xref: /kernel/linux/linux-5.10/fs/btrfs/compression.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle.  All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/highmem.h>
12#include <linux/time.h>
13#include <linux/init.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/writeback.h>
17#include <linux/slab.h>
18#include <linux/sched/mm.h>
19#include <linux/log2.h>
20#include <crypto/hash.h>
21#include "misc.h"
22#include "ctree.h"
23#include "disk-io.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "volumes.h"
27#include "ordered-data.h"
28#include "compression.h"
29#include "extent_io.h"
30#include "extent_map.h"
31
32static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
33
34const char* btrfs_compress_type2str(enum btrfs_compression_type type)
35{
36	switch (type) {
37	case BTRFS_COMPRESS_ZLIB:
38	case BTRFS_COMPRESS_LZO:
39	case BTRFS_COMPRESS_ZSTD:
40	case BTRFS_COMPRESS_NONE:
41		return btrfs_compress_types[type];
42	default:
43		break;
44	}
45
46	return NULL;
47}
48
49bool btrfs_compress_is_valid_type(const char *str, size_t len)
50{
51	int i;
52
53	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
54		size_t comp_len = strlen(btrfs_compress_types[i]);
55
56		if (len < comp_len)
57			continue;
58
59		if (!strncmp(btrfs_compress_types[i], str, comp_len))
60			return true;
61	}
62	return false;
63}
64
65static int compression_compress_pages(int type, struct list_head *ws,
66               struct address_space *mapping, u64 start, struct page **pages,
67               unsigned long *out_pages, unsigned long *total_in,
68               unsigned long *total_out)
69{
70	switch (type) {
71	case BTRFS_COMPRESS_ZLIB:
72		return zlib_compress_pages(ws, mapping, start, pages,
73				out_pages, total_in, total_out);
74	case BTRFS_COMPRESS_LZO:
75		return lzo_compress_pages(ws, mapping, start, pages,
76				out_pages, total_in, total_out);
77	case BTRFS_COMPRESS_ZSTD:
78		return zstd_compress_pages(ws, mapping, start, pages,
79				out_pages, total_in, total_out);
80	case BTRFS_COMPRESS_NONE:
81	default:
82		/*
83		 * This can happen when compression races with remount setting
84		 * it to 'no compress', while caller doesn't call
85		 * inode_need_compress() to check if we really need to
86		 * compress.
87		 *
88		 * Not a big deal, just need to inform caller that we
89		 * haven't allocated any pages yet.
90		 */
91		*out_pages = 0;
92		return -E2BIG;
93	}
94}
95
96static int compression_decompress_bio(int type, struct list_head *ws,
97		struct compressed_bio *cb)
98{
99	switch (type) {
100	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
101	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
102	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
103	case BTRFS_COMPRESS_NONE:
104	default:
105		/*
106		 * This can't happen, the type is validated several times
107		 * before we get here.
108		 */
109		BUG();
110	}
111}
112
113static int compression_decompress(int type, struct list_head *ws,
114               unsigned char *data_in, struct page *dest_page,
115               unsigned long start_byte, size_t srclen, size_t destlen)
116{
117	switch (type) {
118	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
119						start_byte, srclen, destlen);
120	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
121						start_byte, srclen, destlen);
122	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
123						start_byte, srclen, destlen);
124	case BTRFS_COMPRESS_NONE:
125	default:
126		/*
127		 * This can't happen, the type is validated several times
128		 * before we get here.
129		 */
130		BUG();
131	}
132}
133
134static int btrfs_decompress_bio(struct compressed_bio *cb);
135
136static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
137				      unsigned long disk_size)
138{
139	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
140
141	return sizeof(struct compressed_bio) +
142		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
143}
144
145static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
146				 u64 disk_start)
147{
148	struct btrfs_fs_info *fs_info = inode->root->fs_info;
149	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
150	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
151	struct page *page;
152	unsigned long i;
153	char *kaddr;
154	u8 csum[BTRFS_CSUM_SIZE];
155	struct compressed_bio *cb = bio->bi_private;
156	u8 *cb_sum = cb->sums;
157
158	if (inode->flags & BTRFS_INODE_NODATASUM)
159		return 0;
160
161	shash->tfm = fs_info->csum_shash;
162
163	for (i = 0; i < cb->nr_pages; i++) {
164		page = cb->compressed_pages[i];
165
166		kaddr = kmap_atomic(page);
167		crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
168		kunmap_atomic(kaddr);
169
170		if (memcmp(&csum, cb_sum, csum_size)) {
171			btrfs_print_data_csum_error(inode, disk_start,
172					csum, cb_sum, cb->mirror_num);
173			if (btrfs_io_bio(bio)->device)
174				btrfs_dev_stat_inc_and_print(
175					btrfs_io_bio(bio)->device,
176					BTRFS_DEV_STAT_CORRUPTION_ERRS);
177			return -EIO;
178		}
179		cb_sum += csum_size;
180	}
181	return 0;
182}
183
184/* when we finish reading compressed pages from the disk, we
185 * decompress them and then run the bio end_io routines on the
186 * decompressed pages (in the inode address space).
187 *
188 * This allows the checksumming and other IO error handling routines
189 * to work normally
190 *
191 * The compressed pages are freed here, and it must be run
192 * in process context
193 */
194static void end_compressed_bio_read(struct bio *bio)
195{
196	struct compressed_bio *cb = bio->bi_private;
197	struct inode *inode;
198	struct page *page;
199	unsigned long index;
200	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
201	int ret = 0;
202
203	if (bio->bi_status)
204		cb->errors = 1;
205
206	/* if there are more bios still pending for this compressed
207	 * extent, just exit
208	 */
209	if (!refcount_dec_and_test(&cb->pending_bios))
210		goto out;
211
212	/*
213	 * Record the correct mirror_num in cb->orig_bio so that
214	 * read-repair can work properly.
215	 */
216	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
217	cb->mirror_num = mirror;
218
219	/*
220	 * Some IO in this cb have failed, just skip checksum as there
221	 * is no way it could be correct.
222	 */
223	if (cb->errors == 1)
224		goto csum_failed;
225
226	inode = cb->inode;
227	ret = check_compressed_csum(BTRFS_I(inode), bio,
228				    (u64)bio->bi_iter.bi_sector << 9);
229	if (ret)
230		goto csum_failed;
231
232	/* ok, we're the last bio for this extent, lets start
233	 * the decompression.
