1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6#include <linux/fs.h> 7#include <linux/blkdev.h> 8#include <linux/radix-tree.h> 9#include <linux/writeback.h> 10#include <linux/workqueue.h> 11#include <linux/kthread.h> 12#include <linux/slab.h> 13#include <linux/migrate.h> 14#include <linux/ratelimit.h> 15#include <linux/uuid.h> 16#include <linux/semaphore.h> 17#include <linux/error-injection.h> 18#include <linux/crc32c.h> 19#include <linux/sched/mm.h> 20#include <asm/unaligned.h> 21#include <crypto/hash.h> 22#include "ctree.h" 23#include "disk-io.h" 24#include "transaction.h" 25#include "btrfs_inode.h" 26#include "volumes.h" 27#include "print-tree.h" 28#include "locking.h" 29#include "tree-log.h" 30#include "free-space-cache.h" 31#include "free-space-tree.h" 32#include "inode-map.h" 33#include "check-integrity.h" 34#include "rcu-string.h" 35#include "dev-replace.h" 36#include "raid56.h" 37#include "sysfs.h" 38#include "qgroup.h" 39#include "compression.h" 40#include "tree-checker.h" 41#include "ref-verify.h" 42#include "block-group.h" 43#include "discard.h" 44#include "space-info.h" 45 46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53static void end_workqueue_fn(struct btrfs_work *work); 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 56 struct btrfs_fs_info *fs_info); 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 59 struct extent_io_tree *dirty_pages, 60 int mark); 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 62 struct extent_io_tree *pinned_extents); 63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 65 66/* 67 * btrfs_end_io_wq structs are used to do processing in task context when an IO 68 * is complete. This is used during reads to verify checksums, and it is used 69 * by writes to insert metadata for new file extents after IO is complete. 70 */ 71struct btrfs_end_io_wq { 72 struct bio *bio; 73 bio_end_io_t *end_io; 74 void *private; 75 struct btrfs_fs_info *info; 76 blk_status_t status; 77 enum btrfs_wq_endio_type metadata; 78 struct btrfs_work work; 79}; 80 81static struct kmem_cache *btrfs_end_io_wq_cache; 82 83int __init btrfs_end_io_wq_init(void) 84{ 85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 86 sizeof(struct btrfs_end_io_wq), 87 0, 88 SLAB_MEM_SPREAD, 89 NULL); 90 if (!btrfs_end_io_wq_cache) 91 return -ENOMEM; 92 return 0; 93} 94 95void __cold btrfs_end_io_wq_exit(void) 96{ 97 kmem_cache_destroy(btrfs_end_io_wq_cache); 98} 99 100static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 101{ 102 if (fs_info->csum_shash) 103 crypto_free_shash(fs_info->csum_shash); 104} 105 106/* 107 * async submit bios are used to offload expensive checksumming 108 * onto the worker threads. They checksum file and metadata bios 109 * just before they are sent down the IO stack. 110 */ 111struct async_submit_bio { 112 void *private_data; 113 struct bio *bio; 114 extent_submit_bio_start_t *submit_bio_start; 115 int mirror_num; 116 /* 117 * bio_offset is optional, can be used if the pages in the bio 118 * can't tell us where in the file the bio should go 119 */ 120 u64 bio_offset; 121 struct btrfs_work work; 122 blk_status_t status; 123}; 124 125/* 126 * Lockdep class keys for extent_buffer->lock's in this root. For a given 127 * eb, the lockdep key is determined by the btrfs_root it belongs to and 128 * the level the eb occupies in the tree. 129 * 130 * Different roots are used for different purposes and may nest inside each 131 * other and they require separate keysets. As lockdep keys should be 132 * static, assign keysets according to the purpose of the root as indicated 133 * by btrfs_root->root_key.objectid. This ensures that all special purpose 134 * roots have separate keysets. 135 * 136 * Lock-nesting across peer nodes is always done with the immediate parent 137 * node locked thus preventing deadlock. As lockdep doesn't know this, use 138 * subclass to avoid triggering lockdep warning in such cases. 139 * 140 * The key is set by the readpage_end_io_hook after the buffer has passed 141 * csum validation but before the pages are unlocked. It is also set by 142 * btrfs_init_new_buffer on freshly allocated blocks. 143 * 144 * We also add a check to make sure the highest level of the tree is the 145 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 146 * needs update as well. 147 */ 148#ifdef CONFIG_DEBUG_LOCK_ALLOC 149# if BTRFS_MAX_LEVEL != 8 150# error 151# endif 152 153static struct btrfs_lockdep_keyset { 154 u64 id; /* root objectid */ 155 const char *name_stem; /* lock name stem */ 156 char names[BTRFS_MAX_LEVEL + 1][20]; 157 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 158} btrfs_lockdep_keysets[] = { 159 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 160 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 161 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 162 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 163 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 164 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 165 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 166 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 167 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 168 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 169 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 170 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 171 { .id = 0, .name_stem = "tree" }, 172}; 173 174void __init btrfs_init_lockdep(void) 175{ 176 int i, j; 177 178 /* initialize lockdep class names */ 179 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 180 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 181 182 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 183 snprintf(ks->names[j], sizeof(ks->names[j]), 184 "btrfs-%s-%02d", ks->name_stem, j); 185 } 186} 187 188void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 189 int level) 190{ 191 struct btrfs_lockdep_keyset *ks; 192 193 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 194 195 /* find the matching keyset, id 0 is the default entry */ 196 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 197 if (ks->id == objectid) 198 break; 199 200 lockdep_set_class_and_name(&eb->lock, 201 &ks->keys[level], ks->names[level]); 202} 203 204#endif 205 206/* 207 * Compute the csum of a btree block and store the result to provided buffer. 208 */ 209static void csum_tree_block(struct extent_buffer *buf, u8 *result) 210{ 211 struct btrfs_fs_info *fs_info = buf->fs_info; 212 const int num_pages = fs_info->nodesize >> PAGE_SHIFT; 213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 214 char *kaddr; 215 int i; 216 217 shash->tfm = fs_info->csum_shash; 218 crypto_shash_init(shash); 219 kaddr = page_address(buf->pages[0]); 220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 221 PAGE_SIZE - BTRFS_CSUM_SIZE); 222 223 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 224 kaddr = page_address(buf->pages[i]); 225 crypto_shash_update(shash, kaddr, PAGE_SIZE); 226 } 227 memset(result, 0, BTRFS_CSUM_SIZE); 228 crypto_shash_final(shash, result); 229} 230 231/* 232 * we can't consider a given block up to date unless the transid of the 233 * block matches the transid in the parent node's pointer. This is how we 234 * detect blocks that either didn't get written at all or got written 235 * in the wrong place. 236 */ 237static int verify_parent_transid(struct extent_io_tree *io_tree, 238 struct extent_buffer *eb, u64 parent_transid, 239 int atomic) 240{ 241 struct extent_state *cached_state = NULL; 242 int ret; 243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 244 245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 246 return 0; 247 248 if (atomic) 249 return -EAGAIN; 250 251 if (need_lock) { 252 btrfs_tree_read_lock(eb); 253 btrfs_set_lock_blocking_read(eb); 254 } 255 256 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 257 &cached_state); 258 if (extent_buffer_uptodate(eb) && 259 btrfs_header_generation(eb) == parent_transid) { 260 ret = 0; 261 goto out; 262 } 263 btrfs_err_rl(eb->fs_info, 264 "parent transid verify failed on %llu wanted %llu found %llu", 265 eb->start, 266 parent_transid, btrfs_header_generation(eb)); 267 ret = 1; 268 269 /* 270 * Things reading via commit roots that don't have normal protection, 271 * like send, can have a really old block in cache that may point at a 272 * block that has been freed and re-allocated. So don't clear uptodate 273 * if we find an eb that is under IO (dirty/writeback) because we could 274 * end up reading in the stale data and then writing it back out and 275 * making everybody very sad. 276 */ 277 if (!extent_buffer_under_io(eb)) 278 clear_extent_buffer_uptodate(eb); 279out: 280 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 281 &cached_state); 282 if (need_lock) 283 btrfs_tree_read_unlock_blocking(eb); 284 return ret; 285} 286 287static bool btrfs_supported_super_csum(u16 csum_type) 288{ 289 switch (csum_type) { 290 case BTRFS_CSUM_TYPE_CRC32: 291 case BTRFS_CSUM_TYPE_XXHASH: 292 case BTRFS_CSUM_TYPE_SHA256: 293 case BTRFS_CSUM_TYPE_BLAKE2: 294 return true; 295 default: 296 return false; 297 } 298} 299 300/* 301 * Return 0 if the superblock checksum type matches the checksum value of that 302 * algorithm. Pass the raw disk superblock data. 303 */ 304static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 305 char *raw_disk_sb) 306{ 307 struct btrfs_super_block *disk_sb = 308 (struct btrfs_super_block *)raw_disk_sb; 309 char result[BTRFS_CSUM_SIZE]; 310 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 311 312 shash->tfm = fs_info->csum_shash; 313 314 /* 315 * The super_block structure does not span the whole 316 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 317 * filled with zeros and is included in the checksum. 318 */ 319 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 320 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 321 322 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb))) 323 return 1; 324 325 return 0; 326} 327 328int btrfs_verify_level_key(struct extent_buffer *eb, int level, 329 struct btrfs_key *first_key, u64 parent_transid) 330{ 331 struct btrfs_fs_info *fs_info = eb->fs_info; 332 int found_level; 333 struct btrfs_key found_key; 334 int ret; 335 336 found_level = btrfs_header_level(eb); 337 if (found_level != level) { 338 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 339 KERN_ERR "BTRFS: tree level check failed\n"); 340 btrfs_err(fs_info, 341"tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 342 eb->start, level, found_level); 343 return -EIO; 344 } 345 346 if (!first_key) 347 return 0; 348 349 /* 350 * For live tree block (new tree blocks in current transaction), 351 * we need proper lock context to avoid race, which is impossible here. 352 * So we only checks tree blocks which is read from disk, whose 353 * generation <= fs_info->last_trans_committed. 354 */ 355 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 356 return 0; 357 358 /* We have @first_key, so this @eb must have at least one item */ 359 if (btrfs_header_nritems(eb) == 0) { 360 btrfs_err(fs_info, 361 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 362 eb->start); 363 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 364 return -EUCLEAN; 365 } 366 367 if (found_level) 368 btrfs_node_key_to_cpu(eb, &found_key, 0); 369 else 370 btrfs_item_key_to_cpu(eb, &found_key, 0); 371 ret = btrfs_comp_cpu_keys(first_key, &found_key); 372 373 if (ret) { 374 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 375 KERN_ERR "BTRFS: tree first key check failed\n"); 376 btrfs_err(fs_info, 377"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 378 eb->start, parent_transid, first_key->objectid, 379 first_key->type, first_key->offset, 380 found_key.objectid, found_key.type, 381 found_key.offset); 382 } 383 return ret; 384} 385 386/* 387 * helper to read a given tree block, doing retries as required when 388 * the checksums don't match and we have alternate mirrors to try. 389 * 390 * @parent_transid: expected transid, skip check if 0 391 * @level: expected level, mandatory check 392 * @first_key: expected key of first slot, skip check if NULL 393 */ 394static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 395 u64 parent_transid, int level, 396 struct btrfs_key *first_key) 397{ 398 struct btrfs_fs_info *fs_info = eb->fs_info; 399 struct extent_io_tree *io_tree; 400 int failed = 0; 401 int ret; 402 int num_copies = 0; 403 int mirror_num = 0; 404 int failed_mirror = 0; 405 406 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 407 while (1) { 408 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 409 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 410 if (!ret) { 411 if (verify_parent_transid(io_tree, eb, 412 parent_transid, 0)) 413 ret = -EIO; 414 else if (btrfs_verify_level_key(eb, level, 415 first_key, parent_transid)) 416 ret = -EUCLEAN; 417 else 418 break; 419 } 420 421 num_copies = btrfs_num_copies(fs_info, 422 eb->start, eb->len); 423 if (num_copies == 1) 424 break; 425 426 if (!failed_mirror) { 427 failed = 1; 428 failed_mirror = eb->read_mirror; 429 } 430 431 mirror_num++; 432 if (mirror_num == failed_mirror) 433 mirror_num++; 434 435 if (mirror_num > num_copies) 436 break; 437 } 438 439 if (failed && !ret && failed_mirror) 440 btrfs_repair_eb_io_failure(eb, failed_mirror); 441 442 return ret; 443} 444 445/* 446 * checksum a dirty tree block before IO. This has extra checks to make sure 447 * we only fill in the checksum field in the first page of a multi-page block 448 */ 449 450static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 451{ 452 u64 start = page_offset(page); 453 u64 found_start; 454 u8 result[BTRFS_CSUM_SIZE]; 455 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 456 struct extent_buffer *eb; 457 int ret; 458 459 eb = (struct extent_buffer *)page->private; 460 if (page != eb->pages[0]) 461 return 0; 462 463 found_start = btrfs_header_bytenr(eb); 464 /* 465 * Please do not consolidate these warnings into a single if. 466 * It is useful to know what went wrong. 467 */ 468 if (WARN_ON(found_start != start)) 469 return -EUCLEAN; 470 if (WARN_ON(!PageUptodate(page))) 471 return -EUCLEAN; 472 473 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 474 offsetof(struct btrfs_header, fsid), 475 BTRFS_FSID_SIZE) == 0); 476 477 csum_tree_block(eb, result); 478 479 if (btrfs_header_level(eb)) 480 ret = btrfs_check_node(eb); 481 else 482 ret = btrfs_check_leaf_full(eb); 483 484 if (ret < 0) { 485 btrfs_print_tree(eb, 0); 486 btrfs_err(fs_info, 487 "block=%llu write time tree block corruption detected", 488 eb->start); 489 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 490 return ret; 491 } 492 write_extent_buffer(eb, result, 0, csum_size); 493 494 return 0; 495} 496 497static int check_tree_block_fsid(struct extent_buffer *eb) 498{ 499 struct btrfs_fs_info *fs_info = eb->fs_info; 500 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 501 u8 fsid[BTRFS_FSID_SIZE]; 502 u8 *metadata_uuid; 503 504 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 505 BTRFS_FSID_SIZE); 506 /* 507 * Checking the incompat flag is only valid for the current fs. For 508 * seed devices it's forbidden to have their uuid changed so reading 509 * ->fsid in this case is fine 510 */ 511 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 512 metadata_uuid = fs_devices->metadata_uuid; 513 else 514 metadata_uuid = fs_devices->fsid; 515 516 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 517 return 0; 518 519 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 520 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 521 return 0; 522 523 return 1; 524} 525 526int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset, 527 struct page *page, u64 start, u64 end, 528 int mirror) 529{ 530 u64 found_start; 531 int found_level; 532 struct extent_buffer *eb; 533 struct btrfs_fs_info *fs_info; 534 u16 csum_size; 535 int ret = 0; 536 u8 result[BTRFS_CSUM_SIZE]; 537 int reads_done; 538 539 if (!page->private) 540 goto out; 541 542 eb = (struct extent_buffer *)page->private; 543 fs_info = eb->fs_info; 544 csum_size = btrfs_super_csum_size(fs_info->super_copy); 545 546 /* the pending IO might have been the only thing that kept this buffer 547 * in memory. Make sure we have a ref for all this other checks 548 */ 549 atomic_inc(&eb->refs); 550 551 reads_done = atomic_dec_and_test(&eb->io_pages); 552 if (!reads_done) 553 goto err; 554 555 eb->read_mirror = mirror; 556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 557 ret = -EIO; 558 goto err; 559 } 560 561 found_start = btrfs_header_bytenr(eb); 562 if (found_start != eb->start) { 563 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 564 eb->start, found_start); 565 ret = -EIO; 566 goto err; 567 } 568 if (check_tree_block_fsid(eb)) { 569 btrfs_err_rl(fs_info, "bad fsid on block %llu", 570 eb->start); 571 ret = -EIO; 572 goto err; 573 } 574 found_level = btrfs_header_level(eb); 575 if (found_level >= BTRFS_MAX_LEVEL) { 576 btrfs_err(fs_info, "bad tree block level %d on %llu", 577 (int)btrfs_header_level(eb), eb->start); 578 ret = -EIO; 579 goto err; 580 } 581 582 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 583 eb, found_level); 584 585 csum_tree_block(eb, result); 586 587 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 588 u8 val[BTRFS_CSUM_SIZE] = { 0 }; 589 590 read_extent_buffer(eb, &val, 0, csum_size); 591 btrfs_warn_rl(fs_info, 592 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d", 593 fs_info->sb->s_id, eb->start, 594 CSUM_FMT_VALUE(csum_size, val), 595 CSUM_FMT_VALUE(csum_size, result), 596 btrfs_header_level(eb)); 597 ret = -EUCLEAN; 598 goto err; 599 } 600 601 /* 602 * If this is a leaf block and it is corrupt, set the corrupt bit so 603 * that we don't try and read the other copies of this block, just 604 * return -EIO. 605 */ 606 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 607 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 608 ret = -EIO; 609 } 610 611 if (found_level > 0 && btrfs_check_node(eb)) 612 ret = -EIO; 613 614 if (!ret) 615 set_extent_buffer_uptodate(eb); 616 else 617 btrfs_err(fs_info, 618 "block=%llu read time tree block corruption detected", 619 eb->start); 620err: 621 if (reads_done && 622 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 623 btree_readahead_hook(eb, ret); 624 625 if (ret) { 626 /* 627 * our io error hook is going to dec the io pages 628 * again, we have to make sure it has something 629 * to decrement 630 */ 631 atomic_inc(&eb->io_pages); 632 clear_extent_buffer_uptodate(eb); 633 } 634 free_extent_buffer(eb); 635out: 636 return ret; 637} 638 639static void end_workqueue_bio(struct bio *bio) 640{ 641 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 642 struct btrfs_fs_info *fs_info; 643 struct btrfs_workqueue *wq; 644 645 fs_info = end_io_wq->info; 646 end_io_wq->status = bio->bi_status; 647 648 if (bio_op(bio) == REQ_OP_WRITE) { 649 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 650 wq = fs_info->endio_meta_write_workers; 651 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 652 wq = fs_info->endio_freespace_worker; 653 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 654 wq = fs_info->endio_raid56_workers; 655 else 656 wq = fs_info->endio_write_workers; 657 } else { 658 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 659 wq = fs_info->endio_raid56_workers; 660 else if (end_io_wq->metadata) 661 wq = fs_info->endio_meta_workers; 662 else 663 wq = fs_info->endio_workers; 664 } 665 666 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 667 btrfs_queue_work(wq, &end_io_wq->work); 668} 669 670blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 671 enum btrfs_wq_endio_type metadata) 672{ 673 struct btrfs_end_io_wq *end_io_wq; 674 675 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 676 if (!end_io_wq) 677 return BLK_STS_RESOURCE; 678 679 end_io_wq->private = bio->bi_private; 680 end_io_wq->end_io = bio->bi_end_io; 681 end_io_wq->info = info; 682 end_io_wq->status = 0; 683 end_io_wq->bio = bio; 684 end_io_wq->metadata = metadata; 685 686 bio->bi_private = end_io_wq; 687 bio->bi_end_io = end_workqueue_bio; 688 return 0; 689} 690 691static void run_one_async_start(struct btrfs_work *work) 692{ 693 struct async_submit_bio *async; 694 blk_status_t ret; 695 696 async = container_of(work, struct async_submit_bio, work); 697 ret = async->submit_bio_start(async->private_data, async->bio, 698 async->bio_offset); 699 if (ret) 700 async->status = ret; 701} 702 703/* 704 * In order to insert checksums into the metadata in large chunks, we wait 705 * until bio submission time. All the pages in the bio are checksummed and 706 * sums are attached onto the ordered extent record. 