1// SPDX-License-Identifier: GPL-2.0 2 3#include "ctree.h" 4#include "delalloc-space.h" 5#include "block-rsv.h" 6#include "btrfs_inode.h" 7#include "space-info.h" 8#include "transaction.h" 9#include "qgroup.h" 10#include "block-group.h" 11 12/* 13 * HOW DOES THIS WORK 14 * 15 * There are two stages to data reservations, one for data and one for metadata 16 * to handle the new extents and checksums generated by writing data. 17 * 18 * 19 * DATA RESERVATION 20 * The general flow of the data reservation is as follows 21 * 22 * -> Reserve 23 * We call into btrfs_reserve_data_bytes() for the user request bytes that 24 * they wish to write. We make this reservation and add it to 25 * space_info->bytes_may_use. We set EXTENT_DELALLOC on the inode io_tree 26 * for the range and carry on if this is buffered, or follow up trying to 27 * make a real allocation if we are pre-allocating or doing O_DIRECT. 28 * 29 * -> Use 30 * At writepages()/prealloc/O_DIRECT time we will call into 31 * btrfs_reserve_extent() for some part or all of this range of bytes. We 32 * will make the allocation and subtract space_info->bytes_may_use by the 33 * original requested length and increase the space_info->bytes_reserved by 34 * the allocated length. This distinction is important because compression 35 * may allocate a smaller on disk extent than we previously reserved. 36 * 37 * -> Allocation 38 * finish_ordered_io() will insert the new file extent item for this range, 39 * and then add a delayed ref update for the extent tree. Once that delayed 40 * ref is written the extent size is subtracted from 41 * space_info->bytes_reserved and added to space_info->bytes_used. 42 * 43 * Error handling 44 * 45 * -> By the reservation maker 46 * This is the simplest case, we haven't completed our operation and we know 47 * how much we reserved, we can simply call 48 * btrfs_free_reserved_data_space*() and it will be removed from 49 * space_info->bytes_may_use. 50 * 51 * -> After the reservation has been made, but before cow_file_range() 52 * This is specifically for the delalloc case. You must clear 53 * EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will 54 * be subtracted from space_info->bytes_may_use. 55 * 56 * METADATA RESERVATION 57 * The general metadata reservation lifetimes are discussed elsewhere, this 58 * will just focus on how it is used for delalloc space. 59 * 60 * We keep track of two things on a per inode bases 61 * 62 * ->outstanding_extents 63 * This is the number of file extent items we'll need to handle all of the 64 * outstanding DELALLOC space we have in this inode. We limit the maximum 65 * size of an extent, so a large contiguous dirty area may require more than 66 * one outstanding_extent, which is why count_max_extents() is used to 67 * determine how many outstanding_extents get added. 68 * 69 * ->csum_bytes 70 * This is essentially how many dirty bytes we have for this inode, so we 71 * can calculate the number of checksum items we would have to add in order 72 * to checksum our outstanding data. 73 * 74 * We keep a per-inode block_rsv in order to make it easier to keep track of 75 * our reservation. We use btrfs_calculate_inode_block_rsv_size() to 76 * calculate the current theoretical maximum reservation we would need for the 77 * metadata for this inode. We call this and then adjust our reservation as 78 * necessary, either by attempting to reserve more space, or freeing up excess 79 * space. 80 * 81 * OUTSTANDING_EXTENTS HANDLING 82 * 83 * ->outstanding_extents is used for keeping track of how many extents we will 84 * need to use for this inode, and it will fluctuate depending on where you are 85 * in the life cycle of the dirty data. Consider the following normal case for 86 * a completely clean inode, with a num_bytes < our maximum allowed extent size 87 * 88 * -> reserve 89 * ->outstanding_extents += 1 (current value is 1) 90 * 91 * -> set_delalloc 92 * ->outstanding_extents += 1 (currrent value is 2) 93 * 94 * -> btrfs_delalloc_release_extents() 95 * ->outstanding_extents -= 1 (current value is 1) 96 * 97 * We must call this once we are done, as we hold our reservation for the 98 * duration of our operation, and then assume set_delalloc will update the 99 * counter appropriately. 