1// SPDX-License-Identifier: GPL-2.0 2 3#include "misc.h" 4#include "ctree.h" 5#include "block-group.h" 6#include "space-info.h" 7#include "disk-io.h" 8#include "free-space-cache.h" 9#include "free-space-tree.h" 10#include "volumes.h" 11#include "transaction.h" 12#include "ref-verify.h" 13#include "sysfs.h" 14#include "tree-log.h" 15#include "delalloc-space.h" 16#include "discard.h" 17#include "raid56.h" 18 19/* 20 * Return target flags in extended format or 0 if restripe for this chunk_type 21 * is not in progress 22 * 23 * Should be called with balance_lock held 24 */ 25static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 26{ 27 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 28 u64 target = 0; 29 30 if (!bctl) 31 return 0; 32 33 if (flags & BTRFS_BLOCK_GROUP_DATA && 34 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 35 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 36 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 37 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 38 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 39 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 40 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 41 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 42 } 43 44 return target; 45} 46 47/* 48 * @flags: available profiles in extended format (see ctree.h) 49 * 50 * Return reduced profile in chunk format. If profile changing is in progress 51 * (either running or paused) picks the target profile (if it's already 52 * available), otherwise falls back to plain reducing. 53 */ 54static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 55{ 56 u64 num_devices = fs_info->fs_devices->rw_devices; 57 u64 target; 58 u64 raid_type; 59 u64 allowed = 0; 60 61 /* 62 * See if restripe for this chunk_type is in progress, if so try to 63 * reduce to the target profile 64 */ 65 spin_lock(&fs_info->balance_lock); 66 target = get_restripe_target(fs_info, flags); 67 if (target) { 68 spin_unlock(&fs_info->balance_lock); 69 return extended_to_chunk(target); 70 } 71 spin_unlock(&fs_info->balance_lock); 72 73 /* First, mask out the RAID levels which aren't possible */ 74 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 75 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 76 allowed |= btrfs_raid_array[raid_type].bg_flag; 77 } 78 allowed &= flags; 79 80 /* Select the highest-redundancy RAID level. */ 81 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4) 82 allowed = BTRFS_BLOCK_GROUP_RAID1C4; 83 else if (allowed & BTRFS_BLOCK_GROUP_RAID6) 84 allowed = BTRFS_BLOCK_GROUP_RAID6; 85 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3) 86 allowed = BTRFS_BLOCK_GROUP_RAID1C3; 87 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 88 allowed = BTRFS_BLOCK_GROUP_RAID5; 89 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 90 allowed = BTRFS_BLOCK_GROUP_RAID10; 91 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 92 allowed = BTRFS_BLOCK_GROUP_RAID1; 93 else if (allowed & BTRFS_BLOCK_GROUP_DUP) 94 allowed = BTRFS_BLOCK_GROUP_DUP; 95 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 96 allowed = BTRFS_BLOCK_GROUP_RAID0; 97 98 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 99 100 return extended_to_chunk(flags | allowed); 101} 102 103u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 104{ 105 unsigned seq; 106 u64 flags; 107 108 do { 109 flags = orig_flags; 110 seq = read_seqbegin(&fs_info->profiles_lock); 111 112 if (flags & BTRFS_BLOCK_GROUP_DATA) 113 flags |= fs_info->avail_data_alloc_bits; 114 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 115 flags |= fs_info->avail_system_alloc_bits; 116 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 117 flags |= fs_info->avail_metadata_alloc_bits; 118 } while (read_seqretry(&fs_info->profiles_lock, seq)); 119 120 return btrfs_reduce_alloc_profile(fs_info, flags); 121} 122 123void btrfs_get_block_group(struct btrfs_block_group *cache) 124{ 125 refcount_inc(&cache->refs); 126} 127 128void btrfs_put_block_group(struct btrfs_block_group *cache) 129{ 130 if (refcount_dec_and_test(&cache->refs)) { 131 WARN_ON(cache->pinned > 0); 132 WARN_ON(cache->reserved > 0); 133 134 /* 135 * A block_group shouldn't be on the discard_list anymore. 136 * Remove the block_group from the discard_list to prevent us 137 * from causing a panic due to NULL pointer dereference. 138 */ 139 if (WARN_ON(!list_empty(&cache->discard_list))) 140 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 141 cache); 142 143 /* 144 * If not empty, someone is still holding mutex of 145 * full_stripe_lock, which can only be released by caller. 146 * And it will definitely cause use-after-free when caller 147 * tries to release full stripe lock. 148 * 149 * No better way to resolve, but only to warn. 150 */ 151 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 152 kfree(cache->free_space_ctl); 153 kfree(cache); 154 } 155} 156 157/* 158 * This adds the block group to the fs_info rb tree for the block group cache 159 */ 160static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 161 struct btrfs_block_group *block_group) 162{ 163 struct rb_node **p; 164 struct rb_node *parent = NULL; 165 struct btrfs_block_group *cache; 166 167 ASSERT(block_group->length != 0); 168 169 spin_lock(&info->block_group_cache_lock); 170 p = &info->block_group_cache_tree.rb_node; 171 172 while (*p) { 173 parent = *p; 174 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 175 if (block_group->start < cache->start) { 176 p = &(*p)->rb_left; 177 } else if (block_group->start > cache->start) { 178 p = &(*p)->rb_right; 179 } else { 180 spin_unlock(&info->block_group_cache_lock); 181 return -EEXIST; 182 } 183 } 184 185 rb_link_node(&block_group->cache_node, parent, p); 186 rb_insert_color(&block_group->cache_node, 187 &info->block_group_cache_tree); 188 189 if (info->first_logical_byte > block_group->start) 190 info->first_logical_byte = block_group->start; 191 192 spin_unlock(&info->block_group_cache_lock); 193 194 return 0; 195} 196 197/* 198 * This will return the block group at or after bytenr if contains is 0, else 199 * it will return the block group that contains the bytenr 200 */ 201static struct btrfs_block_group *block_group_cache_tree_search( 202 struct btrfs_fs_info *info, u64 bytenr, int contains) 203{ 204 struct btrfs_block_group *cache, *ret = NULL; 205 struct rb_node *n; 206 u64 end, start; 207 208 spin_lock(&info->block_group_cache_lock); 209 n = info->block_group_cache_tree.rb_node; 210 211 while (n) { 212 cache = rb_entry(n, struct btrfs_block_group, cache_node); 213 end = cache->start + cache->length - 1; 214 start = cache->start; 215 216 if (bytenr < start) { 217 if (!contains && (!ret || start < ret->start)) 218 ret = cache; 219 n = n->rb_left; 220 } else if (bytenr > start) { 221 if (contains && bytenr <= end) { 222 ret = cache; 223 break; 224 } 225 n = n->rb_right; 226 } else { 227 ret = cache; 228 break; 229 } 230 } 231 if (ret) { 232 btrfs_get_block_group(ret); 233 if (bytenr == 0 && info->first_logical_byte > ret->start) 234 info->first_logical_byte = ret->start; 235 } 236 spin_unlock(&info->block_group_cache_lock); 237 238 return ret; 239} 240 241/* 242 * Return the block group that starts at or after bytenr 243 */ 244struct btrfs_block_group *btrfs_lookup_first_block_group( 245 struct btrfs_fs_info *info, u64 bytenr) 246{ 247 return block_group_cache_tree_search(info, bytenr, 0); 248} 249 250/* 251 * Return the block group that contains the given bytenr 252 */ 253struct btrfs_block_group *btrfs_lookup_block_group( 254 struct btrfs_fs_info *info, u64 bytenr) 255{ 256 return block_group_cache_tree_search(info, bytenr, 1); 257} 258 259struct btrfs_block_group *btrfs_next_block_group( 260 struct btrfs_block_group *cache) 261{ 262 struct btrfs_fs_info *fs_info = cache->fs_info; 263 struct rb_node *node; 264 265 spin_lock(&fs_info->block_group_cache_lock); 266 267 /* If our block group was removed, we need a full search. */ 268 if (RB_EMPTY_NODE(&cache->cache_node)) { 269 const u64 next_bytenr = cache->start + cache->length; 270 271 spin_unlock(&fs_info->block_group_cache_lock); 272 btrfs_put_block_group(cache); 273 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 274 } 275 node = rb_next(&cache->cache_node); 276 btrfs_put_block_group(cache); 277 if (node) { 278 cache = rb_entry(node, struct btrfs_block_group, cache_node); 279 btrfs_get_block_group(cache); 280 } else 281 cache = NULL; 282 spin_unlock(&fs_info->block_group_cache_lock); 283 return cache; 284} 285 286bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 287{ 288 struct btrfs_block_group *bg; 289 bool ret = true; 290 291 bg = btrfs_lookup_block_group(fs_info, bytenr); 292 if (!bg) 293 return false; 294 295 spin_lock(&bg->lock); 296 if (bg->ro) 297 ret = false; 298 else 299 atomic_inc(&bg->nocow_writers); 300 spin_unlock(&bg->lock); 301 302 /* No put on block group, done by btrfs_dec_nocow_writers */ 303 if (!ret) 304 btrfs_put_block_group(bg); 305 306 return ret; 307} 308 309void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 310{ 311 struct btrfs_block_group *bg; 312 313 bg = btrfs_lookup_block_group(fs_info, bytenr); 314 ASSERT(bg); 315 if (atomic_dec_and_test(&bg->nocow_writers)) 316 wake_up_var(&bg->nocow_writers); 317 /* 318 * Once for our lookup and once for the lookup done by a previous call 319 * to btrfs_inc_nocow_writers() 320 */ 321 btrfs_put_block_group(bg); 322 btrfs_put_block_group(bg); 323} 324 325void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 326{ 327 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 328} 329 330void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 331 const u64 start) 332{ 333 struct btrfs_block_group *bg; 334 335 bg = btrfs_lookup_block_group(fs_info, start); 336 ASSERT(bg); 337 if (atomic_dec_and_test(&bg->reservations)) 338 wake_up_var(&bg->reservations); 339 btrfs_put_block_group(bg); 340} 341 342void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 343{ 344 struct btrfs_space_info *space_info = bg->space_info; 345 346 ASSERT(bg->ro); 347 348 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 349 return; 350 351 /* 352 * Our block group is read only but before we set it to read only, 353 * some task might have had allocated an extent from it already, but it 354 * has not yet created a respective ordered extent (and added it to a 355 * root's list of ordered extents). 356 * Therefore wait for any task currently allocating extents, since the 357 * block group's reservations counter is incremented while a read lock 358 * on the groups' semaphore is held and decremented after releasing 359 * the read access on that semaphore and creating the ordered extent. 360 */ 361 down_write(&space_info->groups_sem); 362 up_write(&space_info->groups_sem); 363 364 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 365} 366 367struct btrfs_caching_control *btrfs_get_caching_control( 368 struct btrfs_block_group *cache) 369{ 370 struct btrfs_caching_control *ctl; 371 372 spin_lock(&cache->lock); 373 if (!cache->caching_ctl) { 374 spin_unlock(&cache->lock); 375 return NULL; 376 } 377 378 ctl = cache->caching_ctl; 379 refcount_inc(&ctl->count); 380 spin_unlock(&cache->lock); 381 return ctl; 382} 383 384void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 385{ 386 if (refcount_dec_and_test(&ctl->count)) 387 kfree(ctl); 388} 389 390/* 391 * When we wait for progress in the block group caching, its because our 392 * allocation attempt failed at least once. So, we must sleep and let some 393 * progress happen before we try again. 394 * 395 * This function will sleep at least once waiting for new free space to show 396 * up, and then it will check the block group free space numbers for our min 397 * num_bytes. Another option is to have it go ahead and look in the rbtree for 398 * a free extent of a given size, but this is a good start. 399 * 400 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 401 * any of the information in this block group. 402 */ 403void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 404 u64 num_bytes) 405{ 406 struct btrfs_caching_control *caching_ctl; 407 408 caching_ctl = btrfs_get_caching_control(cache); 409 if (!caching_ctl) 410 return; 411 412 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 413 (cache->free_space_ctl->free_space >= num_bytes)); 414 415 btrfs_put_caching_control(caching_ctl); 416} 417 418int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 419{ 420 struct btrfs_caching_control *caching_ctl; 421 int ret = 0; 422 423 caching_ctl = btrfs_get_caching_control(cache); 424 if (!caching_ctl) 425 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 426 427 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 428 if (cache->cached == BTRFS_CACHE_ERROR) 429 ret = -EIO; 430 btrfs_put_caching_control(caching_ctl); 431 return ret; 432} 433 434#ifdef CONFIG_BTRFS_DEBUG 435static void fragment_free_space(struct btrfs_block_group *block_group) 436{ 437 struct btrfs_fs_info *fs_info = block_group->fs_info; 438 u64 start = block_group->start; 439 u64 len = block_group->length; 440 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 441 fs_info->nodesize : fs_info->sectorsize; 442 u64 step = chunk << 1; 443 444 while (len > chunk) { 445 btrfs_remove_free_space(block_group, start, chunk); 446 start += step; 447 if (len < step) 448 len = 0; 449 else 450 len -= step; 451 } 452} 453#endif 454 455/* 456 * This is only called by btrfs_cache_block_group, since we could have freed 457 * extents we need to check the pinned_extents for any extents that can't be 458 * used yet since their free space will be released as soon as the transaction 459 * commits. 