xref: /kernel/linux/linux-5.10/fs/btrfs/discard.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/jiffies.h>
4#include <linux/kernel.h>
5#include <linux/ktime.h>
6#include <linux/list.h>
7#include <linux/math64.h>
8#include <linux/sizes.h>
9#include <linux/workqueue.h>
10#include "ctree.h"
11#include "block-group.h"
12#include "discard.h"
13#include "free-space-cache.h"
14
15/*
16 * This contains the logic to handle async discard.
17 *
18 * Async discard manages trimming of free space outside of transaction commit.
19 * Discarding is done by managing the block_groups on a LRU list based on free
20 * space recency.  Two passes are used to first prioritize discarding extents
21 * and then allow for trimming in the bitmap the best opportunity to coalesce.
22 * The block_groups are maintained on multiple lists to allow for multiple
23 * passes with different discard filter requirements.  A delayed work item is
24 * used to manage discarding with timeout determined by a max of the delay
25 * incurred by the iops rate limit, the byte rate limit, and the max delay of
26 * BTRFS_DISCARD_MAX_DELAY.
27 *
28 * Note, this only keeps track of block_groups that are explicitly for data.
29 * Mixed block_groups are not supported.
30 *
31 * The first list is special to manage discarding of fully free block groups.
32 * This is necessary because we issue a final trim for a full free block group
33 * after forgetting it.  When a block group becomes unused, instead of directly
34 * being added to the unused_bgs list, we add it to this first list.  Then
35 * from there, if it becomes fully discarded, we place it onto the unused_bgs
36 * list.
37 *
38 * The in-memory free space cache serves as the backing state for discard.
39 * Consequently this means there is no persistence.  We opt to load all the
40 * block groups in as not discarded, so the mount case degenerates to the
41 * crashing case.
42 *
43 * As the free space cache uses bitmaps, there exists a tradeoff between
44 * ease/efficiency for find_free_extent() and the accuracy of discard state.
45 * Here we opt to let untrimmed regions merge with everything while only letting
46 * trimmed regions merge with other trimmed regions.  This can cause
47 * overtrimming, but the coalescing benefit seems to be worth it.  Additionally,
48 * bitmap state is tracked as a whole.  If we're able to fully trim a bitmap,
49 * the trimmed flag is set on the bitmap.  Otherwise, if an allocation comes in,
50 * this resets the state and we will retry trimming the whole bitmap.  This is a
51 * tradeoff between discard state accuracy and the cost of accounting.
52 */
53
54/* This is an initial delay to give some chance for block reuse */
55#define BTRFS_DISCARD_DELAY		(120ULL * NSEC_PER_SEC)
56#define BTRFS_DISCARD_UNUSED_DELAY	(10ULL * NSEC_PER_SEC)
57
58/* Target completion latency of discarding all discardable extents */
59#define BTRFS_DISCARD_TARGET_MSEC	(6 * 60 * 60UL * MSEC_PER_SEC)
60#define BTRFS_DISCARD_MIN_DELAY_MSEC	(1UL)
61#define BTRFS_DISCARD_MAX_DELAY_MSEC	(1000UL)
62#define BTRFS_DISCARD_MAX_IOPS		(10U)
63
64/* Montonically decreasing minimum length filters after index 0 */
65static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
66	0,
67	BTRFS_ASYNC_DISCARD_MAX_FILTER,
68	BTRFS_ASYNC_DISCARD_MIN_FILTER
69};
70
71static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
72					  struct btrfs_block_group *block_group)
73{
74	return &discard_ctl->discard_list[block_group->discard_index];
75}
76
77static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
78				  struct btrfs_block_group *block_group)
79{
80	if (!btrfs_run_discard_work(discard_ctl))
81		return;
82
83	if (list_empty(&block_group->discard_list) ||
84	    block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
85		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
86			block_group->discard_index = BTRFS_DISCARD_INDEX_START;
87		block_group->discard_eligible_time = (ktime_get_ns() +
88						      BTRFS_DISCARD_DELAY);
89		block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
90	}
91
92	list_move_tail(&block_group->discard_list,
93		       get_discard_list(discard_ctl, block_group));
94}
95
96static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
97				struct btrfs_block_group *block_group)
98{
99	if (!btrfs_is_block_group_data_only(block_group))
100		return;
101
102	spin_lock(&discard_ctl->lock);
103	__add_to_discard_list(discard_ctl, block_group);
104	spin_unlock(&discard_ctl->lock);
105}
106
107static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
