1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6#ifndef BTRFS_INODE_H 7#define BTRFS_INODE_H 8 9#include <linux/hash.h> 10#include <linux/refcount.h> 11#include "extent_map.h" 12#include "extent_io.h" 13#include "ordered-data.h" 14#include "delayed-inode.h" 15 16/* 17 * ordered_data_close is set by truncate when a file that used 18 * to have good data has been truncated to zero. When it is set 19 * the btrfs file release call will add this inode to the 20 * ordered operations list so that we make sure to flush out any 21 * new data the application may have written before commit. 22 */ 23enum { 24 BTRFS_INODE_FLUSH_ON_CLOSE, 25 BTRFS_INODE_DUMMY, 26 BTRFS_INODE_IN_DEFRAG, 27 BTRFS_INODE_HAS_ASYNC_EXTENT, 28 /* 29 * Always set under the VFS' inode lock, otherwise it can cause races 30 * during fsync (we start as a fast fsync and then end up in a full 31 * fsync racing with ordered extent completion). 32 */ 33 BTRFS_INODE_NEEDS_FULL_SYNC, 34 BTRFS_INODE_COPY_EVERYTHING, 35 BTRFS_INODE_IN_DELALLOC_LIST, 36 BTRFS_INODE_HAS_PROPS, 37 BTRFS_INODE_SNAPSHOT_FLUSH, 38 /* 39 * Set and used when logging an inode and it serves to signal that an 40 * inode does not have xattrs, so subsequent fsyncs can avoid searching 41 * for xattrs to log. This bit must be cleared whenever a xattr is added 42 * to an inode. 43 */ 44 BTRFS_INODE_NO_XATTRS, 45 /* 46 * Set when we are in a context where we need to start a transaction and 47 * have dirty pages with the respective file range locked. This is to 48 * ensure that when reserving space for the transaction, if we are low 49 * on available space and need to flush delalloc, we will not flush 50 * delalloc for this inode, because that could result in a deadlock (on 51 * the file range, inode's io_tree). 52 */ 53 BTRFS_INODE_NO_DELALLOC_FLUSH, 54}; 55 56/* in memory btrfs inode */ 57struct btrfs_inode { 58 /* which subvolume this inode belongs to */ 59 struct btrfs_root *root; 60 61 /* key used to find this inode on disk. This is used by the code 62 * to read in roots of subvolumes 63 */ 64 struct btrfs_key location; 65 66 /* 67 * Lock for counters and all fields used to determine if the inode is in 68 * the log or not (last_trans, last_sub_trans, last_log_commit, 69 * logged_trans). 70 */ 71 spinlock_t lock; 72 73 /* the extent_tree has caches of all the extent mappings to disk */ 74 struct extent_map_tree extent_tree; 75 76 /* the io_tree does range state (DIRTY, LOCKED etc) */ 77 struct extent_io_tree io_tree; 78 79 /* special utility tree used to record which mirrors have already been 80 * tried when checksums fail for a given block 81 */ 82 struct extent_io_tree io_failure_tree; 83 84 /* 85 * Keep track of where the inode has extent items mapped in order to 86 * make sure the i_size adjustments are accurate 87 */ 88 struct extent_io_tree file_extent_tree; 89 90 /* held while logging the inode in tree-log.c */ 91 struct mutex log_mutex; 92 93 /* used to order data wrt metadata */ 94 struct btrfs_ordered_inode_tree ordered_tree; 95 96 /* list of all the delalloc inodes in the FS. There are times we need 97 * to write all the delalloc pages to disk, and this list is used 98 * to walk them all. 99 */ 100 struct list_head delalloc_inodes; 101 102 /* node for the red-black tree that links inodes in subvolume root */ 103 struct rb_node rb_node; 104 105 unsigned long runtime_flags; 106 107 /* Keep track of who's O_SYNC/fsyncing currently */ 108 atomic_t sync_writers; 109 110 /* full 64 bit generation number, struct vfs_inode doesn't have a big 111 * enough field for this. 112 */ 113 u64 generation; 114 115 /* 116 * transid of the trans_handle that last modified this inode 117 */ 118 u64 last_trans; 119 120 /* 121 * transid that last logged this inode 122 */ 123 u64 logged_trans; 124 125 /* 126 * log transid when this inode was last modified 127 */ 128 int last_sub_trans; 129 130 /* a local copy of root's last_log_commit */ 131 int last_log_commit; 132 133 /* total number of bytes pending delalloc, used by stat to calc the 134 * real block usage of the file 135 */ 136 u64 delalloc_bytes; 137 138 /* 139 * Total number of bytes pending delalloc that fall within a file 140 * range that is either a hole or beyond EOF (and no prealloc extent 141 * exists in the range). This is always <= delalloc_bytes. 