xref: /kernel/linux/linux-5.10/fs/btrfs/block-group.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2
3#include "misc.h"
4#include "ctree.h"
5#include "block-group.h"
6#include "space-info.h"
7#include "disk-io.h"
8#include "free-space-cache.h"
9#include "free-space-tree.h"
10#include "volumes.h"
11#include "transaction.h"
12#include "ref-verify.h"
13#include "sysfs.h"
14#include "tree-log.h"
15#include "delalloc-space.h"
16#include "discard.h"
17#include "raid56.h"
18
19/*
20 * Return target flags in extended format or 0 if restripe for this chunk_type
21 * is not in progress
22 *
23 * Should be called with balance_lock held
24 */
25static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
26{
27	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
28	u64 target = 0;
29
30	if (!bctl)
31		return 0;
32
33	if (flags & BTRFS_BLOCK_GROUP_DATA &&
34	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
35		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
36	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
37		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
38		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
39	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
40		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
41		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
42	}
43
44	return target;
45}
46
47/*
48 * @flags: available profiles in extended format (see ctree.h)
49 *
50 * Return reduced profile in chunk format.  If profile changing is in progress
51 * (either running or paused) picks the target profile (if it's already
52 * available), otherwise falls back to plain reducing.
53 */
54static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
55{
56	u64 num_devices = fs_info->fs_devices->rw_devices;
57	u64 target;
58	u64 raid_type;
59	u64 allowed = 0;
60
61	/*
62	 * See if restripe for this chunk_type is in progress, if so try to
63	 * reduce to the target profile
64	 */
65	spin_lock(&fs_info->balance_lock);
66	target = get_restripe_target(fs_info, flags);
67	if (target) {
68		spin_unlock(&fs_info->balance_lock);
69		return extended_to_chunk(target);
70	}
71	spin_unlock(&fs_info->balance_lock);
72
73	/* First, mask out the RAID levels which aren't possible */
74	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
75		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
76			allowed |= btrfs_raid_array[raid_type].bg_flag;
77	}
78	allowed &= flags;
79
80	/* Select the highest-redundancy RAID level. */
81	if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
82		allowed = BTRFS_BLOCK_GROUP_RAID1C4;
83	else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
84		allowed = BTRFS_BLOCK_GROUP_RAID6;
85	else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
86		allowed = BTRFS_BLOCK_GROUP_RAID1C3;
87	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
88		allowed = BTRFS_BLOCK_GROUP_RAID5;
89	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
90		allowed = BTRFS_BLOCK_GROUP_RAID10;
91	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
92		allowed = BTRFS_BLOCK_GROUP_RAID1;
93	else if (allowed & BTRFS_BLOCK_GROUP_DUP)
94		allowed = BTRFS_BLOCK_GROUP_DUP;
95	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
96		allowed = BTRFS_BLOCK_GROUP_RAID0;
97
98	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
99
100	return extended_to_chunk(flags | allowed);
101}
102
103u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
104{
105	unsigned seq;
106	u64 flags;
107
108	do {
109		flags = orig_flags;
110		seq = read_seqbegin(&fs_info->profiles_lock);
111
112		if (flags & BTRFS_BLOCK_GROUP_DATA)
113			flags |= fs_info->avail_data_alloc_bits;
114		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
115			flags |= fs_info->avail_system_alloc_bits;
116		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
117			flags |= fs_info->avail_metadata_alloc_bits;
118	} while (read_seqretry(&fs_info->profiles_lock, seq));
119
120	return btrfs_reduce_alloc_profile(fs_info, flags);
121}
122
123void btrfs_get_block_group(struct btrfs_block_group *cache)
124{
125	refcount_inc(&cache->refs);
126}
127
128void btrfs_put_block_group(struct btrfs_block_group *cache)
129{
130	if (refcount_dec_and_test(&cache->refs)) {
131		WARN_ON(cache->pinned > 0);
132		WARN_ON(cache->reserved > 0);
133
134		/*
135		 * A block_group shouldn't be on the discard_list anymore.
136		 * Remove the block_group from the discard_list to prevent us
137		 * from causing a panic due to NULL pointer dereference.
138		 */
139		if (WARN_ON(!list_empty(&cache->discard_list)))
140			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
141						  cache);
142
143		/*
144		 * If not empty, someone is still holding mutex of
145		 * full_stripe_lock, which can only be released by caller.
146		 * And it will definitely cause use-after-free when caller
147		 * tries to release full stripe lock.
148		 *
149		 * No better way to resolve, but only to warn.
150		 */
151		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
152		kfree(cache->free_space_ctl);
153		kfree(cache);
154	}
155}
156
157/*
158 * This adds the block group to the fs_info rb tree for the block group cache
159 */
160static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
161				       struct btrfs_block_group *block_group)
162{
163	struct rb_node **p;
164	struct rb_node *parent = NULL;
165	struct btrfs_block_group *cache;
166
167	ASSERT(block_group->length != 0);
168
169	spin_lock(&info->block_group_cache_lock);
170	p = &info->block_group_cache_tree.rb_node;
171
172	while (*p) {
173		parent = *p;
174		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
175		if (block_group->start < cache->start) {
176			p = &(*p)->rb_left;
177		} else if (block_group->start > cache->start) {
178			p = &(*p)->rb_right;
179		} else {
180			spin_unlock(&info->block_group_cache_lock);
181			return -EEXIST;
182		}
183	}
184
185	rb_link_node(&block_group->cache_node, parent, p);
186	rb_insert_color(&block_group->cache_node,
187			&info->block_group_cache_tree);
188
189	if (info->first_logical_byte > block_group->start)
190		info->first_logical_byte = block_group->start;
191
192	spin_unlock(&info->block_group_cache_lock);
193
194	return 0;
195}
196
197/*
198 * This will return the block group at or after bytenr if contains is 0, else
199 * it will return the block group that contains the bytenr
200 */
201static struct btrfs_block_group *block_group_cache_tree_search(
202		struct btrfs_fs_info *info, u64 bytenr, int contains)
203{
204	struct btrfs_block_group *cache, *ret = NULL;
205	struct rb_node *n;
206	u64 end, start;
207
208	spin_lock(&info->block_group_cache_lock);
209	n = info->block_group_cache_tree.rb_node;
210
211	while (n) {
212		cache = rb_entry(n, struct btrfs_block_group, cache_node);
213		end = cache->start + cache->length - 1;
214		start = cache->start;
215
216		if (bytenr < start) {
217			if (!contains && (!ret || start < ret->start))
218				ret = cache;
219			n = n->rb_left;
220		} else if (bytenr > start) {
221			if (contains && bytenr <= end) {
222				ret = cache;
223				break;
224			}
225			n = n->rb_right;
226		} else {
227			ret = cache;
228			break;
229		}
230	}
231	if (ret) {
232		btrfs_get_block_group(ret);
233		if (bytenr == 0 && info->first_logical_byte > ret->start)
234			info->first_logical_byte = ret->start;
235	}
236	spin_unlock(&info->block_group_cache_lock);
237
238	return ret;
239}
240
241/*
242 * Return the block group that starts at or after bytenr
243 */
244struct btrfs_block_group *btrfs_lookup_first_block_group(
245		struct btrfs_fs_info *info, u64 bytenr)
246{
247	return block_group_cache_tree_search(info, bytenr, 0);
248}
249
250/*
251 * Return the block group that contains the given bytenr
252 */
253struct btrfs_block_group *btrfs_lookup_block_group(
254		struct btrfs_fs_info *info, u64 bytenr)
255{
256	return block_group_cache_tree_search(info, bytenr, 1);
257}
258
259struct btrfs_block_group *btrfs_next_block_group(
260		struct btrfs_block_group *cache)
261{
262	struct btrfs_fs_info *fs_info = cache->fs_info;
263	struct rb_node *node;
264
265	spin_lock(&fs_info->block_group_cache_lock);
266
267	/* If our block group was removed, we need a full search. */
268	if (RB_EMPTY_NODE(&cache->cache_node)) {
269		const u64 next_bytenr = cache->start + cache->length;
270
271		spin_unlock(&fs_info->block_group_cache_lock);
272		btrfs_put_block_group(cache);
273		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
274	}
275	node = rb_next(&cache->cache_node);
276	btrfs_put_block_group(cache);
277	if (node) {
278		cache = rb_entry(node, struct btrfs_block_group, cache_node);
279		btrfs_get_block_group(cache);
280	} else
281		cache = NULL;
282	spin_unlock(&fs_info->block_group_cache_lock);
283	return cache;
284}
285
286bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
287{
288	struct btrfs_block_group *bg;
289	bool ret = true;
290
291	bg = btrfs_lookup_block_group(fs_info, bytenr);
292	if (!bg)
293		return false;
294
295	spin_lock(&bg->lock);
296	if (bg->ro)
297		ret = false;
298	else
299		atomic_inc(&bg->nocow_writers);
300	spin_unlock(&bg->lock);
301
302	/* No put on block group, done by btrfs_dec_nocow_writers */
303	if (!ret)
304		btrfs_put_block_group(bg);
305
306	return ret;
307}
308
309void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
310{
311	struct btrfs_block_group *bg;
312
313	bg = btrfs_lookup_block_group(fs_info, bytenr);
314	ASSERT(bg);
315	if (atomic_dec_and_test(&bg->nocow_writers))
316		wake_up_var(&bg->nocow_writers);
317	/*
318	 * Once for our lookup and once for the lookup done by a previous call
319	 * to btrfs_inc_nocow_writers()
320	 */
321	btrfs_put_block_group(bg);
322	btrfs_put_block_group(bg);
323}
324
325void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
326{
327	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
328}
329
330void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
331					const u64 start)
332{
333	struct btrfs_block_group *bg;
334
335	bg = btrfs_lookup_block_group(fs_info, start);
336	ASSERT(bg);
337	if (atomic_dec_and_test(&bg->reservations))
338		wake_up_var(&bg->reservations);
339	btrfs_put_block_group(bg);
340}
341
342void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
343{
344	struct btrfs_space_info *space_info = bg->space_info;
345
346	ASSERT(bg->ro);
347
348	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
349		return;
350
351	/*
352	 * Our block group is read only but before we set it to read only,
353	 * some task might have had allocated an extent from it already, but it
354	 * has not yet created a respective ordered extent (and added it to a
355	 * root's list of ordered extents).
356	 * Therefore wait for any task currently allocating extents, since the
357	 * block group's reservations counter is incremented while a read lock
358	 * on the groups' semaphore is held and decremented after releasing
359	 * the read access on that semaphore and creating the ordered extent.
360	 */
361	down_write(&space_info->groups_sem);
362	up_write(&space_info->groups_sem);
363
364	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
365}
366
367struct btrfs_caching_control *btrfs_get_caching_control(
368		struct btrfs_block_group *cache)
369{
370	struct btrfs_caching_control *ctl;
371
372	spin_lock(&cache->lock);
373	if (!cache->caching_ctl) {
374		spin_unlock(&cache->lock);
375		return NULL;
376	}
377
378	ctl = cache->caching_ctl;
379	refcount_inc(&ctl->count);
380	spin_unlock(&cache->lock);
381	return ctl;
382}
383
384void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
385{
386	if (refcount_dec_and_test(&ctl->count))
387		kfree(ctl);
388}
389
390/*
391 * When we wait for progress in the block group caching, its because our
392 * allocation attempt failed at least once.  So, we must sleep and let some
393 * progress happen before we try again.
394 *
395 * This function will sleep at least once waiting for new free space to show
396 * up, and then it will check the block group free space numbers for our min
397 * num_bytes.  Another option is to have it go ahead and look in the rbtree for
398 * a free extent of a given size, but this is a good start.
399 *
400 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
401 * any of the information in this block group.
402 */
403void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
404					   u64 num_bytes)
405{
406	struct btrfs_caching_control *caching_ctl;
407
408	caching_ctl = btrfs_get_caching_control(cache);
409	if (!caching_ctl)
410		return;
411
412	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
413		   (cache->free_space_ctl->free_space >= num_bytes));
414
415	btrfs_put_caching_control(caching_ctl);
416}
417
418int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
419{
420	struct btrfs_caching_control *caching_ctl;
421	int ret = 0;
422
423	caching_ctl = btrfs_get_caching_control(cache);
424	if (!caching_ctl)
425		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
426
427	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
428	if (cache->cached == BTRFS_CACHE_ERROR)
429		ret = -EIO;
430	btrfs_put_caching_control(caching_ctl);
431	return ret;
432}
433
434#ifdef CONFIG_BTRFS_DEBUG
435static void fragment_free_space(struct btrfs_block_group *block_group)
436{
437	struct btrfs_fs_info *fs_info = block_group->fs_info;
438	u64 start = block_group->start;
439	u64 len = block_group->length;
440	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
441		fs_info->nodesize : fs_info->sectorsize;
442	u64 step = chunk << 1;
443
444	while (len > chunk) {
445		btrfs_remove_free_space(block_group, start, chunk);
446		start += step;
447		if (len < step)
448			len = 0;
449		else
450			len -= step;
451	}
452}
453#endif
454
455/*
456 * This is only called by btrfs_cache_block_group, since we could have freed
457 * extents we need to check the pinned_extents for any extents that can't be
458 * used yet since their free space will be released as soon as the transaction
459 * commits.