707 * 708 * At IO completion time the csums attached on the ordered extent record are 709 * inserted into the tree. 710 */ 711static void run_one_async_done(struct btrfs_work *work) 712{ 713 struct async_submit_bio *async; 714 struct inode *inode; 715 blk_status_t ret; 716 717 async = container_of(work, struct async_submit_bio, work); 718 inode = async->private_data; 719 720 /* If an error occurred we just want to clean up the bio and move on */ 721 if (async->status) { 722 async->bio->bi_status = async->status; 723 bio_endio(async->bio); 724 return; 725 } 726 727 /* 728 * All of the bios that pass through here are from async helpers. 729 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 730 * This changes nothing when cgroups aren't in use. 731 */ 732 async->bio->bi_opf |= REQ_CGROUP_PUNT; 733 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 734 if (ret) { 735 async->bio->bi_status = ret; 736 bio_endio(async->bio); 737 } 738} 739 740static void run_one_async_free(struct btrfs_work *work) 741{ 742 struct async_submit_bio *async; 743 744 async = container_of(work, struct async_submit_bio, work); 745 kfree(async); 746} 747 748blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 749 int mirror_num, unsigned long bio_flags, 750 u64 bio_offset, void *private_data, 751 extent_submit_bio_start_t *submit_bio_start) 752{ 753 struct async_submit_bio *async; 754 755 async = kmalloc(sizeof(*async), GFP_NOFS); 756 if (!async) 757 return BLK_STS_RESOURCE; 758 759 async->private_data = private_data; 760 async->bio = bio; 761 async->mirror_num = mirror_num; 762 async->submit_bio_start = submit_bio_start; 763 764 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 765 run_one_async_free); 766 767 async->bio_offset = bio_offset; 768 769 async->status = 0; 770 771 if (op_is_sync(bio->bi_opf)) 772 btrfs_set_work_high_priority(&async->work); 773 774 btrfs_queue_work(fs_info->workers, &async->work); 775 return 0; 776} 777 778static blk_status_t btree_csum_one_bio(struct bio *bio) 779{ 780 struct bio_vec *bvec; 781 struct btrfs_root *root; 782 int ret = 0; 783 struct bvec_iter_all iter_all; 784 785 ASSERT(!bio_flagged(bio, BIO_CLONED)); 786 bio_for_each_segment_all(bvec, bio, iter_all) { 787 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 788 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 789 if (ret) 790 break; 791 } 792 793 return errno_to_blk_status(ret); 794} 795 796static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 797 u64 bio_offset) 798{ 799 /* 800 * when we're called for a write, we're already in the async 801 * submission context. Just jump into btrfs_map_bio 802 */ 803 return btree_csum_one_bio(bio); 804} 805 806static int check_async_write(struct btrfs_fs_info *fs_info, 807 struct btrfs_inode *bi) 808{ 809 if (atomic_read(&bi->sync_writers)) 810 return 0; 811 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 812 return 0; 813 return 1; 814} 815 816blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, 817 int mirror_num, unsigned long bio_flags) 818{ 819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 820 int async = check_async_write(fs_info, BTRFS_I(inode)); 821 blk_status_t ret; 822 823 if (bio_op(bio) != REQ_OP_WRITE) { 824 /* 825 * called for a read, do the setup so that checksum validation 826 * can happen in the async kernel threads 827 */ 828 ret = btrfs_bio_wq_end_io(fs_info, bio, 829 BTRFS_WQ_ENDIO_METADATA); 830 if (ret) 831 goto out_w_error; 832 ret = btrfs_map_bio(fs_info, bio, mirror_num); 833 } else if (!async) { 834 ret = btree_csum_one_bio(bio); 835 if (ret) 836 goto out_w_error; 837 ret = btrfs_map_bio(fs_info, bio, mirror_num); 838 } else { 839 /* 840 * kthread helpers are used to submit writes so that 841 * checksumming can happen in parallel across all CPUs 842 */ 843 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 844 0, inode, btree_submit_bio_start); 845 } 846 847 if (ret) 848 goto out_w_error; 849 return 0; 850 851out_w_error: 852 bio->bi_status = ret; 853 bio_endio(bio); 854 return ret; 855} 856 857#ifdef CONFIG_MIGRATION 858static int btree_migratepage(struct address_space *mapping, 859 struct page *newpage, struct page *page, 860 enum migrate_mode mode) 861{ 862 /* 863 * we can't safely write a btree page from here, 864 * we haven't done the locking hook 865 */ 866 if (PageDirty(page)) 867 return -EAGAIN; 868 /* 869 * Buffers may be managed in a filesystem specific way. 870 * We must have no buffers or drop them. 871 */ 872 if (page_has_private(page) && 873 !try_to_release_page(page, GFP_KERNEL)) 874 return -EAGAIN; 875 return migrate_page(mapping, newpage, page, mode); 876} 877#endif 878 879 880static int btree_writepages(struct address_space *mapping, 881 struct writeback_control *wbc) 882{ 883 struct btrfs_fs_info *fs_info; 884 int ret; 885 886 if (wbc->sync_mode == WB_SYNC_NONE) { 887 888 if (wbc->for_kupdate) 889 return 0; 890 891 fs_info = BTRFS_I(mapping->host)->root->fs_info; 892 /* this is a bit racy, but that's ok */ 893 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 894 BTRFS_DIRTY_METADATA_THRESH, 895 fs_info->dirty_metadata_batch); 896 if (ret < 0) 897 return 0; 898 } 899 return btree_write_cache_pages(mapping, wbc); 900} 901 902static int btree_releasepage(struct page *page, gfp_t gfp_flags) 903{ 904 if (PageWriteback(page) || PageDirty(page)) 905 return 0; 906 907 return try_release_extent_buffer(page); 908} 909 910static void btree_invalidatepage(struct page *page, unsigned int offset, 911 unsigned int length) 912{ 913 struct extent_io_tree *tree; 914 tree = &BTRFS_I(page->mapping->host)->io_tree; 915 extent_invalidatepage(tree, page, offset); 916 btree_releasepage(page, GFP_NOFS); 917 if (PagePrivate(page)) { 918 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 919 "page private not zero on page %llu", 920 (unsigned long long)page_offset(page)); 921 detach_page_private(page); 922 } 923} 924 925static int btree_set_page_dirty(struct page *page) 926{ 927#ifdef DEBUG 928 struct extent_buffer *eb; 929 930 BUG_ON(!PagePrivate(page)); 931 eb = (struct extent_buffer *)page->private; 932 BUG_ON(!eb); 933 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 934 BUG_ON(!atomic_read(&eb->refs)); 935 btrfs_assert_tree_locked(eb); 936#endif 937 return __set_page_dirty_nobuffers(page); 938} 939 940static const struct address_space_operations btree_aops = { 941 .writepages = btree_writepages, 942 .releasepage = btree_releasepage, 943 .invalidatepage = btree_invalidatepage, 944#ifdef CONFIG_MIGRATION 945 .migratepage = btree_migratepage, 946#endif 947 .set_page_dirty = btree_set_page_dirty, 948}; 949 950void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 951{ 952 struct extent_buffer *buf = NULL; 953 int ret; 954 955 buf = btrfs_find_create_tree_block(fs_info, bytenr); 956 if (IS_ERR(buf)) 957 return; 958 959 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0); 960 if (ret < 0) 961 free_extent_buffer_stale(buf); 962 else 963 free_extent_buffer(buf); 964} 965 966struct extent_buffer *btrfs_find_create_tree_block( 967 struct btrfs_fs_info *fs_info, 968 u64 bytenr) 969{ 970 if (btrfs_is_testing(fs_info)) 971 return alloc_test_extent_buffer(fs_info, bytenr); 972 return alloc_extent_buffer(fs_info, bytenr); 973} 974 975/* 976 * Read tree block at logical address @bytenr and do variant basic but critical 977 * verification. 978 * 979 * @parent_transid: expected transid of this tree block, skip check if 0 980 * @level: expected level, mandatory check 981 * @first_key: expected key in slot 0, skip check if NULL 982 */ 983struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 984 u64 parent_transid, int level, 985 struct btrfs_key *first_key) 986{ 987 struct extent_buffer *buf = NULL; 988 int ret; 989 990 buf = btrfs_find_create_tree_block(fs_info, bytenr); 991 if (IS_ERR(buf)) 992 return buf; 993 994 ret = btree_read_extent_buffer_pages(buf, parent_transid, 995 level, first_key); 996 if (ret) { 997 free_extent_buffer_stale(buf); 998 return ERR_PTR(ret); 999 } 1000 return buf; 1001 1002} 1003 1004void btrfs_clean_tree_block(struct extent_buffer *buf) 1005{ 1006 struct btrfs_fs_info *fs_info = buf->fs_info; 1007 if (btrfs_header_generation(buf) == 1008 fs_info->running_transaction->transid) { 1009 btrfs_assert_tree_locked(buf); 1010 1011 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1012 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1013 -buf->len, 1014 fs_info->dirty_metadata_batch); 1015 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1016 btrfs_set_lock_blocking_write(buf); 1017 clear_extent_buffer_dirty(buf); 1018 } 1019 } 1020} 1021 1022static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1023 u64 objectid) 1024{ 1025 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1026 root->fs_info = fs_info; 1027 root->node = NULL; 1028 root->commit_root = NULL; 1029 root->state = 0; 1030 root->orphan_cleanup_state = 0; 1031 1032 root->last_trans = 0; 1033 root->highest_objectid = 0; 1034 root->nr_delalloc_inodes = 0; 1035 root->nr_ordered_extents = 0; 1036 root->inode_tree = RB_ROOT; 1037 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1038 root->block_rsv = NULL; 1039 1040 INIT_LIST_HEAD(&root->dirty_list); 1041 INIT_LIST_HEAD(&root->root_list); 1042 INIT_LIST_HEAD(&root->delalloc_inodes); 1043 INIT_LIST_HEAD(&root->delalloc_root); 1044 INIT_LIST_HEAD(&root->ordered_extents); 1045 INIT_LIST_HEAD(&root->ordered_root); 1046 INIT_LIST_HEAD(&root->reloc_dirty_list); 1047 INIT_LIST_HEAD(&root->logged_list[0]); 1048 INIT_LIST_HEAD(&root->logged_list[1]); 1049 spin_lock_init(&root->inode_lock); 1050 spin_lock_init(&root->delalloc_lock); 1051 spin_lock_init(&root->ordered_extent_lock); 1052 spin_lock_init(&root->accounting_lock); 1053 spin_lock_init(&root->log_extents_lock[0]); 1054 spin_lock_init(&root->log_extents_lock[1]); 1055 spin_lock_init(&root->qgroup_meta_rsv_lock); 1056 mutex_init(&root->objectid_mutex); 1057 mutex_init(&root->log_mutex); 1058 mutex_init(&root->ordered_extent_mutex); 1059 mutex_init(&root->delalloc_mutex); 1060 init_waitqueue_head(&root->qgroup_flush_wait); 1061 init_waitqueue_head(&root->log_writer_wait); 1062 init_waitqueue_head(&root->log_commit_wait[0]); 1063 init_waitqueue_head(&root->log_commit_wait[1]); 1064 INIT_LIST_HEAD(&root->log_ctxs[0]); 1065 INIT_LIST_HEAD(&root->log_ctxs[1]); 1066 atomic_set(&root->log_commit[0], 0); 1067 atomic_set(&root->log_commit[1], 0); 1068 atomic_set(&root->log_writers, 0); 1069 atomic_set(&root->log_batch, 0); 1070 refcount_set(&root->refs, 1); 1071 atomic_set(&root->snapshot_force_cow, 0); 1072 atomic_set(&root->nr_swapfiles, 0); 1073 root->log_transid = 0; 1074 root->log_transid_committed = -1; 1075 root->last_log_commit = 0; 1076 if (!dummy) { 1077 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1078 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1079 extent_io_tree_init(fs_info, &root->log_csum_range, 1080 IO_TREE_LOG_CSUM_RANGE, NULL); 1081 } 1082 1083 memset(&root->root_key, 0, sizeof(root->root_key)); 1084 memset(&root->root_item, 0, sizeof(root->root_item)); 1085 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1086 root->root_key.objectid = objectid; 1087 root->anon_dev = 0; 1088 1089 spin_lock_init(&root->root_item_lock); 1090 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1091#ifdef CONFIG_BTRFS_DEBUG 1092 INIT_LIST_HEAD(&root->leak_list); 1093 spin_lock(&fs_info->fs_roots_radix_lock); 1094 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1095 spin_unlock(&fs_info->fs_roots_radix_lock); 1096#endif 1097} 1098 1099static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1100 u64 objectid, gfp_t flags) 1101{ 1102 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1103 if (root) 1104 __setup_root(root, fs_info, objectid); 1105 return root; 1106} 1107 1108#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1109/* Should only be used by the testing infrastructure */ 1110struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1111{ 1112 struct btrfs_root *root; 1113 1114 if (!fs_info) 1115 return ERR_PTR(-EINVAL); 1116 1117 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1118 if (!root) 1119 return ERR_PTR(-ENOMEM); 1120 1121 /* We don't use the stripesize in selftest, set it as sectorsize */ 1122 root->alloc_bytenr = 0; 1123 1124 return root; 1125} 1126#endif 1127 1128struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1129 u64 objectid) 1130{ 1131 struct btrfs_fs_info *fs_info = trans->fs_info; 1132 struct extent_buffer *leaf; 1133 struct btrfs_root *tree_root = fs_info->tree_root; 1134 struct btrfs_root *root; 1135 struct btrfs_key key; 1136 unsigned int nofs_flag; 1137 int ret = 0; 1138 1139 /* 1140 * We're holding a transaction handle, so use a NOFS memory allocation 1141 * context to avoid deadlock if reclaim happens. 1142 */ 1143 nofs_flag = memalloc_nofs_save(); 1144 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1145 memalloc_nofs_restore(nofs_flag); 1146 if (!root) 1147 return ERR_PTR(-ENOMEM); 1148 1149 root->root_key.objectid = objectid; 1150 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1151 root->root_key.offset = 0; 1152 1153 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1154 BTRFS_NESTING_NORMAL); 1155 if (IS_ERR(leaf)) { 1156 ret = PTR_ERR(leaf); 1157 leaf = NULL; 1158 goto fail; 1159 } 1160 1161 root->node = leaf; 1162 btrfs_mark_buffer_dirty(leaf); 1163 1164 root->commit_root = btrfs_root_node(root); 1165 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1166 1167 root->root_item.flags = 0; 1168 root->root_item.byte_limit = 0; 1169 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1170 btrfs_set_root_generation(&root->root_item, trans->transid); 1171 btrfs_set_root_level(&root->root_item, 0); 1172 btrfs_set_root_refs(&root->root_item, 1); 1173 btrfs_set_root_used(&root->root_item, leaf->len); 1174 btrfs_set_root_last_snapshot(&root->root_item, 0); 1175 btrfs_set_root_dirid(&root->root_item, 0); 1176 if (is_fstree(objectid)) 1177 generate_random_guid(root->root_item.uuid); 1178 else 1179 export_guid(root->root_item.uuid, &guid_null); 1180 root->root_item.drop_level = 0; 1181 1182 key.objectid = objectid; 1183 key.type = BTRFS_ROOT_ITEM_KEY; 1184 key.offset = 0; 1185 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1186 if (ret) 1187 goto fail; 1188 1189 btrfs_tree_unlock(leaf); 1190 1191 return root; 1192 1193fail: 1194 if (leaf) 1195 btrfs_tree_unlock(leaf); 1196 btrfs_put_root(root); 1197 1198 return ERR_PTR(ret); 1199} 1200 1201static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1202 struct btrfs_fs_info *fs_info) 1203{ 1204 struct btrfs_root *root; 1205 struct extent_buffer *leaf; 1206 1207 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1208 if (!root) 1209 return ERR_PTR(-ENOMEM); 1210 1211 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1212 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1213 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1214 1215 /* 1216 * DON'T set SHAREABLE bit for log trees. 1217 * 1218 * Log trees are not exposed to user space thus can't be snapshotted, 1219 * and they go away before a real commit is actually done. 1220 * 1221 * They do store pointers to file data extents, and those reference 1222 * counts still get updated (along with back refs to the log tree). 