460 */ 461u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 462{ 463 struct btrfs_fs_info *info = block_group->fs_info; 464 u64 extent_start, extent_end, size, total_added = 0; 465 int ret; 466 467 while (start < end) { 468 ret = find_first_extent_bit(&info->excluded_extents, start, 469 &extent_start, &extent_end, 470 EXTENT_DIRTY | EXTENT_UPTODATE, 471 NULL); 472 if (ret) 473 break; 474 475 if (extent_start <= start) { 476 start = extent_end + 1; 477 } else if (extent_start > start && extent_start < end) { 478 size = extent_start - start; 479 total_added += size; 480 ret = btrfs_add_free_space_async_trimmed(block_group, 481 start, size); 482 BUG_ON(ret); /* -ENOMEM or logic error */ 483 start = extent_end + 1; 484 } else { 485 break; 486 } 487 } 488 489 if (start < end) { 490 size = end - start; 491 total_added += size; 492 ret = btrfs_add_free_space_async_trimmed(block_group, start, 493 size); 494 BUG_ON(ret); /* -ENOMEM or logic error */ 495 } 496 497 return total_added; 498} 499 500static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 501{ 502 struct btrfs_block_group *block_group = caching_ctl->block_group; 503 struct btrfs_fs_info *fs_info = block_group->fs_info; 504 struct btrfs_root *extent_root = fs_info->extent_root; 505 struct btrfs_path *path; 506 struct extent_buffer *leaf; 507 struct btrfs_key key; 508 u64 total_found = 0; 509 u64 last = 0; 510 u32 nritems; 511 int ret; 512 bool wakeup = true; 513 514 path = btrfs_alloc_path(); 515 if (!path) 516 return -ENOMEM; 517 518 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 519 520#ifdef CONFIG_BTRFS_DEBUG 521 /* 522 * If we're fragmenting we don't want to make anybody think we can 523 * allocate from this block group until we've had a chance to fragment 524 * the free space. 525 */ 526 if (btrfs_should_fragment_free_space(block_group)) 527 wakeup = false; 528#endif 529 /* 530 * We don't want to deadlock with somebody trying to allocate a new 531 * extent for the extent root while also trying to search the extent 532 * root to add free space. So we skip locking and search the commit 533 * root, since its read-only 534 */ 535 path->skip_locking = 1; 536 path->search_commit_root = 1; 537 path->reada = READA_FORWARD; 538 539 key.objectid = last; 540 key.offset = 0; 541 key.type = BTRFS_EXTENT_ITEM_KEY; 542 543next: 544 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 545 if (ret < 0) 546 goto out; 547 548 leaf = path->nodes[0]; 549 nritems = btrfs_header_nritems(leaf); 550 551 while (1) { 552 if (btrfs_fs_closing(fs_info) > 1) { 553 last = (u64)-1; 554 break; 555 } 556 557 if (path->slots[0] < nritems) { 558 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 559 } else { 560 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 561 if (ret) 562 break; 563 564 if (need_resched() || 565 rwsem_is_contended(&fs_info->commit_root_sem)) { 566 if (wakeup) 567 caching_ctl->progress = last; 568 btrfs_release_path(path); 569 up_read(&fs_info->commit_root_sem); 570 mutex_unlock(&caching_ctl->mutex); 571 cond_resched(); 572 mutex_lock(&caching_ctl->mutex); 573 down_read(&fs_info->commit_root_sem); 574 goto next; 575 } 576 577 ret = btrfs_next_leaf(extent_root, path); 578 if (ret < 0) 579 goto out; 580 if (ret) 581 break; 582 leaf = path->nodes[0]; 583 nritems = btrfs_header_nritems(leaf); 584 continue; 585 } 586 587 if (key.objectid < last) { 588 key.objectid = last; 589 key.offset = 0; 590 key.type = BTRFS_EXTENT_ITEM_KEY; 591 592 if (wakeup) 593 caching_ctl->progress = last; 594 btrfs_release_path(path); 595 goto next; 596 } 597 598 if (key.objectid < block_group->start) { 599 path->slots[0]++; 600 continue; 601 } 602 603 if (key.objectid >= block_group->start + block_group->length) 604 break; 605 606 if (key.type == BTRFS_EXTENT_ITEM_KEY || 607 key.type == BTRFS_METADATA_ITEM_KEY) { 608 total_found += add_new_free_space(block_group, last, 609 key.objectid); 610 if (key.type == BTRFS_METADATA_ITEM_KEY) 611 last = key.objectid + 612 fs_info->nodesize; 613 else 614 last = key.objectid + key.offset; 615 616 if (total_found > CACHING_CTL_WAKE_UP) { 617 total_found = 0; 618 if (wakeup) 619 wake_up(&caching_ctl->wait); 620 } 621 } 622 path->slots[0]++; 623 } 624 ret = 0; 625 626 total_found += add_new_free_space(block_group, last, 627 block_group->start + block_group->length); 628 caching_ctl->progress = (u64)-1; 629 630out: 631 btrfs_free_path(path); 632 return ret; 633} 634 635static noinline void caching_thread(struct btrfs_work *work) 636{ 637 struct btrfs_block_group *block_group; 638 struct btrfs_fs_info *fs_info; 639 struct btrfs_caching_control *caching_ctl; 640 int ret; 641 642 caching_ctl = container_of(work, struct btrfs_caching_control, work); 643 block_group = caching_ctl->block_group; 644 fs_info = block_group->fs_info; 645 646 mutex_lock(&caching_ctl->mutex); 647 down_read(&fs_info->commit_root_sem); 648 649 /* 650 * If we are in the transaction that populated the free space tree we 651 * can't actually cache from the free space tree as our commit root and 652 * real root are the same, so we could change the contents of the blocks 653 * while caching. Instead do the slow caching in this case, and after 654 * the transaction has committed we will be safe. 655 */ 656 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 657 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 658 ret = load_free_space_tree(caching_ctl); 659 else 660 ret = load_extent_tree_free(caching_ctl); 661 662 spin_lock(&block_group->lock); 663 block_group->caching_ctl = NULL; 664 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 665 spin_unlock(&block_group->lock); 666 667#ifdef CONFIG_BTRFS_DEBUG 668 if (btrfs_should_fragment_free_space(block_group)) { 669 u64 bytes_used; 670 671 spin_lock(&block_group->space_info->lock); 672 spin_lock(&block_group->lock); 673 bytes_used = block_group->length - block_group->used; 674 block_group->space_info->bytes_used += bytes_used >> 1; 675 spin_unlock(&block_group->lock); 676 spin_unlock(&block_group->space_info->lock); 677 fragment_free_space(block_group); 678 } 679#endif 680 681 caching_ctl->progress = (u64)-1; 682 683 up_read(&fs_info->commit_root_sem); 684 btrfs_free_excluded_extents(block_group); 685 mutex_unlock(&caching_ctl->mutex); 686 687 wake_up(&caching_ctl->wait); 688 689 btrfs_put_caching_control(caching_ctl); 690 btrfs_put_block_group(block_group); 691} 692 693int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only) 694{ 695 DEFINE_WAIT(wait); 696 struct btrfs_fs_info *fs_info = cache->fs_info; 697 struct btrfs_caching_control *caching_ctl; 698 int ret = 0; 699 700 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 701 if (!caching_ctl) 702 return -ENOMEM; 703 704 INIT_LIST_HEAD(&caching_ctl->list); 705 mutex_init(&caching_ctl->mutex); 706 init_waitqueue_head(&caching_ctl->wait); 707 caching_ctl->block_group = cache; 708 caching_ctl->progress = cache->start; 709 refcount_set(&caching_ctl->count, 1); 710 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 711 712 spin_lock(&cache->lock); 713 /* 714 * This should be a rare occasion, but this could happen I think in the 715 * case where one thread starts to load the space cache info, and then 716 * some other thread starts a transaction commit which tries to do an 717 * allocation while the other thread is still loading the space cache 718 * info. The previous loop should have kept us from choosing this block 719 * group, but if we've moved to the state where we will wait on caching 720 * block groups we need to first check if we're doing a fast load here, 721 * so we can wait for it to finish, otherwise we could end up allocating 722 * from a block group who's cache gets evicted for one reason or 723 * another. 724 */ 725 while (cache->cached == BTRFS_CACHE_FAST) { 726 struct btrfs_caching_control *ctl; 727 728 ctl = cache->caching_ctl; 729 refcount_inc(&ctl->count); 730 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 731 spin_unlock(&cache->lock); 732 733 schedule(); 734 735 finish_wait(&ctl->wait, &wait); 736 btrfs_put_caching_control(ctl); 737 spin_lock(&cache->lock); 738 } 739 740 if (cache->cached != BTRFS_CACHE_NO) { 741 spin_unlock(&cache->lock); 742 kfree(caching_ctl); 743 return 0; 744 } 745 WARN_ON(cache->caching_ctl); 746 cache->caching_ctl = caching_ctl; 747 cache->cached = BTRFS_CACHE_FAST; 748 spin_unlock(&cache->lock); 749 750 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 751 mutex_lock(&caching_ctl->mutex); 752 ret = load_free_space_cache(cache); 753 754 spin_lock(&cache->lock); 755 if (ret == 1) { 756 cache->caching_ctl = NULL; 757 cache->cached = BTRFS_CACHE_FINISHED; 758 cache->last_byte_to_unpin = (u64)-1; 759 caching_ctl->progress = (u64)-1; 760 } else { 761 if (load_cache_only) { 762 cache->caching_ctl = NULL; 763 cache->cached = BTRFS_CACHE_NO; 764 } else { 765 cache->cached = BTRFS_CACHE_STARTED; 766 cache->has_caching_ctl = 1; 767 } 768 } 769 spin_unlock(&cache->lock); 770#ifdef CONFIG_BTRFS_DEBUG 771 if (ret == 1 && 772 btrfs_should_fragment_free_space(cache)) { 773 u64 bytes_used; 774 775 spin_lock(&cache->space_info->lock); 776 spin_lock(&cache->lock); 777 bytes_used = cache->length - cache->used; 778 cache->space_info->bytes_used += bytes_used >> 1; 779 spin_unlock(&cache->lock); 780 spin_unlock(&cache->space_info->lock); 781 fragment_free_space(cache); 782 } 783#endif 784 mutex_unlock(&caching_ctl->mutex); 785 786 wake_up(&caching_ctl->wait); 787 if (ret == 1) { 788 btrfs_put_caching_control(caching_ctl); 789 btrfs_free_excluded_extents(cache); 790 return 0; 791 } 792 } else { 793 /* 794 * We're either using the free space tree or no caching at all. 795 * Set cached to the appropriate value and wakeup any waiters. 796 */ 797 spin_lock(&cache->lock); 798 if (load_cache_only) { 799 cache->caching_ctl = NULL; 800 cache->cached = BTRFS_CACHE_NO; 801 } else { 802 cache->cached = BTRFS_CACHE_STARTED; 803 cache->has_caching_ctl = 1; 804 } 805 spin_unlock(&cache->lock); 806 wake_up(&caching_ctl->wait); 807 } 808 809 if (load_cache_only) { 810 btrfs_put_caching_control(caching_ctl); 811 return 0; 812 } 813 814 down_write(&fs_info->commit_root_sem); 815 refcount_inc(&caching_ctl->count); 816 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 817 up_write(&fs_info->commit_root_sem); 818 819 btrfs_get_block_group(cache); 820 821 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 822 823 return ret; 824} 825 826static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 827{ 828 u64 extra_flags = chunk_to_extended(flags) & 829 BTRFS_EXTENDED_PROFILE_MASK; 830 831 write_seqlock(&fs_info->profiles_lock); 832 if (flags & BTRFS_BLOCK_GROUP_DATA) 833 fs_info->avail_data_alloc_bits &= ~extra_flags; 834 if (flags & BTRFS_BLOCK_GROUP_METADATA) 835 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 836 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 837 fs_info->avail_system_alloc_bits &= ~extra_flags; 838 write_sequnlock(&fs_info->profiles_lock); 839} 840 841/* 842 * Clear incompat bits for the following feature(s): 843 * 844 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 845 * in the whole filesystem 846 * 847 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 848 */ 849static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 850{ 851 bool found_raid56 = false; 852 bool found_raid1c34 = false; 853 854 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 855 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 856 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 857 struct list_head *head = &fs_info->space_info; 858 struct btrfs_space_info *sinfo; 859 860 list_for_each_entry_rcu(sinfo, head, list) { 861 down_read(&sinfo->groups_sem); 862 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 863 found_raid56 = true; 864 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 865 found_raid56 = true; 866 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 867 found_raid1c34 = true; 868 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 869 found_raid1c34 = true; 870 up_read(&sinfo->groups_sem); 871 } 872 if (!found_raid56) 873 btrfs_clear_fs_incompat(fs_info, RAID56); 874 if (!found_raid1c34) 875 btrfs_clear_fs_incompat(fs_info, RAID1C34); 876 } 877} 878 879static int remove_block_group_item(struct btrfs_trans_handle *trans, 880 struct btrfs_path *path, 881 struct btrfs_block_group *block_group) 882{ 883 struct btrfs_fs_info *fs_info = trans->fs_info; 884 struct btrfs_root *root; 885 struct btrfs_key key; 886 int ret; 887 888 root = fs_info->extent_root; 889 key.objectid = block_group->start; 890 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 891 key.offset = block_group->length; 892 893 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 894 if (ret > 0) 895 ret = -ENOENT; 896 if (ret < 0) 897 return ret; 898 899 ret = btrfs_del_item(trans, root, path); 900 return ret; 901} 902 903int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 904 u64 group_start, struct extent_map *em) 905{ 906 struct btrfs_fs_info *fs_info = trans->fs_info; 907 struct btrfs_path *path; 908 struct btrfs_block_group *block_group; 909 struct btrfs_free_cluster *cluster; 910 struct btrfs_root *tree_root = fs_info->tree_root; 911 struct btrfs_key key; 912 struct inode *inode; 913 struct kobject *kobj = NULL; 914 int ret; 915 int index; 916 int factor; 917 struct btrfs_caching_control *caching_ctl = NULL; 918 bool remove_em; 919 bool remove_rsv = false; 920 921 block_group = btrfs_lookup_block_group(fs_info, group_start); 922 BUG_ON(!block_group); 