1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6#include <linux/sched.h> 7#include <linux/slab.h> 8#include <linux/rbtree.h> 9#include <linux/mm.h> 10#include "ctree.h" 11#include "disk-io.h" 12#include "transaction.h" 13#include "print-tree.h" 14#include "locking.h" 15#include "volumes.h" 16#include "qgroup.h" 17 18static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 19 *root, struct btrfs_path *path, int level); 20static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 21 const struct btrfs_key *ins_key, struct btrfs_path *path, 22 int data_size, int extend); 23static int push_node_left(struct btrfs_trans_handle *trans, 24 struct extent_buffer *dst, 25 struct extent_buffer *src, int empty); 26static int balance_node_right(struct btrfs_trans_handle *trans, 27 struct extent_buffer *dst_buf, 28 struct extent_buffer *src_buf); 29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 30 int level, int slot); 31 32static const struct btrfs_csums { 33 u16 size; 34 const char name[10]; 35 const char driver[12]; 36} btrfs_csums[] = { 37 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 38 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, 39 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, 40 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", 41 .driver = "blake2b-256" }, 42}; 43 44int btrfs_super_csum_size(const struct btrfs_super_block *s) 45{ 46 u16 t = btrfs_super_csum_type(s); 47 /* 48 * csum type is validated at mount time 49 */ 50 return btrfs_csums[t].size; 51} 52 53const char *btrfs_super_csum_name(u16 csum_type) 54{ 55 /* csum type is validated at mount time */ 56 return btrfs_csums[csum_type].name; 57} 58 59/* 60 * Return driver name if defined, otherwise the name that's also a valid driver 61 * name 62 */ 63const char *btrfs_super_csum_driver(u16 csum_type) 64{ 65 /* csum type is validated at mount time */ 66 return btrfs_csums[csum_type].driver[0] ? 67 btrfs_csums[csum_type].driver : 68 btrfs_csums[csum_type].name; 69} 70 71size_t __attribute_const__ btrfs_get_num_csums(void) 72{ 73 return ARRAY_SIZE(btrfs_csums); 74} 75 76struct btrfs_path *btrfs_alloc_path(void) 77{ 78 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 79} 80 81/* this also releases the path */ 82void btrfs_free_path(struct btrfs_path *p) 83{ 84 if (!p) 85 return; 86 btrfs_release_path(p); 87 kmem_cache_free(btrfs_path_cachep, p); 88} 89 90/* 91 * path release drops references on the extent buffers in the path 92 * and it drops any locks held by this path 93 * 94 * It is safe to call this on paths that no locks or extent buffers held. 95 */ 96noinline void btrfs_release_path(struct btrfs_path *p) 97{ 98 int i; 99 100 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 101 p->slots[i] = 0; 102 if (!p->nodes[i]) 103 continue; 104 if (p->locks[i]) { 105 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 106 p->locks[i] = 0; 107 } 108 free_extent_buffer(p->nodes[i]); 109 p->nodes[i] = NULL; 110 } 111} 112 113/* 114 * safely gets a reference on the root node of a tree. A lock 115 * is not taken, so a concurrent writer may put a different node 116 * at the root of the tree. See btrfs_lock_root_node for the 117 * looping required. 118 * 119 * The extent buffer returned by this has a reference taken, so 120 * it won't disappear. It may stop being the root of the tree 121 * at any time because there are no locks held. 122 */ 123struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 124{ 125 struct extent_buffer *eb; 126 127 while (1) { 128 rcu_read_lock(); 129 eb = rcu_dereference(root->node); 130 131 /* 132 * RCU really hurts here, we could free up the root node because 133 * it was COWed but we may not get the new root node yet so do 134 * the inc_not_zero dance and if it doesn't work then 135 * synchronize_rcu and try again. 136 */ 137 if (atomic_inc_not_zero(&eb->refs)) { 138 rcu_read_unlock(); 139 break; 140 } 141 rcu_read_unlock(); 142 synchronize_rcu(); 143 } 144 return eb; 145} 146 147/* 148 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), 149 * just get put onto a simple dirty list. Transaction walks this list to make 150 * sure they get properly updated on disk. 151 */ 152static void add_root_to_dirty_list(struct btrfs_root *root) 153{ 154 struct btrfs_fs_info *fs_info = root->fs_info; 155 156 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 157 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 158 return; 159 160 spin_lock(&fs_info->trans_lock); 161 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 162 /* Want the extent tree to be the last on the list */ 163 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 164 list_move_tail(&root->dirty_list, 165 &fs_info->dirty_cowonly_roots); 166 else 167 list_move(&root->dirty_list, 168 &fs_info->dirty_cowonly_roots); 169 } 170 spin_unlock(&fs_info->trans_lock); 171} 172 173/* 174 * used by snapshot creation to make a copy of a root for a tree with 175 * a given objectid. The buffer with the new root node is returned in 176 * cow_ret, and this func returns zero on success or a negative error code. 177 */ 178int btrfs_copy_root(struct btrfs_trans_handle *trans, 179 struct btrfs_root *root, 180 struct extent_buffer *buf, 181 struct extent_buffer **cow_ret, u64 new_root_objectid) 182{ 183 struct btrfs_fs_info *fs_info = root->fs_info; 184 struct extent_buffer *cow; 185 int ret = 0; 186 int level; 187 struct btrfs_disk_key disk_key; 188 189 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 190 trans->transid != fs_info->running_transaction->transid); 191 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 192 trans->transid != root->last_trans); 193 194 level = btrfs_header_level(buf); 195 if (level == 0) 196 btrfs_item_key(buf, &disk_key, 0); 197 else 198 btrfs_node_key(buf, &disk_key, 0); 199 200 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 201 &disk_key, level, buf->start, 0, 202 BTRFS_NESTING_NEW_ROOT); 203 if (IS_ERR(cow)) 204 return PTR_ERR(cow); 205 206 copy_extent_buffer_full(cow, buf); 207 btrfs_set_header_bytenr(cow, cow->start); 208 btrfs_set_header_generation(cow, trans->transid); 209 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 210 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 211 BTRFS_HEADER_FLAG_RELOC); 212 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 213 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 214 else 215 btrfs_set_header_owner(cow, new_root_objectid); 216 217 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 218 219 WARN_ON(btrfs_header_generation(buf) > trans->transid); 220 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 221 ret = btrfs_inc_ref(trans, root, cow, 1); 222 else 223 ret = btrfs_inc_ref(trans, root, cow, 0); 224 if (ret) { 225 btrfs_tree_unlock(cow); 226 free_extent_buffer(cow); 227 btrfs_abort_transaction(trans, ret); 228 return ret; 229 } 230 231 btrfs_mark_buffer_dirty(cow); 232 *cow_ret = cow; 233 return 0; 234} 235 236enum mod_log_op { 237 MOD_LOG_KEY_REPLACE, 238 MOD_LOG_KEY_ADD, 239 MOD_LOG_KEY_REMOVE, 240 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 241 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 242 MOD_LOG_MOVE_KEYS, 243 MOD_LOG_ROOT_REPLACE, 244}; 245 246struct tree_mod_root { 247 u64 logical; 248 u8 level; 249}; 250 251struct tree_mod_elem { 252 struct rb_node node; 253 u64 logical; 254 u64 seq; 255 enum mod_log_op op; 256 257 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 258 int slot; 259 260 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 261 u64 generation; 262 263 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 264 struct btrfs_disk_key key; 265 u64 blockptr; 266 267 /* this is used for op == MOD_LOG_MOVE_KEYS */ 268 struct { 269 int dst_slot; 270 int nr_items; 271 } move; 272 273 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 274 struct tree_mod_root old_root; 275}; 276 277/* 278 * Pull a new tree mod seq number for our operation. 279 */ 280static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 281{ 282 return atomic64_inc_return(&fs_info->tree_mod_seq); 283} 284 285/* 286 * This adds a new blocker to the tree mod log's blocker list if the @elem 287 * passed does not already have a sequence number set. So when a caller expects 288 * to record tree modifications, it should ensure to set elem->seq to zero 289 * before calling btrfs_get_tree_mod_seq. 290 * Returns a fresh, unused tree log modification sequence number, even if no new 291 * blocker was added. 292 */ 293u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 294 struct seq_list *elem) 295{ 296 write_lock(&fs_info->tree_mod_log_lock); 297 if (!elem->seq) { 298 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 299 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 300 } 301 write_unlock(&fs_info->tree_mod_log_lock); 302 303 return elem->seq; 304} 305 306void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 307 struct seq_list *elem) 308{ 309 struct rb_root *tm_root; 310 struct rb_node *node; 311 struct rb_node *next; 312 struct tree_mod_elem *tm; 313 u64 min_seq = (u64)-1; 314 u64 seq_putting = elem->seq; 315 316 if (!seq_putting) 317 return; 318 319 write_lock(&fs_info->tree_mod_log_lock); 320 list_del(&elem->list); 321 elem->seq = 0; 322 323 if (!list_empty(&fs_info->tree_mod_seq_list)) { 324 struct seq_list *first; 325 326 first = list_first_entry(&fs_info->tree_mod_seq_list, 327 struct seq_list, list); 328 if (seq_putting > first->seq) { 329 /* 330 * Blocker with lower sequence number exists, we 331 * cannot remove anything from the log. 332 */ 333 write_unlock(&fs_info->tree_mod_log_lock); 334 return; 335 } 336 min_seq = first->seq; 337 } 338 339 /* 340 * anything that's lower than the lowest existing (read: blocked) 341 * sequence number can be removed from the tree. 342 */ 343 tm_root = &fs_info->tree_mod_log; 344 for (node = rb_first(tm_root); node; node = next) { 345 next = rb_next(node); 346 tm = rb_entry(node, struct tree_mod_elem, node); 347 if (tm->seq >= min_seq) 348 continue; 349 rb_erase(node, tm_root); 350 kfree(tm); 351 } 352 write_unlock(&fs_info->tree_mod_log_lock); 353} 354 355/* 356 * key order of the log: 357 * node/leaf start address -> sequence 358 * 359 * The 'start address' is the logical address of the *new* root node 360 * for root replace operations, or the logical address of the affected 361 * block for all other operations. 362 */ 363static noinline int 364__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 365{ 366 struct rb_root *tm_root; 367 struct rb_node **new; 368 struct rb_node *parent = NULL; 369 struct tree_mod_elem *cur; 370 371 lockdep_assert_held_write(&fs_info->tree_mod_log_lock); 372 373 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 374 375 tm_root = &fs_info->tree_mod_log; 376 new = &tm_root->rb_node; 377 while (*new) { 378 cur = rb_entry(*new, struct tree_mod_elem, node); 379 parent = *new; 380 if (cur->logical < tm->logical) 381 new = &((*new)->rb_left); 382 else if (cur->logical > tm->logical) 383 new = &((*new)->rb_right); 384 else if (cur->seq < tm->seq) 385 new = &((*new)->rb_left); 386 else if (cur->seq > tm->seq) 387 new = &((*new)->rb_right); 388 else 389 return -EEXIST; 390 } 391 392 rb_link_node(&tm->node, parent, new); 393 rb_insert_color(&tm->node, tm_root); 394 return 0; 395} 396 397/* 398 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 399 * returns zero with the tree_mod_log_lock acquired. The caller must hold 400 * this until all tree mod log insertions are recorded in the rb tree and then 401 * write unlock fs_info::tree_mod_log_lock. 402 */ 403static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 404 struct extent_buffer *eb) { 405 smp_mb(); 406 if (list_empty(&(fs_info)->tree_mod_seq_list)) 407 return 1; 408 if (eb && btrfs_header_level(eb) == 0) 409 return 1; 410 411 write_lock(&fs_info->tree_mod_log_lock); 412 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 413 write_unlock(&fs_info->tree_mod_log_lock); 414 return 1; 415 } 416 417 return 0; 418} 419 420/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 421static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 422 struct extent_buffer *eb) 423{ 424 smp_mb(); 425 if (list_empty(&(fs_info)->tree_mod_seq_list)) 426 return 0; 427 if (eb && btrfs_header_level(eb) == 0) 428 return 0; 429 430 return 1; 431} 432 433static struct tree_mod_elem * 434alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 435 enum mod_log_op op, gfp_t flags) 436{ 437 struct tree_mod_elem *tm; 438 439 tm = kzalloc(sizeof(*tm), flags); 440 if (!tm) 441 return NULL; 442 443 tm->logical = eb->start; 444 if (op != MOD_LOG_KEY_ADD) { 445 btrfs_node_key(eb, &tm->key, slot); 446 tm->blockptr = btrfs_node_blockptr(eb, slot); 447 } 448 tm->op = op; 449 tm->slot = slot; 450 tm->generation = btrfs_node_ptr_generation(eb, slot); 451 RB_CLEAR_NODE(&tm->node); 452 453 return tm; 454} 455 456static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 457 enum mod_log_op op, gfp_t flags) 458{ 459 struct tree_mod_elem *tm; 460 int ret; 461 462 if (!tree_mod_need_log(eb->fs_info, eb)) 463 return 0; 464 465 tm = alloc_tree_mod_elem(eb, slot, op, flags); 466 if (!tm) 467 return -ENOMEM; 468 469 if (tree_mod_dont_log(eb->fs_info, eb)) { 470 kfree(tm); 471 return 0; 472 } 473 474 ret = __tree_mod_log_insert(eb->fs_info, tm); 475 write_unlock(&eb->fs_info->tree_mod_log_lock); 476 if (ret) 477 kfree(tm); 478 479 return ret; 480} 481 482static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 483 int dst_slot, int src_slot, int nr_items) 484{ 485 struct tree_mod_elem *tm = NULL; 486 struct tree_mod_elem **tm_list = NULL; 487 int ret = 0; 488 int i; 489 int locked = 0; 490 491 if (!tree_mod_need_log(eb->fs_info, eb)) 492 return 0; 493 494 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 495 if (!tm_list) 496 return -ENOMEM; 497 498 tm = kzalloc(sizeof(*tm), GFP_NOFS); 499 if (!tm) { 500 ret = -ENOMEM; 501 goto free_tms; 502 } 503 504 tm->logical = eb->start; 505 tm->slot = src_slot; 506 tm->move.dst_slot = dst_slot; 507 tm->move.nr_items = nr_items; 508 tm->op = MOD_LOG_MOVE_KEYS; 509 510 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 511 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 512 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 513 if (!tm_list[i]) { 514 ret = -ENOMEM; 515 goto free_tms; 516 } 517 } 518 519 if (tree_mod_dont_log(eb->fs_info, eb)) 520 goto free_tms; 521 locked = 1; 522 523 /* 524 * When we override something during the move, we log these removals. 525 * This can only happen when we move towards the beginning of the 526 * buffer, i.e. dst_slot < src_slot. 527 */ 528 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 529 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 530 if (ret) 531 goto free_tms; 532 } 533 534 ret = __tree_mod_log_insert(eb->fs_info, tm); 535 if (ret) 536 goto free_tms; 537 write_unlock(&eb->fs_info->tree_mod_log_lock); 538 kfree(tm_list); 539 540 return 0; 541free_tms: 542 for (i = 0; i < nr_items; i++) { 543 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 544 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 545 kfree(tm_list[i]); 546 } 547 if (locked) 548 write_unlock(&eb->fs_info->tree_mod_log_lock); 549 kfree(tm_list); 550 kfree(tm); 551 552 return ret; 553} 554 555static inline int 556__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 557 struct tree_mod_elem **tm_list, 558 int nritems) 559{ 560 int i, j; 561 int ret; 562 563 for (i = nritems - 1; i >= 0; i--) { 564 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 565 if (ret) { 566 for (j = nritems - 1; j > i; j--) 567 rb_erase(&tm_list[j]->node, 568 &fs_info->tree_mod_log); 569 return ret; 570 } 571 } 572 573 return 0; 574} 575 576static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 577 struct extent_buffer *new_root, int log_removal) 578{ 579 struct btrfs_fs_info *fs_info = old_root->fs_info; 580 struct tree_mod_elem *tm = NULL; 581 struct tree_mod_elem **tm_list = NULL; 582 int nritems = 0; 583 int ret = 0; 584 int i; 585 586 if (!tree_mod_need_log(fs_info, NULL)) 587 return 0; 588 589 if (log_removal && btrfs_header_level(old_root) > 0) { 590 nritems = btrfs_header_nritems(old_root); 591 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 592 GFP_NOFS); 593 if (!tm_list) { 594 ret = -ENOMEM; 595 goto free_tms; 596 } 597 for (i = 0; i < nritems; i++) { 598 tm_list[i] = alloc_tree_mod_elem(old_root, i, 599 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 600 if (!tm_list[i]) { 601 ret = -ENOMEM; 602 goto free_tms; 603 } 604 } 605 } 606 607 tm = kzalloc(sizeof(*tm), GFP_NOFS); 608 if (!tm) { 609 ret = -ENOMEM; 610 goto free_tms; 611 } 612 613 tm->logical = new_root->start; 614 tm->old_root.logical = old_root->start; 615 tm->old_root.level = btrfs_header_level(old_root); 616 tm->generation = btrfs_header_generation(old_root); 617 tm->op = MOD_LOG_ROOT_REPLACE; 618 619 if (tree_mod_dont_log(fs_info, NULL)) 620 goto free_tms; 621 622 if (tm_list) 623 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 624 if (!ret) 625 ret = __tree_mod_log_insert(fs_info, tm); 626 627 write_unlock(&fs_info->tree_mod_log_lock); 628 if (ret) 629 goto free_tms; 630 kfree(tm_list); 631 632 return ret; 633 634free_tms: 635 if (tm_list) { 636 for (i = 0; i < nritems; i++) 637 kfree(tm_list[i]); 638 kfree(tm_list); 639 } 640 kfree(tm); 641 642 return ret; 643} 644 645static struct tree_mod_elem * 646__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 647 int smallest) 648{ 649 struct rb_root *tm_root; 650 struct rb_node *node; 651 struct tree_mod_elem *cur = NULL; 652 struct tree_mod_elem *found = NULL; 653 654 read_lock(&fs_info->tree_mod_log_lock); 655 tm_root = &fs_info->tree_mod_log; 656 node = tm_root->rb_node; 657 while (node) { 658 cur = rb_entry(node, struct tree_mod_elem, node); 659 if (cur->logical < start) { 660 node = node->rb_left; 661 } else if (cur->logical > start) { 662 node = node->rb_right; 663 } else if (cur->seq < min_seq) { 664 node = node->rb_left; 665 } else if (!smallest) { 666 /* we want the node with the highest seq */ 667 if (found) 668 BUG_ON(found->seq > cur->seq); 669 found = cur; 670 node = node->rb_left; 671 } else if (cur->seq > min_seq) { 672 /* we want the node with the smallest seq */ 673 if (found) 674 BUG_ON(found->seq < cur->seq); 675 found = cur; 676 node = node->rb_right; 677 } else { 678 found = cur; 679 break; 680 } 681 } 682 read_unlock(&fs_info->tree_mod_log_lock); 683 684 return found; 685} 686 687/* 688 * this returns the element from the log with the smallest time sequence 689 * value that's in the log (the oldest log item). any element with a time 690 * sequence lower than min_seq will be ignored. 691 */ 692static struct tree_mod_elem * 693tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 694 u64 min_seq) 695{ 696 return __tree_mod_log_search(fs_info, start, min_seq, 1); 697} 698 699/* 700 * this returns the element from the log with the largest time sequence 701 * value that's in the log (the most recent log item). any element with 702 * a time sequence lower than min_seq will be ignored. 