1// SPDX-License-Identifier: GPL-2.0
2
3#include "ctree.h"
4#include "delalloc-space.h"
5#include "block-rsv.h"
6#include "btrfs_inode.h"
7#include "space-info.h"
8#include "transaction.h"
9#include "qgroup.h"
10#include "block-group.h"
11
12/*
13 * HOW DOES THIS WORK
14 *
15 * There are two stages to data reservations, one for data and one for metadata
16 * to handle the new extents and checksums generated by writing data.
17 *
18 *
19 * DATA RESERVATION
20 *   The general flow of the data reservation is as follows
21 *
22 *   -> Reserve
23 *     We call into btrfs_reserve_data_bytes() for the user request bytes that
24 *     they wish to write.  We make this reservation and add it to
25 *     space_info->bytes_may_use.  We set EXTENT_DELALLOC on the inode io_tree
26 *     for the range and carry on if this is buffered, or follow up trying to
27 *     make a real allocation if we are pre-allocating or doing O_DIRECT.
28 *
29 *   -> Use
30 *     At writepages()/prealloc/O_DIRECT time we will call into
31 *     btrfs_reserve_extent() for some part or all of this range of bytes.  We
32 *     will make the allocation and subtract space_info->bytes_may_use by the
33 *     original requested length and increase the space_info->bytes_reserved by
34 *     the allocated length.  This distinction is important because compression
35 *     may allocate a smaller on disk extent than we previously reserved.
36 *
37 *   -> Allocation
38 *     finish_ordered_io() will insert the new file extent item for this range,
39 *     and then add a delayed ref update for the extent tree.  Once that delayed
40 *     ref is written the extent size is subtracted from
41 *     space_info->bytes_reserved and added to space_info->bytes_used.
42 *
43 *   Error handling
44 *
45 *   -> By the reservation maker
46 *     This is the simplest case, we haven't completed our operation and we know
47 *     how much we reserved, we can simply call
48 *     btrfs_free_reserved_data_space*() and it will be removed from
49 *     space_info->bytes_may_use.
50 *
51 *   -> After the reservation has been made, but before cow_file_range()
52 *     This is specifically for the delalloc case.  You must clear
53 *     EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will
54 *     be subtracted from space_info->bytes_may_use.
55 *
56 * METADATA RESERVATION
57 *   The general metadata reservation lifetimes are discussed elsewhere, this
58 *   will just focus on how it is used for delalloc space.
59 *
60 *   We keep track of two things on a per inode bases
61 *
62 *   ->outstanding_extents
63 *     This is the number of file extent items we'll need to handle all of the
64 *     outstanding DELALLOC space we have in this inode.  We limit the maximum
65 *     size of an extent, so a large contiguous dirty area may require more than
66 *     one outstanding_extent, which is why count_max_extents() is used to
67 *     determine how many outstanding_extents get added.
68 *
69 *   ->csum_bytes
70 *     This is essentially how many dirty bytes we have for this inode, so we
71 *     can calculate the number of checksum items we would have to add in order
72 *     to checksum our outstanding data.
73 *
74 *   We keep a per-inode block_rsv in order to make it easier to keep track of
75 *   our reservation.  We use btrfs_calculate_inode_block_rsv_size() to
76 *   calculate the current theoretical maximum reservation we would need for the
77 *   metadata for this inode.  We call this and then adjust our reservation as
78 *   necessary, either by attempting to reserve more space, or freeing up excess
79 *   space.
80 *
81 * OUTSTANDING_EXTENTS HANDLING
82 *
83 *  ->outstanding_extents is used for keeping track of how many extents we will
84 *  need to use for this inode, and it will fluctuate depending on where you are
85 *  in the life cycle of the dirty data.  Consider the following normal case for
86 *  a completely clean inode, with a num_bytes < our maximum allowed extent size
87 *
88 *  -> reserve
89 *    ->outstanding_extents += 1 (current value is 1)
90 *
91 *  -> set_delalloc
92 *    ->outstanding_extents += 1 (currrent value is 2)
93 *
94 *  -> btrfs_delalloc_release_extents()
95 *    ->outstanding_extents -= 1 (current value is 1)
96 *
97 *    We must call this once we are done, as we hold our reservation for the
98 *    duration of our operation, and then assume set_delalloc will update the
99 *    counter appropriately.