100 * 101 * -> add ordered extent 102 * ->outstanding_extents += 1 (current value is 2) 103 * 104 * -> btrfs_clear_delalloc_extent 105 * ->outstanding_extents -= 1 (current value is 1) 106 * 107 * -> finish_ordered_io/btrfs_remove_ordered_extent 108 * ->outstanding_extents -= 1 (current value is 0) 109 * 110 * Each stage is responsible for their own accounting of the extent, thus 111 * making error handling and cleanup easier. 112 */ 113 114int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 115{ 116 struct btrfs_root *root = inode->root; 117 struct btrfs_fs_info *fs_info = root->fs_info; 118 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA; 119 120 /* Make sure bytes are sectorsize aligned */ 121 bytes = ALIGN(bytes, fs_info->sectorsize); 122 123 if (btrfs_is_free_space_inode(inode)) 124 flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE; 125 126 return btrfs_reserve_data_bytes(fs_info, bytes, flush); 127} 128 129int btrfs_check_data_free_space(struct btrfs_inode *inode, 130 struct extent_changeset **reserved, u64 start, u64 len) 131{ 132 struct btrfs_fs_info *fs_info = inode->root->fs_info; 133 int ret; 134 135 /* align the range */ 136 len = round_up(start + len, fs_info->sectorsize) - 137 round_down(start, fs_info->sectorsize); 138 start = round_down(start, fs_info->sectorsize); 139 140 ret = btrfs_alloc_data_chunk_ondemand(inode, len); 141 if (ret < 0) 142 return ret; 143 144 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 145 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 146 if (ret < 0) 147 btrfs_free_reserved_data_space_noquota(fs_info, len); 148 else 149 ret = 0; 150 return ret; 151} 152 153/* 154 * Called if we need to clear a data reservation for this inode 155 * Normally in a error case. 156 * 157 * This one will *NOT* use accurate qgroup reserved space API, just for case 158 * which we can't sleep and is sure it won't affect qgroup reserved space. 159 * Like clear_bit_hook(). 160 */ 161void btrfs_free_reserved_data_space_noquota(struct btrfs_fs_info *fs_info, 162 u64 len) 163{ 164 struct btrfs_space_info *data_sinfo; 165 166 ASSERT(IS_ALIGNED(len, fs_info->sectorsize)); 167 168 data_sinfo = fs_info->data_sinfo; 169 btrfs_space_info_free_bytes_may_use(fs_info, data_sinfo, len); 170} 171 172/* 173 * Called if we need to clear a data reservation for this inode 174 * Normally in a error case. 175 * 176 * This one will handle the per-inode data rsv map for accurate reserved 177 * space framework. 178 */ 179void btrfs_free_reserved_data_space(struct btrfs_inode *inode, 180 struct extent_changeset *reserved, u64 start, u64 len) 181{ 182 struct btrfs_fs_info *fs_info = inode->root->fs_info; 183 184 /* Make sure the range is aligned to sectorsize */ 185 len = round_up(start + len, fs_info->sectorsize) - 186 round_down(start, fs_info->sectorsize); 187 start = round_down(start, fs_info->sectorsize); 188 189 btrfs_free_reserved_data_space_noquota(fs_info, len); 190 btrfs_qgroup_free_data(inode, reserved, start, len); 191} 192 193/** 194 * btrfs_inode_rsv_release - release any excessive reservation. 195 * @inode - the inode we need to release from. 196 * @qgroup_free - free or convert qgroup meta. 197 * Unlike normal operation, qgroup meta reservation needs to know if we are 198 * freeing qgroup reservation or just converting it into per-trans. Normally 199 * @qgroup_free is true for error handling, and false for normal release. 200 * 201 * This is the same as btrfs_block_rsv_release, except that it handles the 202 * tracepoint for the reservation. 203 */ 204static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) 205{ 206 struct btrfs_fs_info *fs_info = inode->root->fs_info; 207 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 208 u64 released = 0; 209 u64 qgroup_to_release = 0; 210 211 /* 212 * Since we statically set the block_rsv->size we just want to say we 213 * are releasing 0 bytes, and then we'll just get the reservation over 214 * the size free'd. 215 */ 216 released = btrfs_block_rsv_release(fs_info, block_rsv, 0, 217 &qgroup_to_release); 218 if (released > 0) 219 trace_btrfs_space_reservation(fs_info, "delalloc", 220 btrfs_ino(inode), released, 0); 221 if (qgroup_free) 222 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release); 223 else 224 btrfs_qgroup_convert_reserved_meta(inode->root, 225 qgroup_to_release); 226} 227 228static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 229 struct btrfs_inode *inode) 230{ 231 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 232 u64 reserve_size = 0; 233 u64 qgroup_rsv_size = 0; 234 u64 csum_leaves; 235 unsigned outstanding_extents; 236 237 lockdep_assert_held(&inode->lock); 238 outstanding_extents = inode->outstanding_extents; 239 240 /* 241 * Insert size for the number of outstanding extents, 1 normal size for 242 * updating the inode. 