142 */ 143 u64 new_delalloc_bytes; 144 145 /* 146 * total number of bytes pending defrag, used by stat to check whether 147 * it needs COW. 148 */ 149 u64 defrag_bytes; 150 151 /* 152 * the size of the file stored in the metadata on disk. data=ordered 153 * means the in-memory i_size might be larger than the size on disk 154 * because not all the blocks are written yet. 155 */ 156 u64 disk_i_size; 157 158 /* 159 * if this is a directory then index_cnt is the counter for the index 160 * number for new files that are created 161 */ 162 u64 index_cnt; 163 164 /* Cache the directory index number to speed the dir/file remove */ 165 u64 dir_index; 166 167 /* the fsync log has some corner cases that mean we have to check 168 * directories to see if any unlinks have been done before 169 * the directory was logged. See tree-log.c for all the 170 * details 171 */ 172 u64 last_unlink_trans; 173 174 /* 175 * The id/generation of the last transaction where this inode was 176 * either the source or the destination of a clone/dedupe operation. 177 * Used when logging an inode to know if there are shared extents that 178 * need special care when logging checksum items, to avoid duplicate 179 * checksum items in a log (which can lead to a corruption where we end 180 * up with missing checksum ranges after log replay). 181 * Protected by the vfs inode lock. 182 */ 183 u64 last_reflink_trans; 184 185 /* 186 * Number of bytes outstanding that are going to need csums. This is 187 * used in ENOSPC accounting. 188 */ 189 u64 csum_bytes; 190 191 /* flags field from the on disk inode */ 192 u32 flags; 193 194 /* 195 * Counters to keep track of the number of extent item's we may use due 196 * to delalloc and such. outstanding_extents is the number of extent 197 * items we think we'll end up using, and reserved_extents is the number 198 * of extent items we've reserved metadata for. 199 */ 200 unsigned outstanding_extents; 201 202 struct btrfs_block_rsv block_rsv; 203 204 /* 205 * Cached values of inode properties 206 */ 207 unsigned prop_compress; /* per-file compression algorithm */ 208 /* 209 * Force compression on the file using the defrag ioctl, could be 210 * different from prop_compress and takes precedence if set 211 */ 212 unsigned defrag_compress; 213 214 struct btrfs_delayed_node *delayed_node; 215 216 /* File creation time. */ 217 struct timespec64 i_otime; 218 219 /* Hook into fs_info->delayed_iputs */ 220 struct list_head delayed_iput; 221 222 /* 223 * To avoid races between lockless (i_mutex not held) direct IO writes 224 * and concurrent fsync requests. Direct IO writes must acquire read 225 * access on this semaphore for creating an extent map and its 226 * corresponding ordered extent. The fast fsync path must acquire write 227 * access on this semaphore before it collects ordered extents and 228 * extent maps. 229 */ 230 struct rw_semaphore dio_sem; 231 232 struct inode vfs_inode; 233}; 234 235static inline u32 btrfs_inode_sectorsize(const struct btrfs_inode *inode) 236{ 237 return inode->root->fs_info->sectorsize; 238} 239 240static inline struct btrfs_inode *BTRFS_I(const struct inode *inode) 241{ 242 return container_of(inode, struct btrfs_inode, vfs_inode); 243} 244 245static inline unsigned long btrfs_inode_hash(u64 objectid, 246 const struct btrfs_root *root) 247{ 248 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME); 249 250#if BITS_PER_LONG == 32 251 h = (h >> 32) ^ (h & 0xffffffff); 252#endif 253 254 return (unsigned long)h; 255} 256 257static inline void btrfs_insert_inode_hash(struct inode *inode) 258{ 259 unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root); 260 261 __insert_inode_hash(inode, h); 262} 263 264static inline