460 */
461u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
462{
463	struct btrfs_fs_info *info = block_group->fs_info;
464	u64 extent_start, extent_end, size, total_added = 0;
465	int ret;
466
467	while (start < end) {
468		ret = find_first_extent_bit(&info->excluded_extents, start,
469					    &extent_start, &extent_end,
470					    EXTENT_DIRTY | EXTENT_UPTODATE,
471					    NULL);
472		if (ret)
473			break;
474
475		if (extent_start <= start) {
476			start = extent_end + 1;
477		} else if (extent_start > start && extent_start < end) {
478			size = extent_start - start;
479			total_added += size;
480			ret = btrfs_add_free_space_async_trimmed(block_group,
481								 start, size);
482			BUG_ON(ret); /* -ENOMEM or logic error */
483			start = extent_end + 1;
484		} else {
485			break;
486		}
487	}
488
489	if (start < end) {
490		size = end - start;
491		total_added += size;
492		ret = btrfs_add_free_space_async_trimmed(block_group, start,
493							 size);
494		BUG_ON(ret); /* -ENOMEM or logic error */
495	}
496
497	return total_added;
498}
499
500static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
501{
502	struct btrfs_block_group *block_group = caching_ctl->block_group;
503	struct btrfs_fs_info *fs_info = block_group->fs_info;
504	struct btrfs_root *extent_root = fs_info->extent_root;
505	struct btrfs_path *path;
506	struct extent_buffer *leaf;
507	struct btrfs_key key;
508	u64 total_found = 0;
509	u64 last = 0;
510	u32 nritems;
511	int ret;
512	bool wakeup = true;
513
514	path = btrfs_alloc_path();
515	if (!path)
516		return -ENOMEM;
517
518	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
519
520#ifdef CONFIG_BTRFS_DEBUG
521	/*
522	 * If we're fragmenting we don't want to make anybody think we can
523	 * allocate from this block group until we've had a chance to fragment
524	 * the free space.
525	 */
526	if (btrfs_should_fragment_free_space(block_group))
527		wakeup = false;
528#endif
529	/*
530	 * We don't want to deadlock with somebody trying to allocate a new
531	 * extent for the extent root while also trying to search the extent
532	 * root to add free space.  So we skip locking and search the commit
533	 * root, since its read-only
534	 */
535	path->skip_locking = 1;
536	path->search_commit_root = 1;
537	path->reada = READA_FORWARD;
538
539	key.objectid = last;
540	key.offset = 0;
541	key.type = BTRFS_EXTENT_ITEM_KEY;
542
543next:
544	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
545	if (ret < 0)
546		goto out;
547
548	leaf = path->nodes[0];
549	nritems = btrfs_header_nritems(leaf);
550
551	while (1) {
552		if (btrfs_fs_closing(fs_info) > 1) {
553			last = (u64)-1;
554			break;
555		}
556
557		if (path->slots[0] < nritems) {
558			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
559		} else {
560			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
561			if (ret)
562				break;
563
564			if (need_resched() ||
565			    rwsem_is_contended(&fs_info->commit_root_sem)) {
566				if (wakeup)
567					caching_ctl->progress = last;
568				btrfs_release_path(path);
569				up_read(&fs_info->commit_root_sem);
570				mutex_unlock(&caching_ctl->mutex);
571				cond_resched();
572				mutex_lock(&caching_ctl->mutex);
573				down_read(&fs_info->commit_root_sem);
574				goto next;
575			}
576
577			ret = btrfs_next_leaf(extent_root, path);
578			if (ret < 0)
579				goto out;
580			if (ret)
581				break;
582			leaf = path->nodes[0];
583			nritems = btrfs_header_nritems(leaf);
584			continue;
585		}
586
587		if (key.objectid < last) {
588			key.objectid = last;
589			key.offset = 0;
590			key.type = BTRFS_EXTENT_ITEM_KEY;
591
592			if (wakeup)
593				caching_ctl->progress = last;
594			btrfs_release_path(path);
595			goto next;
596		}
597
598		if (key.objectid < block_group->start) {
599			path->slots[0]++;
600			continue;
601		}
602
603		if (key.objectid >= block_group->start + block_group->length)
604			break;
605
606		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
607		    key.type == BTRFS_METADATA_ITEM_KEY) {
608			total_found += add_new_free_space(block_group, last,
609							  key.objectid);
610			if (key.type == BTRFS_METADATA_ITEM_KEY)
611				last = key.objectid +
612					fs_info->nodesize;
613			else
614				last = key.objectid + key.offset;
615
616			if (total_found > CACHING_CTL_WAKE_UP) {
617				total_found = 0;
618				if (wakeup)
619					wake_up(&caching_ctl->wait);
620			}
621		}
622		path->slots[0]++;
623	}
624	ret = 0;
625
626	total_found += add_new_free_space(block_group, last,
627				block_group->start + block_group->length);
628	caching_ctl->progress = (u64)-1;
629
630out:
631	btrfs_free_path(path);
632	return ret;
633}
634
635static noinline void caching_thread(struct btrfs_work *work)
636{
637	struct btrfs_block_group *block_group;
638	struct btrfs_fs_info *fs_info;
639	struct btrfs_caching_control *caching_ctl;
640	int ret;
641
642	caching_ctl = container_of(work, struct btrfs_caching_control, work);
643	block_group = caching_ctl->block_group;
644	fs_info = block_group->fs_info;
645
646	mutex_lock(&caching_ctl->mutex);
647	down_read(&fs_info->commit_root_sem);
648
649	/*
650	 * If we are in the transaction that populated the free space tree we
651	 * can't actually cache from the free space tree as our commit root and
652	 * real root are the same, so we could change the contents of the blocks
653	 * while caching.  Instead do the slow caching in this case, and after
654	 * the transaction has committed we will be safe.
655	 */
656	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
657	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
658		ret = load_free_space_tree(caching_ctl);
659	else
660		ret = load_extent_tree_free(caching_ctl);
661
662	spin_lock(&block_group->lock);
663	block_group->caching_ctl = NULL;
664	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
665	spin_unlock(&block_group->lock);
666
667#ifdef CONFIG_BTRFS_DEBUG
668	if (btrfs_should_fragment_free_space(block_group)) {
669		u64 bytes_used;
670
671		spin_lock(&block_group->space_info->lock);
672		spin_lock(&block_group->lock);
673		bytes_used = block_group->length - block_group->used;
674		block_group->space_info->bytes_used += bytes_used >> 1;
675		spin_unlock(&block_group->lock);
676		spin_unlock(&block_group->space_info->lock);
677		fragment_free_space(block_group);
678	}
679#endif
680
681	caching_ctl->progress = (u64)-1;
682
683	up_read(&fs_info->commit_root_sem);
684	btrfs_free_excluded_extents(block_group);
685	mutex_unlock(&caching_ctl->mutex);
686
687	wake_up(&caching_ctl->wait);
688
689	btrfs_put_caching_control(caching_ctl);
690	btrfs_put_block_group(block_group);
691}
692
693int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
694{
695	DEFINE_WAIT(wait);
696	struct btrfs_fs_info *fs_info = cache->fs_info;
697	struct btrfs_caching_control *caching_ctl;
698	int ret = 0;
699
700	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
701	if (!caching_ctl)
702		return -ENOMEM;
703
704	INIT_LIST_HEAD(&caching_ctl->list);
705	mutex_init(&caching_ctl->mutex);
706	init_waitqueue_head(&caching_ctl->wait);
707	caching_ctl->block_group = cache;
708	caching_ctl->progress = cache->start;
709	refcount_set(&caching_ctl->count, 1);
710	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
711
712	spin_lock(&cache->lock);
713	/*
714	 * This should be a rare occasion, but this could happen I think in the
715	 * case where one thread starts to load the space cache info, and then
716	 * some other thread starts a transaction commit which tries to do an
717	 * allocation while the other thread is still loading the space cache
718	 * info.  The previous loop should have kept us from choosing this block
719	 * group, but if we've moved to the state where we will wait on caching
720	 * block groups we need to first check if we're doing a fast load here,
721	 * so we can wait for it to finish, otherwise we could end up allocating
722	 * from a block group who's cache gets evicted for one reason or
723	 * another.
724	 */
725	while (cache->cached == BTRFS_CACHE_FAST) {
726		struct btrfs_caching_control *ctl;
727
728		ctl = cache->caching_ctl;
729		refcount_inc(&ctl->count);
730		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
731		spin_unlock(&cache->lock);
732
733		schedule();
734
735		finish_wait(&ctl->wait, &wait);
736		btrfs_put_caching_control(ctl);
737		spin_lock(&cache->lock);
738	}
739
740	if (cache->cached != BTRFS_CACHE_NO) {
741		spin_unlock(&cache->lock);
742		kfree(caching_ctl);
743		return 0;
744	}
745	WARN_ON(cache->caching_ctl);
746	cache->caching_ctl = caching_ctl;
747	cache->cached = BTRFS_CACHE_FAST;
748	spin_unlock(&cache->lock);
749
750	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
751		mutex_lock(&caching_ctl->mutex);
752		ret = load_free_space_cache(cache);
753
754		spin_lock(&cache->lock);
755		if (ret == 1) {
756			cache->caching_ctl = NULL;
757			cache->cached = BTRFS_CACHE_FINISHED;
758			cache->last_byte_to_unpin = (u64)-1;
759			caching_ctl->progress = (u64)-1;
760		} else {
761			if (load_cache_only) {
762				cache->caching_ctl = NULL;
763				cache->cached = BTRFS_CACHE_NO;
764			} else {
765				cache->cached = BTRFS_CACHE_STARTED;
766				cache->has_caching_ctl = 1;
767			}
768		}
769		spin_unlock(&cache->lock);
770#ifdef CONFIG_BTRFS_DEBUG
771		if (ret == 1 &&
772		    btrfs_should_fragment_free_space(cache)) {
773			u64 bytes_used;
774
775			spin_lock(&cache->space_info->lock);
776			spin_lock(&cache->lock);
777			bytes_used = cache->length - cache->used;
778			cache->space_info->bytes_used += bytes_used >> 1;
779			spin_unlock(&cache->lock);
780			spin_unlock(&cache->space_info->lock);
781			fragment_free_space(cache);
782		}
783#endif
784		mutex_unlock(&caching_ctl->mutex);
785
786		wake_up(&caching_ctl->wait);
787		if (ret == 1) {
788			btrfs_put_caching_control(caching_ctl);
789			btrfs_free_excluded_extents(cache);
790			return 0;
791		}
792	} else {
793		/*
794		 * We're either using the free space tree or no caching at all.
795		 * Set cached to the appropriate value and wakeup any waiters.
796		 */
797		spin_lock(&cache->lock);
798		if (load_cache_only) {
799			cache->caching_ctl = NULL;
800			cache->cached = BTRFS_CACHE_NO;
801		} else {
802			cache->cached = BTRFS_CACHE_STARTED;
803			cache->has_caching_ctl = 1;
804		}
805		spin_unlock(&cache->lock);
806		wake_up(&caching_ctl->wait);
807	}
808
809	if (load_cache_only) {
810		btrfs_put_caching_control(caching_ctl);
811		return 0;
812	}
813
814	down_write(&fs_info->commit_root_sem);
815	refcount_inc(&caching_ctl->count);
816	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
817	up_write(&fs_info->commit_root_sem);
818
819	btrfs_get_block_group(cache);
820
821	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
822
823	return ret;
824}
825
826static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
827{
828	u64 extra_flags = chunk_to_extended(flags) &
829				BTRFS_EXTENDED_PROFILE_MASK;
830
831	write_seqlock(&fs_info->profiles_lock);
832	if (flags & BTRFS_BLOCK_GROUP_DATA)
833		fs_info->avail_data_alloc_bits &= ~extra_flags;
834	if (flags & BTRFS_BLOCK_GROUP_METADATA)
835		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
836	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
837		fs_info->avail_system_alloc_bits &= ~extra_flags;
838	write_sequnlock(&fs_info->profiles_lock);
839}
840
841/*
842 * Clear incompat bits for the following feature(s):
843 *
844 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
845 *            in the whole filesystem
846 *
847 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
848 */
849static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
850{
851	bool found_raid56 = false;
852	bool found_raid1c34 = false;
853
854	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
855	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
856	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
857		struct list_head *head = &fs_info->space_info;
858		struct btrfs_space_info *sinfo;
859
860		list_for_each_entry_rcu(sinfo, head, list) {
861			down_read(&sinfo->groups_sem);
862			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
863				found_raid56 = true;
864			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
865				found_raid56 = true;
866			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
867				found_raid1c34 = true;
868			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
869				found_raid1c34 = true;
870			up_read(&sinfo->groups_sem);
871		}
872		if (!found_raid56)
873			btrfs_clear_fs_incompat(fs_info, RAID56);
874		if (!found_raid1c34)
875			btrfs_clear_fs_incompat(fs_info, RAID1C34);
876	}
877}
878
879static int remove_block_group_item(struct btrfs_trans_handle *trans,
880				   struct btrfs_path *path,
881				   struct btrfs_block_group *block_group)
882{
883	struct btrfs_fs_info *fs_info = trans->fs_info;
884	struct btrfs_root *root;
885	struct btrfs_key key;
886	int ret;
887
888	root = fs_info->extent_root;
889	key.objectid = block_group->start;
890	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
891	key.offset = block_group->length;
892
893	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
894	if (ret > 0)
895		ret = -ENOENT;
896	if (ret < 0)
897		return ret;
898
899	ret = btrfs_del_item(trans, root, path);
900	return ret;
901}
902
903int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
904			     u64 group_start, struct extent_map *em)
905{
906	struct btrfs_fs_info *fs_info = trans->fs_info;
907	struct btrfs_path *path;
908	struct btrfs_block_group *block_group;
909	struct btrfs_free_cluster *cluster;
910	struct btrfs_root *tree_root = fs_info->tree_root;
911	struct btrfs_key key;
912	struct inode *inode;
913	struct kobject *kobj = NULL;
914	int ret;
915	int index;
916	int factor;
917	struct btrfs_caching_control *caching_ctl = NULL;
918	bool remove_em;
919	bool remove_rsv = false;
920
921	block_group = btrfs_lookup_block_group(fs_info, group_start);
922	BUG_ON(!block_group);
923	BUG_ON(!block_group->ro);
924
925	trace_btrfs_remove_block_group(block_group);
926	/*
927	 * Free the reserved super bytes from this block group before
928	 * remove it.