234	 */
235	ret = btrfs_decompress_bio(cb);
236
237csum_failed:
238	if (ret)
239		cb->errors = 1;
240
241	/* release the compressed pages */
242	index = 0;
243	for (index = 0; index < cb->nr_pages; index++) {
244		page = cb->compressed_pages[index];
245		page->mapping = NULL;
246		put_page(page);
247	}
248
249	/* do io completion on the original bio */
250	if (cb->errors) {
251		bio_io_error(cb->orig_bio);
252	} else {
253		struct bio_vec *bvec;
254		struct bvec_iter_all iter_all;
255
256		/*
257		 * we have verified the checksum already, set page
258		 * checked so the end_io handlers know about it
259		 */
260		ASSERT(!bio_flagged(bio, BIO_CLONED));
261		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
262			SetPageChecked(bvec->bv_page);
263
264		bio_endio(cb->orig_bio);
265	}
266
267	/* finally free the cb struct */
268	kfree(cb->compressed_pages);
269	kfree(cb);
270out:
271	bio_put(bio);
272}
273
274/*
275 * Clear the writeback bits on all of the file
276 * pages for a compressed write
277 */
278static noinline void end_compressed_writeback(struct inode *inode,
279					      const struct compressed_bio *cb)
280{
281	unsigned long index = cb->start >> PAGE_SHIFT;
282	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
283	struct page *pages[16];
284	unsigned long nr_pages = end_index - index + 1;
285	int i;
286	int ret;
287
288	if (cb->errors)
289		mapping_set_error(inode->i_mapping, -EIO);
290
291	while (nr_pages > 0) {
292		ret = find_get_pages_contig(inode->i_mapping, index,
293				     min_t(unsigned long,
294				     nr_pages, ARRAY_SIZE(pages)), pages);
295		if (ret == 0) {
296			nr_pages -= 1;
297			index += 1;
298			continue;
299		}
300		for (i = 0; i < ret; i++) {
301			if (cb->errors)
302				SetPageError(pages[i]);
303			end_page_writeback(pages[i]);
304			put_page(pages[i]);
305		}
306		nr_pages -= ret;
307		index += ret;
308	}
309	/* the inode may be gone now */
310}
311
312/*
313 * do the cleanup once all the compressed pages hit the disk.
314 * This will clear writeback on the file pages and free the compressed
315 * pages.
316 *
317 * This also calls the writeback end hooks for the file pages so that
318 * metadata and checksums can be updated in the file.
319 */
320static void end_compressed_bio_write(struct bio *bio)
321{
322	struct compressed_bio *cb = bio->bi_private;
323	struct inode *inode;
324	struct page *page;
325	unsigned long index;
326
327	if (bio->bi_status)
328		cb->errors = 1;
329
330	/* if there are more bios still pending for this compressed
331	 * extent, just exit
332	 */
333	if (!refcount_dec_and_test(&cb->pending_bios))
334		goto out;
335
336	/* ok, we're the last bio for this extent, step one is to
337	 * call back into the FS and do all the end_io operations
338	 */
339	inode = cb->inode;
340	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
341	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
342			cb->start, cb->start + cb->len - 1,
343			!cb->errors);
344	cb->compressed_pages[0]->mapping = NULL;
345
346	end_compressed_writeback(inode, cb);
347	/* note, our inode could be gone now */
348
349	/*
350	 * release the compressed pages, these came from alloc_page and
351	 * are not attached to the inode at all
352	 */
353	index = 0;
354	for (index = 0; index < cb->nr_pages; index++) {
355		page = cb->compressed_pages[index];
356		page->mapping = NULL;
357		put_page(page);
358	}
359
360	/* finally free the cb struct */
361	kfree(cb->compressed_pages);
362	kfree(cb);
363out:
364	bio_put(bio);
365}
366
367/*
368 * worker function to build and submit bios for previously compressed pages.
369 * The corresponding pages in the inode should be marked for writeback
370 * and the compressed pages should have a reference on them for dropping
371 * when the IO is complete.
372 *
373 * This also checksums the file bytes and gets things ready for
374 * the end io hooks.
375 */
376blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
377				 unsigned long len, u64 disk_start,
378				 unsigned long compressed_len,
379				 struct page **compressed_pages,
380				 unsigned long nr_pages,
381				 unsigned int write_flags,
382				 struct cgroup_subsys_state *blkcg_css)
383{
384	struct btrfs_fs_info *fs_info = inode->root->fs_info;
385	struct bio *bio = NULL;
386	struct compressed_bio *cb;
387	unsigned long bytes_left;
388	int pg_index = 0;
389	struct page *page;
390	u64 first_byte = disk_start;
391	blk_status_t ret;
392	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
393
394	WARN_ON(!PAGE_ALIGNED(start));
395	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
396	if (!cb)
397		return BLK_STS_RESOURCE;
398	refcount_set(&cb->pending_bios, 0);
399	cb->errors = 0;
400	cb->inode = &inode->vfs_inode;
401	cb->start = start;
402	cb->len = len;
403	cb->mirror_num = 0;
404	cb->compressed_pages = compressed_pages;
405	cb->compressed_len = compressed_len;
406	cb->orig_bio = NULL;
407	cb->nr_pages = nr_pages;
408
409	bio = btrfs_bio_alloc(first_byte);
410	bio->bi_opf = REQ_OP_WRITE | write_flags;
411	bio->bi_private = cb;
412	bio->bi_end_io = end_compressed_bio_write;
413
414	if (blkcg_css) {
415		bio->bi_opf |= REQ_CGROUP_PUNT;
416		kthread_associate_blkcg(blkcg_css);
417	}
418	refcount_set(&cb->pending_bios, 1);