923 BUG_ON(!block_group->ro); 924 925 trace_btrfs_remove_block_group(block_group); 926 /* 927 * Free the reserved super bytes from this block group before 928 * remove it. 929 */ 930 btrfs_free_excluded_extents(block_group); 931 btrfs_free_ref_tree_range(fs_info, block_group->start, 932 block_group->length); 933 934 index = btrfs_bg_flags_to_raid_index(block_group->flags); 935 factor = btrfs_bg_type_to_factor(block_group->flags); 936 937 /* make sure this block group isn't part of an allocation cluster */ 938 cluster = &fs_info->data_alloc_cluster; 939 spin_lock(&cluster->refill_lock); 940 btrfs_return_cluster_to_free_space(block_group, cluster); 941 spin_unlock(&cluster->refill_lock); 942 943 /* 944 * make sure this block group isn't part of a metadata 945 * allocation cluster 946 */ 947 cluster = &fs_info->meta_alloc_cluster; 948 spin_lock(&cluster->refill_lock); 949 btrfs_return_cluster_to_free_space(block_group, cluster); 950 spin_unlock(&cluster->refill_lock); 951 952 path = btrfs_alloc_path(); 953 if (!path) { 954 ret = -ENOMEM; 955 goto out; 956 } 957 958 /* 959 * get the inode first so any iput calls done for the io_list 960 * aren't the final iput (no unlinks allowed now) 961 */ 962 inode = lookup_free_space_inode(block_group, path); 963 964 mutex_lock(&trans->transaction->cache_write_mutex); 965 /* 966 * Make sure our free space cache IO is done before removing the 967 * free space inode 968 */ 969 spin_lock(&trans->transaction->dirty_bgs_lock); 970 if (!list_empty(&block_group->io_list)) { 971 list_del_init(&block_group->io_list); 972 973 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 974 975 spin_unlock(&trans->transaction->dirty_bgs_lock); 976 btrfs_wait_cache_io(trans, block_group, path); 977 btrfs_put_block_group(block_group); 978 spin_lock(&trans->transaction->dirty_bgs_lock); 979 } 980 981 if (!list_empty(&block_group->dirty_list)) { 982 list_del_init(&block_group->dirty_list); 983 remove_rsv = true; 984 btrfs_put_block_group(block_group); 985 } 986 spin_unlock(&trans->transaction->dirty_bgs_lock); 987 mutex_unlock(&trans->transaction->cache_write_mutex); 988 989 if (!IS_ERR(inode)) { 990 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 991 if (ret) { 992 btrfs_add_delayed_iput(inode); 993 goto out; 994 } 995 clear_nlink(inode); 996 /* One for the block groups ref */ 997 spin_lock(&block_group->lock); 998 if (block_group->iref) { 999 block_group->iref = 0; 1000 block_group->inode = NULL; 1001 spin_unlock(&block_group->lock); 1002 iput(inode); 1003 } else { 1004 spin_unlock(&block_group->lock); 1005 } 1006 /* One for our lookup ref */ 1007 btrfs_add_delayed_iput(inode); 1008 } 1009 1010 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 1011 key.type = 0; 1012 key.offset = block_group->start; 1013 1014 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 1015 if (ret < 0) 1016 goto out; 1017 if (ret > 0) 1018 btrfs_release_path(path); 1019 if (ret == 0) { 1020 ret = btrfs_del_item(trans, tree_root, path); 1021 if (ret) 1022 goto out; 1023 btrfs_release_path(path); 1024 } 1025 1026 spin_lock(&fs_info->block_group_cache_lock); 1027 rb_erase(&block_group->cache_node, 1028 &fs_info->block_group_cache_tree); 1029 RB_CLEAR_NODE(&block_group->cache_node); 1030 1031 /* Once for the block groups rbtree */ 1032 btrfs_put_block_group(block_group); 1033 1034 if (fs_info->first_logical_byte == block_group->start) 1035 fs_info->first_logical_byte = (u64)-1; 1036 spin_unlock(&fs_info->block_group_cache_lock); 1037 1038 down_write(&block_group->space_info->groups_sem); 1039 /* 1040 * we must use list_del_init so people can check to see if they 1041 * are still on the list after taking the semaphore 1042 */ 1043 list_del_init(&block_group->list); 1044 if (list_empty(&block_group->space_info->block_groups[index])) { 1045 kobj = block_group->space_info->block_group_kobjs[index]; 1046 block_group->space_info->block_group_kobjs[index] = NULL; 1047 clear_avail_alloc_bits(fs_info, block_group->flags); 1048 } 1049 up_write(&block_group->space_info->groups_sem); 1050 clear_incompat_bg_bits(fs_info, block_group->flags); 1051 if (kobj) { 1052 kobject_del(kobj); 1053 kobject_put(kobj); 1054 } 1055 1056 if (block_group->has_caching_ctl) 1057 caching_ctl = btrfs_get_caching_control(block_group); 1058 if (block_group->cached == BTRFS_CACHE_STARTED) 1059 btrfs_wait_block_group_cache_done(block_group); 1060 if (block_group->has_caching_ctl) { 1061 down_write(&fs_info->commit_root_sem); 1062 if (!caching_ctl) { 1063 struct btrfs_caching_control *ctl; 1064 1065 list_for_each_entry(ctl, 1066 &fs_info->caching_block_groups, list) 1067 if (ctl->block_group == block_group) { 1068 caching_ctl = ctl; 1069 refcount_inc(&caching_ctl->count); 1070 break; 1071 } 1072 } 1073 if (caching_ctl) 1074 list_del_init(&caching_ctl->list); 1075 up_write(&fs_info->commit_root_sem); 1076 if (caching_ctl) { 1077 /* Once for the caching bgs list and once for us. */ 1078 btrfs_put_caching_control(caching_ctl); 1079 btrfs_put_caching_control(caching_ctl); 1080 } 1081 } 1082 1083 spin_lock(&trans->transaction->dirty_bgs_lock); 1084 WARN_ON(!list_empty(&block_group->dirty_list)); 1085 WARN_ON(!list_empty(&block_group->io_list)); 1086 spin_unlock(&trans->transaction->dirty_bgs_lock); 1087 1088 btrfs_remove_free_space_cache(block_group); 1089 1090 spin_lock(&block_group->space_info->lock); 1091 list_del_init(&block_group->ro_list); 1092 1093 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1094 WARN_ON(block_group->space_info->total_bytes 1095 < block_group->length); 1096 WARN_ON(block_group->space_info->bytes_readonly 1097 < block_group->length); 1098 WARN_ON(block_group->space_info->disk_total 1099 < block_group->length * factor); 1100 } 1101 block_group->space_info->total_bytes -= block_group->length; 1102 block_group->space_info->bytes_readonly -= block_group->length; 1103 block_group->space_info->disk_total -= block_group->length * factor; 1104 1105 spin_unlock(&block_group->space_info->lock); 1106 1107 /* 1108 * Remove the free space for the block group from the free space tree 1109 * and the block group's item from the extent tree before marking the 1110 * block group as removed. This is to prevent races with tasks that 1111 * freeze and unfreeze a block group, this task and another task 1112 * allocating a new block group - the unfreeze task ends up removing 1113 * the block group's extent map before the task calling this function 1114 * deletes the block group item from the extent tree, allowing for 1115 * another task to attempt to create another block group with the same 1116 * item key (and failing with -EEXIST and a transaction abort). 1117 */ 1118 ret = remove_block_group_free_space(trans, block_group); 1119 if (ret) 1120 goto out; 1121 1122 ret = remove_block_group_item(trans, path, block_group); 1123 if (ret < 0) 1124 goto out; 1125 1126 spin_lock(&block_group->lock); 1127 block_group->removed = 1; 1128 /* 1129 * At this point trimming or scrub can't start on this block group, 1130 * because we removed the block group from the rbtree 1131 * fs_info->block_group_cache_tree so no one can't find it anymore and 1132 * even if someone already got this block group before we removed it 1133 * from the rbtree, they have already incremented block_group->frozen - 1134 * if they didn't, for the trimming case they won't find any free space 1135 * entries because we already removed them all when we called 1136 * btrfs_remove_free_space_cache(). 1137 * 1138 * And we must not remove the extent map from the fs_info->mapping_tree 1139 * to prevent the same logical address range and physical device space 1140 * ranges from being reused for a new block group. This is needed to 1141 * avoid races with trimming and scrub. 1142 * 1143 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1144 * completely transactionless, so while it is trimming a range the 1145 * currently running transaction might finish and a new one start, 1146 * allowing for new block groups to be created that can reuse the same 1147 * physical device locations unless we take this special care. 1148 * 1149 * There may also be an implicit trim operation if the file system 1150 * is mounted with -odiscard. The same protections must remain 1151 * in place until the extents have been discarded completely when 1152 * the transaction commit has completed. 1153 */ 1154 remove_em = (atomic_read(&block_group->frozen) == 0); 1155 spin_unlock(&block_group->lock); 1156 1157 if (remove_em) { 1158 struct extent_map_tree *em_tree; 1159 1160 em_tree = &fs_info->mapping_tree; 1161 write_lock(&em_tree->lock); 1162 remove_extent_mapping(em_tree, em); 1163 write_unlock(&em_tree->lock); 1164 /* once for the tree */ 1165 free_extent_map(em); 1166 } 1167 1168out: 1169 /* Once for the lookup reference */ 1170 btrfs_put_block_group(block_group); 1171 if (remove_rsv) 1172 btrfs_delayed_refs_rsv_release(fs_info, 1); 1173 btrfs_free_path(path); 1174 return ret; 1175} 1176 1177struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1178 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1179{ 1180 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1181 struct extent_map *em; 1182 struct map_lookup *map; 1183 unsigned int num_items; 1184 1185 read_lock(&em_tree->lock); 1186 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1187 read_unlock(&em_tree->lock); 1188 ASSERT(em && em->start == chunk_offset); 1189 1190 /* 1191 * We need to reserve 3 + N units from the metadata space info in order 1192 * to remove a block group (done at btrfs_remove_chunk() and at 1193 * btrfs_remove_block_group()), which are used for: 1194 * 1195 * 1 unit for adding the free space inode's orphan (located in the tree 1196 * of tree roots). 1197 * 1 unit for deleting the block group item (located in the extent 1198 * tree). 1199 * 1 unit for deleting the free space item (located in tree of tree 1200 * roots). 1201 * N units for deleting N device extent items corresponding to each 1202 * stripe (located in the device tree). 1203 * 1204 * In order to remove a block group we also need to reserve units in the 1205 * system space info in order to update the chunk tree (update one or 1206 * more device items and remove one chunk item), but this is done at 1207 * btrfs_remove_chunk() through a call to check_system_chunk(). 1208 */ 1209 map = em->map_lookup; 1210 num_items = 3 + map->num_stripes; 1211 free_extent_map(em); 1212 1213 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 1214 num_items); 1215} 1216 1217/* 1218 * Mark block group @cache read-only, so later write won't happen to block 1219 * group @cache. 1220 * 1221 * If @force is not set, this function will only mark the block group readonly 1222 * if we have enough free space (1M) in other metadata/system block groups. 1223 * If @force is not set, this function will mark the block group readonly 1224 * without checking free space. 1225 * 1226 * NOTE: This function doesn't care if other block groups can contain all the 1227 * data in this block group. That check should be done by relocation routine, 1228 * not this function. 1229 */ 1230static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1231{ 1232 struct btrfs_space_info *sinfo = cache->space_info; 1233 u64 num_bytes; 1234 int ret = -ENOSPC; 1235 1236 spin_lock(&sinfo->lock); 1237 spin_lock(&cache->lock); 1238 1239 if (cache->swap_extents) { 1240 ret = -ETXTBSY; 1241 goto out; 1242 } 1243 1244 if (cache->ro) { 1245 cache->ro++; 1246 ret = 0; 1247 goto out; 1248 } 1249 1250 num_bytes = cache->length - cache->reserved - cache->pinned - 1251 cache->bytes_super - cache->used; 1252 1253 /* 1254 * Data never overcommits, even in mixed mode, so do just the straight 1255 * check of left over space in how much we have allocated. 1256 */ 1257 if (force) { 1258 ret = 0; 1259 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1260 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1261 1262 /* 1263 * Here we make sure if we mark this bg RO, we still have enough 1264 * free space as buffer. 1265 */ 1266 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1267 ret = 0; 1268 } else { 1269 /* 1270 * We overcommit metadata, so we need to do the 1271 * btrfs_can_overcommit check here, and we need to pass in 1272 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1273 * leeway to allow us to mark this block group as read only. 1274 */ 1275 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1276 BTRFS_RESERVE_NO_FLUSH)) 1277 ret = 0; 1278 } 1279 1280 if (!ret) { 1281 sinfo->bytes_readonly += num_bytes; 1282 cache->ro++; 1283 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1284 } 1285out: 1286 spin_unlock(&cache->lock); 1287 spin_unlock(&sinfo->lock); 1288 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1289 btrfs_info(cache->fs_info, 1290 "unable to make block group %llu ro", cache->start); 1291 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1292 } 1293 return ret; 1294} 1295 1296static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1297 struct btrfs_block_group *bg) 1298{ 1299 struct btrfs_fs_info *fs_info = bg->fs_info; 1300 struct btrfs_transaction *prev_trans = NULL; 1301 const u64 start = bg->start; 1302 const u64 end = start + bg->length - 1; 1303 int ret; 1304 1305 spin_lock(&fs_info->trans_lock); 1306 if (trans->transaction->list.prev != &fs_info->trans_list) { 1307 prev_trans = list_last_entry(&trans->transaction->list, 1308 struct btrfs_transaction, list); 1309 refcount_inc(&prev_trans->use_count); 1310 } 1311 spin_unlock(&fs_info->trans_lock); 1312 1313 /* 1314 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1315 * btrfs_finish_extent_commit(). If we are at transaction N, another 1316 * task might be running finish_extent_commit() for the previous 1317 * transaction N - 1, and have seen a range belonging to the block 1318 * group in pinned_extents before we were able to clear the whole block 1319 * group range from pinned_extents. This means that task can lookup for 1320 * the block group after we unpinned it from pinned_extents and removed 1321 * it, leading to a BUG_ON() at unpin_extent_range(). 