long len)
6064{
6065	size_t cur;
6066	size_t dst_off_in_page;
6067	size_t src_off_in_page;
6068	unsigned long dst_end = dst_offset + len - 1;
6069	unsigned long src_end = src_offset + len - 1;
6070	unsigned long dst_i;
6071	unsigned long src_i;
6072
6073	if (check_eb_range(dst, dst_offset, len) ||
6074	    check_eb_range(dst, src_offset, len))
6075		return;
6076	if (dst_offset < src_offset) {
6077		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6078		return;
6079	}
6080	while (len > 0) {
6081		dst_i = dst_end >> PAGE_SHIFT;
6082		src_i = src_end >> PAGE_SHIFT;
6083
6084		dst_off_in_page = offset_in_page(dst_end);
6085		src_off_in_page = offset_in_page(src_end);
6086
6087		cur = min_t(unsigned long, len, src_off_in_page + 1);
6088		cur = min(cur, dst_off_in_page + 1);
6089		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6090			   dst_off_in_page - cur + 1,
6091			   src_off_in_page - cur + 1, cur);
6092
6093		dst_end -= cur;
6094		src_end -= cur;
6095		len -= cur;
6096	}
6097}
6098
6099int try_release_extent_buffer(struct page *page)
6100{
6101	struct extent_buffer *eb;
6102
6103	/*
6104	 * We need to make sure nobody is attaching this page to an eb right
6105	 * now.
6106	 */
6107	spin_lock(&page->mapping->private_lock);
6108	if (!PagePrivate(page)) {
6109		spin_unlock(&page->mapping->private_lock);
6110		return 1;
6111	}
6112
6113	eb = (struct extent_buffer *)page->private;
6114	BUG_ON(!eb);
6115
6116	/*
6117	 * This is a little awful but should be ok, we need to make sure that
6118	 * the eb doesn't disappear out from under us while we're looking at
6119	 * this page.
6120	 */
6121	spin_lock(&eb->refs_lock);
6122	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6123		spin_unlock(&eb->refs_lock);
6124		spin_unlock(&page->mapping->private_lock);
6125		return 0;
6126	}
6127	spin_unlock(&page->mapping->private_lock);
6128
6129	/*
6130	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6131	 * so just return, this page will likely be freed soon anyway.
6132	 */
6133	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6134		spin_unlock(&eb->refs_lock);
6135		return 0;
6136	}
6137
6138	return release_extent_buffer(eb);
6139}
6140