xref: /kernel/linux/linux-5.10/fs/btrfs/disk-io.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/blkdev.h>
8#include <linux/radix-tree.h>
9#include <linux/writeback.h>
10#include <linux/workqueue.h>
11#include <linux/kthread.h>
12#include <linux/slab.h>
13#include <linux/migrate.h>
14#include <linux/ratelimit.h>
15#include <linux/uuid.h>
16#include <linux/semaphore.h>
17#include <linux/error-injection.h>
18#include <linux/crc32c.h>
19#include <linux/sched/mm.h>
20#include <asm/unaligned.h>
21#include <crypto/hash.h>
22#include "ctree.h"
23#include "disk-io.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "volumes.h"
27#include "print-tree.h"
28#include "locking.h"
29#include "tree-log.h"
30#include "free-space-cache.h"
31#include "free-space-tree.h"
32#include "inode-map.h"
33#include "check-integrity.h"
34#include "rcu-string.h"
35#include "dev-replace.h"
36#include "raid56.h"
37#include "sysfs.h"
38#include "qgroup.h"
39#include "compression.h"
40#include "tree-checker.h"
41#include "ref-verify.h"
42#include "block-group.h"
43#include "discard.h"
44#include "space-info.h"
45
46#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
47				 BTRFS_HEADER_FLAG_RELOC |\
48				 BTRFS_SUPER_FLAG_ERROR |\
49				 BTRFS_SUPER_FLAG_SEEDING |\
50				 BTRFS_SUPER_FLAG_METADUMP |\
51				 BTRFS_SUPER_FLAG_METADUMP_V2)
52
53static void end_workqueue_fn(struct btrfs_work *work);
54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56				      struct btrfs_fs_info *fs_info);
57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59					struct extent_io_tree *dirty_pages,
60					int mark);
61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62				       struct extent_io_tree *pinned_extents);
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66/*
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete.  This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71struct btrfs_end_io_wq {
72	struct bio *bio;
73	bio_end_io_t *end_io;
74	void *private;
75	struct btrfs_fs_info *info;
76	blk_status_t status;
77	enum btrfs_wq_endio_type metadata;
78	struct btrfs_work work;
79};
80
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86					sizeof(struct btrfs_end_io_wq),
87					0,
88					SLAB_MEM_SPREAD,
89					NULL);
90	if (!btrfs_end_io_wq_cache)
91		return -ENOMEM;
92	return 0;
93}
94
95void __cold btrfs_end_io_wq_exit(void)
96{
97	kmem_cache_destroy(btrfs_end_io_wq_cache);
98}
99
100static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101{
102	if (fs_info->csum_shash)
103		crypto_free_shash(fs_info->csum_shash);
104}
105
106/*
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads.  They checksum file and metadata bios
109 * just before they are sent down the IO stack.
110 */
111struct async_submit_bio {
112	void *private_data;
113	struct bio *bio;
114	extent_submit_bio_start_t *submit_bio_start;
115	int mirror_num;
116	/*
117	 * bio_offset is optional, can be used if the pages in the bio
118	 * can't tell us where in the file the bio should go
119	 */
120	u64 bio_offset;
121	struct btrfs_work work;
122	blk_status_t status;
123};
124
125/*
126 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
127 * eb, the lockdep key is determined by the btrfs_root it belongs to and
128 * the level the eb occupies in the tree.
129 *
130 * Different roots are used for different purposes and may nest inside each
131 * other and they require separate keysets.  As lockdep keys should be
132 * static, assign keysets according to the purpose of the root as indicated
133 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
134 * roots have separate keysets.
135 *
136 * Lock-nesting across peer nodes is always done with the immediate parent
137 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
138 * subclass to avoid triggering lockdep warning in such cases.
139 *
140 * The key is set by the readpage_end_io_hook after the buffer has passed
141 * csum validation but before the pages are unlocked.  It is also set by
142 * btrfs_init_new_buffer on freshly allocated blocks.
143 *
144 * We also add a check to make sure the highest level of the tree is the
145 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
146 * needs update as well.
147 */
148#ifdef CONFIG_DEBUG_LOCK_ALLOC
149# if BTRFS_MAX_LEVEL != 8
150#  error
151# endif
152
153static struct btrfs_lockdep_keyset {
154	u64			id;		/* root objectid */
155	const char		*name_stem;	/* lock name stem */
156	char			names[BTRFS_MAX_LEVEL + 1][20];
157	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
158} btrfs_lockdep_keysets[] = {
159	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
160	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
161	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
162	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
163	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
164	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
165	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
166	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
167	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
168	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
169	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
170	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
171	{ .id = 0,				.name_stem = "tree"	},
172};
173
174void __init btrfs_init_lockdep(void)
175{
176	int i, j;
177
178	/* initialize lockdep class names */
179	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
180		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
181
182		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
183			snprintf(ks->names[j], sizeof(ks->names[j]),
184				 "btrfs-%s-%02d", ks->name_stem, j);
185	}
186}
187
188void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189				    int level)
190{
191	struct btrfs_lockdep_keyset *ks;
192
193	BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195	/* find the matching keyset, id 0 is the default entry */
196	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197		if (ks->id == objectid)
198			break;
199
200	lockdep_set_class_and_name(&eb->lock,
201				   &ks->keys[level], ks->names[level]);
202}
203
204#endif
205
206/*
207 * Compute the csum of a btree block and store the result to provided buffer.
208 */
209static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210{
211	struct btrfs_fs_info *fs_info = buf->fs_info;
212	const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
213	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
214	char *kaddr;
215	int i;
216
217	shash->tfm = fs_info->csum_shash;
218	crypto_shash_init(shash);
219	kaddr = page_address(buf->pages[0]);
220	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221			    PAGE_SIZE - BTRFS_CSUM_SIZE);
222
223	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
224		kaddr = page_address(buf->pages[i]);
225		crypto_shash_update(shash, kaddr, PAGE_SIZE);
226	}
227	memset(result, 0, BTRFS_CSUM_SIZE);
228	crypto_shash_final(shash, result);
229}
230
231/*
232 * we can't consider a given block up to date unless the transid of the
233 * block matches the transid in the parent node's pointer.  This is how we
234 * detect blocks that either didn't get written at all or got written
235 * in the wrong place.
236 */
237static int verify_parent_transid(struct extent_io_tree *io_tree,
238				 struct extent_buffer *eb, u64 parent_transid,
239				 int atomic)
240{
241	struct extent_state *cached_state = NULL;
242	int ret;
243	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
244
245	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246		return 0;
247
248	if (atomic)
249		return -EAGAIN;
250
251	if (need_lock) {
252		btrfs_tree_read_lock(eb);
253		btrfs_set_lock_blocking_read(eb);
254	}
255
256	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
257			 &cached_state);
258	if (extent_buffer_uptodate(eb) &&
259	    btrfs_header_generation(eb) == parent_transid) {
260		ret = 0;
261		goto out;
262	}
263	btrfs_err_rl(eb->fs_info,
264		"parent transid verify failed on %llu wanted %llu found %llu",
265			eb->start,
266			parent_transid, btrfs_header_generation(eb));
267	ret = 1;
268
269	/*
270	 * Things reading via commit roots that don't have normal protection,
271	 * like send, can have a really old block in cache that may point at a
272	 * block that has been freed and re-allocated.  So don't clear uptodate
273	 * if we find an eb that is under IO (dirty/writeback) because we could
274	 * end up reading in the stale data and then writing it back out and
275	 * making everybody very sad.
276	 */
277	if (!extent_buffer_under_io(eb))
278		clear_extent_buffer_uptodate(eb);
279out:
280	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
281			     &cached_state);
282	if (need_lock)
283		btrfs_tree_read_unlock_blocking(eb);
284	return ret;
285}
286
287static bool btrfs_supported_super_csum(u16 csum_type)
288{
289	switch (csum_type) {
290	case BTRFS_CSUM_TYPE_CRC32:
291	case BTRFS_CSUM_TYPE_XXHASH:
292	case BTRFS_CSUM_TYPE_SHA256:
293	case BTRFS_CSUM_TYPE_BLAKE2:
294		return true;
295	default:
296		return false;
297	}
298}
299
300/*
301 * Return 0 if the superblock checksum type matches the checksum value of that
302 * algorithm. Pass the raw disk superblock data.
303 */
304static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
305				  char *raw_disk_sb)
306{
307	struct btrfs_super_block *disk_sb =
308		(struct btrfs_super_block *)raw_disk_sb;
309	char result[BTRFS_CSUM_SIZE];
310	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
311
312	shash->tfm = fs_info->csum_shash;
313
314	/*
315	 * The super_block structure does not span the whole
316	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317	 * filled with zeros and is included in the checksum.
318	 */
319	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
321
322	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
323		return 1;
324
325	return 0;
326}
327
328int btrfs_verify_level_key(struct extent_buffer *eb, int level,
329			   struct btrfs_key *first_key, u64 parent_transid)
330{
331	struct btrfs_fs_info *fs_info = eb->fs_info;
332	int found_level;
333	struct btrfs_key found_key;
334	int ret;
335
336	found_level = btrfs_header_level(eb);
337	if (found_level != level) {
338		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339		     KERN_ERR "BTRFS: tree level check failed\n");
340		btrfs_err(fs_info,
341"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342			  eb->start, level, found_level);
343		return -EIO;
344	}
345
346	if (!first_key)
347		return 0;
348
349	/*
350	 * For live tree block (new tree blocks in current transaction),
351	 * we need proper lock context to avoid race, which is impossible here.
352	 * So we only checks tree blocks which is read from disk, whose
353	 * generation <= fs_info->last_trans_committed.
354	 */
355	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
356		return 0;
357
358	/* We have @first_key, so this @eb must have at least one item */
359	if (btrfs_header_nritems(eb) == 0) {
360		btrfs_err(fs_info,
361		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
362			  eb->start);
363		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
364		return -EUCLEAN;
365	}
366
367	if (found_level)
368		btrfs_node_key_to_cpu(eb, &found_key, 0);
369	else
370		btrfs_item_key_to_cpu(eb, &found_key, 0);
371	ret = btrfs_comp_cpu_keys(first_key, &found_key);
372
373	if (ret) {
374		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375		     KERN_ERR "BTRFS: tree first key check failed\n");
376		btrfs_err(fs_info,
377"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378			  eb->start, parent_transid, first_key->objectid,
379			  first_key->type, first_key->offset,
380			  found_key.objectid, found_key.type,
381			  found_key.offset);
382	}
383	return ret;
384}
385
386/*
387 * helper to read a given tree block, doing retries as required when
388 * the checksums don't match and we have alternate mirrors to try.
389 *
390 * @parent_transid:	expected transid, skip check if 0
391 * @level:		expected level, mandatory check
392 * @first_key:		expected key of first slot, skip check if NULL
393 */
394static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
395					  u64 parent_transid, int level,
396					  struct btrfs_key *first_key)
397{
398	struct btrfs_fs_info *fs_info = eb->fs_info;
399	struct extent_io_tree *io_tree;
400	int failed = 0;
401	int ret;
402	int num_copies = 0;
403	int mirror_num = 0;
404	int failed_mirror = 0;
405
406	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
407	while (1) {
408		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
409		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
410		if (!ret) {
411			if (verify_parent_transid(io_tree, eb,
412						   parent_transid, 0))
413				ret = -EIO;
414			else if (btrfs_verify_level_key(eb, level,
415						first_key, parent_transid))
416				ret = -EUCLEAN;
417			else
418				break;
419		}
420
421		num_copies = btrfs_num_copies(fs_info,
422					      eb->start, eb->len);
423		if (num_copies == 1)
424			break;
425
426		if (!failed_mirror) {
427			failed = 1;
428			failed_mirror = eb->read_mirror;
429		}
430
431		mirror_num++;
432		if (mirror_num == failed_mirror)
433			mirror_num++;
434
435		if (mirror_num > num_copies)
436			break;
437	}
438
439	if (failed && !ret && failed_mirror)
440		btrfs_repair_eb_io_failure(eb, failed_mirror);
441
442	return ret;
443}
444
445/*
446 * checksum a dirty tree block before IO.  This has extra checks to make sure
447 * we only fill in the checksum field in the first page of a multi-page block
448 */
449
450static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
451{
452	u64 start = page_offset(page);
453	u64 found_start;
454	u8 result[BTRFS_CSUM_SIZE];
455	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
456	struct extent_buffer *eb;
457	int ret;
458
459	eb = (struct extent_buffer *)page->private;
460	if (page != eb->pages[0])
461		return 0;
462
463	found_start = btrfs_header_bytenr(eb);
464	/*
465	 * Please do not consolidate these warnings into a single if.
466	 * It is useful to know what went wrong.
467	 */
468	if (WARN_ON(found_start != start))
469		return -EUCLEAN;
470	if (WARN_ON(!PageUptodate(page)))
471		return -EUCLEAN;
472
473	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
474				    offsetof(struct btrfs_header, fsid),
475				    BTRFS_FSID_SIZE) == 0);
476
477	csum_tree_block(eb, result);
478
479	if (btrfs_header_level(eb))
480		ret = btrfs_check_node(eb);
481	else
482		ret = btrfs_check_leaf_full(eb);
483
484	if (ret < 0) {
485		btrfs_print_tree(eb, 0);
486		btrfs_err(fs_info,
487		"block=%llu write time tree block corruption detected",
488			  eb->start);
489		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
490		return ret;
491	}
492	write_extent_buffer(eb, result, 0, csum_size);
493
494	return 0;
495}
496
497static int check_tree_block_fsid(struct extent_buffer *eb)
498{
499	struct btrfs_fs_info *fs_info = eb->fs_info;
500	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
501	u8 fsid[BTRFS_FSID_SIZE];
502	u8 *metadata_uuid;
503
504	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
505			   BTRFS_FSID_SIZE);
506	/*
507	 * Checking the incompat flag is only valid for the current fs. For
508	 * seed devices it's forbidden to have their uuid changed so reading
509	 * ->fsid in this case is fine
510	 */
511	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512		metadata_uuid = fs_devices->metadata_uuid;
513	else
514		metadata_uuid = fs_devices->fsid;
515
516	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
517		return 0;
518
519	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
521			return 0;
522
523	return 1;
524}
525
526int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
527				   struct page *page, u64 start, u64 end,
528				   int mirror)
529{
530	u64 found_start;
531	int found_level;
532	struct extent_buffer *eb;
533	struct btrfs_fs_info *fs_info;
534	u16 csum_size;
535	int ret = 0;
536	u8 result[BTRFS_CSUM_SIZE];
537	int reads_done;
538
539	if (!page->private)
540		goto out;
541
542	eb = (struct extent_buffer *)page->private;
543	fs_info = eb->fs_info;
544	csum_size = btrfs_super_csum_size(fs_info->super_copy);
545
546	/* the pending IO might have been the only thing that kept this buffer
547	 * in memory.  Make sure we have a ref for all this other checks
548	 */
549	atomic_inc(&eb->refs);
550
551	reads_done = atomic_dec_and_test(&eb->io_pages);
552	if (!reads_done)
553		goto err;
554
555	eb->read_mirror = mirror;
556	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
557		ret = -EIO;
558		goto err;
559	}
560
561	found_start = btrfs_header_bytenr(eb);
562	if (found_start != eb->start) {
563		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
564			     eb->start, found_start);
565		ret = -EIO;
566		goto err;
567	}
568	if (check_tree_block_fsid(eb)) {
569		btrfs_err_rl(fs_info, "bad fsid on block %llu",
570			     eb->start);
571		ret = -EIO;
572		goto err;
573	}
574	found_level = btrfs_header_level(eb);
575	if (found_level >= BTRFS_MAX_LEVEL) {
576		btrfs_err(fs_info, "bad tree block level %d on %llu",
577			  (int)btrfs_header_level(eb), eb->start);
578		ret = -EIO;
579		goto err;
580	}
581
582	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
583				       eb, found_level);
584
585	csum_tree_block(eb, result);
586
587	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
588		u8 val[BTRFS_CSUM_SIZE] = { 0 };
589
590		read_extent_buffer(eb, &val, 0, csum_size);
591		btrfs_warn_rl(fs_info,
592	"%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
593			      fs_info->sb->s_id, eb->start,
594			      CSUM_FMT_VALUE(csum_size, val),
595			      CSUM_FMT_VALUE(csum_size, result),
596			      btrfs_header_level(eb));
597		ret = -EUCLEAN;
598		goto err;
599	}
600
601	/*
602	 * If this is a leaf block and it is corrupt, set the corrupt bit so
603	 * that we don't try and read the other copies of this block, just
604	 * return -EIO.
605	 */
606	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
607		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
608		ret = -EIO;
609	}
610
611	if (found_level > 0 && btrfs_check_node(eb))
612		ret = -EIO;
613
614	if (!ret)
615		set_extent_buffer_uptodate(eb);
616	else
617		btrfs_err(fs_info,
618			  "block=%llu read time tree block corruption detected",
619			  eb->start);
620err:
621	if (reads_done &&
622	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
623		btree_readahead_hook(eb, ret);
624
625	if (ret) {
626		/*
627		 * our io error hook is going to dec the io pages
628		 * again, we have to make sure it has something
629		 * to decrement
630		 */
631		atomic_inc(&eb->io_pages);
632		clear_extent_buffer_uptodate(eb);
633	}
634	free_extent_buffer(eb);
635out:
636	return ret;
637}
638
639static void end_workqueue_bio(struct bio *bio)
640{
641	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
642	struct btrfs_fs_info *fs_info;
643	struct btrfs_workqueue *wq;
644
645	fs_info = end_io_wq->info;
646	end_io_wq->status = bio->bi_status;
647
648	if (bio_op(bio) == REQ_OP_WRITE) {
649		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
650			wq = fs_info->endio_meta_write_workers;
651		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
652			wq = fs_info->endio_freespace_worker;
653		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
654			wq = fs_info->endio_raid56_workers;
655		else
656			wq = fs_info->endio_write_workers;
657	} else {
658		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
659			wq = fs_info->endio_raid56_workers;
660		else if (end_io_wq->metadata)
661			wq = fs_info->endio_meta_workers;
662		else
663			wq = fs_info->endio_workers;
664	}
665
666	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
667	btrfs_queue_work(wq, &end_io_wq->work);
668}
669
670blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
671			enum btrfs_wq_endio_type metadata)
672{
673	struct btrfs_end_io_wq *end_io_wq;
674
675	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
676	if (!end_io_wq)
677		return BLK_STS_RESOURCE;
678
679	end_io_wq->private = bio->bi_private;
680	end_io_wq->end_io = bio->bi_end_io;
681	end_io_wq->info = info;
682	end_io_wq->status = 0;
683	end_io_wq->bio = bio;
684	end_io_wq->metadata = metadata;
685
686	bio->bi_private = end_io_wq;
687	bio->bi_end_io = end_workqueue_bio;
688	return 0;
689}
690
691static void run_one_async_start(struct btrfs_work *work)
692{
693	struct async_submit_bio *async;
694	blk_status_t ret;
695
696	async = container_of(work, struct  async_submit_bio, work);
697	ret = async->submit_bio_start(async->private_data, async->bio,
698				      async->bio_offset);
699	if (ret)
700		async->status = ret;
701}
702
703/*
704 * In order to insert checksums into the metadata in large chunks, we wait
705 * until bio submission time.   All the pages in the bio are checksummed and
706 * sums are attached onto the ordered extent record.