1322 */ 1323 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1324 if (prev_trans) { 1325 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1326 EXTENT_DIRTY); 1327 if (ret) 1328 goto out; 1329 } 1330 1331 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1332 EXTENT_DIRTY); 1333out: 1334 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1335 if (prev_trans) 1336 btrfs_put_transaction(prev_trans); 1337 1338 return ret == 0; 1339} 1340 1341/* 1342 * Process the unused_bgs list and remove any that don't have any allocated 1343 * space inside of them. 1344 */ 1345void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1346{ 1347 struct btrfs_block_group *block_group; 1348 struct btrfs_space_info *space_info; 1349 struct btrfs_trans_handle *trans; 1350 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1351 int ret = 0; 1352 1353 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1354 return; 1355 1356 spin_lock(&fs_info->unused_bgs_lock); 1357 while (!list_empty(&fs_info->unused_bgs)) { 1358 int trimming; 1359 1360 block_group = list_first_entry(&fs_info->unused_bgs, 1361 struct btrfs_block_group, 1362 bg_list); 1363 list_del_init(&block_group->bg_list); 1364 1365 space_info = block_group->space_info; 1366 1367 if (ret || btrfs_mixed_space_info(space_info)) { 1368 btrfs_put_block_group(block_group); 1369 continue; 1370 } 1371 spin_unlock(&fs_info->unused_bgs_lock); 1372 1373 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1374 1375 mutex_lock(&fs_info->delete_unused_bgs_mutex); 1376 1377 /* Don't want to race with allocators so take the groups_sem */ 1378 down_write(&space_info->groups_sem); 1379 1380 /* 1381 * Async discard moves the final block group discard to be prior 1382 * to the unused_bgs code path. Therefore, if it's not fully 1383 * trimmed, punt it back to the async discard lists. 1384 */ 1385 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1386 !btrfs_is_free_space_trimmed(block_group)) { 1387 trace_btrfs_skip_unused_block_group(block_group); 1388 up_write(&space_info->groups_sem); 1389 /* Requeue if we failed because of async discard */ 1390 btrfs_discard_queue_work(&fs_info->discard_ctl, 1391 block_group); 1392 goto next; 1393 } 1394 1395 spin_lock(&block_group->lock); 1396 if (block_group->reserved || block_group->pinned || 1397 block_group->used || block_group->ro || 1398 list_is_singular(&block_group->list)) { 1399 /* 1400 * We want to bail if we made new allocations or have 1401 * outstanding allocations in this block group. We do 1402 * the ro check in case balance is currently acting on 1403 * this block group. 1404 */ 1405 trace_btrfs_skip_unused_block_group(block_group); 1406 spin_unlock(&block_group->lock); 1407 up_write(&space_info->groups_sem); 1408 goto next; 1409 } 1410 spin_unlock(&block_group->lock); 1411 1412 /* We don't want to force the issue, only flip if it's ok. */ 1413 ret = inc_block_group_ro(block_group, 0); 1414 up_write(&space_info->groups_sem); 1415 if (ret < 0) { 1416 ret = 0; 1417 goto next; 1418 } 1419 1420 /* 1421 * Want to do this before we do anything else so we can recover 1422 * properly if we fail to join the transaction. 1423 */ 1424 trans = btrfs_start_trans_remove_block_group(fs_info, 1425 block_group->start); 1426 if (IS_ERR(trans)) { 1427 btrfs_dec_block_group_ro(block_group); 1428 ret = PTR_ERR(trans); 1429 goto next; 1430 } 1431 1432 /* 1433 * We could have pending pinned extents for this block group, 1434 * just delete them, we don't care about them anymore. 1435 */ 1436 if (!clean_pinned_extents(trans, block_group)) { 1437 btrfs_dec_block_group_ro(block_group); 1438 goto end_trans; 1439 } 1440 1441 /* 1442 * At this point, the block_group is read only and should fail 1443 * new allocations. However, btrfs_finish_extent_commit() can 1444 * cause this block_group to be placed back on the discard 1445 * lists because now the block_group isn't fully discarded. 1446 * Bail here and try again later after discarding everything. 1447 */ 1448 spin_lock(&fs_info->discard_ctl.lock); 1449 if (!list_empty(&block_group->discard_list)) { 1450 spin_unlock(&fs_info->discard_ctl.lock); 1451 btrfs_dec_block_group_ro(block_group); 1452 btrfs_discard_queue_work(&fs_info->discard_ctl, 1453 block_group); 1454 goto end_trans; 1455 } 1456 spin_unlock(&fs_info->discard_ctl.lock); 1457 1458 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1459 spin_lock(&space_info->lock); 1460 spin_lock(&block_group->lock); 1461 1462 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1463 -block_group->pinned); 1464 space_info->bytes_readonly += block_group->pinned; 1465 __btrfs_mod_total_bytes_pinned(space_info, -block_group->pinned); 1466 block_group->pinned = 0; 1467 1468 spin_unlock(&block_group->lock); 1469 spin_unlock(&space_info->lock); 1470 1471 /* 1472 * The normal path here is an unused block group is passed here, 1473 * then trimming is handled in the transaction commit path. 1474 * Async discard interposes before this to do the trimming 1475 * before coming down the unused block group path as trimming 1476 * will no longer be done later in the transaction commit path. 1477 */ 1478 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1479 goto flip_async; 1480 1481 /* DISCARD can flip during remount */ 1482 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC); 1483 1484 /* Implicit trim during transaction commit. */ 1485 if (trimming) 1486 btrfs_freeze_block_group(block_group); 1487 1488 /* 1489 * Btrfs_remove_chunk will abort the transaction if things go 1490 * horribly wrong. 1491 */ 1492 ret = btrfs_remove_chunk(trans, block_group->start); 1493 1494 if (ret) { 1495 if (trimming) 1496 btrfs_unfreeze_block_group(block_group); 1497 goto end_trans; 1498 } 1499 1500 /* 1501 * If we're not mounted with -odiscard, we can just forget 1502 * about this block group. Otherwise we'll need to wait 1503 * until transaction commit to do the actual discard. 1504 */ 1505 if (trimming) { 1506 spin_lock(&fs_info->unused_bgs_lock); 1507 /* 1508 * A concurrent scrub might have added us to the list 1509 * fs_info->unused_bgs, so use a list_move operation 1510 * to add the block group to the deleted_bgs list. 1511 */ 1512 list_move(&block_group->bg_list, 1513 &trans->transaction->deleted_bgs); 1514 spin_unlock(&fs_info->unused_bgs_lock); 1515 btrfs_get_block_group(block_group); 1516 } 1517end_trans: 1518 btrfs_end_transaction(trans); 1519next: 1520 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 1521 btrfs_put_block_group(block_group); 1522 spin_lock(&fs_info->unused_bgs_lock); 1523 } 1524 spin_unlock(&fs_info->unused_bgs_lock); 1525 return; 1526 1527flip_async: 1528 btrfs_end_transaction(trans); 1529 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 1530 btrfs_put_block_group(block_group); 1531 btrfs_discard_punt_unused_bgs_list(fs_info); 1532} 1533 1534void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1535{ 1536 struct btrfs_fs_info *fs_info = bg->fs_info; 1537 1538 spin_lock(&fs_info->unused_bgs_lock); 1539 if (list_empty(&bg->bg_list)) { 1540 btrfs_get_block_group(bg); 1541 trace_btrfs_add_unused_block_group(bg); 1542 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1543 } 1544 spin_unlock(&fs_info->unused_bgs_lock); 1545} 1546 1547static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1548 struct btrfs_path *path) 1549{ 1550 struct extent_map_tree *em_tree; 1551 struct extent_map *em; 1552 struct btrfs_block_group_item bg; 1553 struct extent_buffer *leaf; 1554 int slot; 1555 u64 flags; 1556 int ret = 0; 1557 1558 slot = path->slots[0]; 1559 leaf = path->nodes[0]; 1560 1561 em_tree = &fs_info->mapping_tree; 1562 read_lock(&em_tree->lock); 1563 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1564 read_unlock(&em_tree->lock); 1565 if (!em) { 1566 btrfs_err(fs_info, 1567 "logical %llu len %llu found bg but no related chunk", 1568 key->objectid, key->offset); 1569 return -ENOENT; 1570 } 1571 1572 if (em->start != key->objectid || em->len != key->offset) { 1573 btrfs_err(fs_info, 1574 "block group %llu len %llu mismatch with chunk %llu len %llu", 1575 key->objectid, key->offset, em->start, em->len); 1576 ret = -EUCLEAN; 1577 goto out_free_em; 1578 } 1579 1580 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1581 sizeof(bg)); 1582 flags = btrfs_stack_block_group_flags(&bg) & 1583 BTRFS_BLOCK_GROUP_TYPE_MASK; 1584 1585 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1586 btrfs_err(fs_info, 1587"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1588 key->objectid, key->offset, flags, 1589 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 1590 ret = -EUCLEAN; 1591 } 1592 1593out_free_em: 1594 free_extent_map(em); 1595 return ret; 1596} 1597 1598static int find_first_block_group(struct btrfs_fs_info *fs_info, 1599 struct btrfs_path *path, 1600 struct btrfs_key *key) 1601{ 1602 struct btrfs_root *root = fs_info->extent_root; 1603 int ret; 1604 struct btrfs_key found_key; 1605 struct extent_buffer *leaf; 1606 int slot; 1607 1608 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1609 if (ret < 0) 1610 return ret; 1611 1612 while (1) { 1613 slot = path->slots[0]; 1614 leaf = path->nodes[0]; 1615 if (slot >= btrfs_header_nritems(leaf)) { 1616 ret = btrfs_next_leaf(root, path); 1617 if (ret == 0) 1618 continue; 1619 if (ret < 0) 1620 goto out; 1621 break; 1622 } 1623 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1624 1625 if (found_key.objectid >= key->objectid && 1626 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1627 ret = read_bg_from_eb(fs_info, &found_key, path); 1628 break; 1629 } 1630 1631 path->slots[0]++; 1632 } 1633out: 1634 return ret; 1635} 1636 1637static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1638{ 1639 u64 extra_flags = chunk_to_extended(flags) & 1640 BTRFS_EXTENDED_PROFILE_MASK; 1641 1642 write_seqlock(&fs_info->profiles_lock); 1643 if (flags & BTRFS_BLOCK_GROUP_DATA) 1644 fs_info->avail_data_alloc_bits |= extra_flags; 1645 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1646 fs_info->avail_metadata_alloc_bits |= extra_flags; 1647 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1648 fs_info->avail_system_alloc_bits |= extra_flags; 1649 write_sequnlock(&fs_info->profiles_lock); 1650} 1651 1652/** 1653 * btrfs_rmap_block - Map a physical disk address to a list of logical addresses 1654 * @chunk_start: logical address of block group 1655 * @physical: physical address to map to logical addresses 1656 * @logical: return array of logical addresses which map to @physical 1657 * @naddrs: length of @logical 1658 * @stripe_len: size of IO stripe for the given block group 1659 * 1660 * Maps a particular @physical disk address to a list of @logical addresses. 1661 * Used primarily to exclude those portions of a block group that contain super 1662 * block copies. 1663 */ 1664EXPORT_FOR_TESTS 1665int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1666 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 1667{ 1668 struct extent_map *em; 1669 struct map_lookup *map; 1670 u64 *buf; 1671 u64 bytenr; 1672 u64 data_stripe_length; 1673 u64 io_stripe_size; 1674 int i, nr = 0; 1675 int ret = 0; 1676 1677 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1678 if (IS_ERR(em)) 1679 return -EIO; 1680 1681 map = em->map_lookup; 1682 data_stripe_length = em->orig_block_len; 1683 io_stripe_size = map->stripe_len; 1684 1685 /* For RAID5/6 adjust to a full IO stripe length */ 1686 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1687 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1688 1689 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1690 if (!buf) { 1691 ret = -ENOMEM; 1692 goto out; 1693 } 1694 1695 for (i = 0; i < map->num_stripes; i++) { 1696 bool already_inserted = false; 1697 u64 stripe_nr; 1698 int j; 1699 1700 if (!in_range(physical, map->stripes[i].physical, 1701 data_stripe_length)) 1702 continue; 1703 1704 stripe_nr = physical - map->stripes[i].physical; 1705 stripe_nr = div64_u64(stripe_nr, map->stripe_len); 1706 1707 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 1708 stripe_nr = stripe_nr * map->num_stripes + i; 1709 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 1710 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 1711 stripe_nr = stripe_nr * map->num_stripes + i; 1712 } 1713 /* 1714 * The remaining case would be for RAID56, multiply by 1715 * nr_data_stripes(). Alternatively, just use rmap_len below 1716 * instead of map->stripe_len 1717 */ 1718 1719 bytenr = chunk_start + stripe_nr * io_stripe_size; 1720 1721 /* Ensure we don't add duplicate addresses */ 1722 for (j = 0; j < nr; j++) { 1723 if (buf[j] == bytenr) { 1724 already_inserted = true; 1725 break; 1726 } 1727 } 1728 1729 if (!already_inserted) 1730 buf[nr++] = bytenr; 1731 } 1732 1733 *logical = buf; 1734 *naddrs = nr; 1735 *stripe_len = io_stripe_size; 1736out: 1737 free_extent_map(em); 1738 return ret; 1739} 1740 1741static int exclude_super_stripes(struct btrfs_block_group *cache) 1742{ 1743 struct btrfs_fs_info *fs_info = cache->fs_info; 1744 u64 bytenr; 1745 u64 *logical; 1746 int stripe_len; 