419
420	/* create and submit bios for the compressed pages */
421	bytes_left = compressed_len;
422	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
423		int submit = 0;
424
425		page = compressed_pages[pg_index];
426		page->mapping = inode->vfs_inode.i_mapping;
427		if (bio->bi_iter.bi_size)
428			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
429							  0);
430
431		page->mapping = NULL;
432		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
433		    PAGE_SIZE) {
434			/*
435			 * inc the count before we submit the bio so
436			 * we know the end IO handler won't happen before
437			 * we inc the count.  Otherwise, the cb might get
438			 * freed before we're done setting it up
439			 */
440			refcount_inc(&cb->pending_bios);
441			ret = btrfs_bio_wq_end_io(fs_info, bio,
442						  BTRFS_WQ_ENDIO_DATA);
443			BUG_ON(ret); /* -ENOMEM */
444
445			if (!skip_sum) {
446				ret = btrfs_csum_one_bio(inode, bio, start, 1);
447				BUG_ON(ret); /* -ENOMEM */
448			}
449
450			ret = btrfs_map_bio(fs_info, bio, 0);
451			if (ret) {
452				bio->bi_status = ret;
453				bio_endio(bio);
454			}
455
456			bio = btrfs_bio_alloc(first_byte);
457			bio->bi_opf = REQ_OP_WRITE | write_flags;
458			bio->bi_private = cb;
459			bio->bi_end_io = end_compressed_bio_write;
460			if (blkcg_css)
461				bio->bi_opf |= REQ_CGROUP_PUNT;
462			bio_add_page(bio, page, PAGE_SIZE, 0);
463		}
464		if (bytes_left < PAGE_SIZE) {
465			btrfs_info(fs_info,
466					"bytes left %lu compress len %lu nr %lu",
467			       bytes_left, cb->compressed_len, cb->nr_pages);
468		}
469		bytes_left -= PAGE_SIZE;
470		first_byte += PAGE_SIZE;
471		cond_resched();
472	}
473
474	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
475	BUG_ON(ret); /* -ENOMEM */
476
477	if (!skip_sum) {
478		ret = btrfs_csum_one_bio(inode, bio, start, 1);
479		BUG_ON(ret); /* -ENOMEM */
480	}
481
482	ret = btrfs_map_bio(fs_info, bio, 0);
483	if (ret) {
484		bio->bi_status = ret;
485		bio_endio(bio);
486	}
487
488	if (blkcg_css)
489		kthread_associate_blkcg(NULL);
490
491	return 0;
492}
493
494static u64 bio_end_offset(struct bio *bio)
495{
496	struct bio_vec *last = bio_last_bvec_all(bio);
497
498	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
499}
500
501static noinline int add_ra_bio_pages(struct inode *inode,
502				     u64 compressed_end,
503				     struct compressed_bio *cb)
504{
505	unsigned long end_index;
506	unsigned long pg_index;
507	u64 last_offset;
508	u64 isize = i_size_read(inode);
509	int ret;
510	struct page *page;
511	unsigned long nr_pages = 0;
512	struct extent_map *em;
513	struct address_space *mapping = inode->i_mapping;
514	struct extent_map_tree *em_tree;
515	struct extent_io_tree *tree;
516	u64 end;
517	int misses = 0;
518
519	last_offset = bio_end_offset(cb->orig_bio);
520	em_tree = &BTRFS_I(inode)->extent_tree;
521	tree = &BTRFS_I(inode)->io_tree;
522
523	if (isize == 0)
524		return 0;
525
526	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
527
528	while (last_offset < compressed_end) {
529		pg_index = last_offset >> PAGE_SHIFT;
530
531		if (pg_index > end_index)
532			break;
533
534		page = xa_load(&mapping->i_pages, pg_index);
535		if (page && !xa_is_value(page)) {
536			misses++;
537			if (misses > 4)
538				break;
539			goto next;
540		}
541
542		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
543								 ~__GFP_FS));
544		if (!page)
545			break;
546
547		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
548			put_page(page);
549			goto next;
550		}
551
552		end = last_offset + PAGE_SIZE - 1;
553		/*
554		 * at this point, we have a locked page in the page cache
555		 * for these bytes in the file.  But, we have to make
556		 * sure they map to this compressed extent on disk.
557		 */
558		set_page_extent_mapped(page);
559		lock_extent(tree, last_offset, end);
560		read_lock(&em_tree->lock);
561		em = lookup_extent_mapping(em_tree, last_offset,
562					   PAGE_SIZE);
563		read_unlock(&em_tree->lock);
564
565		if (!em || last_offset < em->start ||
566		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
567		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
568			free_extent_map(em);
569			unlock_extent(tree, last_offset, end);
570			unlock_page(page);
571			put_page(page);
572			break;
573		}
574		free_extent_map(em);
575
576		if (page->index == end_index) {
577			char *userpage;
578			size_t zero_offset = offset_in_page(isize);
579
580			if (zero_offset) {
581				int zeros;
582				zeros = PAGE_SIZE - zero_offset;
583				userpage = kmap_atomic(page);
584				memset(userpage + zero_offset, 0, zeros);
585				flush_dcache_page(page);
586				kunmap_atomic(userpage);
587			}
588		}
589
590		ret = bio_add_page(cb->orig_bio, page,
591				   PAGE_SIZE, 0);
592
593		if (ret == PAGE_SIZE) {
594			nr_pages++;
595			put_page(page);
596		} else {
597			unlock_extent(tree, last_offset, end);
598			unlock_page(page);
599			put_page(page);
600			break;
601		}
602next:
603		last_offset += PAGE_SIZE;
604	}
605	return 0;
606}
607
608/*
609 * for a compressed read, the bio we get passed has all the inode pages
610 * in it.  We don't actually do IO on those pages but allocate new ones
611 * to hold the compressed pages on disk.