929	 */
930	btrfs_free_excluded_extents(block_group);
931	btrfs_free_ref_tree_range(fs_info, block_group->start,
932				  block_group->length);
933
934	index = btrfs_bg_flags_to_raid_index(block_group->flags);
935	factor = btrfs_bg_type_to_factor(block_group->flags);
936
937	/* make sure this block group isn't part of an allocation cluster */
938	cluster = &fs_info->data_alloc_cluster;
939	spin_lock(&cluster->refill_lock);
940	btrfs_return_cluster_to_free_space(block_group, cluster);
941	spin_unlock(&cluster->refill_lock);
942
943	/*
944	 * make sure this block group isn't part of a metadata
945	 * allocation cluster
946	 */
947	cluster = &fs_info->meta_alloc_cluster;
948	spin_lock(&cluster->refill_lock);
949	btrfs_return_cluster_to_free_space(block_group, cluster);
950	spin_unlock(&cluster->refill_lock);
951
952	path = btrfs_alloc_path();
953	if (!path) {
954		ret = -ENOMEM;
955		goto out;
956	}
957
958	/*
959	 * get the inode first so any iput calls done for the io_list
960	 * aren't the final iput (no unlinks allowed now)
961	 */
962	inode = lookup_free_space_inode(block_group, path);
963
964	mutex_lock(&trans->transaction->cache_write_mutex);
965	/*
966	 * Make sure our free space cache IO is done before removing the
967	 * free space inode
968	 */
969	spin_lock(&trans->transaction->dirty_bgs_lock);
970	if (!list_empty(&block_group->io_list)) {
971		list_del_init(&block_group->io_list);
972
973		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
974
975		spin_unlock(&trans->transaction->dirty_bgs_lock);
976		btrfs_wait_cache_io(trans, block_group, path);
977		btrfs_put_block_group(block_group);
978		spin_lock(&trans->transaction->dirty_bgs_lock);
979	}
980
981	if (!list_empty(&block_group->dirty_list)) {
982		list_del_init(&block_group->dirty_list);
983		remove_rsv = true;
984		btrfs_put_block_group(block_group);
985	}
986	spin_unlock(&trans->transaction->dirty_bgs_lock);
987	mutex_unlock(&trans->transaction->cache_write_mutex);
988
989	if (!IS_ERR(inode)) {
990		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
991		if (ret) {
992			btrfs_add_delayed_iput(inode);
993			goto out;
994		}
995		clear_nlink(inode);
996		/* One for the block groups ref */
997		spin_lock(&block_group->lock);
998		if (block_group->iref) {
999			block_group->iref = 0;
1000			block_group->inode = NULL;
1001			spin_unlock(&block_group->lock);
1002			iput(inode);
1003		} else {
1004			spin_unlock(&block_group->lock);
1005		}
1006		/* One for our lookup ref */
1007		btrfs_add_delayed_iput(inode);
1008	}
1009
1010	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1011	key.type = 0;
1012	key.offset = block_group->start;
1013
1014	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
1015	if (ret < 0)
1016		goto out;
1017	if (ret > 0)
1018		btrfs_release_path(path);
1019	if (ret == 0) {
1020		ret = btrfs_del_item(trans, tree_root, path);
1021		if (ret)
1022			goto out;
1023		btrfs_release_path(path);
1024	}
1025
1026	spin_lock(&fs_info->block_group_cache_lock);
1027	rb_erase(&block_group->cache_node,
1028		 &fs_info->block_group_cache_tree);
1029	RB_CLEAR_NODE(&block_group->cache_node);
1030
1031	/* Once for the block groups rbtree */
1032	btrfs_put_block_group(block_group);
1033
1034	if (fs_info->first_logical_byte == block_group->start)
1035		fs_info->first_logical_byte = (u64)-1;
1036	spin_unlock(&fs_info->block_group_cache_lock);
1037
1038	down_write(&block_group->space_info->groups_sem);
1039	/*
1040	 * we must use list_del_init so people can check to see if they
1041	 * are still on the list after taking the semaphore
1042	 */
1043	list_del_init(&block_group->list);
1044	if (list_empty(&block_group->space_info->block_groups[index])) {
1045		kobj = block_group->space_info->block_group_kobjs[index];
1046		block_group->space_info->block_group_kobjs[index] = NULL;
1047		clear_avail_alloc_bits(fs_info, block_group->flags);
1048	}
1049	up_write(&block_group->space_info->groups_sem);
1050	clear_incompat_bg_bits(fs_info, block_group->flags);
1051	if (kobj) {
1052		kobject_del(kobj);
1053		kobject_put(kobj);
1054	}
1055
1056	if (block_group->has_caching_ctl)
1057		caching_ctl = btrfs_get_caching_control(block_group);
1058	if (block_group->cached == BTRFS_CACHE_STARTED)
1059		btrfs_wait_block_group_cache_done(block_group);
1060	if (block_group->has_caching_ctl) {
1061		down_write(&fs_info->commit_root_sem);
1062		if (!caching_ctl) {
1063			struct btrfs_caching_control *ctl;
1064
1065			list_for_each_entry(ctl,
1066				    &fs_info->caching_block_groups, list)
1067				if (ctl->block_group == block_group) {
1068					caching_ctl = ctl;
1069					refcount_inc(&caching_ctl->count);
1070					break;
1071				}
1072		}
1073		if (caching_ctl)
1074			list_del_init(&caching_ctl->list);
1075		up_write(&fs_info->commit_root_sem);
1076		if (caching_ctl) {
1077			/* Once for the caching bgs list and once for us. */
1078			btrfs_put_caching_control(caching_ctl);
1079			btrfs_put_caching_control(caching_ctl);
1080		}
1081	}
1082
1083	spin_lock(&trans->transaction->dirty_bgs_lock);
1084	WARN_ON(!list_empty(&block_group->dirty_list));
1085	WARN_ON(!list_empty(&block_group->io_list));
1086	spin_unlock(&trans->transaction->dirty_bgs_lock);
1087
1088	btrfs_remove_free_space_cache(block_group);
1089
1090	spin_lock(&block_group->space_info->lock);
1091	list_del_init(&block_group->ro_list);
1092
1093	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1094		WARN_ON(block_group->space_info->total_bytes
1095			< block_group->length);
1096		WARN_ON(block_group->space_info->bytes_readonly
1097			< block_group->length);
1098		WARN_ON(block_group->space_info->disk_total
1099			< block_group->length * factor);
1100	}
1101	block_group->space_info->total_bytes -= block_group->length;
1102	block_group->space_info->bytes_readonly -= block_group->length;
1103	block_group->space_info->disk_total -= block_group->length * factor;
1104
1105	spin_unlock(&block_group->space_info->lock);
1106
1107	/*
1108	 * Remove the free space for the block group from the free space tree
1109	 * and the block group's item from the extent tree before marking the
1110	 * block group as removed. This is to prevent races with tasks that
1111	 * freeze and unfreeze a block group, this task and another task
1112	 * allocating a new block group - the unfreeze task ends up removing
1113	 * the block group's extent map before the task calling this function
1114	 * deletes the block group item from the extent tree, allowing for
1115	 * another task to attempt to create another block group with the same
1116	 * item key (and failing with -EEXIST and a transaction abort).
1117	 */
1118	ret = remove_block_group_free_space(trans, block_group);
1119	if (ret)
1120		goto out;
1121
1122	ret = remove_block_group_item(trans, path, block_group);
1123	if (ret < 0)
1124		goto out;
1125
1126	spin_lock(&block_group->lock);
1127	block_group->removed = 1;
1128	/*
1129	 * At this point trimming or scrub can't start on this block group,
1130	 * because we removed the block group from the rbtree
1131	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1132	 * even if someone already got this block group before we removed it
1133	 * from the rbtree, they have already incremented block_group->frozen -
1134	 * if they didn't, for the trimming case they won't find any free space
1135	 * entries because we already removed them all when we called
1136	 * btrfs_remove_free_space_cache().
1137	 *
1138	 * And we must not remove the extent map from the fs_info->mapping_tree
1139	 * to prevent the same logical address range and physical device space
1140	 * ranges from being reused for a new block group. This is needed to
1141	 * avoid races with trimming and scrub.
1142	 *
1143	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1144	 * completely transactionless, so while it is trimming a range the
1145	 * currently running transaction might finish and a new one start,
1146	 * allowing for new block groups to be created that can reuse the same
1147	 * physical device locations unless we take this special care.
1148	 *
1149	 * There may also be an implicit trim operation if the file system
1150	 * is mounted with -odiscard. The same protections must remain
1151	 * in place until the extents have been discarded completely when
1152	 * the transaction commit has completed.
1153	 */
1154	remove_em = (atomic_read(&block_group->frozen) == 0);
1155	spin_unlock(&block_group->lock);
1156
1157	if (remove_em) {
1158		struct extent_map_tree *em_tree;
1159
1160		em_tree = &fs_info->mapping_tree;
1161		write_lock(&em_tree->lock);
1162		remove_extent_mapping(em_tree, em);
1163		write_unlock(&em_tree->lock);
1164		/* once for the tree */
1165		free_extent_map(em);
1166	}
1167
1168out:
1169	/* Once for the lookup reference */
1170	btrfs_put_block_group(block_group);
1171	if (remove_rsv)
1172		btrfs_delayed_refs_rsv_release(fs_info, 1);
1173	btrfs_free_path(path);
1174	return ret;
1175}
1176
1177struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1178		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1179{
1180	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1181	struct extent_map *em;
1182	struct map_lookup *map;
1183	unsigned int num_items;
1184
1185	read_lock(&em_tree->lock);
1186	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1187	read_unlock(&em_tree->lock);
1188	ASSERT(em && em->start == chunk_offset);
1189
1190	/*
1191	 * We need to reserve 3 + N units from the metadata space info in order
1192	 * to remove a block group (done at btrfs_remove_chunk() and at
1193	 * btrfs_remove_block_group()), which are used for:
1194	 *
1195	 * 1 unit for adding the free space inode's orphan (located in the tree
1196	 * of tree roots).
1197	 * 1 unit for deleting the block group item (located in the extent
1198	 * tree).
1199	 * 1 unit for deleting the free space item (located in tree of tree
1200	 * roots).
1201	 * N units for deleting N device extent items corresponding to each
1202	 * stripe (located in the device tree).
1203	 *
1204	 * In order to remove a block group we also need to reserve units in the
1205	 * system space info in order to update the chunk tree (update one or
1206	 * more device items and remove one chunk item), but this is done at
1207	 * btrfs_remove_chunk() through a call to check_system_chunk().
1208	 */
1209	map = em->map_lookup;
1210	num_items = 3 + map->num_stripes;
1211	free_extent_map(em);
1212
1213	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1214							   num_items);
1215}
1216
1217/*
1218 * Mark block group @cache read-only, so later write won't happen to block
1219 * group @cache.
1220 *
1221 * If @force is not set, this function will only mark the block group readonly
1222 * if we have enough free space (1M) in other metadata/system block groups.
1223 * If @force is not set, this function will mark the block group readonly
1224 * without checking free space.
1225 *
1226 * NOTE: This function doesn't care if other block groups can contain all the
1227 * data in this block group. That check should be done by relocation routine,
1228 * not this function.
1229 */
1230static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1231{
1232	struct btrfs_space_info *sinfo = cache->space_info;
1233	u64 num_bytes;
1234	int ret = -ENOSPC;
1235
1236	spin_lock(&sinfo->lock);
1237	spin_lock(&cache->lock);
1238
1239	if (cache->swap_extents) {
1240		ret = -ETXTBSY;
1241		goto out;
1242	}
1243
1244	if (cache->ro) {
1245		cache->ro++;
1246		ret = 0;
1247		goto out;
1248	}
1249
1250	num_bytes = cache->length - cache->reserved - cache->pinned -
1251		    cache->bytes_super - cache->used;
1252
1253	/*
1254	 * Data never overcommits, even in mixed mode, so do just the straight
1255	 * check of left over space in how much we have allocated.
1256	 */
1257	if (force) {
1258		ret = 0;
1259	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1260		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1261
1262		/*
1263		 * Here we make sure if we mark this bg RO, we still have enough
1264		 * free space as buffer.
1265		 */
1266		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1267			ret = 0;
1268	} else {
1269		/*
1270		 * We overcommit metadata, so we need to do the
1271		 * btrfs_can_overcommit check here, and we need to pass in
1272		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1273		 * leeway to allow us to mark this block group as read only.
1274		 */
1275		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1276					 BTRFS_RESERVE_NO_FLUSH))
1277			ret = 0;
1278	}
1279
1280	if (!ret) {
1281		sinfo->bytes_readonly += num_bytes;
1282		cache->ro++;
1283		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1284	}
1285out:
1286	spin_unlock(&cache->lock);
1287	spin_unlock(&sinfo->lock);
1288	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1289		btrfs_info(cache->fs_info,
1290			"unable to make block group %llu ro", cache->start);
1291		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1292	}
1293	return ret;
1294}
1295
1296static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1297				 struct btrfs_block_group *bg)
1298{
1299	struct btrfs_fs_info *fs_info = bg->fs_info;
1300	struct btrfs_transaction *prev_trans = NULL;
1301	const u64 start = bg->start;
1302	const u64 end = start + bg->length - 1;
1303	int ret;
1304
1305	spin_lock(&fs_info->trans_lock);
1306	if (trans->transaction->list.prev != &fs_info->trans_list) {
1307		prev_trans = list_last_entry(&trans->transaction->list,
1308					     struct btrfs_transaction, list);
1309		refcount_inc(&prev_trans->use_count);
1310	}
1311	spin_unlock(&fs_info->trans_lock);
1312
1313	/*
1314	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1315	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1316	 * task might be running finish_extent_commit() for the previous
1317	 * transaction N - 1, and have seen a range belonging to the block
1318	 * group in pinned_extents before we were able to clear the whole block
1319	 * group range from pinned_extents. This means that task can lookup for
1320	 * the block group after we unpinned it from pinned_extents and removed
1321	 * it, leading to a BUG_ON() at unpin_extent_range().
1322	 */
1323	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1324	if (prev_trans) {
1325		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1326					EXTENT_DIRTY);
1327		if (ret)
1328			goto out;
1329	}
1330
1331	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1332				EXTENT_DIRTY);
1333out:
1334	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1335	if (prev_trans)
1336		btrfs_put_transaction(prev_trans);
1337
1338	return ret == 0;
1339}
1340
1341/*
1342 * Process the unused_bgs list and remove any that don't have any allocated
1343 * space inside of them.