1223 */ 1224 1225 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1226 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1227 if (IS_ERR(leaf)) { 1228 btrfs_put_root(root); 1229 return ERR_CAST(leaf); 1230 } 1231 1232 root->node = leaf; 1233 1234 btrfs_mark_buffer_dirty(root->node); 1235 btrfs_tree_unlock(root->node); 1236 return root; 1237} 1238 1239int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1240 struct btrfs_fs_info *fs_info) 1241{ 1242 struct btrfs_root *log_root; 1243 1244 log_root = alloc_log_tree(trans, fs_info); 1245 if (IS_ERR(log_root)) 1246 return PTR_ERR(log_root); 1247 WARN_ON(fs_info->log_root_tree); 1248 fs_info->log_root_tree = log_root; 1249 return 0; 1250} 1251 1252int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1253 struct btrfs_root *root) 1254{ 1255 struct btrfs_fs_info *fs_info = root->fs_info; 1256 struct btrfs_root *log_root; 1257 struct btrfs_inode_item *inode_item; 1258 1259 log_root = alloc_log_tree(trans, fs_info); 1260 if (IS_ERR(log_root)) 1261 return PTR_ERR(log_root); 1262 1263 log_root->last_trans = trans->transid; 1264 log_root->root_key.offset = root->root_key.objectid; 1265 1266 inode_item = &log_root->root_item.inode; 1267 btrfs_set_stack_inode_generation(inode_item, 1); 1268 btrfs_set_stack_inode_size(inode_item, 3); 1269 btrfs_set_stack_inode_nlink(inode_item, 1); 1270 btrfs_set_stack_inode_nbytes(inode_item, 1271 fs_info->nodesize); 1272 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1273 1274 btrfs_set_root_node(&log_root->root_item, log_root->node); 1275 1276 WARN_ON(root->log_root); 1277 root->log_root = log_root; 1278 root->log_transid = 0; 1279 root->log_transid_committed = -1; 1280 root->last_log_commit = 0; 1281 return 0; 1282} 1283 1284static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1285 struct btrfs_path *path, 1286 struct btrfs_key *key) 1287{ 1288 struct btrfs_root *root; 1289 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1290 u64 generation; 1291 int ret; 1292 int level; 1293 1294 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1295 if (!root) 1296 return ERR_PTR(-ENOMEM); 1297 1298 ret = btrfs_find_root(tree_root, key, path, 1299 &root->root_item, &root->root_key); 1300 if (ret) { 1301 if (ret > 0) 1302 ret = -ENOENT; 1303 goto fail; 1304 } 1305 1306 generation = btrfs_root_generation(&root->root_item); 1307 level = btrfs_root_level(&root->root_item); 1308 root->node = read_tree_block(fs_info, 1309 btrfs_root_bytenr(&root->root_item), 1310 generation, level, NULL); 1311 if (IS_ERR(root->node)) { 1312 ret = PTR_ERR(root->node); 1313 root->node = NULL; 1314 goto fail; 1315 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1316 ret = -EIO; 1317 goto fail; 1318 } 1319 root->commit_root = btrfs_root_node(root); 1320 return root; 1321fail: 1322 btrfs_put_root(root); 1323 return ERR_PTR(ret); 1324} 1325 1326struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1327 struct btrfs_key *key) 1328{ 1329 struct btrfs_root *root; 1330 struct btrfs_path *path; 1331 1332 path = btrfs_alloc_path(); 1333 if (!path) 1334 return ERR_PTR(-ENOMEM); 1335 root = read_tree_root_path(tree_root, path, key); 1336 btrfs_free_path(path); 1337 1338 return root; 1339} 1340 1341/* 1342 * Initialize subvolume root in-memory structure 1343 * 1344 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1345 */ 1346static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1347{ 1348 int ret; 1349 unsigned int nofs_flag; 1350 1351 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1352 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1353 GFP_NOFS); 1354 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1355 ret = -ENOMEM; 1356 goto fail; 1357 } 1358 1359 /* 1360 * We might be called under a transaction (e.g. indirect backref 1361 * resolution) which could deadlock if it triggers memory reclaim 1362 */ 1363 nofs_flag = memalloc_nofs_save(); 1364 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1365 memalloc_nofs_restore(nofs_flag); 1366 if (ret) 1367 goto fail; 1368 1369 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1370 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 1371 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1372 btrfs_check_and_init_root_item(&root->root_item); 1373 } 1374 1375 btrfs_init_free_ino_ctl(root); 1376 spin_lock_init(&root->ino_cache_lock); 1377 init_waitqueue_head(&root->ino_cache_wait); 1378 1379 /* 1380 * Don't assign anonymous block device to roots that are not exposed to 1381 * userspace, the id pool is limited to 1M 1382 */ 1383 if (is_fstree(root->root_key.objectid) && 1384 btrfs_root_refs(&root->root_item) > 0) { 1385 if (!anon_dev) { 1386 ret = get_anon_bdev(&root->anon_dev); 1387 if (ret) 1388 goto fail; 1389 } else { 1390 root->anon_dev = anon_dev; 1391 } 1392 } 1393 1394 mutex_lock(&root->objectid_mutex); 1395 ret = btrfs_find_highest_objectid(root, 1396 &root->highest_objectid); 1397 if (ret) { 1398 mutex_unlock(&root->objectid_mutex); 1399 goto fail; 1400 } 1401 1402 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1403 1404 mutex_unlock(&root->objectid_mutex); 1405 1406 return 0; 1407fail: 1408 /* The caller is responsible to call btrfs_free_fs_root */ 1409 return ret; 1410} 1411 1412static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1413 u64 root_id) 1414{ 1415 struct btrfs_root *root; 1416 1417 spin_lock(&fs_info->fs_roots_radix_lock); 1418 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1419 (unsigned long)root_id); 1420 if (root) 1421 root = btrfs_grab_root(root); 1422 spin_unlock(&fs_info->fs_roots_radix_lock); 1423 return root; 1424} 1425 1426static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1427 u64 objectid) 1428{ 1429 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1430 return btrfs_grab_root(fs_info->tree_root); 1431 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1432 return btrfs_grab_root(fs_info->extent_root); 1433 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1434 return btrfs_grab_root(fs_info->chunk_root); 1435 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1436 return btrfs_grab_root(fs_info->dev_root); 1437 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1438 return btrfs_grab_root(fs_info->csum_root); 1439 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1440 return btrfs_grab_root(fs_info->quota_root) ? 1441 fs_info->quota_root : ERR_PTR(-ENOENT); 1442 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1443 return btrfs_grab_root(fs_info->uuid_root) ? 1444 fs_info->uuid_root : ERR_PTR(-ENOENT); 1445 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1446 return btrfs_grab_root(fs_info->free_space_root) ? 1447 fs_info->free_space_root : ERR_PTR(-ENOENT); 1448 return NULL; 1449} 1450 1451int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1452 struct btrfs_root *root) 1453{ 1454 int ret; 1455 1456 ret = radix_tree_preload(GFP_NOFS); 1457 if (ret) 1458 return ret; 1459 1460 spin_lock(&fs_info->fs_roots_radix_lock); 1461 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1462 (unsigned long)root->root_key.objectid, 1463 root); 1464 if (ret == 0) { 1465 btrfs_grab_root(root); 1466 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1467 } 1468 spin_unlock(&fs_info->fs_roots_radix_lock); 1469 radix_tree_preload_end(); 1470 1471 return ret; 1472} 1473 1474void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1475{ 1476#ifdef CONFIG_BTRFS_DEBUG 1477 struct btrfs_root *root; 1478 1479 while (!list_empty(&fs_info->allocated_roots)) { 1480 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1481 1482 root = list_first_entry(&fs_info->allocated_roots, 1483 struct btrfs_root, leak_list); 1484 btrfs_err(fs_info, "leaked root %s refcount %d", 1485 btrfs_root_name(&root->root_key, buf), 1486 refcount_read(&root->refs)); 1487 while (refcount_read(&root->refs) > 1) 1488 btrfs_put_root(root); 1489 btrfs_put_root(root); 1490 } 1491#endif 1492} 1493 1494void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1495{ 1496 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1497 percpu_counter_destroy(&fs_info->delalloc_bytes); 1498 percpu_counter_destroy(&fs_info->dio_bytes); 1499 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1500 btrfs_free_csum_hash(fs_info); 1501 btrfs_free_stripe_hash_table(fs_info); 1502 btrfs_free_ref_cache(fs_info); 1503 kfree(fs_info->balance_ctl); 1504 kfree(fs_info->delayed_root); 1505 btrfs_put_root(fs_info->extent_root); 1506 btrfs_put_root(fs_info->tree_root); 1507 btrfs_put_root(fs_info->chunk_root); 1508 btrfs_put_root(fs_info->dev_root); 1509 btrfs_put_root(fs_info->csum_root); 1510 btrfs_put_root(fs_info->quota_root); 1511 btrfs_put_root(fs_info->uuid_root); 1512 btrfs_put_root(fs_info->free_space_root); 1513 btrfs_put_root(fs_info->fs_root); 1514 btrfs_put_root(fs_info->data_reloc_root); 1515 btrfs_check_leaked_roots(fs_info); 1516 btrfs_extent_buffer_leak_debug_check(fs_info); 1517 kfree(fs_info->super_copy); 1518 kfree(fs_info->super_for_commit); 1519 kvfree(fs_info); 1520} 1521 1522 1523/* 1524 * Get an in-memory reference of a root structure. 1525 * 1526 * For essential trees like root/extent tree, we grab it from fs_info directly. 1527 * For subvolume trees, we check the cached filesystem roots first. If not 1528 * found, then read it from disk and add it to cached fs roots. 1529 * 1530 * Caller should release the root by calling btrfs_put_root() after the usage. 1531 * 1532 * NOTE: Reloc and log trees can't be read by this function as they share the 1533 * same root objectid. 1534 * 1535 * @objectid: root id 1536 * @anon_dev: preallocated anonymous block device number for new roots, 1537 * pass 0 for new allocation. 1538 * @check_ref: whether to check root item references, If true, return -ENOENT 1539 * for orphan roots 1540 */ 1541static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1542 u64 objectid, dev_t anon_dev, 1543 bool check_ref) 1544{ 1545 struct btrfs_root *root; 1546 struct btrfs_path *path; 1547 struct btrfs_key key; 1548 int ret; 1549 1550 root = btrfs_get_global_root(fs_info, objectid); 1551 if (root) 1552 return root; 1553again: 1554 root = btrfs_lookup_fs_root(fs_info, objectid); 1555 if (root) { 1556 /* 1557 * Some other caller may have read out the newly inserted 1558 * subvolume already (for things like backref walk etc). Not 1559 * that common but still possible. In that case, we just need 1560 * to free the anon_dev. 1561 */ 1562 if (unlikely(anon_dev)) { 1563 free_anon_bdev(anon_dev); 1564 anon_dev = 0; 1565 } 1566 1567 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1568 btrfs_put_root(root); 1569 return ERR_PTR(-ENOENT); 1570 } 1571 return root; 1572 } 1573 1574 key.objectid = objectid; 1575 key.type = BTRFS_ROOT_ITEM_KEY; 1576 key.offset = (u64)-1; 1577 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1578 if (IS_ERR(root)) 1579 return root; 1580 1581 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1582 ret = -ENOENT; 1583 goto fail; 1584 } 1585 1586 ret = btrfs_init_fs_root(root, anon_dev); 1587 if (ret) 1588 goto fail; 1589 1590 path = btrfs_alloc_path(); 1591 if (!path) { 1592 ret = -ENOMEM; 1593 goto fail; 1594 } 1595 key.objectid = BTRFS_ORPHAN_OBJECTID; 1596 key.type = BTRFS_ORPHAN_ITEM_KEY; 1597 key.offset = objectid; 1598 1599 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1600 btrfs_free_path(path); 1601 if (ret < 0) 1602 goto fail; 1603 if (ret == 0) 1604 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1605 1606 ret = btrfs_insert_fs_root(fs_info, root); 1607 if (ret) { 1608 if (ret == -EEXIST) { 1609 btrfs_put_root(root); 1610 goto again; 1611 } 1612 goto fail; 1613 } 1614 return root; 1615fail: 1616 /* 1617 * If our caller provided us an anonymous device, then it's his 1618 * responsability to free it in case we fail. So we have to set our 1619 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1620 * and once again by our caller. 1621 */ 1622 if (anon_dev) 1623 root->anon_dev = 0; 1624 btrfs_put_root(root); 1625 return ERR_PTR(ret); 1626} 1627 1628/* 1629 * Get in-memory reference of a root structure 1630 * 1631 * @objectid: tree objectid 1632 * @check_ref: if set, verify that the tree exists and the item has at least 1633 * one reference 1634 */ 1635struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1636 u64 objectid, bool check_ref) 1637{ 1638 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1639} 1640 1641/* 1642 * Get in-memory reference of a root structure, created as new, optionally pass 1643 * the anonymous block device id 1644 * 1645 * @objectid: tree objectid 1646 * @anon_dev: if zero, allocate a new anonymous block device or use the 1647 * parameter value 1648 */ 1649struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1650 u64 objectid, dev_t anon_dev) 1651{ 1652 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1653} 1654 1655/* 1656 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1657 * @fs_info: the fs_info 1658 * @objectid: the objectid we need to lookup 1659 * 1660 * This is exclusively used for backref walking, and exists specifically because 1661 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1662 * creation time, which means we may have to read the tree_root in order to look 1663 * up a fs root that is not in memory. If the root is not in memory we will 1664 * read the tree root commit root and look up the fs root from there. This is a 1665 * temporary root, it will not be inserted into the radix tree as it doesn't 1666 * have the most uptodate information, it'll simply be discarded once the 1667 * backref code is finished using the root. 1668 */ 1669struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1670 struct btrfs_path *path, 1671 u64 objectid) 1672{ 1673 struct btrfs_root *root; 1674 struct btrfs_key key; 1675 1676 ASSERT(path->search_commit_root && path->skip_locking); 1677 1678 /* 1679 * This can return -ENOENT if we ask for a root that doesn't exist, but 1680 * since this is called via the backref walking code we won't be looking 1681 * up a root that doesn't exist, unless there's corruption. So if root 1682 * != NULL just return it. 1683 */ 1684 root = btrfs_get_global_root(fs_info, objectid); 1685 if (root) 1686 return root; 1687 1688 root = btrfs_lookup_fs_root(fs_info, objectid); 1689 if (root) 1690 return root; 1691 1692 key.objectid = objectid; 1693 key.type = BTRFS_ROOT_ITEM_KEY; 1694 key.offset = (u64)-1; 1695 root = read_tree_root_path(fs_info->tree_root, path, &key); 1696 btrfs_release_path(path); 1697 1698 return root; 1699} 1700 1701/* 1702 * called by the kthread helper functions to finally call the bio end_io 1703 * functions. This is where read checksum verification actually happens 1704 */ 1705static void end_workqueue_fn(struct btrfs_work *work) 1706{ 1707 struct bio *bio; 1708 struct btrfs_end_io_wq *end_io_wq; 1709 1710 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1711 bio = end_io_wq->bio; 1712 1713 bio->bi_status = end_io_wq->status; 1714 bio->bi_private = end_io_wq->private; 1715 bio->bi_end_io = end_io_wq->end_io; 1716 bio_endio(bio); 1717 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1718} 1719 1720static int cleaner_kthread(void *arg) 1721{ 1722 struct btrfs_root *root = arg; 1723 struct btrfs_fs_info *fs_info = root->fs_info; 1724 int again; 1725 1726 while (1) { 1727 again = 0; 1728 1729 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1730 1731 /* Make the cleaner go to sleep early. */ 1732 if (btrfs_need_cleaner_sleep(fs_info)) 1733 goto sleep; 1734 1735 /* 1736 * Do not do anything if we might cause open_ctree() to block 1737 * before we have finished mounting the filesystem. 1738 */ 1739 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1740 goto sleep; 1741 1742 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1743 goto sleep; 1744 1745 /* 1746 * Avoid the problem that we change the status of the fs 1747 * during the above check and trylock. 1748 */ 1749 if (btrfs_need_cleaner_sleep(fs_info)) { 1750 mutex_unlock(&fs_info->cleaner_mutex); 1751 goto sleep; 1752 } 1753 1754 btrfs_run_delayed_iputs(fs_info); 1755 1756 again = btrfs_clean_one_deleted_snapshot(root); 1757 mutex_unlock(&fs_info->cleaner_mutex); 1758 1759 /* 1760 * The defragger has dealt with the R/O remount and umount, 1761 * needn't do anything special here. 1762 */ 1763 btrfs_run_defrag_inodes(fs_info); 1764 1765 /* 1766 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1767 * with relocation (btrfs_relocate_chunk) and relocation 1768 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1769 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1770 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1771 * unused block groups. 1772 */ 1773 btrfs_delete_unused_bgs(fs_info); 1774sleep: 1775 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1776 if (kthread_should_park()) 1777 kthread_parkme(); 1778 if (kthread_should_stop()) 1779 return 0; 1780 if (!again) { 1781 set_current_state(TASK_INTERRUPTIBLE); 1782 schedule(); 1783 __set_current_state(TASK_RUNNING); 1784 } 1785 } 1786} 1787 1788static int transaction_kthread(void *arg) 1789{ 1790 struct btrfs_root *root = arg; 1791 struct btrfs_fs_info *fs_info = root->fs_info; 1792 struct btrfs_trans_handle *trans; 1793 struct btrfs_transaction *cur; 1794 u64 transid; 1795 time64_t now; 1796 unsigned long delay; 1797 bool cannot_commit; 1798 1799 do { 1800 cannot_commit = false; 1801 delay = HZ * fs_info->commit_interval; 1802 mutex_lock(&fs_info->transaction_kthread_mutex); 1803 1804 spin_lock(&fs_info->trans_lock); 1805 cur = fs_info->running_transaction; 1806 if (!cur) { 1807 spin_unlock(&fs_info->trans_lock); 1808 goto sleep; 1809 } 1810 1811 now = ktime_get_seconds(); 1812 if (cur->state < TRANS_STATE_COMMIT_START && 1813 (now < cur->start_time || 1814 now - cur->start_time < fs_info->commit_interval)) { 1815 spin_unlock(&fs_info->trans_lock); 1816 delay = HZ * 5; 1817 goto sleep; 1818 } 1819 transid = cur->transid; 1820 spin_unlock(&fs_info->trans_lock); 1821 1822 /* If the file system is aborted, this will always fail. */ 1823 trans = btrfs_attach_transaction(root); 1824 if (IS_ERR(trans)) { 1825 if (PTR_ERR(trans) != -ENOENT) 1826 cannot_commit = true; 1827 goto sleep; 1828 } 1829 if (transid == trans->transid) { 1830 btrfs_commit_transaction(trans); 1831 } else { 1832 btrfs_end_transaction(trans); 1833 } 1834sleep: 1835 wake_up_process(fs_info->cleaner_kthread); 1836 mutex_unlock(&fs_info->transaction_kthread_mutex); 1837 1838 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1839 &fs_info->fs_state))) 1840 btrfs_cleanup_transaction(fs_info); 1841 if (!kthread_should_stop() && 1842 (!btrfs_transaction_blocked(fs_info) || 1843 cannot_commit)) 1844 schedule_timeout_interruptible(delay); 1845 } while (!kthread_should_stop()); 1846 return 0; 1847} 1848 1849/* 1850 * This will find the highest generation in the array of root backups. The 1851 * index of the highest array is returned, or -EINVAL if we can't find 1852 * anything. 1853 * 1854 * We check to make sure the array is valid by comparing the 1855 * generation of the latest root in the array with the generation 1856 * in the super block. If they don't match we pitch it. 1857 */ 1858static int find_newest_super_backup(struct btrfs_fs_info *info) 1859{ 1860 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1861 u64 cur; 1862 struct btrfs_root_backup *root_backup; 1863 int i; 1864 1865 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1866 root_backup = info->super_copy->super_roots + i; 1867 cur = btrfs_backup_tree_root_gen(root_backup); 1868 if (cur == newest_gen) 1869 return i; 1870 } 1871 1872 return -EINVAL; 1873} 1874 1875/* 1876 * copy all the root pointers into the super backup array. 