u64 btrfs_ino(const struct btrfs_inode *inode) 265{ 266 u64 ino = inode->location.objectid; 267 268 /* 269 * !ino: btree_inode 270 * type == BTRFS_ROOT_ITEM_KEY: subvol dir 271 */ 272 if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY) 273 ino = inode->vfs_inode.i_ino; 274 return ino; 275} 276 277static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size) 278{ 279 i_size_write(&inode->vfs_inode, size); 280 inode->disk_i_size = size; 281} 282 283static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode) 284{ 285 struct btrfs_root *root = inode->root; 286 287 if (root == root->fs_info->tree_root && 288 btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID) 289 return true; 290 if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID) 291 return true; 292 return false; 293} 294 295static inline bool is_data_inode(struct inode *inode) 296{ 297 return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID; 298} 299 300static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode, 301 int mod) 302{ 303 lockdep_assert_held(&inode->lock); 304 inode->outstanding_extents += mod; 305 if (btrfs_is_free_space_inode(inode)) 306 return; 307 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode), 308 mod); 309} 310 311/* 312 * Called every time after doing a buffered, direct IO or memory mapped write. 313 * 314 * This is to ensure that if we write to a file that was previously fsynced in 315 * the current transaction, then try to fsync it again in the same transaction, 316 * we will know that there were changes in the file and that it needs to be 317 * logged. 318 */ 319static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode) 320{ 321 spin_lock(&inode->lock); 322 inode->last_sub_trans = inode->root->log_transid; 323 spin_unlock(&inode->lock); 324} 325 326static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation) 327{ 328 int ret = 0; 329 330 spin_lock(&inode->lock); 331 if (inode->logged_trans == generation && 332 inode->last_sub_trans <= inode->last_log_commit && 333 inode->last_sub_trans <= inode->root->last_log_commit) { 334 /* 335 * After a ranged fsync we might have left some extent maps 336 * (that fall outside the fsync's range). So return false 337 * here if the list isn't empty, to make sure btrfs_log_inode() 338 * will be called and process those extent maps. 339 */ 340 smp_mb(); 341 if (list_empty(&inode->extent_tree.modified_extents)) 342 ret = 1; 343 } 344 spin_unlock(&inode->lock); 345 return ret; 346} 347 348struct btrfs_dio_private { 349 struct inode *inode; 350 u64 logical_offset; 351 u64 disk_bytenr; 352 u64 bytes; 353 354 /* 355 * References to this structure. There is one reference per in-flight 356 * bio plus one while we're still setting up. 357 */ 358 refcount_t refs; 359 360 /* dio_bio came from fs/direct-io.c */ 361 struct bio *dio_bio; 362 363 /* Array of checksums */ 364 u8 csums[]; 365}; 366 367/* Array of bytes with variable length, hexadecimal format 0x1234 */ 368#define CSUM_FMT "0x%*phN" 369#define CSUM_FMT_VALUE(size, bytes) size, bytes 370 371static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode, 372 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 373{ 374 struct btrfs_root *root = inode->root; 375 struct btrfs_super_block *sb = root->fs_info->super_copy; 376 const u16 csum_size = btrfs_super_csum_size(sb); 377 378 /* Output minus objectid, which is more meaningful */ 379 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) 380 btrfs_warn_rl(root->fs_info, 381"csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 382 root->root_key.objectid, btrfs_ino(inode), 383 logical_start, 384 CSUM_FMT_VALUE(csum_size, csum), 385 CSUM_FMT_VALUE(csum_size, csum_expected), 386 mirror_num); 387 else 388 btrfs_warn_rl(root->fs_info, 389"csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 390 root->root_key.objectid, btrfs_ino(inode), 391 logical_start, 392 CSUM_FMT_VALUE(csum_size, csum), 393 CSUM_FMT_VALUE(csum_size, csum_expected), 394 mirror_num); 395} 396 397#endif 398