707 *
708 * At IO completion time the csums attached on the ordered extent record are
709 * inserted into the tree.
710 */
711static void run_one_async_done(struct btrfs_work *work)
712{
713	struct async_submit_bio *async;
714	struct inode *inode;
715	blk_status_t ret;
716
717	async = container_of(work, struct  async_submit_bio, work);
718	inode = async->private_data;
719
720	/* If an error occurred we just want to clean up the bio and move on */
721	if (async->status) {
722		async->bio->bi_status = async->status;
723		bio_endio(async->bio);
724		return;
725	}
726
727	/*
728	 * All of the bios that pass through here are from async helpers.
729	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
730	 * This changes nothing when cgroups aren't in use.
731	 */
732	async->bio->bi_opf |= REQ_CGROUP_PUNT;
733	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
734	if (ret) {
735		async->bio->bi_status = ret;
736		bio_endio(async->bio);
737	}
738}
739
740static void run_one_async_free(struct btrfs_work *work)
741{
742	struct async_submit_bio *async;
743
744	async = container_of(work, struct  async_submit_bio, work);
745	kfree(async);
746}
747
748blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
749				 int mirror_num, unsigned long bio_flags,
750				 u64 bio_offset, void *private_data,
751				 extent_submit_bio_start_t *submit_bio_start)
752{
753	struct async_submit_bio *async;
754
755	async = kmalloc(sizeof(*async), GFP_NOFS);
756	if (!async)
757		return BLK_STS_RESOURCE;
758
759	async->private_data = private_data;
760	async->bio = bio;
761	async->mirror_num = mirror_num;
762	async->submit_bio_start = submit_bio_start;
763
764	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
765			run_one_async_free);
766
767	async->bio_offset = bio_offset;
768
769	async->status = 0;
770
771	if (op_is_sync(bio->bi_opf))
772		btrfs_set_work_high_priority(&async->work);
773
774	btrfs_queue_work(fs_info->workers, &async->work);
775	return 0;
776}
777
778static blk_status_t btree_csum_one_bio(struct bio *bio)
779{
780	struct bio_vec *bvec;
781	struct btrfs_root *root;
782	int ret = 0;
783	struct bvec_iter_all iter_all;
784
785	ASSERT(!bio_flagged(bio, BIO_CLONED));
786	bio_for_each_segment_all(bvec, bio, iter_all) {
787		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
788		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
789		if (ret)
790			break;
791	}
792
793	return errno_to_blk_status(ret);
794}
795
796static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
797					     u64 bio_offset)
798{
799	/*
800	 * when we're called for a write, we're already in the async
801	 * submission context.  Just jump into btrfs_map_bio
802	 */
803	return btree_csum_one_bio(bio);
804}
805
806static int check_async_write(struct btrfs_fs_info *fs_info,
807			     struct btrfs_inode *bi)
808{
809	if (atomic_read(&bi->sync_writers))
810		return 0;
811	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
812		return 0;
813	return 1;
814}
815
816blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
817				       int mirror_num, unsigned long bio_flags)
818{
819	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
820	int async = check_async_write(fs_info, BTRFS_I(inode));
821	blk_status_t ret;
822
823	if (bio_op(bio) != REQ_OP_WRITE) {
824		/*
825		 * called for a read, do the setup so that checksum validation
826		 * can happen in the async kernel threads
827		 */
828		ret = btrfs_bio_wq_end_io(fs_info, bio,
829					  BTRFS_WQ_ENDIO_METADATA);
830		if (ret)
831			goto out_w_error;
832		ret = btrfs_map_bio(fs_info, bio, mirror_num);
833	} else if (!async) {
834		ret = btree_csum_one_bio(bio);
835		if (ret)
836			goto out_w_error;
837		ret = btrfs_map_bio(fs_info, bio, mirror_num);
838	} else {
839		/*
840		 * kthread helpers are used to submit writes so that
841		 * checksumming can happen in parallel across all CPUs
842		 */
843		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
844					  0, inode, btree_submit_bio_start);
845	}
846
847	if (ret)
848		goto out_w_error;
849	return 0;
850
851out_w_error:
852	bio->bi_status = ret;
853	bio_endio(bio);
854	return ret;
855}
856
857#ifdef CONFIG_MIGRATION
858static int btree_migratepage(struct address_space *mapping,
859			struct page *newpage, struct page *page,
860			enum migrate_mode mode)
861{
862	/*
863	 * we can't safely write a btree page from here,
864	 * we haven't done the locking hook
865	 */
866	if (PageDirty(page))
867		return -EAGAIN;
868	/*
869	 * Buffers may be managed in a filesystem specific way.
870	 * We must have no buffers or drop them.
871	 */
872	if (page_has_private(page) &&
873	    !try_to_release_page(page, GFP_KERNEL))
874		return -EAGAIN;
875	return migrate_page(mapping, newpage, page, mode);
876}
877#endif
878
879
880static int btree_writepages(struct address_space *mapping,
881			    struct writeback_control *wbc)
882{
883	struct btrfs_fs_info *fs_info;
884	int ret;
885
886	if (wbc->sync_mode == WB_SYNC_NONE) {
887
888		if (wbc->for_kupdate)
889			return 0;
890
891		fs_info = BTRFS_I(mapping->host)->root->fs_info;
892		/* this is a bit racy, but that's ok */
893		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
894					     BTRFS_DIRTY_METADATA_THRESH,
895					     fs_info->dirty_metadata_batch);
896		if (ret < 0)
897			return 0;
898	}
899	return btree_write_cache_pages(mapping, wbc);
900}
901
902static int btree_releasepage(struct page *page, gfp_t gfp_flags)
903{
904	if (PageWriteback(page) || PageDirty(page))
905		return 0;
906
907	return try_release_extent_buffer(page);
908}
909
910static void btree_invalidatepage(struct page *page, unsigned int offset,
911				 unsigned int length)
912{
913	struct extent_io_tree *tree;
914	tree = &BTRFS_I(page->mapping->host)->io_tree;
915	extent_invalidatepage(tree, page, offset);
916	btree_releasepage(page, GFP_NOFS);
917	if (PagePrivate(page)) {
918		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
919			   "page private not zero on page %llu",
920			   (unsigned long long)page_offset(page));
921		detach_page_private(page);
922	}
923}
924
925static int btree_set_page_dirty(struct page *page)
926{
927#ifdef DEBUG
928	struct extent_buffer *eb;
929
930	BUG_ON(!PagePrivate(page));
931	eb = (struct extent_buffer *)page->private;
932	BUG_ON(!eb);
933	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
934	BUG_ON(!atomic_read(&eb->refs));
935	btrfs_assert_tree_locked(eb);
936#endif
937	return __set_page_dirty_nobuffers(page);
938}
939
940static const struct address_space_operations btree_aops = {
941	.writepages	= btree_writepages,
942	.releasepage	= btree_releasepage,
943	.invalidatepage = btree_invalidatepage,
944#ifdef CONFIG_MIGRATION
945	.migratepage	= btree_migratepage,
946#endif
947	.set_page_dirty = btree_set_page_dirty,
948};
949
950void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
951{
952	struct extent_buffer *buf = NULL;
953	int ret;
954
955	buf = btrfs_find_create_tree_block(fs_info, bytenr);
956	if (IS_ERR(buf))
957		return;
958
959	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
960	if (ret < 0)
961		free_extent_buffer_stale(buf);
962	else
963		free_extent_buffer(buf);
964}
965
966struct extent_buffer *btrfs_find_create_tree_block(
967						struct btrfs_fs_info *fs_info,
968						u64 bytenr)
969{
970	if (btrfs_is_testing(fs_info))
971		return alloc_test_extent_buffer(fs_info, bytenr);
972	return alloc_extent_buffer(fs_info, bytenr);
973}
974
975/*
976 * Read tree block at logical address @bytenr and do variant basic but critical
977 * verification.
978 *
979 * @parent_transid:	expected transid of this tree block, skip check if 0
980 * @level:		expected level, mandatory check
981 * @first_key:		expected key in slot 0, skip check if NULL
982 */
983struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
984				      u64 parent_transid, int level,
985				      struct btrfs_key *first_key)
986{
987	struct extent_buffer *buf = NULL;
988	int ret;
989
990	buf = btrfs_find_create_tree_block(fs_info, bytenr);
991	if (IS_ERR(buf))
992		return buf;
993
994	ret = btree_read_extent_buffer_pages(buf, parent_transid,
995					     level, first_key);
996	if (ret) {
997		free_extent_buffer_stale(buf);
998		return ERR_PTR(ret);
999	}
1000	return buf;
1001
1002}
1003
1004void btrfs_clean_tree_block(struct extent_buffer *buf)
1005{
1006	struct btrfs_fs_info *fs_info = buf->fs_info;
1007	if (btrfs_header_generation(buf) ==
1008	    fs_info->running_transaction->transid) {
1009		btrfs_assert_tree_locked(buf);
1010
1011		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1012			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1013						 -buf->len,
1014						 fs_info->dirty_metadata_batch);
1015			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1016			btrfs_set_lock_blocking_write(buf);
1017			clear_extent_buffer_dirty(buf);
1018		}
1019	}
1020}
1021
1022static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1023			 u64 objectid)
1024{
1025	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1026	root->fs_info = fs_info;
1027	root->node = NULL;
1028	root->commit_root = NULL;
1029	root->state = 0;
1030	root->orphan_cleanup_state = 0;
1031
1032	root->last_trans = 0;
1033	root->highest_objectid = 0;
1034	root->nr_delalloc_inodes = 0;
1035	root->nr_ordered_extents = 0;
1036	root->inode_tree = RB_ROOT;
1037	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1038	root->block_rsv = NULL;
1039
1040	INIT_LIST_HEAD(&root->dirty_list);
1041	INIT_LIST_HEAD(&root->root_list);
1042	INIT_LIST_HEAD(&root->delalloc_inodes);
1043	INIT_LIST_HEAD(&root->delalloc_root);
1044	INIT_LIST_HEAD(&root->ordered_extents);
1045	INIT_LIST_HEAD(&root->ordered_root);
1046	INIT_LIST_HEAD(&root->reloc_dirty_list);
1047	INIT_LIST_HEAD(&root->logged_list[0]);
1048	INIT_LIST_HEAD(&root->logged_list[1]);
1049	spin_lock_init(&root->inode_lock);
1050	spin_lock_init(&root->delalloc_lock);
1051	spin_lock_init(&root->ordered_extent_lock);
1052	spin_lock_init(&root->accounting_lock);
1053	spin_lock_init(&root->log_extents_lock[0]);
1054	spin_lock_init(&root->log_extents_lock[1]);
1055	spin_lock_init(&root->qgroup_meta_rsv_lock);
1056	mutex_init(&root->objectid_mutex);
1057	mutex_init(&root->log_mutex);
1058	mutex_init(&root->ordered_extent_mutex);
1059	mutex_init(&root->delalloc_mutex);
1060	init_waitqueue_head(&root->qgroup_flush_wait);
1061	init_waitqueue_head(&root->log_writer_wait);
1062	init_waitqueue_head(&root->log_commit_wait[0]);
1063	init_waitqueue_head(&root->log_commit_wait[1]);
1064	INIT_LIST_HEAD(&root->log_ctxs[0]);
1065	INIT_LIST_HEAD(&root->log_ctxs[1]);
1066	atomic_set(&root->log_commit[0], 0);
1067	atomic_set(&root->log_commit[1], 0);
1068	atomic_set(&root->log_writers, 0);
1069	atomic_set(&root->log_batch, 0);
1070	refcount_set(&root->refs, 1);
1071	atomic_set(&root->snapshot_force_cow, 0);
1072	atomic_set(&root->nr_swapfiles, 0);
1073	root->log_transid = 0;
1074	root->log_transid_committed = -1;
1075	root->last_log_commit = 0;
1076	if (!dummy) {
1077		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1078				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1079		extent_io_tree_init(fs_info, &root->log_csum_range,
1080				    IO_TREE_LOG_CSUM_RANGE, NULL);
1081	}
1082
1083	memset(&root->root_key, 0, sizeof(root->root_key));
1084	memset(&root->root_item, 0, sizeof(root->root_item));
1085	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1086	root->root_key.objectid = objectid;
1087	root->anon_dev = 0;
1088
1089	spin_lock_init(&root->root_item_lock);
1090	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1091#ifdef CONFIG_BTRFS_DEBUG
1092	INIT_LIST_HEAD(&root->leak_list);
1093	spin_lock(&fs_info->fs_roots_radix_lock);
1094	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1095	spin_unlock(&fs_info->fs_roots_radix_lock);
1096#endif
1097}
1098
1099static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1100					   u64 objectid, gfp_t flags)
1101{
1102	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1103	if (root)
1104		__setup_root(root, fs_info, objectid);
1105	return root;
1106}
1107
1108#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1109/* Should only be used by the testing infrastructure */
1110struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1111{
1112	struct btrfs_root *root;
1113
1114	if (!fs_info)
1115		return ERR_PTR(-EINVAL);
1116
1117	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1118	if (!root)
1119		return ERR_PTR(-ENOMEM);
1120
1121	/* We don't use the stripesize in selftest, set it as sectorsize */
1122	root->alloc_bytenr = 0;
1123
1124	return root;
1125}
1126#endif
1127
1128struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1129				     u64 objectid)
1130{
1131	struct btrfs_fs_info *fs_info = trans->fs_info;
1132	struct extent_buffer *leaf;
1133	struct btrfs_root *tree_root = fs_info->tree_root;
1134	struct btrfs_root *root;
1135	struct btrfs_key key;
1136	unsigned int nofs_flag;
1137	int ret = 0;
1138
1139	/*
1140	 * We're holding a transaction handle, so use a NOFS memory allocation
1141	 * context to avoid deadlock if reclaim happens.
1142	 */
1143	nofs_flag = memalloc_nofs_save();
1144	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1145	memalloc_nofs_restore(nofs_flag);
1146	if (!root)
1147		return ERR_PTR(-ENOMEM);
1148
1149	root->root_key.objectid = objectid;
1150	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1151	root->root_key.offset = 0;
1152
1153	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1154				      BTRFS_NESTING_NORMAL);
1155	if (IS_ERR(leaf)) {
1156		ret = PTR_ERR(leaf);
1157		leaf = NULL;
1158		goto fail;
1159	}
1160
1161	root->node = leaf;
1162	btrfs_mark_buffer_dirty(leaf);
1163
1164	root->commit_root = btrfs_root_node(root);
1165	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1166
1167	root->root_item.flags = 0;
1168	root->root_item.byte_limit = 0;
1169	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1170	btrfs_set_root_generation(&root->root_item, trans->transid);
1171	btrfs_set_root_level(&root->root_item, 0);
1172	btrfs_set_root_refs(&root->root_item, 1);
1173	btrfs_set_root_used(&root->root_item, leaf->len);
1174	btrfs_set_root_last_snapshot(&root->root_item, 0);
1175	btrfs_set_root_dirid(&root->root_item, 0);
1176	if (is_fstree(objectid))
1177		generate_random_guid(root->root_item.uuid);
1178	else
1179		export_guid(root->root_item.uuid, &guid_null);
1180	root->root_item.drop_level = 0;
1181
1182	key.objectid = objectid;
1183	key.type = BTRFS_ROOT_ITEM_KEY;
1184	key.offset = 0;
1185	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1186	if (ret)
1187		goto fail;
1188
1189	btrfs_tree_unlock(leaf);
1190
1191	return root;
1192
1193fail:
1194	if (leaf)
1195		btrfs_tree_unlock(leaf);
1196	btrfs_put_root(root);
1197
1198	return ERR_PTR(ret);
1199}
1200
1201static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1202					 struct btrfs_fs_info *fs_info)
1203{
1204	struct btrfs_root *root;
1205	struct extent_buffer *leaf;
1206
1207	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1208	if (!root)
1209		return ERR_PTR(-ENOMEM);
1210
1211	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1212	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1214
1215	/*
1216	 * DON'T set SHAREABLE bit for log trees.
1217	 *
1218	 * Log trees are not exposed to user space thus can't be snapshotted,
1219	 * and they go away before a real commit is actually done.
1220	 *
1221	 * They do store pointers to file data extents, and those reference
1222	 * counts still get updated (along with back refs to the log tree).