1877 * this will bump the backup pointer by one when it is 1878 * done 1879 */ 1880static void backup_super_roots(struct btrfs_fs_info *info) 1881{ 1882 const int next_backup = info->backup_root_index; 1883 struct btrfs_root_backup *root_backup; 1884 1885 root_backup = info->super_for_commit->super_roots + next_backup; 1886 1887 /* 1888 * make sure all of our padding and empty slots get zero filled 1889 * regardless of which ones we use today 1890 */ 1891 memset(root_backup, 0, sizeof(*root_backup)); 1892 1893 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1894 1895 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1896 btrfs_set_backup_tree_root_gen(root_backup, 1897 btrfs_header_generation(info->tree_root->node)); 1898 1899 btrfs_set_backup_tree_root_level(root_backup, 1900 btrfs_header_level(info->tree_root->node)); 1901 1902 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1903 btrfs_set_backup_chunk_root_gen(root_backup, 1904 btrfs_header_generation(info->chunk_root->node)); 1905 btrfs_set_backup_chunk_root_level(root_backup, 1906 btrfs_header_level(info->chunk_root->node)); 1907 1908 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1909 btrfs_set_backup_extent_root_gen(root_backup, 1910 btrfs_header_generation(info->extent_root->node)); 1911 btrfs_set_backup_extent_root_level(root_backup, 1912 btrfs_header_level(info->extent_root->node)); 1913 1914 /* 1915 * we might commit during log recovery, which happens before we set 1916 * the fs_root. Make sure it is valid before we fill it in. 1917 */ 1918 if (info->fs_root && info->fs_root->node) { 1919 btrfs_set_backup_fs_root(root_backup, 1920 info->fs_root->node->start); 1921 btrfs_set_backup_fs_root_gen(root_backup, 1922 btrfs_header_generation(info->fs_root->node)); 1923 btrfs_set_backup_fs_root_level(root_backup, 1924 btrfs_header_level(info->fs_root->node)); 1925 } 1926 1927 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1928 btrfs_set_backup_dev_root_gen(root_backup, 1929 btrfs_header_generation(info->dev_root->node)); 1930 btrfs_set_backup_dev_root_level(root_backup, 1931 btrfs_header_level(info->dev_root->node)); 1932 1933 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1934 btrfs_set_backup_csum_root_gen(root_backup, 1935 btrfs_header_generation(info->csum_root->node)); 1936 btrfs_set_backup_csum_root_level(root_backup, 1937 btrfs_header_level(info->csum_root->node)); 1938 1939 btrfs_set_backup_total_bytes(root_backup, 1940 btrfs_super_total_bytes(info->super_copy)); 1941 btrfs_set_backup_bytes_used(root_backup, 1942 btrfs_super_bytes_used(info->super_copy)); 1943 btrfs_set_backup_num_devices(root_backup, 1944 btrfs_super_num_devices(info->super_copy)); 1945 1946 /* 1947 * if we don't copy this out to the super_copy, it won't get remembered 1948 * for the next commit 1949 */ 1950 memcpy(&info->super_copy->super_roots, 1951 &info->super_for_commit->super_roots, 1952 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1953} 1954 1955/* 1956 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1957 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1958 * 1959 * fs_info - filesystem whose backup roots need to be read 1960 * priority - priority of backup root required 1961 * 1962 * Returns backup root index on success and -EINVAL otherwise. 1963 */ 1964static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1965{ 1966 int backup_index = find_newest_super_backup(fs_info); 1967 struct btrfs_super_block *super = fs_info->super_copy; 1968 struct btrfs_root_backup *root_backup; 1969 1970 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1971 if (priority == 0) 1972 return backup_index; 1973 1974 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1975 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1976 } else { 1977 return -EINVAL; 1978 } 1979 1980 root_backup = super->super_roots + backup_index; 1981 1982 btrfs_set_super_generation(super, 1983 btrfs_backup_tree_root_gen(root_backup)); 1984 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1985 btrfs_set_super_root_level(super, 1986 btrfs_backup_tree_root_level(root_backup)); 1987 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1988 1989 /* 1990 * Fixme: the total bytes and num_devices need to match or we should 1991 * need a fsck 1992 */ 1993 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1994 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1995 1996 return backup_index; 1997} 1998 1999/* helper to cleanup workers */ 2000static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2001{ 2002 btrfs_destroy_workqueue(fs_info->fixup_workers); 2003 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2004 btrfs_destroy_workqueue(fs_info->workers); 2005 btrfs_destroy_workqueue(fs_info->endio_workers); 2006 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2007 btrfs_destroy_workqueue(fs_info->rmw_workers); 2008 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2009 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2010 btrfs_destroy_workqueue(fs_info->delayed_workers); 2011 btrfs_destroy_workqueue(fs_info->caching_workers); 2012 btrfs_destroy_workqueue(fs_info->readahead_workers); 2013 btrfs_destroy_workqueue(fs_info->flush_workers); 2014 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2015 if (fs_info->discard_ctl.discard_workers) 2016 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2017 /* 2018 * Now that all other work queues are destroyed, we can safely destroy 2019 * the queues used for metadata I/O, since tasks from those other work 2020 * queues can do metadata I/O operations. 2021 */ 2022 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2023 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2024} 2025 2026static void free_root_extent_buffers(struct btrfs_root *root) 2027{ 2028 if (root) { 2029 free_extent_buffer(root->node); 2030 free_extent_buffer(root->commit_root); 2031 root->node = NULL; 2032 root->commit_root = NULL; 2033 } 2034} 2035 2036/* helper to cleanup tree roots */ 2037static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2038{ 2039 free_root_extent_buffers(info->tree_root); 2040 2041 free_root_extent_buffers(info->dev_root); 2042 free_root_extent_buffers(info->extent_root); 2043 free_root_extent_buffers(info->csum_root); 2044 free_root_extent_buffers(info->quota_root); 2045 free_root_extent_buffers(info->uuid_root); 2046 free_root_extent_buffers(info->fs_root); 2047 free_root_extent_buffers(info->data_reloc_root); 2048 if (free_chunk_root) 2049 free_root_extent_buffers(info->chunk_root); 2050 free_root_extent_buffers(info->free_space_root); 2051} 2052 2053void btrfs_put_root(struct btrfs_root *root) 2054{ 2055 if (!root) 2056 return; 2057 2058 if (refcount_dec_and_test(&root->refs)) { 2059 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2060 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2061 if (root->anon_dev) 2062 free_anon_bdev(root->anon_dev); 2063 btrfs_drew_lock_destroy(&root->snapshot_lock); 2064 free_root_extent_buffers(root); 2065 kfree(root->free_ino_ctl); 2066 kfree(root->free_ino_pinned); 2067#ifdef CONFIG_BTRFS_DEBUG 2068 spin_lock(&root->fs_info->fs_roots_radix_lock); 2069 list_del_init(&root->leak_list); 2070 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2071#endif 2072 kfree(root); 2073 } 2074} 2075 2076void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2077{ 2078 int ret; 2079 struct btrfs_root *gang[8]; 2080 int i; 2081 2082 while (!list_empty(&fs_info->dead_roots)) { 2083 gang[0] = list_entry(fs_info->dead_roots.next, 2084 struct btrfs_root, root_list); 2085 list_del(&gang[0]->root_list); 2086 2087 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2088 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2089 btrfs_put_root(gang[0]); 2090 } 2091 2092 while (1) { 2093 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2094 (void **)gang, 0, 2095 ARRAY_SIZE(gang)); 2096 if (!ret) 2097 break; 2098 for (i = 0; i < ret; i++) 2099 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2100 } 2101} 2102 2103static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2104{ 2105 mutex_init(&fs_info->scrub_lock); 2106 atomic_set(&fs_info->scrubs_running, 0); 2107 atomic_set(&fs_info->scrub_pause_req, 0); 2108 atomic_set(&fs_info->scrubs_paused, 0); 2109 atomic_set(&fs_info->scrub_cancel_req, 0); 2110 init_waitqueue_head(&fs_info->scrub_pause_wait); 2111 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2112} 2113 2114static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2115{ 2116 spin_lock_init(&fs_info->balance_lock); 2117 mutex_init(&fs_info->balance_mutex); 2118 atomic_set(&fs_info->balance_pause_req, 0); 2119 atomic_set(&fs_info->balance_cancel_req, 0); 2120 fs_info->balance_ctl = NULL; 2121 init_waitqueue_head(&fs_info->balance_wait_q); 2122} 2123 2124static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2125{ 2126 struct inode *inode = fs_info->btree_inode; 2127 2128 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2129 set_nlink(inode, 1); 2130 /* 2131 * we set the i_size on the btree inode to the max possible int. 2132 * the real end of the address space is determined by all of 2133 * the devices in the system 2134 */ 2135 inode->i_size = OFFSET_MAX; 2136 inode->i_mapping->a_ops = &btree_aops; 2137 2138 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2139 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2140 IO_TREE_BTREE_INODE_IO, inode); 2141 BTRFS_I(inode)->io_tree.track_uptodate = false; 2142 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2143 2144 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2145 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2146 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2147 btrfs_insert_inode_hash(inode); 2148} 2149 2150static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2151{ 2152 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2153 init_rwsem(&fs_info->dev_replace.rwsem); 2154 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2155} 2156 2157static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2158{ 2159 spin_lock_init(&fs_info->qgroup_lock); 2160 mutex_init(&fs_info->qgroup_ioctl_lock); 2161 fs_info->qgroup_tree = RB_ROOT; 2162 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2163 fs_info->qgroup_seq = 1; 2164 fs_info->qgroup_ulist = NULL; 2165 fs_info->qgroup_rescan_running = false; 2166 mutex_init(&fs_info->qgroup_rescan_lock); 2167} 2168 2169static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2170 struct btrfs_fs_devices *fs_devices) 2171{ 2172 u32 max_active = fs_info->thread_pool_size; 2173 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2174 2175 fs_info->workers = 2176 btrfs_alloc_workqueue(fs_info, "worker", 2177 flags | WQ_HIGHPRI, max_active, 16); 2178 2179 fs_info->delalloc_workers = 2180 btrfs_alloc_workqueue(fs_info, "delalloc", 2181 flags, max_active, 2); 2182 2183 fs_info->flush_workers = 2184 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2185 flags, max_active, 0); 2186 2187 fs_info->caching_workers = 2188 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2189 2190 fs_info->fixup_workers = 2191 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2192 2193 /* 2194 * endios are largely parallel and should have a very 2195 * low idle thresh 2196 */ 2197 fs_info->endio_workers = 2198 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2199 fs_info->endio_meta_workers = 2200 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2201 max_active, 4); 2202 fs_info->endio_meta_write_workers = 2203 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2204 max_active, 2); 2205 fs_info->endio_raid56_workers = 2206 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2207 max_active, 4); 2208 fs_info->rmw_workers = 2209 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2210 fs_info->endio_write_workers = 2211 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2212 max_active, 2); 2213 fs_info->endio_freespace_worker = 2214 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2215 max_active, 0); 2216 fs_info->delayed_workers = 2217 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2218 max_active, 0); 2219 fs_info->readahead_workers = 2220 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2221 max_active, 2); 2222 fs_info->qgroup_rescan_workers = 2223 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2224 fs_info->discard_ctl.discard_workers = 2225 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2226 2227 if (!(fs_info->workers && fs_info->delalloc_workers && 2228 fs_info->flush_workers && 2229 fs_info->endio_workers && fs_info->endio_meta_workers && 2230 fs_info->endio_meta_write_workers && 2231 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2232 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2233 fs_info->caching_workers && fs_info->readahead_workers && 2234 fs_info->fixup_workers && fs_info->delayed_workers && 2235 fs_info->qgroup_rescan_workers && 2236 fs_info->discard_ctl.discard_workers)) { 2237 return -ENOMEM; 2238 } 2239 2240 return 0; 2241} 2242 2243static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2244{ 2245 struct crypto_shash *csum_shash; 2246 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2247 2248 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2249 2250 if (IS_ERR(csum_shash)) { 2251 btrfs_err(fs_info, "error allocating %s hash for checksum", 2252 csum_driver); 2253 return PTR_ERR(csum_shash); 2254 } 2255 2256 fs_info->csum_shash = csum_shash; 2257 2258 /* 2259 * Check if the checksum implementation is a fast accelerated one. 2260 * As-is this is a bit of a hack and should be replaced once the csum 2261 * implementations provide that information themselves. 2262 */ 2263 switch (csum_type) { 2264 case BTRFS_CSUM_TYPE_CRC32: 2265 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2266 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2267 break; 2268 case BTRFS_CSUM_TYPE_XXHASH: 2269 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2270 break; 2271 default: 2272 break; 2273 } 2274 2275 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2276 btrfs_super_csum_name(csum_type), 2277 crypto_shash_driver_name(csum_shash)); 2278 return 0; 2279} 2280 2281static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2282 struct btrfs_fs_devices *fs_devices) 2283{ 2284 int ret; 2285 struct btrfs_root *log_tree_root; 2286 struct btrfs_super_block *disk_super = fs_info->super_copy; 2287 u64 bytenr = btrfs_super_log_root(disk_super); 2288 int level = btrfs_super_log_root_level(disk_super); 2289 2290 if (fs_devices->rw_devices == 0) { 2291 btrfs_warn(fs_info, "log replay required on RO media"); 2292 return -EIO; 2293 } 2294 2295 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2296 GFP_KERNEL); 2297 if (!log_tree_root) 2298 return -ENOMEM; 2299 2300 log_tree_root->node = read_tree_block(fs_info, bytenr, 2301 fs_info->generation + 1, 2302 level, NULL); 2303 if (IS_ERR(log_tree_root->node)) { 2304 btrfs_warn(fs_info, "failed to read log tree"); 2305 ret = PTR_ERR(log_tree_root->node); 2306 log_tree_root->node = NULL; 2307 btrfs_put_root(log_tree_root); 2308 return ret; 2309 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2310 btrfs_err(fs_info, "failed to read log tree"); 2311 btrfs_put_root(log_tree_root); 2312 return -EIO; 2313 } 2314 /* returns with log_tree_root freed on success */ 2315 ret = btrfs_recover_log_trees(log_tree_root); 2316 if (ret) { 2317 btrfs_handle_fs_error(fs_info, ret, 2318 "Failed to recover log tree"); 2319 btrfs_put_root(log_tree_root); 2320 return ret; 2321 } 2322 2323 if (sb_rdonly(fs_info->sb)) { 2324 ret = btrfs_commit_super(fs_info); 2325 if (ret) 2326 return ret; 2327 } 2328 2329 return 0; 2330} 2331 2332static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2333{ 2334 struct btrfs_root *tree_root = fs_info->tree_root; 2335 struct btrfs_root *root; 2336 struct btrfs_key location; 2337 int ret; 2338 2339 BUG_ON(!fs_info->tree_root); 2340 2341 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2342 location.type = BTRFS_ROOT_ITEM_KEY; 2343 location.offset = 0; 2344 2345 root = btrfs_read_tree_root(tree_root, &location); 2346 if (IS_ERR(root)) { 2347 ret = PTR_ERR(root); 2348 goto out; 2349 } 2350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2351 fs_info->extent_root = root; 2352 2353 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2354 root = btrfs_read_tree_root(tree_root, &location); 2355 if (IS_ERR(root)) { 2356 ret = PTR_ERR(root); 2357 goto out; 2358 } 2359 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2360 fs_info->dev_root = root; 2361 btrfs_init_devices_late(fs_info); 2362 2363 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2364 root = btrfs_read_tree_root(tree_root, &location); 2365 if (IS_ERR(root)) { 2366 ret = PTR_ERR(root); 2367 goto out; 2368 } 2369 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2370 fs_info->csum_root = root; 2371 2372 /* 2373 * This tree can share blocks with some other fs tree during relocation 2374 * and we need a proper setup by btrfs_get_fs_root 2375 */ 2376 root = btrfs_get_fs_root(tree_root->fs_info, 2377 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2378 if (IS_ERR(root)) { 2379 ret = PTR_ERR(root); 2380 goto out; 2381 } 2382 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2383 fs_info->data_reloc_root = root; 2384 2385 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2386 root = btrfs_read_tree_root(tree_root, &location); 2387 if (!IS_ERR(root)) { 2388 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2389 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2390 fs_info->quota_root = root; 2391 } 2392 2393 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2394 root = btrfs_read_tree_root(tree_root, &location); 2395 if (IS_ERR(root)) { 2396 ret = PTR_ERR(root); 2397 if (ret != -ENOENT) 2398 goto out; 2399 } else { 2400 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2401 fs_info->uuid_root = root; 2402 } 2403 2404 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2405 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2406 root = btrfs_read_tree_root(tree_root, &location); 2407 if (IS_ERR(root)) { 2408 ret = PTR_ERR(root); 2409 goto out; 2410 } 2411 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2412 fs_info->free_space_root = root; 2413 } 2414 2415 return 0; 2416out: 2417 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2418 location.objectid, ret); 2419 return ret; 2420} 2421 2422/* 2423 * Real super block validation 2424 * NOTE: super csum type and incompat features will not be checked here. 2425 * 2426 * @sb: super block to check 2427 * @mirror_num: the super block number to check its bytenr: 2428 * 0 the primary (1st) sb 2429 * 1, 2 2nd and 3rd backup copy 2430 * -1 skip bytenr check 2431 */ 2432static int validate_super(struct btrfs_fs_info *fs_info, 2433 struct btrfs_super_block *sb, int mirror_num) 2434{ 2435 u64 nodesize = btrfs_super_nodesize(sb); 2436 u64 sectorsize = btrfs_super_sectorsize(sb); 2437 int ret = 0; 2438 2439 