100 *
101 *  -> add ordered extent
102 *    ->outstanding_extents += 1 (current value is 2)
103 *
104 *  -> btrfs_clear_delalloc_extent
105 *    ->outstanding_extents -= 1 (current value is 1)
106 *
107 *  -> finish_ordered_io/btrfs_remove_ordered_extent
108 *    ->outstanding_extents -= 1 (current value is 0)
109 *
110 *  Each stage is responsible for their own accounting of the extent, thus
111 *  making error handling and cleanup easier.
112 */
113
114int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
115{
116	struct btrfs_root *root = inode->root;
117	struct btrfs_fs_info *fs_info = root->fs_info;
118	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA;
119
120	/* Make sure bytes are sectorsize aligned */
121	bytes = ALIGN(bytes, fs_info->sectorsize);
122
123	if (btrfs_is_free_space_inode(inode))
124		flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE;
125
126	return btrfs_reserve_data_bytes(fs_info, bytes, flush);
127}
128
129int btrfs_check_data_free_space(struct btrfs_inode *inode,
130			struct extent_changeset **reserved, u64 start, u64 len)
131{
132	struct btrfs_fs_info *fs_info = inode->root->fs_info;
133	int ret;
134
135	/* align the range */
136	len = round_up(start + len, fs_info->sectorsize) -
137	      round_down(start, fs_info->sectorsize);
138	start = round_down(start, fs_info->sectorsize);
139
140	ret = btrfs_alloc_data_chunk_ondemand(inode, len);
141	if (ret < 0)
142		return ret;
143
144	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
145	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
146	if (ret < 0)
147		btrfs_free_reserved_data_space_noquota(fs_info, len);
148	else
149		ret = 0;
150	return ret;
151}
152
153/*
154 * Called if we need to clear a data reservation for this inode
155 * Normally in a error case.
156 *
157 * This one will *NOT* use accurate qgroup reserved space API, just for case
158 * which we can't sleep and is sure it won't affect qgroup reserved space.
159 * Like clear_bit_hook().
160 */
161void btrfs_free_reserved_data_space_noquota(struct btrfs_fs_info *fs_info,
162					    u64 len)
163{
164	struct btrfs_space_info *data_sinfo;
165
166	ASSERT(IS_ALIGNED(len, fs_info->sectorsize));
167
168	data_sinfo = fs_info->data_sinfo;
169	btrfs_space_info_free_bytes_may_use(fs_info, data_sinfo, len);
170}
171
172/*
173 * Called if we need to clear a data reservation for this inode
174 * Normally in a error case.
175 *
176 * This one will handle the per-inode data rsv map for accurate reserved
177 * space framework.
178 */
179void btrfs_free_reserved_data_space(struct btrfs_inode *inode,
180			struct extent_changeset *reserved, u64 start, u64 len)
181{
182	struct btrfs_fs_info *fs_info = inode->root->fs_info;
183
184	/* Make sure the range is aligned to sectorsize */
185	len = round_up(start + len, fs_info->sectorsize) -
186	      round_down(start, fs_info->sectorsize);
187	start = round_down(start, fs_info->sectorsize);
188
189	btrfs_free_reserved_data_space_noquota(fs_info, len);
190	btrfs_qgroup_free_data(inode, reserved, start, len);
191}
192
193/**
194 * btrfs_inode_rsv_release - release any excessive reservation.
195 * @inode - the inode we need to release from.
196 * @qgroup_free - free or convert qgroup meta.
197 *   Unlike normal operation, qgroup meta reservation needs to know if we are
198 *   freeing qgroup reservation or just converting it into per-trans.  Normally
199 *   @qgroup_free is true for error handling, and false for normal release.
200 *
201 * This is the same as btrfs_block_rsv_release, except that it handles the
202 * tracepoint for the reservation.
203 */
204static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
205{
206	struct btrfs_fs_info *fs_info = inode->root->fs_info;
207	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
208	u64 released = 0;
209	u64 qgroup_to_release = 0;
210
211	/*
212	 * Since we statically set the block_rsv->size we just want to say we
213	 * are releasing 0 bytes, and then we'll just get the reservation over
214	 * the size free'd.