1344 */
1345void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1346{
1347	struct btrfs_block_group *block_group;
1348	struct btrfs_space_info *space_info;
1349	struct btrfs_trans_handle *trans;
1350	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1351	int ret = 0;
1352
1353	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1354		return;
1355
1356	spin_lock(&fs_info->unused_bgs_lock);
1357	while (!list_empty(&fs_info->unused_bgs)) {
1358		int trimming;
1359
1360		block_group = list_first_entry(&fs_info->unused_bgs,
1361					       struct btrfs_block_group,
1362					       bg_list);
1363		list_del_init(&block_group->bg_list);
1364
1365		space_info = block_group->space_info;
1366
1367		if (ret || btrfs_mixed_space_info(space_info)) {
1368			btrfs_put_block_group(block_group);
1369			continue;
1370		}
1371		spin_unlock(&fs_info->unused_bgs_lock);
1372
1373		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1374
1375		mutex_lock(&fs_info->delete_unused_bgs_mutex);
1376
1377		/* Don't want to race with allocators so take the groups_sem */
1378		down_write(&space_info->groups_sem);
1379
1380		/*
1381		 * Async discard moves the final block group discard to be prior
1382		 * to the unused_bgs code path.  Therefore, if it's not fully
1383		 * trimmed, punt it back to the async discard lists.
1384		 */
1385		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1386		    !btrfs_is_free_space_trimmed(block_group)) {
1387			trace_btrfs_skip_unused_block_group(block_group);
1388			up_write(&space_info->groups_sem);
1389			/* Requeue if we failed because of async discard */
1390			btrfs_discard_queue_work(&fs_info->discard_ctl,
1391						 block_group);
1392			goto next;
1393		}
1394
1395		spin_lock(&block_group->lock);
1396		if (block_group->reserved || block_group->pinned ||
1397		    block_group->used || block_group->ro ||
1398		    list_is_singular(&block_group->list)) {
1399			/*
1400			 * We want to bail if we made new allocations or have
1401			 * outstanding allocations in this block group.  We do
1402			 * the ro check in case balance is currently acting on
1403			 * this block group.
1404			 */
1405			trace_btrfs_skip_unused_block_group(block_group);
1406			spin_unlock(&block_group->lock);
1407			up_write(&space_info->groups_sem);
1408			goto next;
1409		}
1410		spin_unlock(&block_group->lock);
1411
1412		/* We don't want to force the issue, only flip if it's ok. */
1413		ret = inc_block_group_ro(block_group, 0);
1414		up_write(&space_info->groups_sem);
1415		if (ret < 0) {
1416			ret = 0;
1417			goto next;
1418		}
1419
1420		/*
1421		 * Want to do this before we do anything else so we can recover
1422		 * properly if we fail to join the transaction.
1423		 */
1424		trans = btrfs_start_trans_remove_block_group(fs_info,
1425						     block_group->start);
1426		if (IS_ERR(trans)) {
1427			btrfs_dec_block_group_ro(block_group);
1428			ret = PTR_ERR(trans);
1429			goto next;
1430		}
1431
1432		/*
1433		 * We could have pending pinned extents for this block group,
1434		 * just delete them, we don't care about them anymore.
1435		 */
1436		if (!clean_pinned_extents(trans, block_group)) {
1437			btrfs_dec_block_group_ro(block_group);
1438			goto end_trans;
1439		}
1440
1441		/*
1442		 * At this point, the block_group is read only and should fail
1443		 * new allocations.  However, btrfs_finish_extent_commit() can
1444		 * cause this block_group to be placed back on the discard
1445		 * lists because now the block_group isn't fully discarded.
1446		 * Bail here and try again later after discarding everything.
1447		 */
1448		spin_lock(&fs_info->discard_ctl.lock);
1449		if (!list_empty(&block_group->discard_list)) {
1450			spin_unlock(&fs_info->discard_ctl.lock);
1451			btrfs_dec_block_group_ro(block_group);
1452			btrfs_discard_queue_work(&fs_info->discard_ctl,
1453						 block_group);
1454			goto end_trans;
1455		}
1456		spin_unlock(&fs_info->discard_ctl.lock);
1457
1458		/* Reset pinned so btrfs_put_block_group doesn't complain */
1459		spin_lock(&space_info->lock);
1460		spin_lock(&block_group->lock);
1461
1462		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1463						     -block_group->pinned);
1464		space_info->bytes_readonly += block_group->pinned;
1465		__btrfs_mod_total_bytes_pinned(space_info, -block_group->pinned);
1466		block_group->pinned = 0;
1467
1468		spin_unlock(&block_group->lock);
1469		spin_unlock(&space_info->lock);
1470
1471		/*
1472		 * The normal path here is an unused block group is passed here,
1473		 * then trimming is handled in the transaction commit path.
1474		 * Async discard interposes before this to do the trimming
1475		 * before coming down the unused block group path as trimming
1476		 * will no longer be done later in the transaction commit path.
1477		 */
1478		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1479			goto flip_async;
1480
1481		/* DISCARD can flip during remount */
1482		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
1483
1484		/* Implicit trim during transaction commit. */
1485		if (trimming)
1486			btrfs_freeze_block_group(block_group);
1487
1488		/*
1489		 * Btrfs_remove_chunk will abort the transaction if things go
1490		 * horribly wrong.
1491		 */
1492		ret = btrfs_remove_chunk(trans, block_group->start);
1493
1494		if (ret) {
1495			if (trimming)
1496				btrfs_unfreeze_block_group(block_group);
1497			goto end_trans;
1498		}
1499
1500		/*
1501		 * If we're not mounted with -odiscard, we can just forget
1502		 * about this block group. Otherwise we'll need to wait
1503		 * until transaction commit to do the actual discard.
1504		 */
1505		if (trimming) {
1506			spin_lock(&fs_info->unused_bgs_lock);
1507			/*
1508			 * A concurrent scrub might have added us to the list
1509			 * fs_info->unused_bgs, so use a list_move operation
1510			 * to add the block group to the deleted_bgs list.
1511			 */
1512			list_move(&block_group->bg_list,
1513				  &trans->transaction->deleted_bgs);
1514			spin_unlock(&fs_info->unused_bgs_lock);
1515			btrfs_get_block_group(block_group);
1516		}
1517end_trans:
1518		btrfs_end_transaction(trans);
1519next:
1520		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1521		btrfs_put_block_group(block_group);
1522		spin_lock(&fs_info->unused_bgs_lock);
1523	}
1524	spin_unlock(&fs_info->unused_bgs_lock);
1525	return;
1526
1527flip_async:
1528	btrfs_end_transaction(trans);
1529	mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1530	btrfs_put_block_group(block_group);
1531	btrfs_discard_punt_unused_bgs_list(fs_info);
1532}
1533
1534void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1535{
1536	struct btrfs_fs_info *fs_info = bg->fs_info;
1537
1538	spin_lock(&fs_info->unused_bgs_lock);
1539	if (list_empty(&bg->bg_list)) {
1540		btrfs_get_block_group(bg);
1541		trace_btrfs_add_unused_block_group(bg);
1542		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1543	}
1544	spin_unlock(&fs_info->unused_bgs_lock);
1545}
1546
1547static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1548			   struct btrfs_path *path)
1549{
1550	struct extent_map_tree *em_tree;
1551	struct extent_map *em;
1552	struct btrfs_block_group_item bg;
1553	struct extent_buffer *leaf;
1554	int slot;
1555	u64 flags;
1556	int ret = 0;
1557
1558	slot = path->slots[0];
1559	leaf = path->nodes[0];
1560
1561	em_tree = &fs_info->mapping_tree;
1562	read_lock(&em_tree->lock);
1563	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1564	read_unlock(&em_tree->lock);
1565	if (!em) {
1566		btrfs_err(fs_info,
1567			  "logical %llu len %llu found bg but no related chunk",
1568			  key->objectid, key->offset);
1569		return -ENOENT;
1570	}
1571
1572	if (em->start != key->objectid || em->len != key->offset) {
1573		btrfs_err(fs_info,
1574			"block group %llu len %llu mismatch with chunk %llu len %llu",
1575			key->objectid, key->offset, em->start, em->len);
1576		ret = -EUCLEAN;
1577		goto out_free_em;
1578	}
1579
1580	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1581			   sizeof(bg));
1582	flags = btrfs_stack_block_group_flags(&bg) &
1583		BTRFS_BLOCK_GROUP_TYPE_MASK;
1584
1585	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1586		btrfs_err(fs_info,
1587"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1588			  key->objectid, key->offset, flags,
1589			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1590		ret = -EUCLEAN;
1591	}
1592
1593out_free_em:
1594	free_extent_map(em);
1595	return ret;
1596}
1597
1598static int find_first_block_group(struct btrfs_fs_info *fs_info,
1599				  struct btrfs_path *path,
1600				  struct btrfs_key *key)
1601{
1602	struct btrfs_root *root = fs_info->extent_root;
1603	int ret;
1604	struct btrfs_key found_key;
1605	struct extent_buffer *leaf;
1606	int slot;
1607
1608	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1609	if (ret < 0)
1610		return ret;
1611
1612	while (1) {
1613		slot = path->slots[0];
1614		leaf = path->nodes[0];
1615		if (slot >= btrfs_header_nritems(leaf)) {
1616			ret = btrfs_next_leaf(root, path);
1617			if (ret == 0)
1618				continue;
1619			if (ret < 0)
1620				goto out;
1621			break;
1622		}
1623		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1624
1625		if (found_key.objectid >= key->objectid &&
1626		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1627			ret = read_bg_from_eb(fs_info, &found_key, path);
1628			break;
1629		}
1630
1631		path->slots[0]++;
1632	}
1633out:
1634	return ret;
1635}
1636
1637static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1638{
1639	u64 extra_flags = chunk_to_extended(flags) &
1640				BTRFS_EXTENDED_PROFILE_MASK;
1641
1642	write_seqlock(&fs_info->profiles_lock);
1643	if (flags & BTRFS_BLOCK_GROUP_DATA)
1644		fs_info->avail_data_alloc_bits |= extra_flags;
1645	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1646		fs_info->avail_metadata_alloc_bits |= extra_flags;
1647	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1648		fs_info->avail_system_alloc_bits |= extra_flags;
1649	write_sequnlock(&fs_info->profiles_lock);
1650}
1651
1652/**
1653 * btrfs_rmap_block - Map a physical disk address to a list of logical addresses
1654 * @chunk_start:   logical address of block group
1655 * @physical:	   physical address to map to logical addresses
1656 * @logical:	   return array of logical addresses which map to @physical
1657 * @naddrs:	   length of @logical
1658 * @stripe_len:    size of IO stripe for the given block group
1659 *
1660 * Maps a particular @physical disk address to a list of @logical addresses.
1661 * Used primarily to exclude those portions of a block group that contain super
1662 * block copies.
1663 */
1664EXPORT_FOR_TESTS
1665int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1666		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1667{
1668	struct extent_map *em;
1669	struct map_lookup *map;
1670	u64 *buf;
1671	u64 bytenr;
1672	u64 data_stripe_length;
1673	u64 io_stripe_size;
1674	int i, nr = 0;
1675	int ret = 0;
1676
1677	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1678	if (IS_ERR(em))
1679		return -EIO;
1680
1681	map = em->map_lookup;
1682	data_stripe_length = em->orig_block_len;
1683	io_stripe_size = map->stripe_len;
1684
1685	/* For RAID5/6 adjust to a full IO stripe length */
1686	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1687		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1688
1689	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1690	if (!buf) {
1691		ret = -ENOMEM;
1692		goto out;
1693	}
1694
1695	for (i = 0; i < map->num_stripes; i++) {
1696		bool already_inserted = false;
1697		u64 stripe_nr;
1698		int j;
1699
1700		if (!in_range(physical, map->stripes[i].physical,
1701			      data_stripe_length))
1702			continue;
1703
1704		stripe_nr = physical - map->stripes[i].physical;
1705		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
1706
1707		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1708			stripe_nr = stripe_nr * map->num_stripes + i;
1709			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1710		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1711			stripe_nr = stripe_nr * map->num_stripes + i;
1712		}
1713		/*
1714		 * The remaining case would be for RAID56, multiply by
1715		 * nr_data_stripes().  Alternatively, just use rmap_len below
1716		 * instead of map->stripe_len
1717		 */
1718
1719		bytenr = chunk_start + stripe_nr * io_stripe_size;
1720
1721		/* Ensure we don't add duplicate addresses */
1722		for (j = 0; j < nr; j++) {
1723			if (buf[j] == bytenr) {
1724				already_inserted = true;
1725				break;
1726			}
1727		}
1728
1729		if (!already_inserted)
1730			buf[nr++] = bytenr;
1731	}
1732
1733	*logical = buf;
1734	*naddrs = nr;
1735	*stripe_len = io_stripe_size;
1736out:
1737	free_extent_map(em);
1738	return ret;
1739}
1740
1741static int exclude_super_stripes(struct btrfs_block_group *cache)
1742{
1743	struct btrfs_fs_info *fs_info = cache->fs_info;
1744	u64 bytenr;
1745	u64 *logical;
1746	int stripe_len;
1747	int i, nr, ret;
1748
1749	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1750		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1751		cache->bytes_super += stripe_len;
1752		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1753						stripe_len);
1754		if (ret)
1755			return ret;
1756	}
1757
1758	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1759		bytenr = btrfs_sb_offset(i);
1760		ret = btrfs_rmap_block(fs_info, cache->start,
1761				       bytenr, &logical, &nr, &stripe_len);
1762		if (ret)
1763			return ret;
1764
1765		while (nr--) {
1766			u64 len = min_t(u64, stripe_len,
1767				cache->start + cache->length - logical[nr]);
1768
1769			cache->bytes_super += len;
1770			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1771							len);
1772			if (ret) {
1773				kfree(logical);
1774				return ret;
1775			}
1776		}
1777
1778		kfree(logical);
1779	}
1780	return 0;
1781}
1782
1783static void link_block_group(struct btrfs_block_group *cache)
1784{
1785	struct btrfs_space_info *space_info = cache->space_info;
1786	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1787
1788	down_write(&space_info->groups_sem);
1789	list_add_tail(&cache->list, &space_info->block_groups[index]);
1790	up_write(&space_info->groups_sem);
1791}
1792
1793static struct btrfs_block_group *btrfs_create_block_group_cache(
1794		struct btrfs_fs_info *fs_info, u64 start)
1795{
1796	struct btrfs_block_group *cache;
1797
1798	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1799	if (!cache)
1800		return NULL;
1801
1802	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1803					GFP_NOFS);
1804	if (!cache->free_space_ctl) {
1805		kfree(cache);
1806		return NULL;
1807	}
1808
1809	cache->start = start;
1810
1811	cache->fs_info = fs_info;
1812	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1813
1814	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1815
1816	refcount_set(&cache->refs, 1);
1817	spin_lock_init(&cache->lock);
1818	init_rwsem(&cache->data_rwsem);
1819	INIT_LIST_HEAD(&cache->list);
1820	INIT_LIST_HEAD(&cache->cluster_list);
1821	INIT_LIST_HEAD(&cache->bg_list);
1822	INIT_LIST_HEAD(&cache->ro_list);
1823	INIT_LIST_HEAD(&cache->discard_list);
1824	INIT_LIST_HEAD(&cache->dirty_list);
1825	INIT_LIST_HEAD(&cache->io_list);
1826	btrfs_init_free_space_ctl(cache);
1827	atomic_set(&cache->frozen, 0);
1828	mutex_init(&cache->free_space_lock);
1829	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1830
1831	return cache;
1832}
1833
1834/*
1835 * Iterate all chunks and verify that each of them has the corresponding block
1836 * group
1837 */
1838static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1839{
1840	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1841	struct extent_map *em;
1842	struct btrfs_block_group *bg;
1843	u64 start = 0;
1844	int ret = 0;
1845
1846	while (1) {
1847		read_lock(&map_tree->lock);
1848		/*
1849		 * lookup_extent_mapping will return the first extent map
1850		 * intersecting the range, so setting @len to 1 is enough to
1851		 * get the first chunk.