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2440 btrfs_err(fs_info, "no valid FS found"); 2441 ret = -EINVAL; 2442 } 2443 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2444 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2445 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2446 ret = -EINVAL; 2447 } 2448 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2449 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2450 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2451 ret = -EINVAL; 2452 } 2453 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2454 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2455 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2456 ret = -EINVAL; 2457 } 2458 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2459 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2460 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2461 ret = -EINVAL; 2462 } 2463 2464 /* 2465 * Check sectorsize and nodesize first, other check will need it. 2466 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2467 */ 2468 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2469 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2470 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2471 ret = -EINVAL; 2472 } 2473 /* Only PAGE SIZE is supported yet */ 2474 if (sectorsize != PAGE_SIZE) { 2475 btrfs_err(fs_info, 2476 "sectorsize %llu not supported yet, only support %lu", 2477 sectorsize, PAGE_SIZE); 2478 ret = -EINVAL; 2479 } 2480 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2481 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2482 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2483 ret = -EINVAL; 2484 } 2485 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2486 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2487 le32_to_cpu(sb->__unused_leafsize), nodesize); 2488 ret = -EINVAL; 2489 } 2490 2491 /* Root alignment check */ 2492 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2493 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2494 btrfs_super_root(sb)); 2495 ret = -EINVAL; 2496 } 2497 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2498 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2499 btrfs_super_chunk_root(sb)); 2500 ret = -EINVAL; 2501 } 2502 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2503 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2504 btrfs_super_log_root(sb)); 2505 ret = -EINVAL; 2506 } 2507 2508 if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2509 btrfs_err(fs_info, 2510 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2511 sb->fsid, fs_info->fs_devices->fsid); 2512 ret = -EINVAL; 2513 } 2514 2515 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2516 BTRFS_FSID_SIZE) != 0) { 2517 btrfs_err(fs_info, 2518"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2519 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2520 ret = -EINVAL; 2521 } 2522 2523 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2524 BTRFS_FSID_SIZE) != 0) { 2525 btrfs_err(fs_info, 2526 "dev_item UUID does not match metadata fsid: %pU != %pU", 2527 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2528 ret = -EINVAL; 2529 } 2530 2531 /* 2532 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2533 * done later 2534 */ 2535 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2536 btrfs_err(fs_info, "bytes_used is too small %llu", 2537 btrfs_super_bytes_used(sb)); 2538 ret = -EINVAL; 2539 } 2540 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2541 btrfs_err(fs_info, "invalid stripesize %u", 2542 btrfs_super_stripesize(sb)); 2543 ret = -EINVAL; 2544 } 2545 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2546 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2547 btrfs_super_num_devices(sb)); 2548 if (btrfs_super_num_devices(sb) == 0) { 2549 btrfs_err(fs_info, "number of devices is 0"); 2550 ret = -EINVAL; 2551 } 2552 2553 if (mirror_num >= 0 && 2554 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2555 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2556 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2557 ret = -EINVAL; 2558 } 2559 2560 /* 2561 * Obvious sys_chunk_array corruptions, it must hold at least one key 2562 * and one chunk 2563 */ 2564 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2565 btrfs_err(fs_info, "system chunk array too big %u > %u", 2566 btrfs_super_sys_array_size(sb), 2567 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2568 ret = -EINVAL; 2569 } 2570 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2571 + sizeof(struct btrfs_chunk)) { 2572 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2573 btrfs_super_sys_array_size(sb), 2574 sizeof(struct btrfs_disk_key) 2575 + sizeof(struct btrfs_chunk)); 2576 ret = -EINVAL; 2577 } 2578 2579 /* 2580 * The generation is a global counter, we'll trust it more than the others 2581 * but it's still possible that it's the one that's wrong. 2582 */ 2583 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2584 btrfs_warn(fs_info, 2585 "suspicious: generation < chunk_root_generation: %llu < %llu", 2586 btrfs_super_generation(sb), 2587 btrfs_super_chunk_root_generation(sb)); 2588 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2589 && btrfs_super_cache_generation(sb) != (u64)-1) 2590 btrfs_warn(fs_info, 2591 "suspicious: generation < cache_generation: %llu < %llu", 2592 btrfs_super_generation(sb), 2593 btrfs_super_cache_generation(sb)); 2594 2595 return ret; 2596} 2597 2598/* 2599 * Validation of super block at mount time. 2600 * Some checks already done early at mount time, like csum type and incompat 2601 * flags will be skipped. 2602 */ 2603static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2604{ 2605 return validate_super(fs_info, fs_info->super_copy, 0); 2606} 2607 2608/* 2609 * Validation of super block at write time. 2610 * Some checks like bytenr check will be skipped as their values will be 2611 * overwritten soon. 2612 * Extra checks like csum type and incompat flags will be done here. 2613 */ 2614static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2615 struct btrfs_super_block *sb) 2616{ 2617 int ret; 2618 2619 ret = validate_super(fs_info, sb, -1); 2620 if (ret < 0) 2621 goto out; 2622 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2623 ret = -EUCLEAN; 2624 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2625 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2626 goto out; 2627 } 2628 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2629 ret = -EUCLEAN; 2630 btrfs_err(fs_info, 2631 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2632 btrfs_super_incompat_flags(sb), 2633 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2634 goto out; 2635 } 2636out: 2637 if (ret < 0) 2638 btrfs_err(fs_info, 2639 "super block corruption detected before writing it to disk"); 2640 return ret; 2641} 2642 2643static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2644{ 2645 int backup_index = find_newest_super_backup(fs_info); 2646 struct btrfs_super_block *sb = fs_info->super_copy; 2647 struct btrfs_root *tree_root = fs_info->tree_root; 2648 bool handle_error = false; 2649 int ret = 0; 2650 int i; 2651 2652 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2653 u64 generation; 2654 int level; 2655 2656 if (handle_error) { 2657 if (!IS_ERR(tree_root->node)) 2658 free_extent_buffer(tree_root->node); 2659 tree_root->node = NULL; 2660 2661 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2662 break; 2663 2664 free_root_pointers(fs_info, 0); 2665 2666 /* 2667 * Don't use the log in recovery mode, it won't be 2668 * valid 2669 */ 2670 btrfs_set_super_log_root(sb, 0); 2671 2672 /* We can't trust the free space cache either */ 2673 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2674 2675 ret = read_backup_root(fs_info, i); 2676 backup_index = ret; 2677 if (ret < 0) 2678 return ret; 2679 } 2680 generation = btrfs_super_generation(sb); 2681 level = btrfs_super_root_level(sb); 2682 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb), 2683 generation, level, NULL); 2684 if (IS_ERR(tree_root->node)) { 2685 handle_error = true; 2686 ret = PTR_ERR(tree_root->node); 2687 tree_root->node = NULL; 2688 btrfs_warn(fs_info, "couldn't read tree root"); 2689 continue; 2690 2691 } else if (!extent_buffer_uptodate(tree_root->node)) { 2692 handle_error = true; 2693 ret = -EIO; 2694 btrfs_warn(fs_info, "error while reading tree root"); 2695 continue; 2696 } 2697 2698 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2699 tree_root->commit_root = btrfs_root_node(tree_root); 2700 btrfs_set_root_refs(&tree_root->root_item, 1); 2701 2702 /* 2703 * No need to hold btrfs_root::objectid_mutex since the fs 2704 * hasn't been fully initialised and we are the only user 2705 */ 2706 ret = btrfs_find_highest_objectid(tree_root, 2707 &tree_root->highest_objectid); 2708 if (ret < 0) { 2709 handle_error = true; 2710 continue; 2711 } 2712 2713 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2714 2715 ret = btrfs_read_roots(fs_info); 2716 if (ret < 0) { 2717 handle_error = true; 2718 continue; 2719 } 2720 2721 /* All successful */ 2722 fs_info->generation = generation; 2723 fs_info->last_trans_committed = generation; 2724 2725 /* Always begin writing backup roots after the one being used */ 2726 if (backup_index < 0) { 2727 fs_info->backup_root_index = 0; 2728 } else { 2729 fs_info->backup_root_index = backup_index + 1; 2730 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2731 } 2732 break; 2733 } 2734 2735 return ret; 2736} 2737 2738void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2739{ 2740 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2741 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2742 INIT_LIST_HEAD(&fs_info->trans_list); 2743 INIT_LIST_HEAD(&fs_info->dead_roots); 2744 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2745 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2746 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2747 spin_lock_init(&fs_info->delalloc_root_lock); 2748 spin_lock_init(&fs_info->trans_lock); 2749 spin_lock_init(&fs_info->fs_roots_radix_lock); 2750 spin_lock_init(&fs_info->delayed_iput_lock); 2751 spin_lock_init(&fs_info->defrag_inodes_lock); 2752 spin_lock_init(&fs_info->super_lock); 2753 spin_lock_init(&fs_info->buffer_lock); 2754 spin_lock_init(&fs_info->unused_bgs_lock); 2755 rwlock_init(&fs_info->tree_mod_log_lock); 2756 mutex_init(&fs_info->unused_bg_unpin_mutex); 2757 mutex_init(&fs_info->delete_unused_bgs_mutex); 2758 mutex_init(&fs_info->reloc_mutex); 2759 mutex_init(&fs_info->delalloc_root_mutex); 2760 seqlock_init(&fs_info->profiles_lock); 2761 2762 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2763 INIT_LIST_HEAD(&fs_info->space_info); 2764 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2765 INIT_LIST_HEAD(&fs_info->unused_bgs); 2766#ifdef CONFIG_BTRFS_DEBUG 2767 INIT_LIST_HEAD(&fs_info->allocated_roots); 2768 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2769 spin_lock_init(&fs_info->eb_leak_lock); 2770#endif 2771 extent_map_tree_init(&fs_info->mapping_tree); 2772 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2773 BTRFS_BLOCK_RSV_GLOBAL); 2774 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2775 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2776 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2777 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2778 BTRFS_BLOCK_RSV_DELOPS); 2779 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2780 BTRFS_BLOCK_RSV_DELREFS); 2781 2782 atomic_set(&fs_info->async_delalloc_pages, 0); 2783 atomic_set(&fs_info->defrag_running, 0); 2784 atomic_set(&fs_info->reada_works_cnt, 0); 2785 atomic_set(&fs_info->nr_delayed_iputs, 0); 2786 atomic64_set(&fs_info->tree_mod_seq, 0); 2787 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2788 fs_info->metadata_ratio = 0; 2789 fs_info->defrag_inodes = RB_ROOT; 2790 atomic64_set(&fs_info->free_chunk_space, 0); 2791 fs_info->tree_mod_log = RB_ROOT; 2792 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2793 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2794 /* readahead state */ 2795 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2796 spin_lock_init(&fs_info->reada_lock); 2797 btrfs_init_ref_verify(fs_info); 2798 2799 fs_info->thread_pool_size = min_t(unsigned long, 2800 num_online_cpus() + 2, 8); 2801 2802 INIT_LIST_HEAD(&fs_info->ordered_roots); 2803 spin_lock_init(&fs_info->ordered_root_lock); 2804 2805 btrfs_init_scrub(fs_info); 2806#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2807 fs_info->check_integrity_print_mask = 0; 2808#endif 2809 btrfs_init_balance(fs_info); 2810 btrfs_init_async_reclaim_work(fs_info); 2811 2812 spin_lock_init(&fs_info->block_group_cache_lock); 2813 fs_info->block_group_cache_tree = RB_ROOT; 2814 fs_info->first_logical_byte = (u64)-1; 2815 2816 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2817 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 2818 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2819 2820 mutex_init(&fs_info->ordered_operations_mutex); 2821 mutex_init(&fs_info->tree_log_mutex); 2822 mutex_init(&fs_info->chunk_mutex); 2823 mutex_init(&fs_info->transaction_kthread_mutex); 2824 mutex_init(&fs_info->cleaner_mutex); 2825 mutex_init(&fs_info->ro_block_group_mutex); 2826 init_rwsem(&fs_info->commit_root_sem); 2827 init_rwsem(&fs_info->cleanup_work_sem); 2828 init_rwsem(&fs_info->subvol_sem); 2829 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2830 2831 btrfs_init_dev_replace_locks(fs_info); 2832 btrfs_init_qgroup(fs_info); 2833 btrfs_discard_init(fs_info); 2834 2835 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2836 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2837 2838 init_waitqueue_head(&fs_info->transaction_throttle); 2839 init_waitqueue_head(&fs_info->transaction_wait); 2840 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2841 init_waitqueue_head(&fs_info->async_submit_wait); 2842 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2843 2844 /* Usable values until the real ones are cached from the superblock */ 2845 fs_info->nodesize = 4096; 2846 fs_info->sectorsize = 4096; 2847 fs_info->stripesize = 4096; 2848 2849 spin_lock_init(&fs_info->swapfile_pins_lock); 2850 fs_info->swapfile_pins = RB_ROOT; 2851 2852 fs_info->send_in_progress = 0; 2853} 2854 2855static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2856{ 2857 int ret; 2858 2859 fs_info->sb = sb; 2860 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2861 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2862 2863 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL); 2864 if (ret) 2865 return ret; 2866 2867 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2868 if (ret) 2869 return ret; 2870 2871 fs_info->dirty_metadata_batch = PAGE_SIZE * 2872 (1 + ilog2(nr_cpu_ids)); 2873 2874 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2875 if (ret) 2876 return ret; 2877 2878 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2879 GFP_KERNEL); 2880 if (ret) 2881 return ret; 2882 2883 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2884 GFP_KERNEL); 2885 if (!fs_info->delayed_root) 2886 return -ENOMEM; 2887 btrfs_init_delayed_root(fs_info->delayed_root); 2888 2889 return btrfs_alloc_stripe_hash_table(fs_info); 2890} 2891 2892static int btrfs_uuid_rescan_kthread(void *data) 2893{ 2894 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 2895 int ret; 2896 2897 /* 2898 * 1st step is to iterate through the existing UUID tree and 2899 * to delete all entries that contain outdated data. 2900 * 2nd step is to add all missing entries to the UUID tree. 2901 */ 2902 ret = btrfs_uuid_tree_iterate(fs_info); 2903 if (ret < 0) { 2904 if (ret != -EINTR) 2905 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2906 ret); 2907 up(&fs_info->uuid_tree_rescan_sem); 2908 return ret; 2909 } 2910 return btrfs_uuid_scan_kthread(data); 2911} 2912 2913static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2914{ 2915 struct task_struct *task; 2916 2917 down(&fs_info->uuid_tree_rescan_sem); 2918 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2919 if (IS_ERR(task)) { 2920 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2921 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2922 up(&fs_info->uuid_tree_rescan_sem); 2923 return PTR_ERR(task); 2924 } 2925 2926 return 0; 2927} 2928 2929int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 2930 char *options) 2931{ 2932 u32 sectorsize; 2933 u32 nodesize; 2934 u32 stripesize; 2935 u64 generation; 2936 u64 features; 2937 u16 csum_type; 2938 struct btrfs_super_block *disk_super; 2939 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2940 struct btrfs_root *tree_root; 2941 struct btrfs_root *chunk_root; 2942 int ret; 2943 int err = -EINVAL; 2944 int clear_free_space_tree = 0; 2945 int level; 2946 2947 ret = init_mount_fs_info(fs_info, sb); 2948 if (ret) { 2949 err = ret; 2950 goto fail; 2951 } 2952 2953 /* These need to be init'ed before we start creating inodes and such. */ 2954 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 2955 GFP_KERNEL); 2956 fs_info->tree_root = tree_root; 2957 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 2958 GFP_KERNEL); 2959 fs_info->chunk_root = chunk_root; 2960 if (!tree_root || !chunk_root) { 2961 err = -ENOMEM; 2962 goto fail; 2963 } 2964 2965 fs_info->btree_inode = new_inode(sb); 2966 if (!fs_info->btree_inode) { 2967 err = -ENOMEM; 2968 goto fail; 2969 } 2970 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2971 btrfs_init_btree_inode(fs_info); 2972 2973 invalidate_bdev(fs_devices->latest_bdev); 2974 2975 /* 2976 * Read super block and check the signature bytes only 2977 */ 2978 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev); 2979 if (IS_ERR(disk_super)) { 2980 err = PTR_ERR(disk_super); 2981 goto fail_alloc; 2982 } 2983 2984 /* 2985 * Verify the type first, if that or the checksum value are 2986 * corrupted, we'll find out 2987 */ 2988 csum_type = btrfs_super_csum_type(disk_super); 2989 if (!btrfs_supported_super_csum(csum_type)) { 2990 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 2991 csum_type); 2992 err = -EINVAL; 2993 btrfs_release_disk_super(disk_super); 2994 goto fail_alloc; 2995 } 2996 2997 ret = btrfs_init_csum_hash(fs_info, csum_type); 2998 if (ret) { 2999 err = ret; 3000 btrfs_release_disk_super(disk_super); 3001 goto fail_alloc; 3002 } 3003 3004 /* 3005 * We want to check superblock checksum, the type is stored inside. 