108				       struct btrfs_block_group *block_group)
109{
110	spin_lock(&discard_ctl->lock);
111
112	if (!btrfs_run_discard_work(discard_ctl)) {
113		spin_unlock(&discard_ctl->lock);
114		return;
115	}
116
117	list_del_init(&block_group->discard_list);
118
119	block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
120	block_group->discard_eligible_time = (ktime_get_ns() +
121					      BTRFS_DISCARD_UNUSED_DELAY);
122	block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
123	list_add_tail(&block_group->discard_list,
124		      &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
125
126	spin_unlock(&discard_ctl->lock);
127}
128
129static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
130				     struct btrfs_block_group *block_group)
131{
132	bool running = false;
133
134	spin_lock(&discard_ctl->lock);
135
136	if (block_group == discard_ctl->block_group) {
137		running = true;
138		discard_ctl->block_group = NULL;
139	}
140
141	block_group->discard_eligible_time = 0;
142	list_del_init(&block_group->discard_list);
143
144	spin_unlock(&discard_ctl->lock);
145
146	return running;
147}
148
149/**
150 * find_next_block_group - find block_group that's up next for discarding
151 * @discard_ctl: discard control
152 * @now: current time
153 *
154 * Iterate over the discard lists to find the next block_group up for
155 * discarding checking the discard_eligible_time of block_group.
156 */
157static struct btrfs_block_group *find_next_block_group(
158					struct btrfs_discard_ctl *discard_ctl,
159					u64 now)
160{
161	struct btrfs_block_group *ret_block_group = NULL, *block_group;
162	int i;
163
164	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
165		struct list_head *discard_list = &discard_ctl->discard_list[i];
166
167		if (!list_empty(discard_list)) {
168			block_group = list_first_entry(discard_list,
169						       struct btrfs_block_group,
170						       discard_list);
171
172			if (!ret_block_group)
173				ret_block_group = block_group;
174
175			if (ret_block_group->discard_eligible_time < now)
176				break;
177
178			if (ret_block_group->discard_eligible_time >
179			    block_group->discard_eligible_time)
180				ret_block_group = block_group;
181		}
182	}
183
184	return ret_block_group;
185}
186
187/**
188 * peek_discard_list - wrap find_next_block_group()
189 * @discard_ctl: discard control
190 * @discard_state: the discard_state of the block_group after state management
191 * @discard_index: the discard_index of the block_group after state management
192 *
193 * This wraps find_next_block_group() and sets the block_group to be in use.
194 * discard_state's control flow is managed here.  Variables related to
195 * discard_state are reset here as needed (eg discard_cursor).  @discard_state
196 * and @discard_index are remembered as it may change while we're discarding,
197 * but we want the discard to execute in the context determined here.
198 */
199static struct btrfs_block_group *peek_discard_list(
200					struct btrfs_discard_ctl *discard_ctl,
201					enum btrfs_discard_state *discard_state,
202					int *discard_index, u64 now)
203{
204	struct btrfs_block_group *block_group;
205
206	spin_lock(&discard_ctl->lock);
207again:
208	block_group = find_next_block_group(discard_ctl, now);
209
210	if (block_group && now >= block_group->discard_eligible_time) {
211		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
212		    block_group->used != 0) {
213			if (btrfs_is_block_group_data_only(block_group))
214				__add_to_discard_list(discard_ctl, block_group);
215			else
216				list_del_init(&block_group->discard_list);
217			goto again;
218		}
219		if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
220			block_group->discard_cursor = block_group->start;
221			block_group->discard_state = BTRFS_DISCARD_EXTENTS;
222		}
223		discard_ctl->block_group = block_group;
224	}
225	if (block_group) {
226		*discard_state = block_group->discard_state;
227		*discard_index = block_group->discard_index;
228	}
229	spin_unlock(&discard_ctl->lock);
230
231	return block_group;
232}
233
234/**
235 * btrfs_discard_check_filter - updates a block groups filters
236 * @block_group: block group of interest
237 * @bytes: recently freed region size after coalescing
238 *
239 * Async discard maintains multiple lists with progressively smaller filters
240 * to prioritize discarding based on size.  Should a free space that matches
241 * a larger filter be returned to the free_space_cache, prioritize that discard
242 * by moving @block_group to the proper filter.