1223	 */
1224
1225	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1226			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1227	if (IS_ERR(leaf)) {
1228		btrfs_put_root(root);
1229		return ERR_CAST(leaf);
1230	}
1231
1232	root->node = leaf;
1233
1234	btrfs_mark_buffer_dirty(root->node);
1235	btrfs_tree_unlock(root->node);
1236	return root;
1237}
1238
1239int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1240			     struct btrfs_fs_info *fs_info)
1241{
1242	struct btrfs_root *log_root;
1243
1244	log_root = alloc_log_tree(trans, fs_info);
1245	if (IS_ERR(log_root))
1246		return PTR_ERR(log_root);
1247	WARN_ON(fs_info->log_root_tree);
1248	fs_info->log_root_tree = log_root;
1249	return 0;
1250}
1251
1252int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1253		       struct btrfs_root *root)
1254{
1255	struct btrfs_fs_info *fs_info = root->fs_info;
1256	struct btrfs_root *log_root;
1257	struct btrfs_inode_item *inode_item;
1258
1259	log_root = alloc_log_tree(trans, fs_info);
1260	if (IS_ERR(log_root))
1261		return PTR_ERR(log_root);
1262
1263	log_root->last_trans = trans->transid;
1264	log_root->root_key.offset = root->root_key.objectid;
1265
1266	inode_item = &log_root->root_item.inode;
1267	btrfs_set_stack_inode_generation(inode_item, 1);
1268	btrfs_set_stack_inode_size(inode_item, 3);
1269	btrfs_set_stack_inode_nlink(inode_item, 1);
1270	btrfs_set_stack_inode_nbytes(inode_item,
1271				     fs_info->nodesize);
1272	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1273
1274	btrfs_set_root_node(&log_root->root_item, log_root->node);
1275
1276	WARN_ON(root->log_root);
1277	root->log_root = log_root;
1278	root->log_transid = 0;
1279	root->log_transid_committed = -1;
1280	root->last_log_commit = 0;
1281	return 0;
1282}
1283
1284static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1285					      struct btrfs_path *path,
1286					      struct btrfs_key *key)
1287{
1288	struct btrfs_root *root;
1289	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1290	u64 generation;
1291	int ret;
1292	int level;
1293
1294	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1295	if (!root)
1296		return ERR_PTR(-ENOMEM);
1297
1298	ret = btrfs_find_root(tree_root, key, path,
1299			      &root->root_item, &root->root_key);
1300	if (ret) {
1301		if (ret > 0)
1302			ret = -ENOENT;
1303		goto fail;
1304	}
1305
1306	generation = btrfs_root_generation(&root->root_item);
1307	level = btrfs_root_level(&root->root_item);
1308	root->node = read_tree_block(fs_info,
1309				     btrfs_root_bytenr(&root->root_item),
1310				     generation, level, NULL);
1311	if (IS_ERR(root->node)) {
1312		ret = PTR_ERR(root->node);
1313		root->node = NULL;
1314		goto fail;
1315	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1316		ret = -EIO;
1317		goto fail;
1318	}
1319	root->commit_root = btrfs_root_node(root);
1320	return root;
1321fail:
1322	btrfs_put_root(root);
1323	return ERR_PTR(ret);
1324}
1325
1326struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1327					struct btrfs_key *key)
1328{
1329	struct btrfs_root *root;
1330	struct btrfs_path *path;
1331
1332	path = btrfs_alloc_path();
1333	if (!path)
1334		return ERR_PTR(-ENOMEM);
1335	root = read_tree_root_path(tree_root, path, key);
1336	btrfs_free_path(path);
1337
1338	return root;
1339}
1340
1341/*
1342 * Initialize subvolume root in-memory structure
1343 *
1344 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1345 */
1346static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1347{
1348	int ret;
1349	unsigned int nofs_flag;
1350
1351	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1352	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1353					GFP_NOFS);
1354	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1355		ret = -ENOMEM;
1356		goto fail;
1357	}
1358
1359	/*
1360	 * We might be called under a transaction (e.g. indirect backref
1361	 * resolution) which could deadlock if it triggers memory reclaim
1362	 */
1363	nofs_flag = memalloc_nofs_save();
1364	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1365	memalloc_nofs_restore(nofs_flag);
1366	if (ret)
1367		goto fail;
1368
1369	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1370	    root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1371		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1372		btrfs_check_and_init_root_item(&root->root_item);
1373	}
1374
1375	btrfs_init_free_ino_ctl(root);
1376	spin_lock_init(&root->ino_cache_lock);
1377	init_waitqueue_head(&root->ino_cache_wait);
1378
1379	/*
1380	 * Don't assign anonymous block device to roots that are not exposed to
1381	 * userspace, the id pool is limited to 1M
1382	 */
1383	if (is_fstree(root->root_key.objectid) &&
1384	    btrfs_root_refs(&root->root_item) > 0) {
1385		if (!anon_dev) {
1386			ret = get_anon_bdev(&root->anon_dev);
1387			if (ret)
1388				goto fail;
1389		} else {
1390			root->anon_dev = anon_dev;
1391		}
1392	}
1393
1394	mutex_lock(&root->objectid_mutex);
1395	ret = btrfs_find_highest_objectid(root,
1396					&root->highest_objectid);
1397	if (ret) {
1398		mutex_unlock(&root->objectid_mutex);
1399		goto fail;
1400	}
1401
1402	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1403
1404	mutex_unlock(&root->objectid_mutex);
1405
1406	return 0;
1407fail:
1408	/* The caller is responsible to call btrfs_free_fs_root */
1409	return ret;
1410}
1411
1412static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1413					       u64 root_id)
1414{
1415	struct btrfs_root *root;
1416
1417	spin_lock(&fs_info->fs_roots_radix_lock);
1418	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1419				 (unsigned long)root_id);
1420	if (root)
1421		root = btrfs_grab_root(root);
1422	spin_unlock(&fs_info->fs_roots_radix_lock);
1423	return root;
1424}
1425
1426static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1427						u64 objectid)
1428{
1429	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1430		return btrfs_grab_root(fs_info->tree_root);
1431	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1432		return btrfs_grab_root(fs_info->extent_root);
1433	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1434		return btrfs_grab_root(fs_info->chunk_root);
1435	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1436		return btrfs_grab_root(fs_info->dev_root);
1437	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1438		return btrfs_grab_root(fs_info->csum_root);
1439	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1440		return btrfs_grab_root(fs_info->quota_root) ?
1441			fs_info->quota_root : ERR_PTR(-ENOENT);
1442	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1443		return btrfs_grab_root(fs_info->uuid_root) ?
1444			fs_info->uuid_root : ERR_PTR(-ENOENT);
1445	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1446		return btrfs_grab_root(fs_info->free_space_root) ?
1447			fs_info->free_space_root : ERR_PTR(-ENOENT);
1448	return NULL;
1449}
1450
1451int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1452			 struct btrfs_root *root)
1453{
1454	int ret;
1455
1456	ret = radix_tree_preload(GFP_NOFS);
1457	if (ret)
1458		return ret;
1459
1460	spin_lock(&fs_info->fs_roots_radix_lock);
1461	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1462				(unsigned long)root->root_key.objectid,
1463				root);
1464	if (ret == 0) {
1465		btrfs_grab_root(root);
1466		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1467	}
1468	spin_unlock(&fs_info->fs_roots_radix_lock);
1469	radix_tree_preload_end();
1470
1471	return ret;
1472}
1473
1474void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1475{
1476#ifdef CONFIG_BTRFS_DEBUG
1477	struct btrfs_root *root;
1478
1479	while (!list_empty(&fs_info->allocated_roots)) {
1480		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1481
1482		root = list_first_entry(&fs_info->allocated_roots,
1483					struct btrfs_root, leak_list);
1484		btrfs_err(fs_info, "leaked root %s refcount %d",
1485			  btrfs_root_name(&root->root_key, buf),
1486			  refcount_read(&root->refs));
1487		while (refcount_read(&root->refs) > 1)
1488			btrfs_put_root(root);
1489		btrfs_put_root(root);
1490	}
1491#endif
1492}
1493
1494void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1495{
1496	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1497	percpu_counter_destroy(&fs_info->delalloc_bytes);
1498	percpu_counter_destroy(&fs_info->dio_bytes);
1499	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1500	btrfs_free_csum_hash(fs_info);
1501	btrfs_free_stripe_hash_table(fs_info);
1502	btrfs_free_ref_cache(fs_info);
1503	kfree(fs_info->balance_ctl);
1504	kfree(fs_info->delayed_root);
1505	btrfs_put_root(fs_info->extent_root);
1506	btrfs_put_root(fs_info->tree_root);
1507	btrfs_put_root(fs_info->chunk_root);
1508	btrfs_put_root(fs_info->dev_root);
1509	btrfs_put_root(fs_info->csum_root);
1510	btrfs_put_root(fs_info->quota_root);
1511	btrfs_put_root(fs_info->uuid_root);
1512	btrfs_put_root(fs_info->free_space_root);
1513	btrfs_put_root(fs_info->fs_root);
1514	btrfs_put_root(fs_info->data_reloc_root);
1515	btrfs_check_leaked_roots(fs_info);
1516	btrfs_extent_buffer_leak_debug_check(fs_info);
1517	kfree(fs_info->super_copy);
1518	kfree(fs_info->super_for_commit);
1519	kvfree(fs_info);
1520}
1521
1522
1523/*
1524 * Get an in-memory reference of a root structure.
1525 *
1526 * For essential trees like root/extent tree, we grab it from fs_info directly.
1527 * For subvolume trees, we check the cached filesystem roots first. If not
1528 * found, then read it from disk and add it to cached fs roots.
1529 *
1530 * Caller should release the root by calling btrfs_put_root() after the usage.
1531 *
1532 * NOTE: Reloc and log trees can't be read by this function as they share the
1533 *	 same root objectid.
1534 *
1535 * @objectid:	root id
1536 * @anon_dev:	preallocated anonymous block device number for new roots,
1537 * 		pass 0 for new allocation.
1538 * @check_ref:	whether to check root item references, If true, return -ENOENT
1539 *		for orphan roots
1540 */
1541static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1542					     u64 objectid, dev_t anon_dev,
1543					     bool check_ref)
1544{
1545	struct btrfs_root *root;
1546	struct btrfs_path *path;
1547	struct btrfs_key key;
1548	int ret;
1549
1550	root = btrfs_get_global_root(fs_info, objectid);
1551	if (root)
1552		return root;
1553again:
1554	root = btrfs_lookup_fs_root(fs_info, objectid);
1555	if (root) {
1556		/*
1557		 * Some other caller may have read out the newly inserted
1558		 * subvolume already (for things like backref walk etc).  Not
1559		 * that common but still possible.  In that case, we just need
1560		 * to free the anon_dev.
1561		 */
1562		if (unlikely(anon_dev)) {
1563			free_anon_bdev(anon_dev);
1564			anon_dev = 0;
1565		}
1566
1567		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1568			btrfs_put_root(root);
1569			return ERR_PTR(-ENOENT);
1570		}
1571		return root;
1572	}
1573
1574	key.objectid = objectid;
1575	key.type = BTRFS_ROOT_ITEM_KEY;
1576	key.offset = (u64)-1;
1577	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1578	if (IS_ERR(root))
1579		return root;
1580
1581	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1582		ret = -ENOENT;
1583		goto fail;
1584	}
1585
1586	ret = btrfs_init_fs_root(root, anon_dev);
1587	if (ret)
1588		goto fail;
1589
1590	path = btrfs_alloc_path();
1591	if (!path) {
1592		ret = -ENOMEM;
1593		goto fail;
1594	}
1595	key.objectid = BTRFS_ORPHAN_OBJECTID;
1596	key.type = BTRFS_ORPHAN_ITEM_KEY;
1597	key.offset = objectid;
1598
1599	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1600	btrfs_free_path(path);
1601	if (ret < 0)
1602		goto fail;
1603	if (ret == 0)
1604		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1605
1606	ret = btrfs_insert_fs_root(fs_info, root);
1607	if (ret) {
1608		if (ret == -EEXIST) {
1609			btrfs_put_root(root);
1610			goto again;
1611		}
1612		goto fail;
1613	}
1614	return root;
1615fail:
1616	/*
1617	 * If our caller provided us an anonymous device, then it's his
1618	 * responsability to free it in case we fail. So we have to set our
1619	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1620	 * and once again by our caller.
1621	 */
1622	if (anon_dev)
1623		root->anon_dev = 0;
1624	btrfs_put_root(root);
1625	return ERR_PTR(ret);
1626}
1627
1628/*
1629 * Get in-memory reference of a root structure
1630 *
1631 * @objectid:	tree objectid
1632 * @check_ref:	if set, verify that the tree exists and the item has at least
1633 *		one reference
1634 */
1635struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1636				     u64 objectid, bool check_ref)
1637{
1638	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1639}
1640
1641/*
1642 * Get in-memory reference of a root structure, created as new, optionally pass
1643 * the anonymous block device id
1644 *
1645 * @objectid:	tree objectid
1646 * @anon_dev:	if zero, allocate a new anonymous block device or use the
1647 *		parameter value
1648 */
1649struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1650					 u64 objectid, dev_t anon_dev)
1651{
1652	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1653}
1654
1655/*
1656 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1657 * @fs_info:	the fs_info
1658 * @objectid:	the objectid we need to lookup
1659 *
1660 * This is exclusively used for backref walking, and exists specifically because
1661 * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1662 * creation time, which means we may have to read the tree_root in order to look
1663 * up a fs root that is not in memory.  If the root is not in memory we will
1664 * read the tree root commit root and look up the fs root from there.  This is a
1665 * temporary root, it will not be inserted into the radix tree as it doesn't
1666 * have the most uptodate information, it'll simply be discarded once the
1667 * backref code is finished using the root.
1668 */
1669struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1670						 struct btrfs_path *path,
1671						 u64 objectid)
1672{
1673	struct btrfs_root *root;
1674	struct btrfs_key key;
1675
1676	ASSERT(path->search_commit_root && path->skip_locking);
1677
1678	/*
1679	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1680	 * since this is called via the backref walking code we won't be looking
1681	 * up a root that doesn't exist, unless there's corruption.  So if root
1682	 * != NULL just return it.
1683	 */
1684	root = btrfs_get_global_root(fs_info, objectid);
1685	if (root)
1686		return root;
1687
1688	root = btrfs_lookup_fs_root(fs_info, objectid);
1689	if (root)
1690		return root;
1691
1692	key.objectid = objectid;
1693	key.type = BTRFS_ROOT_ITEM_KEY;
1694	key.offset = (u64)-1;
1695	root = read_tree_root_path(fs_info->tree_root, path, &key);
1696	btrfs_release_path(path);
1697
1698	return root;
1699}
1700
1701/*
1702 * called by the kthread helper functions to finally call the bio end_io
1703 * functions.  This is where read checksum verification actually happens
1704 */
1705static void end_workqueue_fn(struct btrfs_work *work)
1706{
1707	struct bio *bio;
1708	struct btrfs_end_io_wq *end_io_wq;
1709
1710	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1711	bio = end_io_wq->bio;
1712
1713	bio->bi_status = end_io_wq->status;
1714	bio->bi_private = end_io_wq->private;
1715	bio->bi_end_io = end_io_wq->end_io;
1716	bio_endio(bio);
1717	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1718}
1719
1720static int cleaner_kthread(void *arg)
1721{
1722	struct btrfs_root *root = arg;
1723	struct btrfs_fs_info *fs_info = root->fs_info;
1724	int again;
1725
1726	while (1) {
1727		again = 0;
1728
1729		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1730
1731		/* Make the cleaner go to sleep early. */
1732		if (btrfs_need_cleaner_sleep(fs_info))
1733			goto sleep;
1734
1735		/*
1736		 * Do not do anything if we might cause open_ctree() to block
1737		 * before we have finished mounting the filesystem.
1738		 */
1739		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1740			goto sleep;
1741
1742		if (!mutex_trylock(&fs_info->cleaner_mutex))
1743			goto sleep;
1744
1745		/*
1746		 * Avoid the problem that we change the status of the fs
1747		 * during the above check and trylock.
1748		 */
1749		if (btrfs_need_cleaner_sleep(fs_info)) {
1750			mutex_unlock(&fs_info->cleaner_mutex);
1751			goto sleep;
1752		}
1753
1754		btrfs_run_delayed_iputs(fs_info);
1755
1756		again = btrfs_clean_one_deleted_snapshot(root);
1757		mutex_unlock(&fs_info->cleaner_mutex);
1758
1759		/*
1760		 * The defragger has dealt with the R/O remount and umount,
1761		 * needn't do anything special here.
1762		 */
1763		btrfs_run_defrag_inodes(fs_info);
1764
1765		/*
1766		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1767		 * with relocation (btrfs_relocate_chunk) and relocation
1768		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1769		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1770		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1771		 * unused block groups.
1772		 */
1773		btrfs_delete_unused_bgs(fs_info);
1774sleep:
1775		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1776		if (kthread_should_park())
1777			kthread_parkme();
1778		if (kthread_should_stop())
1779			return 0;
1780		if (!again) {
1781			set_current_state(TASK_INTERRUPTIBLE);
1782			schedule();
1783			__set_current_state(TASK_RUNNING);
1784		}
1785	}
1786}
1787
1788static int transaction_kthread(void *arg)
1789{
1790	struct btrfs_root *root = arg;
1791	struct btrfs_fs_info *fs_info = root->fs_info;
1792	struct btrfs_trans_handle *trans;
1793	struct btrfs_transaction *cur;
1794	u64 transid;
1795	time64_t now;
1796	unsigned long delay;
1797	bool cannot_commit;
1798
1799	do {
1800		cannot_commit = false;
1801		delay = HZ * fs_info->commit_interval;
1802		mutex_lock(&fs_info->transaction_kthread_mutex);
1803
1804		spin_lock(&fs_info->trans_lock);
1805		cur = fs_info->running_transaction;
1806		if (!cur) {
1807			spin_unlock(&fs_info->trans_lock);
1808			goto sleep;
1809		}
1810
1811		now = ktime_get_seconds();
1812		if (cur->state < TRANS_STATE_COMMIT_START &&
1813		    (now < cur->start_time ||
1814		     now - cur->start_time < fs_info->commit_interval)) {
1815			spin_unlock(&fs_info->trans_lock);
1816			delay = HZ * 5;
1817			goto sleep;
1818		}
1819		transid = cur->transid;
1820		spin_unlock(&fs_info->trans_lock);
1821
1822		/* If the file system is aborted, this will always fail. */
1823		trans = btrfs_attach_transaction(root);
1824		if (IS_ERR(trans)) {
1825			if (PTR_ERR(trans) != -ENOENT)
1826				cannot_commit = true;
1827			goto sleep;
1828		}
1829		if (transid == trans->transid) {
1830			btrfs_commit_transaction(trans);
1831		} else {
1832			btrfs_end_transaction(trans);
1833		}
1834sleep:
1835		wake_up_process(fs_info->cleaner_kthread);
1836		mutex_unlock(&fs_info->transaction_kthread_mutex);
1837
1838		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1839				      &fs_info->fs_state)))
1840			btrfs_cleanup_transaction(fs_info);
1841		if (!kthread_should_stop() &&
1842				(!btrfs_transaction_blocked(fs_info) ||
1843				 cannot_commit))
1844			schedule_timeout_interruptible(delay);
1845	} while (!kthread_should_stop());
1846	return 0;
1847}
1848
1849/*
1850 * This will find the highest generation in the array of root backups.  The
1851 * index of the highest array is returned, or -EINVAL if we can't find
1852 * anything.
1853 *
1854 * We check to make sure the array is valid by comparing the
1855 * generation of the latest  root in the array with the generation
1856 * in the super block.  If they don't match we pitch it.