703 */ 704static struct tree_mod_elem * 705tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 706{ 707 return __tree_mod_log_search(fs_info, start, min_seq, 0); 708} 709 710static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst, 711 struct extent_buffer *src, unsigned long dst_offset, 712 unsigned long src_offset, int nr_items) 713{ 714 struct btrfs_fs_info *fs_info = dst->fs_info; 715 int ret = 0; 716 struct tree_mod_elem **tm_list = NULL; 717 struct tree_mod_elem **tm_list_add, **tm_list_rem; 718 int i; 719 int locked = 0; 720 721 if (!tree_mod_need_log(fs_info, NULL)) 722 return 0; 723 724 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 725 return 0; 726 727 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 728 GFP_NOFS); 729 if (!tm_list) 730 return -ENOMEM; 731 732 tm_list_add = tm_list; 733 tm_list_rem = tm_list + nr_items; 734 for (i = 0; i < nr_items; i++) { 735 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 736 MOD_LOG_KEY_REMOVE, GFP_NOFS); 737 if (!tm_list_rem[i]) { 738 ret = -ENOMEM; 739 goto free_tms; 740 } 741 742 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 743 MOD_LOG_KEY_ADD, GFP_NOFS); 744 if (!tm_list_add[i]) { 745 ret = -ENOMEM; 746 goto free_tms; 747 } 748 } 749 750 if (tree_mod_dont_log(fs_info, NULL)) 751 goto free_tms; 752 locked = 1; 753 754 for (i = 0; i < nr_items; i++) { 755 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 756 if (ret) 757 goto free_tms; 758 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 759 if (ret) 760 goto free_tms; 761 } 762 763 write_unlock(&fs_info->tree_mod_log_lock); 764 kfree(tm_list); 765 766 return 0; 767 768free_tms: 769 for (i = 0; i < nr_items * 2; i++) { 770 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 771 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 772 kfree(tm_list[i]); 773 } 774 if (locked) 775 write_unlock(&fs_info->tree_mod_log_lock); 776 kfree(tm_list); 777 778 return ret; 779} 780 781static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 782{ 783 struct tree_mod_elem **tm_list = NULL; 784 int nritems = 0; 785 int i; 786 int ret = 0; 787 788 if (btrfs_header_level(eb) == 0) 789 return 0; 790 791 if (!tree_mod_need_log(eb->fs_info, NULL)) 792 return 0; 793 794 nritems = btrfs_header_nritems(eb); 795 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 796 if (!tm_list) 797 return -ENOMEM; 798 799 for (i = 0; i < nritems; i++) { 800 tm_list[i] = alloc_tree_mod_elem(eb, i, 801 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 802 if (!tm_list[i]) { 803 ret = -ENOMEM; 804 goto free_tms; 805 } 806 } 807 808 if (tree_mod_dont_log(eb->fs_info, eb)) 809 goto free_tms; 810 811 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 812 write_unlock(&eb->fs_info->tree_mod_log_lock); 813 if (ret) 814 goto free_tms; 815 kfree(tm_list); 816 817 return 0; 818 819free_tms: 820 for (i = 0; i < nritems; i++) 821 kfree(tm_list[i]); 822 kfree(tm_list); 823 824 return ret; 825} 826 827/* 828 * check if the tree block can be shared by multiple trees 829 */ 830int btrfs_block_can_be_shared(struct btrfs_root *root, 831 struct extent_buffer *buf) 832{ 833 /* 834 * Tree blocks not in shareable trees and tree roots are never shared. 835 * If a block was allocated after the last snapshot and the block was 836 * not allocated by tree relocation, we know the block is not shared. 837 */ 838 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 839 buf != root->node && buf != root->commit_root && 840 (btrfs_header_generation(buf) <= 841 btrfs_root_last_snapshot(&root->root_item) || 842 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 843 return 1; 844 845 return 0; 846} 847 848static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 849 struct btrfs_root *root, 850 struct extent_buffer *buf, 851 struct extent_buffer *cow, 852 int *last_ref) 853{ 854 struct btrfs_fs_info *fs_info = root->fs_info; 855 u64 refs; 856 u64 owner; 857 u64 flags; 858 u64 new_flags = 0; 859 int ret; 860 861 /* 862 * Backrefs update rules: 863 * 864 * Always use full backrefs for extent pointers in tree block 865 * allocated by tree relocation. 866 * 867 * If a shared tree block is no longer referenced by its owner 868 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 869 * use full backrefs for extent pointers in tree block. 870 * 871 * If a tree block is been relocating 872 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 873 * use full backrefs for extent pointers in tree block. 874 * The reason for this is some operations (such as drop tree) 875 * are only allowed for blocks use full backrefs. 876 */ 877 878 if (btrfs_block_can_be_shared(root, buf)) { 879 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 880 btrfs_header_level(buf), 1, 881 &refs, &flags); 882 if (ret) 883 return ret; 884 if (refs == 0) { 885 ret = -EROFS; 886 btrfs_handle_fs_error(fs_info, ret, NULL); 887 return ret; 888 } 889 } else { 890 refs = 1; 891 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 892 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 893 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 894 else 895 flags = 0; 896 } 897 898 owner = btrfs_header_owner(buf); 899 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 900 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 901 902 if (refs > 1) { 903 if ((owner == root->root_key.objectid || 904 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 905 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 906 ret = btrfs_inc_ref(trans, root, buf, 1); 907 if (ret) 908 return ret; 909 910 if (root->root_key.objectid == 911 BTRFS_TREE_RELOC_OBJECTID) { 912 ret = btrfs_dec_ref(trans, root, buf, 0); 913 if (ret) 914 return ret; 915 ret = btrfs_inc_ref(trans, root, cow, 1); 916 if (ret) 917 return ret; 918 } 919 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 920 } else { 921 922 if (root->root_key.objectid == 923 BTRFS_TREE_RELOC_OBJECTID) 924 ret = btrfs_inc_ref(trans, root, cow, 1); 925 else 926 ret = btrfs_inc_ref(trans, root, cow, 0); 927 if (ret) 928 return ret; 929 } 930 if (new_flags != 0) { 931 int level = btrfs_header_level(buf); 932 933 ret = btrfs_set_disk_extent_flags(trans, buf, 934 new_flags, level, 0); 935 if (ret) 936 return ret; 937 } 938 } else { 939 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 940 if (root->root_key.objectid == 941 BTRFS_TREE_RELOC_OBJECTID) 942 ret = btrfs_inc_ref(trans, root, cow, 1); 943 else 944 ret = btrfs_inc_ref(trans, root, cow, 0); 945 if (ret) 946 return ret; 947 ret = btrfs_dec_ref(trans, root, buf, 1); 948 if (ret) 949 return ret; 950 } 951 btrfs_clean_tree_block(buf); 952 *last_ref = 1; 953 } 954 return 0; 955} 956 957static struct extent_buffer *alloc_tree_block_no_bg_flush( 958 struct btrfs_trans_handle *trans, 959 struct btrfs_root *root, 960 u64 parent_start, 961 const struct btrfs_disk_key *disk_key, 962 int level, 963 u64 hint, 964 u64 empty_size, 965 enum btrfs_lock_nesting nest) 966{ 967 struct btrfs_fs_info *fs_info = root->fs_info; 968 struct extent_buffer *ret; 969 970 /* 971 * If we are COWing a node/leaf from the extent, chunk, device or free 972 * space trees, make sure that we do not finish block group creation of 973 * pending block groups. We do this to avoid a deadlock. 974 * COWing can result in allocation of a new chunk, and flushing pending 975 * block groups (btrfs_create_pending_block_groups()) can be triggered 976 * when finishing allocation of a new chunk. Creation of a pending block 977 * group modifies the extent, chunk, device and free space trees, 978 * therefore we could deadlock with ourselves since we are holding a 979 * lock on an extent buffer that btrfs_create_pending_block_groups() may 980 * try to COW later. 981 * For similar reasons, we also need to delay flushing pending block 982 * groups when splitting a leaf or node, from one of those trees, since 983 * we are holding a write lock on it and its parent or when inserting a 984 * new root node for one of those trees. 985 */ 986 if (root == fs_info->extent_root || 987 root == fs_info->chunk_root || 988 root == fs_info->dev_root || 989 root == fs_info->free_space_root) 990 trans->can_flush_pending_bgs = false; 991 992 ret = btrfs_alloc_tree_block(trans, root, parent_start, 993 root->root_key.objectid, disk_key, level, 994 hint, empty_size, nest); 995 trans->can_flush_pending_bgs = true; 996 997 return ret; 998} 999 1000/* 1001 * does the dirty work in cow of a single block. The parent block (if 1002 * supplied) is updated to point to the new cow copy. The new buffer is marked 1003 * dirty and returned locked. If you modify the block it needs to be marked 1004 * dirty again. 1005 * 1006 * search_start -- an allocation hint for the new block 1007 * 1008 * empty_size -- a hint that you plan on doing more cow. This is the size in 1009 * bytes the allocator should try to find free next to the block it returns. 1010 * This is just a hint and may be ignored by the allocator. 1011 */ 1012static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1013 struct btrfs_root *root, 1014 struct extent_buffer *buf, 1015 struct extent_buffer *parent, int parent_slot, 1016 struct extent_buffer **cow_ret, 1017 u64 search_start, u64 empty_size, 1018 enum btrfs_lock_nesting nest) 1019{ 1020 struct btrfs_fs_info *fs_info = root->fs_info; 1021 struct btrfs_disk_key disk_key; 1022 struct extent_buffer *cow; 1023 int level, ret; 1024 int last_ref = 0; 1025 int unlock_orig = 0; 1026 u64 parent_start = 0; 1027 1028 if (*cow_ret == buf) 1029 unlock_orig = 1; 1030 1031 btrfs_assert_tree_locked(buf); 1032 1033 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 1034 trans->transid != fs_info->running_transaction->transid); 1035 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 1036 trans->transid != root->last_trans); 1037 1038 level = btrfs_header_level(buf); 1039 1040 if (level == 0) 1041 btrfs_item_key(buf, &disk_key, 0); 1042 else 1043 btrfs_node_key(buf, &disk_key, 0); 1044 1045 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1046 parent_start = parent->start; 1047 1048 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key, 1049 level, search_start, empty_size, nest); 1050 if (IS_ERR(cow)) 1051 return PTR_ERR(cow); 1052 1053 /* cow is set to blocking by btrfs_init_new_buffer */ 1054 1055 copy_extent_buffer_full(cow, buf); 1056 btrfs_set_header_bytenr(cow, cow->start); 1057 btrfs_set_header_generation(cow, trans->transid); 1058 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1059 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1060 BTRFS_HEADER_FLAG_RELOC); 1061 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1062 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1063 else 1064 btrfs_set_header_owner(cow, root->root_key.objectid); 1065 1066 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 1067 1068 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1069 if (ret) { 1070 btrfs_tree_unlock(cow); 1071 free_extent_buffer(cow); 1072 btrfs_abort_transaction(trans, ret); 1073 return ret; 1074 } 1075 1076 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 1077 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1078 if (ret) { 1079 btrfs_tree_unlock(cow); 1080 free_extent_buffer(cow); 1081 btrfs_abort_transaction(trans, ret); 1082 return ret; 1083 } 1084 } 1085 1086 if (buf == root->node) { 1087 WARN_ON(parent && parent != buf); 1088 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1089 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1090 parent_start = buf->start; 1091 1092 atomic_inc(&cow->refs); 1093 ret = tree_mod_log_insert_root(root->node, cow, 1); 1094 BUG_ON(ret < 0); 1095 rcu_assign_pointer(root->node, cow); 1096 1097 btrfs_free_tree_block(trans, root, buf, parent_start, 1098 last_ref); 1099 free_extent_buffer(buf); 1100 add_root_to_dirty_list(root); 1101 } else { 1102 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1103 tree_mod_log_insert_key(parent, parent_slot, 1104 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1105 btrfs_set_node_blockptr(parent, parent_slot, 1106 cow->start); 1107 btrfs_set_node_ptr_generation(parent, parent_slot, 1108 trans->transid); 1109 btrfs_mark_buffer_dirty(parent); 1110 if (last_ref) { 1111 ret = tree_mod_log_free_eb(buf); 1112 if (ret) { 1113 btrfs_tree_unlock(cow); 1114 free_extent_buffer(cow); 1115 btrfs_abort_transaction(trans, ret); 1116 return ret; 1117 } 1118 } 1119 btrfs_free_tree_block(trans, root, buf, parent_start, 1120 last_ref); 1121 } 1122 if (unlock_orig) 1123 btrfs_tree_unlock(buf); 1124 free_extent_buffer_stale(buf); 1125 btrfs_mark_buffer_dirty(cow); 1126 *cow_ret = cow; 1127 return 0; 1128} 1129 1130/* 1131 * returns the logical address of the oldest predecessor of the given root. 1132 * entries older than time_seq are ignored. 1133 */ 1134static struct tree_mod_elem *__tree_mod_log_oldest_root( 1135 struct extent_buffer *eb_root, u64 time_seq) 1136{ 1137 struct tree_mod_elem *tm; 1138 struct tree_mod_elem *found = NULL; 1139 u64 root_logical = eb_root->start; 1140 int looped = 0; 1141 1142 if (!time_seq) 1143 return NULL; 1144 1145 /* 1146 * the very last operation that's logged for a root is the 1147 * replacement operation (if it is replaced at all). this has 1148 * the logical address of the *new* root, making it the very 1149 * first operation that's logged for this root. 1150 */ 1151 while (1) { 1152 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1153 time_seq); 1154 if (!looped && !tm) 1155 return NULL; 1156 /* 1157 * if there are no tree operation for the oldest root, we simply 1158 * return it. this should only happen if that (old) root is at 1159 * level 0. 1160 */ 1161 if (!tm) 1162 break; 1163 1164 /* 1165 * if there's an operation that's not a root replacement, we 1166 * found the oldest version of our root. normally, we'll find a 1167 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1168 */ 1169 if (tm->op != MOD_LOG_ROOT_REPLACE) 1170 break; 1171 1172 found = tm; 1173 root_logical = tm->old_root.logical; 1174 looped = 1; 1175 } 1176 1177 /* if there's no old root to return, return what we found instead */ 1178 if (!found) 1179 found = tm; 1180 1181 return found; 1182} 1183 1184/* 1185 * tm is a pointer to the first operation to rewind within eb. then, all 1186 * previous operations will be rewound (until we reach something older than 1187 * time_seq). 1188 */ 1189static void 1190__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1191 u64 time_seq, struct tree_mod_elem *first_tm) 1192{ 1193 u32 n; 1194 struct rb_node *next; 1195 struct tree_mod_elem *tm = first_tm; 1196 unsigned long o_dst; 1197 unsigned long o_src; 1198 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1199 1200 n = btrfs_header_nritems(eb); 1201 read_lock(&fs_info->tree_mod_log_lock); 1202 while (tm && tm->seq >= time_seq) { 1203 /* 1204 * all the operations are recorded with the operator used for 1205 * the modification. as we're going backwards, we do the 1206 * opposite of each operation here. 1207 */ 1208 switch (tm->op) { 1209 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1210 BUG_ON(tm->slot < n); 1211 fallthrough; 1212 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1213 case MOD_LOG_KEY_REMOVE: 1214 btrfs_set_node_key(eb, &tm->key, tm->slot); 1215 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1216 btrfs_set_node_ptr_generation(eb, tm->slot, 1217 tm->generation); 1218 n++; 1219 break; 1220 case MOD_LOG_KEY_REPLACE: 1221 BUG_ON(tm->slot >= n); 1222 btrfs_set_node_key(eb, &tm->key, tm->slot); 1223 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1224 btrfs_set_node_ptr_generation(eb, tm->slot, 1225 tm->generation); 1226 break; 1227 case MOD_LOG_KEY_ADD: 1228 /* if a move operation is needed it's in the log */ 1229 n--; 1230 break; 1231 case MOD_LOG_MOVE_KEYS: 1232 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1233 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1234 memmove_extent_buffer(eb, o_dst, o_src, 1235 tm->move.nr_items * p_size); 1236 break; 1237 case MOD_LOG_ROOT_REPLACE: 1238 /* 1239 * this operation is special. for roots, this must be 1240 * handled explicitly before rewinding. 1241 * for non-roots, this operation may exist if the node 1242 * was a root: root A -> child B; then A gets empty and 1243 * B is promoted to the new root. in the mod log, we'll 1244 * have a root-replace operation for B, a tree block 1245 * that is no root. we simply ignore that operation. 1246 */ 1247 break; 1248 } 1249 next = rb_next(&tm->node); 1250 if (!next) 1251 break; 1252 tm = rb_entry(next, struct tree_mod_elem, node); 1253 if (tm->logical != first_tm->logical) 1254 break; 1255 } 1256 read_unlock(&fs_info->tree_mod_log_lock); 1257 btrfs_set_header_nritems(eb, n); 1258} 1259 1260/* 1261 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1262 * is returned. If rewind operations happen, a fresh buffer is returned. The 1263 * returned buffer is always read-locked. If the returned buffer is not the 1264 * input buffer, the lock on the input buffer is released and the input buffer 1265 * is freed (its refcount is decremented). 1266 */ 1267static struct extent_buffer * 1268tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1269 struct extent_buffer *eb, u64 time_seq) 1270{ 1271 struct extent_buffer *eb_rewin; 1272 struct tree_mod_elem *tm; 1273 1274 if (!time_seq) 1275 return eb; 1276 1277 if (btrfs_header_level(eb) == 0) 1278 return eb; 1279 1280 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1281 if (!tm) 1282 return eb; 1283 1284 btrfs_set_path_blocking(path); 1285 btrfs_set_lock_blocking_read(eb); 1286 1287 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1288 BUG_ON(tm->slot != 0); 1289 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1290 if (!eb_rewin) { 1291 btrfs_tree_read_unlock_blocking(eb); 1292 free_extent_buffer(eb); 1293 return NULL; 1294 } 1295 btrfs_set_header_bytenr(eb_rewin, eb->start); 1296 btrfs_set_header_backref_rev(eb_rewin, 1297 btrfs_header_backref_rev(eb)); 1298 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1299 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1300 } else { 1301 eb_rewin = btrfs_clone_extent_buffer(eb); 1302 if (!eb_rewin) { 1303 btrfs_tree_read_unlock_blocking(eb); 1304 free_extent_buffer(eb); 1305 return NULL; 1306 } 1307 } 1308 1309 btrfs_tree_read_unlock_blocking(eb); 1310 free_extent_buffer(eb); 1311 1312 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin), 1313 eb_rewin, btrfs_header_level(eb_rewin)); 1314 btrfs_tree_read_lock(eb_rewin); 1315 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1316 WARN_ON(btrfs_header_nritems(eb_rewin) > 1317 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1318 1319 return eb_rewin; 1320} 1321 1322/* 1323 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1324 * value. If there are no changes, the current root->root_node is returned. If 1325 * anything changed in between, there's a fresh buffer allocated on which the 1326 * rewind operations are done. In any case, the returned buffer is read locked. 1327 * Returns NULL on error (with no locks held). 1328 */ 1329static inline struct extent_buffer * 1330get_old_root(struct btrfs_root *root, u64 time_seq) 1331{ 1332 struct btrfs_fs_info *fs_info = root->fs_info; 1333 struct tree_mod_elem *tm; 1334 struct extent_buffer *eb = NULL; 1335 struct extent_buffer *eb_root; 1336 u64 eb_root_owner = 0; 1337 struct extent_buffer *old; 1338 struct tree_mod_root *old_root = NULL; 1339 u64 old_generation = 0; 1340 u64 logical; 1341 int level; 1342 1343 eb_root = btrfs_read_lock_root_node(root); 1344 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1345 if (!tm) 1346 return eb_root; 1347 1348 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1349 old_root = &tm->old_root; 1350 old_generation = tm->generation; 1351 logical = old_root->logical; 1352 level = old_root->level; 1353 } else { 1354 logical = eb_root->start; 1355 level = btrfs_header_level(eb_root); 1356 } 1357 1358 tm = tree_mod_log_search(fs_info, logical, time_seq); 1359 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1360 btrfs_tree_read_unlock(eb_root); 1361 free_extent_buffer(eb_root); 1362 old = read_tree_block(fs_info, logical, 0, level, NULL); 1363 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1364 if (!IS_ERR(old)) 1365 free_extent_buffer(old); 1366 btrfs_warn(fs_info, 1367 "failed to read tree block %llu from get_old_root", 1368 logical); 1369 } else { 1370 struct tree_mod_elem *tm2; 1371 1372 btrfs_tree_read_lock(old); 1373 eb = btrfs_clone_extent_buffer(old); 1374 /* 1375 * After the lookup for the most recent tree mod operation 1376 * above and before we locked and cloned the extent buffer 1377 * 'old', a new tree mod log operation may have been added. 1378 * So lookup for a more recent one to make sure the number 1379 * of mod log operations we replay is consistent with the 1380 * number of items we have in the cloned extent buffer, 1381 * otherwise we can hit a BUG_ON when rewinding the extent 1382 * buffer. 