612 *
613 * bio->bi_iter.bi_sector points to the compressed extent on disk
614 * bio->bi_io_vec points to all of the inode pages
615 *
616 * After the compressed pages are read, we copy the bytes into the
617 * bio we were passed and then call the bio end_io calls
618 */
619blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
620				 int mirror_num, unsigned long bio_flags)
621{
622	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
623	struct extent_map_tree *em_tree;
624	struct compressed_bio *cb;
625	unsigned long compressed_len;
626	unsigned long nr_pages;
627	unsigned long pg_index;
628	struct page *page;
629	struct bio *comp_bio;
630	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
631	u64 em_len;
632	u64 em_start;
633	struct extent_map *em;
634	blk_status_t ret = BLK_STS_RESOURCE;
635	int faili = 0;
636	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
637	u8 *sums;
638
639	em_tree = &BTRFS_I(inode)->extent_tree;
640
641	/* we need the actual starting offset of this extent in the file */
642	read_lock(&em_tree->lock);
643	em = lookup_extent_mapping(em_tree,
644				   page_offset(bio_first_page_all(bio)),
645				   PAGE_SIZE);
646	read_unlock(&em_tree->lock);
647	if (!em)
648		return BLK_STS_IOERR;
649
650	compressed_len = em->block_len;
651	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
652	if (!cb)
653		goto out;
654
655	refcount_set(&cb->pending_bios, 0);
656	cb->errors = 0;
657	cb->inode = inode;
658	cb->mirror_num = mirror_num;
659	sums = cb->sums;
660
661	cb->start = em->orig_start;
662	em_len = em->len;
663	em_start = em->start;
664
665	free_extent_map(em);
666	em = NULL;
667
668	cb->len = bio->bi_iter.bi_size;
669	cb->compressed_len = compressed_len;
670	cb->compress_type = extent_compress_type(bio_flags);
671	cb->orig_bio = bio;
672
673	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
674	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
675				       GFP_NOFS);
676	if (!cb->compressed_pages)
677		goto fail1;
678
679	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
680		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
681							      __GFP_HIGHMEM);
682		if (!cb->compressed_pages[pg_index]) {
683			faili = pg_index - 1;
684			ret = BLK_STS_RESOURCE;
685			goto fail2;
686		}
687	}
688	faili = nr_pages - 1;
689	cb->nr_pages = nr_pages;
690
691	add_ra_bio_pages(inode, em_start + em_len, cb);
692
693	/* include any pages we added in add_ra-bio_pages */
694	cb->len = bio->bi_iter.bi_size;
695
696	comp_bio = btrfs_bio_alloc(cur_disk_byte);
697	comp_bio->bi_opf = REQ_OP_READ;
698	comp_bio->bi_private = cb;
699	comp_bio->bi_end_io = end_compressed_bio_read;
700	refcount_set(&cb->pending_bios, 1);
701
702	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
703		int submit = 0;
704
705		page = cb->compressed_pages[pg_index];
706		page->mapping = inode->i_mapping;
707		page->index = em_start >> PAGE_SHIFT;
708
709		if (comp_bio->bi_iter.bi_size)
710			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
711							  comp_bio, 0);
712
713		page->mapping = NULL;
714		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
715		    PAGE_SIZE) {
716			unsigned int nr_sectors;
717
718			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
719						  BTRFS_WQ_ENDIO_DATA);
720			BUG_ON(ret); /* -ENOMEM */
721
722			/*
723			 * inc the count before we submit the bio so
724			 * we know the end IO handler won't happen before
725			 * we inc the count.  Otherwise, the cb might get
726			 * freed before we're done setting it up
727			 */
728			refcount_inc(&cb->pending_bios);
729
730			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
731				ret = btrfs_lookup_bio_sums(inode, comp_bio,
732							    (u64)-1, sums);
733				BUG_ON(ret); /* -ENOMEM */
734			}
735
736			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
737						  fs_info->sectorsize);
738			sums += csum_size * nr_sectors;
739
740			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
741			if (ret) {
742				comp_bio->bi_status = ret;
743				bio_endio(comp_bio);
744			}
745
746			comp_bio = btrfs_bio_alloc(cur_disk_byte);
747			comp_bio->bi_opf = REQ_OP_READ;
748			comp_bio->bi_private = cb;
749			comp_bio->bi_end_io = end_compressed_bio_read;
750
751			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
752		}
753		cur_disk_byte += PAGE_SIZE;
754	}
755
756	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
757	BUG_ON(ret); /* -ENOMEM */
758
759	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
760		ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1, sums);
761		BUG_ON(ret); /* -ENOMEM */
762	}
763
764	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
765	if (ret) {
766		comp_bio->bi_status = ret;
767		bio_endio(comp_bio);
768	}
769
770	return 0;
771
772fail2:
773	while (faili >= 0) {
774		__free_page(cb->compressed_pages[faili]);
775		faili--;
776	}
777
778	kfree(cb->compressed_pages);
779fail1:
780	kfree(cb);
781out:
782	free_extent_map(em);
783	return ret;
784}
785
786/*
787 * Heuristic uses systematic sampling to collect data from the input data
788 * range, the logic can be tuned by the following constants:
789 *
790 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
791 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
792 */
793#define SAMPLING_READ_SIZE	(16)
794#define SAMPLING_INTERVAL	(256)
795
796/*
797 * For statistical analysis of the input data we consider bytes that form a
798 * Galois Field of 256 objects. Each object has an attribute count, ie. how
799 * many times the object appeared in the sample.
800 */
801#define BUCKET_SIZE		(256)
802
803/*
804 * The size of the sample is based on a statistical sampling rule of thumb.
805 * The common way is to perform sampling tests as long as the number of
806 * elements in each cell is at least 5.
807 *
808 * Instead of 5, we choose 32 to obtain more accurate results.
809 * If the data contain the maximum number of symbols, which is 256, we obtain a
810 * sample size bound by 8192.
811 *
812 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
813 * from up to 512 locations.
814 */
815#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
816				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
817
818struct bucket_item {
819	u32 count;
820};
821
822struct heuristic_ws {
823	/* Partial copy of input data */
824	u8 *sample;
825	u32 sample_size;
826	/* Buckets store counters for each byte value */
827	struct bucket_item *bucket;
828	/* Sorting buffer */
829	struct bucket_item *bucket_b;
830	struct list_head list;
831};
832
833static struct workspace_manager heuristic_wsm;
834
835static void free_heuristic_ws(struct list_head *ws)
836{
837	struct heuristic_ws *workspace;
838
839	workspace = list_entry(ws, struct heuristic_ws, list);
840
841	kvfree(workspace->sample);
842	kfree(workspace->bucket);
843	kfree(workspace->bucket_b);
844	kfree(workspace);
845}
846
847static struct list_head *alloc_heuristic_ws(unsigned int level)
848{
849	struct heuristic_ws *ws;
850
851	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
852	if (!ws)
853		return ERR_PTR(-ENOMEM);
854
855	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
856	if (!ws->sample)
857		goto fail;
858
859	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
860	if (!ws->bucket)
861		goto fail;
862
863	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
864	if (!ws->bucket_b)
865		goto fail;
866
867	INIT_LIST_HEAD(&ws->list);
868	return &ws->list;
869fail:
870	free_heuristic_ws(&ws->list);
871	return ERR_PTR(-ENOMEM);
872}
873
874const struct btrfs_compress_op btrfs_heuristic_compress = {
875	.workspace_manager = &heuristic_wsm,
876};
877
878static const struct btrfs_compress_op * const btrfs_compress_op[] = {
879	/* The heuristic is represented as compression type 0 */
880	&btrfs_heuristic_compress,
881	&btrfs_zlib_compress,
882	&btrfs_lzo_compress,
883	&btrfs_zstd_compress,
884};
885
886static struct list_head *alloc_workspace(int type, unsigned int level)
887{
888	switch (type) {
889	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
890	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
891	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
892	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
893	default:
894		/*
895		 * This can't happen, the type is validated several times
896		 * before we get here.