215	 */
216	released = btrfs_block_rsv_release(fs_info, block_rsv, 0,
217					   &qgroup_to_release);
218	if (released > 0)
219		trace_btrfs_space_reservation(fs_info, "delalloc",
220					      btrfs_ino(inode), released, 0);
221	if (qgroup_free)
222		btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
223	else
224		btrfs_qgroup_convert_reserved_meta(inode->root,
225						   qgroup_to_release);
226}
227
228static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
229						 struct btrfs_inode *inode)
230{
231	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
232	u64 reserve_size = 0;
233	u64 qgroup_rsv_size = 0;
234	u64 csum_leaves;
235	unsigned outstanding_extents;
236
237	lockdep_assert_held(&inode->lock);
238	outstanding_extents = inode->outstanding_extents;
239
240	/*
241	 * Insert size for the number of outstanding extents, 1 normal size for
242	 * updating the inode.
243	 */
244	if (outstanding_extents) {
245		reserve_size = btrfs_calc_insert_metadata_size(fs_info,
246						outstanding_extents);
247		reserve_size += btrfs_calc_metadata_size(fs_info, 1);
248	}
249	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
250						 inode->csum_bytes);
251	reserve_size += btrfs_calc_insert_metadata_size(fs_info,
252							csum_leaves);
253	/*
254	 * For qgroup rsv, the calculation is very simple:
255	 * account one nodesize for each outstanding extent
256	 *
257	 * This is overestimating in most cases.
258	 */
259	qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
260
261	spin_lock(&block_rsv->lock);
262	block_rsv->size = reserve_size;
263	block_rsv->qgroup_rsv_size = qgroup_rsv_size;
264	spin_unlock(&block_rsv->lock);
265}
266
267static void calc_inode_reservations(struct btrfs_fs_info *fs_info,
268				    u64 num_bytes, u64 *meta_reserve,
269				    u64 *qgroup_reserve)
270{
271	u64 nr_extents = count_max_extents(num_bytes);
272	u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, num_bytes);
273	u64 inode_update = btrfs_calc_metadata_size(fs_info, 1);
274
275	*meta_reserve = btrfs_calc_insert_metadata_size(fs_info,
276						nr_extents + csum_leaves);
277
278	/*
279	 * finish_ordered_io has to update the inode, so add the space required
280	 * for an inode update.
281	 */
282	*meta_reserve += inode_update;
283	*qgroup_reserve = nr_extents * fs_info->nodesize;
284}
285
286int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
287{
288	struct btrfs_root *root = inode->root;
289	struct btrfs_fs_info *fs_info = root->fs_info;
290	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
291	u64 meta_reserve, qgroup_reserve;
292	unsigned nr_extents;
293	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
294	int ret = 0;
295
296	/*
297	 * If we are a free space inode we need to not flush since we will be in
298	 * the middle of a transaction commit.  We also don't need the delalloc
299	 * mutex since we won't race with anybody.  We need this mostly to make
300	 * lockdep shut its filthy mouth.
301	 *
302	 * If we have a transaction open (can happen if we call truncate_block
303	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
304	 */
305	if (btrfs_is_free_space_inode(inode)) {
306		flush = BTRFS_RESERVE_NO_FLUSH;
307	} else {
308		if (current->journal_info)
309			flush = BTRFS_RESERVE_FLUSH_LIMIT;
310	}
311
312	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
313
314	/*
315	 * We always want to do it this way, every other way is wrong and ends
316	 * in tears.  Pre-reserving the amount we are going to add will always
317	 * be the right way, because otherwise if we have enough parallelism we
318	 * could end up with thousands of inodes all holding little bits of
319	 * reservations they were able to make previously and the only way to
320	 * reclaim that space is to ENOSPC out the operations and clear
321	 * everything out and try again, which is bad.  This way we just
322	 * over-reserve slightly, and clean up the mess when we are done.
323	 */
324	calc_inode_reservations(fs_info, num_bytes, &meta_reserve,
325				&qgroup_reserve);
326	ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true);
327	if (ret)
328		return ret;
329	ret = btrfs_reserve_metadata_bytes(root, block_rsv, meta_reserve, flush);
330	if (ret) {
331		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve);
332		return ret;
333	}
334
335	/*
336	 * Now we need to update our outstanding extents and csum bytes _first_
337	 * and then add the reservation to the block_rsv.  This keeps us from
338	 * racing with an ordered completion or some such that would think it
339	 * needs to free the reservation we just made.
