xref: /kernel/linux/linux-5.10/fs/btrfs/block-rsv.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2
3#include "misc.h"
4#include "ctree.h"
5#include "block-rsv.h"
6#include "space-info.h"
7#include "transaction.h"
8#include "block-group.h"
9
10/*
11 * HOW DO BLOCK RESERVES WORK
12 *
13 *   Think of block_rsv's as buckets for logically grouped metadata
14 *   reservations.  Each block_rsv has a ->size and a ->reserved.  ->size is
15 *   how large we want our block rsv to be, ->reserved is how much space is
16 *   currently reserved for this block reserve.
17 *
18 *   ->failfast exists for the truncate case, and is described below.
19 *
20 * NORMAL OPERATION
21 *
22 *   -> Reserve
23 *     Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
24 *
25 *     We call into btrfs_reserve_metadata_bytes() with our bytes, which is
26 *     accounted for in space_info->bytes_may_use, and then add the bytes to
27 *     ->reserved, and ->size in the case of btrfs_block_rsv_add.
28 *
29 *     ->size is an over-estimation of how much we may use for a particular
30 *     operation.
31 *
32 *   -> Use
33 *     Entrance: btrfs_use_block_rsv
34 *
35 *     When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
36 *     to determine the appropriate block_rsv to use, and then verify that
37 *     ->reserved has enough space for our tree block allocation.  Once
38 *     successful we subtract fs_info->nodesize from ->reserved.
39 *
40 *   -> Finish
41 *     Entrance: btrfs_block_rsv_release
42 *
43 *     We are finished with our operation, subtract our individual reservation
44 *     from ->size, and then subtract ->size from ->reserved and free up the
45 *     excess if there is any.
46 *
47 *     There is some logic here to refill the delayed refs rsv or the global rsv
48 *     as needed, otherwise the excess is subtracted from
49 *     space_info->bytes_may_use.
50 *
51 * TYPES OF BLOCK RESERVES
52 *
53 * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
54 *   These behave normally, as described above, just within the confines of the
55 *   lifetime of their particular operation (transaction for the whole trans
56 *   handle lifetime, for example).
57 *
58 * BLOCK_RSV_GLOBAL
59 *   It is impossible to properly account for all the space that may be required
60 *   to make our extent tree updates.  This block reserve acts as an overflow
61 *   buffer in case our delayed refs reserve does not reserve enough space to
62 *   update the extent tree.
63 *
64 *   We can steal from this in some cases as well, notably on evict() or
65 *   truncate() in order to help users recover from ENOSPC conditions.
66 *
67 * BLOCK_RSV_DELALLOC
68 *   The individual item sizes are determined by the per-inode size
69 *   calculations, which are described with the delalloc code.  This is pretty
70 *   straightforward, it's just the calculation of ->size encodes a lot of
71 *   different items, and thus it gets used when updating inodes, inserting file
72 *   extents, and inserting checksums.
73 *
74 * BLOCK_RSV_DELREFS
75 *   We keep a running tally of how many delayed refs we have on the system.
76 *   We assume each one of these delayed refs are going to use a full
77 *   reservation.  We use the transaction items and pre-reserve space for every
78 *   operation, and use this reservation to refill any gap between ->size and
79 *   ->reserved that may exist.
80 *
81 *   From there it's straightforward, removing a delayed ref means we remove its
82 *   count from ->size and free up reservations as necessary.  Since this is
83 *   the most dynamic block reserve in the system, we will try to refill this
84 *   block reserve first with any excess returned by any other block reserve.
85 *
86 * BLOCK_RSV_EMPTY
87 *   This is the fallback block reserve to make us try to reserve space if we
88 *   don't have a specific bucket for this allocation.  It is mostly used for
89 *   updating the device tree and such, since that is a separate pool we're
90 *   content to just reserve space from the space_info on demand.
91 *
92 * BLOCK_RSV_TEMP
93 *   This is used by things like truncate and iput.  We will temporarily
94 *   allocate a block reserve, set it to some size, and then truncate bytes
95 *   until we have no space left.  With ->failfast set we'll simply return
96 *   ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
97 *   to make a new reservation.  This is because these operations are
98 *   unbounded, so we want to do as much work as we can, and then back off and
99 *   re-reserve.