1852		 */
1853		em = lookup_extent_mapping(map_tree, start, 1);
1854		read_unlock(&map_tree->lock);
1855		if (!em)
1856			break;
1857
1858		bg = btrfs_lookup_block_group(fs_info, em->start);
1859		if (!bg) {
1860			btrfs_err(fs_info,
1861	"chunk start=%llu len=%llu doesn't have corresponding block group",
1862				     em->start, em->len);
1863			ret = -EUCLEAN;
1864			free_extent_map(em);
1865			break;
1866		}
1867		if (bg->start != em->start || bg->length != em->len ||
1868		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1869		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1870			btrfs_err(fs_info,
1871"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1872				em->start, em->len,
1873				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1874				bg->start, bg->length,
1875				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1876			ret = -EUCLEAN;
1877			free_extent_map(em);
1878			btrfs_put_block_group(bg);
1879			break;
1880		}
1881		start = em->start + em->len;
1882		free_extent_map(em);
1883		btrfs_put_block_group(bg);
1884	}
1885	return ret;
1886}
1887
1888static void read_block_group_item(struct btrfs_block_group *cache,
1889				 struct btrfs_path *path,
1890				 const struct btrfs_key *key)
1891{
1892	struct extent_buffer *leaf = path->nodes[0];
1893	struct btrfs_block_group_item bgi;
1894	int slot = path->slots[0];
1895
1896	cache->length = key->offset;
1897
1898	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1899			   sizeof(bgi));
1900	cache->used = btrfs_stack_block_group_used(&bgi);
1901	cache->flags = btrfs_stack_block_group_flags(&bgi);
1902}
1903
1904static int read_one_block_group(struct btrfs_fs_info *info,
1905				struct btrfs_path *path,
1906				const struct btrfs_key *key,
1907				int need_clear)
1908{
1909	struct btrfs_block_group *cache;
1910	struct btrfs_space_info *space_info;
1911	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1912	int ret;
1913
1914	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1915
1916	cache = btrfs_create_block_group_cache(info, key->objectid);
1917	if (!cache)
1918		return -ENOMEM;
1919
1920	read_block_group_item(cache, path, key);
1921
1922	set_free_space_tree_thresholds(cache);
1923
1924	if (need_clear) {
1925		/*
1926		 * When we mount with old space cache, we need to
1927		 * set BTRFS_DC_CLEAR and set dirty flag.
1928		 *
1929		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1930		 *    truncate the old free space cache inode and
1931		 *    setup a new one.
1932		 * b) Setting 'dirty flag' makes sure that we flush
1933		 *    the new space cache info onto disk.
1934		 */
1935		if (btrfs_test_opt(info, SPACE_CACHE))
1936			cache->disk_cache_state = BTRFS_DC_CLEAR;
1937	}
1938	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1939	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1940			btrfs_err(info,
1941"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1942				  cache->start);
1943			ret = -EINVAL;
1944			goto error;
1945	}
1946
1947	/*
1948	 * We need to exclude the super stripes now so that the space info has
1949	 * super bytes accounted for, otherwise we'll think we have more space
1950	 * than we actually do.
1951	 */
1952	ret = exclude_super_stripes(cache);
1953	if (ret) {
1954		/* We may have excluded something, so call this just in case. */
1955		btrfs_free_excluded_extents(cache);
1956		goto error;
1957	}
1958
1959	/*
1960	 * Check for two cases, either we are full, and therefore don't need
1961	 * to bother with the caching work since we won't find any space, or we
1962	 * are empty, and we can just add all the space in and be done with it.
1963	 * This saves us _a_lot_ of time, particularly in the full case.
1964	 */
1965	if (cache->length == cache->used) {
1966		cache->last_byte_to_unpin = (u64)-1;
1967		cache->cached = BTRFS_CACHE_FINISHED;
1968		btrfs_free_excluded_extents(cache);
1969	} else if (cache->used == 0) {
1970		cache->last_byte_to_unpin = (u64)-1;
1971		cache->cached = BTRFS_CACHE_FINISHED;
1972		add_new_free_space(cache, cache->start,
1973				   cache->start + cache->length);
1974		btrfs_free_excluded_extents(cache);
1975	}
1976
1977	ret = btrfs_add_block_group_cache(info, cache);
1978	if (ret) {
1979		btrfs_remove_free_space_cache(cache);
1980		goto error;
1981	}
1982	trace_btrfs_add_block_group(info, cache, 0);
1983	btrfs_update_space_info(info, cache->flags, cache->length,
1984				cache->used, cache->bytes_super, &space_info);
1985
1986	cache->space_info = space_info;
1987
1988	link_block_group(cache);
1989
1990	set_avail_alloc_bits(info, cache->flags);
1991	if (btrfs_chunk_readonly(info, cache->start)) {
1992		inc_block_group_ro(cache, 1);
1993	} else if (cache->used == 0) {
1994		ASSERT(list_empty(&cache->bg_list));
1995		if (btrfs_test_opt(info, DISCARD_ASYNC))
1996			btrfs_discard_queue_work(&info->discard_ctl, cache);
1997		else
1998			btrfs_mark_bg_unused(cache);
1999	}
2000	return 0;
2001error:
2002	btrfs_put_block_group(cache);
2003	return ret;
2004}
2005
2006int btrfs_read_block_groups(struct btrfs_fs_info *info)
2007{
2008	struct btrfs_path *path;
2009	int ret;
2010	struct btrfs_block_group *cache;
2011	struct btrfs_space_info *space_info;
2012	struct btrfs_key key;
2013	int need_clear = 0;
2014	u64 cache_gen;
2015
2016	key.objectid = 0;
2017	key.offset = 0;
2018	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2019	path = btrfs_alloc_path();
2020	if (!path)
2021		return -ENOMEM;
2022
2023	cache_gen = btrfs_super_cache_generation(info->super_copy);
2024	if (btrfs_test_opt(info, SPACE_CACHE) &&
2025	    btrfs_super_generation(info->super_copy) != cache_gen)
2026		need_clear = 1;
2027	if (btrfs_test_opt(info, CLEAR_CACHE))
2028		need_clear = 1;
2029
2030	while (1) {
2031		ret = find_first_block_group(info, path, &key);
2032		if (ret > 0)
2033			break;
2034		if (ret != 0)
2035			goto error;
2036
2037		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2038		ret = read_one_block_group(info, path, &key, need_clear);
2039		if (ret < 0)
2040			goto error;
2041		key.objectid += key.offset;
2042		key.offset = 0;
2043		btrfs_release_path(path);
2044	}
2045	btrfs_release_path(path);
2046
2047	list_for_each_entry(space_info, &info->space_info, list) {
2048		int i;
2049
2050		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2051			if (list_empty(&space_info->block_groups[i]))
2052				continue;
2053			cache = list_first_entry(&space_info->block_groups[i],
2054						 struct btrfs_block_group,
2055						 list);
2056			btrfs_sysfs_add_block_group_type(cache);
2057		}
2058
2059		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2060		      (BTRFS_BLOCK_GROUP_RAID10 |
2061		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2062		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2063		       BTRFS_BLOCK_GROUP_DUP)))
2064			continue;
2065		/*
2066		 * Avoid allocating from un-mirrored block group if there are
2067		 * mirrored block groups.
2068		 */
2069		list_for_each_entry(cache,
2070				&space_info->block_groups[BTRFS_RAID_RAID0],
2071				list)
2072			inc_block_group_ro(cache, 1);
2073		list_for_each_entry(cache,
2074				&space_info->block_groups[BTRFS_RAID_SINGLE],
2075				list)
2076			inc_block_group_ro(cache, 1);
2077	}
2078
2079	btrfs_init_global_block_rsv(info);
2080	ret = check_chunk_block_group_mappings(info);
2081error:
2082	btrfs_free_path(path);
2083	return ret;
2084}
2085
2086static int insert_block_group_item(struct btrfs_trans_handle *trans,
2087				   struct btrfs_block_group *block_group)
2088{
2089	struct btrfs_fs_info *fs_info = trans->fs_info;
2090	struct btrfs_block_group_item bgi;
2091	struct btrfs_root *root;
2092	struct btrfs_key key;
2093
2094	spin_lock(&block_group->lock);
2095	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2096	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2097				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2098	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2099	key.objectid = block_group->start;
2100	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2101	key.offset = block_group->length;
2102	spin_unlock(&block_group->lock);
2103
2104	root = fs_info->extent_root;
2105	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2106}
2107
2108void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2109{
2110	struct btrfs_fs_info *fs_info = trans->fs_info;
2111	struct btrfs_block_group *block_group;
2112	int ret = 0;
2113
2114	if (!trans->can_flush_pending_bgs)
2115		return;
2116
2117	while (!list_empty(&trans->new_bgs)) {
2118		int index;
2119
2120		block_group = list_first_entry(&trans->new_bgs,
2121					       struct btrfs_block_group,
2122					       bg_list);
2123		if (ret)
2124			goto next;
2125
2126		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2127
2128		ret = insert_block_group_item(trans, block_group);
2129		if (ret)
2130			btrfs_abort_transaction(trans, ret);
2131		ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2132					block_group->length);
2133		if (ret)
2134			btrfs_abort_transaction(trans, ret);
2135		add_block_group_free_space(trans, block_group);
2136
2137		/*
2138		 * If we restriped during balance, we may have added a new raid
2139		 * type, so now add the sysfs entries when it is safe to do so.
2140		 * We don't have to worry about locking here as it's handled in
2141		 * btrfs_sysfs_add_block_group_type.
2142		 */
2143		if (block_group->space_info->block_group_kobjs[index] == NULL)
2144			btrfs_sysfs_add_block_group_type(block_group);
2145
2146		/* Already aborted the transaction if it failed. */
2147next:
2148		btrfs_delayed_refs_rsv_release(fs_info, 1);
2149		list_del_init(&block_group->bg_list);
2150	}
2151	btrfs_trans_release_chunk_metadata(trans);
2152}
2153
2154int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2155			   u64 type, u64 chunk_offset, u64 size)
2156{
2157	struct btrfs_fs_info *fs_info = trans->fs_info;
2158	struct btrfs_block_group *cache;
2159	int ret;
2160
2161	btrfs_set_log_full_commit(trans);
2162
2163	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2164	if (!cache)
2165		return -ENOMEM;
2166
2167	cache->length = size;
2168	set_free_space_tree_thresholds(cache);
2169	cache->used = bytes_used;
2170	cache->flags = type;
2171	cache->last_byte_to_unpin = (u64)-1;
2172	cache->cached = BTRFS_CACHE_FINISHED;
2173	cache->needs_free_space = 1;
2174	ret = exclude_super_stripes(cache);
2175	if (ret) {
2176		/* We may have excluded something, so call this just in case */
2177		btrfs_free_excluded_extents(cache);
2178		btrfs_put_block_group(cache);
2179		return ret;
2180	}
2181
2182	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2183
2184	btrfs_free_excluded_extents(cache);
2185
2186#ifdef CONFIG_BTRFS_DEBUG
2187	if (btrfs_should_fragment_free_space(cache)) {
2188		u64 new_bytes_used = size - bytes_used;
2189
2190		bytes_used += new_bytes_used >> 1;
2191		fragment_free_space(cache);
2192	}
2193#endif
2194	/*
2195	 * Ensure the corresponding space_info object is created and
2196	 * assigned to our block group. We want our bg to be added to the rbtree
2197	 * with its ->space_info set.
2198	 */
2199	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2200	ASSERT(cache->space_info);
2201
2202	ret = btrfs_add_block_group_cache(fs_info, cache);
2203	if (ret) {
2204		btrfs_remove_free_space_cache(cache);
2205		btrfs_put_block_group(cache);
2206		return ret;
2207	}
2208
2209	/*
2210	 * Now that our block group has its ->space_info set and is inserted in
2211	 * the rbtree, update the space info's counters.
2212	 */
2213	trace_btrfs_add_block_group(fs_info, cache, 1);
2214	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2215				cache->bytes_super, &cache->space_info);
2216	btrfs_update_global_block_rsv(fs_info);
2217
2218	link_block_group(cache);
2219
2220	list_add_tail(&cache->bg_list, &trans->new_bgs);
2221	trans->delayed_ref_updates++;
2222	btrfs_update_delayed_refs_rsv(trans);
2223
2224	set_avail_alloc_bits(fs_info, type);
2225	return 0;
2226}
2227
2228/*
2229 * Mark one block group RO, can be called several times for the same block
2230 * group.