897		 */
898		BUG();
899	}
900}
901
902static void free_workspace(int type, struct list_head *ws)
903{
904	switch (type) {
905	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
906	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
907	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
908	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
909	default:
910		/*
911		 * This can't happen, the type is validated several times
912		 * before we get here.
913		 */
914		BUG();
915	}
916}
917
918static void btrfs_init_workspace_manager(int type)
919{
920	struct workspace_manager *wsm;
921	struct list_head *workspace;
922
923	wsm = btrfs_compress_op[type]->workspace_manager;
924	INIT_LIST_HEAD(&wsm->idle_ws);
925	spin_lock_init(&wsm->ws_lock);
926	atomic_set(&wsm->total_ws, 0);
927	init_waitqueue_head(&wsm->ws_wait);
928
929	/*
930	 * Preallocate one workspace for each compression type so we can
931	 * guarantee forward progress in the worst case
932	 */
933	workspace = alloc_workspace(type, 0);
934	if (IS_ERR(workspace)) {
935		pr_warn(
936	"BTRFS: cannot preallocate compression workspace, will try later\n");
937	} else {
938		atomic_set(&wsm->total_ws, 1);
939		wsm->free_ws = 1;
940		list_add(workspace, &wsm->idle_ws);
941	}
942}
943
944static void btrfs_cleanup_workspace_manager(int type)
945{
946	struct workspace_manager *wsman;
947	struct list_head *ws;
948
949	wsman = btrfs_compress_op[type]->workspace_manager;
950	while (!list_empty(&wsman->idle_ws)) {
951		ws = wsman->idle_ws.next;
952		list_del(ws);
953		free_workspace(type, ws);
954		atomic_dec(&wsman->total_ws);
955	}
956}
957
958/*
959 * This finds an available workspace or allocates a new one.
960 * If it's not possible to allocate a new one, waits until there's one.
961 * Preallocation makes a forward progress guarantees and we do not return
962 * errors.
963 */
964struct list_head *btrfs_get_workspace(int type, unsigned int level)
965{
966	struct workspace_manager *wsm;
967	struct list_head *workspace;
968	int cpus = num_online_cpus();
969	unsigned nofs_flag;
970	struct list_head *idle_ws;
971	spinlock_t *ws_lock;
972	atomic_t *total_ws;
973	wait_queue_head_t *ws_wait;
974	int *free_ws;
975
976	wsm = btrfs_compress_op[type]->workspace_manager;
977	idle_ws	 = &wsm->idle_ws;
978	ws_lock	 = &wsm->ws_lock;
979	total_ws = &wsm->total_ws;
980	ws_wait	 = &wsm->ws_wait;
981	free_ws	 = &wsm->free_ws;
982
983again:
984	spin_lock(ws_lock);
985	if (!list_empty(idle_ws)) {
986		workspace = idle_ws->next;
987		list_del(workspace);
988		(*free_ws)--;
989		spin_unlock(ws_lock);
990		return workspace;
991
992	}
993	if (atomic_read(total_ws) > cpus) {
994		DEFINE_WAIT(wait);
995
996		spin_unlock(ws_lock);
997		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
998		if (atomic_read(total_ws) > cpus && !*free_ws)
999			schedule();
1000		finish_wait(ws_wait, &wait);
1001		goto again;
1002	}
1003	atomic_inc(total_ws);
1004	spin_unlock(ws_lock);
1005
1006	/*
1007	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1008	 * to turn it off here because we might get called from the restricted
1009	 * context of btrfs_compress_bio/btrfs_compress_pages
1010	 */
1011	nofs_flag = memalloc_nofs_save();
1012	workspace = alloc_workspace(type, level);
1013	memalloc_nofs_restore(nofs_flag);
1014
1015	if (IS_ERR(workspace)) {
1016		atomic_dec(total_ws);
1017		wake_up(ws_wait);
1018
1019		/*
1020		 * Do not return the error but go back to waiting. There's a
1021		 * workspace preallocated for each type and the compression
1022		 * time is bounded so we get to a workspace eventually. This
1023		 * makes our caller's life easier.
1024		 *
1025		 * To prevent silent and low-probability deadlocks (when the
1026		 * initial preallocation fails), check if there are any
1027		 * workspaces at all.
1028		 */
1029		if (atomic_read(total_ws) == 0) {
1030			static DEFINE_RATELIMIT_STATE(_rs,
1031					/* once per minute */ 60 * HZ,
1032					/* no burst */ 1);
1033
1034			if (__ratelimit(&_rs)) {
1035				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1036			}
1037		}
1038		goto again;
1039	}
1040	return workspace;
1041}
1042
1043static struct list_head *get_workspace(int type, int level)
1044{
1045	switch (type) {
1046	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1047	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1048	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1049	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1050	default:
1051		/*
1052		 * This can't happen, the type is validated several times
1053		 * before we get here.
1054		 */
1055		BUG();
1056	}
1057}
1058
1059/*
1060 * put a workspace struct back on the list or free it if we have enough
1061 * idle ones sitting around
1062 */
1063void btrfs_put_workspace(int type, struct list_head *ws)
1064{
1065	struct workspace_manager *wsm;
1066	struct list_head *idle_ws;
1067	spinlock_t *ws_lock;
1068	atomic_t *total_ws;
1069	wait_queue_head_t *ws_wait;
1070	int *free_ws;
1071
1072	wsm = btrfs_compress_op[type]->workspace_manager;
1073	idle_ws	 = &wsm->idle_ws;
1074	ws_lock	 = &wsm->ws_lock;
1075	total_ws = &wsm->total_ws;
1076	ws_wait	 = &wsm->ws_wait;
1077	free_ws	 = &wsm->free_ws;
1078
1079	spin_lock(ws_lock);
1080	if (*free_ws <= num_online_cpus()) {
1081		list_add(ws, idle_ws);
1082		(*free_ws)++;
1083		spin_unlock(ws_lock);
1084		goto wake;
1085	}
1086	spin_unlock(ws_lock);
1087
1088	free_workspace(type, ws);
1089	atomic_dec(total_ws);
1090wake:
1091	cond_wake_up(ws_wait);
1092}
1093
1094static void put_workspace(int type, struct list_head *ws)
1095{
1096	switch (type) {
1097	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1098	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1099	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1100	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1101	default:
1102		/*
1103		 * This can't happen, the type is validated several times
1104		 * before we get here.