100 */
101
102static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
103				    struct btrfs_block_rsv *block_rsv,
104				    struct btrfs_block_rsv *dest, u64 num_bytes,
105				    u64 *qgroup_to_release_ret)
106{
107	struct btrfs_space_info *space_info = block_rsv->space_info;
108	u64 qgroup_to_release = 0;
109	u64 ret;
110
111	spin_lock(&block_rsv->lock);
112	if (num_bytes == (u64)-1) {
113		num_bytes = block_rsv->size;
114		qgroup_to_release = block_rsv->qgroup_rsv_size;
115	}
116	block_rsv->size -= num_bytes;
117	if (block_rsv->reserved >= block_rsv->size) {
118		num_bytes = block_rsv->reserved - block_rsv->size;
119		block_rsv->reserved = block_rsv->size;
120		block_rsv->full = 1;
121	} else {
122		num_bytes = 0;
123	}
124	if (qgroup_to_release_ret &&
125	    block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
126		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
127				    block_rsv->qgroup_rsv_size;
128		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
129	} else {
130		qgroup_to_release = 0;
131	}
132	spin_unlock(&block_rsv->lock);
133
134	ret = num_bytes;
135	if (num_bytes > 0) {
136		if (dest) {
137			spin_lock(&dest->lock);
138			if (!dest->full) {
139				u64 bytes_to_add;
140
141				bytes_to_add = dest->size - dest->reserved;
142				bytes_to_add = min(num_bytes, bytes_to_add);
143				dest->reserved += bytes_to_add;
144				if (dest->reserved >= dest->size)
145					dest->full = 1;
146				num_bytes -= bytes_to_add;
147			}
148			spin_unlock(&dest->lock);
149		}
150		if (num_bytes)
151			btrfs_space_info_free_bytes_may_use(fs_info,
152							    space_info,
153							    num_bytes);
154	}
155	if (qgroup_to_release_ret)
156		*qgroup_to_release_ret = qgroup_to_release;
157	return ret;
158}
159
160int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
161			    struct btrfs_block_rsv *dst, u64 num_bytes,
162			    bool update_size)
163{
164	int ret;
165
166	ret = btrfs_block_rsv_use_bytes(src, num_bytes);
167	if (ret)
168		return ret;
169
170	btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
171	return 0;
172}
173
174void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
175{
176	memset(rsv, 0, sizeof(*rsv));
177	spin_lock_init(&rsv->lock);
178	rsv->type = type;
179}
180
181void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
182				   struct btrfs_block_rsv *rsv,
183				   unsigned short type)
184{
185	btrfs_init_block_rsv(rsv, type);
186	rsv->space_info = btrfs_find_space_info(fs_info,
187					    BTRFS_BLOCK_GROUP_METADATA);
188}
189
190struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
191					      unsigned short type)
192{
193	struct btrfs_block_rsv *block_rsv;
194
195	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
196	if (!block_rsv)
197		return NULL;
198
199	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
200	return block_rsv;
201}
202
203void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
204			  struct btrfs_block_rsv *rsv)
205{
206	if (!rsv)
207		return;
208	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
209	kfree(rsv);
210}
211
212int btrfs_block_rsv_add(struct btrfs_root *root,
213			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
214			enum btrfs_reserve_flush_enum flush)
215{
216	int ret;
217
218	if (num_bytes == 0)
219		return 0;
220
221	ret = btrfs_reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
222	if (!ret)
223		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
224
225	return ret;
226}
227
228int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
229{
230	u64 num_bytes = 0;
231	int ret = -ENOSPC;
232
233	if (!block_rsv)
234		return 0;
235
236	spin_lock(&block_rsv->lock);
237	num_bytes = div_factor(block_rsv->size, min_factor);
238	if (block_rsv->reserved >= num_bytes)
239		ret = 0;
240	spin_unlock(&block_rsv->lock);
241
242	return ret;
243}
244
245int btrfs_block_rsv_refill(struct btrfs_root *root,
246			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
247			   enum btrfs_reserve_flush_enum flush)
248{
249	u64 num_bytes = 0;
250	int ret = -ENOSPC;
251
252	if (!block_rsv)
253		return 0;
254
255	spin_lock(&block_rsv->lock);
256	num_bytes = min_reserved;
257	if (block_rsv->reserved >= num_bytes)
258		ret = 0;
259	else
260		num_bytes -= block_rsv->reserved;
261	spin_unlock(&block_rsv->lock);
262
263	if (!ret)
264		return 0;
265
266	ret = btrfs_reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
267	if (!ret) {
268		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
269		return 0;
270	}
271
272	return ret;
273}
274
275u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
276			    struct btrfs_block_rsv *block_rsv, u64 num_bytes,
277			    u64 *qgroup_to_release)
278{
279	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
280	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
281	struct btrfs_block_rsv *target = NULL;
282
283	/*
284	 * If we are the delayed_rsv then push to the global rsv, otherwise dump
285	 * into the delayed rsv if it is not full.