1747 int i, nr, ret; 1748 1749 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 1750 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 1751 cache->bytes_super += stripe_len; 1752 ret = btrfs_add_excluded_extent(fs_info, cache->start, 1753 stripe_len); 1754 if (ret) 1755 return ret; 1756 } 1757 1758 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1759 bytenr = btrfs_sb_offset(i); 1760 ret = btrfs_rmap_block(fs_info, cache->start, 1761 bytenr, &logical, &nr, &stripe_len); 1762 if (ret) 1763 return ret; 1764 1765 while (nr--) { 1766 u64 len = min_t(u64, stripe_len, 1767 cache->start + cache->length - logical[nr]); 1768 1769 cache->bytes_super += len; 1770 ret = btrfs_add_excluded_extent(fs_info, logical[nr], 1771 len); 1772 if (ret) { 1773 kfree(logical); 1774 return ret; 1775 } 1776 } 1777 1778 kfree(logical); 1779 } 1780 return 0; 1781} 1782 1783static void link_block_group(struct btrfs_block_group *cache) 1784{ 1785 struct btrfs_space_info *space_info = cache->space_info; 1786 int index = btrfs_bg_flags_to_raid_index(cache->flags); 1787 1788 down_write(&space_info->groups_sem); 1789 list_add_tail(&cache->list, &space_info->block_groups[index]); 1790 up_write(&space_info->groups_sem); 1791} 1792 1793static struct btrfs_block_group *btrfs_create_block_group_cache( 1794 struct btrfs_fs_info *fs_info, u64 start) 1795{ 1796 struct btrfs_block_group *cache; 1797 1798 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1799 if (!cache) 1800 return NULL; 1801 1802 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1803 GFP_NOFS); 1804 if (!cache->free_space_ctl) { 1805 kfree(cache); 1806 return NULL; 1807 } 1808 1809 cache->start = start; 1810 1811 cache->fs_info = fs_info; 1812 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1813 1814 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 1815 1816 refcount_set(&cache->refs, 1); 1817 spin_lock_init(&cache->lock); 1818 init_rwsem(&cache->data_rwsem); 1819 INIT_LIST_HEAD(&cache->list); 1820 INIT_LIST_HEAD(&cache->cluster_list); 1821 INIT_LIST_HEAD(&cache->bg_list); 1822 INIT_LIST_HEAD(&cache->ro_list); 1823 INIT_LIST_HEAD(&cache->discard_list); 1824 INIT_LIST_HEAD(&cache->dirty_list); 1825 INIT_LIST_HEAD(&cache->io_list); 1826 btrfs_init_free_space_ctl(cache); 1827 atomic_set(&cache->frozen, 0); 1828 mutex_init(&cache->free_space_lock); 1829 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 1830 1831 return cache; 1832} 1833 1834/* 1835 * Iterate all chunks and verify that each of them has the corresponding block 1836 * group 1837 */ 1838static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 1839{ 1840 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 1841 struct extent_map *em; 1842 struct btrfs_block_group *bg; 1843 u64 start = 0; 1844 int ret = 0; 1845 1846 while (1) { 1847 read_lock(&map_tree->lock); 1848 /* 1849 * lookup_extent_mapping will return the first extent map 1850 * intersecting the range, so setting @len to 1 is enough to 1851 * get the first chunk. 1852 */ 1853 em = lookup_extent_mapping(map_tree, start, 1); 1854 read_unlock(&map_tree->lock); 1855 if (!em) 1856 break; 1857 1858 bg = btrfs_lookup_block_group(fs_info, em->start); 1859 if (!bg) { 1860 btrfs_err(fs_info, 1861 "chunk start=%llu len=%llu doesn't have corresponding block group", 1862 em->start, em->len); 1863 ret = -EUCLEAN; 1864 free_extent_map(em); 1865 break; 1866 } 1867 if (bg->start != em->start || bg->length != em->len || 1868 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 1869 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1870 btrfs_err(fs_info, 1871"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 1872 em->start, em->len, 1873 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 1874 bg->start, bg->length, 1875 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 1876 ret = -EUCLEAN; 1877 free_extent_map(em); 1878 btrfs_put_block_group(bg); 1879 break; 1880 } 1881 start = em->start + em->len; 1882 free_extent_map(em); 1883 btrfs_put_block_group(bg); 1884 } 1885 return ret; 1886} 1887 1888static void read_block_group_item(struct btrfs_block_group *cache, 1889 struct btrfs_path *path, 1890 const struct btrfs_key *key) 1891{ 1892 struct extent_buffer *leaf = path->nodes[0]; 1893 struct btrfs_block_group_item bgi; 1894 int slot = path->slots[0]; 1895 1896 cache->length = key->offset; 1897 1898 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 1899 sizeof(bgi)); 1900 cache->used = btrfs_stack_block_group_used(&bgi); 1901 cache->flags = btrfs_stack_block_group_flags(&bgi); 1902} 1903 1904static int read_one_block_group(struct btrfs_fs_info *info, 1905 struct btrfs_path *path, 1906 const struct btrfs_key *key, 1907 int need_clear) 1908{ 1909 struct btrfs_block_group *cache; 1910 struct btrfs_space_info *space_info; 1911 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 1912 int ret; 1913 1914 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 1915 1916 cache = btrfs_create_block_group_cache(info, key->objectid); 1917 if (!cache) 1918 return -ENOMEM; 1919 1920 read_block_group_item(cache, path, key); 1921 1922 set_free_space_tree_thresholds(cache); 1923 1924 if (need_clear) { 1925 /* 1926 * When we mount with old space cache, we need to 1927 * set BTRFS_DC_CLEAR and set dirty flag. 1928 * 1929 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 1930 * truncate the old free space cache inode and 1931 * setup a new one. 1932 * b) Setting 'dirty flag' makes sure that we flush 1933 * the new space cache info onto disk. 1934 */ 1935 if (btrfs_test_opt(info, SPACE_CACHE)) 1936 cache->disk_cache_state = BTRFS_DC_CLEAR; 1937 } 1938 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 1939 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 1940 btrfs_err(info, 1941"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 1942 cache->start); 1943 ret = -EINVAL; 1944 goto error; 1945 } 1946 1947 /* 1948 * We need to exclude the super stripes now so that the space info has 1949 * super bytes accounted for, otherwise we'll think we have more space 1950 * than we actually do. 1951 */ 1952 ret = exclude_super_stripes(cache); 1953 if (ret) { 1954 /* We may have excluded something, so call this just in case. */ 1955 btrfs_free_excluded_extents(cache); 1956 goto error; 1957 } 1958 1959 /* 1960 * Check for two cases, either we are full, and therefore don't need 1961 * to bother with the caching work since we won't find any space, or we 1962 * are empty, and we can just add all the space in and be done with it. 1963 * This saves us _a_lot_ of time, particularly in the full case. 1964 */ 1965 if (cache->length == cache->used) { 1966 cache->last_byte_to_unpin = (u64)-1; 1967 cache->cached = BTRFS_CACHE_FINISHED; 1968 btrfs_free_excluded_extents(cache); 1969 } else if (cache->used == 0) { 1970 cache->last_byte_to_unpin = (u64)-1; 1971 cache->cached = BTRFS_CACHE_FINISHED; 1972 add_new_free_space(cache, cache->start, 1973 cache->start + cache->length); 1974 btrfs_free_excluded_extents(cache); 1975 } 1976 1977 ret = btrfs_add_block_group_cache(info, cache); 1978 if (ret) { 1979 btrfs_remove_free_space_cache(cache); 1980 goto error; 1981 } 1982 trace_btrfs_add_block_group(info, cache, 0); 1983 btrfs_update_space_info(info, cache->flags, cache->length, 1984 cache->used, cache->bytes_super, &space_info); 1985 1986 cache->space_info = space_info; 1987 1988 link_block_group(cache); 1989 1990 set_avail_alloc_bits(info, cache->flags); 1991 if (btrfs_chunk_readonly(info, cache->start)) { 1992 inc_block_group_ro(cache, 1); 1993 } else if (cache->used == 0) { 1994 ASSERT(list_empty(&cache->bg_list)); 1995 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1996 btrfs_discard_queue_work(&info->discard_ctl, cache); 1997 else 1998 btrfs_mark_bg_unused(cache); 1999 } 2000 return 0; 2001error: 2002 btrfs_put_block_group(cache); 2003 return ret; 2004} 2005 2006int btrfs_read_block_groups(struct btrfs_fs_info *info) 2007{ 2008 struct btrfs_path *path; 2009 int ret; 2010 struct btrfs_block_group *cache; 2011 struct btrfs_space_info *space_info; 2012 struct btrfs_key key; 2013 int need_clear = 0; 2014 u64 cache_gen; 2015 2016 key.objectid = 0; 2017 key.offset = 0; 2018 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2019 path = btrfs_alloc_path(); 2020 if (!path) 2021 return -ENOMEM; 2022 2023 cache_gen = btrfs_super_cache_generation(info->super_copy); 2024 if (btrfs_test_opt(info, SPACE_CACHE) && 2025 btrfs_super_generation(info->super_copy) != cache_gen) 2026 need_clear = 1; 2027 if (btrfs_test_opt(info, CLEAR_CACHE)) 2028 need_clear = 1; 2029 2030 while (1) { 2031 ret = find_first_block_group(info, path, &key); 2032 if (ret > 0) 2033 break; 2034 if (ret != 0) 2035 goto error; 2036 2037 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2038 ret = read_one_block_group(info, path, &key, need_clear); 2039 if (ret < 0) 2040 goto error; 2041 key.objectid += key.offset; 2042 key.offset = 0; 2043 btrfs_release_path(path); 2044 } 2045 btrfs_release_path(path); 2046 2047 list_for_each_entry(space_info, &info->space_info, list) { 2048 int i; 2049 2050 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2051 if (list_empty(&space_info->block_groups[i])) 2052 continue; 2053 cache = list_first_entry(&space_info->block_groups[i], 2054 struct btrfs_block_group, 2055 list); 2056 btrfs_sysfs_add_block_group_type(cache); 2057 } 2058 2059 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2060 (BTRFS_BLOCK_GROUP_RAID10 | 2061 BTRFS_BLOCK_GROUP_RAID1_MASK | 2062 BTRFS_BLOCK_GROUP_RAID56_MASK | 2063 BTRFS_BLOCK_GROUP_DUP))) 2064 continue; 2065 /* 2066 * Avoid allocating from un-mirrored block group if there are 2067 * mirrored block groups. 2068 */ 2069 list_for_each_entry(cache, 2070 &space_info->block_groups[BTRFS_RAID_RAID0], 2071 list) 2072 inc_block_group_ro(cache, 1); 2073 list_for_each_entry(cache, 2074 &space_info->block_groups[BTRFS_RAID_SINGLE], 2075 list) 2076 inc_block_group_ro(cache, 1); 2077 } 2078 2079 btrfs_init_global_block_rsv(info); 2080 ret = check_chunk_block_group_mappings(info); 2081error: 2082 btrfs_free_path(path); 2083 return ret; 2084} 2085 2086static int insert_block_group_item(struct btrfs_trans_handle *trans, 2087 struct btrfs_block_group *block_group) 2088{ 2089 struct btrfs_fs_info *fs_info = trans->fs_info; 2090 struct btrfs_block_group_item bgi; 2091 struct btrfs_root *root; 2092 struct btrfs_key key; 2093 2094 spin_lock(&block_group->lock); 2095 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2096 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2097 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2098 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2099 key.objectid = block_group->start; 2100 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2101 key.offset = block_group->length; 2102 spin_unlock(&block_group->lock); 2103 2104 root = fs_info->extent_root; 2105 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2106} 2107 2108void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2109{ 2110 struct btrfs_fs_info *fs_info = trans->fs_info; 2111 struct btrfs_block_group *block_group; 2112 int ret = 0; 2113 2114 if (!trans->can_flush_pending_bgs) 2115 return; 2116 2117 while (!list_empty(&trans->new_bgs)) { 2118 int index; 2119 2120 block_group = list_first_entry(&trans->new_bgs, 2121 struct btrfs_block_group, 2122 bg_list); 2123 if (ret) 2124 goto next; 2125 2126 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2127 2128 ret = insert_block_group_item(trans, block_group); 2129 if (ret) 2130 btrfs_abort_transaction(trans, ret); 2131 ret = btrfs_finish_chunk_alloc(trans, block_group->start, 2132 block_group->length); 2133 if (ret) 2134 btrfs_abort_transaction(trans, ret); 2135 add_block_group_free_space(trans, block_group); 2136 2137 /* 2138 * If we restriped during balance, we may have added a new raid 2139 * type, so now add the sysfs entries when it is safe to do so. 2140 * We don't have to worry about locking here as it's handled in 2141 * btrfs_sysfs_add_block_group_type. 2142 */ 2143 if (block_group->space_info->block_group_kobjs[index] == NULL) 2144 btrfs_sysfs_add_block_group_type(block_group); 2145 2146 /* Already aborted the transaction if it failed. */ 2147next: 2148 btrfs_delayed_refs_rsv_release(fs_info, 1); 2149 list_del_init(&block_group->bg_list); 2150 } 2151 btrfs_trans_release_chunk_metadata(trans); 2152} 2153 2154int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, 2155 u64 type, u64 chunk_offset, u64 size) 2156{ 2157 struct btrfs_fs_info *fs_info = trans->fs_info; 2158 struct btrfs_block_group *cache; 2159 int ret; 2160 2161 btrfs_set_log_full_commit(trans); 2162 2163 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2164 if (!cache) 2165 return -ENOMEM; 2166 2167 cache->length = size; 2168 set_free_space_tree_thresholds(cache); 2169 cache->used = bytes_used; 2170 cache->flags = type; 2171 cache->last_byte_to_unpin = (u64)-1; 2172 cache->cached = BTRFS_CACHE_FINISHED; 2173 cache->needs_free_space = 1; 2174 ret = exclude_super_stripes(cache); 2175 if (ret) { 2176 /* We may have excluded something, so call this just in case */ 2177 btrfs_free_excluded_extents(cache); 2178 btrfs_put_block_group(cache); 2179 return ret; 2180 } 2181 2182 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2183 2184 btrfs_free_excluded_extents(cache); 2185 2186#ifdef CONFIG_BTRFS_DEBUG 2187 if (btrfs_should_fragment_free_space(cache)) { 2188 u64 new_bytes_used = size - bytes_used; 2189 2190 bytes_used += new_bytes_used >> 1; 2191 fragment_free_space(cache); 2192 } 2193#endif 2194 /* 2195 * Ensure the corresponding space_info object is created and 2196 * assigned to our block group. We want our bg to be added to the rbtree 2197 * with its ->space_info set. 2198 */ 2199 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2200 ASSERT(cache->space_info); 2201 2202 ret = btrfs_add_block_group_cache(fs_info, cache); 2203 if (ret) { 2204 btrfs_remove_free_space_cache(cache); 2205 btrfs_put_block_group(cache); 2206 return ret; 2207 } 2208 2209 /* 2210 * Now that our block group has its ->space_info set and is inserted in 2211 * the rbtree, update the space info's counters. 