1857 */
1858static int find_newest_super_backup(struct btrfs_fs_info *info)
1859{
1860	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1861	u64 cur;
1862	struct btrfs_root_backup *root_backup;
1863	int i;
1864
1865	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1866		root_backup = info->super_copy->super_roots + i;
1867		cur = btrfs_backup_tree_root_gen(root_backup);
1868		if (cur == newest_gen)
1869			return i;
1870	}
1871
1872	return -EINVAL;
1873}
1874
1875/*
1876 * copy all the root pointers into the super backup array.
1877 * this will bump the backup pointer by one when it is
1878 * done
1879 */
1880static void backup_super_roots(struct btrfs_fs_info *info)
1881{
1882	const int next_backup = info->backup_root_index;
1883	struct btrfs_root_backup *root_backup;
1884
1885	root_backup = info->super_for_commit->super_roots + next_backup;
1886
1887	/*
1888	 * make sure all of our padding and empty slots get zero filled
1889	 * regardless of which ones we use today
1890	 */
1891	memset(root_backup, 0, sizeof(*root_backup));
1892
1893	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1894
1895	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1896	btrfs_set_backup_tree_root_gen(root_backup,
1897			       btrfs_header_generation(info->tree_root->node));
1898
1899	btrfs_set_backup_tree_root_level(root_backup,
1900			       btrfs_header_level(info->tree_root->node));
1901
1902	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1903	btrfs_set_backup_chunk_root_gen(root_backup,
1904			       btrfs_header_generation(info->chunk_root->node));
1905	btrfs_set_backup_chunk_root_level(root_backup,
1906			       btrfs_header_level(info->chunk_root->node));
1907
1908	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1909	btrfs_set_backup_extent_root_gen(root_backup,
1910			       btrfs_header_generation(info->extent_root->node));
1911	btrfs_set_backup_extent_root_level(root_backup,
1912			       btrfs_header_level(info->extent_root->node));
1913
1914	/*
1915	 * we might commit during log recovery, which happens before we set
1916	 * the fs_root.  Make sure it is valid before we fill it in.
1917	 */
1918	if (info->fs_root && info->fs_root->node) {
1919		btrfs_set_backup_fs_root(root_backup,
1920					 info->fs_root->node->start);
1921		btrfs_set_backup_fs_root_gen(root_backup,
1922			       btrfs_header_generation(info->fs_root->node));
1923		btrfs_set_backup_fs_root_level(root_backup,
1924			       btrfs_header_level(info->fs_root->node));
1925	}
1926
1927	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1928	btrfs_set_backup_dev_root_gen(root_backup,
1929			       btrfs_header_generation(info->dev_root->node));
1930	btrfs_set_backup_dev_root_level(root_backup,
1931				       btrfs_header_level(info->dev_root->node));
1932
1933	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1934	btrfs_set_backup_csum_root_gen(root_backup,
1935			       btrfs_header_generation(info->csum_root->node));
1936	btrfs_set_backup_csum_root_level(root_backup,
1937			       btrfs_header_level(info->csum_root->node));
1938
1939	btrfs_set_backup_total_bytes(root_backup,
1940			     btrfs_super_total_bytes(info->super_copy));
1941	btrfs_set_backup_bytes_used(root_backup,
1942			     btrfs_super_bytes_used(info->super_copy));
1943	btrfs_set_backup_num_devices(root_backup,
1944			     btrfs_super_num_devices(info->super_copy));
1945
1946	/*
1947	 * if we don't copy this out to the super_copy, it won't get remembered
1948	 * for the next commit
1949	 */
1950	memcpy(&info->super_copy->super_roots,
1951	       &info->super_for_commit->super_roots,
1952	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1953}
1954
1955/*
1956 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1957 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1958 *
1959 * fs_info - filesystem whose backup roots need to be read
1960 * priority - priority of backup root required
1961 *
1962 * Returns backup root index on success and -EINVAL otherwise.
1963 */
1964static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1965{
1966	int backup_index = find_newest_super_backup(fs_info);
1967	struct btrfs_super_block *super = fs_info->super_copy;
1968	struct btrfs_root_backup *root_backup;
1969
1970	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1971		if (priority == 0)
1972			return backup_index;
1973
1974		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1975		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1976	} else {
1977		return -EINVAL;
1978	}
1979
1980	root_backup = super->super_roots + backup_index;
1981
1982	btrfs_set_super_generation(super,
1983				   btrfs_backup_tree_root_gen(root_backup));
1984	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1985	btrfs_set_super_root_level(super,
1986				   btrfs_backup_tree_root_level(root_backup));
1987	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1988
1989	/*
1990	 * Fixme: the total bytes and num_devices need to match or we should
1991	 * need a fsck
1992	 */
1993	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1994	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1995
1996	return backup_index;
1997}
1998
1999/* helper to cleanup workers */
2000static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2001{
2002	btrfs_destroy_workqueue(fs_info->fixup_workers);
2003	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2004	btrfs_destroy_workqueue(fs_info->workers);
2005	btrfs_destroy_workqueue(fs_info->endio_workers);
2006	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2007	btrfs_destroy_workqueue(fs_info->rmw_workers);
2008	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2009	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2010	btrfs_destroy_workqueue(fs_info->delayed_workers);
2011	btrfs_destroy_workqueue(fs_info->caching_workers);
2012	btrfs_destroy_workqueue(fs_info->readahead_workers);
2013	btrfs_destroy_workqueue(fs_info->flush_workers);
2014	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2015	if (fs_info->discard_ctl.discard_workers)
2016		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2017	/*
2018	 * Now that all other work queues are destroyed, we can safely destroy
2019	 * the queues used for metadata I/O, since tasks from those other work
2020	 * queues can do metadata I/O operations.
2021	 */
2022	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2023	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2024}
2025
2026static void free_root_extent_buffers(struct btrfs_root *root)
2027{
2028	if (root) {
2029		free_extent_buffer(root->node);
2030		free_extent_buffer(root->commit_root);
2031		root->node = NULL;
2032		root->commit_root = NULL;
2033	}
2034}
2035
2036/* helper to cleanup tree roots */
2037static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2038{
2039	free_root_extent_buffers(info->tree_root);
2040
2041	free_root_extent_buffers(info->dev_root);
2042	free_root_extent_buffers(info->extent_root);
2043	free_root_extent_buffers(info->csum_root);
2044	free_root_extent_buffers(info->quota_root);
2045	free_root_extent_buffers(info->uuid_root);
2046	free_root_extent_buffers(info->fs_root);
2047	free_root_extent_buffers(info->data_reloc_root);
2048	if (free_chunk_root)
2049		free_root_extent_buffers(info->chunk_root);
2050	free_root_extent_buffers(info->free_space_root);
2051}
2052
2053void btrfs_put_root(struct btrfs_root *root)
2054{
2055	if (!root)
2056		return;
2057
2058	if (refcount_dec_and_test(&root->refs)) {
2059		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2060		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2061		if (root->anon_dev)
2062			free_anon_bdev(root->anon_dev);
2063		btrfs_drew_lock_destroy(&root->snapshot_lock);
2064		free_root_extent_buffers(root);
2065		kfree(root->free_ino_ctl);
2066		kfree(root->free_ino_pinned);
2067#ifdef CONFIG_BTRFS_DEBUG
2068		spin_lock(&root->fs_info->fs_roots_radix_lock);
2069		list_del_init(&root->leak_list);
2070		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2071#endif
2072		kfree(root);
2073	}
2074}
2075
2076void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2077{
2078	int ret;
2079	struct btrfs_root *gang[8];
2080	int i;
2081
2082	while (!list_empty(&fs_info->dead_roots)) {
2083		gang[0] = list_entry(fs_info->dead_roots.next,
2084				     struct btrfs_root, root_list);
2085		list_del(&gang[0]->root_list);
2086
2087		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2088			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2089		btrfs_put_root(gang[0]);
2090	}
2091
2092	while (1) {
2093		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2094					     (void **)gang, 0,
2095					     ARRAY_SIZE(gang));
2096		if (!ret)
2097			break;
2098		for (i = 0; i < ret; i++)
2099			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2100	}
2101}
2102
2103static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2104{
2105	mutex_init(&fs_info->scrub_lock);
2106	atomic_set(&fs_info->scrubs_running, 0);
2107	atomic_set(&fs_info->scrub_pause_req, 0);
2108	atomic_set(&fs_info->scrubs_paused, 0);
2109	atomic_set(&fs_info->scrub_cancel_req, 0);
2110	init_waitqueue_head(&fs_info->scrub_pause_wait);
2111	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2112}
2113
2114static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2115{
2116	spin_lock_init(&fs_info->balance_lock);
2117	mutex_init(&fs_info->balance_mutex);
2118	atomic_set(&fs_info->balance_pause_req, 0);
2119	atomic_set(&fs_info->balance_cancel_req, 0);
2120	fs_info->balance_ctl = NULL;
2121	init_waitqueue_head(&fs_info->balance_wait_q);
2122}
2123
2124static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2125{
2126	struct inode *inode = fs_info->btree_inode;
2127
2128	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2129	set_nlink(inode, 1);
2130	/*
2131	 * we set the i_size on the btree inode to the max possible int.
2132	 * the real end of the address space is determined by all of
2133	 * the devices in the system
2134	 */
2135	inode->i_size = OFFSET_MAX;
2136	inode->i_mapping->a_ops = &btree_aops;
2137
2138	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2139	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2140			    IO_TREE_BTREE_INODE_IO, inode);
2141	BTRFS_I(inode)->io_tree.track_uptodate = false;
2142	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2143
2144	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2145	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2146	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2147	btrfs_insert_inode_hash(inode);
2148}
2149
2150static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2151{
2152	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2153	init_rwsem(&fs_info->dev_replace.rwsem);
2154	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2155}
2156
2157static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2158{
2159	spin_lock_init(&fs_info->qgroup_lock);
2160	mutex_init(&fs_info->qgroup_ioctl_lock);
2161	fs_info->qgroup_tree = RB_ROOT;
2162	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2163	fs_info->qgroup_seq = 1;
2164	fs_info->qgroup_ulist = NULL;
2165	fs_info->qgroup_rescan_running = false;
2166	mutex_init(&fs_info->qgroup_rescan_lock);
2167}
2168
2169static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2170		struct btrfs_fs_devices *fs_devices)
2171{
2172	u32 max_active = fs_info->thread_pool_size;
2173	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2174
2175	fs_info->workers =
2176		btrfs_alloc_workqueue(fs_info, "worker",
2177				      flags | WQ_HIGHPRI, max_active, 16);
2178
2179	fs_info->delalloc_workers =
2180		btrfs_alloc_workqueue(fs_info, "delalloc",
2181				      flags, max_active, 2);
2182
2183	fs_info->flush_workers =
2184		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2185				      flags, max_active, 0);
2186
2187	fs_info->caching_workers =
2188		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2189
2190	fs_info->fixup_workers =
2191		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2192
2193	/*
2194	 * endios are largely parallel and should have a very
2195	 * low idle thresh
2196	 */
2197	fs_info->endio_workers =
2198		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2199	fs_info->endio_meta_workers =
2200		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2201				      max_active, 4);
2202	fs_info->endio_meta_write_workers =
2203		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2204				      max_active, 2);
2205	fs_info->endio_raid56_workers =
2206		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2207				      max_active, 4);
2208	fs_info->rmw_workers =
2209		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2210	fs_info->endio_write_workers =
2211		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2212				      max_active, 2);
2213	fs_info->endio_freespace_worker =
2214		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2215				      max_active, 0);
2216	fs_info->delayed_workers =
2217		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2218				      max_active, 0);
2219	fs_info->readahead_workers =
2220		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2221				      max_active, 2);
2222	fs_info->qgroup_rescan_workers =
2223		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2224	fs_info->discard_ctl.discard_workers =
2225		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2226
2227	if (!(fs_info->workers && fs_info->delalloc_workers &&
2228	      fs_info->flush_workers &&
2229	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2230	      fs_info->endio_meta_write_workers &&
2231	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2232	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2233	      fs_info->caching_workers && fs_info->readahead_workers &&
2234	      fs_info->fixup_workers && fs_info->delayed_workers &&
2235	      fs_info->qgroup_rescan_workers &&
2236	      fs_info->discard_ctl.discard_workers)) {
2237		return -ENOMEM;
2238	}
2239
2240	return 0;
2241}
2242
2243static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2244{
2245	struct crypto_shash *csum_shash;
2246	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2247
2248	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2249
2250	if (IS_ERR(csum_shash)) {
2251		btrfs_err(fs_info, "error allocating %s hash for checksum",
2252			  csum_driver);
2253		return PTR_ERR(csum_shash);
2254	}
2255
2256	fs_info->csum_shash = csum_shash;
2257
2258	/*
2259	 * Check if the checksum implementation is a fast accelerated one.
2260	 * As-is this is a bit of a hack and should be replaced once the csum
2261	 * implementations provide that information themselves.
2262	 */
2263	switch (csum_type) {
2264	case BTRFS_CSUM_TYPE_CRC32:
2265		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2266			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2267		break;
2268	case BTRFS_CSUM_TYPE_XXHASH:
2269		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2270		break;
2271	default:
2272		break;
2273	}
2274
2275	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2276			btrfs_super_csum_name(csum_type),
2277			crypto_shash_driver_name(csum_shash));
2278	return 0;
2279}
2280
2281static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2282			    struct btrfs_fs_devices *fs_devices)
2283{
2284	int ret;
2285	struct btrfs_root *log_tree_root;
2286	struct btrfs_super_block *disk_super = fs_info->super_copy;
2287	u64 bytenr = btrfs_super_log_root(disk_super);
2288	int level = btrfs_super_log_root_level(disk_super);
2289
2290	if (fs_devices->rw_devices == 0) {
2291		btrfs_warn(fs_info, "log replay required on RO media");
2292		return -EIO;
2293	}
2294
2295	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2296					 GFP_KERNEL);
2297	if (!log_tree_root)
2298		return -ENOMEM;
2299
2300	log_tree_root->node = read_tree_block(fs_info, bytenr,
2301					      fs_info->generation + 1,
2302					      level, NULL);
2303	if (IS_ERR(log_tree_root->node)) {
2304		btrfs_warn(fs_info, "failed to read log tree");
2305		ret = PTR_ERR(log_tree_root->node);
2306		log_tree_root->node = NULL;
2307		btrfs_put_root(log_tree_root);
2308		return ret;
2309	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2310		btrfs_err(fs_info, "failed to read log tree");
2311		btrfs_put_root(log_tree_root);
2312		return -EIO;
2313	}
2314	/* returns with log_tree_root freed on success */
2315	ret = btrfs_recover_log_trees(log_tree_root);
2316	if (ret) {
2317		btrfs_handle_fs_error(fs_info, ret,
2318				      "Failed to recover log tree");
2319		btrfs_put_root(log_tree_root);
2320		return ret;
2321	}
2322
2323	if (sb_rdonly(fs_info->sb)) {
2324		ret = btrfs_commit_super(fs_info);
2325		if (ret)
2326			return ret;
2327	}
2328
2329	return 0;
2330}
2331
2332static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2333{
2334	struct btrfs_root *tree_root = fs_info->tree_root;
2335	struct btrfs_root *root;
2336	struct btrfs_key location;
2337	int ret;
2338
2339	BUG_ON(!fs_info->tree_root);
2340
2341	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2342	location.type = BTRFS_ROOT_ITEM_KEY;
2343	location.offset = 0;
2344
2345	root = btrfs_read_tree_root(tree_root, &location);
2346	if (IS_ERR(root)) {
2347		ret = PTR_ERR(root);
2348		goto out;
2349	}
2350	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2351	fs_info->extent_root = root;
2352
2353	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2354	root = btrfs_read_tree_root(tree_root, &location);
2355	if (IS_ERR(root)) {
2356		ret = PTR_ERR(root);
2357		goto out;
2358	}
2359	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2360	fs_info->dev_root = root;
2361	btrfs_init_devices_late(fs_info);
2362
2363	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2364	root = btrfs_read_tree_root(tree_root, &location);
2365	if (IS_ERR(root)) {
2366		ret = PTR_ERR(root);
2367		goto out;
2368	}
2369	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2370	fs_info->csum_root = root;
2371
2372	/*
2373	 * This tree can share blocks with some other fs tree during relocation
2374	 * and we need a proper setup by btrfs_get_fs_root
2375	 */
2376	root = btrfs_get_fs_root(tree_root->fs_info,
2377				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2378	if (IS_ERR(root)) {
2379		ret = PTR_ERR(root);
2380		goto out;
2381	}
2382	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2383	fs_info->data_reloc_root = root;
2384
2385	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2386	root = btrfs_read_tree_root(tree_root, &location);
2387	if (!IS_ERR(root)) {
2388		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2389		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2390		fs_info->quota_root = root;
2391	}
2392
2393	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2394	root = btrfs_read_tree_root(tree_root, &location);
2395	if (IS_ERR(root)) {
2396		ret = PTR_ERR(root);
2397		if (ret != -ENOENT)
2398			goto out;
2399	} else {
2400		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2401		fs_info->uuid_root = root;
2402	}
2403
2404	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2405		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2406		root = btrfs_read_tree_root(tree_root, &location);
2407		if (IS_ERR(root)) {
2408			ret = PTR_ERR(root);
2409			goto out;
2410		}
2411		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2412		fs_info->free_space_root = root;
2413	}
2414
2415	return 0;
2416out:
2417	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2418		   location.objectid, ret);
2419	return ret;
2420}
2421
2422/*
2423 * Real super block validation
2424 * NOTE: super csum type and incompat features will not be checked here.
2425 *
2426 * @sb:		super block to check
2427 * @mirror_num:	the super block number to check its bytenr:
2428 * 		0	the primary (1st) sb
2429 * 		1, 2	2nd and 3rd backup copy
2430 * 	       -1	skip bytenr check
2431 */
2432static int validate_super(struct btrfs_fs_info *fs_info,
2433			    struct btrfs_super_block *sb, int mirror_num)
2434{
2435	u64 nodesize = btrfs_super_nodesize(sb);
2436	u64 sectorsize = btrfs_super_sectorsize(sb);
2437	int ret = 0;
2438
2439	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2440		btrfs_err(fs_info, "no valid FS found");
2441		ret = -EINVAL;
2442	}
2443	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2444		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2445				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2446		ret = -EINVAL;
2447	}
2448	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2449		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2450				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2451		ret = -EINVAL;
2452	}
2453	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2454		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2455				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2456		ret = -EINVAL;
2457	}
2458	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2459		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2460				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2461		ret = -EINVAL;
2462	}
2463
2464	/*
2465	 * Check sectorsize and nodesize first, other check will need it.