1383 */ 1384 tm2 = tree_mod_log_search(fs_info, logical, time_seq); 1385 btrfs_tree_read_unlock(old); 1386 free_extent_buffer(old); 1387 ASSERT(tm2); 1388 ASSERT(tm2 == tm || tm2->seq > tm->seq); 1389 if (!tm2 || tm2->seq < tm->seq) { 1390 free_extent_buffer(eb); 1391 return NULL; 1392 } 1393 tm = tm2; 1394 } 1395 } else if (old_root) { 1396 eb_root_owner = btrfs_header_owner(eb_root); 1397 btrfs_tree_read_unlock(eb_root); 1398 free_extent_buffer(eb_root); 1399 eb = alloc_dummy_extent_buffer(fs_info, logical); 1400 } else { 1401 btrfs_set_lock_blocking_read(eb_root); 1402 eb = btrfs_clone_extent_buffer(eb_root); 1403 btrfs_tree_read_unlock_blocking(eb_root); 1404 free_extent_buffer(eb_root); 1405 } 1406 1407 if (!eb) 1408 return NULL; 1409 if (old_root) { 1410 btrfs_set_header_bytenr(eb, eb->start); 1411 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1412 btrfs_set_header_owner(eb, eb_root_owner); 1413 btrfs_set_header_level(eb, old_root->level); 1414 btrfs_set_header_generation(eb, old_generation); 1415 } 1416 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb, 1417 btrfs_header_level(eb)); 1418 btrfs_tree_read_lock(eb); 1419 if (tm) 1420 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1421 else 1422 WARN_ON(btrfs_header_level(eb) != 0); 1423 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1424 1425 return eb; 1426} 1427 1428int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1429{ 1430 struct tree_mod_elem *tm; 1431 int level; 1432 struct extent_buffer *eb_root = btrfs_root_node(root); 1433 1434 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1435 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1436 level = tm->old_root.level; 1437 } else { 1438 level = btrfs_header_level(eb_root); 1439 } 1440 free_extent_buffer(eb_root); 1441 1442 return level; 1443} 1444 1445static inline int should_cow_block(struct btrfs_trans_handle *trans, 1446 struct btrfs_root *root, 1447 struct extent_buffer *buf) 1448{ 1449 if (btrfs_is_testing(root->fs_info)) 1450 return 0; 1451 1452 /* Ensure we can see the FORCE_COW bit */ 1453 smp_mb__before_atomic(); 1454 1455 /* 1456 * We do not need to cow a block if 1457 * 1) this block is not created or changed in this transaction; 1458 * 2) this block does not belong to TREE_RELOC tree; 1459 * 3) the root is not forced COW. 1460 * 1461 * What is forced COW: 1462 * when we create snapshot during committing the transaction, 1463 * after we've finished copying src root, we must COW the shared 1464 * block to ensure the metadata consistency. 1465 */ 1466 if (btrfs_header_generation(buf) == trans->transid && 1467 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1468 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1469 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1470 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1471 return 0; 1472 return 1; 1473} 1474 1475/* 1476 * cows a single block, see __btrfs_cow_block for the real work. 1477 * This version of it has extra checks so that a block isn't COWed more than 1478 * once per transaction, as long as it hasn't been written yet 1479 */ 1480noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1481 struct btrfs_root *root, struct extent_buffer *buf, 1482 struct extent_buffer *parent, int parent_slot, 1483 struct extent_buffer **cow_ret, 1484 enum btrfs_lock_nesting nest) 1485{ 1486 struct btrfs_fs_info *fs_info = root->fs_info; 1487 u64 search_start; 1488 int ret; 1489 1490 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 1491 btrfs_err(fs_info, 1492 "COW'ing blocks on a fs root that's being dropped"); 1493 1494 if (trans->transaction != fs_info->running_transaction) 1495 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1496 trans->transid, 1497 fs_info->running_transaction->transid); 1498 1499 if (trans->transid != fs_info->generation) 1500 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1501 trans->transid, fs_info->generation); 1502 1503 if (!should_cow_block(trans, root, buf)) { 1504 trans->dirty = true; 1505 *cow_ret = buf; 1506 return 0; 1507 } 1508 1509 search_start = buf->start & ~((u64)SZ_1G - 1); 1510 1511 if (parent) 1512 btrfs_set_lock_blocking_write(parent); 1513 btrfs_set_lock_blocking_write(buf); 1514 1515 /* 1516 * Before CoWing this block for later modification, check if it's 1517 * the subtree root and do the delayed subtree trace if needed. 1518 * 1519 * Also We don't care about the error, as it's handled internally. 1520 */ 1521 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 1522 ret = __btrfs_cow_block(trans, root, buf, parent, 1523 parent_slot, cow_ret, search_start, 0, nest); 1524 1525 trace_btrfs_cow_block(root, buf, *cow_ret); 1526 1527 return ret; 1528} 1529 1530/* 1531 * helper function for defrag to decide if two blocks pointed to by a 1532 * node are actually close by 1533 */ 1534static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1535{ 1536 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1537 return 1; 1538 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1539 return 1; 1540 return 0; 1541} 1542 1543#ifdef __LITTLE_ENDIAN 1544 1545/* 1546 * Compare two keys, on little-endian the disk order is same as CPU order and 1547 * we can avoid the conversion. 1548 */ 1549static int comp_keys(const struct btrfs_disk_key *disk_key, 1550 const struct btrfs_key *k2) 1551{ 1552 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; 1553 1554 return btrfs_comp_cpu_keys(k1, k2); 1555} 1556 1557#else 1558 1559/* 1560 * compare two keys in a memcmp fashion 1561 */ 1562static int comp_keys(const struct btrfs_disk_key *disk, 1563 const struct btrfs_key *k2) 1564{ 1565 struct btrfs_key k1; 1566 1567 btrfs_disk_key_to_cpu(&k1, disk); 1568 1569 return btrfs_comp_cpu_keys(&k1, k2); 1570} 1571#endif 1572 1573/* 1574 * same as comp_keys only with two btrfs_key's 1575 */ 1576int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1577{ 1578 if (k1->objectid > k2->objectid) 1579 return 1; 1580 if (k1->objectid < k2->objectid) 1581 return -1; 1582 if (k1->type > k2->type) 1583 return 1; 1584 if (k1->type < k2->type) 1585 return -1; 1586 if (k1->offset > k2->offset) 1587 return 1; 1588 if (k1->offset < k2->offset) 1589 return -1; 1590 return 0; 1591} 1592 1593/* 1594 * this is used by the defrag code to go through all the 1595 * leaves pointed to by a node and reallocate them so that 1596 * disk order is close to key order 1597 */ 1598int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1599 struct btrfs_root *root, struct extent_buffer *parent, 1600 int start_slot, u64 *last_ret, 1601 struct btrfs_key *progress) 1602{ 1603 struct btrfs_fs_info *fs_info = root->fs_info; 1604 struct extent_buffer *cur; 1605 u64 blocknr; 1606 u64 gen; 1607 u64 search_start = *last_ret; 1608 u64 last_block = 0; 1609 u64 other; 1610 u32 parent_nritems; 1611 int end_slot; 1612 int i; 1613 int err = 0; 1614 int parent_level; 1615 int uptodate; 1616 u32 blocksize; 1617 int progress_passed = 0; 1618 struct btrfs_disk_key disk_key; 1619 1620 parent_level = btrfs_header_level(parent); 1621 1622 WARN_ON(trans->transaction != fs_info->running_transaction); 1623 WARN_ON(trans->transid != fs_info->generation); 1624 1625 parent_nritems = btrfs_header_nritems(parent); 1626 blocksize = fs_info->nodesize; 1627 end_slot = parent_nritems - 1; 1628 1629 if (parent_nritems <= 1) 1630 return 0; 1631 1632 btrfs_set_lock_blocking_write(parent); 1633 1634 for (i = start_slot; i <= end_slot; i++) { 1635 struct btrfs_key first_key; 1636 int close = 1; 1637 1638 btrfs_node_key(parent, &disk_key, i); 1639 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1640 continue; 1641 1642 progress_passed = 1; 1643 blocknr = btrfs_node_blockptr(parent, i); 1644 gen = btrfs_node_ptr_generation(parent, i); 1645 btrfs_node_key_to_cpu(parent, &first_key, i); 1646 if (last_block == 0) 1647 last_block = blocknr; 1648 1649 if (i > 0) { 1650 other = btrfs_node_blockptr(parent, i - 1); 1651 close = close_blocks(blocknr, other, blocksize); 1652 } 1653 if (!close && i < end_slot) { 1654 other = btrfs_node_blockptr(parent, i + 1); 1655 close = close_blocks(blocknr, other, blocksize); 1656 } 1657 if (close) { 1658 last_block = blocknr; 1659 continue; 1660 } 1661 1662 cur = find_extent_buffer(fs_info, blocknr); 1663 if (cur) 1664 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1665 else 1666 uptodate = 0; 1667 if (!cur || !uptodate) { 1668 if (!cur) { 1669 cur = read_tree_block(fs_info, blocknr, gen, 1670 parent_level - 1, 1671 &first_key); 1672 if (IS_ERR(cur)) { 1673 return PTR_ERR(cur); 1674 } else if (!extent_buffer_uptodate(cur)) { 1675 free_extent_buffer(cur); 1676 return -EIO; 1677 } 1678 } else if (!uptodate) { 1679 err = btrfs_read_buffer(cur, gen, 1680 parent_level - 1,&first_key); 1681 if (err) { 1682 free_extent_buffer(cur); 1683 return err; 1684 } 1685 } 1686 } 1687 if (search_start == 0) 1688 search_start = last_block; 1689 1690 btrfs_tree_lock(cur); 1691 btrfs_set_lock_blocking_write(cur); 1692 err = __btrfs_cow_block(trans, root, cur, parent, i, 1693 &cur, search_start, 1694 min(16 * blocksize, 1695 (end_slot - i) * blocksize), 1696 BTRFS_NESTING_COW); 1697 if (err) { 1698 btrfs_tree_unlock(cur); 1699 free_extent_buffer(cur); 1700 break; 1701 } 1702 search_start = cur->start; 1703 last_block = cur->start; 1704 *last_ret = search_start; 1705 btrfs_tree_unlock(cur); 1706 free_extent_buffer(cur); 1707 } 1708 return err; 1709} 1710 1711/* 1712 * search for key in the extent_buffer. The items start at offset p, 1713 * and they are item_size apart. There are 'max' items in p. 1714 * 1715 * the slot in the array is returned via slot, and it points to 1716 * the place where you would insert key if it is not found in 1717 * the array. 1718 * 1719 * slot may point to max if the key is bigger than all of the keys 1720 */ 1721static noinline int generic_bin_search(struct extent_buffer *eb, 1722 unsigned long p, int item_size, 1723 const struct btrfs_key *key, 1724 int max, int *slot) 1725{ 1726 int low = 0; 1727 int high = max; 1728 int ret; 1729 const int key_size = sizeof(struct btrfs_disk_key); 1730 1731 if (low > high) { 1732 btrfs_err(eb->fs_info, 1733 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1734 __func__, low, high, eb->start, 1735 btrfs_header_owner(eb), btrfs_header_level(eb)); 1736 return -EINVAL; 1737 } 1738 1739 while (low < high) { 1740 unsigned long oip; 1741 unsigned long offset; 1742 struct btrfs_disk_key *tmp; 1743 struct btrfs_disk_key unaligned; 1744 int mid; 1745 1746 mid = (low + high) / 2; 1747 offset = p + mid * item_size; 1748 oip = offset_in_page(offset); 1749 1750 if (oip + key_size <= PAGE_SIZE) { 1751 const unsigned long idx = offset >> PAGE_SHIFT; 1752 char *kaddr = page_address(eb->pages[idx]); 1753 1754 tmp = (struct btrfs_disk_key *)(kaddr + oip); 1755 } else { 1756 read_extent_buffer(eb, &unaligned, offset, key_size); 1757 tmp = &unaligned; 1758 } 1759 1760 ret = comp_keys(tmp, key); 1761 1762 if (ret < 0) 1763 low = mid + 1; 1764 else if (ret > 0) 1765 high = mid; 1766 else { 1767 *slot = mid; 1768 return 0; 1769 } 1770 } 1771 *slot = low; 1772 return 1; 1773} 1774 1775/* 1776 * simple bin_search frontend that does the right thing for 1777 * leaves vs nodes 1778 */ 1779int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1780 int *slot) 1781{ 1782 if (btrfs_header_level(eb) == 0) 1783 return generic_bin_search(eb, 1784 offsetof(struct btrfs_leaf, items), 1785 sizeof(struct btrfs_item), 1786 key, btrfs_header_nritems(eb), 1787 slot); 1788 else 1789 return generic_bin_search(eb, 1790 offsetof(struct btrfs_node, ptrs), 1791 sizeof(struct btrfs_key_ptr), 1792 key, btrfs_header_nritems(eb), 1793 slot); 1794} 1795 1796static void root_add_used(struct btrfs_root *root, u32 size) 1797{ 1798 spin_lock(&root->accounting_lock); 1799 btrfs_set_root_used(&root->root_item, 1800 btrfs_root_used(&root->root_item) + size); 1801 spin_unlock(&root->accounting_lock); 1802} 1803 1804static void root_sub_used(struct btrfs_root *root, u32 size) 1805{ 1806 spin_lock(&root->accounting_lock); 1807 btrfs_set_root_used(&root->root_item, 1808 btrfs_root_used(&root->root_item) - size); 1809 spin_unlock(&root->accounting_lock); 1810} 1811 1812/* given a node and slot number, this reads the blocks it points to. The 1813 * extent buffer is returned with a reference taken (but unlocked). 1814 */ 1815struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 1816 int slot) 1817{ 1818 int level = btrfs_header_level(parent); 1819 struct extent_buffer *eb; 1820 struct btrfs_key first_key; 1821 1822 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1823 return ERR_PTR(-ENOENT); 1824 1825 BUG_ON(level == 0); 1826 1827 btrfs_node_key_to_cpu(parent, &first_key, slot); 1828 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 1829 btrfs_node_ptr_generation(parent, slot), 1830 level - 1, &first_key); 1831 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1832 free_extent_buffer(eb); 1833 eb = ERR_PTR(-EIO); 1834 } 1835 1836 return eb; 1837} 1838 1839/* 1840 * node level balancing, used to make sure nodes are in proper order for 1841 * item deletion. We balance from the top down, so we have to make sure 1842 * that a deletion won't leave an node completely empty later on. 1843 */ 1844static noinline int balance_level(struct btrfs_trans_handle *trans, 1845 struct btrfs_root *root, 1846 struct btrfs_path *path, int level) 1847{ 1848 struct btrfs_fs_info *fs_info = root->fs_info; 1849 struct extent_buffer *right = NULL; 1850 struct extent_buffer *mid; 1851 struct extent_buffer *left = NULL; 1852 struct extent_buffer *parent = NULL; 1853 int ret = 0; 1854 int wret; 1855 int pslot; 1856 int orig_slot = path->slots[level]; 1857 u64 orig_ptr; 1858 1859 ASSERT(level > 0); 1860 1861 mid = path->nodes[level]; 1862 1863 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1864 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1865 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1866 1867 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1868 1869 if (level < BTRFS_MAX_LEVEL - 1) { 1870 parent = path->nodes[level + 1]; 1871 pslot = path->slots[level + 1]; 1872 } 1873 1874 /* 1875 * deal with the case where there is only one pointer in the root 1876 * by promoting the node below to a root 1877 */ 1878 if (!parent) { 1879 struct extent_buffer *child; 1880 1881 if (btrfs_header_nritems(mid) != 1) 1882 return 0; 1883 1884 /* promote the child to a root */ 1885 child = btrfs_read_node_slot(mid, 0); 1886 if (IS_ERR(child)) { 1887 ret = PTR_ERR(child); 1888 btrfs_handle_fs_error(fs_info, ret, NULL); 1889 goto enospc; 1890 } 1891 1892 btrfs_tree_lock(child); 1893 btrfs_set_lock_blocking_write(child); 1894 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 1895 BTRFS_NESTING_COW); 1896 if (ret) { 1897 btrfs_tree_unlock(child); 1898 free_extent_buffer(child); 1899 goto enospc; 1900 } 1901 1902 ret = tree_mod_log_insert_root(root->node, child, 1); 1903 BUG_ON(ret < 0); 1904 rcu_assign_pointer(root->node, child); 1905 1906 add_root_to_dirty_list(root); 1907 btrfs_tree_unlock(child); 1908 1909 path->locks[level] = 0; 1910 path->nodes[level] = NULL; 1911 btrfs_clean_tree_block(mid); 1912 btrfs_tree_unlock(mid); 1913 /* once for the path */ 1914 free_extent_buffer(mid); 1915 1916 root_sub_used(root, mid->len); 1917 btrfs_free_tree_block(trans, root, mid, 0, 1); 1918 /* once for the root ptr */ 1919 free_extent_buffer_stale(mid); 1920 return 0; 1921 } 1922 if (btrfs_header_nritems(mid) > 1923 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1924 return 0; 1925 1926 left = btrfs_read_node_slot(parent, pslot - 1); 1927 if (IS_ERR(left)) 1928 left = NULL; 1929 1930 if (left) { 1931 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 1932 btrfs_set_lock_blocking_write(left); 1933 wret = btrfs_cow_block(trans, root, left, 1934 parent, pslot - 1, &left, 1935 BTRFS_NESTING_LEFT_COW); 1936 if (wret) { 1937 ret = wret; 1938 goto enospc; 1939 } 1940 } 1941 1942 right = btrfs_read_node_slot(parent, pslot + 1); 1943 if (IS_ERR(right)) 1944 right = NULL; 1945 1946 if (right) { 1947 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 1948 btrfs_set_lock_blocking_write(right); 1949 wret = btrfs_cow_block(trans, root, right, 1950 parent, pslot + 1, &right, 1951 BTRFS_NESTING_RIGHT_COW); 1952 if (wret) { 1953 ret = wret; 1954 goto enospc; 1955 } 1956 } 1957 1958 /* first, try to make some room in the middle buffer */ 1959 if (left) { 1960 orig_slot += btrfs_header_nritems(left); 1961 wret = push_node_left(trans, left, mid, 1); 1962 if (wret < 0) 1963 ret = wret; 1964 } 1965 1966 /* 1967 * then try to empty the right most buffer into the middle 1968 */ 1969 if (right) { 1970 wret = push_node_left(trans, mid, right, 1); 1971 if (wret < 0 && wret != -ENOSPC) 1972 ret = wret; 1973 if (btrfs_header_nritems(right) == 0) { 1974 btrfs_clean_tree_block(right); 1975 btrfs_tree_unlock(right); 1976 del_ptr(root, path, level + 1, pslot + 1); 1977 root_sub_used(root, right->len); 1978 btrfs_free_tree_block(trans, root, right, 0, 1); 1979 free_extent_buffer_stale(right); 1980 right = NULL; 1981 } else { 1982 struct btrfs_disk_key right_key; 1983 btrfs_node_key(right, &right_key, 0); 1984 ret = tree_mod_log_insert_key(parent, pslot + 1, 1985 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1986 BUG_ON(ret < 0); 1987 btrfs_set_node_key(parent, &right_key, pslot + 1); 1988 btrfs_mark_buffer_dirty(parent); 1989 } 1990 } 1991 if (btrfs_header_nritems(mid) == 1) { 1992 /* 1993 * we're not allowed to leave a node with one item in the 1994 * tree during a delete. A deletion from lower in the tree 1995 * could try to delete the only pointer in this node. 1996 * So, pull some keys from the left. 1997 * There has to be a left pointer at this point because 1998 * otherwise we would have pulled some pointers from the 1999 * right 2000 */ 2001 if (!left) { 2002 ret = -EROFS; 2003 btrfs_handle_fs_error(fs_info, ret, NULL); 2004 goto enospc; 2005 } 2006 wret = balance_node_right(trans, mid, left); 2007 if (wret < 0) { 2008 ret = wret; 2009 goto enospc; 2010 } 2011 if (wret == 1) { 2012 wret = push_node_left(trans, left, mid, 1); 2013 if (wret < 0) 2014 ret = wret; 2015 } 2016 BUG_ON(wret == 1); 2017 } 2018 if (btrfs_header_nritems(mid) == 0) { 2019 btrfs_clean_tree_block(mid); 2020 btrfs_tree_unlock(mid); 2021 del_ptr(root, path, level + 1, pslot); 2022 root_sub_used(root, mid->len); 2023 btrfs_free_tree_block(trans, root, mid, 0, 1); 2024 free_extent_buffer_stale(mid); 2025 mid = NULL; 2026 } else { 2027 /* update the parent key to reflect our changes */ 2028 struct btrfs_disk_key mid_key; 2029 btrfs_node_key(mid, &mid_key, 0); 2030 ret = tree_mod_log_insert_key(parent, pslot, 2031 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2032 BUG_ON(ret < 0); 2033 btrfs_set_node_key(parent, &mid_key, pslot); 2034 btrfs_mark_buffer_dirty(parent); 2035 } 2036 2037 /* update the path */ 2038 if (left) { 2039 if (btrfs_header_nritems(left) > orig_slot) { 2040 atomic_inc(&left->refs); 2041 /* left was locked after cow */ 2042 path->nodes[level] = left; 2043 path->slots[level + 1] -= 1; 2044 path->slots[level] = orig_slot; 2045 if (mid) { 2046 btrfs_tree_unlock(mid); 2047 free_extent_buffer(mid); 2048 } 2049 } else { 2050 orig_slot -= btrfs_header_nritems(left); 2051 path->slots[level] = orig_slot; 2052 } 2053 } 2054 /* double check we haven't messed things up */ 2055 if (orig_ptr != 2056 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2057 BUG(); 2058enospc: 2059 if (right) { 2060 btrfs_tree_unlock(right); 2061 free_extent_buffer(right); 2062 } 2063 if (left) { 2064 if (path->nodes[level] != left) 2065 btrfs_tree_unlock(left); 2066 free_extent_buffer(left); 2067 } 2068 return ret; 2069} 2070 2071/* Node balancing for insertion. Here we only split or push nodes around 2072 * when they are completely full. This is also done top down, so we 2073 * have to be pessimistic. 