2231 *
2232 * @cache:		the destination block group
2233 * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2234 * 			ensure we still have some free space after marking this
2235 * 			block group RO.
2236 */
2237int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2238			     bool do_chunk_alloc)
2239{
2240	struct btrfs_fs_info *fs_info = cache->fs_info;
2241	struct btrfs_trans_handle *trans;
2242	u64 alloc_flags;
2243	int ret;
2244
2245again:
2246	trans = btrfs_join_transaction(fs_info->extent_root);
2247	if (IS_ERR(trans))
2248		return PTR_ERR(trans);
2249
2250	/*
2251	 * we're not allowed to set block groups readonly after the dirty
2252	 * block groups cache has started writing.  If it already started,
2253	 * back off and let this transaction commit
2254	 */
2255	mutex_lock(&fs_info->ro_block_group_mutex);
2256	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2257		u64 transid = trans->transid;
2258
2259		mutex_unlock(&fs_info->ro_block_group_mutex);
2260		btrfs_end_transaction(trans);
2261
2262		ret = btrfs_wait_for_commit(fs_info, transid);
2263		if (ret)
2264			return ret;
2265		goto again;
2266	}
2267
2268	if (do_chunk_alloc) {
2269		/*
2270		 * If we are changing raid levels, try to allocate a
2271		 * corresponding block group with the new raid level.
2272		 */
2273		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2274		if (alloc_flags != cache->flags) {
2275			ret = btrfs_chunk_alloc(trans, alloc_flags,
2276						CHUNK_ALLOC_FORCE);
2277			/*
2278			 * ENOSPC is allowed here, we may have enough space
2279			 * already allocated at the new raid level to carry on
2280			 */
2281			if (ret == -ENOSPC)
2282				ret = 0;
2283			if (ret < 0)
2284				goto out;
2285		}
2286	}
2287
2288	ret = inc_block_group_ro(cache, 0);
2289	if (!ret)
2290		goto out;
2291	if (ret == -ETXTBSY)
2292		goto unlock_out;
2293
2294	/*
2295	 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system
2296	 * chunk allocation storm to exhaust the system chunk array.  Otherwise
2297	 * we still want to try our best to mark the block group read-only.
2298	 */
2299	if (!do_chunk_alloc && ret == -ENOSPC &&
2300	    (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
2301		goto unlock_out;
2302
2303	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2304	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2305	if (ret < 0)
2306		goto out;
2307	ret = inc_block_group_ro(cache, 0);
2308	if (ret == -ETXTBSY)
2309		goto unlock_out;
2310out:
2311	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2312		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2313		mutex_lock(&fs_info->chunk_mutex);
2314		check_system_chunk(trans, alloc_flags);
2315		mutex_unlock(&fs_info->chunk_mutex);
2316	}
2317unlock_out:
2318	mutex_unlock(&fs_info->ro_block_group_mutex);
2319
2320	btrfs_end_transaction(trans);
2321	return ret;
2322}
2323
2324void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2325{
2326	struct btrfs_space_info *sinfo = cache->space_info;
2327	u64 num_bytes;
2328
2329	BUG_ON(!cache->ro);
2330
2331	spin_lock(&sinfo->lock);
2332	spin_lock(&cache->lock);
2333	if (!--cache->ro) {
2334		num_bytes = cache->length - cache->reserved -
2335			    cache->pinned - cache->bytes_super - cache->used;
2336		sinfo->bytes_readonly -= num_bytes;
2337		list_del_init(&cache->ro_list);
2338	}
2339	spin_unlock(&cache->lock);
2340	spin_unlock(&sinfo->lock);
2341}
2342
2343static int update_block_group_item(struct btrfs_trans_handle *trans,
2344				   struct btrfs_path *path,
2345				   struct btrfs_block_group *cache)
2346{
2347	struct btrfs_fs_info *fs_info = trans->fs_info;
2348	int ret;
2349	struct btrfs_root *root = fs_info->extent_root;
2350	unsigned long bi;
2351	struct extent_buffer *leaf;
2352	struct btrfs_block_group_item bgi;
2353	struct btrfs_key key;
2354
2355	key.objectid = cache->start;
2356	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2357	key.offset = cache->length;
2358
2359	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2360	if (ret) {
2361		if (ret > 0)
2362			ret = -ENOENT;
2363		goto fail;
2364	}
2365
2366	leaf = path->nodes[0];
2367	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2368	btrfs_set_stack_block_group_used(&bgi, cache->used);
2369	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2370			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2371	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2372	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2373	btrfs_mark_buffer_dirty(leaf);
2374fail:
2375	btrfs_release_path(path);
2376	return ret;
2377
2378}
2379
2380static int cache_save_setup(struct btrfs_block_group *block_group,
2381			    struct btrfs_trans_handle *trans,
2382			    struct btrfs_path *path)
2383{
2384	struct btrfs_fs_info *fs_info = block_group->fs_info;
2385	struct btrfs_root *root = fs_info->tree_root;
2386	struct inode *inode = NULL;
2387	struct extent_changeset *data_reserved = NULL;
2388	u64 alloc_hint = 0;
2389	int dcs = BTRFS_DC_ERROR;
2390	u64 num_pages = 0;
2391	int retries = 0;
2392	int ret = 0;
2393
2394	/*
2395	 * If this block group is smaller than 100 megs don't bother caching the
2396	 * block group.
2397	 */
2398	if (block_group->length < (100 * SZ_1M)) {
2399		spin_lock(&block_group->lock);
2400		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2401		spin_unlock(&block_group->lock);
2402		return 0;
2403	}
2404
2405	if (TRANS_ABORTED(trans))
2406		return 0;
2407again:
2408	inode = lookup_free_space_inode(block_group, path);
2409	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2410		ret = PTR_ERR(inode);
2411		btrfs_release_path(path);
2412		goto out;
2413	}
2414
2415	if (IS_ERR(inode)) {
2416		BUG_ON(retries);
2417		retries++;
2418
2419		if (block_group->ro)
2420			goto out_free;
2421
2422		ret = create_free_space_inode(trans, block_group, path);
2423		if (ret)
2424			goto out_free;
2425		goto again;
2426	}
2427
2428	/*
2429	 * We want to set the generation to 0, that way if anything goes wrong
2430	 * from here on out we know not to trust this cache when we load up next
2431	 * time.
2432	 */
2433	BTRFS_I(inode)->generation = 0;
2434	ret = btrfs_update_inode(trans, root, inode);
2435	if (ret) {
2436		/*
2437		 * So theoretically we could recover from this, simply set the
2438		 * super cache generation to 0 so we know to invalidate the
2439		 * cache, but then we'd have to keep track of the block groups
2440		 * that fail this way so we know we _have_ to reset this cache
2441		 * before the next commit or risk reading stale cache.  So to
2442		 * limit our exposure to horrible edge cases lets just abort the
2443		 * transaction, this only happens in really bad situations
2444		 * anyway.
2445		 */
2446		btrfs_abort_transaction(trans, ret);
2447		goto out_put;
2448	}
2449	WARN_ON(ret);
2450
2451	/* We've already setup this transaction, go ahead and exit */
2452	if (block_group->cache_generation == trans->transid &&
2453	    i_size_read(inode)) {
2454		dcs = BTRFS_DC_SETUP;
2455		goto out_put;
2456	}
2457
2458	if (i_size_read(inode) > 0) {
2459		ret = btrfs_check_trunc_cache_free_space(fs_info,
2460					&fs_info->global_block_rsv);
2461		if (ret)
2462			goto out_put;
2463
2464		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2465		if (ret)
2466			goto out_put;
2467	}
2468
2469	spin_lock(&block_group->lock);
2470	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2471	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2472		/*
2473		 * don't bother trying to write stuff out _if_
2474		 * a) we're not cached,
2475		 * b) we're with nospace_cache mount option,
2476		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2477		 */
2478		dcs = BTRFS_DC_WRITTEN;
2479		spin_unlock(&block_group->lock);
2480		goto out_put;
2481	}
2482	spin_unlock(&block_group->lock);
2483
2484	/*
2485	 * We hit an ENOSPC when setting up the cache in this transaction, just
2486	 * skip doing the setup, we've already cleared the cache so we're safe.
2487	 */
2488	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2489		ret = -ENOSPC;
2490		goto out_put;
2491	}
2492
2493	/*
2494	 * Try to preallocate enough space based on how big the block group is.
2495	 * Keep in mind this has to include any pinned space which could end up
2496	 * taking up quite a bit since it's not folded into the other space
2497	 * cache.
2498	 */
2499	num_pages = div_u64(block_group->length, SZ_256M);
2500	if (!num_pages)
2501		num_pages = 1;
2502
2503	num_pages *= 16;
2504	num_pages *= PAGE_SIZE;
2505
2506	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2507					  num_pages);
2508	if (ret)
2509		goto out_put;
2510
2511	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2512					      num_pages, num_pages,
2513					      &alloc_hint);
2514	/*
2515	 * Our cache requires contiguous chunks so that we don't modify a bunch
2516	 * of metadata or split extents when writing the cache out, which means
2517	 * we can enospc if we are heavily fragmented in addition to just normal
2518	 * out of space conditions.  So if we hit this just skip setting up any
2519	 * other block groups for this transaction, maybe we'll unpin enough
2520	 * space the next time around.
2521	 */
2522	if (!ret)
2523		dcs = BTRFS_DC_SETUP;
2524	else if (ret == -ENOSPC)
2525		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2526
2527out_put:
2528	iput(inode);
2529out_free:
2530	btrfs_release_path(path);
2531out:
2532	spin_lock(&block_group->lock);
2533	if (!ret && dcs == BTRFS_DC_SETUP)
2534		block_group->cache_generation = trans->transid;
2535	block_group->disk_cache_state = dcs;
2536	spin_unlock(&block_group->lock);
2537
2538	extent_changeset_free(data_reserved);
2539	return ret;
2540}
2541
2542int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2543{
2544	struct btrfs_fs_info *fs_info = trans->fs_info;
2545	struct btrfs_block_group *cache, *tmp;
2546	struct btrfs_transaction *cur_trans = trans->transaction;
2547	struct btrfs_path *path;
2548
2549	if (list_empty(&cur_trans->dirty_bgs) ||
2550	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2551		return 0;
2552
2553	path = btrfs_alloc_path();
2554	if (!path)
2555		return -ENOMEM;
2556
2557	/* Could add new block groups, use _safe just in case */
2558	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2559				 dirty_list) {
2560		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2561			cache_save_setup(cache, trans, path);
2562	}
2563
2564	btrfs_free_path(path);
2565	return 0;
2566}
2567
2568/*
2569 * Transaction commit does final block group cache writeback during a critical
2570 * section where nothing is allowed to change the FS.  This is required in
2571 * order for the cache to actually match the block group, but can introduce a
2572 * lot of latency into the commit.
2573 *
2574 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2575 * There's a chance we'll have to redo some of it if the block group changes
2576 * again during the commit, but it greatly reduces the commit latency by
2577 * getting rid of the easy block groups while we're still allowing others to
2578 * join the commit.
2579 */
2580int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2581{
2582	struct btrfs_fs_info *fs_info = trans->fs_info;
2583	struct btrfs_block_group *cache;
2584	struct btrfs_transaction *cur_trans = trans->transaction;
2585	int ret = 0;
2586	int should_put;
2587	struct btrfs_path *path = NULL;
2588	LIST_HEAD(dirty);
2589	struct list_head *io = &cur_trans->io_bgs;
2590	int loops = 0;
2591
2592	spin_lock(&cur_trans->dirty_bgs_lock);
2593	if (list_empty(&cur_trans->dirty_bgs)) {
2594		spin_unlock(&cur_trans->dirty_bgs_lock);
2595		return 0;
2596	}
2597	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2598	spin_unlock(&cur_trans->dirty_bgs_lock);
2599
2600again:
2601	/* Make sure all the block groups on our dirty list actually exist */
2602	btrfs_create_pending_block_groups(trans);
2603
2604	if (!path) {
2605		path = btrfs_alloc_path();
2606		if (!path) {
2607			ret = -ENOMEM;
2608			goto out;
2609		}
2610	}
2611
2612	/*
2613	 * cache_write_mutex is here only to save us from balance or automatic
2614	 * removal of empty block groups deleting this block group while we are
2615	 * writing out the cache
2616	 */
2617	mutex_lock(&trans->transaction->cache_write_mutex);
2618	while (!list_empty(&dirty)) {
2619		bool drop_reserve = true;
2620
2621		cache = list_first_entry(&dirty, struct btrfs_block_group,
2622					 dirty_list);
2623		/*
2624		 * This can happen if something re-dirties a block group that
2625		 * is already under IO.  Just wait for it to finish and then do
2626		 * it all again
2627		 */
2628		if (!list_empty(&cache->io_list)) {
2629			list_del_init(&cache->io_list);
2630			btrfs_wait_cache_io(trans, cache, path);
2631			btrfs_put_block_group(cache);
2632		}
2633
2634
2635		/*
2636		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2637		 * it should update the cache_state.  Don't delete until after
2638		 * we wait.
2639		 *
2640		 * Since we're not running in the commit critical section
2641		 * we need the dirty_bgs_lock to protect from update_block_group
2642		 */
2643		spin_lock(&cur_trans->dirty_bgs_lock);
2644		list_del_init(&cache->dirty_list);
2645		spin_unlock(&cur_trans->dirty_bgs_lock);
2646
2647		should_put = 1;
2648
2649		cache_save_setup(cache, trans, path);
2650
2651		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2652			cache->io_ctl.inode = NULL;
2653			ret = btrfs_write_out_cache(trans, cache, path);
2654			if (ret == 0 && cache->io_ctl.inode) {
2655				should_put = 0;
2656
2657				/*
2658				 * The cache_write_mutex is protecting the
2659				 * io_list, also refer to the definition of
2660				 * btrfs_transaction::io_bgs for more details
2661				 */
2662				list_add_tail(&cache->io_list, io);
2663			} else {
2664				/*
2665				 * If we failed to write the cache, the
2666				 * generation will be bad and life goes on
2667				 */
2668				ret = 0;
2669			}
2670		}
2671		if (!ret) {
2672			ret = update_block_group_item(trans, path, cache);
2673			/*
2674			 * Our block group might still be attached to the list
2675			 * of new block groups in the transaction handle of some
2676			 * other task (struct btrfs_trans_handle->new_bgs). This
2677			 * means its block group item isn't yet in the extent
2678			 * tree. If this happens ignore the error, as we will
2679			 * try again later in the critical section of the
2680			 * transaction commit.