243 */
244void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
245				u64 bytes)
246{
247	struct btrfs_discard_ctl *discard_ctl;
248
249	if (!block_group ||
250	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
251		return;
252
253	discard_ctl = &block_group->fs_info->discard_ctl;
254
255	if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
256	    bytes >= discard_minlen[block_group->discard_index - 1]) {
257		int i;
258
259		remove_from_discard_list(discard_ctl, block_group);
260
261		for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
262		     i++) {
263			if (bytes >= discard_minlen[i]) {
264				block_group->discard_index = i;
265				add_to_discard_list(discard_ctl, block_group);
266				break;
267			}
268		}
269	}
270}
271
272/**
273 * btrfs_update_discard_index - moves a block group along the discard lists
274 * @discard_ctl: discard control
275 * @block_group: block_group of interest
276 *
277 * Increment @block_group's discard_index.  If it falls of the list, let it be.
278 * Otherwise add it back to the appropriate list.
279 */
280static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
281				       struct btrfs_block_group *block_group)
282{
283	block_group->discard_index++;
284	if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
285		block_group->discard_index = 1;
286		return;
287	}
288
289	add_to_discard_list(discard_ctl, block_group);
290}
291
292/**
293 * btrfs_discard_cancel_work - remove a block_group from the discard lists
294 * @discard_ctl: discard control
295 * @block_group: block_group of interest
296 *
297 * This removes @block_group from the discard lists.  If necessary, it waits on
298 * the current work and then reschedules the delayed work.
299 */
300void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
301			       struct btrfs_block_group *block_group)
302{
303	if (remove_from_discard_list(discard_ctl, block_group)) {
304		cancel_delayed_work_sync(&discard_ctl->work);
305		btrfs_discard_schedule_work(discard_ctl, true);
306	}
307}
308
309/**
310 * btrfs_discard_queue_work - handles queuing the block_groups
311 * @discard_ctl: discard control
312 * @block_group: block_group of interest
313 *
314 * This maintains the LRU order of the discard lists.
315 */
316void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
317			      struct btrfs_block_group *block_group)
318{
319	if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
320		return;
321
322	if (block_group->used == 0)
323		add_to_discard_unused_list(discard_ctl, block_group);
324	else
325		add_to_discard_list(discard_ctl, block_group);
326
327	if (!delayed_work_pending(&discard_ctl->work))
328		btrfs_discard_schedule_work(discard_ctl, false);
329}
330
331static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
332					  u64 now, bool override)
333{
334	struct btrfs_block_group *block_group;
335
336	if (!btrfs_run_discard_work(discard_ctl))
337		return;
338	if (!override && delayed_work_pending(&discard_ctl->work))
339		return;
340
341	block_group = find_next_block_group(discard_ctl, now);
342	if (block_group) {
343		unsigned long delay = discard_ctl->delay;
344		u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
345
346		/*
347		 * A single delayed workqueue item is responsible for
348		 * discarding, so we can manage the bytes rate limit by keeping
349		 * track of the previous discard.
350		 */
351		if (kbps_limit && discard_ctl->prev_discard) {
352			u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
353			u64 bps_delay = div64_u64(discard_ctl->prev_discard *
354						  MSEC_PER_SEC, bps_limit);
355
356			delay = max(delay, msecs_to_jiffies(bps_delay));
357		}
358
359		/*
360		 * This timeout is to hopefully prevent immediate discarding
361		 * in a recently allocated block group.