2074 */ 2075static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2076 struct btrfs_root *root, 2077 struct btrfs_path *path, int level) 2078{ 2079 struct btrfs_fs_info *fs_info = root->fs_info; 2080 struct extent_buffer *right = NULL; 2081 struct extent_buffer *mid; 2082 struct extent_buffer *left = NULL; 2083 struct extent_buffer *parent = NULL; 2084 int ret = 0; 2085 int wret; 2086 int pslot; 2087 int orig_slot = path->slots[level]; 2088 2089 if (level == 0) 2090 return 1; 2091 2092 mid = path->nodes[level]; 2093 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2094 2095 if (level < BTRFS_MAX_LEVEL - 1) { 2096 parent = path->nodes[level + 1]; 2097 pslot = path->slots[level + 1]; 2098 } 2099 2100 if (!parent) 2101 return 1; 2102 2103 left = btrfs_read_node_slot(parent, pslot - 1); 2104 if (IS_ERR(left)) 2105 left = NULL; 2106 2107 /* first, try to make some room in the middle buffer */ 2108 if (left) { 2109 u32 left_nr; 2110 2111 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 2112 btrfs_set_lock_blocking_write(left); 2113 2114 left_nr = btrfs_header_nritems(left); 2115 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2116 wret = 1; 2117 } else { 2118 ret = btrfs_cow_block(trans, root, left, parent, 2119 pslot - 1, &left, 2120 BTRFS_NESTING_LEFT_COW); 2121 if (ret) 2122 wret = 1; 2123 else { 2124 wret = push_node_left(trans, left, mid, 0); 2125 } 2126 } 2127 if (wret < 0) 2128 ret = wret; 2129 if (wret == 0) { 2130 struct btrfs_disk_key disk_key; 2131 orig_slot += left_nr; 2132 btrfs_node_key(mid, &disk_key, 0); 2133 ret = tree_mod_log_insert_key(parent, pslot, 2134 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2135 BUG_ON(ret < 0); 2136 btrfs_set_node_key(parent, &disk_key, pslot); 2137 btrfs_mark_buffer_dirty(parent); 2138 if (btrfs_header_nritems(left) > orig_slot) { 2139 path->nodes[level] = left; 2140 path->slots[level + 1] -= 1; 2141 path->slots[level] = orig_slot; 2142 btrfs_tree_unlock(mid); 2143 free_extent_buffer(mid); 2144 } else { 2145 orig_slot -= 2146 btrfs_header_nritems(left); 2147 path->slots[level] = orig_slot; 2148 btrfs_tree_unlock(left); 2149 free_extent_buffer(left); 2150 } 2151 return 0; 2152 } 2153 btrfs_tree_unlock(left); 2154 free_extent_buffer(left); 2155 } 2156 right = btrfs_read_node_slot(parent, pslot + 1); 2157 if (IS_ERR(right)) 2158 right = NULL; 2159 2160 /* 2161 * then try to empty the right most buffer into the middle 2162 */ 2163 if (right) { 2164 u32 right_nr; 2165 2166 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 2167 btrfs_set_lock_blocking_write(right); 2168 2169 right_nr = btrfs_header_nritems(right); 2170 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2171 wret = 1; 2172 } else { 2173 ret = btrfs_cow_block(trans, root, right, 2174 parent, pslot + 1, 2175 &right, BTRFS_NESTING_RIGHT_COW); 2176 if (ret) 2177 wret = 1; 2178 else { 2179 wret = balance_node_right(trans, right, mid); 2180 } 2181 } 2182 if (wret < 0) 2183 ret = wret; 2184 if (wret == 0) { 2185 struct btrfs_disk_key disk_key; 2186 2187 btrfs_node_key(right, &disk_key, 0); 2188 ret = tree_mod_log_insert_key(parent, pslot + 1, 2189 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2190 BUG_ON(ret < 0); 2191 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2192 btrfs_mark_buffer_dirty(parent); 2193 2194 if (btrfs_header_nritems(mid) <= orig_slot) { 2195 path->nodes[level] = right; 2196 path->slots[level + 1] += 1; 2197 path->slots[level] = orig_slot - 2198 btrfs_header_nritems(mid); 2199 btrfs_tree_unlock(mid); 2200 free_extent_buffer(mid); 2201 } else { 2202 btrfs_tree_unlock(right); 2203 free_extent_buffer(right); 2204 } 2205 return 0; 2206 } 2207 btrfs_tree_unlock(right); 2208 free_extent_buffer(right); 2209 } 2210 return 1; 2211} 2212 2213/* 2214 * readahead one full node of leaves, finding things that are close 2215 * to the block in 'slot', and triggering ra on them. 2216 */ 2217static void reada_for_search(struct btrfs_fs_info *fs_info, 2218 struct btrfs_path *path, 2219 int level, int slot, u64 objectid) 2220{ 2221 struct extent_buffer *node; 2222 struct btrfs_disk_key disk_key; 2223 u32 nritems; 2224 u64 search; 2225 u64 target; 2226 u64 nread = 0; 2227 struct extent_buffer *eb; 2228 u32 nr; 2229 u32 blocksize; 2230 u32 nscan = 0; 2231 2232 if (level != 1) 2233 return; 2234 2235 if (!path->nodes[level]) 2236 return; 2237 2238 node = path->nodes[level]; 2239 2240 search = btrfs_node_blockptr(node, slot); 2241 blocksize = fs_info->nodesize; 2242 eb = find_extent_buffer(fs_info, search); 2243 if (eb) { 2244 free_extent_buffer(eb); 2245 return; 2246 } 2247 2248 target = search; 2249 2250 nritems = btrfs_header_nritems(node); 2251 nr = slot; 2252 2253 while (1) { 2254 if (path->reada == READA_BACK) { 2255 if (nr == 0) 2256 break; 2257 nr--; 2258 } else if (path->reada == READA_FORWARD) { 2259 nr++; 2260 if (nr >= nritems) 2261 break; 2262 } 2263 if (path->reada == READA_BACK && objectid) { 2264 btrfs_node_key(node, &disk_key, nr); 2265 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2266 break; 2267 } 2268 search = btrfs_node_blockptr(node, nr); 2269 if ((search <= target && target - search <= 65536) || 2270 (search > target && search - target <= 65536)) { 2271 readahead_tree_block(fs_info, search); 2272 nread += blocksize; 2273 } 2274 nscan++; 2275 if ((nread > 65536 || nscan > 32)) 2276 break; 2277 } 2278} 2279 2280static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2281 struct btrfs_path *path, int level) 2282{ 2283 int slot; 2284 int nritems; 2285 struct extent_buffer *parent; 2286 struct extent_buffer *eb; 2287 u64 gen; 2288 u64 block1 = 0; 2289 u64 block2 = 0; 2290 2291 parent = path->nodes[level + 1]; 2292 if (!parent) 2293 return; 2294 2295 nritems = btrfs_header_nritems(parent); 2296 slot = path->slots[level + 1]; 2297 2298 if (slot > 0) { 2299 block1 = btrfs_node_blockptr(parent, slot - 1); 2300 gen = btrfs_node_ptr_generation(parent, slot - 1); 2301 eb = find_extent_buffer(fs_info, block1); 2302 /* 2303 * if we get -eagain from btrfs_buffer_uptodate, we 2304 * don't want to return eagain here. That will loop 2305 * forever 2306 */ 2307 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2308 block1 = 0; 2309 free_extent_buffer(eb); 2310 } 2311 if (slot + 1 < nritems) { 2312 block2 = btrfs_node_blockptr(parent, slot + 1); 2313 gen = btrfs_node_ptr_generation(parent, slot + 1); 2314 eb = find_extent_buffer(fs_info, block2); 2315 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2316 block2 = 0; 2317 free_extent_buffer(eb); 2318 } 2319 2320 if (block1) 2321 readahead_tree_block(fs_info, block1); 2322 if (block2) 2323 readahead_tree_block(fs_info, block2); 2324} 2325 2326 2327/* 2328 * when we walk down the tree, it is usually safe to unlock the higher layers 2329 * in the tree. The exceptions are when our path goes through slot 0, because 2330 * operations on the tree might require changing key pointers higher up in the 2331 * tree. 2332 * 2333 * callers might also have set path->keep_locks, which tells this code to keep 2334 * the lock if the path points to the last slot in the block. This is part of 2335 * walking through the tree, and selecting the next slot in the higher block. 2336 * 2337 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2338 * if lowest_unlock is 1, level 0 won't be unlocked 2339 */ 2340static noinline void unlock_up(struct btrfs_path *path, int level, 2341 int lowest_unlock, int min_write_lock_level, 2342 int *write_lock_level) 2343{ 2344 int i; 2345 int skip_level = level; 2346 int no_skips = 0; 2347 struct extent_buffer *t; 2348 2349 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2350 if (!path->nodes[i]) 2351 break; 2352 if (!path->locks[i]) 2353 break; 2354 if (!no_skips && path->slots[i] == 0) { 2355 skip_level = i + 1; 2356 continue; 2357 } 2358 if (!no_skips && path->keep_locks) { 2359 u32 nritems; 2360 t = path->nodes[i]; 2361 nritems = btrfs_header_nritems(t); 2362 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2363 skip_level = i + 1; 2364 continue; 2365 } 2366 } 2367 if (skip_level < i && i >= lowest_unlock) 2368 no_skips = 1; 2369 2370 t = path->nodes[i]; 2371 if (i >= lowest_unlock && i > skip_level) { 2372 btrfs_tree_unlock_rw(t, path->locks[i]); 2373 path->locks[i] = 0; 2374 if (write_lock_level && 2375 i > min_write_lock_level && 2376 i <= *write_lock_level) { 2377 *write_lock_level = i - 1; 2378 } 2379 } 2380 } 2381} 2382 2383/* 2384 * helper function for btrfs_search_slot. The goal is to find a block 2385 * in cache without setting the path to blocking. If we find the block 2386 * we return zero and the path is unchanged. 2387 * 2388 * If we can't find the block, we set the path blocking and do some 2389 * reada. -EAGAIN is returned and the search must be repeated. 2390 */ 2391static int 2392read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2393 struct extent_buffer **eb_ret, int level, int slot, 2394 const struct btrfs_key *key) 2395{ 2396 struct btrfs_fs_info *fs_info = root->fs_info; 2397 u64 blocknr; 2398 u64 gen; 2399 struct extent_buffer *tmp; 2400 struct btrfs_key first_key; 2401 int ret; 2402 int parent_level; 2403 2404 blocknr = btrfs_node_blockptr(*eb_ret, slot); 2405 gen = btrfs_node_ptr_generation(*eb_ret, slot); 2406 parent_level = btrfs_header_level(*eb_ret); 2407 btrfs_node_key_to_cpu(*eb_ret, &first_key, slot); 2408 2409 tmp = find_extent_buffer(fs_info, blocknr); 2410 if (tmp) { 2411 /* first we do an atomic uptodate check */ 2412 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2413 /* 2414 * Do extra check for first_key, eb can be stale due to 2415 * being cached, read from scrub, or have multiple 2416 * parents (shared tree blocks). 2417 */ 2418 if (btrfs_verify_level_key(tmp, 2419 parent_level - 1, &first_key, gen)) { 2420 free_extent_buffer(tmp); 2421 return -EUCLEAN; 2422 } 2423 *eb_ret = tmp; 2424 return 0; 2425 } 2426 2427 /* the pages were up to date, but we failed 2428 * the generation number check. Do a full 2429 * read for the generation number that is correct. 2430 * We must do this without dropping locks so 2431 * we can trust our generation number 2432 */ 2433 btrfs_set_path_blocking(p); 2434 2435 /* now we're allowed to do a blocking uptodate check */ 2436 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2437 if (!ret) { 2438 *eb_ret = tmp; 2439 return 0; 2440 } 2441 free_extent_buffer(tmp); 2442 btrfs_release_path(p); 2443 return -EIO; 2444 } 2445 2446 /* 2447 * reduce lock contention at high levels 2448 * of the btree by dropping locks before 2449 * we read. Don't release the lock on the current 2450 * level because we need to walk this node to figure 2451 * out which blocks to read. 2452 */ 2453 btrfs_unlock_up_safe(p, level + 1); 2454 btrfs_set_path_blocking(p); 2455 2456 if (p->reada != READA_NONE) 2457 reada_for_search(fs_info, p, level, slot, key->objectid); 2458 2459 ret = -EAGAIN; 2460 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1, 2461 &first_key); 2462 if (!IS_ERR(tmp)) { 2463 /* 2464 * If the read above didn't mark this buffer up to date, 2465 * it will never end up being up to date. Set ret to EIO now 2466 * and give up so that our caller doesn't loop forever 2467 * on our EAGAINs. 2468 */ 2469 if (!extent_buffer_uptodate(tmp)) 2470 ret = -EIO; 2471 free_extent_buffer(tmp); 2472 } else { 2473 ret = PTR_ERR(tmp); 2474 } 2475 2476 btrfs_release_path(p); 2477 return ret; 2478} 2479 2480/* 2481 * helper function for btrfs_search_slot. This does all of the checks 2482 * for node-level blocks and does any balancing required based on 2483 * the ins_len. 2484 * 2485 * If no extra work was required, zero is returned. If we had to 2486 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2487 * start over 2488 */ 2489static int 2490setup_nodes_for_search(struct btrfs_trans_handle *trans, 2491 struct btrfs_root *root, struct btrfs_path *p, 2492 struct extent_buffer *b, int level, int ins_len, 2493 int *write_lock_level) 2494{ 2495 struct btrfs_fs_info *fs_info = root->fs_info; 2496 int ret; 2497 2498 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2499 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2500 int sret; 2501 2502 if (*write_lock_level < level + 1) { 2503 *write_lock_level = level + 1; 2504 btrfs_release_path(p); 2505 goto again; 2506 } 2507 2508 btrfs_set_path_blocking(p); 2509 reada_for_balance(fs_info, p, level); 2510 sret = split_node(trans, root, p, level); 2511 2512 BUG_ON(sret > 0); 2513 if (sret) { 2514 ret = sret; 2515 goto done; 2516 } 2517 b = p->nodes[level]; 2518 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2519 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2520 int sret; 2521 2522 if (*write_lock_level < level + 1) { 2523 *write_lock_level = level + 1; 2524 btrfs_release_path(p); 2525 goto again; 2526 } 2527 2528 btrfs_set_path_blocking(p); 2529 reada_for_balance(fs_info, p, level); 2530 sret = balance_level(trans, root, p, level); 2531 2532 if (sret) { 2533 ret = sret; 2534 goto done; 2535 } 2536 b = p->nodes[level]; 2537 if (!b) { 2538 btrfs_release_path(p); 2539 goto again; 2540 } 2541 BUG_ON(btrfs_header_nritems(b) == 1); 2542 } 2543 return 0; 2544 2545again: 2546 ret = -EAGAIN; 2547done: 2548 return ret; 2549} 2550 2551int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2552 u64 iobjectid, u64 ioff, u8 key_type, 2553 struct btrfs_key *found_key) 2554{ 2555 int ret; 2556 struct btrfs_key key; 2557 struct extent_buffer *eb; 2558 2559 ASSERT(path); 2560 ASSERT(found_key); 2561 2562 key.type = key_type; 2563 key.objectid = iobjectid; 2564 key.offset = ioff; 2565 2566 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2567 if (ret < 0) 2568 return ret; 2569 2570 eb = path->nodes[0]; 2571 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2572 ret = btrfs_next_leaf(fs_root, path); 2573 if (ret) 2574 return ret; 2575 eb = path->nodes[0]; 2576 } 2577 2578 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2579 if (found_key->type != key.type || 2580 found_key->objectid != key.objectid) 2581 return 1; 2582 2583 return 0; 2584} 2585 2586static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 2587 struct btrfs_path *p, 2588 int write_lock_level) 2589{ 2590 struct btrfs_fs_info *fs_info = root->fs_info; 2591 struct extent_buffer *b; 2592 int root_lock = 0; 2593 int level = 0; 2594 2595 if (p->search_commit_root) { 2596 /* 2597 * The commit roots are read only so we always do read locks, 2598 * and we always must hold the commit_root_sem when doing 2599 * searches on them, the only exception is send where we don't 2600 * want to block transaction commits for a long time, so 2601 * we need to clone the commit root in order to avoid races 2602 * with transaction commits that create a snapshot of one of 2603 * the roots used by a send operation. 2604 */ 2605 if (p->need_commit_sem) { 2606 down_read(&fs_info->commit_root_sem); 2607 b = btrfs_clone_extent_buffer(root->commit_root); 2608 up_read(&fs_info->commit_root_sem); 2609 if (!b) 2610 return ERR_PTR(-ENOMEM); 2611 2612 } else { 2613 b = root->commit_root; 2614 atomic_inc(&b->refs); 2615 } 2616 level = btrfs_header_level(b); 2617 /* 2618 * Ensure that all callers have set skip_locking when 2619 * p->search_commit_root = 1. 2620 */ 2621 ASSERT(p->skip_locking == 1); 2622 2623 goto out; 2624 } 2625 2626 if (p->skip_locking) { 2627 b = btrfs_root_node(root); 2628 level = btrfs_header_level(b); 2629 goto out; 2630 } 2631 2632 /* We try very hard to do read locks on the root */ 2633 root_lock = BTRFS_READ_LOCK; 2634 2635 /* 2636 * If the level is set to maximum, we can skip trying to get the read 2637 * lock. 2638 */ 2639 if (write_lock_level < BTRFS_MAX_LEVEL) { 2640 /* 2641 * We don't know the level of the root node until we actually 2642 * have it read locked 2643 */ 2644 b = __btrfs_read_lock_root_node(root, p->recurse); 2645 level = btrfs_header_level(b); 2646 if (level > write_lock_level) 2647 goto out; 2648 2649 /* Whoops, must trade for write lock */ 2650 btrfs_tree_read_unlock(b); 2651 free_extent_buffer(b); 2652 } 2653 2654 b = btrfs_lock_root_node(root); 2655 root_lock = BTRFS_WRITE_LOCK; 2656 2657 /* The level might have changed, check again */ 2658 level = btrfs_header_level(b); 2659 2660out: 2661 /* 2662 * The root may have failed to write out at some point, and thus is no 2663 * longer valid, return an error in this case. 2664 */ 2665 if (!extent_buffer_uptodate(b)) { 2666 if (root_lock) 2667 btrfs_tree_unlock_rw(b, root_lock); 2668 free_extent_buffer(b); 2669 return ERR_PTR(-EIO); 2670 } 2671 2672 p->nodes[level] = b; 2673 if (!p->skip_locking) 2674 p->locks[level] = root_lock; 2675 /* 2676 * Callers are responsible for dropping b's references. 2677 */ 2678 return b; 2679} 2680 2681 2682/* 2683 * btrfs_search_slot - look for a key in a tree and perform necessary 2684 * modifications to preserve tree invariants. 2685 * 2686 * @trans: Handle of transaction, used when modifying the tree 2687 * @p: Holds all btree nodes along the search path 2688 * @root: The root node of the tree 2689 * @key: The key we are looking for 2690 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2691 * deletions it's -1. 0 for plain searches 2692 * @cow: boolean should CoW operations be performed. Must always be 1 2693 * when modifying the tree. 2694 * 2695 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2696 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2697 * 2698 * If @key is found, 0 is returned and you can find the item in the leaf level 2699 * of the path (level 0) 2700 * 2701 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2702 * points to the slot where it should be inserted 2703 * 2704 * If an error is encountered while searching the tree a negative error number 2705 * is returned 2706 */ 2707int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2708 const struct btrfs_key *key, struct btrfs_path *p, 2709 int ins_len, int cow) 2710{ 2711 struct extent_buffer *b; 2712 int slot; 2713 int ret; 2714 int err; 2715 int level; 2716 int lowest_unlock = 1; 2717 /* everything at write_lock_level or lower must be write locked */ 2718 int write_lock_level = 0; 2719 u8 lowest_level = 0; 2720 int min_write_lock_level; 2721 int prev_cmp; 2722 2723 lowest_level = p->lowest_level; 2724 WARN_ON(lowest_level && ins_len > 0); 2725 WARN_ON(p->nodes[0] != NULL); 2726 BUG_ON(!cow && ins_len); 2727 2728 if (ins_len < 0) { 2729 lowest_unlock = 2; 2730 2731 /* when we are removing items, we might have to go up to level 2732 * two as we update tree pointers Make sure we keep write 2733 * for those levels as well 2734 */ 2735 write_lock_level = 2; 2736 } else if (ins_len > 0) { 2737 /* 2738 * for inserting items, make sure we have a write lock on 2739 * level 1 so we can update keys 2740 */ 2741 write_lock_level = 1; 2742 } 2743 2744 if (!cow) 2745 write_lock_level = -1; 2746 2747 if (cow && (p->keep_locks || p->lowest_level)) 2748 write_lock_level = BTRFS_MAX_LEVEL; 2749 2750 min_write_lock_level = write_lock_level; 2751 2752again: 2753 prev_cmp = -1; 2754 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2755 if (IS_ERR(b)) { 2756 ret = PTR_ERR(b); 2757 goto done; 2758 } 2759 2760 while (b) { 2761 int dec = 0; 2762 2763 level = btrfs_header_level(b); 2764 2765 if (cow) { 2766 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2767 2768 /* 2769 * if we don't really need to cow this block 2770 * then we don't want to set the path blocking, 2771 * so we test it here 2772 */ 2773 if (!should_cow_block(trans, root, b)) { 2774 trans->dirty = true; 2775 goto cow_done; 2776 } 2777 2778 /* 2779 * must have write locks on this node and the 2780 * parent 2781 */ 2782 if (level > write_lock_level || 2783 (level + 1 > write_lock_level && 2784 level + 1 < BTRFS_MAX_LEVEL && 2785 p->nodes[level + 1])) { 2786 write_lock_level = level + 1; 2787 btrfs_release_path(p); 2788 goto again; 2789 } 2790 2791 btrfs_set_path_blocking(p); 2792 if (last_level) 2793 err = btrfs_cow_block(trans, root, b, NULL, 0, 2794 &b, 2795 BTRFS_NESTING_COW); 2796 else 2797 err = btrfs_cow_block(trans, root, b, 2798 p->nodes[level + 1], 2799 p->slots[level + 1], &b, 2800 BTRFS_NESTING_COW); 2801 if (err) { 2802 ret = err; 2803 goto done; 2804 } 2805 } 2806cow_done: 2807 p->nodes[level] = b; 2808 /* 2809 * Leave path with blocking locks to avoid massive 2810 * lock context switch, this is made on purpose. 2811 */ 2812 2813 /* 2814 * we have a lock on b and as long as we aren't changing 2815 * the tree, there is no way to for the items in b to change. 2816 * It is safe to drop the lock on our parent before we 2817 * go through the expensive btree search on b. 2818 * 2819 * If we're inserting or deleting (ins_len != 0), then we might 2820 * be changing slot zero, which may require changing the parent. 