286	 */
287	if (block_rsv == delayed_rsv)
288		target = global_rsv;
289	else if (block_rsv != global_rsv && !delayed_rsv->full)
290		target = delayed_rsv;
291
292	if (target && block_rsv->space_info != target->space_info)
293		target = NULL;
294
295	return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
296				       qgroup_to_release);
297}
298
299int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
300{
301	int ret = -ENOSPC;
302
303	spin_lock(&block_rsv->lock);
304	if (block_rsv->reserved >= num_bytes) {
305		block_rsv->reserved -= num_bytes;
306		if (block_rsv->reserved < block_rsv->size)
307			block_rsv->full = 0;
308		ret = 0;
309	}
310	spin_unlock(&block_rsv->lock);
311	return ret;
312}
313
314void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
315			       u64 num_bytes, bool update_size)
316{
317	spin_lock(&block_rsv->lock);
318	block_rsv->reserved += num_bytes;
319	if (update_size)
320		block_rsv->size += num_bytes;
321	else if (block_rsv->reserved >= block_rsv->size)
322		block_rsv->full = 1;
323	spin_unlock(&block_rsv->lock);
324}
325
326int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
327			     struct btrfs_block_rsv *dest, u64 num_bytes,
328			     int min_factor)
329{
330	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
331	u64 min_bytes;
332
333	if (global_rsv->space_info != dest->space_info)
334		return -ENOSPC;
335
336	spin_lock(&global_rsv->lock);
337	min_bytes = div_factor(global_rsv->size, min_factor);
338	if (global_rsv->reserved < min_bytes + num_bytes) {
339		spin_unlock(&global_rsv->lock);
340		return -ENOSPC;
341	}
342	global_rsv->reserved -= num_bytes;
343	if (global_rsv->reserved < global_rsv->size)
344		global_rsv->full = 0;
345	spin_unlock(&global_rsv->lock);
346
347	btrfs_block_rsv_add_bytes(dest, num_bytes, true);
348	return 0;
349}
350
351void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
352{
353	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
354	struct btrfs_space_info *sinfo = block_rsv->space_info;
355	u64 num_bytes;
356	unsigned min_items;
357
358	/*
359	 * The global block rsv is based on the size of the extent tree, the
360	 * checksum tree and the root tree.  If the fs is empty we want to set
361	 * it to a minimal amount for safety.
362	 */
363	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
364		btrfs_root_used(&fs_info->csum_root->root_item) +
365		btrfs_root_used(&fs_info->tree_root->root_item);
366
367	/*
368	 * We at a minimum are going to modify the csum root, the tree root, and
369	 * the extent root.
370	 */
371	min_items = 3;
372
373	/*
374	 * But we also want to reserve enough space so we can do the fallback
375	 * global reserve for an unlink, which is an additional 5 items (see the
376	 * comment in __unlink_start_trans for what we're modifying.)
377	 *
378	 * But we also need space for the delayed ref updates from the unlink,
379	 * so its 10, 5 for the actual operation, and 5 for the delayed ref
380	 * updates.