2466	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2467	 */
2468	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2469	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2470		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2471		ret = -EINVAL;
2472	}
2473	/* Only PAGE SIZE is supported yet */
2474	if (sectorsize != PAGE_SIZE) {
2475		btrfs_err(fs_info,
2476			"sectorsize %llu not supported yet, only support %lu",
2477			sectorsize, PAGE_SIZE);
2478		ret = -EINVAL;
2479	}
2480	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2481	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2482		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2483		ret = -EINVAL;
2484	}
2485	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2486		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2487			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2488		ret = -EINVAL;
2489	}
2490
2491	/* Root alignment check */
2492	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2493		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2494			   btrfs_super_root(sb));
2495		ret = -EINVAL;
2496	}
2497	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2498		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2499			   btrfs_super_chunk_root(sb));
2500		ret = -EINVAL;
2501	}
2502	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2503		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2504			   btrfs_super_log_root(sb));
2505		ret = -EINVAL;
2506	}
2507
2508	if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2509		btrfs_err(fs_info,
2510		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2511			  sb->fsid, fs_info->fs_devices->fsid);
2512		ret = -EINVAL;
2513	}
2514
2515	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2516		   BTRFS_FSID_SIZE) != 0) {
2517		btrfs_err(fs_info,
2518"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2519			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2520		ret = -EINVAL;
2521	}
2522
2523	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2524		   BTRFS_FSID_SIZE) != 0) {
2525		btrfs_err(fs_info,
2526			"dev_item UUID does not match metadata fsid: %pU != %pU",
2527			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2528		ret = -EINVAL;
2529	}
2530
2531	/*
2532	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2533	 * done later
2534	 */
2535	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2536		btrfs_err(fs_info, "bytes_used is too small %llu",
2537			  btrfs_super_bytes_used(sb));
2538		ret = -EINVAL;
2539	}
2540	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2541		btrfs_err(fs_info, "invalid stripesize %u",
2542			  btrfs_super_stripesize(sb));
2543		ret = -EINVAL;
2544	}
2545	if (btrfs_super_num_devices(sb) > (1UL << 31))
2546		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2547			   btrfs_super_num_devices(sb));
2548	if (btrfs_super_num_devices(sb) == 0) {
2549		btrfs_err(fs_info, "number of devices is 0");
2550		ret = -EINVAL;
2551	}
2552
2553	if (mirror_num >= 0 &&
2554	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2555		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2556			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2557		ret = -EINVAL;
2558	}
2559
2560	/*
2561	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2562	 * and one chunk
2563	 */
2564	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2565		btrfs_err(fs_info, "system chunk array too big %u > %u",
2566			  btrfs_super_sys_array_size(sb),
2567			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2568		ret = -EINVAL;
2569	}
2570	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2571			+ sizeof(struct btrfs_chunk)) {
2572		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2573			  btrfs_super_sys_array_size(sb),
2574			  sizeof(struct btrfs_disk_key)
2575			  + sizeof(struct btrfs_chunk));
2576		ret = -EINVAL;
2577	}
2578
2579	/*
2580	 * The generation is a global counter, we'll trust it more than the others
2581	 * but it's still possible that it's the one that's wrong.
2582	 */
2583	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2584		btrfs_warn(fs_info,
2585			"suspicious: generation < chunk_root_generation: %llu < %llu",
2586			btrfs_super_generation(sb),
2587			btrfs_super_chunk_root_generation(sb));
2588	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2589	    && btrfs_super_cache_generation(sb) != (u64)-1)
2590		btrfs_warn(fs_info,
2591			"suspicious: generation < cache_generation: %llu < %llu",
2592			btrfs_super_generation(sb),
2593			btrfs_super_cache_generation(sb));
2594
2595	return ret;
2596}
2597
2598/*
2599 * Validation of super block at mount time.
2600 * Some checks already done early at mount time, like csum type and incompat
2601 * flags will be skipped.
2602 */
2603static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2604{
2605	return validate_super(fs_info, fs_info->super_copy, 0);
2606}
2607
2608/*
2609 * Validation of super block at write time.
2610 * Some checks like bytenr check will be skipped as their values will be
2611 * overwritten soon.
2612 * Extra checks like csum type and incompat flags will be done here.
2613 */
2614static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2615				      struct btrfs_super_block *sb)
2616{
2617	int ret;
2618
2619	ret = validate_super(fs_info, sb, -1);
2620	if (ret < 0)
2621		goto out;
2622	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2623		ret = -EUCLEAN;
2624		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2625			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2626		goto out;
2627	}
2628	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2629		ret = -EUCLEAN;
2630		btrfs_err(fs_info,
2631		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2632			  btrfs_super_incompat_flags(sb),
2633			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2634		goto out;
2635	}
2636out:
2637	if (ret < 0)
2638		btrfs_err(fs_info,
2639		"super block corruption detected before writing it to disk");
2640	return ret;
2641}
2642
2643static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2644{
2645	int backup_index = find_newest_super_backup(fs_info);
2646	struct btrfs_super_block *sb = fs_info->super_copy;
2647	struct btrfs_root *tree_root = fs_info->tree_root;
2648	bool handle_error = false;
2649	int ret = 0;
2650	int i;
2651
2652	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2653		u64 generation;
2654		int level;
2655
2656		if (handle_error) {
2657			if (!IS_ERR(tree_root->node))
2658				free_extent_buffer(tree_root->node);
2659			tree_root->node = NULL;
2660
2661			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2662				break;
2663
2664			free_root_pointers(fs_info, 0);
2665
2666			/*
2667			 * Don't use the log in recovery mode, it won't be
2668			 * valid
2669			 */
2670			btrfs_set_super_log_root(sb, 0);
2671
2672			/* We can't trust the free space cache either */
2673			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2674
2675			ret = read_backup_root(fs_info, i);
2676			backup_index = ret;
2677			if (ret < 0)
2678				return ret;
2679		}
2680		generation = btrfs_super_generation(sb);
2681		level = btrfs_super_root_level(sb);
2682		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2683						  generation, level, NULL);
2684		if (IS_ERR(tree_root->node)) {
2685			handle_error = true;
2686			ret = PTR_ERR(tree_root->node);
2687			tree_root->node = NULL;
2688			btrfs_warn(fs_info, "couldn't read tree root");
2689			continue;
2690
2691		} else if (!extent_buffer_uptodate(tree_root->node)) {
2692			handle_error = true;
2693			ret = -EIO;
2694			btrfs_warn(fs_info, "error while reading tree root");
2695			continue;
2696		}
2697
2698		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2699		tree_root->commit_root = btrfs_root_node(tree_root);
2700		btrfs_set_root_refs(&tree_root->root_item, 1);
2701
2702		/*
2703		 * No need to hold btrfs_root::objectid_mutex since the fs
2704		 * hasn't been fully initialised and we are the only user
2705		 */
2706		ret = btrfs_find_highest_objectid(tree_root,
2707						&tree_root->highest_objectid);
2708		if (ret < 0) {
2709			handle_error = true;
2710			continue;
2711		}
2712
2713		ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2714
2715		ret = btrfs_read_roots(fs_info);
2716		if (ret < 0) {
2717			handle_error = true;
2718			continue;
2719		}
2720
2721		/* All successful */
2722		fs_info->generation = generation;
2723		fs_info->last_trans_committed = generation;
2724
2725		/* Always begin writing backup roots after the one being used */
2726		if (backup_index < 0) {
2727			fs_info->backup_root_index = 0;
2728		} else {
2729			fs_info->backup_root_index = backup_index + 1;
2730			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2731		}
2732		break;
2733	}
2734
2735	return ret;
2736}
2737
2738void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2739{
2740	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2741	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2742	INIT_LIST_HEAD(&fs_info->trans_list);
2743	INIT_LIST_HEAD(&fs_info->dead_roots);
2744	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2745	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2746	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2747	spin_lock_init(&fs_info->delalloc_root_lock);
2748	spin_lock_init(&fs_info->trans_lock);
2749	spin_lock_init(&fs_info->fs_roots_radix_lock);
2750	spin_lock_init(&fs_info->delayed_iput_lock);
2751	spin_lock_init(&fs_info->defrag_inodes_lock);
2752	spin_lock_init(&fs_info->super_lock);
2753	spin_lock_init(&fs_info->buffer_lock);
2754	spin_lock_init(&fs_info->unused_bgs_lock);
2755	rwlock_init(&fs_info->tree_mod_log_lock);
2756	mutex_init(&fs_info->unused_bg_unpin_mutex);
2757	mutex_init(&fs_info->delete_unused_bgs_mutex);
2758	mutex_init(&fs_info->reloc_mutex);
2759	mutex_init(&fs_info->delalloc_root_mutex);
2760	seqlock_init(&fs_info->profiles_lock);
2761
2762	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2763	INIT_LIST_HEAD(&fs_info->space_info);
2764	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2765	INIT_LIST_HEAD(&fs_info->unused_bgs);
2766#ifdef CONFIG_BTRFS_DEBUG
2767	INIT_LIST_HEAD(&fs_info->allocated_roots);
2768	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2769	spin_lock_init(&fs_info->eb_leak_lock);
2770#endif
2771	extent_map_tree_init(&fs_info->mapping_tree);
2772	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2773			     BTRFS_BLOCK_RSV_GLOBAL);
2774	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2775	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2776	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2777	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2778			     BTRFS_BLOCK_RSV_DELOPS);
2779	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2780			     BTRFS_BLOCK_RSV_DELREFS);
2781
2782	atomic_set(&fs_info->async_delalloc_pages, 0);
2783	atomic_set(&fs_info->defrag_running, 0);
2784	atomic_set(&fs_info->reada_works_cnt, 0);
2785	atomic_set(&fs_info->nr_delayed_iputs, 0);
2786	atomic64_set(&fs_info->tree_mod_seq, 0);
2787	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2788	fs_info->metadata_ratio = 0;
2789	fs_info->defrag_inodes = RB_ROOT;
2790	atomic64_set(&fs_info->free_chunk_space, 0);
2791	fs_info->tree_mod_log = RB_ROOT;
2792	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2793	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2794	/* readahead state */
2795	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2796	spin_lock_init(&fs_info->reada_lock);
2797	btrfs_init_ref_verify(fs_info);
2798
2799	fs_info->thread_pool_size = min_t(unsigned long,
2800					  num_online_cpus() + 2, 8);
2801
2802	INIT_LIST_HEAD(&fs_info->ordered_roots);
2803	spin_lock_init(&fs_info->ordered_root_lock);
2804
2805	btrfs_init_scrub(fs_info);
2806#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2807	fs_info->check_integrity_print_mask = 0;
2808#endif
2809	btrfs_init_balance(fs_info);
2810	btrfs_init_async_reclaim_work(fs_info);
2811
2812	spin_lock_init(&fs_info->block_group_cache_lock);
2813	fs_info->block_group_cache_tree = RB_ROOT;
2814	fs_info->first_logical_byte = (u64)-1;
2815
2816	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2817			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2818	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2819
2820	mutex_init(&fs_info->ordered_operations_mutex);
2821	mutex_init(&fs_info->tree_log_mutex);
2822	mutex_init(&fs_info->chunk_mutex);
2823	mutex_init(&fs_info->transaction_kthread_mutex);
2824	mutex_init(&fs_info->cleaner_mutex);
2825	mutex_init(&fs_info->ro_block_group_mutex);
2826	init_rwsem(&fs_info->commit_root_sem);
2827	init_rwsem(&fs_info->cleanup_work_sem);
2828	init_rwsem(&fs_info->subvol_sem);
2829	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2830
2831	btrfs_init_dev_replace_locks(fs_info);
2832	btrfs_init_qgroup(fs_info);
2833	btrfs_discard_init(fs_info);
2834
2835	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2836	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2837
2838	init_waitqueue_head(&fs_info->transaction_throttle);
2839	init_waitqueue_head(&fs_info->transaction_wait);
2840	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2841	init_waitqueue_head(&fs_info->async_submit_wait);
2842	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2843
2844	/* Usable values until the real ones are cached from the superblock */
2845	fs_info->nodesize = 4096;
2846	fs_info->sectorsize = 4096;
2847	fs_info->stripesize = 4096;
2848
2849	spin_lock_init(&fs_info->swapfile_pins_lock);
2850	fs_info->swapfile_pins = RB_ROOT;
2851
2852	fs_info->send_in_progress = 0;
2853}
2854
2855static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2856{
2857	int ret;
2858
2859	fs_info->sb = sb;
2860	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2861	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2862
2863	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2864	if (ret)
2865		return ret;
2866
2867	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2868	if (ret)
2869		return ret;
2870
2871	fs_info->dirty_metadata_batch = PAGE_SIZE *
2872					(1 + ilog2(nr_cpu_ids));
2873
2874	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2875	if (ret)
2876		return ret;
2877
2878	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2879			GFP_KERNEL);
2880	if (ret)
2881		return ret;
2882
2883	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2884					GFP_KERNEL);
2885	if (!fs_info->delayed_root)
2886		return -ENOMEM;
2887	btrfs_init_delayed_root(fs_info->delayed_root);
2888
2889	return btrfs_alloc_stripe_hash_table(fs_info);
2890}
2891
2892static int btrfs_uuid_rescan_kthread(void *data)
2893{
2894	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2895	int ret;
2896
2897	/*
2898	 * 1st step is to iterate through the existing UUID tree and
2899	 * to delete all entries that contain outdated data.
2900	 * 2nd step is to add all missing entries to the UUID tree.
2901	 */
2902	ret = btrfs_uuid_tree_iterate(fs_info);
2903	if (ret < 0) {
2904		if (ret != -EINTR)
2905			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2906				   ret);
2907		up(&fs_info->uuid_tree_rescan_sem);
2908		return ret;
2909	}
2910	return btrfs_uuid_scan_kthread(data);
2911}
2912
2913static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2914{
2915	struct task_struct *task;
2916
2917	down(&fs_info->uuid_tree_rescan_sem);
2918	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2919	if (IS_ERR(task)) {
2920		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2921		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2922		up(&fs_info->uuid_tree_rescan_sem);
2923		return PTR_ERR(task);
2924	}
2925
2926	return 0;
2927}
2928
2929int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2930		      char *options)
2931{
2932	u32 sectorsize;
2933	u32 nodesize;
2934	u32 stripesize;
2935	u64 generation;
2936	u64 features;
2937	u16 csum_type;
2938	struct btrfs_super_block *disk_super;
2939	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2940	struct btrfs_root *tree_root;
2941	struct btrfs_root *chunk_root;
2942	int ret;
2943	int err = -EINVAL;
2944	int clear_free_space_tree = 0;
2945	int level;
2946
2947	ret = init_mount_fs_info(fs_info, sb);
2948	if (ret) {
2949		err = ret;
2950		goto fail;
2951	}
2952
2953	/* These need to be init'ed before we start creating inodes and such. */
2954	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2955				     GFP_KERNEL);
2956	fs_info->tree_root = tree_root;
2957	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2958				      GFP_KERNEL);
2959	fs_info->chunk_root = chunk_root;
2960	if (!tree_root || !chunk_root) {
2961		err = -ENOMEM;
2962		goto fail;
2963	}
2964
2965	fs_info->btree_inode = new_inode(sb);
2966	if (!fs_info->btree_inode) {
2967		err = -ENOMEM;
2968		goto fail;
2969	}
2970	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2971	btrfs_init_btree_inode(fs_info);
2972
2973	invalidate_bdev(fs_devices->latest_bdev);
2974
2975	/*
2976	 * Read super block and check the signature bytes only
2977	 */
2978	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2979	if (IS_ERR(disk_super)) {
2980		err = PTR_ERR(disk_super);
2981		goto fail_alloc;
2982	}
2983
2984	/*
2985	 * Verify the type first, if that or the checksum value are
2986	 * corrupted, we'll find out
2987	 */
2988	csum_type = btrfs_super_csum_type(disk_super);
2989	if (!btrfs_supported_super_csum(csum_type)) {
2990		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2991			  csum_type);
2992		err = -EINVAL;
2993		btrfs_release_disk_super(disk_super);
2994		goto fail_alloc;
2995	}
2996
2997	ret = btrfs_init_csum_hash(fs_info, csum_type);
2998	if (ret) {
2999		err = ret;
3000		btrfs_release_disk_super(disk_super);
3001		goto fail_alloc;
3002	}
3003
3004	/*
3005	 * We want to check superblock checksum, the type is stored inside.
3006	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3007	 */
3008	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3009		btrfs_err(fs_info, "superblock checksum mismatch");
3010		err = -EINVAL;
3011		btrfs_release_disk_super(disk_super);
3012		goto fail_alloc;
3013	}
3014
3015	/*
3016	 * super_copy is zeroed at allocation time and we never touch the
3017	 * following bytes up to INFO_SIZE, the checksum is calculated from
3018	 * the whole block of INFO_SIZE
3019	 */
3020	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3021	btrfs_release_disk_super(disk_super);
3022
3023	disk_super = fs_info->super_copy;
3024
3025
3026	features = btrfs_super_flags(disk_super);
3027	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3028		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3029		btrfs_set_super_flags(disk_super, features);
3030		btrfs_info(fs_info,
3031			"found metadata UUID change in progress flag, clearing");
3032	}
3033
3034	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3035	       sizeof(*fs_info->super_for_commit));
3036
3037	ret = btrfs_validate_mount_super(fs_info);
3038	if (ret) {
3039		btrfs_err(fs_info, "superblock contains fatal errors");
3040		err = -EINVAL;
3041		goto fail_alloc;
3042	}
3043
3044	if (!btrfs_super_root(disk_super))
3045		goto fail_alloc;
3046
3047	/* check FS state, whether FS is broken. */
3048	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3049		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3050
3051	/*
3052	 * In the long term, we'll store the compression type in the super
3053	 * block, and it'll be used for per file compression control.