243 */ 244 if (outstanding_extents) { 245 reserve_size = btrfs_calc_insert_metadata_size(fs_info, 246 outstanding_extents); 247 reserve_size += btrfs_calc_metadata_size(fs_info, 1); 248 } 249 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, 250 inode->csum_bytes); 251 reserve_size += btrfs_calc_insert_metadata_size(fs_info, 252 csum_leaves); 253 /* 254 * For qgroup rsv, the calculation is very simple: 255 * account one nodesize for each outstanding extent 256 * 257 * This is overestimating in most cases. 258 */ 259 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize; 260 261 spin_lock(&block_rsv->lock); 262 block_rsv->size = reserve_size; 263 block_rsv->qgroup_rsv_size = qgroup_rsv_size; 264 spin_unlock(&block_rsv->lock); 265} 266 267static void calc_inode_reservations(struct btrfs_fs_info *fs_info, 268 u64 num_bytes, u64 *meta_reserve, 269 u64 *qgroup_reserve) 270{ 271 u64 nr_extents = count_max_extents(num_bytes); 272 u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, num_bytes); 273 u64 inode_update = btrfs_calc_metadata_size(fs_info, 1); 274 275 *meta_reserve = btrfs_calc_insert_metadata_size(fs_info, 276 nr_extents + csum_leaves); 277 278 /* 279 * finish_ordered_io has to update the inode, so add the space required 280 * for an inode update. 281 */ 282 *meta_reserve += inode_update; 283 *qgroup_reserve = nr_extents * fs_info->nodesize; 284} 285 286int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) 287{ 288 struct btrfs_root *root = inode->root; 289 struct btrfs_fs_info *fs_info = root->fs_info; 290 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 291 u64 meta_reserve, qgroup_reserve; 292 unsigned nr_extents; 293 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 294 int ret = 0; 295 296 /* 297 * If we are a free space inode we need to not flush since we will be in 298 * the middle of a transaction commit. We also don't need the delalloc 299 * mutex since we won't race with anybody. We need this mostly to make 300 * lockdep shut its filthy mouth. 301 * 302 * If we have a transaction open (can happen if we call truncate_block 303 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 304 */ 305 if (btrfs_is_free_space_inode(inode)) { 306 flush = BTRFS_RESERVE_NO_FLUSH; 307 } else { 308 if (current->journal_info) 309 flush = BTRFS_RESERVE_FLUSH_LIMIT; 310 } 311 312 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 313 314 /* 315 * We always want to do it this way, every other way is wrong and ends 316 * in tears. Pre-reserving the amount we are going to add will always 317 * be the right way, because otherwise if we have enough parallelism we 318 * could end up with thousands of inodes all holding little bits of 319 * reservations they were able to make previously and the only way to 320 * reclaim that space is to ENOSPC out the operations and clear 321 * everything out and try again, which is bad. This way we just 322 * over-reserve slightly, and clean up the mess when we are done. 323 */ 324 calc_inode_reservations(fs_info, num_bytes, &meta_reserve, 325 &qgroup_reserve); 326 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true); 327 if (ret) 328 return ret; 329 ret = btrfs_reserve_metadata_bytes(root, block_rsv, meta_reserve, flush); 330 if (ret) { 331 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve); 332 return ret; 333 } 334 335 /* 336 * Now we need to update our outstanding extents and csum bytes _first_ 337 * and then add the reservation to the block_rsv. This keeps us from 338 * racing with an ordered completion or some such that would think it 339 * needs to free the reservation we just made. 340 */ 341 spin_lock(&inode->lock); 342 nr_extents = count_max_extents(num_bytes); 343 btrfs_mod_outstanding_extents(inode, nr_extents); 344 inode->csum_bytes += num_bytes; 345 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 346 spin_unlock(&inode->lock); 347 348 /* Now we can safely add our space to our block rsv */ 349 btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false); 350 trace_btrfs_space_reservation(root->fs_info, "delalloc", 351 btrfs_ino(inode), meta_reserve, 1); 352 353 spin_lock(&block_rsv->lock); 354 block_rsv->qgroup_rsv_reserved += qgroup_reserve; 355 spin_unlock(&block_rsv->lock); 356 357 return 0; 358} 359 360/** 361 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 362 * @inode: the inode to release the reservation for. 363 * @num_bytes: the number of bytes we are releasing. 