2821 * So, we can't drop the lock until after we know which slot 2822 * we're operating on. 2823 */ 2824 if (!ins_len && !p->keep_locks) { 2825 int u = level + 1; 2826 2827 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2828 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2829 p->locks[u] = 0; 2830 } 2831 } 2832 2833 /* 2834 * If btrfs_bin_search returns an exact match (prev_cmp == 0) 2835 * we can safely assume the target key will always be in slot 0 2836 * on lower levels due to the invariants BTRFS' btree provides, 2837 * namely that a btrfs_key_ptr entry always points to the 2838 * lowest key in the child node, thus we can skip searching 2839 * lower levels 2840 */ 2841 if (prev_cmp == 0) { 2842 slot = 0; 2843 ret = 0; 2844 } else { 2845 ret = btrfs_bin_search(b, key, &slot); 2846 prev_cmp = ret; 2847 if (ret < 0) 2848 goto done; 2849 } 2850 2851 if (level == 0) { 2852 p->slots[level] = slot; 2853 if (ins_len > 0 && 2854 btrfs_leaf_free_space(b) < ins_len) { 2855 if (write_lock_level < 1) { 2856 write_lock_level = 1; 2857 btrfs_release_path(p); 2858 goto again; 2859 } 2860 2861 btrfs_set_path_blocking(p); 2862 err = split_leaf(trans, root, key, 2863 p, ins_len, ret == 0); 2864 2865 BUG_ON(err > 0); 2866 if (err) { 2867 ret = err; 2868 goto done; 2869 } 2870 } 2871 if (!p->search_for_split) 2872 unlock_up(p, level, lowest_unlock, 2873 min_write_lock_level, NULL); 2874 goto done; 2875 } 2876 if (ret && slot > 0) { 2877 dec = 1; 2878 slot--; 2879 } 2880 p->slots[level] = slot; 2881 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 2882 &write_lock_level); 2883 if (err == -EAGAIN) 2884 goto again; 2885 if (err) { 2886 ret = err; 2887 goto done; 2888 } 2889 b = p->nodes[level]; 2890 slot = p->slots[level]; 2891 2892 /* 2893 * Slot 0 is special, if we change the key we have to update 2894 * the parent pointer which means we must have a write lock on 2895 * the parent 2896 */ 2897 if (slot == 0 && ins_len && write_lock_level < level + 1) { 2898 write_lock_level = level + 1; 2899 btrfs_release_path(p); 2900 goto again; 2901 } 2902 2903 unlock_up(p, level, lowest_unlock, min_write_lock_level, 2904 &write_lock_level); 2905 2906 if (level == lowest_level) { 2907 if (dec) 2908 p->slots[level]++; 2909 goto done; 2910 } 2911 2912 err = read_block_for_search(root, p, &b, level, slot, key); 2913 if (err == -EAGAIN) 2914 goto again; 2915 if (err) { 2916 ret = err; 2917 goto done; 2918 } 2919 2920 if (!p->skip_locking) { 2921 level = btrfs_header_level(b); 2922 if (level <= write_lock_level) { 2923 if (!btrfs_try_tree_write_lock(b)) { 2924 btrfs_set_path_blocking(p); 2925 btrfs_tree_lock(b); 2926 } 2927 p->locks[level] = BTRFS_WRITE_LOCK; 2928 } else { 2929 if (!btrfs_tree_read_lock_atomic(b)) { 2930 btrfs_set_path_blocking(p); 2931 __btrfs_tree_read_lock(b, BTRFS_NESTING_NORMAL, 2932 p->recurse); 2933 } 2934 p->locks[level] = BTRFS_READ_LOCK; 2935 } 2936 p->nodes[level] = b; 2937 } 2938 } 2939 ret = 1; 2940done: 2941 /* 2942 * we don't really know what they plan on doing with the path 2943 * from here on, so for now just mark it as blocking 2944 */ 2945 if (!p->leave_spinning) 2946 btrfs_set_path_blocking(p); 2947 if (ret < 0 && !p->skip_release_on_error) 2948 btrfs_release_path(p); 2949 return ret; 2950} 2951 2952/* 2953 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2954 * current state of the tree together with the operations recorded in the tree 2955 * modification log to search for the key in a previous version of this tree, as 2956 * denoted by the time_seq parameter. 2957 * 2958 * Naturally, there is no support for insert, delete or cow operations. 2959 * 2960 * The resulting path and return value will be set up as if we called 2961 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2962 */ 2963int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2964 struct btrfs_path *p, u64 time_seq) 2965{ 2966 struct btrfs_fs_info *fs_info = root->fs_info; 2967 struct extent_buffer *b; 2968 int slot; 2969 int ret; 2970 int err; 2971 int level; 2972 int lowest_unlock = 1; 2973 u8 lowest_level = 0; 2974 2975 lowest_level = p->lowest_level; 2976 WARN_ON(p->nodes[0] != NULL); 2977 2978 if (p->search_commit_root) { 2979 BUG_ON(time_seq); 2980 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2981 } 2982 2983again: 2984 b = get_old_root(root, time_seq); 2985 if (!b) { 2986 ret = -EIO; 2987 goto done; 2988 } 2989 level = btrfs_header_level(b); 2990 p->locks[level] = BTRFS_READ_LOCK; 2991 2992 while (b) { 2993 int dec = 0; 2994 2995 level = btrfs_header_level(b); 2996 p->nodes[level] = b; 2997 2998 /* 2999 * we have a lock on b and as long as we aren't changing 3000 * the tree, there is no way to for the items in b to change. 3001 * It is safe to drop the lock on our parent before we 3002 * go through the expensive btree search on b. 3003 */ 3004 btrfs_unlock_up_safe(p, level + 1); 3005 3006 ret = btrfs_bin_search(b, key, &slot); 3007 if (ret < 0) 3008 goto done; 3009 3010 if (level == 0) { 3011 p->slots[level] = slot; 3012 unlock_up(p, level, lowest_unlock, 0, NULL); 3013 goto done; 3014 } 3015 3016 if (ret && slot > 0) { 3017 dec = 1; 3018 slot--; 3019 } 3020 p->slots[level] = slot; 3021 unlock_up(p, level, lowest_unlock, 0, NULL); 3022 3023 if (level == lowest_level) { 3024 if (dec) 3025 p->slots[level]++; 3026 goto done; 3027 } 3028 3029 err = read_block_for_search(root, p, &b, level, slot, key); 3030 if (err == -EAGAIN) 3031 goto again; 3032 if (err) { 3033 ret = err; 3034 goto done; 3035 } 3036 3037 level = btrfs_header_level(b); 3038 if (!btrfs_tree_read_lock_atomic(b)) { 3039 btrfs_set_path_blocking(p); 3040 btrfs_tree_read_lock(b); 3041 } 3042 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 3043 if (!b) { 3044 ret = -ENOMEM; 3045 goto done; 3046 } 3047 p->locks[level] = BTRFS_READ_LOCK; 3048 p->nodes[level] = b; 3049 } 3050 ret = 1; 3051done: 3052 if (!p->leave_spinning) 3053 btrfs_set_path_blocking(p); 3054 if (ret < 0) 3055 btrfs_release_path(p); 3056 3057 return ret; 3058} 3059 3060/* 3061 * helper to use instead of search slot if no exact match is needed but 3062 * instead the next or previous item should be returned. 3063 * When find_higher is true, the next higher item is returned, the next lower 3064 * otherwise. 3065 * When return_any and find_higher are both true, and no higher item is found, 3066 * return the next lower instead. 3067 * When return_any is true and find_higher is false, and no lower item is found, 3068 * return the next higher instead. 3069 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3070 * < 0 on error 3071 */ 3072int btrfs_search_slot_for_read(struct btrfs_root *root, 3073 const struct btrfs_key *key, 3074 struct btrfs_path *p, int find_higher, 3075 int return_any) 3076{ 3077 int ret; 3078 struct extent_buffer *leaf; 3079 3080again: 3081 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3082 if (ret <= 0) 3083 return ret; 3084 /* 3085 * a return value of 1 means the path is at the position where the 3086 * item should be inserted. Normally this is the next bigger item, 3087 * but in case the previous item is the last in a leaf, path points 3088 * to the first free slot in the previous leaf, i.e. at an invalid 3089 * item. 3090 */ 3091 leaf = p->nodes[0]; 3092 3093 if (find_higher) { 3094 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3095 ret = btrfs_next_leaf(root, p); 3096 if (ret <= 0) 3097 return ret; 3098 if (!return_any) 3099 return 1; 3100 /* 3101 * no higher item found, return the next 3102 * lower instead 3103 */ 3104 return_any = 0; 3105 find_higher = 0; 3106 btrfs_release_path(p); 3107 goto again; 3108 } 3109 } else { 3110 if (p->slots[0] == 0) { 3111 ret = btrfs_prev_leaf(root, p); 3112 if (ret < 0) 3113 return ret; 3114 if (!ret) { 3115 leaf = p->nodes[0]; 3116 if (p->slots[0] == btrfs_header_nritems(leaf)) 3117 p->slots[0]--; 3118 return 0; 3119 } 3120 if (!return_any) 3121 return 1; 3122 /* 3123 * no lower item found, return the next 3124 * higher instead 3125 */ 3126 return_any = 0; 3127 find_higher = 1; 3128 btrfs_release_path(p); 3129 goto again; 3130 } else { 3131 --p->slots[0]; 3132 } 3133 } 3134 return 0; 3135} 3136 3137/* 3138 * adjust the pointers going up the tree, starting at level 3139 * making sure the right key of each node is points to 'key'. 3140 * This is used after shifting pointers to the left, so it stops 3141 * fixing up pointers when a given leaf/node is not in slot 0 of the 3142 * higher levels 3143 * 3144 */ 3145static void fixup_low_keys(struct btrfs_path *path, 3146 struct btrfs_disk_key *key, int level) 3147{ 3148 int i; 3149 struct extent_buffer *t; 3150 int ret; 3151 3152 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3153 int tslot = path->slots[i]; 3154 3155 if (!path->nodes[i]) 3156 break; 3157 t = path->nodes[i]; 3158 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3159 GFP_ATOMIC); 3160 BUG_ON(ret < 0); 3161 btrfs_set_node_key(t, key, tslot); 3162 btrfs_mark_buffer_dirty(path->nodes[i]); 3163 if (tslot != 0) 3164 break; 3165 } 3166} 3167 3168/* 3169 * update item key. 3170 * 3171 * This function isn't completely safe. It's the caller's responsibility 3172 * that the new key won't break the order 3173 */ 3174void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3175 struct btrfs_path *path, 3176 const struct btrfs_key *new_key) 3177{ 3178 struct btrfs_disk_key disk_key; 3179 struct extent_buffer *eb; 3180 int slot; 3181 3182 eb = path->nodes[0]; 3183 slot = path->slots[0]; 3184 if (slot > 0) { 3185 btrfs_item_key(eb, &disk_key, slot - 1); 3186 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 3187 btrfs_crit(fs_info, 3188 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3189 slot, btrfs_disk_key_objectid(&disk_key), 3190 btrfs_disk_key_type(&disk_key), 3191 btrfs_disk_key_offset(&disk_key), 3192 new_key->objectid, new_key->type, 3193 new_key->offset); 3194 btrfs_print_leaf(eb); 3195 BUG(); 3196 } 3197 } 3198 if (slot < btrfs_header_nritems(eb) - 1) { 3199 btrfs_item_key(eb, &disk_key, slot + 1); 3200 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 3201 btrfs_crit(fs_info, 3202 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3203 slot, btrfs_disk_key_objectid(&disk_key), 3204 btrfs_disk_key_type(&disk_key), 3205 btrfs_disk_key_offset(&disk_key), 3206 new_key->objectid, new_key->type, 3207 new_key->offset); 3208 btrfs_print_leaf(eb); 3209 BUG(); 3210 } 3211 } 3212 3213 btrfs_cpu_key_to_disk(&disk_key, new_key); 3214 btrfs_set_item_key(eb, &disk_key, slot); 3215 btrfs_mark_buffer_dirty(eb); 3216 if (slot == 0) 3217 fixup_low_keys(path, &disk_key, 1); 3218} 3219 3220/* 3221 * Check key order of two sibling extent buffers. 3222 * 3223 * Return true if something is wrong. 3224 * Return false if everything is fine. 3225 * 3226 * Tree-checker only works inside one tree block, thus the following 3227 * corruption can not be detected by tree-checker: 3228 * 3229 * Leaf @left | Leaf @right 3230 * -------------------------------------------------------------- 3231 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 | 3232 * 3233 * Key f6 in leaf @left itself is valid, but not valid when the next 3234 * key in leaf @right is 7. 3235 * This can only be checked at tree block merge time. 3236 * And since tree checker has ensured all key order in each tree block 3237 * is correct, we only need to bother the last key of @left and the first 3238 * key of @right. 3239 */ 3240static bool check_sibling_keys(struct extent_buffer *left, 3241 struct extent_buffer *right) 3242{ 3243 struct btrfs_key left_last; 3244 struct btrfs_key right_first; 3245 int level = btrfs_header_level(left); 3246 int nr_left = btrfs_header_nritems(left); 3247 int nr_right = btrfs_header_nritems(right); 3248 3249 /* No key to check in one of the tree blocks */ 3250 if (!nr_left || !nr_right) 3251 return false; 3252 3253 if (level) { 3254 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1); 3255 btrfs_node_key_to_cpu(right, &right_first, 0); 3256 } else { 3257 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1); 3258 btrfs_item_key_to_cpu(right, &right_first, 0); 3259 } 3260 3261 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) { 3262 btrfs_crit(left->fs_info, 3263"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)", 3264 left_last.objectid, left_last.type, 3265 left_last.offset, right_first.objectid, 3266 right_first.type, right_first.offset); 3267 return true; 3268 } 3269 return false; 3270} 3271 3272/* 3273 * try to push data from one node into the next node left in the 3274 * tree. 3275 * 3276 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3277 * error, and > 0 if there was no room in the left hand block. 3278 */ 3279static int push_node_left(struct btrfs_trans_handle *trans, 3280 struct extent_buffer *dst, 3281 struct extent_buffer *src, int empty) 3282{ 3283 struct btrfs_fs_info *fs_info = trans->fs_info; 3284 int push_items = 0; 3285 int src_nritems; 3286 int dst_nritems; 3287 int ret = 0; 3288 3289 src_nritems = btrfs_header_nritems(src); 3290 dst_nritems = btrfs_header_nritems(dst); 3291 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3292 WARN_ON(btrfs_header_generation(src) != trans->transid); 3293 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3294 3295 if (!empty && src_nritems <= 8) 3296 return 1; 3297 3298 if (push_items <= 0) 3299 return 1; 3300 3301 if (empty) { 3302 push_items = min(src_nritems, push_items); 3303 if (push_items < src_nritems) { 3304 /* leave at least 8 pointers in the node if 3305 * we aren't going to empty it 3306 */ 3307 if (src_nritems - push_items < 8) { 3308 if (push_items <= 8) 3309 return 1; 3310 push_items -= 8; 3311 } 3312 } 3313 } else 3314 push_items = min(src_nritems - 8, push_items); 3315 3316 /* dst is the left eb, src is the middle eb */ 3317 if (check_sibling_keys(dst, src)) { 3318 ret = -EUCLEAN; 3319 btrfs_abort_transaction(trans, ret); 3320 return ret; 3321 } 3322 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 3323 if (ret) { 3324 btrfs_abort_transaction(trans, ret); 3325 return ret; 3326 } 3327 copy_extent_buffer(dst, src, 3328 btrfs_node_key_ptr_offset(dst_nritems), 3329 btrfs_node_key_ptr_offset(0), 3330 push_items * sizeof(struct btrfs_key_ptr)); 3331 3332 if (push_items < src_nritems) { 3333 /* 3334 * Don't call tree_mod_log_insert_move here, key removal was 3335 * already fully logged by tree_mod_log_eb_copy above. 3336 */ 3337 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3338 btrfs_node_key_ptr_offset(push_items), 3339 (src_nritems - push_items) * 3340 sizeof(struct btrfs_key_ptr)); 3341 } 3342 btrfs_set_header_nritems(src, src_nritems - push_items); 3343 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3344 btrfs_mark_buffer_dirty(src); 3345 btrfs_mark_buffer_dirty(dst); 3346 3347 return ret; 3348} 3349 3350/* 3351 * try to push data from one node into the next node right in the 3352 * tree. 3353 * 3354 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3355 * error, and > 0 if there was no room in the right hand block. 3356 * 3357 * this will only push up to 1/2 the contents of the left node over 3358 */ 3359static int balance_node_right(struct btrfs_trans_handle *trans, 3360 struct extent_buffer *dst, 3361 struct extent_buffer *src) 3362{ 3363 struct btrfs_fs_info *fs_info = trans->fs_info; 3364 int push_items = 0; 3365 int max_push; 3366 int src_nritems; 3367 int dst_nritems; 3368 int ret = 0; 3369 3370 WARN_ON(btrfs_header_generation(src) != trans->transid); 3371 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3372 3373 src_nritems = btrfs_header_nritems(src); 3374 dst_nritems = btrfs_header_nritems(dst); 3375 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3376 if (push_items <= 0) 3377 return 1; 3378 3379 if (src_nritems < 4) 3380 return 1; 3381 3382 max_push = src_nritems / 2 + 1; 3383 /* don't try to empty the node */ 3384 if (max_push >= src_nritems) 3385 return 1; 3386 3387 if (max_push < push_items) 3388 push_items = max_push; 3389 3390 /* dst is the right eb, src is the middle eb */ 3391 if (check_sibling_keys(src, dst)) { 3392 ret = -EUCLEAN; 3393 btrfs_abort_transaction(trans, ret); 3394 return ret; 3395 } 3396 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3397 BUG_ON(ret < 0); 3398 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3399 btrfs_node_key_ptr_offset(0), 3400 (dst_nritems) * 3401 sizeof(struct btrfs_key_ptr)); 3402 3403 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 3404 push_items); 3405 if (ret) { 3406 btrfs_abort_transaction(trans, ret); 3407 return ret; 3408 } 3409 copy_extent_buffer(dst, src, 3410 btrfs_node_key_ptr_offset(0), 3411 btrfs_node_key_ptr_offset(src_nritems - push_items), 3412 push_items * sizeof(struct btrfs_key_ptr)); 3413 3414 btrfs_set_header_nritems(src, src_nritems - push_items); 3415 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3416 3417 btrfs_mark_buffer_dirty(src); 3418 btrfs_mark_buffer_dirty(dst); 3419 3420 return ret; 3421} 3422 3423/* 3424 * helper function to insert a new root level in the tree. 3425 * A new node is allocated, and a single item is inserted to 3426 * point to the existing root 3427 * 3428 * returns zero on success or < 0 on failure. 3429 */ 3430static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3431 struct btrfs_root *root, 3432 struct btrfs_path *path, int level) 3433{ 3434 struct btrfs_fs_info *fs_info = root->fs_info; 3435 u64 lower_gen; 3436 struct extent_buffer *lower; 3437 struct extent_buffer *c; 3438 struct extent_buffer *old; 3439 struct btrfs_disk_key lower_key; 3440 int ret; 3441 3442 BUG_ON(path->nodes[level]); 3443 BUG_ON(path->nodes[level-1] != root->node); 3444 3445 lower = path->nodes[level-1]; 3446 if (level == 1) 3447 btrfs_item_key(lower, &lower_key, 0); 3448 else 3449 btrfs_node_key(lower, &lower_key, 0); 3450 3451 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level, 3452 root->node->start, 0, 3453 BTRFS_NESTING_NEW_ROOT); 3454 if (IS_ERR(c)) 3455 return PTR_ERR(c); 3456 3457 root_add_used(root, fs_info->nodesize); 3458 3459 btrfs_set_header_nritems(c, 1); 3460 btrfs_set_node_key(c, &lower_key, 0); 3461 btrfs_set_node_blockptr(c, 0, lower->start); 3462 lower_gen = btrfs_header_generation(lower); 3463 WARN_ON(lower_gen != trans->transid); 3464 3465 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3466 3467 btrfs_mark_buffer_dirty(c); 3468 3469 old = root->node; 3470 ret = tree_mod_log_insert_root(root->node, c, 0); 3471 BUG_ON(ret < 0); 3472 rcu_assign_pointer(root->node, c); 3473 3474 /* the super has an extra ref to root->node */ 3475 free_extent_buffer(old); 3476 3477 add_root_to_dirty_list(root); 3478 atomic_inc(&c->refs); 3479 path->nodes[level] = c; 3480 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3481 path->slots[level] = 0; 3482 return 0; 3483} 3484 3485/* 3486 * worker function to insert a single pointer in a node. 3487 * the node should have enough room for the pointer already 3488 * 3489 * slot and level indicate where you want the key to go, and 3490 * blocknr is the block the key points to. 3491 */ 3492static void insert_ptr(struct btrfs_trans_handle *trans, 3493 struct btrfs_path *path, 3494 struct btrfs_disk_key *key, u64 bytenr, 3495 int slot, int level) 3496{ 3497 struct extent_buffer *lower; 3498 int nritems; 3499 int ret; 3500 3501 BUG_ON(!path->nodes[level]); 3502 btrfs_assert_tree_locked(path->nodes[level]); 3503 lower = path->nodes[level]; 3504 nritems = btrfs_header_nritems(lower); 3505 BUG_ON(slot > nritems); 3506 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 3507 if (slot != nritems) { 3508 if (level) { 3509 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3510 nritems - slot); 3511 BUG_ON(ret < 0); 3512 } 3513 memmove_extent_buffer(lower, 3514 btrfs_node_key_ptr_offset(slot + 1), 3515 btrfs_node_key_ptr_offset(slot), 3516 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3517 } 3518 if (level) { 3519 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3520 GFP_NOFS); 3521 BUG_ON(ret < 0); 3522 } 3523 btrfs_set_node_key(lower, key, slot); 3524 btrfs_set_node_blockptr(lower, slot, bytenr); 3525 WARN_ON(trans->transid == 0); 3526 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3527 btrfs_set_header_nritems(lower, nritems + 1); 3528 btrfs_mark_buffer_dirty(lower); 3529} 3530 3531/* 3532 * split the node at the specified level in path in two. 3533 * The path is corrected to point to the appropriate node after the split 3534 * 3535 * Before splitting this tries to make some room in the node by pushing 3536 * left and right, if either one works, it returns right away. 3537 * 3538 * returns 0 on success and < 0 on failure 3539 */ 3540static noinline int split_node(struct btrfs_trans_handle *trans, 3541 struct btrfs_root *root, 3542 struct btrfs_path *path, int level) 3543{ 3544 struct btrfs_fs_info *fs_info = root->fs_info; 3545 struct extent_buffer *c; 3546 struct extent_buffer *split; 3547 struct btrfs_disk_key disk_key; 3548 int mid; 3549 int ret; 3550 u32 c_nritems; 3551 3552 c = path->nodes[level]; 3553 WARN_ON(btrfs_header_generation(c) != trans->transid); 3554 if (c == root->node) { 3555 /* 3556 * trying to split the root, lets make a new one 3557 * 3558 * tree mod log: We don't log_removal old root in 3559 * insert_new_root, because that root buffer will be kept as a 3560 * normal node. We are going to log removal of half of the 3561 * elements below with tree_mod_log_eb_copy. We're holding a 3562 * tree lock on the buffer, which is why we cannot race with 3563 * other tree_mod_log users. 