1105		 */
1106		BUG();
1107	}
1108}
1109
1110/*
1111 * Adjust @level according to the limits of the compression algorithm or
1112 * fallback to default
1113 */
1114static unsigned int btrfs_compress_set_level(int type, unsigned level)
1115{
1116	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1117
1118	if (level == 0)
1119		level = ops->default_level;
1120	else
1121		level = min(level, ops->max_level);
1122
1123	return level;
1124}
1125
1126/*
1127 * Given an address space and start and length, compress the bytes into @pages
1128 * that are allocated on demand.
1129 *
1130 * @type_level is encoded algorithm and level, where level 0 means whatever
1131 * default the algorithm chooses and is opaque here;
1132 * - compression algo are 0-3
1133 * - the level are bits 4-7
1134 *
1135 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1136 * and returns number of actually allocated pages
1137 *
1138 * @total_in is used to return the number of bytes actually read.  It
1139 * may be smaller than the input length if we had to exit early because we
1140 * ran out of room in the pages array or because we cross the
1141 * max_out threshold.
1142 *
1143 * @total_out is an in/out parameter, must be set to the input length and will
1144 * be also used to return the total number of compressed bytes
1145 *
1146 * @max_out tells us the max number of bytes that we're allowed to
1147 * stuff into pages
1148 */
1149int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1150			 u64 start, struct page **pages,
1151			 unsigned long *out_pages,
1152			 unsigned long *total_in,
1153			 unsigned long *total_out)
1154{
1155	int type = btrfs_compress_type(type_level);
1156	int level = btrfs_compress_level(type_level);
1157	struct list_head *workspace;
1158	int ret;
1159
1160	level = btrfs_compress_set_level(type, level);
1161	workspace = get_workspace(type, level);
1162	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1163					 out_pages, total_in, total_out);
1164	put_workspace(type, workspace);
1165	return ret;
1166}
1167
1168/*
1169 * pages_in is an array of pages with compressed data.
1170 *
1171 * disk_start is the starting logical offset of this array in the file
1172 *
1173 * orig_bio contains the pages from the file that we want to decompress into
1174 *
1175 * srclen is the number of bytes in pages_in
1176 *
1177 * The basic idea is that we have a bio that was created by readpages.
1178 * The pages in the bio are for the uncompressed data, and they may not
1179 * be contiguous.  They all correspond to the range of bytes covered by
1180 * the compressed extent.
1181 */
1182static int btrfs_decompress_bio(struct compressed_bio *cb)
1183{
1184	struct list_head *workspace;
1185	int ret;
1186	int type = cb->compress_type;
1187
1188	workspace = get_workspace(type, 0);
1189	ret = compression_decompress_bio(type, workspace, cb);
1190	put_workspace(type, workspace);
1191
1192	return ret;
1193}
1194
1195/*
1196 * a less complex decompression routine.  Our compressed data fits in a
1197 * single page, and we want to read a single page out of it.
1198 * start_byte tells us the offset into the compressed data we're interested in
1199 */
1200int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1201		     unsigned long start_byte, size_t srclen, size_t destlen)
1202{
1203	struct list_head *workspace;
1204	int ret;
1205
1206	workspace = get_workspace(type, 0);
1207	ret = compression_decompress(type, workspace, data_in, dest_page,
1208				     start_byte, srclen, destlen);
1209	put_workspace(type, workspace);
1210
1211	return ret;
1212}
1213
1214void __init btrfs_init_compress(void)
1215{
1216	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1217	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1218	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1219	zstd_init_workspace_manager();
1220}
1221
1222void __cold btrfs_exit_compress(void)
1223{
1224	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1225	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1226	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1227	zstd_cleanup_workspace_manager();
1228}
1229
1230/*
1231 * Copy uncompressed data from working buffer to pages.
1232 *
1233 * buf_start is the byte offset we're of the start of our workspace buffer.
1234 *
1235 * total_out is the last byte of the buffer
1236 */
1237int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1238			      unsigned long total_out, u64 disk_start,
1239			      struct bio *bio)
1240{
1241	unsigned long buf_offset;
1242	unsigned long current_buf_start;
1243	unsigned long start_byte;
1244	unsigned long prev_start_byte;
1245	unsigned long working_bytes = total_out - buf_start;
1246	unsigned long bytes;
1247	char *kaddr;
1248	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1249
1250	/*
1251	 * start byte is the first byte of the page we're currently
1252	 * copying into relative to the start of the compressed data.
1253	 */
1254	start_byte = page_offset(bvec.bv_page) - disk_start;
1255
1256	/* we haven't yet hit data corresponding to this page */
1257	if (total_out <= start_byte)
1258		return 1;
1259
1260	/*
1261	 * the start of the data we care about is offset into
1262	 * the middle of our working buffer
1263	 */
1264	if (total_out > start_byte && buf_start < start_byte) {
1265		buf_offset = start_byte - buf_start;
1266		working_bytes -= buf_offset;
1267	} else {
1268		buf_offset = 0;
1269	}
1270	current_buf_start = buf_start;
1271
1272	/* copy bytes from the working buffer into the pages */
1273	while (working_bytes > 0) {
1274		bytes = min_t(unsigned long, bvec.bv_len,
1275				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1276		bytes = min(bytes, working_bytes);
1277
1278		kaddr = kmap_atomic(bvec.bv_page);
1279		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1280		kunmap_atomic(kaddr);
1281		flush_dcache_page(bvec.bv_page);
1282
1283		buf_offset += bytes;
1284		working_bytes -= bytes;
1285		current_buf_start += bytes;
1286
1287		/* check if we need to pick another page */
1288		bio_advance(bio, bytes);
1289		if (!bio->bi_iter.bi_size)
1290			return 0;
1291		bvec = bio_iter_iovec(bio, bio->bi_iter);
1292		prev_start_byte = start_byte;
1293		start_byte = page_offset(bvec.bv_page) - disk_start;
1294
1295		/*
1296		 * We need to make sure we're only adjusting
1297		 * our offset into compression working buffer when
1298		 * we're switching pages.  Otherwise we can incorrectly
1299		 * keep copying when we were actually done.
