1// SPDX-License-Identifier: GPL-2.0 2 3#include "misc.h" 4#include "ctree.h" 5#include "block-rsv.h" 6#include "space-info.h" 7#include "transaction.h" 8#include "block-group.h" 9 10/* 11 * HOW DO BLOCK RESERVES WORK 12 * 13 * Think of block_rsv's as buckets for logically grouped metadata 14 * reservations. Each block_rsv has a ->size and a ->reserved. ->size is 15 * how large we want our block rsv to be, ->reserved is how much space is 16 * currently reserved for this block reserve. 17 * 18 * ->failfast exists for the truncate case, and is described below. 19 * 20 * NORMAL OPERATION 21 * 22 * -> Reserve 23 * Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill 24 * 25 * We call into btrfs_reserve_metadata_bytes() with our bytes, which is 26 * accounted for in space_info->bytes_may_use, and then add the bytes to 27 * ->reserved, and ->size in the case of btrfs_block_rsv_add. 28 * 29 * ->size is an over-estimation of how much we may use for a particular 30 * operation. 31 * 32 * -> Use 33 * Entrance: btrfs_use_block_rsv 34 * 35 * When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv() 36 * to determine the appropriate block_rsv to use, and then verify that 37 * ->reserved has enough space for our tree block allocation. Once 38 * successful we subtract fs_info->nodesize from ->reserved. 39 * 40 * -> Finish 41 * Entrance: btrfs_block_rsv_release 42 * 43 * We are finished with our operation, subtract our individual reservation 44 * from ->size, and then subtract ->size from ->reserved and free up the 45 * excess if there is any. 46 * 47 * There is some logic here to refill the delayed refs rsv or the global rsv 48 * as needed, otherwise the excess is subtracted from 49 * space_info->bytes_may_use. 50 * 51 * TYPES OF BLOCK RESERVES 52 * 53 * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK 54 * These behave normally, as described above, just within the confines of the 55 * lifetime of their particular operation (transaction for the whole trans 56 * handle lifetime, for example). 57 * 58 * BLOCK_RSV_GLOBAL 59 * It is impossible to properly account for all the space that may be required 60 * to make our extent tree updates. This block reserve acts as an overflow 61 * buffer in case our delayed refs reserve does not reserve enough space to 62 * update the extent tree. 63 * 64 * We can steal from this in some cases as well, notably on evict() or 65 * truncate() in order to help users recover from ENOSPC conditions. 66 * 67 * BLOCK_RSV_DELALLOC 68 * The individual item sizes are determined by the per-inode size 69 * calculations, which are described with the delalloc code. This is pretty 70 * straightforward, it's just the calculation of ->size encodes a lot of 71 * different items, and thus it gets used when updating inodes, inserting file 72 * extents, and inserting checksums. 73 * 74 * BLOCK_RSV_DELREFS 75 * We keep a running tally of how many delayed refs we have on the system. 76 * We assume each one of these delayed refs are going to use a full 77 * reservation. We use the transaction items and pre-reserve space for every 78 * operation, and use this reservation to refill any gap between ->size and 79 * ->reserved that may exist. 80 * 81 * From there it's straightforward, removing a delayed ref means we remove its 82 * count from ->size and free up reservations as necessary. Since this is 83 * the most dynamic block reserve in the system, we will try to refill this 84 * block reserve first with any excess returned by any other block reserve. 85 * 86 * BLOCK_RSV_EMPTY 87 * This is the fallback block reserve to make us try to reserve space if we 88 * don't have a specific bucket for this allocation. It is mostly used for 89 * updating the device tree and such, since that is a separate pool we're 90 * content to just reserve space from the space_info on demand. 91 * 92 * BLOCK_RSV_TEMP 93 * This is used by things like truncate and iput. We will temporarily 94 * allocate a block reserve, set it to some size, and then truncate bytes 95 * until we have no space left. With ->failfast set we'll simply return 96 * ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try 97 * to make a new reservation. This is because these operations are 98 * unbounded, so we want to do as much work as we can, and then back off and 99 * re-reserve. 