2212 */ 2213 trace_btrfs_add_block_group(fs_info, cache, 1); 2214 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, 2215 cache->bytes_super, &cache->space_info); 2216 btrfs_update_global_block_rsv(fs_info); 2217 2218 link_block_group(cache); 2219 2220 list_add_tail(&cache->bg_list, &trans->new_bgs); 2221 trans->delayed_ref_updates++; 2222 btrfs_update_delayed_refs_rsv(trans); 2223 2224 set_avail_alloc_bits(fs_info, type); 2225 return 0; 2226} 2227 2228/* 2229 * Mark one block group RO, can be called several times for the same block 2230 * group. 2231 * 2232 * @cache: the destination block group 2233 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2234 * ensure we still have some free space after marking this 2235 * block group RO. 2236 */ 2237int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2238 bool do_chunk_alloc) 2239{ 2240 struct btrfs_fs_info *fs_info = cache->fs_info; 2241 struct btrfs_trans_handle *trans; 2242 u64 alloc_flags; 2243 int ret; 2244 2245again: 2246 trans = btrfs_join_transaction(fs_info->extent_root); 2247 if (IS_ERR(trans)) 2248 return PTR_ERR(trans); 2249 2250 /* 2251 * we're not allowed to set block groups readonly after the dirty 2252 * block groups cache has started writing. If it already started, 2253 * back off and let this transaction commit 2254 */ 2255 mutex_lock(&fs_info->ro_block_group_mutex); 2256 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2257 u64 transid = trans->transid; 2258 2259 mutex_unlock(&fs_info->ro_block_group_mutex); 2260 btrfs_end_transaction(trans); 2261 2262 ret = btrfs_wait_for_commit(fs_info, transid); 2263 if (ret) 2264 return ret; 2265 goto again; 2266 } 2267 2268 if (do_chunk_alloc) { 2269 /* 2270 * If we are changing raid levels, try to allocate a 2271 * corresponding block group with the new raid level. 2272 */ 2273 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2274 if (alloc_flags != cache->flags) { 2275 ret = btrfs_chunk_alloc(trans, alloc_flags, 2276 CHUNK_ALLOC_FORCE); 2277 /* 2278 * ENOSPC is allowed here, we may have enough space 2279 * already allocated at the new raid level to carry on 2280 */ 2281 if (ret == -ENOSPC) 2282 ret = 0; 2283 if (ret < 0) 2284 goto out; 2285 } 2286 } 2287 2288 ret = inc_block_group_ro(cache, 0); 2289 if (!ret) 2290 goto out; 2291 if (ret == -ETXTBSY) 2292 goto unlock_out; 2293 2294 /* 2295 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system 2296 * chunk allocation storm to exhaust the system chunk array. Otherwise 2297 * we still want to try our best to mark the block group read-only. 2298 */ 2299 if (!do_chunk_alloc && ret == -ENOSPC && 2300 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM)) 2301 goto unlock_out; 2302 2303 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2304 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2305 if (ret < 0) 2306 goto out; 2307 ret = inc_block_group_ro(cache, 0); 2308 if (ret == -ETXTBSY) 2309 goto unlock_out; 2310out: 2311 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2312 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2313 mutex_lock(&fs_info->chunk_mutex); 2314 check_system_chunk(trans, alloc_flags); 2315 mutex_unlock(&fs_info->chunk_mutex); 2316 } 2317unlock_out: 2318 mutex_unlock(&fs_info->ro_block_group_mutex); 2319 2320 btrfs_end_transaction(trans); 2321 return ret; 2322} 2323 2324void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2325{ 2326 struct btrfs_space_info *sinfo = cache->space_info; 2327 u64 num_bytes; 2328 2329 BUG_ON(!cache->ro); 2330 2331 spin_lock(&sinfo->lock); 2332 spin_lock(&cache->lock); 2333 if (!--cache->ro) { 2334 num_bytes = cache->length - cache->reserved - 2335 cache->pinned - cache->bytes_super - cache->used; 2336 sinfo->bytes_readonly -= num_bytes; 2337 list_del_init(&cache->ro_list); 2338 } 2339 spin_unlock(&cache->lock); 2340 spin_unlock(&sinfo->lock); 2341} 2342 2343static int update_block_group_item(struct btrfs_trans_handle *trans, 2344 struct btrfs_path *path, 2345 struct btrfs_block_group *cache) 2346{ 2347 struct btrfs_fs_info *fs_info = trans->fs_info; 2348 int ret; 2349 struct btrfs_root *root = fs_info->extent_root; 2350 unsigned long bi; 2351 struct extent_buffer *leaf; 2352 struct btrfs_block_group_item bgi; 2353 struct btrfs_key key; 2354 2355 key.objectid = cache->start; 2356 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2357 key.offset = cache->length; 2358 2359 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2360 if (ret) { 2361 if (ret > 0) 2362 ret = -ENOENT; 2363 goto fail; 2364 } 2365 2366 leaf = path->nodes[0]; 2367 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2368 btrfs_set_stack_block_group_used(&bgi, cache->used); 2369 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2370 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2371 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2372 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2373 btrfs_mark_buffer_dirty(leaf); 2374fail: 2375 btrfs_release_path(path); 2376 return ret; 2377 2378} 2379 2380static int cache_save_setup(struct btrfs_block_group *block_group, 2381 struct btrfs_trans_handle *trans, 2382 struct btrfs_path *path) 2383{ 2384 struct btrfs_fs_info *fs_info = block_group->fs_info; 2385 struct btrfs_root *root = fs_info->tree_root; 2386 struct inode *inode = NULL; 2387 struct extent_changeset *data_reserved = NULL; 2388 u64 alloc_hint = 0; 2389 int dcs = BTRFS_DC_ERROR; 2390 u64 num_pages = 0; 2391 int retries = 0; 2392 int ret = 0; 2393 2394 /* 2395 * If this block group is smaller than 100 megs don't bother caching the 2396 * block group. 2397 */ 2398 if (block_group->length < (100 * SZ_1M)) { 2399 spin_lock(&block_group->lock); 2400 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2401 spin_unlock(&block_group->lock); 2402 return 0; 2403 } 2404 2405 if (TRANS_ABORTED(trans)) 2406 return 0; 2407again: 2408 inode = lookup_free_space_inode(block_group, path); 2409 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2410 ret = PTR_ERR(inode); 2411 btrfs_release_path(path); 2412 goto out; 2413 } 2414 2415 if (IS_ERR(inode)) { 2416 BUG_ON(retries); 2417 retries++; 2418 2419 if (block_group->ro) 2420 goto out_free; 2421 2422 ret = create_free_space_inode(trans, block_group, path); 2423 if (ret) 2424 goto out_free; 2425 goto again; 2426 } 2427 2428 /* 2429 * We want to set the generation to 0, that way if anything goes wrong 2430 * from here on out we know not to trust this cache when we load up next 2431 * time. 2432 */ 2433 BTRFS_I(inode)->generation = 0; 2434 ret = btrfs_update_inode(trans, root, inode); 2435 if (ret) { 2436 /* 2437 * So theoretically we could recover from this, simply set the 2438 * super cache generation to 0 so we know to invalidate the 2439 * cache, but then we'd have to keep track of the block groups 2440 * that fail this way so we know we _have_ to reset this cache 2441 * before the next commit or risk reading stale cache. So to 2442 * limit our exposure to horrible edge cases lets just abort the 2443 * transaction, this only happens in really bad situations 2444 * anyway. 2445 */ 2446 btrfs_abort_transaction(trans, ret); 2447 goto out_put; 2448 } 2449 WARN_ON(ret); 2450 2451 /* We've already setup this transaction, go ahead and exit */ 2452 if (block_group->cache_generation == trans->transid && 2453 i_size_read(inode)) { 2454 dcs = BTRFS_DC_SETUP; 2455 goto out_put; 2456 } 2457 2458 if (i_size_read(inode) > 0) { 2459 ret = btrfs_check_trunc_cache_free_space(fs_info, 2460 &fs_info->global_block_rsv); 2461 if (ret) 2462 goto out_put; 2463 2464 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2465 if (ret) 2466 goto out_put; 2467 } 2468 2469 spin_lock(&block_group->lock); 2470 if (block_group->cached != BTRFS_CACHE_FINISHED || 2471 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2472 /* 2473 * don't bother trying to write stuff out _if_ 2474 * a) we're not cached, 2475 * b) we're with nospace_cache mount option, 2476 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2477 */ 2478 dcs = BTRFS_DC_WRITTEN; 2479 spin_unlock(&block_group->lock); 2480 goto out_put; 2481 } 2482 spin_unlock(&block_group->lock); 2483 2484 /* 2485 * We hit an ENOSPC when setting up the cache in this transaction, just 2486 * skip doing the setup, we've already cleared the cache so we're safe. 2487 */ 2488 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2489 ret = -ENOSPC; 2490 goto out_put; 2491 } 2492 2493 /* 2494 * Try to preallocate enough space based on how big the block group is. 2495 * Keep in mind this has to include any pinned space which could end up 2496 * taking up quite a bit since it's not folded into the other space 2497 * cache. 2498 */ 2499 num_pages = div_u64(block_group->length, SZ_256M); 2500 if (!num_pages) 2501 num_pages = 1; 2502 2503 num_pages *= 16; 2504 num_pages *= PAGE_SIZE; 2505 2506 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 2507 num_pages); 2508 if (ret) 2509 goto out_put; 2510 2511 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 2512 num_pages, num_pages, 2513 &alloc_hint); 2514 /* 2515 * Our cache requires contiguous chunks so that we don't modify a bunch 2516 * of metadata or split extents when writing the cache out, which means 2517 * we can enospc if we are heavily fragmented in addition to just normal 2518 * out of space conditions. So if we hit this just skip setting up any 2519 * other block groups for this transaction, maybe we'll unpin enough 2520 * space the next time around. 2521 */ 2522 if (!ret) 2523 dcs = BTRFS_DC_SETUP; 2524 else if (ret == -ENOSPC) 2525 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2526 2527out_put: 2528 iput(inode); 2529out_free: 2530 btrfs_release_path(path); 2531out: 2532 spin_lock(&block_group->lock); 2533 if (!ret && dcs == BTRFS_DC_SETUP) 2534 block_group->cache_generation = trans->transid; 2535 block_group->disk_cache_state = dcs; 2536 spin_unlock(&block_group->lock); 2537 2538 extent_changeset_free(data_reserved); 2539 return ret; 2540} 2541 2542int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2543{ 2544 struct btrfs_fs_info *fs_info = trans->fs_info; 2545 struct btrfs_block_group *cache, *tmp; 2546 struct btrfs_transaction *cur_trans = trans->transaction; 2547 struct btrfs_path *path; 2548 2549 if (list_empty(&cur_trans->dirty_bgs) || 2550 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2551 return 0; 2552 2553 path = btrfs_alloc_path(); 2554 if (!path) 2555 return -ENOMEM; 2556 2557 /* Could add new block groups, use _safe just in case */ 2558 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 2559 dirty_list) { 2560 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2561 cache_save_setup(cache, trans, path); 2562 } 2563 2564 btrfs_free_path(path); 2565 return 0; 2566} 2567 2568/* 2569 * Transaction commit does final block group cache writeback during a critical 2570 * section where nothing is allowed to change the FS. This is required in 2571 * order for the cache to actually match the block group, but can introduce a 2572 * lot of latency into the commit. 2573 * 2574 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 2575 * There's a chance we'll have to redo some of it if the block group changes 2576 * again during the commit, but it greatly reduces the commit latency by 2577 * getting rid of the easy block groups while we're still allowing others to 2578 * join the commit. 2579 */ 2580int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 2581{ 2582 struct btrfs_fs_info *fs_info = trans->fs_info; 2583 struct btrfs_block_group *cache; 2584 struct btrfs_transaction *cur_trans = trans->transaction; 2585 int ret = 0; 2586 int should_put; 2587 struct btrfs_path *path = NULL; 2588 LIST_HEAD(dirty); 2589 struct list_head *io = &cur_trans->io_bgs; 2590 int loops = 0; 2591 2592 spin_lock(&cur_trans->dirty_bgs_lock); 2593 if (list_empty(&cur_trans->dirty_bgs)) { 2594 spin_unlock(&cur_trans->dirty_bgs_lock); 2595 return 0; 2596 } 2597 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2598 spin_unlock(&cur_trans->dirty_bgs_lock); 2599 2600again: 2601 /* Make sure all the block groups on our dirty list actually exist */ 2602 btrfs_create_pending_block_groups(trans); 2603 2604 if (!path) { 2605 path = btrfs_alloc_path(); 2606 if (!path) { 2607 ret = -ENOMEM; 2608 goto out; 2609 } 2610 } 2611 2612 /* 2613 * cache_write_mutex is here only to save us from balance or automatic 2614 * removal of empty block groups deleting this block group while we are 2615 * writing out the cache 2616 */ 2617 mutex_lock(&trans->transaction->cache_write_mutex); 2618 while (!list_empty(&dirty)) { 2619 bool drop_reserve = true; 2620 2621 cache = list_first_entry(&dirty, struct btrfs_block_group, 2622 dirty_list); 2623 /* 2624 * This can happen if something re-dirties a block group that 2625 * is already under IO. Just wait for it to finish and then do 2626 * it all again 2627 */ 2628 if (!list_empty(&cache->io_list)) { 2629 list_del_init(&cache->io_list); 2630 btrfs_wait_cache_io(trans, cache, path); 2631 btrfs_put_block_group(cache); 2632 } 2633 2634 2635 /* 2636 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 2637 * it should update the cache_state. Don't delete until after 2638 * we wait. 2639 * 2640 * Since we're not running in the commit critical section 2641 * we need the dirty_bgs_lock to protect from update_block_group 2642 */ 2643 spin_lock(&cur_trans->dirty_bgs_lock); 2644 list_del_init(&cache->dirty_list); 2645 spin_unlock(&cur_trans->dirty_bgs_lock); 2646 2647 should_put = 1; 2648 2649 cache_save_setup(cache, trans, path); 2650 2651 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 2652 cache->io_ctl.inode = NULL; 2653 ret = btrfs_write_out_cache(trans, cache, path); 2654 if (ret == 0 && cache->io_ctl.inode) { 2655 should_put = 0; 2656 2657 /* 2658 * The cache_write_mutex is protecting the 2659 * io_list, also refer to the definition of 2660 * btrfs_transaction::io_bgs for more details 2661 */ 2662 list_add_tail(&cache->io_list, io); 2663 } else { 2664 /* 2665 * If we failed to write the cache, the 2666 * generation will be bad and life goes on 2667 */ 2668 ret = 0; 2669 } 2670 } 2671 if (!ret) { 2672 ret = update_block_group_item(trans, path, cache); 2673 /* 2674 * Our block group might still be attached to the list 2675 * of new block groups in the transaction handle of some 2676 * other task (struct btrfs_trans_handle->new_bgs). This 2677 * means its block group item isn't yet in the extent 2678 * tree. If this happens ignore the error, as we will 2679 * try again later in the critical section of the 2680 * transaction commit. 