1300		 */
1301		if (start_byte != prev_start_byte) {
1302			/*
1303			 * make sure our new page is covered by this
1304			 * working buffer
1305			 */
1306			if (total_out <= start_byte)
1307				return 1;
1308
1309			/*
1310			 * the next page in the biovec might not be adjacent
1311			 * to the last page, but it might still be found
1312			 * inside this working buffer. bump our offset pointer
1313			 */
1314			if (total_out > start_byte &&
1315			    current_buf_start < start_byte) {
1316				buf_offset = start_byte - buf_start;
1317				working_bytes = total_out - start_byte;
1318				current_buf_start = buf_start + buf_offset;
1319			}
1320		}
1321	}
1322
1323	return 1;
1324}
1325
1326/*
1327 * Shannon Entropy calculation
1328 *
1329 * Pure byte distribution analysis fails to determine compressibility of data.
1330 * Try calculating entropy to estimate the average minimum number of bits
1331 * needed to encode the sampled data.
1332 *
1333 * For convenience, return the percentage of needed bits, instead of amount of
1334 * bits directly.
1335 *
1336 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1337 *			    and can be compressible with high probability
1338 *
1339 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1340 *
1341 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1342 */
1343#define ENTROPY_LVL_ACEPTABLE		(65)
1344#define ENTROPY_LVL_HIGH		(80)
1345
1346/*
1347 * For increasead precision in shannon_entropy calculation,
1348 * let's do pow(n, M) to save more digits after comma:
1349 *
1350 * - maximum int bit length is 64
1351 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1352 * - 13 * 4 = 52 < 64		-> M = 4
1353 *
1354 * So use pow(n, 4).
1355 */
1356static inline u32 ilog2_w(u64 n)
1357{
1358	return ilog2(n * n * n * n);
1359}
1360
1361static u32 shannon_entropy(struct heuristic_ws *ws)
1362{
1363	const u32 entropy_max = 8 * ilog2_w(2);
1364	u32 entropy_sum = 0;
1365	u32 p, p_base, sz_base;
1366	u32 i;
1367
1368	sz_base = ilog2_w(ws->sample_size);
1369	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1370		p = ws->bucket[i].count;
1371		p_base = ilog2_w(p);
1372		entropy_sum += p * (sz_base - p_base);
1373	}
1374
1375	entropy_sum /= ws->sample_size;
1376	return entropy_sum * 100 / entropy_max;
1377}
1378
1379#define RADIX_BASE		4U
1380#define COUNTERS_SIZE		(1U << RADIX_BASE)
1381
1382static u8 get4bits(u64 num, int shift) {
1383	u8 low4bits;
1384
1385	num >>= shift;
1386	/* Reverse order */
1387	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1388	return low4bits;
1389}
1390
1391/*
1392 * Use 4 bits as radix base
1393 * Use 16 u32 counters for calculating new position in buf array
1394 *
1395 * @array     - array that will be sorted
1396 * @array_buf - buffer array to store sorting results
1397 *              must be equal in size to @array
1398 * @num       - array size
1399 */
1400static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1401		       int num)
1402{
1403	u64 max_num;
1404	u64 buf_num;
1405	u32 counters[COUNTERS_SIZE];
1406	u32 new_addr;
1407	u32 addr;
1408	int bitlen;
1409	int shift;
1410	int i;
1411
1412	/*
1413	 * Try avoid useless loop iterations for small numbers stored in big
1414	 * counters.  Example: 48 33 4 ... in 64bit array
1415	 */
1416	max_num = array[0].count;
1417	for (i = 1; i < num; i++) {
1418		buf_num = array[i].count;
1419		if (buf_num > max_num)
1420			max_num = buf_num;
1421	}
1422
1423	buf_num = ilog2(max_num);
1424	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1425
1426	shift = 0;
1427	while (shift < bitlen) {
1428		memset(counters, 0, sizeof(counters));
1429
1430		for (i = 0; i < num; i++) {
1431			buf_num = array[i].count;
1432			addr = get4bits(buf_num, shift);
1433			counters[addr]++;
1434		}
1435
1436		for (i = 1; i < COUNTERS_SIZE; i++)
1437			counters[i] += counters[i - 1];
1438
1439		for (i = num - 1; i >= 0; i--) {
1440			buf_num = array[i].count;
1441			addr = get4bits(buf_num, shift);
1442			counters[addr]--;
1443			new_addr = counters[addr];
1444			array_buf[new_addr] = array[i];
1445		}
1446
1447		shift += RADIX_BASE;
1448
1449		/*
1450		 * Normal radix expects to move data from a temporary array, to
1451		 * the main one.  But that requires some CPU time. Avoid that
1452		 * by doing another sort iteration to original array instead of
1453		 * memcpy()
1454		 */
1455		memset(counters, 0, sizeof(counters));
1456
1457		for (i = 0; i < num; i ++) {
1458			buf_num = array_buf[i].count;
1459			addr = get4bits(buf_num, shift);
1460			counters[addr]++;
1461		}
1462
1463		for (i = 1; i < COUNTERS_SIZE; i++)
1464			counters[i] += counters[i - 1];
1465
1466		for (i = num - 1; i >= 0; i--) {
1467			buf_num = array_buf[i].count;
1468			addr = get4bits(buf_num, shift);
1469			counters[addr]--;
1470			new_addr = counters[addr];
1471			array[new_addr] = array_buf[i];
1472		}
1473
1474		shift += RADIX_BASE;
1475	}
1476}
1477
1478/*
1479 * Size of the core byte set - how many bytes cover 90% of the sample
1480 *
1481 * There are several types of structured binary data that use nearly all byte
1482 * values. The distribution can be uniform and counts in all buckets will be
1483 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1484 *
1485 * Other possibility is normal (Gaussian) distribution, where the data could
1486 * be potentially compressible, but we have to take a few more steps to decide
1487 * how much.
1488 *
1489 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1490 *                       compression algo can easy fix that
1491 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1492 *                       probability is not compressible
1493 */
1494#define BYTE_CORE_SET_LOW		(64)
1495#define BYTE_CORE_SET_HIGH		(200)
1496
1497static int byte_core_set_size(struct heuristic_ws *ws)
1498{
1499	u32 i;
1500	u32 coreset_sum = 0;
1501	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1502	struct bucket_item *bucket = ws->bucket;
1503
1504	/* Sort in reverse order */
1505	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1506
1507	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1508		coreset_sum += bucket[i].count;
1509
1510	if (coreset_sum > core_set_threshold)
1511		return i;
1512
1513	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1514		coreset_sum += bucket[i].count;
1515		if (coreset_sum > core_set_threshold)
1516			break;
1517	}
1518
1519	return i;
1520}
1521
1522/*
1523 * Count byte values in buckets.