362		 */
363		if (now < block_group->discard_eligible_time) {
364			u64 bg_timeout = block_group->discard_eligible_time - now;
365
366			delay = max(delay, nsecs_to_jiffies(bg_timeout));
367		}
368
369		mod_delayed_work(discard_ctl->discard_workers,
370				 &discard_ctl->work, delay);
371	}
372}
373
374/*
375 * btrfs_discard_schedule_work - responsible for scheduling the discard work
376 * @discard_ctl:  discard control
377 * @override:     override the current timer
378 *
379 * Discards are issued by a delayed workqueue item.  @override is used to
380 * update the current delay as the baseline delay interval is reevaluated on
381 * transaction commit.  This is also maxed with any other rate limit.
382 */
383void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
384				 bool override)
385{
386	const u64 now = ktime_get_ns();
387
388	spin_lock(&discard_ctl->lock);
389	__btrfs_discard_schedule_work(discard_ctl, now, override);
390	spin_unlock(&discard_ctl->lock);
391}
392
393/**
394 * btrfs_finish_discard_pass - determine next step of a block_group
395 * @discard_ctl: discard control
396 * @block_group: block_group of interest
397 *
398 * This determines the next step for a block group after it's finished going
399 * through a pass on a discard list.  If it is unused and fully trimmed, we can
400 * mark it unused and send it to the unused_bgs path.  Otherwise, pass it onto
401 * the appropriate filter list or let it fall off.
402 */
403static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
404				      struct btrfs_block_group *block_group)
405{
406	remove_from_discard_list(discard_ctl, block_group);
407
408	if (block_group->used == 0) {
409		if (btrfs_is_free_space_trimmed(block_group))
410			btrfs_mark_bg_unused(block_group);
411		else
412			add_to_discard_unused_list(discard_ctl, block_group);
413	} else {
414		btrfs_update_discard_index(discard_ctl, block_group);
415	}
416}
417
418/**
419 * btrfs_discard_workfn - discard work function
420 * @work: work
421 *
422 * This finds the next block_group to start discarding and then discards a
423 * single region.  It does this in a two-pass fashion: first extents and second
424 * bitmaps.  Completely discarded block groups are sent to the unused_bgs path.
425 */
426static void btrfs_discard_workfn(struct work_struct *work)
427{
428	struct btrfs_discard_ctl *discard_ctl;
429	struct btrfs_block_group *block_group;
430	enum btrfs_discard_state discard_state;
431	int discard_index = 0;
432	u64 trimmed = 0;
433	u64 minlen = 0;
434	u64 now = ktime_get_ns();
435
436	discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
437
438	block_group = peek_discard_list(discard_ctl, &discard_state,
439					&discard_index, now);
440	if (!block_group || !btrfs_run_discard_work(discard_ctl))
441		return;
442	if (now < block_group->discard_eligible_time) {
443		btrfs_discard_schedule_work(discard_ctl, false);
444		return;
445	}
446
447	/* Perform discarding */
448	minlen = discard_minlen[discard_index];
449
450	if (discard_state == BTRFS_DISCARD_BITMAPS) {
451		u64 maxlen = 0;
452
453		/*
454		 * Use the previous levels minimum discard length as the max
455		 * length filter.  In the case something is added to make a
456		 * region go beyond the max filter, the entire bitmap is set
457		 * back to BTRFS_TRIM_STATE_UNTRIMMED.