2681			 */
2682			if (ret == -ENOENT) {
2683				ret = 0;
2684				spin_lock(&cur_trans->dirty_bgs_lock);
2685				if (list_empty(&cache->dirty_list)) {
2686					list_add_tail(&cache->dirty_list,
2687						      &cur_trans->dirty_bgs);
2688					btrfs_get_block_group(cache);
2689					drop_reserve = false;
2690				}
2691				spin_unlock(&cur_trans->dirty_bgs_lock);
2692			} else if (ret) {
2693				btrfs_abort_transaction(trans, ret);
2694			}
2695		}
2696
2697		/* If it's not on the io list, we need to put the block group */
2698		if (should_put)
2699			btrfs_put_block_group(cache);
2700		if (drop_reserve)
2701			btrfs_delayed_refs_rsv_release(fs_info, 1);
2702		/*
2703		 * Avoid blocking other tasks for too long. It might even save
2704		 * us from writing caches for block groups that are going to be
2705		 * removed.
2706		 */
2707		mutex_unlock(&trans->transaction->cache_write_mutex);
2708		if (ret)
2709			goto out;
2710		mutex_lock(&trans->transaction->cache_write_mutex);
2711	}
2712	mutex_unlock(&trans->transaction->cache_write_mutex);
2713
2714	/*
2715	 * Go through delayed refs for all the stuff we've just kicked off
2716	 * and then loop back (just once)
2717	 */
2718	if (!ret)
2719		ret = btrfs_run_delayed_refs(trans, 0);
2720	if (!ret && loops == 0) {
2721		loops++;
2722		spin_lock(&cur_trans->dirty_bgs_lock);
2723		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2724		/*
2725		 * dirty_bgs_lock protects us from concurrent block group
2726		 * deletes too (not just cache_write_mutex).
2727		 */
2728		if (!list_empty(&dirty)) {
2729			spin_unlock(&cur_trans->dirty_bgs_lock);
2730			goto again;
2731		}
2732		spin_unlock(&cur_trans->dirty_bgs_lock);
2733	}
2734out:
2735	if (ret < 0) {
2736		spin_lock(&cur_trans->dirty_bgs_lock);
2737		list_splice_init(&dirty, &cur_trans->dirty_bgs);
2738		spin_unlock(&cur_trans->dirty_bgs_lock);
2739		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2740	}
2741
2742	btrfs_free_path(path);
2743	return ret;
2744}
2745
2746int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2747{
2748	struct btrfs_fs_info *fs_info = trans->fs_info;
2749	struct btrfs_block_group *cache;
2750	struct btrfs_transaction *cur_trans = trans->transaction;
2751	int ret = 0;
2752	int should_put;
2753	struct btrfs_path *path;
2754	struct list_head *io = &cur_trans->io_bgs;
2755
2756	path = btrfs_alloc_path();
2757	if (!path)
2758		return -ENOMEM;
2759
2760	/*
2761	 * Even though we are in the critical section of the transaction commit,
2762	 * we can still have concurrent tasks adding elements to this
2763	 * transaction's list of dirty block groups. These tasks correspond to
2764	 * endio free space workers started when writeback finishes for a
2765	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2766	 * allocate new block groups as a result of COWing nodes of the root
2767	 * tree when updating the free space inode. The writeback for the space
2768	 * caches is triggered by an earlier call to
2769	 * btrfs_start_dirty_block_groups() and iterations of the following
2770	 * loop.
2771	 * Also we want to do the cache_save_setup first and then run the
2772	 * delayed refs to make sure we have the best chance at doing this all
2773	 * in one shot.
2774	 */
2775	spin_lock(&cur_trans->dirty_bgs_lock);
2776	while (!list_empty(&cur_trans->dirty_bgs)) {
2777		cache = list_first_entry(&cur_trans->dirty_bgs,
2778					 struct btrfs_block_group,
2779					 dirty_list);
2780
2781		/*
2782		 * This can happen if cache_save_setup re-dirties a block group
2783		 * that is already under IO.  Just wait for it to finish and
2784		 * then do it all again
2785		 */
2786		if (!list_empty(&cache->io_list)) {
2787			spin_unlock(&cur_trans->dirty_bgs_lock);
2788			list_del_init(&cache->io_list);
2789			btrfs_wait_cache_io(trans, cache, path);
2790			btrfs_put_block_group(cache);
2791			spin_lock(&cur_trans->dirty_bgs_lock);
2792		}
2793
2794		/*
2795		 * Don't remove from the dirty list until after we've waited on
2796		 * any pending IO
2797		 */
2798		list_del_init(&cache->dirty_list);
2799		spin_unlock(&cur_trans->dirty_bgs_lock);
2800		should_put = 1;
2801
2802		cache_save_setup(cache, trans, path);
2803
2804		if (!ret)
2805			ret = btrfs_run_delayed_refs(trans,
2806						     (unsigned long) -1);
2807
2808		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2809			cache->io_ctl.inode = NULL;
2810			ret = btrfs_write_out_cache(trans, cache, path);
2811			if (ret == 0 && cache->io_ctl.inode) {
2812				should_put = 0;
2813				list_add_tail(&cache->io_list, io);
2814			} else {
2815				/*
2816				 * If we failed to write the cache, the
2817				 * generation will be bad and life goes on
2818				 */
2819				ret = 0;
2820			}
2821		}
2822		if (!ret) {
2823			ret = update_block_group_item(trans, path, cache);
2824			/*
2825			 * One of the free space endio workers might have
2826			 * created a new block group while updating a free space
2827			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2828			 * and hasn't released its transaction handle yet, in
2829			 * which case the new block group is still attached to
2830			 * its transaction handle and its creation has not
2831			 * finished yet (no block group item in the extent tree
2832			 * yet, etc). If this is the case, wait for all free
2833			 * space endio workers to finish and retry. This is a
2834			 * very rare case so no need for a more efficient and
2835			 * complex approach.
2836			 */
2837			if (ret == -ENOENT) {
2838				wait_event(cur_trans->writer_wait,
2839				   atomic_read(&cur_trans->num_writers) == 1);
2840				ret = update_block_group_item(trans, path, cache);
2841			}
2842			if (ret)
2843				btrfs_abort_transaction(trans, ret);
2844		}
2845
2846		/* If its not on the io list, we need to put the block group */
2847		if (should_put)
2848			btrfs_put_block_group(cache);
2849		btrfs_delayed_refs_rsv_release(fs_info, 1);
2850		spin_lock(&cur_trans->dirty_bgs_lock);
2851	}
2852	spin_unlock(&cur_trans->dirty_bgs_lock);
2853
2854	/*
2855	 * Refer to the definition of io_bgs member for details why it's safe
2856	 * to use it without any locking
2857	 */
2858	while (!list_empty(io)) {
2859		cache = list_first_entry(io, struct btrfs_block_group,
2860					 io_list);
2861		list_del_init(&cache->io_list);
2862		btrfs_wait_cache_io(trans, cache, path);
2863		btrfs_put_block_group(cache);
2864	}
2865
2866	btrfs_free_path(path);
2867	return ret;
2868}
2869
2870int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2871			     u64 bytenr, u64 num_bytes, int alloc)
2872{
2873	struct btrfs_fs_info *info = trans->fs_info;
2874	struct btrfs_block_group *cache = NULL;
2875	u64 total = num_bytes;
2876	u64 old_val;
2877	u64 byte_in_group;
2878	int factor;
2879	int ret = 0;
2880
2881	/* Block accounting for super block */
2882	spin_lock(&info->delalloc_root_lock);
2883	old_val = btrfs_super_bytes_used(info->super_copy);
2884	if (alloc)
2885		old_val += num_bytes;
2886	else
2887		old_val -= num_bytes;
2888	btrfs_set_super_bytes_used(info->super_copy, old_val);
2889	spin_unlock(&info->delalloc_root_lock);
2890
2891	while (total) {
2892		cache = btrfs_lookup_block_group(info, bytenr);
2893		if (!cache) {
2894			ret = -ENOENT;
2895			break;
2896		}
2897		factor = btrfs_bg_type_to_factor(cache->flags);
2898
2899		/*
2900		 * If this block group has free space cache written out, we
2901		 * need to make sure to load it if we are removing space.  This
2902		 * is because we need the unpinning stage to actually add the
2903		 * space back to the block group, otherwise we will leak space.
2904		 */
2905		if (!alloc && !btrfs_block_group_done(cache))
2906			btrfs_cache_block_group(cache, 1);
2907
2908		byte_in_group = bytenr - cache->start;
2909		WARN_ON(byte_in_group > cache->length);
2910
2911		spin_lock(&cache->space_info->lock);
2912		spin_lock(&cache->lock);
2913
2914		if (btrfs_test_opt(info, SPACE_CACHE) &&
2915		    cache->disk_cache_state < BTRFS_DC_CLEAR)
2916			cache->disk_cache_state = BTRFS_DC_CLEAR;
2917
2918		old_val = cache->used;
2919		num_bytes = min(total, cache->length - byte_in_group);
2920		if (alloc) {
2921			old_val += num_bytes;
2922			cache->used = old_val;
2923			cache->reserved -= num_bytes;
2924			cache->space_info->bytes_reserved -= num_bytes;
2925			cache->space_info->bytes_used += num_bytes;
2926			cache->space_info->disk_used += num_bytes * factor;
2927			spin_unlock(&cache->lock);
2928			spin_unlock(&cache->space_info->lock);
2929		} else {
2930			old_val -= num_bytes;
2931			cache->used = old_val;
2932			cache->pinned += num_bytes;
2933			btrfs_space_info_update_bytes_pinned(info,
2934					cache->space_info, num_bytes);
2935			cache->space_info->bytes_used -= num_bytes;
2936			cache->space_info->disk_used -= num_bytes * factor;
2937			spin_unlock(&cache->lock);
2938			spin_unlock(&cache->space_info->lock);
2939
2940			__btrfs_mod_total_bytes_pinned(cache->space_info,
2941						       num_bytes);
2942			set_extent_dirty(&trans->transaction->pinned_extents,
2943					 bytenr, bytenr + num_bytes - 1,
2944					 GFP_NOFS | __GFP_NOFAIL);
2945		}
2946
2947		spin_lock(&trans->transaction->dirty_bgs_lock);
2948		if (list_empty(&cache->dirty_list)) {
2949			list_add_tail(&cache->dirty_list,
2950				      &trans->transaction->dirty_bgs);
2951			trans->delayed_ref_updates++;
2952			btrfs_get_block_group(cache);
2953		}
2954		spin_unlock(&trans->transaction->dirty_bgs_lock);
2955
2956		/*
2957		 * No longer have used bytes in this block group, queue it for
2958		 * deletion. We do this after adding the block group to the
2959		 * dirty list to avoid races between cleaner kthread and space
2960		 * cache writeout.
2961		 */
2962		if (!alloc && old_val == 0) {
2963			if (!btrfs_test_opt(info, DISCARD_ASYNC))
2964				btrfs_mark_bg_unused(cache);
2965		}
2966
2967		btrfs_put_block_group(cache);
2968		total -= num_bytes;
2969		bytenr += num_bytes;
2970	}
2971
2972	/* Modified block groups are accounted for in the delayed_refs_rsv. */
2973	btrfs_update_delayed_refs_rsv(trans);
2974	return ret;
2975}
2976
2977/**
2978 * btrfs_add_reserved_bytes - update the block_group and space info counters
2979 * @cache:	The cache we are manipulating
2980 * @ram_bytes:  The number of bytes of file content, and will be same to
2981 *              @num_bytes except for the compress path.
2982 * @num_bytes:	The number of bytes in question
2983 * @delalloc:   The blocks are allocated for the delalloc write
2984 *
2985 * This is called by the allocator when it reserves space. If this is a
2986 * reservation and the block group has become read only we cannot make the
2987 * reservation and return -EAGAIN, otherwise this function always succeeds.
2988 */
2989int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
2990			     u64 ram_bytes, u64 num_bytes, int delalloc)
2991{
2992	struct btrfs_space_info *space_info = cache->space_info;
2993	int ret = 0;
2994
2995	spin_lock(&space_info->lock);
2996	spin_lock(&cache->lock);
2997	if (cache->ro) {
2998		ret = -EAGAIN;
2999	} else {
3000		cache->reserved += num_bytes;
3001		space_info->bytes_reserved += num_bytes;
3002		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3003					      space_info->flags, num_bytes, 1);
3004		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3005						      space_info, -ram_bytes);
3006		if (delalloc)
3007			cache->delalloc_bytes += num_bytes;
3008
3009		/*
3010		 * Compression can use less space than we reserved, so wake
3011		 * tickets if that happens
3012		 */
3013		if (num_bytes < ram_bytes)
3014			btrfs_try_granting_tickets(cache->fs_info, space_info);
3015	}
3016	spin_unlock(&cache->lock);
3017	spin_unlock(&space_info->lock);
3018	return ret;
3019}
3020
3021/**
3022 * btrfs_free_reserved_bytes - update the block_group and space info counters
3023 * @cache:      The cache we are manipulating
3024 * @num_bytes:  The number of bytes in question
3025 * @delalloc:   The blocks are allocated for the delalloc write
3026 *
3027 * This is called by somebody who is freeing space that was never actually used
3028 * on disk.  For example if you reserve some space for a new leaf in transaction
3029 * A and before transaction A commits you free that leaf, you call this with
3030 * reserve set to 0 in order to clear the reservation.