3006 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3007 */ 3008 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) { 3009 btrfs_err(fs_info, "superblock checksum mismatch"); 3010 err = -EINVAL; 3011 btrfs_release_disk_super(disk_super); 3012 goto fail_alloc; 3013 } 3014 3015 /* 3016 * super_copy is zeroed at allocation time and we never touch the 3017 * following bytes up to INFO_SIZE, the checksum is calculated from 3018 * the whole block of INFO_SIZE 3019 */ 3020 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3021 btrfs_release_disk_super(disk_super); 3022 3023 disk_super = fs_info->super_copy; 3024 3025 3026 features = btrfs_super_flags(disk_super); 3027 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3028 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3029 btrfs_set_super_flags(disk_super, features); 3030 btrfs_info(fs_info, 3031 "found metadata UUID change in progress flag, clearing"); 3032 } 3033 3034 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3035 sizeof(*fs_info->super_for_commit)); 3036 3037 ret = btrfs_validate_mount_super(fs_info); 3038 if (ret) { 3039 btrfs_err(fs_info, "superblock contains fatal errors"); 3040 err = -EINVAL; 3041 goto fail_alloc; 3042 } 3043 3044 if (!btrfs_super_root(disk_super)) 3045 goto fail_alloc; 3046 3047 /* check FS state, whether FS is broken. */ 3048 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3049 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3050 3051 /* 3052 * In the long term, we'll store the compression type in the super 3053 * block, and it'll be used for per file compression control. 3054 */ 3055 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3056 3057 /* 3058 * Flag our filesystem as having big metadata blocks if they are bigger 3059 * than the page size 3060 */ 3061 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 3062 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 3063 btrfs_info(fs_info, 3064 "flagging fs with big metadata feature"); 3065 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3066 } 3067 3068 /* Set up fs_info before parsing mount options */ 3069 nodesize = btrfs_super_nodesize(disk_super); 3070 sectorsize = btrfs_super_sectorsize(disk_super); 3071 stripesize = sectorsize; 3072 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3073 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3074 3075 /* Cache block sizes */ 3076 fs_info->nodesize = nodesize; 3077 fs_info->sectorsize = sectorsize; 3078 fs_info->stripesize = stripesize; 3079 3080 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3081 if (ret) { 3082 err = ret; 3083 goto fail_alloc; 3084 } 3085 3086 features = btrfs_super_incompat_flags(disk_super) & 3087 ~BTRFS_FEATURE_INCOMPAT_SUPP; 3088 if (features) { 3089 btrfs_err(fs_info, 3090 "cannot mount because of unsupported optional features (0x%llx)", 3091 features); 3092 err = -EINVAL; 3093 goto fail_alloc; 3094 } 3095 3096 features = btrfs_super_incompat_flags(disk_super); 3097 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3098 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3099 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3100 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3101 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3102 3103 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 3104 btrfs_info(fs_info, "has skinny extents"); 3105 3106 /* 3107 * mixed block groups end up with duplicate but slightly offset 3108 * extent buffers for the same range. It leads to corruptions 3109 */ 3110 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3111 (sectorsize != nodesize)) { 3112 btrfs_err(fs_info, 3113"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3114 nodesize, sectorsize); 3115 goto fail_alloc; 3116 } 3117 3118 /* 3119 * Needn't use the lock because there is no other task which will 3120 * update the flag. 3121 */ 3122 btrfs_set_super_incompat_flags(disk_super, features); 3123 3124 features = btrfs_super_compat_ro_flags(disk_super) & 3125 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 3126 if (!sb_rdonly(sb) && features) { 3127 btrfs_err(fs_info, 3128 "cannot mount read-write because of unsupported optional features (0x%llx)", 3129 features); 3130 err = -EINVAL; 3131 goto fail_alloc; 3132 } 3133 /* 3134 * We have unsupported RO compat features, although RO mounted, we 3135 * should not cause any metadata write, including log replay. 3136 * Or we could screw up whatever the new feature requires. 3137 */ 3138 if (unlikely(features && btrfs_super_log_root(disk_super) && 3139 !btrfs_test_opt(fs_info, NOLOGREPLAY))) { 3140 btrfs_err(fs_info, 3141"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3142 features); 3143 err = -EINVAL; 3144 goto fail_alloc; 3145 } 3146 3147 3148 ret = btrfs_init_workqueues(fs_info, fs_devices); 3149 if (ret) { 3150 err = ret; 3151 goto fail_sb_buffer; 3152 } 3153 3154 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3155 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3156 3157 sb->s_blocksize = sectorsize; 3158 sb->s_blocksize_bits = blksize_bits(sectorsize); 3159 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3160 3161 mutex_lock(&fs_info->chunk_mutex); 3162 ret = btrfs_read_sys_array(fs_info); 3163 mutex_unlock(&fs_info->chunk_mutex); 3164 if (ret) { 3165 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3166 goto fail_sb_buffer; 3167 } 3168 3169 generation = btrfs_super_chunk_root_generation(disk_super); 3170 level = btrfs_super_chunk_root_level(disk_super); 3171 3172 chunk_root->node = read_tree_block(fs_info, 3173 btrfs_super_chunk_root(disk_super), 3174 generation, level, NULL); 3175 if (IS_ERR(chunk_root->node) || 3176 !extent_buffer_uptodate(chunk_root->node)) { 3177 btrfs_err(fs_info, "failed to read chunk root"); 3178 if (!IS_ERR(chunk_root->node)) 3179 free_extent_buffer(chunk_root->node); 3180 chunk_root->node = NULL; 3181 goto fail_tree_roots; 3182 } 3183 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3184 chunk_root->commit_root = btrfs_root_node(chunk_root); 3185 3186 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3187 offsetof(struct btrfs_header, chunk_tree_uuid), 3188 BTRFS_UUID_SIZE); 3189 3190 ret = btrfs_read_chunk_tree(fs_info); 3191 if (ret) { 3192 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3193 goto fail_tree_roots; 3194 } 3195 3196 /* 3197 * Keep the devid that is marked to be the target device for the 3198 * device replace procedure 3199 */ 3200 btrfs_free_extra_devids(fs_devices, 0); 3201 3202 if (!fs_devices->latest_bdev) { 3203 btrfs_err(fs_info, "failed to read devices"); 3204 goto fail_tree_roots; 3205 } 3206 3207 ret = init_tree_roots(fs_info); 3208 if (ret) 3209 goto fail_tree_roots; 3210 3211 /* 3212 * If we have a uuid root and we're not being told to rescan we need to 3213 * check the generation here so we can set the 3214 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3215 * transaction during a balance or the log replay without updating the 3216 * uuid generation, and then if we crash we would rescan the uuid tree, 3217 * even though it was perfectly fine. 3218 */ 3219 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3220 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3221 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3222 3223 ret = btrfs_verify_dev_extents(fs_info); 3224 if (ret) { 3225 btrfs_err(fs_info, 3226 "failed to verify dev extents against chunks: %d", 3227 ret); 3228 goto fail_block_groups; 3229 } 3230 ret = btrfs_recover_balance(fs_info); 3231 if (ret) { 3232 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3233 goto fail_block_groups; 3234 } 3235 3236 ret = btrfs_init_dev_stats(fs_info); 3237 if (ret) { 3238 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3239 goto fail_block_groups; 3240 } 3241 3242 ret = btrfs_init_dev_replace(fs_info); 3243 if (ret) { 3244 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3245 goto fail_block_groups; 3246 } 3247 3248 btrfs_free_extra_devids(fs_devices, 1); 3249 3250 ret = btrfs_sysfs_add_fsid(fs_devices); 3251 if (ret) { 3252 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3253 ret); 3254 goto fail_block_groups; 3255 } 3256 3257 ret = btrfs_sysfs_add_mounted(fs_info); 3258 if (ret) { 3259 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3260 goto fail_fsdev_sysfs; 3261 } 3262 3263 ret = btrfs_init_space_info(fs_info); 3264 if (ret) { 3265 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3266 goto fail_sysfs; 3267 } 3268 3269 ret = btrfs_read_block_groups(fs_info); 3270 if (ret) { 3271 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3272 goto fail_sysfs; 3273 } 3274 3275 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3276 !btrfs_check_rw_degradable(fs_info, NULL)) { 3277 btrfs_warn(fs_info, 3278 "writable mount is not allowed due to too many missing devices"); 3279 goto fail_sysfs; 3280 } 3281 3282 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3283 "btrfs-cleaner"); 3284 if (IS_ERR(fs_info->cleaner_kthread)) 3285 goto fail_sysfs; 3286 3287 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3288 tree_root, 3289 "btrfs-transaction"); 3290 if (IS_ERR(fs_info->transaction_kthread)) 3291 goto fail_cleaner; 3292 3293 if (!btrfs_test_opt(fs_info, NOSSD) && 3294 !fs_info->fs_devices->rotating) { 3295 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3296 } 3297 3298 /* 3299 * Mount does not set all options immediately, we can do it now and do 3300 * not have to wait for transaction commit 3301 */ 3302 btrfs_apply_pending_changes(fs_info); 3303 3304#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3305 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3306 ret = btrfsic_mount(fs_info, fs_devices, 3307 btrfs_test_opt(fs_info, 3308 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3309 1 : 0, 3310 fs_info->check_integrity_print_mask); 3311 if (ret) 3312 btrfs_warn(fs_info, 3313 "failed to initialize integrity check module: %d", 3314 ret); 3315 } 3316#endif 3317 ret = btrfs_read_qgroup_config(fs_info); 3318 if (ret) 3319 goto fail_trans_kthread; 3320 3321 if (btrfs_build_ref_tree(fs_info)) 3322 btrfs_err(fs_info, "couldn't build ref tree"); 3323 3324 /* do not make disk changes in broken FS or nologreplay is given */ 3325 if (btrfs_super_log_root(disk_super) != 0 && 3326 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3327 btrfs_info(fs_info, "start tree-log replay"); 3328 ret = btrfs_replay_log(fs_info, fs_devices); 3329 if (ret) { 3330 err = ret; 3331 goto fail_qgroup; 3332 } 3333 } 3334 3335 ret = btrfs_find_orphan_roots(fs_info); 3336 if (ret) 3337 goto fail_qgroup; 3338 3339 if (!sb_rdonly(sb)) { 3340 ret = btrfs_cleanup_fs_roots(fs_info); 3341 if (ret) 3342 goto fail_qgroup; 3343 3344 mutex_lock(&fs_info->cleaner_mutex); 3345 ret = btrfs_recover_relocation(tree_root); 3346 mutex_unlock(&fs_info->cleaner_mutex); 3347 if (ret < 0) { 3348 btrfs_warn(fs_info, "failed to recover relocation: %d", 3349 ret); 3350 err = -EINVAL; 3351 goto fail_qgroup; 3352 } 3353 } 3354 3355 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3356 if (IS_ERR(fs_info->fs_root)) { 3357 err = PTR_ERR(fs_info->fs_root); 3358 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3359 fs_info->fs_root = NULL; 3360 goto fail_qgroup; 3361 } 3362 3363 if (sb_rdonly(sb)) 3364 return 0; 3365 3366 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3367 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3368 clear_free_space_tree = 1; 3369 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3370 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3371 btrfs_warn(fs_info, "free space tree is invalid"); 3372 clear_free_space_tree = 1; 3373 } 3374 3375 if (clear_free_space_tree) { 3376 btrfs_info(fs_info, "clearing free space tree"); 3377 ret = btrfs_clear_free_space_tree(fs_info); 3378 if (ret) { 3379 btrfs_warn(fs_info, 3380 "failed to clear free space tree: %d", ret); 3381 close_ctree(fs_info); 3382 return ret; 3383 } 3384 } 3385 3386 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3387 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3388 btrfs_info(fs_info, "creating free space tree"); 3389 ret = btrfs_create_free_space_tree(fs_info); 3390 if (ret) { 3391 btrfs_warn(fs_info, 3392 "failed to create free space tree: %d", ret); 3393 close_ctree(fs_info); 3394 return ret; 3395 } 3396 } 3397 3398 down_read(&fs_info->cleanup_work_sem); 3399 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3400 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3401 up_read(&fs_info->cleanup_work_sem); 3402 close_ctree(fs_info); 3403 return ret; 3404 } 3405 up_read(&fs_info->cleanup_work_sem); 3406 3407 ret = btrfs_resume_balance_async(fs_info); 3408 if (ret) { 3409 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3410 close_ctree(fs_info); 3411 return ret; 3412 } 3413 3414 ret = btrfs_resume_dev_replace_async(fs_info); 3415 if (ret) { 3416 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3417 close_ctree(fs_info); 3418 return ret; 3419 } 3420 3421 btrfs_qgroup_rescan_resume(fs_info); 3422 btrfs_discard_resume(fs_info); 3423 3424 if (!fs_info->uuid_root) { 3425 btrfs_info(fs_info, "creating UUID tree"); 3426 ret = btrfs_create_uuid_tree(fs_info); 3427 if (ret) { 3428 btrfs_warn(fs_info, 3429 "failed to create the UUID tree: %d", ret); 3430 close_ctree(fs_info); 3431 return ret; 3432 } 3433 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3434 fs_info->generation != 3435 btrfs_super_uuid_tree_generation(disk_super)) { 3436 btrfs_info(fs_info, "checking UUID tree"); 3437 ret = btrfs_check_uuid_tree(fs_info); 3438 if (ret) { 3439 btrfs_warn(fs_info, 3440 "failed to check the UUID tree: %d", ret); 3441 close_ctree(fs_info); 3442 return ret; 3443 } 3444 } 3445 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3446 3447 /* 3448 * backuproot only affect mount behavior, and if open_ctree succeeded, 3449 * no need to keep the flag 3450 */ 3451 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3452 3453 return 0; 3454 3455fail_qgroup: 3456 btrfs_free_qgroup_config(fs_info); 3457fail_trans_kthread: 3458 kthread_stop(fs_info->transaction_kthread); 3459 btrfs_cleanup_transaction(fs_info); 3460 btrfs_free_fs_roots(fs_info); 3461fail_cleaner: 3462 kthread_stop(fs_info->cleaner_kthread); 3463 3464 /* 3465 * make sure we're done with the btree inode before we stop our 3466 * kthreads 3467 */ 3468 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3469 3470fail_sysfs: 3471 btrfs_sysfs_remove_mounted(fs_info); 3472 3473fail_fsdev_sysfs: 3474 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3475 3476fail_block_groups: 3477 btrfs_put_block_group_cache(fs_info); 3478 3479fail_tree_roots: 3480 if (fs_info->data_reloc_root) 3481 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3482 free_root_pointers(fs_info, true); 3483 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3484 3485fail_sb_buffer: 3486 btrfs_stop_all_workers(fs_info); 3487 btrfs_free_block_groups(fs_info); 3488fail_alloc: 3489 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3490 3491 iput(fs_info->btree_inode); 3492fail: 3493 btrfs_close_devices(fs_info->fs_devices); 3494 return err; 3495} 3496ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3497 3498static void btrfs_end_super_write(struct bio *bio) 3499{ 3500 struct btrfs_device *device = bio->bi_private; 3501 struct bio_vec *bvec; 3502 struct bvec_iter_all iter_all; 3503 struct page *page; 3504 3505 bio_for_each_segment_all(bvec, bio, iter_all) { 3506 page = bvec->bv_page; 3507 3508 if (bio->bi_status) { 3509 btrfs_warn_rl_in_rcu(device->fs_info, 3510 "lost page write due to IO error on %s (%d)", 3511 rcu_str_deref(device->name), 3512 blk_status_to_errno(bio->bi_status)); 3513 ClearPageUptodate(page); 3514 SetPageError(page); 3515 btrfs_dev_stat_inc_and_print(device, 3516 BTRFS_DEV_STAT_WRITE_ERRS); 3517 } else { 3518 SetPageUptodate(page); 3519 } 3520 3521 put_page(page); 3522 unlock_page(page); 3523 } 3524 3525 bio_put(bio); 3526} 3527 3528struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3529 int copy_num) 3530{ 3531 struct btrfs_super_block *super; 3532 struct page *page; 3533 u64 bytenr; 3534 struct address_space *mapping = bdev->bd_inode->i_mapping; 3535 3536 bytenr = btrfs_sb_offset(copy_num); 3537 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3538 return ERR_PTR(-EINVAL); 3539 3540 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3541 if (IS_ERR(page)) 3542 return ERR_CAST(page); 3543 3544 super = page_address(page); 3545 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3546 btrfs_release_disk_super(super); 3547 return ERR_PTR(-ENODATA); 3548 } 3549 3550 if (btrfs_super_bytenr(super) != bytenr) { 3551 btrfs_release_disk_super(super); 3552 return ERR_PTR(-EINVAL); 3553 } 3554 3555 return super; 3556} 3557 3558 3559struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3560{ 3561 struct btrfs_super_block *super, *latest = NULL; 3562 int i; 3563 u64 transid = 0; 3564 3565 /* we would like to check all the supers, but that would make 3566 * a btrfs mount succeed after a mkfs from a different FS. 3567 * So, we need to add a special mount option to scan for 3568 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3569 */ 3570 for (i = 0; i < 1; i++) { 3571 super = btrfs_read_dev_one_super(bdev, i); 3572 if (IS_ERR(super)) 3573 continue; 3574 3575 if (!latest || btrfs_super_generation(super) > transid) { 3576 if (latest) 3577 btrfs_release_disk_super(super); 3578 3579 latest = super; 3580 transid = btrfs_super_generation(super); 3581 } 3582 } 3583 3584 return super; 3585} 3586 3587/* 3588 * Write superblock @sb to the @device. Do not wait for completion, all the 3589 * pages we use for writing are locked. 3590 * 3591 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3592 * the expected device size at commit time. Note that max_mirrors must be 3593 * same for write and wait phases. 3594 * 3595 * Return number of errors when page is not found or submission fails. 3596 */ 3597static int write_dev_supers(struct btrfs_device *device, 3598 struct btrfs_super_block *sb, int max_mirrors) 3599{ 3600 struct btrfs_fs_info *fs_info = device->fs_info; 3601 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3602 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3603 int i; 3604 int errors = 0; 3605 u64 bytenr; 3606 3607 if (max_mirrors == 0) 3608 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3609 3610 shash->tfm = fs_info->csum_shash; 3611 3612 for (i = 0; i < max_mirrors; i++) { 3613 struct page *page; 3614 struct bio *bio; 3615 struct btrfs_super_block *disk_super; 3616 3617 bytenr = btrfs_sb_offset(i); 3618 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3619 device->commit_total_bytes) 3620 break; 3621 3622 btrfs_set_super_bytenr(sb, bytenr); 3623 3624 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3625 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3626 sb->csum); 3627 3628 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3629 GFP_NOFS); 3630 if (!page) { 3631 btrfs_err(device->fs_info, 3632 "couldn't get super block page for bytenr %llu", 3633 bytenr); 3634 errors++; 3635 continue; 3636 } 3637 3638 /* Bump the refcount for wait_dev_supers() */ 3639 get_page(page); 3640 3641 disk_super = page_address(page); 3642 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3643 3644 /* 3645 * Directly use bios here instead of relying on the page cache 3646 * to do I/O, so we don't lose the ability to do integrity 3647 * checking. 