364 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation 365 * 366 * This will release the metadata reservation for an inode. This can be called 367 * once we complete IO for a given set of bytes to release their metadata 368 * reservations, or on error for the same reason. 369 */ 370void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, 371 bool qgroup_free) 372{ 373 struct btrfs_fs_info *fs_info = inode->root->fs_info; 374 375 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 376 spin_lock(&inode->lock); 377 inode->csum_bytes -= num_bytes; 378 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 379 spin_unlock(&inode->lock); 380 381 if (btrfs_is_testing(fs_info)) 382 return; 383 384 btrfs_inode_rsv_release(inode, qgroup_free); 385} 386 387/** 388 * btrfs_delalloc_release_extents - release our outstanding_extents 389 * @inode: the inode to balance the reservation for. 390 * @num_bytes: the number of bytes we originally reserved with 391 * 392 * When we reserve space we increase outstanding_extents for the extents we may 393 * add. Once we've set the range as delalloc or created our ordered extents we 394 * have outstanding_extents to track the real usage, so we use this to free our 395 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 396 * with btrfs_delalloc_reserve_metadata. 397 */ 398void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes) 399{ 400 struct btrfs_fs_info *fs_info = inode->root->fs_info; 401 unsigned num_extents; 402 403 spin_lock(&inode->lock); 404 num_extents = count_max_extents(num_bytes); 405 btrfs_mod_outstanding_extents(inode, -num_extents); 406 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 407 spin_unlock(&inode->lock); 408 409 if (btrfs_is_testing(fs_info)) 410 return; 411 412 btrfs_inode_rsv_release(inode, true); 413} 414 415/** 416 * btrfs_delalloc_reserve_space - reserve data and metadata space for 417 * delalloc 418 * @inode: inode we're writing to 419 * @start: start range we are writing to 420 * @len: how long the range we are writing to 421 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 422 * current reservation. 423 * 424 * This will do the following things 425 * 426 * - reserve space in data space info for num bytes 427 * and reserve precious corresponding qgroup space 428 * (Done in check_data_free_space) 429 * 430 * - reserve space for metadata space, based on the number of outstanding 431 * extents and how much csums will be needed 432 * also reserve metadata space in a per root over-reserve method. 433 * - add to the inodes->delalloc_bytes 434 * - add it to the fs_info's delalloc inodes list. 435 * (Above 3 all done in delalloc_reserve_metadata) 436 * 437 * Return 0 for success 438 * Return <0 for error(-ENOSPC or -EQUOT) 439 */ 440int btrfs_delalloc_reserve_space(struct btrfs_inode *inode, 441 struct extent_changeset **reserved, u64 start, u64 len) 442{ 443 int ret; 444 445 ret = btrfs_check_data_free_space(inode, reserved, start, len); 446 if (ret < 0) 447 return ret; 448 ret = btrfs_delalloc_reserve_metadata(inode, len); 449 if (ret < 0) 450 btrfs_free_reserved_data_space(inode, *reserved, start, len); 451 return ret; 452} 453 454/** 455 * btrfs_delalloc_release_space - release data and metadata space for delalloc 456 * @inode: inode we're releasing space for 457 * @start: start position of the space already reserved 458 * @len: the len of the space already reserved 459 * @release_bytes: the len of the space we consumed or didn't use 460 * 461 * This function will release the metadata space that was not used and will 462 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 463 * list if there are no delalloc bytes left. 464 * Also it will handle the qgroup reserved space. 465 */ 466void btrfs_delalloc_release_space(struct btrfs_inode *inode, 467 struct extent_changeset *reserved, 468 u64 start, u64 len, bool qgroup_free) 469{ 470 btrfs_delalloc_release_metadata(inode, len, qgroup_free); 471 btrfs_free_reserved_data_space(inode, reserved, start, len); 472} 473