3054	 */
3055	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3056
3057	/*
3058	 * Flag our filesystem as having big metadata blocks if they are bigger
3059	 * than the page size
3060	 */
3061	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3062		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3063			btrfs_info(fs_info,
3064				"flagging fs with big metadata feature");
3065		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3066	}
3067
3068	/* Set up fs_info before parsing mount options */
3069	nodesize = btrfs_super_nodesize(disk_super);
3070	sectorsize = btrfs_super_sectorsize(disk_super);
3071	stripesize = sectorsize;
3072	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3073	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3074
3075	/* Cache block sizes */
3076	fs_info->nodesize = nodesize;
3077	fs_info->sectorsize = sectorsize;
3078	fs_info->stripesize = stripesize;
3079
3080	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3081	if (ret) {
3082		err = ret;
3083		goto fail_alloc;
3084	}
3085
3086	features = btrfs_super_incompat_flags(disk_super) &
3087		~BTRFS_FEATURE_INCOMPAT_SUPP;
3088	if (features) {
3089		btrfs_err(fs_info,
3090		    "cannot mount because of unsupported optional features (0x%llx)",
3091		    features);
3092		err = -EINVAL;
3093		goto fail_alloc;
3094	}
3095
3096	features = btrfs_super_incompat_flags(disk_super);
3097	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3098	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3099		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3100	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3101		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3102
3103	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3104		btrfs_info(fs_info, "has skinny extents");
3105
3106	/*
3107	 * mixed block groups end up with duplicate but slightly offset
3108	 * extent buffers for the same range.  It leads to corruptions
3109	 */
3110	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3111	    (sectorsize != nodesize)) {
3112		btrfs_err(fs_info,
3113"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3114			nodesize, sectorsize);
3115		goto fail_alloc;
3116	}
3117
3118	/*
3119	 * Needn't use the lock because there is no other task which will
3120	 * update the flag.
3121	 */
3122	btrfs_set_super_incompat_flags(disk_super, features);
3123
3124	features = btrfs_super_compat_ro_flags(disk_super) &
3125		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3126	if (!sb_rdonly(sb) && features) {
3127		btrfs_err(fs_info,
3128	"cannot mount read-write because of unsupported optional features (0x%llx)",
3129		       features);
3130		err = -EINVAL;
3131		goto fail_alloc;
3132	}
3133	/*
3134	 * We have unsupported RO compat features, although RO mounted, we
3135	 * should not cause any metadata write, including log replay.
3136	 * Or we could screw up whatever the new feature requires.
3137	 */
3138	if (unlikely(features && btrfs_super_log_root(disk_super) &&
3139		     !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
3140		btrfs_err(fs_info,
3141"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3142			  features);
3143		err = -EINVAL;
3144		goto fail_alloc;
3145	}
3146
3147
3148	ret = btrfs_init_workqueues(fs_info, fs_devices);
3149	if (ret) {
3150		err = ret;
3151		goto fail_sb_buffer;
3152	}
3153
3154	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3155	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3156
3157	sb->s_blocksize = sectorsize;
3158	sb->s_blocksize_bits = blksize_bits(sectorsize);
3159	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3160
3161	mutex_lock(&fs_info->chunk_mutex);
3162	ret = btrfs_read_sys_array(fs_info);
3163	mutex_unlock(&fs_info->chunk_mutex);
3164	if (ret) {
3165		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3166		goto fail_sb_buffer;
3167	}
3168
3169	generation = btrfs_super_chunk_root_generation(disk_super);
3170	level = btrfs_super_chunk_root_level(disk_super);
3171
3172	chunk_root->node = read_tree_block(fs_info,
3173					   btrfs_super_chunk_root(disk_super),
3174					   generation, level, NULL);
3175	if (IS_ERR(chunk_root->node) ||
3176	    !extent_buffer_uptodate(chunk_root->node)) {
3177		btrfs_err(fs_info, "failed to read chunk root");
3178		if (!IS_ERR(chunk_root->node))
3179			free_extent_buffer(chunk_root->node);
3180		chunk_root->node = NULL;
3181		goto fail_tree_roots;
3182	}
3183	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3184	chunk_root->commit_root = btrfs_root_node(chunk_root);
3185
3186	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3187			   offsetof(struct btrfs_header, chunk_tree_uuid),
3188			   BTRFS_UUID_SIZE);
3189
3190	ret = btrfs_read_chunk_tree(fs_info);
3191	if (ret) {
3192		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3193		goto fail_tree_roots;
3194	}
3195
3196	/*
3197	 * Keep the devid that is marked to be the target device for the
3198	 * device replace procedure
3199	 */
3200	btrfs_free_extra_devids(fs_devices, 0);
3201
3202	if (!fs_devices->latest_bdev) {
3203		btrfs_err(fs_info, "failed to read devices");
3204		goto fail_tree_roots;
3205	}
3206
3207	ret = init_tree_roots(fs_info);
3208	if (ret)
3209		goto fail_tree_roots;
3210
3211	/*
3212	 * If we have a uuid root and we're not being told to rescan we need to
3213	 * check the generation here so we can set the
3214	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3215	 * transaction during a balance or the log replay without updating the
3216	 * uuid generation, and then if we crash we would rescan the uuid tree,
3217	 * even though it was perfectly fine.
3218	 */
3219	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3220	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3221		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3222
3223	ret = btrfs_verify_dev_extents(fs_info);
3224	if (ret) {
3225		btrfs_err(fs_info,
3226			  "failed to verify dev extents against chunks: %d",
3227			  ret);
3228		goto fail_block_groups;
3229	}
3230	ret = btrfs_recover_balance(fs_info);
3231	if (ret) {
3232		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3233		goto fail_block_groups;
3234	}
3235
3236	ret = btrfs_init_dev_stats(fs_info);
3237	if (ret) {
3238		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3239		goto fail_block_groups;
3240	}
3241
3242	ret = btrfs_init_dev_replace(fs_info);
3243	if (ret) {
3244		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3245		goto fail_block_groups;
3246	}
3247
3248	btrfs_free_extra_devids(fs_devices, 1);
3249
3250	ret = btrfs_sysfs_add_fsid(fs_devices);
3251	if (ret) {
3252		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3253				ret);
3254		goto fail_block_groups;
3255	}
3256
3257	ret = btrfs_sysfs_add_mounted(fs_info);
3258	if (ret) {
3259		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3260		goto fail_fsdev_sysfs;
3261	}
3262
3263	ret = btrfs_init_space_info(fs_info);
3264	if (ret) {
3265		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3266		goto fail_sysfs;
3267	}
3268
3269	ret = btrfs_read_block_groups(fs_info);
3270	if (ret) {
3271		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3272		goto fail_sysfs;
3273	}
3274
3275	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3276	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3277		btrfs_warn(fs_info,
3278		"writable mount is not allowed due to too many missing devices");
3279		goto fail_sysfs;
3280	}
3281
3282	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3283					       "btrfs-cleaner");
3284	if (IS_ERR(fs_info->cleaner_kthread))
3285		goto fail_sysfs;
3286
3287	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3288						   tree_root,
3289						   "btrfs-transaction");
3290	if (IS_ERR(fs_info->transaction_kthread))
3291		goto fail_cleaner;
3292
3293	if (!btrfs_test_opt(fs_info, NOSSD) &&
3294	    !fs_info->fs_devices->rotating) {
3295		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3296	}
3297
3298	/*
3299	 * Mount does not set all options immediately, we can do it now and do
3300	 * not have to wait for transaction commit
3301	 */
3302	btrfs_apply_pending_changes(fs_info);
3303
3304#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3305	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3306		ret = btrfsic_mount(fs_info, fs_devices,
3307				    btrfs_test_opt(fs_info,
3308					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3309				    1 : 0,
3310				    fs_info->check_integrity_print_mask);
3311		if (ret)
3312			btrfs_warn(fs_info,
3313				"failed to initialize integrity check module: %d",
3314				ret);
3315	}
3316#endif
3317	ret = btrfs_read_qgroup_config(fs_info);
3318	if (ret)
3319		goto fail_trans_kthread;
3320
3321	if (btrfs_build_ref_tree(fs_info))
3322		btrfs_err(fs_info, "couldn't build ref tree");
3323
3324	/* do not make disk changes in broken FS or nologreplay is given */
3325	if (btrfs_super_log_root(disk_super) != 0 &&
3326	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3327		btrfs_info(fs_info, "start tree-log replay");
3328		ret = btrfs_replay_log(fs_info, fs_devices);
3329		if (ret) {
3330			err = ret;
3331			goto fail_qgroup;
3332		}
3333	}
3334
3335	ret = btrfs_find_orphan_roots(fs_info);
3336	if (ret)
3337		goto fail_qgroup;
3338
3339	if (!sb_rdonly(sb)) {
3340		ret = btrfs_cleanup_fs_roots(fs_info);
3341		if (ret)
3342			goto fail_qgroup;
3343
3344		mutex_lock(&fs_info->cleaner_mutex);
3345		ret = btrfs_recover_relocation(tree_root);
3346		mutex_unlock(&fs_info->cleaner_mutex);
3347		if (ret < 0) {
3348			btrfs_warn(fs_info, "failed to recover relocation: %d",
3349					ret);
3350			err = -EINVAL;
3351			goto fail_qgroup;
3352		}
3353	}
3354
3355	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3356	if (IS_ERR(fs_info->fs_root)) {
3357		err = PTR_ERR(fs_info->fs_root);
3358		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3359		fs_info->fs_root = NULL;
3360		goto fail_qgroup;
3361	}
3362
3363	if (sb_rdonly(sb))
3364		return 0;
3365
3366	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3367	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3368		clear_free_space_tree = 1;
3369	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3370		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3371		btrfs_warn(fs_info, "free space tree is invalid");
3372		clear_free_space_tree = 1;
3373	}
3374
3375	if (clear_free_space_tree) {
3376		btrfs_info(fs_info, "clearing free space tree");
3377		ret = btrfs_clear_free_space_tree(fs_info);
3378		if (ret) {
3379			btrfs_warn(fs_info,
3380				   "failed to clear free space tree: %d", ret);
3381			close_ctree(fs_info);
3382			return ret;
3383		}
3384	}
3385
3386	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3387	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3388		btrfs_info(fs_info, "creating free space tree");
3389		ret = btrfs_create_free_space_tree(fs_info);
3390		if (ret) {
3391			btrfs_warn(fs_info,
3392				"failed to create free space tree: %d", ret);
3393			close_ctree(fs_info);
3394			return ret;
3395		}
3396	}
3397
3398	down_read(&fs_info->cleanup_work_sem);
3399	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3400	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3401		up_read(&fs_info->cleanup_work_sem);
3402		close_ctree(fs_info);
3403		return ret;
3404	}
3405	up_read(&fs_info->cleanup_work_sem);
3406
3407	ret = btrfs_resume_balance_async(fs_info);
3408	if (ret) {
3409		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3410		close_ctree(fs_info);
3411		return ret;
3412	}
3413
3414	ret = btrfs_resume_dev_replace_async(fs_info);
3415	if (ret) {
3416		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3417		close_ctree(fs_info);
3418		return ret;
3419	}
3420
3421	btrfs_qgroup_rescan_resume(fs_info);
3422	btrfs_discard_resume(fs_info);
3423
3424	if (!fs_info->uuid_root) {
3425		btrfs_info(fs_info, "creating UUID tree");
3426		ret = btrfs_create_uuid_tree(fs_info);
3427		if (ret) {
3428			btrfs_warn(fs_info,
3429				"failed to create the UUID tree: %d", ret);
3430			close_ctree(fs_info);
3431			return ret;
3432		}
3433	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3434		   fs_info->generation !=
3435				btrfs_super_uuid_tree_generation(disk_super)) {
3436		btrfs_info(fs_info, "checking UUID tree");
3437		ret = btrfs_check_uuid_tree(fs_info);
3438		if (ret) {
3439			btrfs_warn(fs_info,
3440				"failed to check the UUID tree: %d", ret);
3441			close_ctree(fs_info);
3442			return ret;
3443		}
3444	}
3445	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3446
3447	/*
3448	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3449	 * no need to keep the flag
3450	 */
3451	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3452
3453	return 0;
3454
3455fail_qgroup:
3456	btrfs_free_qgroup_config(fs_info);
3457fail_trans_kthread:
3458	kthread_stop(fs_info->transaction_kthread);
3459	btrfs_cleanup_transaction(fs_info);
3460	btrfs_free_fs_roots(fs_info);
3461fail_cleaner:
3462	kthread_stop(fs_info->cleaner_kthread);
3463
3464	/*
3465	 * make sure we're done with the btree inode before we stop our
3466	 * kthreads
3467	 */
3468	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3469
3470fail_sysfs:
3471	btrfs_sysfs_remove_mounted(fs_info);
3472
3473fail_fsdev_sysfs:
3474	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3475
3476fail_block_groups:
3477	btrfs_put_block_group_cache(fs_info);
3478
3479fail_tree_roots:
3480	if (fs_info->data_reloc_root)
3481		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3482	free_root_pointers(fs_info, true);
3483	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3484
3485fail_sb_buffer:
3486	btrfs_stop_all_workers(fs_info);
3487	btrfs_free_block_groups(fs_info);
3488fail_alloc:
3489	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3490
3491	iput(fs_info->btree_inode);
3492fail:
3493	btrfs_close_devices(fs_info->fs_devices);
3494	return err;
3495}
3496ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3497
3498static void btrfs_end_super_write(struct bio *bio)
3499{
3500	struct btrfs_device *device = bio->bi_private;
3501	struct bio_vec *bvec;
3502	struct bvec_iter_all iter_all;
3503	struct page *page;
3504
3505	bio_for_each_segment_all(bvec, bio, iter_all) {
3506		page = bvec->bv_page;
3507
3508		if (bio->bi_status) {
3509			btrfs_warn_rl_in_rcu(device->fs_info,
3510				"lost page write due to IO error on %s (%d)",
3511				rcu_str_deref(device->name),
3512				blk_status_to_errno(bio->bi_status));
3513			ClearPageUptodate(page);
3514			SetPageError(page);
3515			btrfs_dev_stat_inc_and_print(device,
3516						     BTRFS_DEV_STAT_WRITE_ERRS);
3517		} else {
3518			SetPageUptodate(page);
3519		}
3520
3521		put_page(page);
3522		unlock_page(page);
3523	}
3524
3525	bio_put(bio);
3526}
3527
3528struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3529						   int copy_num)
3530{
3531	struct btrfs_super_block *super;
3532	struct page *page;
3533	u64 bytenr;
3534	struct address_space *mapping = bdev->bd_inode->i_mapping;
3535
3536	bytenr = btrfs_sb_offset(copy_num);
3537	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3538		return ERR_PTR(-EINVAL);
3539
3540	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3541	if (IS_ERR(page))
3542		return ERR_CAST(page);
3543
3544	super = page_address(page);
3545	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3546		btrfs_release_disk_super(super);
3547		return ERR_PTR(-ENODATA);
3548	}
3549
3550	if (btrfs_super_bytenr(super) != bytenr) {
3551		btrfs_release_disk_super(super);
3552		return ERR_PTR(-EINVAL);
3553	}
3554
3555	return super;
3556}
3557
3558
3559struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3560{
3561	struct btrfs_super_block *super, *latest = NULL;
3562	int i;
3563	u64 transid = 0;
3564
3565	/* we would like to check all the supers, but that would make
3566	 * a btrfs mount succeed after a mkfs from a different FS.
3567	 * So, we need to add a special mount option to scan for
3568	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3569	 */
3570	for (i = 0; i < 1; i++) {
3571		super = btrfs_read_dev_one_super(bdev, i);
3572		if (IS_ERR(super))
3573			continue;
3574
3575		if (!latest || btrfs_super_generation(super) > transid) {
3576			if (latest)
3577				btrfs_release_disk_super(super);
3578
3579			latest = super;
3580			transid = btrfs_super_generation(super);
3581		}
3582	}
3583
3584	return super;
3585}
3586
3587/*
3588 * Write superblock @sb to the @device. Do not wait for completion, all the
3589 * pages we use for writing are locked.
3590 *
3591 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3592 * the expected device size at commit time. Note that max_mirrors must be
3593 * same for write and wait phases.
3594 *
3595 * Return number of errors when page is not found or submission fails.
3596 */
3597static int write_dev_supers(struct btrfs_device *device,
3598			    struct btrfs_super_block *sb, int max_mirrors)
3599{
3600	struct btrfs_fs_info *fs_info = device->fs_info;
3601	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3602	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3603	int i;
3604	int errors = 0;
3605	u64 bytenr;
3606
3607	if (max_mirrors == 0)
3608		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3609
3610	shash->tfm = fs_info->csum_shash;
3611
3612	for (i = 0; i < max_mirrors; i++) {
3613		struct page *page;
3614		struct bio *bio;
3615		struct btrfs_super_block *disk_super;
3616
3617		bytenr = btrfs_sb_offset(i);
3618		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3619		    device->commit_total_bytes)
3620			break;
3621
3622		btrfs_set_super_bytenr(sb, bytenr);
3623
3624		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3625				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3626				    sb->csum);
3627
3628		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3629					   GFP_NOFS);
3630		if (!page) {
3631			btrfs_err(device->fs_info,
3632			    "couldn't get super block page for bytenr %llu",
3633			    bytenr);
3634			errors++;
3635			continue;
3636		}
3637
3638		/* Bump the refcount for wait_dev_supers() */
3639		get_page(page);
3640
3641		disk_super = page_address(page);
3642		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3643
3644		/*
3645		 * Directly use bios here instead of relying on the page cache
3646		 * to do I/O, so we don't lose the ability to do integrity
3647		 * checking.
3648		 */
3649		bio = bio_alloc(GFP_NOFS, 1);
3650		bio_set_dev(bio, device->bdev);
3651		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3652		bio->bi_private = device;
3653		bio->bi_end_io = btrfs_end_super_write;
3654		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3655			       offset_in_page(bytenr));
3656
3657		/*
3658		 * We FUA only the first super block.  The others we allow to
3659		 * go down lazy and there's a short window where the on-disk
3660		 * copies might still contain the older version.
3661		 */
3662		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3663		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3664			bio->bi_opf |= REQ_FUA;
3665
3666		btrfsic_submit_bio(bio);
3667	}
3668	return errors < i ? 0 : -1;
3669}
3670
3671/*
3672 * Wait for write completion of superblocks done by write_dev_supers,
3673 * @max_mirrors same for write and wait phases.
3674 *
3675 * Return number of errors when page is not found or not marked up to
3676 * date.