458		 */
459		if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
460			maxlen = discard_minlen[discard_index - 1];
461
462		btrfs_trim_block_group_bitmaps(block_group, &trimmed,
463				       block_group->discard_cursor,
464				       btrfs_block_group_end(block_group),
465				       minlen, maxlen, true);
466		discard_ctl->discard_bitmap_bytes += trimmed;
467	} else {
468		btrfs_trim_block_group_extents(block_group, &trimmed,
469				       block_group->discard_cursor,
470				       btrfs_block_group_end(block_group),
471				       minlen, true);
472		discard_ctl->discard_extent_bytes += trimmed;
473	}
474
475	discard_ctl->prev_discard = trimmed;
476
477	/* Determine next steps for a block_group */
478	if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
479		if (discard_state == BTRFS_DISCARD_BITMAPS) {
480			btrfs_finish_discard_pass(discard_ctl, block_group);
481		} else {
482			block_group->discard_cursor = block_group->start;
483			spin_lock(&discard_ctl->lock);
484			if (block_group->discard_state !=
485			    BTRFS_DISCARD_RESET_CURSOR)
486				block_group->discard_state =
487							BTRFS_DISCARD_BITMAPS;
488			spin_unlock(&discard_ctl->lock);
489		}
490	}
491
492	spin_lock(&discard_ctl->lock);
493	discard_ctl->block_group = NULL;
494	__btrfs_discard_schedule_work(discard_ctl, now, false);
495	spin_unlock(&discard_ctl->lock);
496}
497
498/**
499 * btrfs_run_discard_work - determines if async discard should be running
500 * @discard_ctl: discard control
501 *
502 * Checks if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
503 */
504bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
505{
506	struct btrfs_fs_info *fs_info = container_of(discard_ctl,
507						     struct btrfs_fs_info,
508						     discard_ctl);
509
510	return (!(fs_info->sb->s_flags & SB_RDONLY) &&
511		test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
512}
513
514/**
515 * btrfs_discard_calc_delay - recalculate the base delay
516 * @discard_ctl: discard control
517 *
518 * Recalculate the base delay which is based off the total number of
519 * discardable_extents.  Clamp this between the lower_limit (iops_limit or 1ms)
520 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
521 */
522void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
523{
524	s32 discardable_extents;
525	s64 discardable_bytes;
526	u32 iops_limit;
527	unsigned long delay;
528	unsigned long lower_limit = BTRFS_DISCARD_MIN_DELAY_MSEC;
529
530	discardable_extents = atomic_read(&discard_ctl->discardable_extents);
531	if (!discardable_extents)
532		return;
533
534	spin_lock(&discard_ctl->lock);
535
536	/*
537	 * The following is to fix a potential -1 discrepenancy that we're not
538	 * sure how to reproduce. But given that this is the only place that
539	 * utilizes these numbers and this is only called by from
540	 * btrfs_finish_extent_commit() which is synchronized, we can correct
541	 * here.
542	 */
543	if (discardable_extents < 0)
544		atomic_add(-discardable_extents,
545			   &discard_ctl->discardable_extents);
546
547	discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
548	if (discardable_bytes < 0)
549		atomic64_add(-discardable_bytes,
550			     &discard_ctl->discardable_bytes);
551
552	if (discardable_extents <= 0) {
553		spin_unlock(&discard_ctl->lock);
554		return;
555	}
556
557	iops_limit = READ_ONCE(discard_ctl->iops_limit);
558	if (iops_limit)
559		lower_limit = max_t(unsigned long, lower_limit,
560				    MSEC_PER_SEC / iops_limit);
561
562	delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents;
563	delay = clamp(delay, lower_limit, BTRFS_DISCARD_MAX_DELAY_MSEC);
564	discard_ctl->delay = msecs_to_jiffies(delay);
565
566	spin_unlock(&discard_ctl->lock);
567}
568
569/**
570 * btrfs_discard_update_discardable - propagate discard counters
571 * @block_group: block_group of interest
572 * @ctl: free_space_ctl of @block_group
573 *
574 * This propagates deltas of counters up to the discard_ctl.  It maintains a
575 * current counter and a previous counter passing the delta up to the global
576 * stat.  Then the current counter value becomes the previous counter value.