2681 */ 2682 if (ret == -ENOENT) { 2683 ret = 0; 2684 spin_lock(&cur_trans->dirty_bgs_lock); 2685 if (list_empty(&cache->dirty_list)) { 2686 list_add_tail(&cache->dirty_list, 2687 &cur_trans->dirty_bgs); 2688 btrfs_get_block_group(cache); 2689 drop_reserve = false; 2690 } 2691 spin_unlock(&cur_trans->dirty_bgs_lock); 2692 } else if (ret) { 2693 btrfs_abort_transaction(trans, ret); 2694 } 2695 } 2696 2697 /* If it's not on the io list, we need to put the block group */ 2698 if (should_put) 2699 btrfs_put_block_group(cache); 2700 if (drop_reserve) 2701 btrfs_delayed_refs_rsv_release(fs_info, 1); 2702 /* 2703 * Avoid blocking other tasks for too long. It might even save 2704 * us from writing caches for block groups that are going to be 2705 * removed. 2706 */ 2707 mutex_unlock(&trans->transaction->cache_write_mutex); 2708 if (ret) 2709 goto out; 2710 mutex_lock(&trans->transaction->cache_write_mutex); 2711 } 2712 mutex_unlock(&trans->transaction->cache_write_mutex); 2713 2714 /* 2715 * Go through delayed refs for all the stuff we've just kicked off 2716 * and then loop back (just once) 2717 */ 2718 if (!ret) 2719 ret = btrfs_run_delayed_refs(trans, 0); 2720 if (!ret && loops == 0) { 2721 loops++; 2722 spin_lock(&cur_trans->dirty_bgs_lock); 2723 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2724 /* 2725 * dirty_bgs_lock protects us from concurrent block group 2726 * deletes too (not just cache_write_mutex). 2727 */ 2728 if (!list_empty(&dirty)) { 2729 spin_unlock(&cur_trans->dirty_bgs_lock); 2730 goto again; 2731 } 2732 spin_unlock(&cur_trans->dirty_bgs_lock); 2733 } 2734out: 2735 if (ret < 0) { 2736 spin_lock(&cur_trans->dirty_bgs_lock); 2737 list_splice_init(&dirty, &cur_trans->dirty_bgs); 2738 spin_unlock(&cur_trans->dirty_bgs_lock); 2739 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 2740 } 2741 2742 btrfs_free_path(path); 2743 return ret; 2744} 2745 2746int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 2747{ 2748 struct btrfs_fs_info *fs_info = trans->fs_info; 2749 struct btrfs_block_group *cache; 2750 struct btrfs_transaction *cur_trans = trans->transaction; 2751 int ret = 0; 2752 int should_put; 2753 struct btrfs_path *path; 2754 struct list_head *io = &cur_trans->io_bgs; 2755 2756 path = btrfs_alloc_path(); 2757 if (!path) 2758 return -ENOMEM; 2759 2760 /* 2761 * Even though we are in the critical section of the transaction commit, 2762 * we can still have concurrent tasks adding elements to this 2763 * transaction's list of dirty block groups. These tasks correspond to 2764 * endio free space workers started when writeback finishes for a 2765 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 2766 * allocate new block groups as a result of COWing nodes of the root 2767 * tree when updating the free space inode. The writeback for the space 2768 * caches is triggered by an earlier call to 2769 * btrfs_start_dirty_block_groups() and iterations of the following 2770 * loop. 2771 * Also we want to do the cache_save_setup first and then run the 2772 * delayed refs to make sure we have the best chance at doing this all 2773 * in one shot. 2774 */ 2775 spin_lock(&cur_trans->dirty_bgs_lock); 2776 while (!list_empty(&cur_trans->dirty_bgs)) { 2777 cache = list_first_entry(&cur_trans->dirty_bgs, 2778 struct btrfs_block_group, 2779 dirty_list); 2780 2781 /* 2782 * This can happen if cache_save_setup re-dirties a block group 2783 * that is already under IO. Just wait for it to finish and 2784 * then do it all again 2785 */ 2786 if (!list_empty(&cache->io_list)) { 2787 spin_unlock(&cur_trans->dirty_bgs_lock); 2788 list_del_init(&cache->io_list); 2789 btrfs_wait_cache_io(trans, cache, path); 2790 btrfs_put_block_group(cache); 2791 spin_lock(&cur_trans->dirty_bgs_lock); 2792 } 2793 2794 /* 2795 * Don't remove from the dirty list until after we've waited on 2796 * any pending IO 2797 */ 2798 list_del_init(&cache->dirty_list); 2799 spin_unlock(&cur_trans->dirty_bgs_lock); 2800 should_put = 1; 2801 2802 cache_save_setup(cache, trans, path); 2803 2804 if (!ret) 2805 ret = btrfs_run_delayed_refs(trans, 2806 (unsigned long) -1); 2807 2808 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 2809 cache->io_ctl.inode = NULL; 2810 ret = btrfs_write_out_cache(trans, cache, path); 2811 if (ret == 0 && cache->io_ctl.inode) { 2812 should_put = 0; 2813 list_add_tail(&cache->io_list, io); 2814 } else { 2815 /* 2816 * If we failed to write the cache, the 2817 * generation will be bad and life goes on 2818 */ 2819 ret = 0; 2820 } 2821 } 2822 if (!ret) { 2823 ret = update_block_group_item(trans, path, cache); 2824 /* 2825 * One of the free space endio workers might have 2826 * created a new block group while updating a free space 2827 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 2828 * and hasn't released its transaction handle yet, in 2829 * which case the new block group is still attached to 2830 * its transaction handle and its creation has not 2831 * finished yet (no block group item in the extent tree 2832 * yet, etc). If this is the case, wait for all free 2833 * space endio workers to finish and retry. This is a 2834 * very rare case so no need for a more efficient and 2835 * complex approach. 2836 */ 2837 if (ret == -ENOENT) { 2838 wait_event(cur_trans->writer_wait, 2839 atomic_read(&cur_trans->num_writers) == 1); 2840 ret = update_block_group_item(trans, path, cache); 2841 } 2842 if (ret) 2843 btrfs_abort_transaction(trans, ret); 2844 } 2845 2846 /* If its not on the io list, we need to put the block group */ 2847 if (should_put) 2848 btrfs_put_block_group(cache); 2849 btrfs_delayed_refs_rsv_release(fs_info, 1); 2850 spin_lock(&cur_trans->dirty_bgs_lock); 2851 } 2852 spin_unlock(&cur_trans->dirty_bgs_lock); 2853 2854 /* 2855 * Refer to the definition of io_bgs member for details why it's safe 2856 * to use it without any locking 2857 */ 2858 while (!list_empty(io)) { 2859 cache = list_first_entry(io, struct btrfs_block_group, 2860 io_list); 2861 list_del_init(&cache->io_list); 2862 btrfs_wait_cache_io(trans, cache, path); 2863 btrfs_put_block_group(cache); 2864 } 2865 2866 btrfs_free_path(path); 2867 return ret; 2868} 2869 2870int btrfs_update_block_group(struct btrfs_trans_handle *trans, 2871 u64 bytenr, u64 num_bytes, int alloc) 2872{ 2873 struct btrfs_fs_info *info = trans->fs_info; 2874 struct btrfs_block_group *cache = NULL; 2875 u64 total = num_bytes; 2876 u64 old_val; 2877 u64 byte_in_group; 2878 int factor; 2879 int ret = 0; 2880 2881 /* Block accounting for super block */ 2882 spin_lock(&info->delalloc_root_lock); 2883 old_val = btrfs_super_bytes_used(info->super_copy); 2884 if (alloc) 2885 old_val += num_bytes; 2886 else 2887 old_val -= num_bytes; 2888 btrfs_set_super_bytes_used(info->super_copy, old_val); 2889 spin_unlock(&info->delalloc_root_lock); 2890 2891 while (total) { 2892 cache = btrfs_lookup_block_group(info, bytenr); 2893 if (!cache) { 2894 ret = -ENOENT; 2895 break; 2896 } 2897 factor = btrfs_bg_type_to_factor(cache->flags); 2898 2899 /* 2900 * If this block group has free space cache written out, we 2901 * need to make sure to load it if we are removing space. This 2902 * is because we need the unpinning stage to actually add the 2903 * space back to the block group, otherwise we will leak space. 2904 */ 2905 if (!alloc && !btrfs_block_group_done(cache)) 2906 btrfs_cache_block_group(cache, 1); 2907 2908 byte_in_group = bytenr - cache->start; 2909 WARN_ON(byte_in_group > cache->length); 2910 2911 spin_lock(&cache->space_info->lock); 2912 spin_lock(&cache->lock); 2913 2914 if (btrfs_test_opt(info, SPACE_CACHE) && 2915 cache->disk_cache_state < BTRFS_DC_CLEAR) 2916 cache->disk_cache_state = BTRFS_DC_CLEAR; 2917 2918 old_val = cache->used; 2919 num_bytes = min(total, cache->length - byte_in_group); 2920 if (alloc) { 2921 old_val += num_bytes; 2922 cache->used = old_val; 2923 cache->reserved -= num_bytes; 2924 cache->space_info->bytes_reserved -= num_bytes; 2925 cache->space_info->bytes_used += num_bytes; 2926 cache->space_info->disk_used += num_bytes * factor; 2927 spin_unlock(&cache->lock); 2928 spin_unlock(&cache->space_info->lock); 2929 } else { 2930 old_val -= num_bytes; 2931 cache->used = old_val; 2932 cache->pinned += num_bytes; 2933 btrfs_space_info_update_bytes_pinned(info, 2934 cache->space_info, num_bytes); 2935 cache->space_info->bytes_used -= num_bytes; 2936 cache->space_info->disk_used -= num_bytes * factor; 2937 spin_unlock(&cache->lock); 2938 spin_unlock(&cache->space_info->lock); 2939 2940 __btrfs_mod_total_bytes_pinned(cache->space_info, 2941 num_bytes); 2942 set_extent_dirty(&trans->transaction->pinned_extents, 2943 bytenr, bytenr + num_bytes - 1, 2944 GFP_NOFS | __GFP_NOFAIL); 2945 } 2946 2947 spin_lock(&trans->transaction->dirty_bgs_lock); 2948 if (list_empty(&cache->dirty_list)) { 2949 list_add_tail(&cache->dirty_list, 2950 &trans->transaction->dirty_bgs); 2951 trans->delayed_ref_updates++; 2952 btrfs_get_block_group(cache); 2953 } 2954 spin_unlock(&trans->transaction->dirty_bgs_lock); 2955 2956 /* 2957 * No longer have used bytes in this block group, queue it for 2958 * deletion. We do this after adding the block group to the 2959 * dirty list to avoid races between cleaner kthread and space 2960 * cache writeout. 2961 */ 2962 if (!alloc && old_val == 0) { 2963 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 2964 btrfs_mark_bg_unused(cache); 2965 } 2966 2967 btrfs_put_block_group(cache); 2968 total -= num_bytes; 2969 bytenr += num_bytes; 2970 } 2971 2972 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 2973 btrfs_update_delayed_refs_rsv(trans); 2974 return ret; 2975} 2976 2977/** 2978 * btrfs_add_reserved_bytes - update the block_group and space info counters 2979 * @cache: The cache we are manipulating 2980 * @ram_bytes: The number of bytes of file content, and will be same to 2981 * @num_bytes except for the compress path. 2982 * @num_bytes: The number of bytes in question 2983 * @delalloc: The blocks are allocated for the delalloc write 2984 * 2985 * This is called by the allocator when it reserves space. If this is a 2986 * reservation and the block group has become read only we cannot make the 2987 * reservation and return -EAGAIN, otherwise this function always succeeds. 2988 */ 2989int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 2990 u64 ram_bytes, u64 num_bytes, int delalloc) 2991{ 2992 struct btrfs_space_info *space_info = cache->space_info; 2993 int ret = 0; 2994 2995 spin_lock(&space_info->lock); 2996 spin_lock(&cache->lock); 2997 if (cache->ro) { 2998 ret = -EAGAIN; 2999 } else { 3000 cache->reserved += num_bytes; 3001 space_info->bytes_reserved += num_bytes; 3002 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3003 space_info->flags, num_bytes, 1); 3004 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3005 space_info, -ram_bytes); 3006 if (delalloc) 3007 cache->delalloc_bytes += num_bytes; 3008 3009 /* 3010 * Compression can use less space than we reserved, so wake 3011 * tickets if that happens 3012 */ 3013 if (num_bytes < ram_bytes) 3014 btrfs_try_granting_tickets(cache->fs_info, space_info); 3015 } 3016 spin_unlock(&cache->lock); 3017 spin_unlock(&space_info->lock); 3018 return ret; 3019} 3020 3021/** 3022 * btrfs_free_reserved_bytes - update the block_group and space info counters 3023 * @cache: The cache we are manipulating 3024 * @num_bytes: The number of bytes in question 3025 * @delalloc: The blocks are allocated for the delalloc write 3026 * 3027 * This is called by somebody who is freeing space that was never actually used 3028 * on disk. For example if you reserve some space for a new leaf in transaction 3029 * A and before transaction A commits you free that leaf, you call this with 3030 * reserve set to 0 in order to clear the reservation. 