3677 */
3678static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3679{
3680	int i;
3681	int errors = 0;
3682	bool primary_failed = false;
3683	u64 bytenr;
3684
3685	if (max_mirrors == 0)
3686		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3687
3688	for (i = 0; i < max_mirrors; i++) {
3689		struct page *page;
3690
3691		bytenr = btrfs_sb_offset(i);
3692		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3693		    device->commit_total_bytes)
3694			break;
3695
3696		page = find_get_page(device->bdev->bd_inode->i_mapping,
3697				     bytenr >> PAGE_SHIFT);
3698		if (!page) {
3699			errors++;
3700			if (i == 0)
3701				primary_failed = true;
3702			continue;
3703		}
3704		/* Page is submitted locked and unlocked once the IO completes */
3705		wait_on_page_locked(page);
3706		if (PageError(page)) {
3707			errors++;
3708			if (i == 0)
3709				primary_failed = true;
3710		}
3711
3712		/* Drop our reference */
3713		put_page(page);
3714
3715		/* Drop the reference from the writing run */
3716		put_page(page);
3717	}
3718
3719	/* log error, force error return */
3720	if (primary_failed) {
3721		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3722			  device->devid);
3723		return -1;
3724	}
3725
3726	return errors < i ? 0 : -1;
3727}
3728
3729/*
3730 * endio for the write_dev_flush, this will wake anyone waiting
3731 * for the barrier when it is done
3732 */
3733static void btrfs_end_empty_barrier(struct bio *bio)
3734{
3735	complete(bio->bi_private);
3736}
3737
3738/*
3739 * Submit a flush request to the device if it supports it. Error handling is
3740 * done in the waiting counterpart.
3741 */
3742static void write_dev_flush(struct btrfs_device *device)
3743{
3744	struct bio *bio = device->flush_bio;
3745
3746#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3747	/*
3748	 * When a disk has write caching disabled, we skip submission of a bio
3749	 * with flush and sync requests before writing the superblock, since
3750	 * it's not needed. However when the integrity checker is enabled, this
3751	 * results in reports that there are metadata blocks referred by a
3752	 * superblock that were not properly flushed. So don't skip the bio
3753	 * submission only when the integrity checker is enabled for the sake
3754	 * of simplicity, since this is a debug tool and not meant for use in
3755	 * non-debug builds.
3756	 */
3757	struct request_queue *q = bdev_get_queue(device->bdev);
3758	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3759		return;
3760#endif
3761
3762	bio_reset(bio);
3763	bio->bi_end_io = btrfs_end_empty_barrier;
3764	bio_set_dev(bio, device->bdev);
3765	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3766	init_completion(&device->flush_wait);
3767	bio->bi_private = &device->flush_wait;
3768
3769	btrfsic_submit_bio(bio);
3770	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3771}
3772
3773/*
3774 * If the flush bio has been submitted by write_dev_flush, wait for it.
3775 */
3776static blk_status_t wait_dev_flush(struct btrfs_device *device)
3777{
3778	struct bio *bio = device->flush_bio;
3779
3780	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3781		return BLK_STS_OK;
3782
3783	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3784	wait_for_completion_io(&device->flush_wait);
3785
3786	return bio->bi_status;
3787}
3788
3789static int check_barrier_error(struct btrfs_fs_info *fs_info)
3790{
3791	if (!btrfs_check_rw_degradable(fs_info, NULL))
3792		return -EIO;
3793	return 0;
3794}
3795
3796/*
3797 * send an empty flush down to each device in parallel,
3798 * then wait for them
3799 */
3800static int barrier_all_devices(struct btrfs_fs_info *info)
3801{
3802	struct list_head *head;
3803	struct btrfs_device *dev;
3804	int errors_wait = 0;
3805	blk_status_t ret;
3806
3807	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3808	/* send down all the barriers */
3809	head = &info->fs_devices->devices;
3810	list_for_each_entry(dev, head, dev_list) {
3811		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3812			continue;
3813		if (!dev->bdev)
3814			continue;
3815		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3816		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3817			continue;
3818
3819		write_dev_flush(dev);
3820		dev->last_flush_error = BLK_STS_OK;
3821	}
3822
3823	/* wait for all the barriers */
3824	list_for_each_entry(dev, head, dev_list) {
3825		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3826			continue;
3827		if (!dev->bdev) {
3828			errors_wait++;
3829			continue;
3830		}
3831		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3832		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3833			continue;
3834
3835		ret = wait_dev_flush(dev);
3836		if (ret) {
3837			dev->last_flush_error = ret;
3838			btrfs_dev_stat_inc_and_print(dev,
3839					BTRFS_DEV_STAT_FLUSH_ERRS);
3840			errors_wait++;
3841		}
3842	}
3843
3844	if (errors_wait) {
3845		/*
3846		 * At some point we need the status of all disks
3847		 * to arrive at the volume status. So error checking
3848		 * is being pushed to a separate loop.
3849		 */
3850		return check_barrier_error(info);
3851	}
3852	return 0;
3853}
3854
3855int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3856{
3857	int raid_type;
3858	int min_tolerated = INT_MAX;
3859
3860	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3861	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3862		min_tolerated = min_t(int, min_tolerated,
3863				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3864				    tolerated_failures);
3865
3866	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3867		if (raid_type == BTRFS_RAID_SINGLE)
3868			continue;
3869		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3870			continue;
3871		min_tolerated = min_t(int, min_tolerated,
3872				    btrfs_raid_array[raid_type].
3873				    tolerated_failures);
3874	}
3875
3876	if (min_tolerated == INT_MAX) {
3877		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3878		min_tolerated = 0;
3879	}
3880
3881	return min_tolerated;
3882}
3883
3884int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3885{
3886	struct list_head *head;
3887	struct btrfs_device *dev;
3888	struct btrfs_super_block *sb;
3889	struct btrfs_dev_item *dev_item;
3890	int ret;
3891	int do_barriers;
3892	int max_errors;
3893	int total_errors = 0;
3894	u64 flags;
3895
3896	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3897
3898	/*
3899	 * max_mirrors == 0 indicates we're from commit_transaction,
3900	 * not from fsync where the tree roots in fs_info have not
3901	 * been consistent on disk.
3902	 */
3903	if (max_mirrors == 0)
3904		backup_super_roots(fs_info);
3905
3906	sb = fs_info->super_for_commit;
3907	dev_item = &sb->dev_item;
3908
3909	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3910	head = &fs_info->fs_devices->devices;
3911	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3912
3913	if (do_barriers) {
3914		ret = barrier_all_devices(fs_info);
3915		if (ret) {
3916			mutex_unlock(
3917				&fs_info->fs_devices->device_list_mutex);
3918			btrfs_handle_fs_error(fs_info, ret,
3919					      "errors while submitting device barriers.");
3920			return ret;
3921		}
3922	}
3923
3924	list_for_each_entry(dev, head, dev_list) {
3925		if (!dev->bdev) {
3926			total_errors++;
3927			continue;
3928		}
3929		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3930		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3931			continue;
3932
3933		btrfs_set_stack_device_generation(dev_item, 0);
3934		btrfs_set_stack_device_type(dev_item, dev->type);
3935		btrfs_set_stack_device_id(dev_item, dev->devid);
3936		btrfs_set_stack_device_total_bytes(dev_item,
3937						   dev->commit_total_bytes);
3938		btrfs_set_stack_device_bytes_used(dev_item,
3939						  dev->commit_bytes_used);
3940		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3941		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3942		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3943		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3944		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3945		       BTRFS_FSID_SIZE);
3946
3947		flags = btrfs_super_flags(sb);
3948		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3949
3950		ret = btrfs_validate_write_super(fs_info, sb);
3951		if (ret < 0) {
3952			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3953			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3954				"unexpected superblock corruption detected");
3955			return -EUCLEAN;
3956		}
3957
3958		ret = write_dev_supers(dev, sb, max_mirrors);
3959		if (ret)
3960			total_errors++;
3961	}
3962	if (total_errors > max_errors) {
3963		btrfs_err(fs_info, "%d errors while writing supers",
3964			  total_errors);
3965		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3966
3967		/* FUA is masked off if unsupported and can't be the reason */
3968		btrfs_handle_fs_error(fs_info, -EIO,
3969				      "%d errors while writing supers",
3970				      total_errors);
3971		return -EIO;
3972	}
3973
3974	total_errors = 0;
3975	list_for_each_entry(dev, head, dev_list) {
3976		if (!dev->bdev)
3977			continue;
3978		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3979		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3980			continue;
3981
3982		ret = wait_dev_supers(dev, max_mirrors);
3983		if (ret)
3984			total_errors++;
3985	}
3986	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3987	if (total_errors > max_errors) {
3988		btrfs_handle_fs_error(fs_info, -EIO,
3989				      "%d errors while writing supers",
3990				      total_errors);
3991		return -EIO;
3992	}
3993	return 0;
3994}
3995
3996/* Drop a fs root from the radix tree and free it. */
3997void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3998				  struct btrfs_root *root)
3999{
4000	bool drop_ref = false;
4001
4002	spin_lock(&fs_info->fs_roots_radix_lock);
4003	radix_tree_delete(&fs_info->fs_roots_radix,
4004			  (unsigned long)root->root_key.objectid);
4005	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4006		drop_ref = true;
4007	spin_unlock(&fs_info->fs_roots_radix_lock);
4008
4009	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4010		ASSERT(root->log_root == NULL);
4011		if (root->reloc_root) {
4012			btrfs_put_root(root->reloc_root);
4013			root->reloc_root = NULL;
4014		}
4015	}
4016
4017	if (root->free_ino_pinned)
4018		__btrfs_remove_free_space_cache(root->free_ino_pinned);
4019	if (root->free_ino_ctl)
4020		__btrfs_remove_free_space_cache(root->free_ino_ctl);
4021	if (root->ino_cache_inode) {
4022		iput(root->ino_cache_inode);
4023		root->ino_cache_inode = NULL;
4024	}
4025	if (drop_ref)
4026		btrfs_put_root(root);
4027}
4028
4029int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4030{
4031	u64 root_objectid = 0;
4032	struct btrfs_root *gang[8];
4033	int i = 0;
4034	int err = 0;
4035	unsigned int ret = 0;
4036
4037	while (1) {
4038		spin_lock(&fs_info->fs_roots_radix_lock);
4039		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4040					     (void **)gang, root_objectid,
4041					     ARRAY_SIZE(gang));
4042		if (!ret) {
4043			spin_unlock(&fs_info->fs_roots_radix_lock);
4044			break;
4045		}
4046		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4047
4048		for (i = 0; i < ret; i++) {
4049			/* Avoid to grab roots in dead_roots */
4050			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4051				gang[i] = NULL;
4052				continue;
4053			}
4054			/* grab all the search result for later use */
4055			gang[i] = btrfs_grab_root(gang[i]);
4056		}
4057		spin_unlock(&fs_info->fs_roots_radix_lock);
4058
4059		for (i = 0; i < ret; i++) {
4060			if (!gang[i])
4061				continue;
4062			root_objectid = gang[i]->root_key.objectid;
4063			err = btrfs_orphan_cleanup(gang[i]);
4064			if (err)
4065				break;
4066			btrfs_put_root(gang[i]);
4067		}
4068		root_objectid++;
4069	}
4070
4071	/* release the uncleaned roots due to error */
4072	for (; i < ret; i++) {
4073		if (gang[i])
4074			btrfs_put_root(gang[i]);
4075	}
4076	return err;
4077}
4078
4079int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4080{
4081	struct btrfs_root *root = fs_info->tree_root;
4082	struct btrfs_trans_handle *trans;
4083
4084	mutex_lock(&fs_info->cleaner_mutex);
4085	btrfs_run_delayed_iputs(fs_info);
4086	mutex_unlock(&fs_info->cleaner_mutex);
4087	wake_up_process(fs_info->cleaner_kthread);
4088
4089	/* wait until ongoing cleanup work done */
4090	down_write(&fs_info->cleanup_work_sem);
4091	up_write(&fs_info->cleanup_work_sem);
4092
4093	trans = btrfs_join_transaction(root);
4094	if (IS_ERR(trans))
4095		return PTR_ERR(trans);
4096	return btrfs_commit_transaction(trans);
4097}
4098
4099void __cold close_ctree(struct btrfs_fs_info *fs_info)
4100{
4101	int ret;
4102
4103	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4104	/*
4105	 * We don't want the cleaner to start new transactions, add more delayed
4106	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4107	 * because that frees the task_struct, and the transaction kthread might
4108	 * still try to wake up the cleaner.
4109	 */
4110	kthread_park(fs_info->cleaner_kthread);
4111
4112	/* wait for the qgroup rescan worker to stop */
4113	btrfs_qgroup_wait_for_completion(fs_info, false);
4114
4115	/* wait for the uuid_scan task to finish */
4116	down(&fs_info->uuid_tree_rescan_sem);
4117	/* avoid complains from lockdep et al., set sem back to initial state */
4118	up(&fs_info->uuid_tree_rescan_sem);
4119
4120	/* pause restriper - we want to resume on mount */
4121	btrfs_pause_balance(fs_info);
4122
4123	btrfs_dev_replace_suspend_for_unmount(fs_info);
4124
4125	btrfs_scrub_cancel(fs_info);
4126
4127	/* wait for any defraggers to finish */
4128	wait_event(fs_info->transaction_wait,
4129		   (atomic_read(&fs_info->defrag_running) == 0));
4130
4131	/* clear out the rbtree of defraggable inodes */
4132	btrfs_cleanup_defrag_inodes(fs_info);
4133
4134	/*
4135	 * After we parked the cleaner kthread, ordered extents may have
4136	 * completed and created new delayed iputs. If one of the async reclaim
4137	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4138	 * can hang forever trying to stop it, because if a delayed iput is
4139	 * added after it ran btrfs_run_delayed_iputs() and before it called
4140	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4141	 * no one else to run iputs.
4142	 *
4143	 * So wait for all ongoing ordered extents to complete and then run
4144	 * delayed iputs. This works because once we reach this point no one
4145	 * can either create new ordered extents nor create delayed iputs
4146	 * through some other means.
4147	 *
4148	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4149	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4150	 * but the delayed iput for the respective inode is made only when doing
4151	 * the final btrfs_put_ordered_extent() (which must happen at
4152	 * btrfs_finish_ordered_io() when we are unmounting).
4153	 */
4154	btrfs_flush_workqueue(fs_info->endio_write_workers);
4155	/* Ordered extents for free space inodes. */
4156	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4157	btrfs_run_delayed_iputs(fs_info);
4158
4159	cancel_work_sync(&fs_info->async_reclaim_work);
4160	cancel_work_sync(&fs_info->async_data_reclaim_work);
4161
4162	/* Cancel or finish ongoing discard work */
4163	btrfs_discard_cleanup(fs_info);
4164
4165	if (!sb_rdonly(fs_info->sb)) {
4166		/*
4167		 * The cleaner kthread is stopped, so do one final pass over
4168		 * unused block groups.
4169		 */
4170		btrfs_delete_unused_bgs(fs_info);
4171
4172		/*
4173		 * There might be existing delayed inode workers still running
4174		 * and holding an empty delayed inode item. We must wait for
4175		 * them to complete first because they can create a transaction.
4176		 * This happens when someone calls btrfs_balance_delayed_items()
4177		 * and then a transaction commit runs the same delayed nodes
4178		 * before any delayed worker has done something with the nodes.
4179		 * We must wait for any worker here and not at transaction
4180		 * commit time since that could cause a deadlock.
4181		 * This is a very rare case.
4182		 */
4183		btrfs_flush_workqueue(fs_info->delayed_workers);
4184
4185		ret = btrfs_commit_super(fs_info);
4186		if (ret)
4187			btrfs_err(fs_info, "commit super ret %d", ret);
4188	}
4189
4190	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4191	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4192		btrfs_error_commit_super(fs_info);
4193
4194	kthread_stop(fs_info->transaction_kthread);
4195	kthread_stop(fs_info->cleaner_kthread);
4196
4197	ASSERT(list_empty(&fs_info->delayed_iputs));
4198	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4199
4200	if (btrfs_check_quota_leak(fs_info)) {
4201		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4202		btrfs_err(fs_info, "qgroup reserved space leaked");
4203	}
4204
4205	btrfs_free_qgroup_config(fs_info);
4206	ASSERT(list_empty(&fs_info->delalloc_roots));
4207
4208	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4209		btrfs_info(fs_info, "at unmount delalloc count %lld",
4210		       percpu_counter_sum(&fs_info->delalloc_bytes));
4211	}
4212
4213	if (percpu_counter_sum(&fs_info->dio_bytes))
4214		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4215			   percpu_counter_sum(&fs_info->dio_bytes));
4216
4217	btrfs_sysfs_remove_mounted(fs_info);
4218	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4219
4220	btrfs_put_block_group_cache(fs_info);
4221
4222	/*
4223	 * we must make sure there is not any read request to
4224	 * submit after we stopping all workers.
4225	 */
4226	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4227	btrfs_stop_all_workers(fs_info);
4228
4229	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4230	free_root_pointers(fs_info, true);
4231	btrfs_free_fs_roots(fs_info);
4232
4233	/*
4234	 * We must free the block groups after dropping the fs_roots as we could
4235	 * have had an IO error and have left over tree log blocks that aren't
4236	 * cleaned up until the fs roots are freed.  This makes the block group
4237	 * accounting appear to be wrong because there's pending reserved bytes,
4238	 * so make sure we do the block group cleanup afterwards.
4239	 */
4240	btrfs_free_block_groups(fs_info);
4241
4242	iput(fs_info->btree_inode);
4243
4244#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4245	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4246		btrfsic_unmount(fs_info->fs_devices);
4247#endif
4248
4249	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4250	btrfs_close_devices(fs_info->fs_devices);
4251}
4252
4253int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4254			  int atomic)
4255{
4256	int ret;
4257	struct inode *btree_inode = buf->pages[0]->mapping->host;
4258
4259	ret = extent_buffer_uptodate(buf);
4260	if (!ret)
4261		return ret;
4262
4263	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4264				    parent_transid, atomic);
4265	if (ret == -EAGAIN)
4266		return ret;
4267	return !ret;
4268}
4269
4270void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4271{
4272	struct btrfs_fs_info *fs_info;
4273	struct btrfs_root *root;
4274	u64 transid = btrfs_header_generation(buf);
4275	int was_dirty;
4276
4277#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4278	/*
4279	 * This is a fast path so only do this check if we have sanity tests
4280	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4281	 * outside of the sanity tests.