100 */ 101 102static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 103 struct btrfs_block_rsv *block_rsv, 104 struct btrfs_block_rsv *dest, u64 num_bytes, 105 u64 *qgroup_to_release_ret) 106{ 107 struct btrfs_space_info *space_info = block_rsv->space_info; 108 u64 qgroup_to_release = 0; 109 u64 ret; 110 111 spin_lock(&block_rsv->lock); 112 if (num_bytes == (u64)-1) { 113 num_bytes = block_rsv->size; 114 qgroup_to_release = block_rsv->qgroup_rsv_size; 115 } 116 block_rsv->size -= num_bytes; 117 if (block_rsv->reserved >= block_rsv->size) { 118 num_bytes = block_rsv->reserved - block_rsv->size; 119 block_rsv->reserved = block_rsv->size; 120 block_rsv->full = 1; 121 } else { 122 num_bytes = 0; 123 } 124 if (qgroup_to_release_ret && 125 block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { 126 qgroup_to_release = block_rsv->qgroup_rsv_reserved - 127 block_rsv->qgroup_rsv_size; 128 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; 129 } else { 130 qgroup_to_release = 0; 131 } 132 spin_unlock(&block_rsv->lock); 133 134 ret = num_bytes; 135 if (num_bytes > 0) { 136 if (dest) { 137 spin_lock(&dest->lock); 138 if (!dest->full) { 139 u64 bytes_to_add; 140 141 bytes_to_add = dest->size - dest->reserved; 142 bytes_to_add = min(num_bytes, bytes_to_add); 143 dest->reserved += bytes_to_add; 144 if (dest->reserved >= dest->size) 145 dest->full = 1; 146 num_bytes -= bytes_to_add; 147 } 148 spin_unlock(&dest->lock); 149 } 150 if (num_bytes) 151 btrfs_space_info_free_bytes_may_use(fs_info, 152 space_info, 153 num_bytes); 154 } 155 if (qgroup_to_release_ret) 156 *qgroup_to_release_ret = qgroup_to_release; 157 return ret; 158} 159 160int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 161 struct btrfs_block_rsv *dst, u64 num_bytes, 162 bool update_size) 163{ 164 int ret; 165 166 ret = btrfs_block_rsv_use_bytes(src, num_bytes); 167 if (ret) 168 return ret; 169 170 btrfs_block_rsv_add_bytes(dst, num_bytes, update_size); 171 return 0; 172} 173 174void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 175{ 176 memset(rsv, 0, sizeof(*rsv)); 177 spin_lock_init(&rsv->lock); 178 rsv->type = type; 179} 180 181void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 182 struct btrfs_block_rsv *rsv, 183 unsigned short type) 184{ 185 btrfs_init_block_rsv(rsv, type); 186 rsv->space_info = btrfs_find_space_info(fs_info, 187 BTRFS_BLOCK_GROUP_METADATA); 188} 189 190struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 191 unsigned short type) 192{ 193 struct btrfs_block_rsv *block_rsv; 194 195 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 196 if (!block_rsv) 197 return NULL; 198 199 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 200 return block_rsv; 201} 202 203void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 204 struct btrfs_block_rsv *rsv) 205{ 206 if (!rsv) 207 return; 208 btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL); 209 kfree(rsv); 210} 211 212int btrfs_block_rsv_add(struct btrfs_root *root, 213 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 214 enum btrfs_reserve_flush_enum flush) 215{ 216 int ret; 217 218 if (num_bytes == 0) 219 return 0; 220 221 ret = btrfs_reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 222 if (!ret) 223 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true); 224 225 return ret; 226} 227 228int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) 229{ 230 u64 num_bytes = 0; 231 int ret = -ENOSPC; 232 233 if (!block_rsv) 234 return 0; 235 236 spin_lock(&block_rsv->lock); 237 num_bytes = div_factor(block_rsv->size, min_factor); 238 if (block_rsv->reserved >= num_bytes) 239 ret = 0; 240 spin_unlock(&block_rsv->lock); 241 242 return ret; 243} 244 245int btrfs_block_rsv_refill(struct btrfs_root *root, 246 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 247 enum btrfs_reserve_flush_enum flush) 248{ 249 u64 num_bytes = 0; 250 int ret = -ENOSPC; 251 252 if (!block_rsv) 253 return 0; 254 255 spin_lock(&block_rsv->lock); 256 num_bytes = min_reserved; 257 if (block_rsv->reserved >= num_bytes) 258 ret = 0; 259 else 260 num_bytes -= block_rsv->reserved; 261 spin_unlock(&block_rsv->lock); 262 263 if (!ret) 264 return 0; 265 266 ret = btrfs_reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 