1524 * This heuristic can detect textual data (configs, xml, json, html, etc).
1525 * Because in most text-like data byte set is restricted to limited number of
1526 * possible characters, and that restriction in most cases makes data easy to
1527 * compress.
1528 *
1529 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1530 *	less - compressible
1531 *	more - need additional analysis
1532 */
1533#define BYTE_SET_THRESHOLD		(64)
1534
1535static u32 byte_set_size(const struct heuristic_ws *ws)
1536{
1537	u32 i;
1538	u32 byte_set_size = 0;
1539
1540	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1541		if (ws->bucket[i].count > 0)
1542			byte_set_size++;
1543	}
1544
1545	/*
1546	 * Continue collecting count of byte values in buckets.  If the byte
1547	 * set size is bigger then the threshold, it's pointless to continue,
1548	 * the detection technique would fail for this type of data.
1549	 */
1550	for (; i < BUCKET_SIZE; i++) {
1551		if (ws->bucket[i].count > 0) {
1552			byte_set_size++;
1553			if (byte_set_size > BYTE_SET_THRESHOLD)
1554				return byte_set_size;
1555		}
1556	}
1557
1558	return byte_set_size;
1559}
1560
1561static bool sample_repeated_patterns(struct heuristic_ws *ws)
1562{
1563	const u32 half_of_sample = ws->sample_size / 2;
1564	const u8 *data = ws->sample;
1565
1566	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1567}
1568
1569static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1570				     struct heuristic_ws *ws)
1571{
1572	struct page *page;
1573	u64 index, index_end;
1574	u32 i, curr_sample_pos;
1575	u8 *in_data;
1576
1577	/*
1578	 * Compression handles the input data by chunks of 128KiB
1579	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1580	 *
1581	 * We do the same for the heuristic and loop over the whole range.
1582	 *
1583	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1584	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1585	 */
1586	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1587		end = start + BTRFS_MAX_UNCOMPRESSED;
1588
1589	index = start >> PAGE_SHIFT;
1590	index_end = end >> PAGE_SHIFT;
1591
1592	/* Don't miss unaligned end */
1593	if (!IS_ALIGNED(end, PAGE_SIZE))
1594		index_end++;
1595
1596	curr_sample_pos = 0;
1597	while (index < index_end) {
1598		page = find_get_page(inode->i_mapping, index);
1599		in_data = kmap(page);
1600		/* Handle case where the start is not aligned to PAGE_SIZE */
1601		i = start % PAGE_SIZE;
1602		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1603			/* Don't sample any garbage from the last page */
1604			if (start > end - SAMPLING_READ_SIZE)
1605				break;
1606			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1607					SAMPLING_READ_SIZE);
1608			i += SAMPLING_INTERVAL;
1609			start += SAMPLING_INTERVAL;
1610			curr_sample_pos += SAMPLING_READ_SIZE;
1611		}
1612		kunmap(page);
1613		put_page(page);
1614
1615		index++;
1616	}
1617
1618	ws->sample_size = curr_sample_pos;
1619}
1620
1621/*
1622 * Compression heuristic.
1623 *
1624 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1625 * quickly (compared to direct compression) detect data characteristics
1626 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1627 * data.
1628 *
1629 * The following types of analysis can be performed:
1630 * - detect mostly zero data
1631 * - detect data with low "byte set" size (text, etc)
1632 * - detect data with low/high "core byte" set
1633 *
1634 * Return non-zero if the compression should be done, 0 otherwise.
1635 */
1636int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1637{
1638	struct list_head *ws_list = get_workspace(0, 0);
1639	struct heuristic_ws *ws;
1640	u32 i;
1641	u8 byte;
1642	int ret = 0;
1643
1644	ws = list_entry(ws_list, struct heuristic_ws, list);
1645
1646	heuristic_collect_sample(inode, start, end, ws);
1647
1648	if (sample_repeated_patterns(ws)) {
1649		ret = 1;
1650		goto out;
1651	}
1652
1653	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1654
1655	for (i = 0; i < ws->sample_size; i++) {
1656		byte = ws->sample[i];
1657		ws->bucket[byte].count++;
1658	}
1659
1660	i = byte_set_size(ws);
1661	if (i < BYTE_SET_THRESHOLD) {
1662		ret = 2;
1663		goto out;
1664	}
1665
1666	i = byte_core_set_size(ws);
1667	if (i <= BYTE_CORE_SET_LOW) {
1668		ret = 3;
1669		goto out;
1670	}
1671
1672	if (i >= BYTE_CORE_SET_HIGH) {
1673		ret = 0;
1674		goto out;
1675	}
1676
1677	i = shannon_entropy(ws);
1678	if (i <= ENTROPY_LVL_ACEPTABLE) {
1679		ret = 4;
1680		goto out;
1681	}
1682
1683	/*
1684	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1685	 * needed to give green light to compression.
1686	 *
1687	 * For now just assume that compression at that level is not worth the
1688	 * resources because:
1689	 *
1690	 * 1. it is possible to defrag the data later
1691	 *
1692	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1693	 * values, every bucket has counter at level ~54. The heuristic would
1694	 * be confused. This can happen when data have some internal repeated
1695	 * patterns like "abbacbbc...". This can be detected by analyzing
1696	 * pairs of bytes, which is too costly.
1697	 */
1698	if (i < ENTROPY_LVL_HIGH) {
1699		ret = 5;
1700		goto out;
1701	} else {
1702		ret = 0;
1703		goto out;
1704	}
1705
1706out:
1707	put_workspace(0, ws_list);
1708	return ret;
1709}
1710
1711/*
1712 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1713 * level, unrecognized string will set the default level
1714 */
1715unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1716{
1717	unsigned int level = 0;
1718	int ret;
1719
1720	if (!type)
1721		return 0;
1722
1723	if (str[0] == ':') {
1724		ret = kstrtouint(str + 1, 10, &level);
1725		if (ret)
1726			level = 0;
1727	}
1728
1729	level = btrfs_compress_set_level(type, level);
1730
1731	return level;
1732}
1733