3564 */ 3565 ret = insert_new_root(trans, root, path, level + 1); 3566 if (ret) 3567 return ret; 3568 } else { 3569 ret = push_nodes_for_insert(trans, root, path, level); 3570 c = path->nodes[level]; 3571 if (!ret && btrfs_header_nritems(c) < 3572 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3573 return 0; 3574 if (ret < 0) 3575 return ret; 3576 } 3577 3578 c_nritems = btrfs_header_nritems(c); 3579 mid = (c_nritems + 1) / 2; 3580 btrfs_node_key(c, &disk_key, mid); 3581 3582 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level, 3583 c->start, 0, BTRFS_NESTING_SPLIT); 3584 if (IS_ERR(split)) 3585 return PTR_ERR(split); 3586 3587 root_add_used(root, fs_info->nodesize); 3588 ASSERT(btrfs_header_level(c) == level); 3589 3590 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 3591 if (ret) { 3592 btrfs_tree_unlock(split); 3593 free_extent_buffer(split); 3594 btrfs_abort_transaction(trans, ret); 3595 return ret; 3596 } 3597 copy_extent_buffer(split, c, 3598 btrfs_node_key_ptr_offset(0), 3599 btrfs_node_key_ptr_offset(mid), 3600 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3601 btrfs_set_header_nritems(split, c_nritems - mid); 3602 btrfs_set_header_nritems(c, mid); 3603 ret = 0; 3604 3605 btrfs_mark_buffer_dirty(c); 3606 btrfs_mark_buffer_dirty(split); 3607 3608 insert_ptr(trans, path, &disk_key, split->start, 3609 path->slots[level + 1] + 1, level + 1); 3610 3611 if (path->slots[level] >= mid) { 3612 path->slots[level] -= mid; 3613 btrfs_tree_unlock(c); 3614 free_extent_buffer(c); 3615 path->nodes[level] = split; 3616 path->slots[level + 1] += 1; 3617 } else { 3618 btrfs_tree_unlock(split); 3619 free_extent_buffer(split); 3620 } 3621 return ret; 3622} 3623 3624/* 3625 * how many bytes are required to store the items in a leaf. start 3626 * and nr indicate which items in the leaf to check. This totals up the 3627 * space used both by the item structs and the item data 3628 */ 3629static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3630{ 3631 struct btrfs_item *start_item; 3632 struct btrfs_item *end_item; 3633 int data_len; 3634 int nritems = btrfs_header_nritems(l); 3635 int end = min(nritems, start + nr) - 1; 3636 3637 if (!nr) 3638 return 0; 3639 start_item = btrfs_item_nr(start); 3640 end_item = btrfs_item_nr(end); 3641 data_len = btrfs_item_offset(l, start_item) + 3642 btrfs_item_size(l, start_item); 3643 data_len = data_len - btrfs_item_offset(l, end_item); 3644 data_len += sizeof(struct btrfs_item) * nr; 3645 WARN_ON(data_len < 0); 3646 return data_len; 3647} 3648 3649/* 3650 * The space between the end of the leaf items and 3651 * the start of the leaf data. IOW, how much room 3652 * the leaf has left for both items and data 3653 */ 3654noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) 3655{ 3656 struct btrfs_fs_info *fs_info = leaf->fs_info; 3657 int nritems = btrfs_header_nritems(leaf); 3658 int ret; 3659 3660 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3661 if (ret < 0) { 3662 btrfs_crit(fs_info, 3663 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3664 ret, 3665 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3666 leaf_space_used(leaf, 0, nritems), nritems); 3667 } 3668 return ret; 3669} 3670 3671/* 3672 * min slot controls the lowest index we're willing to push to the 3673 * right. We'll push up to and including min_slot, but no lower 3674 */ 3675static noinline int __push_leaf_right(struct btrfs_path *path, 3676 int data_size, int empty, 3677 struct extent_buffer *right, 3678 int free_space, u32 left_nritems, 3679 u32 min_slot) 3680{ 3681 struct btrfs_fs_info *fs_info = right->fs_info; 3682 struct extent_buffer *left = path->nodes[0]; 3683 struct extent_buffer *upper = path->nodes[1]; 3684 struct btrfs_map_token token; 3685 struct btrfs_disk_key disk_key; 3686 int slot; 3687 u32 i; 3688 int push_space = 0; 3689 int push_items = 0; 3690 struct btrfs_item *item; 3691 u32 nr; 3692 u32 right_nritems; 3693 u32 data_end; 3694 u32 this_item_size; 3695 3696 if (empty) 3697 nr = 0; 3698 else 3699 nr = max_t(u32, 1, min_slot); 3700 3701 if (path->slots[0] >= left_nritems) 3702 push_space += data_size; 3703 3704 slot = path->slots[1]; 3705 i = left_nritems - 1; 3706 while (i >= nr) { 3707 item = btrfs_item_nr(i); 3708 3709 if (!empty && push_items > 0) { 3710 if (path->slots[0] > i) 3711 break; 3712 if (path->slots[0] == i) { 3713 int space = btrfs_leaf_free_space(left); 3714 3715 if (space + push_space * 2 > free_space) 3716 break; 3717 } 3718 } 3719 3720 if (path->slots[0] == i) 3721 push_space += data_size; 3722 3723 this_item_size = btrfs_item_size(left, item); 3724 if (this_item_size + sizeof(*item) + push_space > free_space) 3725 break; 3726 3727 push_items++; 3728 push_space += this_item_size + sizeof(*item); 3729 if (i == 0) 3730 break; 3731 i--; 3732 } 3733 3734 if (push_items == 0) 3735 goto out_unlock; 3736 3737 WARN_ON(!empty && push_items == left_nritems); 3738 3739 /* push left to right */ 3740 right_nritems = btrfs_header_nritems(right); 3741 3742 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3743 push_space -= leaf_data_end(left); 3744 3745 /* make room in the right data area */ 3746 data_end = leaf_data_end(right); 3747 memmove_extent_buffer(right, 3748 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3749 BTRFS_LEAF_DATA_OFFSET + data_end, 3750 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3751 3752 /* copy from the left data area */ 3753 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3754 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3755 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left), 3756 push_space); 3757 3758 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3759 btrfs_item_nr_offset(0), 3760 right_nritems * sizeof(struct btrfs_item)); 3761 3762 /* copy the items from left to right */ 3763 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3764 btrfs_item_nr_offset(left_nritems - push_items), 3765 push_items * sizeof(struct btrfs_item)); 3766 3767 /* update the item pointers */ 3768 btrfs_init_map_token(&token, right); 3769 right_nritems += push_items; 3770 btrfs_set_header_nritems(right, right_nritems); 3771 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3772 for (i = 0; i < right_nritems; i++) { 3773 item = btrfs_item_nr(i); 3774 push_space -= btrfs_token_item_size(&token, item); 3775 btrfs_set_token_item_offset(&token, item, push_space); 3776 } 3777 3778 left_nritems -= push_items; 3779 btrfs_set_header_nritems(left, left_nritems); 3780 3781 if (left_nritems) 3782 btrfs_mark_buffer_dirty(left); 3783 else 3784 btrfs_clean_tree_block(left); 3785 3786 btrfs_mark_buffer_dirty(right); 3787 3788 btrfs_item_key(right, &disk_key, 0); 3789 btrfs_set_node_key(upper, &disk_key, slot + 1); 3790 btrfs_mark_buffer_dirty(upper); 3791 3792 /* then fixup the leaf pointer in the path */ 3793 if (path->slots[0] >= left_nritems) { 3794 path->slots[0] -= left_nritems; 3795 if (btrfs_header_nritems(path->nodes[0]) == 0) 3796 btrfs_clean_tree_block(path->nodes[0]); 3797 btrfs_tree_unlock(path->nodes[0]); 3798 free_extent_buffer(path->nodes[0]); 3799 path->nodes[0] = right; 3800 path->slots[1] += 1; 3801 } else { 3802 btrfs_tree_unlock(right); 3803 free_extent_buffer(right); 3804 } 3805 return 0; 3806 3807out_unlock: 3808 btrfs_tree_unlock(right); 3809 free_extent_buffer(right); 3810 return 1; 3811} 3812 3813/* 3814 * push some data in the path leaf to the right, trying to free up at 3815 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3816 * 3817 * returns 1 if the push failed because the other node didn't have enough 3818 * room, 0 if everything worked out and < 0 if there were major errors. 3819 * 3820 * this will push starting from min_slot to the end of the leaf. It won't 3821 * push any slot lower than min_slot 3822 */ 3823static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3824 *root, struct btrfs_path *path, 3825 int min_data_size, int data_size, 3826 int empty, u32 min_slot) 3827{ 3828 struct extent_buffer *left = path->nodes[0]; 3829 struct extent_buffer *right; 3830 struct extent_buffer *upper; 3831 int slot; 3832 int free_space; 3833 u32 left_nritems; 3834 int ret; 3835 3836 if (!path->nodes[1]) 3837 return 1; 3838 3839 slot = path->slots[1]; 3840 upper = path->nodes[1]; 3841 if (slot >= btrfs_header_nritems(upper) - 1) 3842 return 1; 3843 3844 btrfs_assert_tree_locked(path->nodes[1]); 3845 3846 right = btrfs_read_node_slot(upper, slot + 1); 3847 /* 3848 * slot + 1 is not valid or we fail to read the right node, 3849 * no big deal, just return. 3850 */ 3851 if (IS_ERR(right)) 3852 return 1; 3853 3854 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 3855 btrfs_set_lock_blocking_write(right); 3856 3857 free_space = btrfs_leaf_free_space(right); 3858 if (free_space < data_size) 3859 goto out_unlock; 3860 3861 /* cow and double check */ 3862 ret = btrfs_cow_block(trans, root, right, upper, 3863 slot + 1, &right, BTRFS_NESTING_RIGHT_COW); 3864 if (ret) 3865 goto out_unlock; 3866 3867 free_space = btrfs_leaf_free_space(right); 3868 if (free_space < data_size) 3869 goto out_unlock; 3870 3871 left_nritems = btrfs_header_nritems(left); 3872 if (left_nritems == 0) 3873 goto out_unlock; 3874 3875 if (check_sibling_keys(left, right)) { 3876 ret = -EUCLEAN; 3877 btrfs_abort_transaction(trans, ret); 3878 btrfs_tree_unlock(right); 3879 free_extent_buffer(right); 3880 return ret; 3881 } 3882 if (path->slots[0] == left_nritems && !empty) { 3883 /* Key greater than all keys in the leaf, right neighbor has 3884 * enough room for it and we're not emptying our leaf to delete 3885 * it, therefore use right neighbor to insert the new item and 3886 * no need to touch/dirty our left leaf. */ 3887 btrfs_tree_unlock(left); 3888 free_extent_buffer(left); 3889 path->nodes[0] = right; 3890 path->slots[0] = 0; 3891 path->slots[1]++; 3892 return 0; 3893 } 3894 3895 return __push_leaf_right(path, min_data_size, empty, 3896 right, free_space, left_nritems, min_slot); 3897out_unlock: 3898 btrfs_tree_unlock(right); 3899 free_extent_buffer(right); 3900 return 1; 3901} 3902 3903/* 3904 * push some data in the path leaf to the left, trying to free up at 3905 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3906 * 3907 * max_slot can put a limit on how far into the leaf we'll push items. The 3908 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3909 * items 3910 */ 3911static noinline int __push_leaf_left(struct btrfs_path *path, int data_size, 3912 int empty, struct extent_buffer *left, 3913 int free_space, u32 right_nritems, 3914 u32 max_slot) 3915{ 3916 struct btrfs_fs_info *fs_info = left->fs_info; 3917 struct btrfs_disk_key disk_key; 3918 struct extent_buffer *right = path->nodes[0]; 3919 int i; 3920 int push_space = 0; 3921 int push_items = 0; 3922 struct btrfs_item *item; 3923 u32 old_left_nritems; 3924 u32 nr; 3925 int ret = 0; 3926 u32 this_item_size; 3927 u32 old_left_item_size; 3928 struct btrfs_map_token token; 3929 3930 if (empty) 3931 nr = min(right_nritems, max_slot); 3932 else 3933 nr = min(right_nritems - 1, max_slot); 3934 3935 for (i = 0; i < nr; i++) { 3936 item = btrfs_item_nr(i); 3937 3938 if (!empty && push_items > 0) { 3939 if (path->slots[0] < i) 3940 break; 3941 if (path->slots[0] == i) { 3942 int space = btrfs_leaf_free_space(right); 3943 3944 if (space + push_space * 2 > free_space) 3945 break; 3946 } 3947 } 3948 3949 if (path->slots[0] == i) 3950 push_space += data_size; 3951 3952 this_item_size = btrfs_item_size(right, item); 3953 if (this_item_size + sizeof(*item) + push_space > free_space) 3954 break; 3955 3956 push_items++; 3957 push_space += this_item_size + sizeof(*item); 3958 } 3959 3960 if (push_items == 0) { 3961 ret = 1; 3962 goto out; 3963 } 3964 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3965 3966 /* push data from right to left */ 3967 copy_extent_buffer(left, right, 3968 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3969 btrfs_item_nr_offset(0), 3970 push_items * sizeof(struct btrfs_item)); 3971 3972 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3973 btrfs_item_offset_nr(right, push_items - 1); 3974 3975 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3976 leaf_data_end(left) - push_space, 3977 BTRFS_LEAF_DATA_OFFSET + 3978 btrfs_item_offset_nr(right, push_items - 1), 3979 push_space); 3980 old_left_nritems = btrfs_header_nritems(left); 3981 BUG_ON(old_left_nritems <= 0); 3982 3983 btrfs_init_map_token(&token, left); 3984 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3985 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3986 u32 ioff; 3987 3988 item = btrfs_item_nr(i); 3989 3990 ioff = btrfs_token_item_offset(&token, item); 3991 btrfs_set_token_item_offset(&token, item, 3992 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); 3993 } 3994 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3995 3996 /* fixup right node */ 3997 if (push_items > right_nritems) 3998 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3999 right_nritems); 4000 4001 if (push_items < right_nritems) { 4002 push_space = btrfs_item_offset_nr(right, push_items - 1) - 4003 leaf_data_end(right); 4004 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 4005 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 4006 BTRFS_LEAF_DATA_OFFSET + 4007 leaf_data_end(right), push_space); 4008 4009 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 4010 btrfs_item_nr_offset(push_items), 4011 (btrfs_header_nritems(right) - push_items) * 4012 sizeof(struct btrfs_item)); 4013 } 4014 4015 btrfs_init_map_token(&token, right); 4016 right_nritems -= push_items; 4017 btrfs_set_header_nritems(right, right_nritems); 4018 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 4019 for (i = 0; i < right_nritems; i++) { 4020 item = btrfs_item_nr(i); 4021 4022 push_space = push_space - btrfs_token_item_size(&token, item); 4023 btrfs_set_token_item_offset(&token, item, push_space); 4024 } 4025 4026 btrfs_mark_buffer_dirty(left); 4027 if (right_nritems) 4028 btrfs_mark_buffer_dirty(right); 4029 else 4030 btrfs_clean_tree_block(right); 4031 4032 btrfs_item_key(right, &disk_key, 0); 4033 fixup_low_keys(path, &disk_key, 1); 4034 4035 /* then fixup the leaf pointer in the path */ 4036 if (path->slots[0] < push_items) { 4037 path->slots[0] += old_left_nritems; 4038 btrfs_tree_unlock(path->nodes[0]); 4039 free_extent_buffer(path->nodes[0]); 4040 path->nodes[0] = left; 4041 path->slots[1] -= 1; 4042 } else { 4043 btrfs_tree_unlock(left); 4044 free_extent_buffer(left); 4045 path->slots[0] -= push_items; 4046 } 4047 BUG_ON(path->slots[0] < 0); 4048 return ret; 4049out: 4050 btrfs_tree_unlock(left); 4051 free_extent_buffer(left); 4052 return ret; 4053} 4054 4055/* 4056 * push some data in the path leaf to the left, trying to free up at 4057 * least data_size bytes. returns zero if the push worked, nonzero otherwise 4058 * 4059 * max_slot can put a limit on how far into the leaf we'll push items. The 4060 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 4061 * items 4062 */ 4063static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 4064 *root, struct btrfs_path *path, int min_data_size, 4065 int data_size, int empty, u32 max_slot) 4066{ 4067 struct extent_buffer *right = path->nodes[0]; 4068 struct extent_buffer *left; 4069 int slot; 4070 int free_space; 4071 u32 right_nritems; 4072 int ret = 0; 4073 4074 slot = path->slots[1]; 4075 if (slot == 0) 4076 return 1; 4077 if (!path->nodes[1]) 4078 return 1; 4079 4080 right_nritems = btrfs_header_nritems(right); 4081 if (right_nritems == 0) 4082 return 1; 4083 4084 btrfs_assert_tree_locked(path->nodes[1]); 4085 4086 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 4087 /* 4088 * slot - 1 is not valid or we fail to read the left node, 4089 * no big deal, just return. 4090 */ 4091 if (IS_ERR(left)) 4092 return 1; 4093 4094 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 4095 btrfs_set_lock_blocking_write(left); 4096 4097 free_space = btrfs_leaf_free_space(left); 4098 if (free_space < data_size) { 4099 ret = 1; 4100 goto out; 4101 } 4102 4103 /* cow and double check */ 4104 ret = btrfs_cow_block(trans, root, left, 4105 path->nodes[1], slot - 1, &left, 4106 BTRFS_NESTING_LEFT_COW); 4107 if (ret) { 4108 /* we hit -ENOSPC, but it isn't fatal here */ 4109 if (ret == -ENOSPC) 4110 ret = 1; 4111 goto out; 4112 } 4113 4114 free_space = btrfs_leaf_free_space(left); 4115 if (free_space < data_size) { 4116 ret = 1; 4117 goto out; 4118 } 4119 4120 if (check_sibling_keys(left, right)) { 4121 ret = -EUCLEAN; 4122 btrfs_abort_transaction(trans, ret); 4123 goto out; 4124 } 4125 return __push_leaf_left(path, min_data_size, 4126 empty, left, free_space, right_nritems, 4127 max_slot); 4128out: 4129 btrfs_tree_unlock(left); 4130 free_extent_buffer(left); 4131 return ret; 4132} 4133 4134/* 4135 * split the path's leaf in two, making sure there is at least data_size 4136 * available for the resulting leaf level of the path. 4137 */ 4138static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4139 struct btrfs_path *path, 4140 struct extent_buffer *l, 4141 struct extent_buffer *right, 4142 int slot, int mid, int nritems) 4143{ 4144 struct btrfs_fs_info *fs_info = trans->fs_info; 4145 int data_copy_size; 4146 int rt_data_off; 4147 int i; 4148 struct btrfs_disk_key disk_key; 4149 struct btrfs_map_token token; 4150 4151 nritems = nritems - mid; 4152 btrfs_set_header_nritems(right, nritems); 4153 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l); 4154 4155 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4156 btrfs_item_nr_offset(mid), 4157 nritems * sizeof(struct btrfs_item)); 4158 4159 copy_extent_buffer(right, l, 4160 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4161 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4162 leaf_data_end(l), data_copy_size); 4163 4164 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4165 4166 btrfs_init_map_token(&token, right); 4167 for (i = 0; i < nritems; i++) { 4168 struct btrfs_item *item = btrfs_item_nr(i); 4169 u32 ioff; 4170 4171 ioff = btrfs_token_item_offset(&token, item); 4172 btrfs_set_token_item_offset(&token, item, ioff + rt_data_off); 4173 } 4174 4175 btrfs_set_header_nritems(l, mid); 4176 btrfs_item_key(right, &disk_key, 0); 4177 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 4178 4179 btrfs_mark_buffer_dirty(right); 4180 btrfs_mark_buffer_dirty(l); 4181 BUG_ON(path->slots[0] != slot); 4182 4183 if (mid <= slot) { 4184 btrfs_tree_unlock(path->nodes[0]); 4185 free_extent_buffer(path->nodes[0]); 4186 path->nodes[0] = right; 4187 path->slots[0] -= mid; 4188 path->slots[1] += 1; 4189 } else { 4190 btrfs_tree_unlock(right); 4191 free_extent_buffer(right); 4192 } 4193 4194 BUG_ON(path->slots[0] < 0); 4195} 4196 4197/* 4198 * double splits happen when we need to insert a big item in the middle 4199 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4200 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4201 * A B C 4202 * 4203 * We avoid this by trying to push the items on either side of our target 4204 * into the adjacent leaves. If all goes well we can avoid the double split 4205 * completely. 4206 */ 4207static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4208 struct btrfs_root *root, 4209 struct btrfs_path *path, 4210 int data_size) 4211{ 4212 int ret; 4213 int progress = 0; 4214 int slot; 4215 u32 nritems; 4216 int space_needed = data_size; 4217 4218 slot = path->slots[0]; 4219 if (slot < btrfs_header_nritems(path->nodes[0])) 4220 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4221 4222 /* 4223 * try to push all the items after our slot into the 4224 * right leaf 4225 */ 4226 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4227 if (ret < 0) 4228 return ret; 4229 4230 if (ret == 0) 4231 progress++; 4232 4233 nritems = btrfs_header_nritems(path->nodes[0]); 4234 /* 4235 * our goal is to get our slot at the start or end of a leaf. If 4236 * we've done so we're done 4237 */ 4238 if (path->slots[0] == 0 || path->slots[0] == nritems) 4239 return 0; 4240 4241 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4242 return 0; 4243 4244 /* try to push all the items before our slot into the next leaf */ 4245 slot = path->slots[0]; 4246 space_needed = data_size; 4247 if (slot > 0) 4248 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4249 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4250 if (ret < 0) 4251 return ret; 4252 4253 if (ret == 0) 4254 progress++; 4255 4256 if (progress) 4257 return 0; 4258 return 1; 4259} 4260 4261/* 4262 * split the path's leaf in two, making sure there is at least data_size 4263 * available for the resulting leaf level of the path. 4264 * 4265 * returns 0 if all went well and < 0 on failure. 