3648 */ 3649 bio = bio_alloc(GFP_NOFS, 1); 3650 bio_set_dev(bio, device->bdev); 3651 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3652 bio->bi_private = device; 3653 bio->bi_end_io = btrfs_end_super_write; 3654 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3655 offset_in_page(bytenr)); 3656 3657 /* 3658 * We FUA only the first super block. The others we allow to 3659 * go down lazy and there's a short window where the on-disk 3660 * copies might still contain the older version. 3661 */ 3662 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO; 3663 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3664 bio->bi_opf |= REQ_FUA; 3665 3666 btrfsic_submit_bio(bio); 3667 } 3668 return errors < i ? 0 : -1; 3669} 3670 3671/* 3672 * Wait for write completion of superblocks done by write_dev_supers, 3673 * @max_mirrors same for write and wait phases. 3674 * 3675 * Return number of errors when page is not found or not marked up to 3676 * date. 3677 */ 3678static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3679{ 3680 int i; 3681 int errors = 0; 3682 bool primary_failed = false; 3683 u64 bytenr; 3684 3685 if (max_mirrors == 0) 3686 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3687 3688 for (i = 0; i < max_mirrors; i++) { 3689 struct page *page; 3690 3691 bytenr = btrfs_sb_offset(i); 3692 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3693 device->commit_total_bytes) 3694 break; 3695 3696 page = find_get_page(device->bdev->bd_inode->i_mapping, 3697 bytenr >> PAGE_SHIFT); 3698 if (!page) { 3699 errors++; 3700 if (i == 0) 3701 primary_failed = true; 3702 continue; 3703 } 3704 /* Page is submitted locked and unlocked once the IO completes */ 3705 wait_on_page_locked(page); 3706 if (PageError(page)) { 3707 errors++; 3708 if (i == 0) 3709 primary_failed = true; 3710 } 3711 3712 /* Drop our reference */ 3713 put_page(page); 3714 3715 /* Drop the reference from the writing run */ 3716 put_page(page); 3717 } 3718 3719 /* log error, force error return */ 3720 if (primary_failed) { 3721 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3722 device->devid); 3723 return -1; 3724 } 3725 3726 return errors < i ? 0 : -1; 3727} 3728 3729/* 3730 * endio for the write_dev_flush, this will wake anyone waiting 3731 * for the barrier when it is done 3732 */ 3733static void btrfs_end_empty_barrier(struct bio *bio) 3734{ 3735 complete(bio->bi_private); 3736} 3737 3738/* 3739 * Submit a flush request to the device if it supports it. Error handling is 3740 * done in the waiting counterpart. 3741 */ 3742static void write_dev_flush(struct btrfs_device *device) 3743{ 3744 struct bio *bio = device->flush_bio; 3745 3746#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3747 /* 3748 * When a disk has write caching disabled, we skip submission of a bio 3749 * with flush and sync requests before writing the superblock, since 3750 * it's not needed. However when the integrity checker is enabled, this 3751 * results in reports that there are metadata blocks referred by a 3752 * superblock that were not properly flushed. So don't skip the bio 3753 * submission only when the integrity checker is enabled for the sake 3754 * of simplicity, since this is a debug tool and not meant for use in 3755 * non-debug builds. 3756 */ 3757 struct request_queue *q = bdev_get_queue(device->bdev); 3758 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3759 return; 3760#endif 3761 3762 bio_reset(bio); 3763 bio->bi_end_io = btrfs_end_empty_barrier; 3764 bio_set_dev(bio, device->bdev); 3765 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3766 init_completion(&device->flush_wait); 3767 bio->bi_private = &device->flush_wait; 3768 3769 btrfsic_submit_bio(bio); 3770 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3771} 3772 3773/* 3774 * If the flush bio has been submitted by write_dev_flush, wait for it. 3775 */ 3776static blk_status_t wait_dev_flush(struct btrfs_device *device) 3777{ 3778 struct bio *bio = device->flush_bio; 3779 3780 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3781 return BLK_STS_OK; 3782 3783 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3784 wait_for_completion_io(&device->flush_wait); 3785 3786 return bio->bi_status; 3787} 3788 3789static int check_barrier_error(struct btrfs_fs_info *fs_info) 3790{ 3791 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3792 return -EIO; 3793 return 0; 3794} 3795 3796/* 3797 * send an empty flush down to each device in parallel, 3798 * then wait for them 3799 */ 3800static int barrier_all_devices(struct btrfs_fs_info *info) 3801{ 3802 struct list_head *head; 3803 struct btrfs_device *dev; 3804 int errors_wait = 0; 3805 blk_status_t ret; 3806 3807 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3808 /* send down all the barriers */ 3809 head = &info->fs_devices->devices; 3810 list_for_each_entry(dev, head, dev_list) { 3811 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3812 continue; 3813 if (!dev->bdev) 3814 continue; 3815 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3816 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3817 continue; 3818 3819 write_dev_flush(dev); 3820 dev->last_flush_error = BLK_STS_OK; 3821 } 3822 3823 /* wait for all the barriers */ 3824 list_for_each_entry(dev, head, dev_list) { 3825 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3826 continue; 3827 if (!dev->bdev) { 3828 errors_wait++; 3829 continue; 3830 } 3831 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3832 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3833 continue; 3834 3835 ret = wait_dev_flush(dev); 3836 if (ret) { 3837 dev->last_flush_error = ret; 3838 btrfs_dev_stat_inc_and_print(dev, 3839 BTRFS_DEV_STAT_FLUSH_ERRS); 3840 errors_wait++; 3841 } 3842 } 3843 3844 if (errors_wait) { 3845 /* 3846 * At some point we need the status of all disks 3847 * to arrive at the volume status. So error checking 3848 * is being pushed to a separate loop. 3849 */ 3850 return check_barrier_error(info); 3851 } 3852 return 0; 3853} 3854 3855int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3856{ 3857 int raid_type; 3858 int min_tolerated = INT_MAX; 3859 3860 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3861 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3862 min_tolerated = min_t(int, min_tolerated, 3863 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3864 tolerated_failures); 3865 3866 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3867 if (raid_type == BTRFS_RAID_SINGLE) 3868 continue; 3869 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3870 continue; 3871 min_tolerated = min_t(int, min_tolerated, 3872 btrfs_raid_array[raid_type]. 3873 tolerated_failures); 3874 } 3875 3876 if (min_tolerated == INT_MAX) { 3877 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3878 min_tolerated = 0; 3879 } 3880 3881 return min_tolerated; 3882} 3883 3884int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3885{ 3886 struct list_head *head; 3887 struct btrfs_device *dev; 3888 struct btrfs_super_block *sb; 3889 struct btrfs_dev_item *dev_item; 3890 int ret; 3891 int do_barriers; 3892 int max_errors; 3893 int total_errors = 0; 3894 u64 flags; 3895 3896 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3897 3898 /* 3899 * max_mirrors == 0 indicates we're from commit_transaction, 3900 * not from fsync where the tree roots in fs_info have not 3901 * been consistent on disk. 3902 */ 3903 if (max_mirrors == 0) 3904 backup_super_roots(fs_info); 3905 3906 sb = fs_info->super_for_commit; 3907 dev_item = &sb->dev_item; 3908 3909 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3910 head = &fs_info->fs_devices->devices; 3911 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3912 3913 if (do_barriers) { 3914 ret = barrier_all_devices(fs_info); 3915 if (ret) { 3916 mutex_unlock( 3917 &fs_info->fs_devices->device_list_mutex); 3918 btrfs_handle_fs_error(fs_info, ret, 3919 "errors while submitting device barriers."); 3920 return ret; 3921 } 3922 } 3923 3924 list_for_each_entry(dev, head, dev_list) { 3925 if (!dev->bdev) { 3926 total_errors++; 3927 continue; 3928 } 3929 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3930 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3931 continue; 3932 3933 btrfs_set_stack_device_generation(dev_item, 0); 3934 btrfs_set_stack_device_type(dev_item, dev->type); 3935 btrfs_set_stack_device_id(dev_item, dev->devid); 3936 btrfs_set_stack_device_total_bytes(dev_item, 3937 dev->commit_total_bytes); 3938 btrfs_set_stack_device_bytes_used(dev_item, 3939 dev->commit_bytes_used); 3940 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3941 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3942 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3943 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3944 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3945 BTRFS_FSID_SIZE); 3946 3947 flags = btrfs_super_flags(sb); 3948 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3949 3950 ret = btrfs_validate_write_super(fs_info, sb); 3951 if (ret < 0) { 3952 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3953 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3954 "unexpected superblock corruption detected"); 3955 return -EUCLEAN; 3956 } 3957 3958 ret = write_dev_supers(dev, sb, max_mirrors); 3959 if (ret) 3960 total_errors++; 3961 } 3962 if (total_errors > max_errors) { 3963 btrfs_err(fs_info, "%d errors while writing supers", 3964 total_errors); 3965 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3966 3967 /* FUA is masked off if unsupported and can't be the reason */ 3968 btrfs_handle_fs_error(fs_info, -EIO, 3969 "%d errors while writing supers", 3970 total_errors); 3971 return -EIO; 3972 } 3973 3974 total_errors = 0; 3975 list_for_each_entry(dev, head, dev_list) { 3976 if (!dev->bdev) 3977 continue; 3978 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3979 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3980 continue; 3981 3982 ret = wait_dev_supers(dev, max_mirrors); 3983 if (ret) 3984 total_errors++; 3985 } 3986 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3987 if (total_errors > max_errors) { 3988 btrfs_handle_fs_error(fs_info, -EIO, 3989 "%d errors while writing supers", 3990 total_errors); 3991 return -EIO; 3992 } 3993 return 0; 3994} 3995 3996/* Drop a fs root from the radix tree and free it. */ 3997void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3998 struct btrfs_root *root) 3999{ 4000 bool drop_ref = false; 4001 4002 spin_lock(&fs_info->fs_roots_radix_lock); 4003 radix_tree_delete(&fs_info->fs_roots_radix, 4004 (unsigned long)root->root_key.objectid); 4005 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4006 drop_ref = true; 4007 spin_unlock(&fs_info->fs_roots_radix_lock); 4008 4009 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 4010 ASSERT(root->log_root == NULL); 4011 if (root->reloc_root) { 4012 btrfs_put_root(root->reloc_root); 4013 root->reloc_root = NULL; 4014 } 4015 } 4016 4017 if (root->free_ino_pinned) 4018 __btrfs_remove_free_space_cache(root->free_ino_pinned); 4019 if (root->free_ino_ctl) 4020 __btrfs_remove_free_space_cache(root->free_ino_ctl); 4021 if (root->ino_cache_inode) { 4022 iput(root->ino_cache_inode); 4023 root->ino_cache_inode = NULL; 4024 } 4025 if (drop_ref) 4026 btrfs_put_root(root); 4027} 4028 4029int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4030{ 4031 u64 root_objectid = 0; 4032 struct btrfs_root *gang[8]; 4033 int i = 0; 4034 int err = 0; 4035 unsigned int ret = 0; 4036 4037 while (1) { 4038 spin_lock(&fs_info->fs_roots_radix_lock); 4039 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4040 (void **)gang, root_objectid, 4041 ARRAY_SIZE(gang)); 4042 if (!ret) { 4043 spin_unlock(&fs_info->fs_roots_radix_lock); 4044 break; 4045 } 4046 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4047 4048 for (i = 0; i < ret; i++) { 4049 /* Avoid to grab roots in dead_roots */ 4050 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4051 gang[i] = NULL; 4052 continue; 4053 } 4054 /* grab all the search result for later use */ 4055 gang[i] = btrfs_grab_root(gang[i]); 4056 } 4057 spin_unlock(&fs_info->fs_roots_radix_lock); 4058 4059 for (i = 0; i < ret; i++) { 4060 if (!gang[i]) 4061 continue; 4062 root_objectid = gang[i]->root_key.objectid; 4063 err = btrfs_orphan_cleanup(gang[i]); 4064 if (err) 4065 break; 4066 btrfs_put_root(gang[i]); 4067 } 4068 root_objectid++; 4069 } 4070 4071 /* release the uncleaned roots due to error */ 4072 for (; i < ret; i++) { 4073 if (gang[i]) 4074 btrfs_put_root(gang[i]); 4075 } 4076 return err; 4077} 4078 4079int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4080{ 4081 struct btrfs_root *root = fs_info->tree_root; 4082 struct btrfs_trans_handle *trans; 4083 4084 mutex_lock(&fs_info->cleaner_mutex); 4085 btrfs_run_delayed_iputs(fs_info); 4086 mutex_unlock(&fs_info->cleaner_mutex); 4087 wake_up_process(fs_info->cleaner_kthread); 4088 4089 /* wait until ongoing cleanup work done */ 4090 down_write(&fs_info->cleanup_work_sem); 4091 up_write(&fs_info->cleanup_work_sem); 4092 4093 trans = btrfs_join_transaction(root); 4094 if (IS_ERR(trans)) 4095 return PTR_ERR(trans); 4096 return btrfs_commit_transaction(trans); 4097} 4098 4099void __cold close_ctree(struct btrfs_fs_info *fs_info) 4100{ 4101 int ret; 4102 4103 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4104 /* 4105 * We don't want the cleaner to start new transactions, add more delayed 4106 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4107 * because that frees the task_struct, and the transaction kthread might 4108 * still try to wake up the cleaner. 4109 */ 4110 kthread_park(fs_info->cleaner_kthread); 4111 4112 /* wait for the qgroup rescan worker to stop */ 4113 btrfs_qgroup_wait_for_completion(fs_info, false); 4114 4115 /* wait for the uuid_scan task to finish */ 4116 down(&fs_info->uuid_tree_rescan_sem); 4117 /* avoid complains from lockdep et al., set sem back to initial state */ 4118 up(&fs_info->uuid_tree_rescan_sem); 4119 4120 /* pause restriper - we want to resume on mount */ 4121 btrfs_pause_balance(fs_info); 4122 4123 btrfs_dev_replace_suspend_for_unmount(fs_info); 4124 4125 btrfs_scrub_cancel(fs_info); 4126 4127 /* wait for any defraggers to finish */ 4128 wait_event(fs_info->transaction_wait, 4129 (atomic_read(&fs_info->defrag_running) == 0)); 4130 4131 /* clear out the rbtree of defraggable inodes */ 4132 btrfs_cleanup_defrag_inodes(fs_info); 4133 4134 /* 4135 * After we parked the cleaner kthread, ordered extents may have 4136 * completed and created new delayed iputs. If one of the async reclaim 4137 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4138 * can hang forever trying to stop it, because if a delayed iput is 4139 * added after it ran btrfs_run_delayed_iputs() and before it called 4140 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4141 * no one else to run iputs. 4142 * 4143 * So wait for all ongoing ordered extents to complete and then run 4144 * delayed iputs. This works because once we reach this point no one 4145 * can either create new ordered extents nor create delayed iputs 4146 * through some other means. 4147 * 4148 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4149 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4150 * but the delayed iput for the respective inode is made only when doing 4151 * the final btrfs_put_ordered_extent() (which must happen at 4152 * btrfs_finish_ordered_io() when we are unmounting). 4153 */ 4154 btrfs_flush_workqueue(fs_info->endio_write_workers); 4155 /* Ordered extents for free space inodes. */ 4156 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4157 btrfs_run_delayed_iputs(fs_info); 4158 4159 cancel_work_sync(&fs_info->async_reclaim_work); 4160 cancel_work_sync(&fs_info->async_data_reclaim_work); 4161 4162 /* Cancel or finish ongoing discard work */ 4163 btrfs_discard_cleanup(fs_info); 4164 4165 if (!sb_rdonly(fs_info->sb)) { 4166 /* 4167 * The cleaner kthread is stopped, so do one final pass over 4168 * unused block groups. 4169 */ 4170 btrfs_delete_unused_bgs(fs_info); 4171 4172 /* 4173 * There might be existing delayed inode workers still running 4174 * and holding an empty delayed inode item. We must wait for 4175 * them to complete first because they can create a transaction. 4176 * This happens when someone calls btrfs_balance_delayed_items() 4177 * and then a transaction commit runs the same delayed nodes 4178 * before any delayed worker has done something with the nodes. 4179 * We must wait for any worker here and not at transaction 4180 * commit time since that could cause a deadlock. 4181 * This is a very rare case. 4182 */ 4183 btrfs_flush_workqueue(fs_info->delayed_workers); 4184 4185 ret = btrfs_commit_super(fs_info); 4186 if (ret) 4187 btrfs_err(fs_info, "commit super ret %d", ret); 4188 } 4189 4190 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4191 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4192 btrfs_error_commit_super(fs_info); 4193 4194 kthread_stop(fs_info->transaction_kthread); 4195 kthread_stop(fs_info->cleaner_kthread); 4196 4197 ASSERT(list_empty(&fs_info->delayed_iputs)); 4198 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4199 4200 if (btrfs_check_quota_leak(fs_info)) { 4201 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4202 btrfs_err(fs_info, "qgroup reserved space leaked"); 4203 } 4204 4205 btrfs_free_qgroup_config(fs_info); 4206 ASSERT(list_empty(&fs_info->delalloc_roots)); 4207 4208 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4209 btrfs_info(fs_info, "at unmount delalloc count %lld", 4210 percpu_counter_sum(&fs_info->delalloc_bytes)); 4211 } 4212 4213 if (percpu_counter_sum(&fs_info->dio_bytes)) 4214 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4215 percpu_counter_sum(&fs_info->dio_bytes)); 4216 4217 btrfs_sysfs_remove_mounted(fs_info); 4218 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4219 4220 btrfs_put_block_group_cache(fs_info); 4221 4222 /* 4223 * we must make sure there is not any read request to 4224 * submit after we stopping all workers. 