340	 */
341	spin_lock(&inode->lock);
342	nr_extents = count_max_extents(num_bytes);
343	btrfs_mod_outstanding_extents(inode, nr_extents);
344	inode->csum_bytes += num_bytes;
345	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
346	spin_unlock(&inode->lock);
347
348	/* Now we can safely add our space to our block rsv */
349	btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false);
350	trace_btrfs_space_reservation(root->fs_info, "delalloc",
351				      btrfs_ino(inode), meta_reserve, 1);
352
353	spin_lock(&block_rsv->lock);
354	block_rsv->qgroup_rsv_reserved += qgroup_reserve;
355	spin_unlock(&block_rsv->lock);
356
357	return 0;
358}
359
360/**
361 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
362 * @inode: the inode to release the reservation for.
363 * @num_bytes: the number of bytes we are releasing.
364 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
365 *
366 * This will release the metadata reservation for an inode.  This can be called
367 * once we complete IO for a given set of bytes to release their metadata
368 * reservations, or on error for the same reason.
369 */
370void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
371				     bool qgroup_free)
372{
373	struct btrfs_fs_info *fs_info = inode->root->fs_info;
374
375	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
376	spin_lock(&inode->lock);
377	inode->csum_bytes -= num_bytes;
378	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
379	spin_unlock(&inode->lock);
380
381	if (btrfs_is_testing(fs_info))
382		return;
383
384	btrfs_inode_rsv_release(inode, qgroup_free);
385}
386
387/**
388 * btrfs_delalloc_release_extents - release our outstanding_extents
389 * @inode: the inode to balance the reservation for.
390 * @num_bytes: the number of bytes we originally reserved with
391 *
392 * When we reserve space we increase outstanding_extents for the extents we may
393 * add.  Once we've set the range as delalloc or created our ordered extents we
394 * have outstanding_extents to track the real usage, so we use this to free our
395 * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
396 * with btrfs_delalloc_reserve_metadata.
397 */
398void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
399{
400	struct btrfs_fs_info *fs_info = inode->root->fs_info;
401	unsigned num_extents;
402
403	spin_lock(&inode->lock);
404	num_extents = count_max_extents(num_bytes);
405	btrfs_mod_outstanding_extents(inode, -num_extents);
406	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
407	spin_unlock(&inode->lock);
408
409	if (btrfs_is_testing(fs_info))
410		return;
411
412	btrfs_inode_rsv_release(inode, true);
413}
414
415/**
416 * btrfs_delalloc_reserve_space - reserve data and metadata space for
417 * delalloc
418 * @inode: inode we're writing to
419 * @start: start range we are writing to
420 * @len: how long the range we are writing to
421 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
422 * 	      current reservation.
423 *
424 * This will do the following things
425 *
426 * - reserve space in data space info for num bytes
427 *   and reserve precious corresponding qgroup space
428 *   (Done in check_data_free_space)
429 *
430 * - reserve space for metadata space, based on the number of outstanding
431 *   extents and how much csums will be needed
432 *   also reserve metadata space in a per root over-reserve method.
433 * - add to the inodes->delalloc_bytes
434 * - add it to the fs_info's delalloc inodes list.
435 *   (Above 3 all done in delalloc_reserve_metadata)
436 *
437 * Return 0 for success
438 * Return <0 for error(-ENOSPC or -EQUOT)
439 */
440int btrfs_delalloc_reserve_space(struct btrfs_inode *inode,
441			struct extent_changeset **reserved, u64 start, u64 len)
442{
443	int ret;
444
445	ret = btrfs_check_data_free_space(inode, reserved, start, len);
446	if (ret < 0)
447		return ret;
448	ret = btrfs_delalloc_reserve_metadata(inode, len);
449	if (ret < 0)
450		btrfs_free_reserved_data_space(inode, *reserved, start, len);
451	return ret;
452}
453
454/**
455 * btrfs_delalloc_release_space - release data and metadata space for delalloc
456 * @inode: inode we're releasing space for
457 * @start: start position of the space already reserved
458 * @len: the len of the space already reserved
459 * @release_bytes: the len of the space we consumed or didn't use
460 *
461 * This function will release the metadata space that was not used and will
462 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
463 * list if there are no delalloc bytes left.
464 * Also it will handle the qgroup reserved space.
465 */
466void btrfs_delalloc_release_space(struct btrfs_inode *inode,
467				  struct extent_changeset *reserved,
468				  u64 start, u64 len, bool qgroup_free)
469{
470	btrfs_delalloc_release_metadata(inode, len, qgroup_free);
471	btrfs_free_reserved_data_space(inode, reserved, start, len);
472}
473