4266 */ 4267static noinline int split_leaf(struct btrfs_trans_handle *trans, 4268 struct btrfs_root *root, 4269 const struct btrfs_key *ins_key, 4270 struct btrfs_path *path, int data_size, 4271 int extend) 4272{ 4273 struct btrfs_disk_key disk_key; 4274 struct extent_buffer *l; 4275 u32 nritems; 4276 int mid; 4277 int slot; 4278 struct extent_buffer *right; 4279 struct btrfs_fs_info *fs_info = root->fs_info; 4280 int ret = 0; 4281 int wret; 4282 int split; 4283 int num_doubles = 0; 4284 int tried_avoid_double = 0; 4285 4286 l = path->nodes[0]; 4287 slot = path->slots[0]; 4288 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4289 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4290 return -EOVERFLOW; 4291 4292 /* first try to make some room by pushing left and right */ 4293 if (data_size && path->nodes[1]) { 4294 int space_needed = data_size; 4295 4296 if (slot < btrfs_header_nritems(l)) 4297 space_needed -= btrfs_leaf_free_space(l); 4298 4299 wret = push_leaf_right(trans, root, path, space_needed, 4300 space_needed, 0, 0); 4301 if (wret < 0) 4302 return wret; 4303 if (wret) { 4304 space_needed = data_size; 4305 if (slot > 0) 4306 space_needed -= btrfs_leaf_free_space(l); 4307 wret = push_leaf_left(trans, root, path, space_needed, 4308 space_needed, 0, (u32)-1); 4309 if (wret < 0) 4310 return wret; 4311 } 4312 l = path->nodes[0]; 4313 4314 /* did the pushes work? */ 4315 if (btrfs_leaf_free_space(l) >= data_size) 4316 return 0; 4317 } 4318 4319 if (!path->nodes[1]) { 4320 ret = insert_new_root(trans, root, path, 1); 4321 if (ret) 4322 return ret; 4323 } 4324again: 4325 split = 1; 4326 l = path->nodes[0]; 4327 slot = path->slots[0]; 4328 nritems = btrfs_header_nritems(l); 4329 mid = (nritems + 1) / 2; 4330 4331 if (mid <= slot) { 4332 if (nritems == 1 || 4333 leaf_space_used(l, mid, nritems - mid) + data_size > 4334 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4335 if (slot >= nritems) { 4336 split = 0; 4337 } else { 4338 mid = slot; 4339 if (mid != nritems && 4340 leaf_space_used(l, mid, nritems - mid) + 4341 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4342 if (data_size && !tried_avoid_double) 4343 goto push_for_double; 4344 split = 2; 4345 } 4346 } 4347 } 4348 } else { 4349 if (leaf_space_used(l, 0, mid) + data_size > 4350 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4351 if (!extend && data_size && slot == 0) { 4352 split = 0; 4353 } else if ((extend || !data_size) && slot == 0) { 4354 mid = 1; 4355 } else { 4356 mid = slot; 4357 if (mid != nritems && 4358 leaf_space_used(l, mid, nritems - mid) + 4359 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4360 if (data_size && !tried_avoid_double) 4361 goto push_for_double; 4362 split = 2; 4363 } 4364 } 4365 } 4366 } 4367 4368 if (split == 0) 4369 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4370 else 4371 btrfs_item_key(l, &disk_key, mid); 4372 4373 /* 4374 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double 4375 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES 4376 * subclasses, which is 8 at the time of this patch, and we've maxed it 4377 * out. In the future we could add a 4378 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just 4379 * use BTRFS_NESTING_NEW_ROOT. 4380 */ 4381 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0, 4382 l->start, 0, num_doubles ? 4383 BTRFS_NESTING_NEW_ROOT : 4384 BTRFS_NESTING_SPLIT); 4385 if (IS_ERR(right)) 4386 return PTR_ERR(right); 4387 4388 root_add_used(root, fs_info->nodesize); 4389 4390 if (split == 0) { 4391 if (mid <= slot) { 4392 btrfs_set_header_nritems(right, 0); 4393 insert_ptr(trans, path, &disk_key, 4394 right->start, path->slots[1] + 1, 1); 4395 btrfs_tree_unlock(path->nodes[0]); 4396 free_extent_buffer(path->nodes[0]); 4397 path->nodes[0] = right; 4398 path->slots[0] = 0; 4399 path->slots[1] += 1; 4400 } else { 4401 btrfs_set_header_nritems(right, 0); 4402 insert_ptr(trans, path, &disk_key, 4403 right->start, path->slots[1], 1); 4404 btrfs_tree_unlock(path->nodes[0]); 4405 free_extent_buffer(path->nodes[0]); 4406 path->nodes[0] = right; 4407 path->slots[0] = 0; 4408 if (path->slots[1] == 0) 4409 fixup_low_keys(path, &disk_key, 1); 4410 } 4411 /* 4412 * We create a new leaf 'right' for the required ins_len and 4413 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4414 * the content of ins_len to 'right'. 4415 */ 4416 return ret; 4417 } 4418 4419 copy_for_split(trans, path, l, right, slot, mid, nritems); 4420 4421 if (split == 2) { 4422 BUG_ON(num_doubles != 0); 4423 num_doubles++; 4424 goto again; 4425 } 4426 4427 return 0; 4428 4429push_for_double: 4430 push_for_double_split(trans, root, path, data_size); 4431 tried_avoid_double = 1; 4432 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4433 return 0; 4434 goto again; 4435} 4436 4437static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4438 struct btrfs_root *root, 4439 struct btrfs_path *path, int ins_len) 4440{ 4441 struct btrfs_key key; 4442 struct extent_buffer *leaf; 4443 struct btrfs_file_extent_item *fi; 4444 u64 extent_len = 0; 4445 u32 item_size; 4446 int ret; 4447 4448 leaf = path->nodes[0]; 4449 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4450 4451 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4452 key.type != BTRFS_EXTENT_CSUM_KEY); 4453 4454 if (btrfs_leaf_free_space(leaf) >= ins_len) 4455 return 0; 4456 4457 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4458 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4459 fi = btrfs_item_ptr(leaf, path->slots[0], 4460 struct btrfs_file_extent_item); 4461 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4462 } 4463 btrfs_release_path(path); 4464 4465 path->keep_locks = 1; 4466 path->search_for_split = 1; 4467 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4468 path->search_for_split = 0; 4469 if (ret > 0) 4470 ret = -EAGAIN; 4471 if (ret < 0) 4472 goto err; 4473 4474 ret = -EAGAIN; 4475 leaf = path->nodes[0]; 4476 /* if our item isn't there, return now */ 4477 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4478 goto err; 4479 4480 /* the leaf has changed, it now has room. return now */ 4481 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 4482 goto err; 4483 4484 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4485 fi = btrfs_item_ptr(leaf, path->slots[0], 4486 struct btrfs_file_extent_item); 4487 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4488 goto err; 4489 } 4490 4491 btrfs_set_path_blocking(path); 4492 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4493 if (ret) 4494 goto err; 4495 4496 path->keep_locks = 0; 4497 btrfs_unlock_up_safe(path, 1); 4498 return 0; 4499err: 4500 path->keep_locks = 0; 4501 return ret; 4502} 4503 4504static noinline int split_item(struct btrfs_path *path, 4505 const struct btrfs_key *new_key, 4506 unsigned long split_offset) 4507{ 4508 struct extent_buffer *leaf; 4509 struct btrfs_item *item; 4510 struct btrfs_item *new_item; 4511 int slot; 4512 char *buf; 4513 u32 nritems; 4514 u32 item_size; 4515 u32 orig_offset; 4516 struct btrfs_disk_key disk_key; 4517 4518 leaf = path->nodes[0]; 4519 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); 4520 4521 btrfs_set_path_blocking(path); 4522 4523 item = btrfs_item_nr(path->slots[0]); 4524 orig_offset = btrfs_item_offset(leaf, item); 4525 item_size = btrfs_item_size(leaf, item); 4526 4527 buf = kmalloc(item_size, GFP_NOFS); 4528 if (!buf) 4529 return -ENOMEM; 4530 4531 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4532 path->slots[0]), item_size); 4533 4534 slot = path->slots[0] + 1; 4535 nritems = btrfs_header_nritems(leaf); 4536 if (slot != nritems) { 4537 /* shift the items */ 4538 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4539 btrfs_item_nr_offset(slot), 4540 (nritems - slot) * sizeof(struct btrfs_item)); 4541 } 4542 4543 btrfs_cpu_key_to_disk(&disk_key, new_key); 4544 btrfs_set_item_key(leaf, &disk_key, slot); 4545 4546 new_item = btrfs_item_nr(slot); 4547 4548 btrfs_set_item_offset(leaf, new_item, orig_offset); 4549 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4550 4551 btrfs_set_item_offset(leaf, item, 4552 orig_offset + item_size - split_offset); 4553 btrfs_set_item_size(leaf, item, split_offset); 4554 4555 btrfs_set_header_nritems(leaf, nritems + 1); 4556 4557 /* write the data for the start of the original item */ 4558 write_extent_buffer(leaf, buf, 4559 btrfs_item_ptr_offset(leaf, path->slots[0]), 4560 split_offset); 4561 4562 /* write the data for the new item */ 4563 write_extent_buffer(leaf, buf + split_offset, 4564 btrfs_item_ptr_offset(leaf, slot), 4565 item_size - split_offset); 4566 btrfs_mark_buffer_dirty(leaf); 4567 4568 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 4569 kfree(buf); 4570 return 0; 4571} 4572 4573/* 4574 * This function splits a single item into two items, 4575 * giving 'new_key' to the new item and splitting the 4576 * old one at split_offset (from the start of the item). 4577 * 4578 * The path may be released by this operation. After 4579 * the split, the path is pointing to the old item. The 4580 * new item is going to be in the same node as the old one. 4581 * 4582 * Note, the item being split must be smaller enough to live alone on 4583 * a tree block with room for one extra struct btrfs_item 4584 * 4585 * This allows us to split the item in place, keeping a lock on the 4586 * leaf the entire time. 4587 */ 4588int btrfs_split_item(struct btrfs_trans_handle *trans, 4589 struct btrfs_root *root, 4590 struct btrfs_path *path, 4591 const struct btrfs_key *new_key, 4592 unsigned long split_offset) 4593{ 4594 int ret; 4595 ret = setup_leaf_for_split(trans, root, path, 4596 sizeof(struct btrfs_item)); 4597 if (ret) 4598 return ret; 4599 4600 ret = split_item(path, new_key, split_offset); 4601 return ret; 4602} 4603 4604/* 4605 * This function duplicate a item, giving 'new_key' to the new item. 4606 * It guarantees both items live in the same tree leaf and the new item 4607 * is contiguous with the original item. 4608 * 4609 * This allows us to split file extent in place, keeping a lock on the 4610 * leaf the entire time. 4611 */ 4612int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4613 struct btrfs_root *root, 4614 struct btrfs_path *path, 4615 const struct btrfs_key *new_key) 4616{ 4617 struct extent_buffer *leaf; 4618 int ret; 4619 u32 item_size; 4620 4621 leaf = path->nodes[0]; 4622 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4623 ret = setup_leaf_for_split(trans, root, path, 4624 item_size + sizeof(struct btrfs_item)); 4625 if (ret) 4626 return ret; 4627 4628 path->slots[0]++; 4629 setup_items_for_insert(root, path, new_key, &item_size, 1); 4630 leaf = path->nodes[0]; 4631 memcpy_extent_buffer(leaf, 4632 btrfs_item_ptr_offset(leaf, path->slots[0]), 4633 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4634 item_size); 4635 return 0; 4636} 4637 4638/* 4639 * make the item pointed to by the path smaller. new_size indicates 4640 * how small to make it, and from_end tells us if we just chop bytes 4641 * off the end of the item or if we shift the item to chop bytes off 4642 * the front. 4643 */ 4644void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) 4645{ 4646 int slot; 4647 struct extent_buffer *leaf; 4648 struct btrfs_item *item; 4649 u32 nritems; 4650 unsigned int data_end; 4651 unsigned int old_data_start; 4652 unsigned int old_size; 4653 unsigned int size_diff; 4654 int i; 4655 struct btrfs_map_token token; 4656 4657 leaf = path->nodes[0]; 4658 slot = path->slots[0]; 4659 4660 old_size = btrfs_item_size_nr(leaf, slot); 4661 if (old_size == new_size) 4662 return; 4663 4664 nritems = btrfs_header_nritems(leaf); 4665 data_end = leaf_data_end(leaf); 4666 4667 old_data_start = btrfs_item_offset_nr(leaf, slot); 4668 4669 size_diff = old_size - new_size; 4670 4671 BUG_ON(slot < 0); 4672 BUG_ON(slot >= nritems); 4673 4674 /* 4675 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4676 */ 4677 /* first correct the data pointers */ 4678 btrfs_init_map_token(&token, leaf); 4679 for (i = slot; i < nritems; i++) { 4680 u32 ioff; 4681 item = btrfs_item_nr(i); 4682 4683 ioff = btrfs_token_item_offset(&token, item); 4684 btrfs_set_token_item_offset(&token, item, ioff + size_diff); 4685 } 4686 4687 /* shift the data */ 4688 if (from_end) { 4689 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4690 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4691 data_end, old_data_start + new_size - data_end); 4692 } else { 4693 struct btrfs_disk_key disk_key; 4694 u64 offset; 4695 4696 btrfs_item_key(leaf, &disk_key, slot); 4697 4698 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4699 unsigned long ptr; 4700 struct btrfs_file_extent_item *fi; 4701 4702 fi = btrfs_item_ptr(leaf, slot, 4703 struct btrfs_file_extent_item); 4704 fi = (struct btrfs_file_extent_item *)( 4705 (unsigned long)fi - size_diff); 4706 4707 if (btrfs_file_extent_type(leaf, fi) == 4708 BTRFS_FILE_EXTENT_INLINE) { 4709 ptr = btrfs_item_ptr_offset(leaf, slot); 4710 memmove_extent_buffer(leaf, ptr, 4711 (unsigned long)fi, 4712 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4713 } 4714 } 4715 4716 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4717 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4718 data_end, old_data_start - data_end); 4719 4720 offset = btrfs_disk_key_offset(&disk_key); 4721 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4722 btrfs_set_item_key(leaf, &disk_key, slot); 4723 if (slot == 0) 4724 fixup_low_keys(path, &disk_key, 1); 4725 } 4726 4727 item = btrfs_item_nr(slot); 4728 btrfs_set_item_size(leaf, item, new_size); 4729 btrfs_mark_buffer_dirty(leaf); 4730 4731 if (btrfs_leaf_free_space(leaf) < 0) { 4732 btrfs_print_leaf(leaf); 4733 BUG(); 4734 } 4735} 4736 4737/* 4738 * make the item pointed to by the path bigger, data_size is the added size. 4739 */ 4740void btrfs_extend_item(struct btrfs_path *path, u32 data_size) 4741{ 4742 int slot; 4743 struct extent_buffer *leaf; 4744 struct btrfs_item *item; 4745 u32 nritems; 4746 unsigned int data_end; 4747 unsigned int old_data; 4748 unsigned int old_size; 4749 int i; 4750 struct btrfs_map_token token; 4751 4752 leaf = path->nodes[0]; 4753 4754 nritems = btrfs_header_nritems(leaf); 4755 data_end = leaf_data_end(leaf); 4756 4757 if (btrfs_leaf_free_space(leaf) < data_size) { 4758 btrfs_print_leaf(leaf); 4759 BUG(); 4760 } 4761 slot = path->slots[0]; 4762 old_data = btrfs_item_end_nr(leaf, slot); 4763 4764 BUG_ON(slot < 0); 4765 if (slot >= nritems) { 4766 btrfs_print_leaf(leaf); 4767 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 4768 slot, nritems); 4769 BUG(); 4770 } 4771 4772 /* 4773 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4774 */ 4775 /* first correct the data pointers */ 4776 btrfs_init_map_token(&token, leaf); 4777 for (i = slot; i < nritems; i++) { 4778 u32 ioff; 4779 item = btrfs_item_nr(i); 4780 4781 ioff = btrfs_token_item_offset(&token, item); 4782 btrfs_set_token_item_offset(&token, item, ioff - data_size); 4783 } 4784 4785 /* shift the data */ 4786 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4787 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4788 data_end, old_data - data_end); 4789 4790 data_end = old_data; 4791 old_size = btrfs_item_size_nr(leaf, slot); 4792 item = btrfs_item_nr(slot); 4793 btrfs_set_item_size(leaf, item, old_size + data_size); 4794 btrfs_mark_buffer_dirty(leaf); 4795 4796 if (btrfs_leaf_free_space(leaf) < 0) { 4797 btrfs_print_leaf(leaf); 4798 BUG(); 4799 } 4800} 4801 4802/** 4803 * setup_items_for_insert - Helper called before inserting one or more items 4804 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work 4805 * in a function that doesn't call btrfs_search_slot 4806 * 4807 * @root: root we are inserting items to 4808 * @path: points to the leaf/slot where we are going to insert new items 4809 * @cpu_key: array of keys for items to be inserted 4810 * @data_size: size of the body of each item we are going to insert 4811 * @nr: size of @cpu_key/@data_size arrays 4812 */ 4813void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4814 const struct btrfs_key *cpu_key, u32 *data_size, 4815 int nr) 4816{ 4817 struct btrfs_fs_info *fs_info = root->fs_info; 4818 struct btrfs_item *item; 4819 int i; 4820 u32 nritems; 4821 unsigned int data_end; 4822 struct btrfs_disk_key disk_key; 4823 struct extent_buffer *leaf; 4824 int slot; 4825 struct btrfs_map_token token; 4826 u32 total_size; 4827 u32 total_data = 0; 4828 4829 for (i = 0; i < nr; i++) 4830 total_data += data_size[i]; 4831 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4832 4833 if (path->slots[0] == 0) { 4834 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4835 fixup_low_keys(path, &disk_key, 1); 4836 } 4837 btrfs_unlock_up_safe(path, 1); 4838 4839 leaf = path->nodes[0]; 4840 slot = path->slots[0]; 4841 4842 nritems = btrfs_header_nritems(leaf); 4843 data_end = leaf_data_end(leaf); 4844 4845 if (btrfs_leaf_free_space(leaf) < total_size) { 4846 btrfs_print_leaf(leaf); 4847 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4848 total_size, btrfs_leaf_free_space(leaf)); 4849 BUG(); 4850 } 4851 4852 btrfs_init_map_token(&token, leaf); 4853 if (slot != nritems) { 4854 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4855 4856 if (old_data < data_end) { 4857 btrfs_print_leaf(leaf); 4858 btrfs_crit(fs_info, 4859 "item at slot %d with data offset %u beyond data end of leaf %u", 4860 slot, old_data, data_end); 4861 BUG(); 4862 } 4863 /* 4864 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4865 */ 4866 /* first correct the data pointers */ 4867 for (i = slot; i < nritems; i++) { 4868 u32 ioff; 4869 4870 item = btrfs_item_nr(i); 4871 ioff = btrfs_token_item_offset(&token, item); 4872 btrfs_set_token_item_offset(&token, item, 4873 ioff - total_data); 4874 } 4875 /* shift the items */ 4876 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4877 btrfs_item_nr_offset(slot), 4878 (nritems - slot) * sizeof(struct btrfs_item)); 4879 4880 /* shift the data */ 4881 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4882 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4883 data_end, old_data - data_end); 4884 data_end = old_data; 4885 } 4886 4887 /* setup the item for the new data */ 4888 for (i = 0; i < nr; i++) { 4889 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4890 btrfs_set_item_key(leaf, &disk_key, slot + i); 4891 item = btrfs_item_nr(slot + i); 4892 data_end -= data_size[i]; 4893 btrfs_set_token_item_offset(&token, item, data_end); 4894 btrfs_set_token_item_size(&token, item, data_size[i]); 4895 } 4896 4897 btrfs_set_header_nritems(leaf, nritems + nr); 4898 btrfs_mark_buffer_dirty(leaf); 4899 4900 if (btrfs_leaf_free_space(leaf) < 0) { 4901 btrfs_print_leaf(leaf); 4902 BUG(); 4903 } 4904} 4905 4906/* 4907 * Given a key and some data, insert items into the tree. 4908 * This does all the path init required, making room in the tree if needed. 4909 */ 4910int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4911 struct btrfs_root *root, 4912 struct btrfs_path *path, 4913 const struct btrfs_key *cpu_key, u32 *data_size, 4914 int nr) 4915{ 4916 int ret = 0; 4917 int slot; 4918 int i; 4919 u32 total_size = 0; 4920 u32 total_data = 0; 4921 4922 for (i = 0; i < nr; i++) 4923 total_data += data_size[i]; 4924 4925 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4926 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4927 if (ret == 0) 4928 return -EEXIST; 4929 if (ret < 0) 4930 return ret; 4931 4932 slot = path->slots[0]; 4933 BUG_ON(slot < 0); 4934 4935 setup_items_for_insert(root, path, cpu_key, data_size, nr); 4936 return 0; 4937} 4938 4939/* 4940 * Given a key and some data, insert an item into the tree. 4941 * This does all the path init required, making room in the tree if needed. 