3031 */
3032void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3033			       u64 num_bytes, int delalloc)
3034{
3035	struct btrfs_space_info *space_info = cache->space_info;
3036
3037	spin_lock(&space_info->lock);
3038	spin_lock(&cache->lock);
3039	if (cache->ro)
3040		space_info->bytes_readonly += num_bytes;
3041	cache->reserved -= num_bytes;
3042	space_info->bytes_reserved -= num_bytes;
3043	space_info->max_extent_size = 0;
3044
3045	if (delalloc)
3046		cache->delalloc_bytes -= num_bytes;
3047	spin_unlock(&cache->lock);
3048
3049	btrfs_try_granting_tickets(cache->fs_info, space_info);
3050	spin_unlock(&space_info->lock);
3051}
3052
3053static void force_metadata_allocation(struct btrfs_fs_info *info)
3054{
3055	struct list_head *head = &info->space_info;
3056	struct btrfs_space_info *found;
3057
3058	list_for_each_entry(found, head, list) {
3059		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3060			found->force_alloc = CHUNK_ALLOC_FORCE;
3061	}
3062}
3063
3064static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3065			      struct btrfs_space_info *sinfo, int force)
3066{
3067	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3068	u64 thresh;
3069
3070	if (force == CHUNK_ALLOC_FORCE)
3071		return 1;
3072
3073	/*
3074	 * in limited mode, we want to have some free space up to
3075	 * about 1% of the FS size.
3076	 */
3077	if (force == CHUNK_ALLOC_LIMITED) {
3078		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3079		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3080
3081		if (sinfo->total_bytes - bytes_used < thresh)
3082			return 1;
3083	}
3084
3085	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3086		return 0;
3087	return 1;
3088}
3089
3090int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3091{
3092	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3093
3094	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3095}
3096
3097/*
3098 * If force is CHUNK_ALLOC_FORCE:
3099 *    - return 1 if it successfully allocates a chunk,
3100 *    - return errors including -ENOSPC otherwise.
3101 * If force is NOT CHUNK_ALLOC_FORCE:
3102 *    - return 0 if it doesn't need to allocate a new chunk,
3103 *    - return 1 if it successfully allocates a chunk,
3104 *    - return errors including -ENOSPC otherwise.
3105 */
3106int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3107		      enum btrfs_chunk_alloc_enum force)
3108{
3109	struct btrfs_fs_info *fs_info = trans->fs_info;
3110	struct btrfs_space_info *space_info;
3111	bool wait_for_alloc = false;
3112	bool should_alloc = false;
3113	int ret = 0;
3114
3115	/* Don't re-enter if we're already allocating a chunk */
3116	if (trans->allocating_chunk)
3117		return -ENOSPC;
3118
3119	space_info = btrfs_find_space_info(fs_info, flags);
3120	ASSERT(space_info);
3121
3122	do {
3123		spin_lock(&space_info->lock);
3124		if (force < space_info->force_alloc)
3125			force = space_info->force_alloc;
3126		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3127		if (space_info->full) {
3128			/* No more free physical space */
3129			if (should_alloc)
3130				ret = -ENOSPC;
3131			else
3132				ret = 0;
3133			spin_unlock(&space_info->lock);
3134			return ret;
3135		} else if (!should_alloc) {
3136			spin_unlock(&space_info->lock);
3137			return 0;
3138		} else if (space_info->chunk_alloc) {
3139			/*
3140			 * Someone is already allocating, so we need to block
3141			 * until this someone is finished and then loop to
3142			 * recheck if we should continue with our allocation
3143			 * attempt.
3144			 */
3145			wait_for_alloc = true;
3146			force = CHUNK_ALLOC_NO_FORCE;
3147			spin_unlock(&space_info->lock);
3148			mutex_lock(&fs_info->chunk_mutex);
3149			mutex_unlock(&fs_info->chunk_mutex);
3150		} else {
3151			/* Proceed with allocation */
3152			space_info->chunk_alloc = 1;
3153			wait_for_alloc = false;
3154			spin_unlock(&space_info->lock);
3155		}
3156
3157		cond_resched();
3158	} while (wait_for_alloc);
3159
3160	mutex_lock(&fs_info->chunk_mutex);
3161	trans->allocating_chunk = true;
3162
3163	/*
3164	 * If we have mixed data/metadata chunks we want to make sure we keep
3165	 * allocating mixed chunks instead of individual chunks.
3166	 */
3167	if (btrfs_mixed_space_info(space_info))
3168		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3169
3170	/*
3171	 * if we're doing a data chunk, go ahead and make sure that
3172	 * we keep a reasonable number of metadata chunks allocated in the
3173	 * FS as well.
3174	 */
3175	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3176		fs_info->data_chunk_allocations++;
3177		if (!(fs_info->data_chunk_allocations %
3178		      fs_info->metadata_ratio))
3179			force_metadata_allocation(fs_info);
3180	}
3181
3182	/*
3183	 * Check if we have enough space in SYSTEM chunk because we may need
3184	 * to update devices.
3185	 */
3186	check_system_chunk(trans, flags);
3187
3188	ret = btrfs_alloc_chunk(trans, flags);
3189	trans->allocating_chunk = false;
3190
3191	spin_lock(&space_info->lock);
3192	if (ret < 0) {
3193		if (ret == -ENOSPC)
3194			space_info->full = 1;
3195		else
3196			goto out;
3197	} else {
3198		ret = 1;
3199		space_info->max_extent_size = 0;
3200	}
3201
3202	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3203out:
3204	space_info->chunk_alloc = 0;
3205	spin_unlock(&space_info->lock);
3206	mutex_unlock(&fs_info->chunk_mutex);
3207	/*
3208	 * When we allocate a new chunk we reserve space in the chunk block
3209	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3210	 * add new nodes/leafs to it if we end up needing to do it when
3211	 * inserting the chunk item and updating device items as part of the
3212	 * second phase of chunk allocation, performed by
3213	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3214	 * large number of new block groups to create in our transaction
3215	 * handle's new_bgs list to avoid exhausting the chunk block reserve
3216	 * in extreme cases - like having a single transaction create many new
3217	 * block groups when starting to write out the free space caches of all
3218	 * the block groups that were made dirty during the lifetime of the
3219	 * transaction.
3220	 */
3221	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3222		btrfs_create_pending_block_groups(trans);
3223
3224	return ret;
3225}
3226
3227static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3228{
3229	u64 num_dev;
3230
3231	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3232	if (!num_dev)
3233		num_dev = fs_info->fs_devices->rw_devices;
3234
3235	return num_dev;
3236}
3237
3238/*
3239 * Reserve space in the system space for allocating or removing a chunk
3240 */
3241void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3242{
3243	struct btrfs_fs_info *fs_info = trans->fs_info;
3244	struct btrfs_space_info *info;
3245	u64 left;
3246	u64 thresh;
3247	int ret = 0;
3248	u64 num_devs;
3249
3250	/*
3251	 * Needed because we can end up allocating a system chunk and for an
3252	 * atomic and race free space reservation in the chunk block reserve.
3253	 */
3254	lockdep_assert_held(&fs_info->chunk_mutex);
3255
3256	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3257	spin_lock(&info->lock);
3258	left = info->total_bytes - btrfs_space_info_used(info, true);
3259	spin_unlock(&info->lock);
3260
3261	num_devs = get_profile_num_devs(fs_info, type);
3262
3263	/* num_devs device items to update and 1 chunk item to add or remove */
3264	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3265		btrfs_calc_insert_metadata_size(fs_info, 1);
3266
3267	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3268		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3269			   left, thresh, type);
3270		btrfs_dump_space_info(fs_info, info, 0, 0);
3271	}
3272
3273	if (left < thresh) {
3274		u64 flags = btrfs_system_alloc_profile(fs_info);
3275
3276		/*
3277		 * Ignore failure to create system chunk. We might end up not
3278		 * needing it, as we might not need to COW all nodes/leafs from
3279		 * the paths we visit in the chunk tree (they were already COWed
3280		 * or created in the current transaction for example).
3281		 */
3282		ret = btrfs_alloc_chunk(trans, flags);
3283	}
3284
3285	if (!ret) {
3286		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3287					  &fs_info->chunk_block_rsv,
3288					  thresh, BTRFS_RESERVE_NO_FLUSH);
3289		if (!ret)
3290			trans->chunk_bytes_reserved += thresh;
3291	}
3292}
3293
3294void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3295{
3296	struct btrfs_block_group *block_group;
3297	u64 last = 0;
3298
3299	while (1) {
3300		struct inode *inode;
3301
3302		block_group = btrfs_lookup_first_block_group(info, last);
3303		while (block_group) {
3304			btrfs_wait_block_group_cache_done(block_group);
3305			spin_lock(&block_group->lock);
3306			if (block_group->iref)
3307				break;
3308			spin_unlock(&block_group->lock);
3309			block_group = btrfs_next_block_group(block_group);
3310		}
3311		if (!block_group) {
3312			if (last == 0)
3313				break;
3314			last = 0;
3315			continue;
3316		}
3317
3318		inode = block_group->inode;
3319		block_group->iref = 0;
3320		block_group->inode = NULL;
3321		spin_unlock(&block_group->lock);
3322		ASSERT(block_group->io_ctl.inode == NULL);
3323		iput(inode);
3324		last = block_group->start + block_group->length;
3325		btrfs_put_block_group(block_group);
3326	}
3327}
3328
3329/*
3330 * Must be called only after stopping all workers, since we could have block
3331 * group caching kthreads running, and therefore they could race with us if we
3332 * freed the block groups before stopping them.
3333 */
3334int btrfs_free_block_groups(struct btrfs_fs_info *info)
3335{
3336	struct btrfs_block_group *block_group;
3337	struct btrfs_space_info *space_info;
3338	struct btrfs_caching_control *caching_ctl;
3339	struct rb_node *n;
3340
3341	down_write(&info->commit_root_sem);
3342	while (!list_empty(&info->caching_block_groups)) {
3343		caching_ctl = list_entry(info->caching_block_groups.next,
3344					 struct btrfs_caching_control, list);
3345		list_del(&caching_ctl->list);
3346		btrfs_put_caching_control(caching_ctl);
3347	}
3348	up_write(&info->commit_root_sem);
3349
3350	spin_lock(&info->unused_bgs_lock);
3351	while (!list_empty(&info->unused_bgs)) {
3352		block_group = list_first_entry(&info->unused_bgs,
3353					       struct btrfs_block_group,
3354					       bg_list);
3355		list_del_init(&block_group->bg_list);
3356		btrfs_put_block_group(block_group);
3357	}
3358	spin_unlock(&info->unused_bgs_lock);
3359
3360	spin_lock(&info->block_group_cache_lock);
3361	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3362		block_group = rb_entry(n, struct btrfs_block_group,
3363				       cache_node);
3364		rb_erase(&block_group->cache_node,
3365			 &info->block_group_cache_tree);
3366		RB_CLEAR_NODE(&block_group->cache_node);
3367		spin_unlock(&info->block_group_cache_lock);
3368
3369		down_write(&block_group->space_info->groups_sem);
3370		list_del(&block_group->list);
3371		up_write(&block_group->space_info->groups_sem);
3372
3373		/*
3374		 * We haven't cached this block group, which means we could
3375		 * possibly have excluded extents on this block group.
3376		 */
3377		if (block_group->cached == BTRFS_CACHE_NO ||
3378		    block_group->cached == BTRFS_CACHE_ERROR)
3379			btrfs_free_excluded_extents(block_group);
3380
3381		btrfs_remove_free_space_cache(block_group);
3382		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3383		ASSERT(list_empty(&block_group->dirty_list));
3384		ASSERT(list_empty(&block_group->io_list));
3385		ASSERT(list_empty(&block_group->bg_list));
3386		ASSERT(refcount_read(&block_group->refs) == 1);
3387		ASSERT(block_group->swap_extents == 0);
3388		btrfs_put_block_group(block_group);
3389
3390		spin_lock(&info->block_group_cache_lock);
3391	}
3392	spin_unlock(&info->block_group_cache_lock);
3393
3394	btrfs_release_global_block_rsv(info);
3395
3396	while (!list_empty(&info->space_info)) {
3397		space_info = list_entry(info->space_info.next,
3398					struct btrfs_space_info,
3399					list);
3400
3401		/*
3402		 * Do not hide this behind enospc_debug, this is actually
3403		 * important and indicates a real bug if this happens.
3404		 */
3405		if (WARN_ON(space_info->bytes_pinned > 0 ||
3406			    space_info->bytes_reserved > 0 ||
3407			    space_info->bytes_may_use > 0))
3408			btrfs_dump_space_info(info, space_info, 0, 0);
3409		WARN_ON(space_info->reclaim_size > 0);
3410		list_del(&space_info->list);
3411		btrfs_sysfs_remove_space_info(space_info);
3412	}
3413	return 0;
3414}
3415
3416void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3417{
3418	atomic_inc(&cache->frozen);
3419}
3420
3421void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3422{
3423	struct btrfs_fs_info *fs_info = block_group->fs_info;
3424	struct extent_map_tree *em_tree;
3425	struct extent_map *em;
3426	bool cleanup;
3427
3428	spin_lock(&block_group->lock);
3429	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3430		   block_group->removed);
3431	spin_unlock(&block_group->lock);
3432
3433	if (cleanup) {
3434		em_tree = &fs_info->mapping_tree;
3435		write_lock(&em_tree->lock);
3436		em = lookup_extent_mapping(em_tree, block_group->start,
3437					   1);
3438		BUG_ON(!em); /* logic error, can't happen */
3439		remove_extent_mapping(em_tree, em);
3440		write_unlock(&em_tree->lock);
3441
3442		/* once for us and once for the tree */
3443		free_extent_map(em);
3444		free_extent_map(em);
3445
3446		/*
3447		 * We may have left one free space entry and other possible
3448		 * tasks trimming this block group have left 1 entry each one.
3449		 * Free them if any.
3450		 */
3451		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3452	}
3453}
3454
3455bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
3456{
3457	bool ret = true;
3458
3459	spin_lock(&bg->lock);
3460	if (bg->ro)
3461		ret = false;
3462	else
3463		bg->swap_extents++;
3464	spin_unlock(&bg->lock);
3465
3466	return ret;
3467}
3468
3469void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
3470{
3471	spin_lock(&bg->lock);
3472	ASSERT(!bg->ro);
3473	ASSERT(bg->swap_extents >= amount);
3474	bg->swap_extents -= amount;
3475	spin_unlock(&bg->lock);
3476}
3477