4282	 */
4283	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4284		return;
4285#endif
4286	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4287	fs_info = root->fs_info;
4288	btrfs_assert_tree_locked(buf);
4289	if (transid != fs_info->generation)
4290		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4291			buf->start, transid, fs_info->generation);
4292	was_dirty = set_extent_buffer_dirty(buf);
4293	if (!was_dirty)
4294		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4295					 buf->len,
4296					 fs_info->dirty_metadata_batch);
4297#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4298	/*
4299	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4300	 * but item data not updated.
4301	 * So here we should only check item pointers, not item data.
4302	 */
4303	if (btrfs_header_level(buf) == 0 &&
4304	    btrfs_check_leaf_relaxed(buf)) {
4305		btrfs_print_leaf(buf);
4306		ASSERT(0);
4307	}
4308#endif
4309}
4310
4311static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4312					int flush_delayed)
4313{
4314	/*
4315	 * looks as though older kernels can get into trouble with
4316	 * this code, they end up stuck in balance_dirty_pages forever
4317	 */
4318	int ret;
4319
4320	if (current->flags & PF_MEMALLOC)
4321		return;
4322
4323	if (flush_delayed)
4324		btrfs_balance_delayed_items(fs_info);
4325
4326	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4327				     BTRFS_DIRTY_METADATA_THRESH,
4328				     fs_info->dirty_metadata_batch);
4329	if (ret > 0) {
4330		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4331	}
4332}
4333
4334void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4335{
4336	__btrfs_btree_balance_dirty(fs_info, 1);
4337}
4338
4339void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4340{
4341	__btrfs_btree_balance_dirty(fs_info, 0);
4342}
4343
4344int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4345		      struct btrfs_key *first_key)
4346{
4347	return btree_read_extent_buffer_pages(buf, parent_transid,
4348					      level, first_key);
4349}
4350
4351static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4352{
4353	/* cleanup FS via transaction */
4354	btrfs_cleanup_transaction(fs_info);
4355
4356	mutex_lock(&fs_info->cleaner_mutex);
4357	btrfs_run_delayed_iputs(fs_info);
4358	mutex_unlock(&fs_info->cleaner_mutex);
4359
4360	down_write(&fs_info->cleanup_work_sem);
4361	up_write(&fs_info->cleanup_work_sem);
4362}
4363
4364static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4365{
4366	struct btrfs_root *gang[8];
4367	u64 root_objectid = 0;
4368	int ret;
4369
4370	spin_lock(&fs_info->fs_roots_radix_lock);
4371	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4372					     (void **)gang, root_objectid,
4373					     ARRAY_SIZE(gang))) != 0) {
4374		int i;
4375
4376		for (i = 0; i < ret; i++)
4377			gang[i] = btrfs_grab_root(gang[i]);
4378		spin_unlock(&fs_info->fs_roots_radix_lock);
4379
4380		for (i = 0; i < ret; i++) {
4381			if (!gang[i])
4382				continue;
4383			root_objectid = gang[i]->root_key.objectid;
4384			btrfs_free_log(NULL, gang[i]);
4385			btrfs_put_root(gang[i]);
4386		}
4387		root_objectid++;
4388		spin_lock(&fs_info->fs_roots_radix_lock);
4389	}
4390	spin_unlock(&fs_info->fs_roots_radix_lock);
4391	btrfs_free_log_root_tree(NULL, fs_info);
4392}
4393
4394static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4395{
4396	struct btrfs_ordered_extent *ordered;
4397
4398	spin_lock(&root->ordered_extent_lock);
4399	/*
4400	 * This will just short circuit the ordered completion stuff which will
4401	 * make sure the ordered extent gets properly cleaned up.
4402	 */
4403	list_for_each_entry(ordered, &root->ordered_extents,
4404			    root_extent_list)
4405		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4406	spin_unlock(&root->ordered_extent_lock);
4407}
4408
4409static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4410{
4411	struct btrfs_root *root;
4412	struct list_head splice;
4413
4414	INIT_LIST_HEAD(&splice);
4415
4416	spin_lock(&fs_info->ordered_root_lock);
4417	list_splice_init(&fs_info->ordered_roots, &splice);
4418	while (!list_empty(&splice)) {
4419		root = list_first_entry(&splice, struct btrfs_root,
4420					ordered_root);
4421		list_move_tail(&root->ordered_root,
4422			       &fs_info->ordered_roots);
4423
4424		spin_unlock(&fs_info->ordered_root_lock);
4425		btrfs_destroy_ordered_extents(root);
4426
4427		cond_resched();
4428		spin_lock(&fs_info->ordered_root_lock);
4429	}
4430	spin_unlock(&fs_info->ordered_root_lock);
4431
4432	/*
4433	 * We need this here because if we've been flipped read-only we won't
4434	 * get sync() from the umount, so we need to make sure any ordered
4435	 * extents that haven't had their dirty pages IO start writeout yet
4436	 * actually get run and error out properly.
4437	 */
4438	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4439}
4440
4441static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4442				      struct btrfs_fs_info *fs_info)
4443{
4444	struct rb_node *node;
4445	struct btrfs_delayed_ref_root *delayed_refs;
4446	struct btrfs_delayed_ref_node *ref;
4447	int ret = 0;
4448
4449	delayed_refs = &trans->delayed_refs;
4450
4451	spin_lock(&delayed_refs->lock);
4452	if (atomic_read(&delayed_refs->num_entries) == 0) {
4453		spin_unlock(&delayed_refs->lock);
4454		btrfs_debug(fs_info, "delayed_refs has NO entry");
4455		return ret;
4456	}
4457
4458	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4459		struct btrfs_delayed_ref_head *head;
4460		struct rb_node *n;
4461		bool pin_bytes = false;
4462
4463		head = rb_entry(node, struct btrfs_delayed_ref_head,
4464				href_node);
4465		if (btrfs_delayed_ref_lock(delayed_refs, head))
4466			continue;
4467
4468		spin_lock(&head->lock);
4469		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4470			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4471				       ref_node);
4472			ref->in_tree = 0;
4473			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4474			RB_CLEAR_NODE(&ref->ref_node);
4475			if (!list_empty(&ref->add_list))
4476				list_del(&ref->add_list);
4477			atomic_dec(&delayed_refs->num_entries);
4478			btrfs_put_delayed_ref(ref);
4479		}
4480		if (head->must_insert_reserved)
4481			pin_bytes = true;
4482		btrfs_free_delayed_extent_op(head->extent_op);
4483		btrfs_delete_ref_head(delayed_refs, head);
4484		spin_unlock(&head->lock);
4485		spin_unlock(&delayed_refs->lock);
4486		mutex_unlock(&head->mutex);
4487
4488		if (pin_bytes) {
4489			struct btrfs_block_group *cache;
4490
4491			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4492			BUG_ON(!cache);
4493
4494			spin_lock(&cache->space_info->lock);
4495			spin_lock(&cache->lock);
4496			cache->pinned += head->num_bytes;
4497			btrfs_space_info_update_bytes_pinned(fs_info,
4498				cache->space_info, head->num_bytes);
4499			cache->reserved -= head->num_bytes;
4500			cache->space_info->bytes_reserved -= head->num_bytes;
4501			spin_unlock(&cache->lock);
4502			spin_unlock(&cache->space_info->lock);
4503			percpu_counter_add_batch(
4504				&cache->space_info->total_bytes_pinned,
4505				head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4506
4507			btrfs_put_block_group(cache);
4508
4509			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4510				head->bytenr + head->num_bytes - 1);
4511		}
4512		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4513		btrfs_put_delayed_ref_head(head);
4514		cond_resched();
4515		spin_lock(&delayed_refs->lock);
4516	}
4517	btrfs_qgroup_destroy_extent_records(trans);
4518
4519	spin_unlock(&delayed_refs->lock);
4520
4521	return ret;
4522}
4523
4524static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4525{
4526	struct btrfs_inode *btrfs_inode;
4527	struct list_head splice;
4528
4529	INIT_LIST_HEAD(&splice);
4530
4531	spin_lock(&root->delalloc_lock);
4532	list_splice_init(&root->delalloc_inodes, &splice);
4533
4534	while (!list_empty(&splice)) {
4535		struct inode *inode = NULL;
4536		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4537					       delalloc_inodes);
4538		__btrfs_del_delalloc_inode(root, btrfs_inode);
4539		spin_unlock(&root->delalloc_lock);
4540
4541		/*
4542		 * Make sure we get a live inode and that it'll not disappear
4543		 * meanwhile.
4544		 */
4545		inode = igrab(&btrfs_inode->vfs_inode);
4546		if (inode) {
4547			unsigned int nofs_flag;
4548
4549			nofs_flag = memalloc_nofs_save();
4550			invalidate_inode_pages2(inode->i_mapping);
4551			memalloc_nofs_restore(nofs_flag);
4552			iput(inode);
4553		}
4554		spin_lock(&root->delalloc_lock);
4555	}
4556	spin_unlock(&root->delalloc_lock);
4557}
4558
4559static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4560{
4561	struct btrfs_root *root;
4562	struct list_head splice;
4563
4564	INIT_LIST_HEAD(&splice);
4565
4566	spin_lock(&fs_info->delalloc_root_lock);
4567	list_splice_init(&fs_info->delalloc_roots, &splice);
4568	while (!list_empty(&splice)) {
4569		root = list_first_entry(&splice, struct btrfs_root,
4570					 delalloc_root);
4571		root = btrfs_grab_root(root);
4572		BUG_ON(!root);
4573		spin_unlock(&fs_info->delalloc_root_lock);
4574
4575		btrfs_destroy_delalloc_inodes(root);
4576		btrfs_put_root(root);
4577
4578		spin_lock(&fs_info->delalloc_root_lock);
4579	}
4580	spin_unlock(&fs_info->delalloc_root_lock);
4581}
4582
4583static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4584					struct extent_io_tree *dirty_pages,
4585					int mark)
4586{
4587	int ret;
4588	struct extent_buffer *eb;
4589	u64 start = 0;
4590	u64 end;
4591
4592	while (1) {
4593		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4594					    mark, NULL);
4595		if (ret)
4596			break;
4597
4598		clear_extent_bits(dirty_pages, start, end, mark);
4599		while (start <= end) {
4600			eb = find_extent_buffer(fs_info, start);
4601			start += fs_info->nodesize;
4602			if (!eb)
4603				continue;
4604			wait_on_extent_buffer_writeback(eb);
4605
4606			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4607					       &eb->bflags))
4608				clear_extent_buffer_dirty(eb);
4609			free_extent_buffer_stale(eb);
4610		}
4611	}
4612
4613	return ret;
4614}
4615
4616static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4617				       struct extent_io_tree *unpin)
4618{
4619	u64 start;
4620	u64 end;
4621	int ret;
4622
4623	while (1) {
4624		struct extent_state *cached_state = NULL;
4625
4626		/*
4627		 * The btrfs_finish_extent_commit() may get the same range as
4628		 * ours between find_first_extent_bit and clear_extent_dirty.
4629		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4630		 * the same extent range.
4631		 */
4632		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4633		ret = find_first_extent_bit(unpin, 0, &start, &end,
4634					    EXTENT_DIRTY, &cached_state);
4635		if (ret) {
4636			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4637			break;
4638		}
4639
4640		clear_extent_dirty(unpin, start, end, &cached_state);
4641		free_extent_state(cached_state);
4642		btrfs_error_unpin_extent_range(fs_info, start, end);
4643		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4644		cond_resched();
4645	}
4646
4647	return 0;
4648}
4649
4650static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4651{
4652	struct inode *inode;
4653
4654	inode = cache->io_ctl.inode;
4655	if (inode) {
4656		unsigned int nofs_flag;
4657
4658		nofs_flag = memalloc_nofs_save();
4659		invalidate_inode_pages2(inode->i_mapping);
4660		memalloc_nofs_restore(nofs_flag);
4661
4662		BTRFS_I(inode)->generation = 0;
4663		cache->io_ctl.inode = NULL;
4664		iput(inode);
4665	}
4666	ASSERT(cache->io_ctl.pages == NULL);
4667	btrfs_put_block_group(cache);
4668}
4669
4670void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4671			     struct btrfs_fs_info *fs_info)
4672{
4673	struct btrfs_block_group *cache;
4674
4675	spin_lock(&cur_trans->dirty_bgs_lock);
4676	while (!list_empty(&cur_trans->dirty_bgs)) {
4677		cache = list_first_entry(&cur_trans->dirty_bgs,
4678					 struct btrfs_block_group,
4679					 dirty_list);
4680
4681		if (!list_empty(&cache->io_list)) {
4682			spin_unlock(&cur_trans->dirty_bgs_lock);
4683			list_del_init(&cache->io_list);
4684			btrfs_cleanup_bg_io(cache);
4685			spin_lock(&cur_trans->dirty_bgs_lock);
4686		}
4687
4688		list_del_init(&cache->dirty_list);
4689		spin_lock(&cache->lock);
4690		cache->disk_cache_state = BTRFS_DC_ERROR;
4691		spin_unlock(&cache->lock);
4692
4693		spin_unlock(&cur_trans->dirty_bgs_lock);
4694		btrfs_put_block_group(cache);
4695		btrfs_delayed_refs_rsv_release(fs_info, 1);
4696		spin_lock(&cur_trans->dirty_bgs_lock);
4697	}
4698	spin_unlock(&cur_trans->dirty_bgs_lock);
4699
4700	/*
4701	 * Refer to the definition of io_bgs member for details why it's safe
4702	 * to use it without any locking
4703	 */
4704	while (!list_empty(&cur_trans->io_bgs)) {
4705		cache = list_first_entry(&cur_trans->io_bgs,
4706					 struct btrfs_block_group,
4707					 io_list);
4708
4709		list_del_init(&cache->io_list);
4710		spin_lock(&cache->lock);
4711		cache->disk_cache_state = BTRFS_DC_ERROR;
4712		spin_unlock(&cache->lock);
4713		btrfs_cleanup_bg_io(cache);
4714	}
4715}
4716
4717void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4718				   struct btrfs_fs_info *fs_info)
4719{
4720	struct btrfs_device *dev, *tmp;
4721
4722	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4723	ASSERT(list_empty(&cur_trans->dirty_bgs));
4724	ASSERT(list_empty(&cur_trans->io_bgs));
4725
4726	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4727				 post_commit_list) {
4728		list_del_init(&dev->post_commit_list);
4729	}
4730
4731	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4732
4733	cur_trans->state = TRANS_STATE_COMMIT_START;
4734	wake_up(&fs_info->transaction_blocked_wait);
4735
4736	cur_trans->state = TRANS_STATE_UNBLOCKED;
4737	wake_up(&fs_info->transaction_wait);
4738
4739	btrfs_destroy_delayed_inodes(fs_info);
4740
4741	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4742				     EXTENT_DIRTY);
4743	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4744
4745	cur_trans->state =TRANS_STATE_COMPLETED;
4746	wake_up(&cur_trans->commit_wait);
4747}
4748
4749static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4750{
4751	struct btrfs_transaction *t;
4752
4753	mutex_lock(&fs_info->transaction_kthread_mutex);
4754
4755	spin_lock(&fs_info->trans_lock);
4756	while (!list_empty(&fs_info->trans_list)) {
4757		t = list_first_entry(&fs_info->trans_list,
4758				     struct btrfs_transaction, list);
4759		if (t->state >= TRANS_STATE_COMMIT_START) {
4760			refcount_inc(&t->use_count);
4761			spin_unlock(&fs_info->trans_lock);
4762			btrfs_wait_for_commit(fs_info, t->transid);
4763			btrfs_put_transaction(t);
4764			spin_lock(&fs_info->trans_lock);
4765			continue;
4766		}
4767		if (t == fs_info->running_transaction) {
4768			t->state = TRANS_STATE_COMMIT_DOING;
4769			spin_unlock(&fs_info->trans_lock);
4770			/*
4771			 * We wait for 0 num_writers since we don't hold a trans
4772			 * handle open currently for this transaction.
4773			 */
4774			wait_event(t->writer_wait,
4775				   atomic_read(&t->num_writers) == 0);
4776		} else {
4777			spin_unlock(&fs_info->trans_lock);
4778		}
4779		btrfs_cleanup_one_transaction(t, fs_info);
4780
4781		spin_lock(&fs_info->trans_lock);
4782		if (t == fs_info->running_transaction)
4783			fs_info->running_transaction = NULL;
4784		list_del_init(&t->list);
4785		spin_unlock(&fs_info->trans_lock);
4786
4787		btrfs_put_transaction(t);
4788		trace_btrfs_transaction_commit(fs_info->tree_root);
4789		spin_lock(&fs_info->trans_lock);
4790	}
4791	spin_unlock(&fs_info->trans_lock);
4792	btrfs_destroy_all_ordered_extents(fs_info);
4793	btrfs_destroy_delayed_inodes(fs_info);
4794	btrfs_assert_delayed_root_empty(fs_info);
4795	btrfs_destroy_all_delalloc_inodes(fs_info);
4796	btrfs_drop_all_logs(fs_info);
4797	mutex_unlock(&fs_info->transaction_kthread_mutex);
4798
4799	return 0;
4800}
4801
4802int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
4803{
4804	struct btrfs_path *path;
4805	int ret;
4806	struct extent_buffer *l;
4807	struct btrfs_key search_key;
4808	struct btrfs_key found_key;
4809	int slot;
4810
4811	path = btrfs_alloc_path();
4812	if (!path)
4813		return -ENOMEM;
4814
4815	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4816	search_key.type = -1;
4817	search_key.offset = (u64)-1;
4818	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4819	if (ret < 0)
4820		goto error;
4821	BUG_ON(ret == 0); /* Corruption */
4822	if (path->slots[0] > 0) {
4823		slot = path->slots[0] - 1;
4824		l = path->nodes[0];
4825		btrfs_item_key_to_cpu(l, &found_key, slot);
4826		*objectid = max_t(u64, found_key.objectid,
4827				  BTRFS_FIRST_FREE_OBJECTID - 1);
4828	} else {
4829		*objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
4830	}
4831	ret = 0;
4832error:
4833	btrfs_free_path(path);
4834	return ret;
4835}
4836
4837int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
4838{
4839	int ret;
4840	mutex_lock(&root->objectid_mutex);
4841
4842	if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4843		btrfs_warn(root->fs_info,
4844			   "the objectid of root %llu reaches its highest value",
4845			   root->root_key.objectid);
4846		ret = -ENOSPC;
4847		goto out;
4848	}
4849
4850	*objectid = ++root->highest_objectid;
4851	ret = 0;
4852out:
4853	mutex_unlock(&root->objectid_mutex);
4854	return ret;
4855}
4856