4942 */ 4943int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4944 const struct btrfs_key *cpu_key, void *data, 4945 u32 data_size) 4946{ 4947 int ret = 0; 4948 struct btrfs_path *path; 4949 struct extent_buffer *leaf; 4950 unsigned long ptr; 4951 4952 path = btrfs_alloc_path(); 4953 if (!path) 4954 return -ENOMEM; 4955 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4956 if (!ret) { 4957 leaf = path->nodes[0]; 4958 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4959 write_extent_buffer(leaf, data, ptr, data_size); 4960 btrfs_mark_buffer_dirty(leaf); 4961 } 4962 btrfs_free_path(path); 4963 return ret; 4964} 4965 4966/* 4967 * delete the pointer from a given node. 4968 * 4969 * the tree should have been previously balanced so the deletion does not 4970 * empty a node. 4971 */ 4972static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4973 int level, int slot) 4974{ 4975 struct extent_buffer *parent = path->nodes[level]; 4976 u32 nritems; 4977 int ret; 4978 4979 nritems = btrfs_header_nritems(parent); 4980 if (slot != nritems - 1) { 4981 if (level) { 4982 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4983 nritems - slot - 1); 4984 BUG_ON(ret < 0); 4985 } 4986 memmove_extent_buffer(parent, 4987 btrfs_node_key_ptr_offset(slot), 4988 btrfs_node_key_ptr_offset(slot + 1), 4989 sizeof(struct btrfs_key_ptr) * 4990 (nritems - slot - 1)); 4991 } else if (level) { 4992 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4993 GFP_NOFS); 4994 BUG_ON(ret < 0); 4995 } 4996 4997 nritems--; 4998 btrfs_set_header_nritems(parent, nritems); 4999 if (nritems == 0 && parent == root->node) { 5000 BUG_ON(btrfs_header_level(root->node) != 1); 5001 /* just turn the root into a leaf and break */ 5002 btrfs_set_header_level(root->node, 0); 5003 } else if (slot == 0) { 5004 struct btrfs_disk_key disk_key; 5005 5006 btrfs_node_key(parent, &disk_key, 0); 5007 fixup_low_keys(path, &disk_key, level + 1); 5008 } 5009 btrfs_mark_buffer_dirty(parent); 5010} 5011 5012/* 5013 * a helper function to delete the leaf pointed to by path->slots[1] and 5014 * path->nodes[1]. 5015 * 5016 * This deletes the pointer in path->nodes[1] and frees the leaf 5017 * block extent. zero is returned if it all worked out, < 0 otherwise. 5018 * 5019 * The path must have already been setup for deleting the leaf, including 5020 * all the proper balancing. path->nodes[1] must be locked. 5021 */ 5022static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 5023 struct btrfs_root *root, 5024 struct btrfs_path *path, 5025 struct extent_buffer *leaf) 5026{ 5027 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 5028 del_ptr(root, path, 1, path->slots[1]); 5029 5030 /* 5031 * btrfs_free_extent is expensive, we want to make sure we 5032 * aren't holding any locks when we call it 5033 */ 5034 btrfs_unlock_up_safe(path, 0); 5035 5036 root_sub_used(root, leaf->len); 5037 5038 atomic_inc(&leaf->refs); 5039 btrfs_free_tree_block(trans, root, leaf, 0, 1); 5040 free_extent_buffer_stale(leaf); 5041} 5042/* 5043 * delete the item at the leaf level in path. If that empties 5044 * the leaf, remove it from the tree 5045 */ 5046int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5047 struct btrfs_path *path, int slot, int nr) 5048{ 5049 struct btrfs_fs_info *fs_info = root->fs_info; 5050 struct extent_buffer *leaf; 5051 struct btrfs_item *item; 5052 u32 last_off; 5053 u32 dsize = 0; 5054 int ret = 0; 5055 int wret; 5056 int i; 5057 u32 nritems; 5058 5059 leaf = path->nodes[0]; 5060 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 5061 5062 for (i = 0; i < nr; i++) 5063 dsize += btrfs_item_size_nr(leaf, slot + i); 5064 5065 nritems = btrfs_header_nritems(leaf); 5066 5067 if (slot + nr != nritems) { 5068 int data_end = leaf_data_end(leaf); 5069 struct btrfs_map_token token; 5070 5071 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 5072 data_end + dsize, 5073 BTRFS_LEAF_DATA_OFFSET + data_end, 5074 last_off - data_end); 5075 5076 btrfs_init_map_token(&token, leaf); 5077 for (i = slot + nr; i < nritems; i++) { 5078 u32 ioff; 5079 5080 item = btrfs_item_nr(i); 5081 ioff = btrfs_token_item_offset(&token, item); 5082 btrfs_set_token_item_offset(&token, item, ioff + dsize); 5083 } 5084 5085 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 5086 btrfs_item_nr_offset(slot + nr), 5087 sizeof(struct btrfs_item) * 5088 (nritems - slot - nr)); 5089 } 5090 btrfs_set_header_nritems(leaf, nritems - nr); 5091 nritems -= nr; 5092 5093 /* delete the leaf if we've emptied it */ 5094 if (nritems == 0) { 5095 if (leaf == root->node) { 5096 btrfs_set_header_level(leaf, 0); 5097 } else { 5098 btrfs_set_path_blocking(path); 5099 btrfs_clean_tree_block(leaf); 5100 btrfs_del_leaf(trans, root, path, leaf); 5101 } 5102 } else { 5103 int used = leaf_space_used(leaf, 0, nritems); 5104 if (slot == 0) { 5105 struct btrfs_disk_key disk_key; 5106 5107 btrfs_item_key(leaf, &disk_key, 0); 5108 fixup_low_keys(path, &disk_key, 1); 5109 } 5110 5111 /* delete the leaf if it is mostly empty */ 5112 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 5113 /* push_leaf_left fixes the path. 5114 * make sure the path still points to our leaf 5115 * for possible call to del_ptr below 5116 */ 5117 slot = path->slots[1]; 5118 atomic_inc(&leaf->refs); 5119 5120 btrfs_set_path_blocking(path); 5121 wret = push_leaf_left(trans, root, path, 1, 1, 5122 1, (u32)-1); 5123 if (wret < 0 && wret != -ENOSPC) 5124 ret = wret; 5125 5126 if (path->nodes[0] == leaf && 5127 btrfs_header_nritems(leaf)) { 5128 wret = push_leaf_right(trans, root, path, 1, 5129 1, 1, 0); 5130 if (wret < 0 && wret != -ENOSPC) 5131 ret = wret; 5132 } 5133 5134 if (btrfs_header_nritems(leaf) == 0) { 5135 path->slots[1] = slot; 5136 btrfs_del_leaf(trans, root, path, leaf); 5137 free_extent_buffer(leaf); 5138 ret = 0; 5139 } else { 5140 /* if we're still in the path, make sure 5141 * we're dirty. Otherwise, one of the 5142 * push_leaf functions must have already 5143 * dirtied this buffer 5144 */ 5145 if (path->nodes[0] == leaf) 5146 btrfs_mark_buffer_dirty(leaf); 5147 free_extent_buffer(leaf); 5148 } 5149 } else { 5150 btrfs_mark_buffer_dirty(leaf); 5151 } 5152 } 5153 return ret; 5154} 5155 5156/* 5157 * search the tree again to find a leaf with lesser keys 5158 * returns 0 if it found something or 1 if there are no lesser leaves. 5159 * returns < 0 on io errors. 5160 * 5161 * This may release the path, and so you may lose any locks held at the 5162 * time you call it. 5163 */ 5164int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5165{ 5166 struct btrfs_key key; 5167 struct btrfs_key orig_key; 5168 struct btrfs_disk_key found_key; 5169 int ret; 5170 5171 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5172 orig_key = key; 5173 5174 if (key.offset > 0) { 5175 key.offset--; 5176 } else if (key.type > 0) { 5177 key.type--; 5178 key.offset = (u64)-1; 5179 } else if (key.objectid > 0) { 5180 key.objectid--; 5181 key.type = (u8)-1; 5182 key.offset = (u64)-1; 5183 } else { 5184 return 1; 5185 } 5186 5187 btrfs_release_path(path); 5188 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5189 if (ret <= 0) 5190 return ret; 5191 5192 /* 5193 * Previous key not found. Even if we were at slot 0 of the leaf we had 5194 * before releasing the path and calling btrfs_search_slot(), we now may 5195 * be in a slot pointing to the same original key - this can happen if 5196 * after we released the path, one of more items were moved from a 5197 * sibling leaf into the front of the leaf we had due to an insertion 5198 * (see push_leaf_right()). 5199 * If we hit this case and our slot is > 0 and just decrement the slot 5200 * so that the caller does not process the same key again, which may or 5201 * may not break the caller, depending on its logic. 5202 */ 5203 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 5204 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]); 5205 ret = comp_keys(&found_key, &orig_key); 5206 if (ret == 0) { 5207 if (path->slots[0] > 0) { 5208 path->slots[0]--; 5209 return 0; 5210 } 5211 /* 5212 * At slot 0, same key as before, it means orig_key is 5213 * the lowest, leftmost, key in the tree. We're done. 5214 */ 5215 return 1; 5216 } 5217 } 5218 5219 btrfs_item_key(path->nodes[0], &found_key, 0); 5220 ret = comp_keys(&found_key, &key); 5221 /* 5222 * We might have had an item with the previous key in the tree right 5223 * before we released our path. And after we released our path, that 5224 * item might have been pushed to the first slot (0) of the leaf we 5225 * were holding due to a tree balance. Alternatively, an item with the 5226 * previous key can exist as the only element of a leaf (big fat item). 5227 * Therefore account for these 2 cases, so that our callers (like 5228 * btrfs_previous_item) don't miss an existing item with a key matching 5229 * the previous key we computed above. 5230 */ 5231 if (ret <= 0) 5232 return 0; 5233 return 1; 5234} 5235 5236/* 5237 * A helper function to walk down the tree starting at min_key, and looking 5238 * for nodes or leaves that are have a minimum transaction id. 5239 * This is used by the btree defrag code, and tree logging 5240 * 5241 * This does not cow, but it does stuff the starting key it finds back 5242 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5243 * key and get a writable path. 5244 * 5245 * This honors path->lowest_level to prevent descent past a given level 5246 * of the tree. 5247 * 5248 * min_trans indicates the oldest transaction that you are interested 5249 * in walking through. Any nodes or leaves older than min_trans are 5250 * skipped over (without reading them). 5251 * 5252 * returns zero if something useful was found, < 0 on error and 1 if there 5253 * was nothing in the tree that matched the search criteria. 5254 */ 5255int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5256 struct btrfs_path *path, 5257 u64 min_trans) 5258{ 5259 struct extent_buffer *cur; 5260 struct btrfs_key found_key; 5261 int slot; 5262 int sret; 5263 u32 nritems; 5264 int level; 5265 int ret = 1; 5266 int keep_locks = path->keep_locks; 5267 5268 path->keep_locks = 1; 5269again: 5270 cur = btrfs_read_lock_root_node(root); 5271 level = btrfs_header_level(cur); 5272 WARN_ON(path->nodes[level]); 5273 path->nodes[level] = cur; 5274 path->locks[level] = BTRFS_READ_LOCK; 5275 5276 if (btrfs_header_generation(cur) < min_trans) { 5277 ret = 1; 5278 goto out; 5279 } 5280 while (1) { 5281 nritems = btrfs_header_nritems(cur); 5282 level = btrfs_header_level(cur); 5283 sret = btrfs_bin_search(cur, min_key, &slot); 5284 if (sret < 0) { 5285 ret = sret; 5286 goto out; 5287 } 5288 5289 /* at the lowest level, we're done, setup the path and exit */ 5290 if (level == path->lowest_level) { 5291 if (slot >= nritems) 5292 goto find_next_key; 5293 ret = 0; 5294 path->slots[level] = slot; 5295 btrfs_item_key_to_cpu(cur, &found_key, slot); 5296 goto out; 5297 } 5298 if (sret && slot > 0) 5299 slot--; 5300 /* 5301 * check this node pointer against the min_trans parameters. 5302 * If it is too old, skip to the next one. 5303 */ 5304 while (slot < nritems) { 5305 u64 gen; 5306 5307 gen = btrfs_node_ptr_generation(cur, slot); 5308 if (gen < min_trans) { 5309 slot++; 5310 continue; 5311 } 5312 break; 5313 } 5314find_next_key: 5315 /* 5316 * we didn't find a candidate key in this node, walk forward 5317 * and find another one 5318 */ 5319 if (slot >= nritems) { 5320 path->slots[level] = slot; 5321 btrfs_set_path_blocking(path); 5322 sret = btrfs_find_next_key(root, path, min_key, level, 5323 min_trans); 5324 if (sret == 0) { 5325 btrfs_release_path(path); 5326 goto again; 5327 } else { 5328 goto out; 5329 } 5330 } 5331 /* save our key for returning back */ 5332 btrfs_node_key_to_cpu(cur, &found_key, slot); 5333 path->slots[level] = slot; 5334 if (level == path->lowest_level) { 5335 ret = 0; 5336 goto out; 5337 } 5338 btrfs_set_path_blocking(path); 5339 cur = btrfs_read_node_slot(cur, slot); 5340 if (IS_ERR(cur)) { 5341 ret = PTR_ERR(cur); 5342 goto out; 5343 } 5344 5345 btrfs_tree_read_lock(cur); 5346 5347 path->locks[level - 1] = BTRFS_READ_LOCK; 5348 path->nodes[level - 1] = cur; 5349 unlock_up(path, level, 1, 0, NULL); 5350 } 5351out: 5352 path->keep_locks = keep_locks; 5353 if (ret == 0) { 5354 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5355 btrfs_set_path_blocking(path); 5356 memcpy(min_key, &found_key, sizeof(found_key)); 5357 } 5358 return ret; 5359} 5360 5361/* 5362 * this is similar to btrfs_next_leaf, but does not try to preserve 5363 * and fixup the path. It looks for and returns the next key in the 5364 * tree based on the current path and the min_trans parameters. 5365 * 5366 * 0 is returned if another key is found, < 0 if there are any errors 5367 * and 1 is returned if there are no higher keys in the tree 5368 * 5369 * path->keep_locks should be set to 1 on the search made before 5370 * calling this function. 5371 */ 5372int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5373 struct btrfs_key *key, int level, u64 min_trans) 5374{ 5375 int slot; 5376 struct extent_buffer *c; 5377 5378 WARN_ON(!path->keep_locks && !path->skip_locking); 5379 while (level < BTRFS_MAX_LEVEL) { 5380 if (!path->nodes[level]) 5381 return 1; 5382 5383 slot = path->slots[level] + 1; 5384 c = path->nodes[level]; 5385next: 5386 if (slot >= btrfs_header_nritems(c)) { 5387 int ret; 5388 int orig_lowest; 5389 struct btrfs_key cur_key; 5390 if (level + 1 >= BTRFS_MAX_LEVEL || 5391 !path->nodes[level + 1]) 5392 return 1; 5393 5394 if (path->locks[level + 1] || path->skip_locking) { 5395 level++; 5396 continue; 5397 } 5398 5399 slot = btrfs_header_nritems(c) - 1; 5400 if (level == 0) 5401 btrfs_item_key_to_cpu(c, &cur_key, slot); 5402 else 5403 btrfs_node_key_to_cpu(c, &cur_key, slot); 5404 5405 orig_lowest = path->lowest_level; 5406 btrfs_release_path(path); 5407 path->lowest_level = level; 5408 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5409 0, 0); 5410 path->lowest_level = orig_lowest; 5411 if (ret < 0) 5412 return ret; 5413 5414 c = path->nodes[level]; 5415 slot = path->slots[level]; 5416 if (ret == 0) 5417 slot++; 5418 goto next; 5419 } 5420 5421 if (level == 0) 5422 btrfs_item_key_to_cpu(c, key, slot); 5423 else { 5424 u64 gen = btrfs_node_ptr_generation(c, slot); 5425 5426 if (gen < min_trans) { 5427 slot++; 5428 goto next; 5429 } 5430 btrfs_node_key_to_cpu(c, key, slot); 5431 } 5432 return 0; 5433 } 5434 return 1; 5435} 5436 5437/* 5438 * search the tree again to find a leaf with greater keys 5439 * returns 0 if it found something or 1 if there are no greater leaves. 5440 * returns < 0 on io errors. 5441 */ 5442int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5443{ 5444 return btrfs_next_old_leaf(root, path, 0); 5445} 5446 5447int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5448 u64 time_seq) 5449{ 5450 int slot; 5451 int level; 5452 struct extent_buffer *c; 5453 struct extent_buffer *next; 5454 struct btrfs_key key; 5455 u32 nritems; 5456 int ret; 5457 int old_spinning = path->leave_spinning; 5458 int next_rw_lock = 0; 5459 5460 nritems = btrfs_header_nritems(path->nodes[0]); 5461 if (nritems == 0) 5462 return 1; 5463 5464 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5465again: 5466 level = 1; 5467 next = NULL; 5468 next_rw_lock = 0; 5469 btrfs_release_path(path); 5470 5471 path->keep_locks = 1; 5472 path->leave_spinning = 1; 5473 5474 if (time_seq) 5475 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5476 else 5477 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5478 path->keep_locks = 0; 5479 5480 if (ret < 0) 5481 return ret; 5482 5483 nritems = btrfs_header_nritems(path->nodes[0]); 5484 /* 5485 * by releasing the path above we dropped all our locks. A balance 5486 * could have added more items next to the key that used to be 5487 * at the very end of the block. So, check again here and 5488 * advance the path if there are now more items available. 5489 */ 5490 if (nritems > 0 && path->slots[0] < nritems - 1) { 5491 if (ret == 0) 5492 path->slots[0]++; 5493 ret = 0; 5494 goto done; 5495 } 5496 /* 5497 * So the above check misses one case: 5498 * - after releasing the path above, someone has removed the item that 5499 * used to be at the very end of the block, and balance between leafs 5500 * gets another one with bigger key.offset to replace it. 5501 * 5502 * This one should be returned as well, or we can get leaf corruption 5503 * later(esp. in __btrfs_drop_extents()). 5504 * 5505 * And a bit more explanation about this check, 5506 * with ret > 0, the key isn't found, the path points to the slot 5507 * where it should be inserted, so the path->slots[0] item must be the 5508 * bigger one. 5509 */ 5510 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5511 ret = 0; 5512 goto done; 5513 } 5514 5515 while (level < BTRFS_MAX_LEVEL) { 5516 if (!path->nodes[level]) { 5517 ret = 1; 5518 goto done; 5519 } 5520 5521 slot = path->slots[level] + 1; 5522 c = path->nodes[level]; 5523 if (slot >= btrfs_header_nritems(c)) { 5524 level++; 5525 if (level == BTRFS_MAX_LEVEL) { 5526 ret = 1; 5527 goto done; 5528 } 5529 continue; 5530 } 5531 5532 if (next) { 5533 btrfs_tree_unlock_rw(next, next_rw_lock); 5534 free_extent_buffer(next); 5535 } 5536 5537 next = c; 5538 next_rw_lock = path->locks[level]; 5539 ret = read_block_for_search(root, path, &next, level, 5540 slot, &key); 5541 if (ret == -EAGAIN) 5542 goto again; 5543 5544 if (ret < 0) { 5545 btrfs_release_path(path); 5546 goto done; 5547 } 5548 5549 if (!path->skip_locking) { 5550 ret = btrfs_try_tree_read_lock(next); 5551 if (!ret && time_seq) { 5552 /* 5553 * If we don't get the lock, we may be racing 5554 * with push_leaf_left, holding that lock while 5555 * itself waiting for the leaf we've currently 5556 * locked. To solve this situation, we give up 5557 * on our lock and cycle. 5558 */ 5559 free_extent_buffer(next); 5560 btrfs_release_path(path); 5561 cond_resched(); 5562 goto again; 5563 } 5564 if (!ret) { 5565 btrfs_set_path_blocking(path); 5566 __btrfs_tree_read_lock(next, 5567 BTRFS_NESTING_RIGHT, 5568 path->recurse); 5569 } 5570 next_rw_lock = BTRFS_READ_LOCK; 5571 } 5572 break; 5573 } 5574 path->slots[level] = slot; 5575 while (1) { 5576 level--; 5577 c = path->nodes[level]; 5578 if (path->locks[level]) 5579 btrfs_tree_unlock_rw(c, path->locks[level]); 5580 5581 free_extent_buffer(c); 5582 path->nodes[level] = next; 5583 path->slots[level] = 0; 5584 if (!path->skip_locking) 5585 path->locks[level] = next_rw_lock; 5586 if (!level) 5587 break; 5588 5589 ret = read_block_for_search(root, path, &next, level, 5590 0, &key); 5591 if (ret == -EAGAIN) 5592 goto again; 5593 5594 if (ret < 0) { 5595 btrfs_release_path(path); 5596 goto done; 5597 } 5598 5599 if (!path->skip_locking) { 5600 ret = btrfs_try_tree_read_lock(next); 5601 if (!ret) { 5602 btrfs_set_path_blocking(path); 5603 __btrfs_tree_read_lock(next, 5604 BTRFS_NESTING_RIGHT, 5605 path->recurse); 5606 } 5607 next_rw_lock = BTRFS_READ_LOCK; 5608 } 5609 } 5610 ret = 0; 5611done: 5612 unlock_up(path, 0, 1, 0, NULL); 5613 path->leave_spinning = old_spinning; 5614 if (!old_spinning) 5615 btrfs_set_path_blocking(path); 5616 5617 return ret; 5618} 5619 5620/* 5621 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5622 * searching until it gets past min_objectid or finds an item of 'type' 5623 * 5624 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5625 */ 5626int btrfs_previous_item(struct btrfs_root *root, 5627 struct btrfs_path *path, u64 min_objectid, 5628 int type) 5629{ 5630 struct btrfs_key found_key; 5631 struct extent_buffer *leaf; 5632 u32 nritems; 5633 int ret; 5634 5635 while (1) { 5636 if (path->slots[0] == 0) { 5637 btrfs_set_path_blocking(path); 5638 ret = btrfs_prev_leaf(root, path); 5639 if (ret != 0) 5640 return ret; 5641 } else { 5642 path->slots[0]--; 5643 } 5644 leaf = path->nodes[0]; 5645 nritems = btrfs_header_nritems(leaf); 5646 if (nritems == 0) 5647 return 1; 5648 if (path->slots[0] == nritems) 5649 path->slots[0]--; 5650 5651 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5652 if (found_key.objectid < min_objectid) 5653 break; 5654 if (found_key.type == type) 5655 return 0; 5656 if (found_key.objectid == min_objectid && 5657 found_key.type < type) 5658 break; 5659 } 5660 return 1; 5661} 5662 5663/* 5664 * search in extent tree to find a previous Metadata/Data extent item with 5665 * min objecitd. 5666 * 5667 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5668 */ 5669int btrfs_previous_extent_item(struct btrfs_root *root, 5670 struct btrfs_path *path, u64 min_objectid) 5671{ 5672 struct btrfs_key found_key; 5673 struct extent_buffer *leaf; 5674 u32 nritems; 5675 int ret; 5676 5677 while (1) { 5678 if (path->slots[0] == 0) { 5679 btrfs_set_path_blocking(path); 5680 ret = btrfs_prev_leaf(root, path); 5681 if (ret != 0) 5682 return ret; 5683 } else { 5684 path->slots[0]--; 5685 } 5686 leaf = path->nodes[0]; 5687 nritems = btrfs_header_nritems(leaf); 5688 if (nritems == 0) 5689 return 1; 5690 if (path->slots[0] == nritems) 5691 path->slots[0]--; 5692 5693 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5694 if (found_key.objectid < min_objectid) 5695 break; 5696 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5697 found_key.type == BTRFS_METADATA_ITEM_KEY) 5698 return 0; 5699 if (found_key.objectid == min_objectid && 5700 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5701 break; 5702 } 5703 return 1; 5704} 5705