577 */
578void btrfs_discard_update_discardable(struct btrfs_block_group *block_group,
579				      struct btrfs_free_space_ctl *ctl)
580{
581	struct btrfs_discard_ctl *discard_ctl;
582	s32 extents_delta;
583	s64 bytes_delta;
584
585	if (!block_group ||
586	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
587	    !btrfs_is_block_group_data_only(block_group))
588		return;
589
590	discard_ctl = &block_group->fs_info->discard_ctl;
591
592	extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
593			ctl->discardable_extents[BTRFS_STAT_PREV];
594	if (extents_delta) {
595		atomic_add(extents_delta, &discard_ctl->discardable_extents);
596		ctl->discardable_extents[BTRFS_STAT_PREV] =
597			ctl->discardable_extents[BTRFS_STAT_CURR];
598	}
599
600	bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
601		      ctl->discardable_bytes[BTRFS_STAT_PREV];
602	if (bytes_delta) {
603		atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
604		ctl->discardable_bytes[BTRFS_STAT_PREV] =
605			ctl->discardable_bytes[BTRFS_STAT_CURR];
606	}
607}
608
609/**
610 * btrfs_discard_punt_unused_bgs_list - punt unused_bgs list to discard lists
611 * @fs_info: fs_info of interest
612 *
613 * The unused_bgs list needs to be punted to the discard lists because the
614 * order of operations is changed.  In the normal sychronous discard path, the
615 * block groups are trimmed via a single large trim in transaction commit.  This
616 * is ultimately what we are trying to avoid with asynchronous discard.  Thus,
617 * it must be done before going down the unused_bgs path.
618 */
619void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
620{
621	struct btrfs_block_group *block_group, *next;
622
623	spin_lock(&fs_info->unused_bgs_lock);
624	/* We enabled async discard, so punt all to the queue */
625	list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
626				 bg_list) {
627		list_del_init(&block_group->bg_list);
628		btrfs_put_block_group(block_group);
629		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
630	}
631	spin_unlock(&fs_info->unused_bgs_lock);
632}
633
634/**
635 * btrfs_discard_purge_list - purge discard lists
636 * @discard_ctl: discard control
637 *
638 * If we are disabling async discard, we may have intercepted block groups that
639 * are completely free and ready for the unused_bgs path.  As discarding will
640 * now happen in transaction commit or not at all, we can safely mark the
641 * corresponding block groups as unused and they will be sent on their merry
642 * way to the unused_bgs list.
643 */
644static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
645{
646	struct btrfs_block_group *block_group, *next;
647	int i;
648
649	spin_lock(&discard_ctl->lock);
650	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
651		list_for_each_entry_safe(block_group, next,
652					 &discard_ctl->discard_list[i],
653					 discard_list) {
654			list_del_init(&block_group->discard_list);
655			spin_unlock(&discard_ctl->lock);
656			if (block_group->used == 0)
657				btrfs_mark_bg_unused(block_group);
658			spin_lock(&discard_ctl->lock);
659		}
660	}
661	spin_unlock(&discard_ctl->lock);
662}
663
664void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
665{
666	if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
667		btrfs_discard_cleanup(fs_info);
668		return;
669	}
670
671	btrfs_discard_punt_unused_bgs_list(fs_info);
672
673	set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
674}
675
676void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
677{
678	clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
679}
680
681void btrfs_discard_init(struct btrfs_fs_info *fs_info)
682{
683	struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
684	int i;
685
686	spin_lock_init(&discard_ctl->lock);
687	INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
688
689	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
690		INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
691
692	discard_ctl->prev_discard = 0;
693	atomic_set(&discard_ctl->discardable_extents, 0);
694	atomic64_set(&discard_ctl->discardable_bytes, 0);
695	discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
696	discard_ctl->delay = BTRFS_DISCARD_MAX_DELAY_MSEC;
697	discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
698	discard_ctl->kbps_limit = 0;
699	discard_ctl->discard_extent_bytes = 0;
700	discard_ctl->discard_bitmap_bytes = 0;
701	atomic64_set(&discard_ctl->discard_bytes_saved, 0);
702}
703
704void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
705{
706	btrfs_discard_stop(fs_info);
707	cancel_delayed_work_sync(&fs_info->discard_ctl.work);
708	btrfs_discard_purge_list(&fs_info->discard_ctl);
709}
710