267 if (!ret) { 268 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false); 269 return 0; 270 } 271 272 return ret; 273} 274 275u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 276 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 277 u64 *qgroup_to_release) 278{ 279 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 280 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 281 struct btrfs_block_rsv *target = NULL; 282 283 /* 284 * If we are the delayed_rsv then push to the global rsv, otherwise dump 285 * into the delayed rsv if it is not full. 286 */ 287 if (block_rsv == delayed_rsv) 288 target = global_rsv; 289 else if (block_rsv != global_rsv && !delayed_rsv->full) 290 target = delayed_rsv; 291 292 if (target && block_rsv->space_info != target->space_info) 293 target = NULL; 294 295 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes, 296 qgroup_to_release); 297} 298 299int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes) 300{ 301 int ret = -ENOSPC; 302 303 spin_lock(&block_rsv->lock); 304 if (block_rsv->reserved >= num_bytes) { 305 block_rsv->reserved -= num_bytes; 306 if (block_rsv->reserved < block_rsv->size) 307 block_rsv->full = 0; 308 ret = 0; 309 } 310 spin_unlock(&block_rsv->lock); 311 return ret; 312} 313 314void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 315 u64 num_bytes, bool update_size) 316{ 317 spin_lock(&block_rsv->lock); 318 block_rsv->reserved += num_bytes; 319 if (update_size) 320 block_rsv->size += num_bytes; 321 else if (block_rsv->reserved >= block_rsv->size) 322 block_rsv->full = 1; 323 spin_unlock(&block_rsv->lock); 324} 325 326int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 327 struct btrfs_block_rsv *dest, u64 num_bytes, 328 int min_factor) 329{ 330 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 331 u64 min_bytes; 332 333 if (global_rsv->space_info != dest->space_info) 334 return -ENOSPC; 335 336 spin_lock(&global_rsv->lock); 337 min_bytes = div_factor(global_rsv->size, min_factor); 338 if (global_rsv->reserved < min_bytes + num_bytes) { 339 spin_unlock(&global_rsv->lock); 340 return -ENOSPC; 341 } 342 global_rsv->reserved -= num_bytes; 343 if (global_rsv->reserved < global_rsv->size) 344 global_rsv->full = 0; 345 spin_unlock(&global_rsv->lock); 346 347 btrfs_block_rsv_add_bytes(dest, num_bytes, true); 348 return 0; 349} 350 351void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info) 352{ 353 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 354 struct btrfs_space_info *sinfo = block_rsv->space_info; 355 u64 num_bytes; 356 unsigned min_items; 357 358 /* 359 * The global block rsv is based on the size of the extent tree, the 360 * checksum tree and the root tree. If the fs is empty we want to set 361 * it to a minimal amount for safety. 362 */ 363 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 364 btrfs_root_used(&fs_info->csum_root->root_item) + 365 btrfs_root_used(&fs_info->tree_root->root_item); 366 367 /* 368 * We at a minimum are going to modify the csum root, the tree root, and 369 * the extent root. 370 */ 371 min_items = 3; 372 373 /* 374 * But we also want to reserve enough space so we can do the fallback 375 * global reserve for an unlink, which is an additional 5 items (see the 376 * comment in __unlink_start_trans for what we're modifying.) 377 * 378 * But we also need space for the delayed ref updates from the unlink, 379 * so its 10, 5 for the actual operation, and 5 for the delayed ref 380 * updates. 381 */ 382 min_items += 10; 383 384 num_bytes = max_t(u64, num_bytes, 385 btrfs_calc_insert_metadata_size(fs_info, min_items)); 386 387 spin_lock(&sinfo->lock); 388 spin_lock(&block_rsv->lock); 389 390 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 391 392 if (block_rsv->reserved < block_rsv->size) { 393 num_bytes = block_rsv->size - block_rsv->reserved; 394 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, 395 num_bytes); 396 block_rsv->reserved = block_rsv->size; 397 } else if (block_rsv->reserved > block_rsv->size) { 398 num_bytes = block_rsv->reserved - block_rsv->size; 399 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, 400 -num_bytes); 401 block_rsv->reserved = block_rsv->size; 402 btrfs_try_granting_tickets(fs_info, sinfo); 403 } 404 