3031 */ 3032void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3033 u64 num_bytes, int delalloc) 3034{ 3035 struct btrfs_space_info *space_info = cache->space_info; 3036 3037 spin_lock(&space_info->lock); 3038 spin_lock(&cache->lock); 3039 if (cache->ro) 3040 space_info->bytes_readonly += num_bytes; 3041 cache->reserved -= num_bytes; 3042 space_info->bytes_reserved -= num_bytes; 3043 space_info->max_extent_size = 0; 3044 3045 if (delalloc) 3046 cache->delalloc_bytes -= num_bytes; 3047 spin_unlock(&cache->lock); 3048 3049 btrfs_try_granting_tickets(cache->fs_info, space_info); 3050 spin_unlock(&space_info->lock); 3051} 3052 3053static void force_metadata_allocation(struct btrfs_fs_info *info) 3054{ 3055 struct list_head *head = &info->space_info; 3056 struct btrfs_space_info *found; 3057 3058 list_for_each_entry(found, head, list) { 3059 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3060 found->force_alloc = CHUNK_ALLOC_FORCE; 3061 } 3062} 3063 3064static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3065 struct btrfs_space_info *sinfo, int force) 3066{ 3067 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3068 u64 thresh; 3069 3070 if (force == CHUNK_ALLOC_FORCE) 3071 return 1; 3072 3073 /* 3074 * in limited mode, we want to have some free space up to 3075 * about 1% of the FS size. 3076 */ 3077 if (force == CHUNK_ALLOC_LIMITED) { 3078 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3079 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 3080 3081 if (sinfo->total_bytes - bytes_used < thresh) 3082 return 1; 3083 } 3084 3085 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 3086 return 0; 3087 return 1; 3088} 3089 3090int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3091{ 3092 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3093 3094 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3095} 3096 3097/* 3098 * If force is CHUNK_ALLOC_FORCE: 3099 * - return 1 if it successfully allocates a chunk, 3100 * - return errors including -ENOSPC otherwise. 3101 * If force is NOT CHUNK_ALLOC_FORCE: 3102 * - return 0 if it doesn't need to allocate a new chunk, 3103 * - return 1 if it successfully allocates a chunk, 3104 * - return errors including -ENOSPC otherwise. 3105 */ 3106int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3107 enum btrfs_chunk_alloc_enum force) 3108{ 3109 struct btrfs_fs_info *fs_info = trans->fs_info; 3110 struct btrfs_space_info *space_info; 3111 bool wait_for_alloc = false; 3112 bool should_alloc = false; 3113 int ret = 0; 3114 3115 /* Don't re-enter if we're already allocating a chunk */ 3116 if (trans->allocating_chunk) 3117 return -ENOSPC; 3118 3119 space_info = btrfs_find_space_info(fs_info, flags); 3120 ASSERT(space_info); 3121 3122 do { 3123 spin_lock(&space_info->lock); 3124 if (force < space_info->force_alloc) 3125 force = space_info->force_alloc; 3126 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3127 if (space_info->full) { 3128 /* No more free physical space */ 3129 if (should_alloc) 3130 ret = -ENOSPC; 3131 else 3132 ret = 0; 3133 spin_unlock(&space_info->lock); 3134 return ret; 3135 } else if (!should_alloc) { 3136 spin_unlock(&space_info->lock); 3137 return 0; 3138 } else if (space_info->chunk_alloc) { 3139 /* 3140 * Someone is already allocating, so we need to block 3141 * until this someone is finished and then loop to 3142 * recheck if we should continue with our allocation 3143 * attempt. 3144 */ 3145 wait_for_alloc = true; 3146 force = CHUNK_ALLOC_NO_FORCE; 3147 spin_unlock(&space_info->lock); 3148 mutex_lock(&fs_info->chunk_mutex); 3149 mutex_unlock(&fs_info->chunk_mutex); 3150 } else { 3151 /* Proceed with allocation */ 3152 space_info->chunk_alloc = 1; 3153 wait_for_alloc = false; 3154 spin_unlock(&space_info->lock); 3155 } 3156 3157 cond_resched(); 3158 } while (wait_for_alloc); 3159 3160 mutex_lock(&fs_info->chunk_mutex); 3161 trans->allocating_chunk = true; 3162 3163 /* 3164 * If we have mixed data/metadata chunks we want to make sure we keep 3165 * allocating mixed chunks instead of individual chunks. 3166 */ 3167 if (btrfs_mixed_space_info(space_info)) 3168 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3169 3170 /* 3171 * if we're doing a data chunk, go ahead and make sure that 3172 * we keep a reasonable number of metadata chunks allocated in the 3173 * FS as well. 3174 */ 3175 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3176 fs_info->data_chunk_allocations++; 3177 if (!(fs_info->data_chunk_allocations % 3178 fs_info->metadata_ratio)) 3179 force_metadata_allocation(fs_info); 3180 } 3181 3182 /* 3183 * Check if we have enough space in SYSTEM chunk because we may need 3184 * to update devices. 3185 */ 3186 check_system_chunk(trans, flags); 3187 3188 ret = btrfs_alloc_chunk(trans, flags); 3189 trans->allocating_chunk = false; 3190 3191 spin_lock(&space_info->lock); 3192 if (ret < 0) { 3193 if (ret == -ENOSPC) 3194 space_info->full = 1; 3195 else 3196 goto out; 3197 } else { 3198 ret = 1; 3199 space_info->max_extent_size = 0; 3200 } 3201 3202 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3203out: 3204 space_info->chunk_alloc = 0; 3205 spin_unlock(&space_info->lock); 3206 mutex_unlock(&fs_info->chunk_mutex); 3207 /* 3208 * When we allocate a new chunk we reserve space in the chunk block 3209 * reserve to make sure we can COW nodes/leafs in the chunk tree or 3210 * add new nodes/leafs to it if we end up needing to do it when 3211 * inserting the chunk item and updating device items as part of the 3212 * second phase of chunk allocation, performed by 3213 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 3214 * large number of new block groups to create in our transaction 3215 * handle's new_bgs list to avoid exhausting the chunk block reserve 3216 * in extreme cases - like having a single transaction create many new 3217 * block groups when starting to write out the free space caches of all 3218 * the block groups that were made dirty during the lifetime of the 3219 * transaction. 3220 */ 3221 if (trans->chunk_bytes_reserved >= (u64)SZ_2M) 3222 btrfs_create_pending_block_groups(trans); 3223 3224 return ret; 3225} 3226 3227static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 3228{ 3229 u64 num_dev; 3230 3231 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 3232 if (!num_dev) 3233 num_dev = fs_info->fs_devices->rw_devices; 3234 3235 return num_dev; 3236} 3237 3238/* 3239 * Reserve space in the system space for allocating or removing a chunk 3240 */ 3241void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 3242{ 3243 struct btrfs_fs_info *fs_info = trans->fs_info; 3244 struct btrfs_space_info *info; 3245 u64 left; 3246 u64 thresh; 3247 int ret = 0; 3248 u64 num_devs; 3249 3250 /* 3251 * Needed because we can end up allocating a system chunk and for an 3252 * atomic and race free space reservation in the chunk block reserve. 3253 */ 3254 lockdep_assert_held(&fs_info->chunk_mutex); 3255 3256 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3257 spin_lock(&info->lock); 3258 left = info->total_bytes - btrfs_space_info_used(info, true); 3259 spin_unlock(&info->lock); 3260 3261 num_devs = get_profile_num_devs(fs_info, type); 3262 3263 /* num_devs device items to update and 1 chunk item to add or remove */ 3264 thresh = btrfs_calc_metadata_size(fs_info, num_devs) + 3265 btrfs_calc_insert_metadata_size(fs_info, 1); 3266 3267 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3268 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3269 left, thresh, type); 3270 btrfs_dump_space_info(fs_info, info, 0, 0); 3271 } 3272 3273 if (left < thresh) { 3274 u64 flags = btrfs_system_alloc_profile(fs_info); 3275 3276 /* 3277 * Ignore failure to create system chunk. We might end up not 3278 * needing it, as we might not need to COW all nodes/leafs from 3279 * the paths we visit in the chunk tree (they were already COWed 3280 * or created in the current transaction for example). 3281 */ 3282 ret = btrfs_alloc_chunk(trans, flags); 3283 } 3284 3285 if (!ret) { 3286 ret = btrfs_block_rsv_add(fs_info->chunk_root, 3287 &fs_info->chunk_block_rsv, 3288 thresh, BTRFS_RESERVE_NO_FLUSH); 3289 if (!ret) 3290 trans->chunk_bytes_reserved += thresh; 3291 } 3292} 3293 3294void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 3295{ 3296 struct btrfs_block_group *block_group; 3297 u64 last = 0; 3298 3299 while (1) { 3300 struct inode *inode; 3301 3302 block_group = btrfs_lookup_first_block_group(info, last); 3303 while (block_group) { 3304 btrfs_wait_block_group_cache_done(block_group); 3305 spin_lock(&block_group->lock); 3306 if (block_group->iref) 3307 break; 3308 spin_unlock(&block_group->lock); 3309 block_group = btrfs_next_block_group(block_group); 3310 } 3311 if (!block_group) { 3312 if (last == 0) 3313 break; 3314 last = 0; 3315 continue; 3316 } 3317 3318 inode = block_group->inode; 3319 block_group->iref = 0; 3320 block_group->inode = NULL; 3321 spin_unlock(&block_group->lock); 3322 ASSERT(block_group->io_ctl.inode == NULL); 3323 iput(inode); 3324 last = block_group->start + block_group->length; 3325 btrfs_put_block_group(block_group); 3326 } 3327} 3328 3329/* 3330 * Must be called only after stopping all workers, since we could have block 3331 * group caching kthreads running, and therefore they could race with us if we 3332 * freed the block groups before stopping them. 3333 */ 3334int btrfs_free_block_groups(struct btrfs_fs_info *info) 3335{ 3336 struct btrfs_block_group *block_group; 3337 struct btrfs_space_info *space_info; 3338 struct btrfs_caching_control *caching_ctl; 3339 struct rb_node *n; 3340 3341 down_write(&info->commit_root_sem); 3342 while (!list_empty(&info->caching_block_groups)) { 3343 caching_ctl = list_entry(info->caching_block_groups.next, 3344 struct btrfs_caching_control, list); 3345 list_del(&caching_ctl->list); 3346 btrfs_put_caching_control(caching_ctl); 3347 } 3348 up_write(&info->commit_root_sem); 3349 3350 spin_lock(&info->unused_bgs_lock); 3351 while (!list_empty(&info->unused_bgs)) { 3352 block_group = list_first_entry(&info->unused_bgs, 3353 struct btrfs_block_group, 3354 bg_list); 3355 list_del_init(&block_group->bg_list); 3356 btrfs_put_block_group(block_group); 3357 } 3358 spin_unlock(&info->unused_bgs_lock); 3359 3360 spin_lock(&info->block_group_cache_lock); 3361 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 3362 block_group = rb_entry(n, struct btrfs_block_group, 3363 cache_node); 3364 rb_erase(&block_group->cache_node, 3365 &info->block_group_cache_tree); 3366 RB_CLEAR_NODE(&block_group->cache_node); 3367 spin_unlock(&info->block_group_cache_lock); 3368 3369 down_write(&block_group->space_info->groups_sem); 3370 list_del(&block_group->list); 3371 up_write(&block_group->space_info->groups_sem); 3372 3373 /* 3374 * We haven't cached this block group, which means we could 3375 * possibly have excluded extents on this block group. 3376 */ 3377 if (block_group->cached == BTRFS_CACHE_NO || 3378 block_group->cached == BTRFS_CACHE_ERROR) 3379 btrfs_free_excluded_extents(block_group); 3380 3381 btrfs_remove_free_space_cache(block_group); 3382 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 3383 ASSERT(list_empty(&block_group->dirty_list)); 3384 ASSERT(list_empty(&block_group->io_list)); 3385 ASSERT(list_empty(&block_group->bg_list)); 3386 ASSERT(refcount_read(&block_group->refs) == 1); 3387 ASSERT(block_group->swap_extents == 0); 3388 btrfs_put_block_group(block_group); 3389 3390 spin_lock(&info->block_group_cache_lock); 3391 } 3392 spin_unlock(&info->block_group_cache_lock); 3393 3394 btrfs_release_global_block_rsv(info); 3395 3396 while (!list_empty(&info->space_info)) { 3397 space_info = list_entry(info->space_info.next, 3398 struct btrfs_space_info, 3399 list); 3400 3401 /* 3402 * Do not hide this behind enospc_debug, this is actually 3403 * important and indicates a real bug if this happens. 3404 */ 3405 if (WARN_ON(space_info->bytes_pinned > 0 || 3406 space_info->bytes_reserved > 0 || 3407 space_info->bytes_may_use > 0)) 3408 btrfs_dump_space_info(info, space_info, 0, 0); 3409 WARN_ON(space_info->reclaim_size > 0); 3410 list_del(&space_info->list); 3411 btrfs_sysfs_remove_space_info(space_info); 3412 } 3413 return 0; 3414} 3415 3416void btrfs_freeze_block_group(struct btrfs_block_group *cache) 3417{ 3418 atomic_inc(&cache->frozen); 3419} 3420 3421void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 3422{ 3423 struct btrfs_fs_info *fs_info = block_group->fs_info; 3424 struct extent_map_tree *em_tree; 3425 struct extent_map *em; 3426 bool cleanup; 3427 3428 spin_lock(&block_group->lock); 3429 cleanup = (atomic_dec_and_test(&block_group->frozen) && 3430 block_group->removed); 3431 spin_unlock(&block_group->lock); 3432 3433 if (cleanup) { 3434 em_tree = &fs_info->mapping_tree; 3435 write_lock(&em_tree->lock); 3436 em = lookup_extent_mapping(em_tree, block_group->start, 3437 1); 3438 BUG_ON(!em); /* logic error, can't happen */ 3439 remove_extent_mapping(em_tree, em); 3440 write_unlock(&em_tree->lock); 3441 3442 /* once for us and once for the tree */ 3443 free_extent_map(em); 3444 free_extent_map(em); 3445 3446 /* 3447 * We may have left one free space entry and other possible 3448 * tasks trimming this block group have left 1 entry each one. 3449 * Free them if any. 3450 */ 3451 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 3452 } 3453} 3454 3455bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 3456{ 3457 bool ret = true; 3458 3459 spin_lock(&bg->lock); 3460 if (bg->ro) 3461 ret = false; 3462 else 3463 bg->swap_extents++; 3464 spin_unlock(&bg->lock); 3465 3466 return ret; 3467} 3468 3469void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 3470{ 3471 spin_lock(&bg->lock); 3472 ASSERT(!bg->ro); 3473 ASSERT(bg->swap_extents >= amount); 3474 bg->swap_extents -= amount; 3475 spin_unlock(&bg->lock); 3476} 3477