381	 */
382	min_items += 10;
383
384	num_bytes = max_t(u64, num_bytes,
385			  btrfs_calc_insert_metadata_size(fs_info, min_items));
386
387	spin_lock(&sinfo->lock);
388	spin_lock(&block_rsv->lock);
389
390	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
391
392	if (block_rsv->reserved < block_rsv->size) {
393		num_bytes = block_rsv->size - block_rsv->reserved;
394		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
395						      num_bytes);
396		block_rsv->reserved = block_rsv->size;
397	} else if (block_rsv->reserved > block_rsv->size) {
398		num_bytes = block_rsv->reserved - block_rsv->size;
399		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
400						      -num_bytes);
401		block_rsv->reserved = block_rsv->size;
402		btrfs_try_granting_tickets(fs_info, sinfo);
403	}
404
405	if (block_rsv->reserved == block_rsv->size)
406		block_rsv->full = 1;
407	else
408		block_rsv->full = 0;
409
410	if (block_rsv->size >= sinfo->total_bytes)
411		sinfo->force_alloc = CHUNK_ALLOC_FORCE;
412	spin_unlock(&block_rsv->lock);
413	spin_unlock(&sinfo->lock);
414}
415
416void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
417{
418	struct btrfs_space_info *space_info;
419
420	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
421	fs_info->chunk_block_rsv.space_info = space_info;
422
423	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
424	fs_info->global_block_rsv.space_info = space_info;
425	fs_info->trans_block_rsv.space_info = space_info;
426	fs_info->empty_block_rsv.space_info = space_info;
427	fs_info->delayed_block_rsv.space_info = space_info;
428	fs_info->delayed_refs_rsv.space_info = space_info;
429
430	fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
431	fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
432	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
433	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
434	if (fs_info->quota_root)
435		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
436	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
437
438	btrfs_update_global_block_rsv(fs_info);
439}
440
441void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
442{
443	btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
444				NULL);
445	WARN_ON(fs_info->trans_block_rsv.size > 0);
446	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
447	WARN_ON(fs_info->chunk_block_rsv.size > 0);
448	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
449	WARN_ON(fs_info->delayed_block_rsv.size > 0);
450	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
451	WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
452	WARN_ON(fs_info->delayed_refs_rsv.size > 0);
453}
454
455static struct btrfs_block_rsv *get_block_rsv(
456					const struct btrfs_trans_handle *trans,
457					const struct btrfs_root *root)
458{
459	struct btrfs_fs_info *fs_info = root->fs_info;
460	struct btrfs_block_rsv *block_rsv = NULL;
461
462	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
463	    (root == fs_info->csum_root && trans->adding_csums) ||
464	    (root == fs_info->uuid_root))
465		block_rsv = trans->block_rsv;
466
467	if (!block_rsv)
468		block_rsv = root->block_rsv;
469
470	if (!block_rsv)
471		block_rsv = &fs_info->empty_block_rsv;
472
473	return block_rsv;
474}
475
476struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
477					    struct btrfs_root *root,
478					    u32 blocksize)
479{
480	struct btrfs_fs_info *fs_info = root->fs_info;
481	struct btrfs_block_rsv *block_rsv;
482	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
483	int ret;
484	bool global_updated = false;
485
486	block_rsv = get_block_rsv(trans, root);
487
488	if (unlikely(block_rsv->size == 0))
489		goto try_reserve;
490again:
491	ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
492	if (!ret)
493		return block_rsv;
494
495	if (block_rsv->failfast)
496		return ERR_PTR(ret);
497
498	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
499		global_updated = true;
500		btrfs_update_global_block_rsv(fs_info);
501		goto again;
502	}
503
504	/*
505	 * The global reserve still exists to save us from ourselves, so don't
506	 * warn_on if we are short on our delayed refs reserve.
507	 */
508	if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
509	    btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
510		static DEFINE_RATELIMIT_STATE(_rs,
511				DEFAULT_RATELIMIT_INTERVAL * 10,
512				/*DEFAULT_RATELIMIT_BURST*/ 1);
513		if (__ratelimit(&_rs))
514			WARN(1, KERN_DEBUG
515				"BTRFS: block rsv %d returned %d\n",
516				block_rsv->type, ret);
517	}
518try_reserve:
519	ret = btrfs_reserve_metadata_bytes(root, block_rsv, blocksize,
520					   BTRFS_RESERVE_NO_FLUSH);
521	if (!ret)
522		return block_rsv;
523	/*
524	 * If we couldn't reserve metadata bytes try and use some from
525	 * the global reserve if its space type is the same as the global
526	 * reservation.
527	 */
528	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
529	    block_rsv->space_info == global_rsv->space_info) {
530		ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
531		if (!ret)
532			return global_rsv;
533	}
534	return ERR_PTR(ret);
535}
536