405 if (block_rsv->reserved == block_rsv->size) 406 block_rsv->full = 1; 407 else 408 block_rsv->full = 0; 409 410 if (block_rsv->size >= sinfo->total_bytes) 411 sinfo->force_alloc = CHUNK_ALLOC_FORCE; 412 spin_unlock(&block_rsv->lock); 413 spin_unlock(&sinfo->lock); 414} 415 416void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info) 417{ 418 struct btrfs_space_info *space_info; 419 420 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 421 fs_info->chunk_block_rsv.space_info = space_info; 422 423 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 424 fs_info->global_block_rsv.space_info = space_info; 425 fs_info->trans_block_rsv.space_info = space_info; 426 fs_info->empty_block_rsv.space_info = space_info; 427 fs_info->delayed_block_rsv.space_info = space_info; 428 fs_info->delayed_refs_rsv.space_info = space_info; 429 430 fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv; 431 fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv; 432 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 433 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 434 if (fs_info->quota_root) 435 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 436 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 437 438 btrfs_update_global_block_rsv(fs_info); 439} 440 441void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info) 442{ 443 btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1, 444 NULL); 445 WARN_ON(fs_info->trans_block_rsv.size > 0); 446 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 447 WARN_ON(fs_info->chunk_block_rsv.size > 0); 448 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 449 WARN_ON(fs_info->delayed_block_rsv.size > 0); 450 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 451 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0); 452 WARN_ON(fs_info->delayed_refs_rsv.size > 0); 453} 454 455static struct btrfs_block_rsv *get_block_rsv( 456 const struct btrfs_trans_handle *trans, 457 const struct btrfs_root *root) 458{ 459 struct btrfs_fs_info *fs_info = root->fs_info; 460 struct btrfs_block_rsv *block_rsv = NULL; 461 462 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 463 (root == fs_info->csum_root && trans->adding_csums) || 464 (root == fs_info->uuid_root)) 465 block_rsv = trans->block_rsv; 466 467 if (!block_rsv) 468 block_rsv = root->block_rsv; 469 470 if (!block_rsv) 471 block_rsv = &fs_info->empty_block_rsv; 472 473 return block_rsv; 474} 475 476struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans, 477 struct btrfs_root *root, 478 u32 blocksize) 479{ 480 struct btrfs_fs_info *fs_info = root->fs_info; 481 struct btrfs_block_rsv *block_rsv; 482 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 483 int ret; 484 bool global_updated = false; 485 486 block_rsv = get_block_rsv(trans, root); 487 488 if (unlikely(block_rsv->size == 0)) 489 goto try_reserve; 490again: 491 ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize); 492 if (!ret) 493 return block_rsv; 494 495 if (block_rsv->failfast) 496 return ERR_PTR(ret); 497 498 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 499 global_updated = true; 500 btrfs_update_global_block_rsv(fs_info); 501 goto again; 502 } 503 504 /* 505 * The global reserve still exists to save us from ourselves, so don't 506 * warn_on if we are short on our delayed refs reserve. 507 */ 508 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS && 509 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 510 static DEFINE_RATELIMIT_STATE(_rs, 511 DEFAULT_RATELIMIT_INTERVAL * 10, 512 /*DEFAULT_RATELIMIT_BURST*/ 1); 513 if (__ratelimit(&_rs)) 514 WARN(1, KERN_DEBUG 515 "BTRFS: block rsv %d returned %d\n", 516 block_rsv->type, ret); 517 } 518try_reserve: 519 ret = btrfs_reserve_metadata_bytes(root, block_rsv, blocksize, 520 BTRFS_RESERVE_NO_FLUSH); 521 if (!ret) 522 return block_rsv; 523 /* 524 * If we couldn't reserve metadata bytes try and use some from 525 * the global reserve if its space type is the same as the global 526 * reservation. 527 */ 528 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 529 block_rsv->space_info == global_rsv->space_info) { 530 ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize); 531 if (!ret) 532 return global_rsv; 533 } 534 return ERR_PTR(ret); 535} 536