4225 */ 4226 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4227 btrfs_stop_all_workers(fs_info); 4228 4229 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4230 free_root_pointers(fs_info, true); 4231 btrfs_free_fs_roots(fs_info); 4232 4233 /* 4234 * We must free the block groups after dropping the fs_roots as we could 4235 * have had an IO error and have left over tree log blocks that aren't 4236 * cleaned up until the fs roots are freed. This makes the block group 4237 * accounting appear to be wrong because there's pending reserved bytes, 4238 * so make sure we do the block group cleanup afterwards. 4239 */ 4240 btrfs_free_block_groups(fs_info); 4241 4242 iput(fs_info->btree_inode); 4243 4244#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4245 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4246 btrfsic_unmount(fs_info->fs_devices); 4247#endif 4248 4249 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4250 btrfs_close_devices(fs_info->fs_devices); 4251} 4252 4253int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4254 int atomic) 4255{ 4256 int ret; 4257 struct inode *btree_inode = buf->pages[0]->mapping->host; 4258 4259 ret = extent_buffer_uptodate(buf); 4260 if (!ret) 4261 return ret; 4262 4263 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4264 parent_transid, atomic); 4265 if (ret == -EAGAIN) 4266 return ret; 4267 return !ret; 4268} 4269 4270void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4271{ 4272 struct btrfs_fs_info *fs_info; 4273 struct btrfs_root *root; 4274 u64 transid = btrfs_header_generation(buf); 4275 int was_dirty; 4276 4277#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4278 /* 4279 * This is a fast path so only do this check if we have sanity tests 4280 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4281 * outside of the sanity tests. 4282 */ 4283 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4284 return; 4285#endif 4286 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4287 fs_info = root->fs_info; 4288 btrfs_assert_tree_locked(buf); 4289 if (transid != fs_info->generation) 4290 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4291 buf->start, transid, fs_info->generation); 4292 was_dirty = set_extent_buffer_dirty(buf); 4293 if (!was_dirty) 4294 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4295 buf->len, 4296 fs_info->dirty_metadata_batch); 4297#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4298 /* 4299 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4300 * but item data not updated. 4301 * So here we should only check item pointers, not item data. 4302 */ 4303 if (btrfs_header_level(buf) == 0 && 4304 btrfs_check_leaf_relaxed(buf)) { 4305 btrfs_print_leaf(buf); 4306 ASSERT(0); 4307 } 4308#endif 4309} 4310 4311static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4312 int flush_delayed) 4313{ 4314 /* 4315 * looks as though older kernels can get into trouble with 4316 * this code, they end up stuck in balance_dirty_pages forever 4317 */ 4318 int ret; 4319 4320 if (current->flags & PF_MEMALLOC) 4321 return; 4322 4323 if (flush_delayed) 4324 btrfs_balance_delayed_items(fs_info); 4325 4326 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4327 BTRFS_DIRTY_METADATA_THRESH, 4328 fs_info->dirty_metadata_batch); 4329 if (ret > 0) { 4330 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4331 } 4332} 4333 4334void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4335{ 4336 __btrfs_btree_balance_dirty(fs_info, 1); 4337} 4338 4339void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4340{ 4341 __btrfs_btree_balance_dirty(fs_info, 0); 4342} 4343 4344int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4345 struct btrfs_key *first_key) 4346{ 4347 return btree_read_extent_buffer_pages(buf, parent_transid, 4348 level, first_key); 4349} 4350 4351static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4352{ 4353 /* cleanup FS via transaction */ 4354 btrfs_cleanup_transaction(fs_info); 4355 4356 mutex_lock(&fs_info->cleaner_mutex); 4357 btrfs_run_delayed_iputs(fs_info); 4358 mutex_unlock(&fs_info->cleaner_mutex); 4359 4360 down_write(&fs_info->cleanup_work_sem); 4361 up_write(&fs_info->cleanup_work_sem); 4362} 4363 4364static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4365{ 4366 struct btrfs_root *gang[8]; 4367 u64 root_objectid = 0; 4368 int ret; 4369 4370 spin_lock(&fs_info->fs_roots_radix_lock); 4371 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4372 (void **)gang, root_objectid, 4373 ARRAY_SIZE(gang))) != 0) { 4374 int i; 4375 4376 for (i = 0; i < ret; i++) 4377 gang[i] = btrfs_grab_root(gang[i]); 4378 spin_unlock(&fs_info->fs_roots_radix_lock); 4379 4380 for (i = 0; i < ret; i++) { 4381 if (!gang[i]) 4382 continue; 4383 root_objectid = gang[i]->root_key.objectid; 4384 btrfs_free_log(NULL, gang[i]); 4385 btrfs_put_root(gang[i]); 4386 } 4387 root_objectid++; 4388 spin_lock(&fs_info->fs_roots_radix_lock); 4389 } 4390 spin_unlock(&fs_info->fs_roots_radix_lock); 4391 btrfs_free_log_root_tree(NULL, fs_info); 4392} 4393 4394static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4395{ 4396 struct btrfs_ordered_extent *ordered; 4397 4398 spin_lock(&root->ordered_extent_lock); 4399 /* 4400 * This will just short circuit the ordered completion stuff which will 4401 * make sure the ordered extent gets properly cleaned up. 4402 */ 4403 list_for_each_entry(ordered, &root->ordered_extents, 4404 root_extent_list) 4405 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4406 spin_unlock(&root->ordered_extent_lock); 4407} 4408 4409static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4410{ 4411 struct btrfs_root *root; 4412 struct list_head splice; 4413 4414 INIT_LIST_HEAD(&splice); 4415 4416 spin_lock(&fs_info->ordered_root_lock); 4417 list_splice_init(&fs_info->ordered_roots, &splice); 4418 while (!list_empty(&splice)) { 4419 root = list_first_entry(&splice, struct btrfs_root, 4420 ordered_root); 4421 list_move_tail(&root->ordered_root, 4422 &fs_info->ordered_roots); 4423 4424 spin_unlock(&fs_info->ordered_root_lock); 4425 btrfs_destroy_ordered_extents(root); 4426 4427 cond_resched(); 4428 spin_lock(&fs_info->ordered_root_lock); 4429 } 4430 spin_unlock(&fs_info->ordered_root_lock); 4431 4432 /* 4433 * We need this here because if we've been flipped read-only we won't 4434 * get sync() from the umount, so we need to make sure any ordered 4435 * extents that haven't had their dirty pages IO start writeout yet 4436 * actually get run and error out properly. 4437 */ 4438 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4439} 4440 4441static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4442 struct btrfs_fs_info *fs_info) 4443{ 4444 struct rb_node *node; 4445 struct btrfs_delayed_ref_root *delayed_refs; 4446 struct btrfs_delayed_ref_node *ref; 4447 int ret = 0; 4448 4449 delayed_refs = &trans->delayed_refs; 4450 4451 spin_lock(&delayed_refs->lock); 4452 if (atomic_read(&delayed_refs->num_entries) == 0) { 4453 spin_unlock(&delayed_refs->lock); 4454 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4455 return ret; 4456 } 4457 4458 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4459 struct btrfs_delayed_ref_head *head; 4460 struct rb_node *n; 4461 bool pin_bytes = false; 4462 4463 head = rb_entry(node, struct btrfs_delayed_ref_head, 4464 href_node); 4465 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4466 continue; 4467 4468 spin_lock(&head->lock); 4469 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4470 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4471 ref_node); 4472 ref->in_tree = 0; 4473 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4474 RB_CLEAR_NODE(&ref->ref_node); 4475 if (!list_empty(&ref->add_list)) 4476 list_del(&ref->add_list); 4477 atomic_dec(&delayed_refs->num_entries); 4478 btrfs_put_delayed_ref(ref); 4479 } 4480 if (head->must_insert_reserved) 4481 pin_bytes = true; 4482 btrfs_free_delayed_extent_op(head->extent_op); 4483 btrfs_delete_ref_head(delayed_refs, head); 4484 spin_unlock(&head->lock); 4485 spin_unlock(&delayed_refs->lock); 4486 mutex_unlock(&head->mutex); 4487 4488 if (pin_bytes) { 4489 struct btrfs_block_group *cache; 4490 4491 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4492 BUG_ON(!cache); 4493 4494 spin_lock(&cache->space_info->lock); 4495 spin_lock(&cache->lock); 4496 cache->pinned += head->num_bytes; 4497 btrfs_space_info_update_bytes_pinned(fs_info, 4498 cache->space_info, head->num_bytes); 4499 cache->reserved -= head->num_bytes; 4500 cache->space_info->bytes_reserved -= head->num_bytes; 4501 spin_unlock(&cache->lock); 4502 spin_unlock(&cache->space_info->lock); 4503 percpu_counter_add_batch( 4504 &cache->space_info->total_bytes_pinned, 4505 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 4506 4507 btrfs_put_block_group(cache); 4508 4509 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4510 head->bytenr + head->num_bytes - 1); 4511 } 4512 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4513 btrfs_put_delayed_ref_head(head); 4514 cond_resched(); 4515 spin_lock(&delayed_refs->lock); 4516 } 4517 btrfs_qgroup_destroy_extent_records(trans); 4518 4519 spin_unlock(&delayed_refs->lock); 4520 4521 return ret; 4522} 4523 4524static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4525{ 4526 struct btrfs_inode *btrfs_inode; 4527 struct list_head splice; 4528 4529 INIT_LIST_HEAD(&splice); 4530 4531 spin_lock(&root->delalloc_lock); 4532 list_splice_init(&root->delalloc_inodes, &splice); 4533 4534 while (!list_empty(&splice)) { 4535 struct inode *inode = NULL; 4536 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4537 delalloc_inodes); 4538 __btrfs_del_delalloc_inode(root, btrfs_inode); 4539 spin_unlock(&root->delalloc_lock); 4540 4541 /* 4542 * Make sure we get a live inode and that it'll not disappear 4543 * meanwhile. 4544 */ 4545 inode = igrab(&btrfs_inode->vfs_inode); 4546 if (inode) { 4547 unsigned int nofs_flag; 4548 4549 nofs_flag = memalloc_nofs_save(); 4550 invalidate_inode_pages2(inode->i_mapping); 4551 memalloc_nofs_restore(nofs_flag); 4552 iput(inode); 4553 } 4554 spin_lock(&root->delalloc_lock); 4555 } 4556 spin_unlock(&root->delalloc_lock); 4557} 4558 4559static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4560{ 4561 struct btrfs_root *root; 4562 struct list_head splice; 4563 4564 INIT_LIST_HEAD(&splice); 4565 4566 spin_lock(&fs_info->delalloc_root_lock); 4567 list_splice_init(&fs_info->delalloc_roots, &splice); 4568 while (!list_empty(&splice)) { 4569 root = list_first_entry(&splice, struct btrfs_root, 4570 delalloc_root); 4571 root = btrfs_grab_root(root); 4572 BUG_ON(!root); 4573 spin_unlock(&fs_info->delalloc_root_lock); 4574 4575 btrfs_destroy_delalloc_inodes(root); 4576 btrfs_put_root(root); 4577 4578 spin_lock(&fs_info->delalloc_root_lock); 4579 } 4580 spin_unlock(&fs_info->delalloc_root_lock); 4581} 4582 4583static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4584 struct extent_io_tree *dirty_pages, 4585 int mark) 4586{ 4587 int ret; 4588 struct extent_buffer *eb; 4589 u64 start = 0; 4590 u64 end; 4591 4592 while (1) { 4593 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4594 mark, NULL); 4595 if (ret) 4596 break; 4597 4598 clear_extent_bits(dirty_pages, start, end, mark); 4599 while (start <= end) { 4600 eb = find_extent_buffer(fs_info, start); 4601 start += fs_info->nodesize; 4602 if (!eb) 4603 continue; 4604 wait_on_extent_buffer_writeback(eb); 4605 4606 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4607 &eb->bflags)) 4608 clear_extent_buffer_dirty(eb); 4609 free_extent_buffer_stale(eb); 4610 } 4611 } 4612 4613 return ret; 4614} 4615 4616static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4617 struct extent_io_tree *unpin) 4618{ 4619 u64 start; 4620 u64 end; 4621 int ret; 4622 4623 while (1) { 4624 struct extent_state *cached_state = NULL; 4625 4626 /* 4627 * The btrfs_finish_extent_commit() may get the same range as 4628 * ours between find_first_extent_bit and clear_extent_dirty. 4629 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4630 * the same extent range. 4631 */ 4632 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4633 ret = find_first_extent_bit(unpin, 0, &start, &end, 4634 EXTENT_DIRTY, &cached_state); 4635 if (ret) { 4636 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4637 break; 4638 } 4639 4640 clear_extent_dirty(unpin, start, end, &cached_state); 4641 free_extent_state(cached_state); 4642 btrfs_error_unpin_extent_range(fs_info, start, end); 4643 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4644 cond_resched(); 4645 } 4646 4647 return 0; 4648} 4649 4650static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4651{ 4652 struct inode *inode; 4653 4654 inode = cache->io_ctl.inode; 4655 if (inode) { 4656 unsigned int nofs_flag; 4657 4658 nofs_flag = memalloc_nofs_save(); 4659 invalidate_inode_pages2(inode->i_mapping); 4660 memalloc_nofs_restore(nofs_flag); 4661 4662 BTRFS_I(inode)->generation = 0; 4663 cache->io_ctl.inode = NULL; 4664 iput(inode); 4665 } 4666 ASSERT(cache->io_ctl.pages == NULL); 4667 btrfs_put_block_group(cache); 4668} 4669 4670void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4671 struct btrfs_fs_info *fs_info) 4672{ 4673 struct btrfs_block_group *cache; 4674 4675 spin_lock(&cur_trans->dirty_bgs_lock); 4676 while (!list_empty(&cur_trans->dirty_bgs)) { 4677 cache = list_first_entry(&cur_trans->dirty_bgs, 4678 struct btrfs_block_group, 4679 dirty_list); 4680 4681 if (!list_empty(&cache->io_list)) { 4682 spin_unlock(&cur_trans->dirty_bgs_lock); 4683 list_del_init(&cache->io_list); 4684 btrfs_cleanup_bg_io(cache); 4685 spin_lock(&cur_trans->dirty_bgs_lock); 4686 } 4687 4688 list_del_init(&cache->dirty_list); 4689 spin_lock(&cache->lock); 4690 cache->disk_cache_state = BTRFS_DC_ERROR; 4691 spin_unlock(&cache->lock); 4692 4693 spin_unlock(&cur_trans->dirty_bgs_lock); 4694 btrfs_put_block_group(cache); 4695 btrfs_delayed_refs_rsv_release(fs_info, 1); 4696 spin_lock(&cur_trans->dirty_bgs_lock); 4697 } 4698 spin_unlock(&cur_trans->dirty_bgs_lock); 4699 4700 /* 4701 * Refer to the definition of io_bgs member for details why it's safe 4702 * to use it without any locking 4703 */ 4704 while (!list_empty(&cur_trans->io_bgs)) { 4705 cache = list_first_entry(&cur_trans->io_bgs, 4706 struct btrfs_block_group, 4707 io_list); 4708 4709 list_del_init(&cache->io_list); 4710 spin_lock(&cache->lock); 4711 cache->disk_cache_state = BTRFS_DC_ERROR; 4712 spin_unlock(&cache->lock); 4713 btrfs_cleanup_bg_io(cache); 4714 } 4715} 4716 4717void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4718 struct btrfs_fs_info *fs_info) 4719{ 4720 struct btrfs_device *dev, *tmp; 4721 4722 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4723 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4724 ASSERT(list_empty(&cur_trans->io_bgs)); 4725 4726 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4727 post_commit_list) { 4728 list_del_init(&dev->post_commit_list); 4729 } 4730 4731 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4732 4733 cur_trans->state = TRANS_STATE_COMMIT_START; 4734 wake_up(&fs_info->transaction_blocked_wait); 4735 4736 cur_trans->state = TRANS_STATE_UNBLOCKED; 4737 wake_up(&fs_info->transaction_wait); 4738 4739 btrfs_destroy_delayed_inodes(fs_info); 4740 4741 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4742 EXTENT_DIRTY); 4743 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4744 4745 cur_trans->state =TRANS_STATE_COMPLETED; 4746 wake_up(&cur_trans->commit_wait); 4747} 4748 4749static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4750{ 4751 struct btrfs_transaction *t; 4752 4753 mutex_lock(&fs_info->transaction_kthread_mutex); 4754 4755 spin_lock(&fs_info->trans_lock); 4756 while (!list_empty(&fs_info->trans_list)) { 4757 t = list_first_entry(&fs_info->trans_list, 4758 struct btrfs_transaction, list); 4759 if (t->state >= TRANS_STATE_COMMIT_START) { 4760 refcount_inc(&t->use_count); 4761 spin_unlock(&fs_info->trans_lock); 4762 btrfs_wait_for_commit(fs_info, t->transid); 4763 btrfs_put_transaction(t); 4764 spin_lock(&fs_info->trans_lock); 4765 continue; 4766 } 4767 if (t == fs_info->running_transaction) { 4768 t->state = TRANS_STATE_COMMIT_DOING; 4769 spin_unlock(&fs_info->trans_lock); 4770 /* 4771 * We wait for 0 num_writers since we don't hold a trans 4772 * handle open currently for this transaction. 4773 */ 4774 wait_event(t->writer_wait, 4775 atomic_read(&t->num_writers) == 0); 4776 } else { 4777 spin_unlock(&fs_info->trans_lock); 4778 } 4779 btrfs_cleanup_one_transaction(t, fs_info); 4780 4781 spin_lock(&fs_info->trans_lock); 4782 if (t == fs_info->running_transaction) 4783 fs_info->running_transaction = NULL; 4784 list_del_init(&t->list); 4785 spin_unlock(&fs_info->trans_lock); 4786 4787 btrfs_put_transaction(t); 4788 trace_btrfs_transaction_commit(fs_info->tree_root); 4789 spin_lock(&fs_info->trans_lock); 4790 } 4791 spin_unlock(&fs_info->trans_lock); 4792 btrfs_destroy_all_ordered_extents(fs_info); 4793 btrfs_destroy_delayed_inodes(fs_info); 4794 btrfs_assert_delayed_root_empty(fs_info); 4795 btrfs_destroy_all_delalloc_inodes(fs_info); 4796 btrfs_drop_all_logs(fs_info); 4797 mutex_unlock(&fs_info->transaction_kthread_mutex); 4798 4799 return 0; 4800} 4801 4802int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid) 4803{ 4804 struct btrfs_path *path; 4805 int ret; 4806 struct extent_buffer *l; 4807 struct btrfs_key search_key; 4808 struct btrfs_key found_key; 4809 int slot; 4810 4811 path = btrfs_alloc_path(); 4812 if (!path) 4813 return -ENOMEM; 4814 4815 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4816 search_key.type = -1; 4817 search_key.offset = (u64)-1; 4818 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4819 if (ret < 0) 4820 goto error; 4821 BUG_ON(ret == 0); /* Corruption */ 4822 if (path->slots[0] > 0) { 4823 slot = path->slots[0] - 1; 4824 l = path->nodes[0]; 4825 btrfs_item_key_to_cpu(l, &found_key, slot); 4826 *objectid = max_t(u64, found_key.objectid, 4827 BTRFS_FIRST_FREE_OBJECTID - 1); 4828 } else { 4829 *objectid = BTRFS_FIRST_FREE_OBJECTID - 1; 4830 } 4831 ret = 0; 4832error: 4833 btrfs_free_path(path); 4834 return ret; 4835} 4836 4837int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid) 4838{ 4839 int ret; 4840 mutex_lock(&root->objectid_mutex); 4841 4842 if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4843 btrfs_warn(root->fs_info, 4844 "the objectid of root %llu reaches its highest value", 4845 root->root_key.objectid); 4846 ret = -ENOSPC; 4847 goto out; 4848 } 4849 4850 *objectid = ++root->highest_objectid; 4851 ret = 0; 4852out: 4853 mutex_unlock(&root->objectid_mutex); 4854 return ret; 4855} 4856