xref: /kernel/linux/linux-5.10/fs/btrfs/backref.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 STRATO.  All rights reserved.
4 */
5
6#include <linux/mm.h>
7#include <linux/rbtree.h>
8#include <trace/events/btrfs.h>
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
15#include "locking.h"
16#include "misc.h"
17
18/* Just an arbitrary number so we can be sure this happened */
19#define BACKREF_FOUND_SHARED 6
20
21struct extent_inode_elem {
22	u64 inum;
23	u64 offset;
24	struct extent_inode_elem *next;
25};
26
27static int check_extent_in_eb(const struct btrfs_key *key,
28			      const struct extent_buffer *eb,
29			      const struct btrfs_file_extent_item *fi,
30			      u64 extent_item_pos,
31			      struct extent_inode_elem **eie,
32			      bool ignore_offset)
33{
34	u64 offset = 0;
35	struct extent_inode_elem *e;
36
37	if (!ignore_offset &&
38	    !btrfs_file_extent_compression(eb, fi) &&
39	    !btrfs_file_extent_encryption(eb, fi) &&
40	    !btrfs_file_extent_other_encoding(eb, fi)) {
41		u64 data_offset;
42		u64 data_len;
43
44		data_offset = btrfs_file_extent_offset(eb, fi);
45		data_len = btrfs_file_extent_num_bytes(eb, fi);
46
47		if (extent_item_pos < data_offset ||
48		    extent_item_pos >= data_offset + data_len)
49			return 1;
50		offset = extent_item_pos - data_offset;
51	}
52
53	e = kmalloc(sizeof(*e), GFP_NOFS);
54	if (!e)
55		return -ENOMEM;
56
57	e->next = *eie;
58	e->inum = key->objectid;
59	e->offset = key->offset + offset;
60	*eie = e;
61
62	return 0;
63}
64
65static void free_inode_elem_list(struct extent_inode_elem *eie)
66{
67	struct extent_inode_elem *eie_next;
68
69	for (; eie; eie = eie_next) {
70		eie_next = eie->next;
71		kfree(eie);
72	}
73}
74
75static int find_extent_in_eb(const struct extent_buffer *eb,
76			     u64 wanted_disk_byte, u64 extent_item_pos,
77			     struct extent_inode_elem **eie,
78			     bool ignore_offset)
79{
80	u64 disk_byte;
81	struct btrfs_key key;
82	struct btrfs_file_extent_item *fi;
83	int slot;
84	int nritems;
85	int extent_type;
86	int ret;
87
88	/*
89	 * from the shared data ref, we only have the leaf but we need
90	 * the key. thus, we must look into all items and see that we
91	 * find one (some) with a reference to our extent item.
92	 */
93	nritems = btrfs_header_nritems(eb);
94	for (slot = 0; slot < nritems; ++slot) {
95		btrfs_item_key_to_cpu(eb, &key, slot);
96		if (key.type != BTRFS_EXTENT_DATA_KEY)
97			continue;
98		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
99		extent_type = btrfs_file_extent_type(eb, fi);
100		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
101			continue;
102		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
103		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
104		if (disk_byte != wanted_disk_byte)
105			continue;
106
107		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
108		if (ret < 0)
109			return ret;
110	}
111
112	return 0;
113}
114
115struct preftree {
116	struct rb_root_cached root;
117	unsigned int count;
118};
119
120#define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
121
122struct preftrees {
123	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
124	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
125	struct preftree indirect_missing_keys;
126};
127
128/*
129 * Checks for a shared extent during backref search.
130 *
131 * The share_count tracks prelim_refs (direct and indirect) having a
132 * ref->count >0:
133 *  - incremented when a ref->count transitions to >0
134 *  - decremented when a ref->count transitions to <1
135 */
136struct share_check {
137	u64 root_objectid;
138	u64 inum;
139	int share_count;
140	bool have_delayed_delete_refs;
141};
142
143static inline int extent_is_shared(struct share_check *sc)
144{
145	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
146}
147
148static struct kmem_cache *btrfs_prelim_ref_cache;
149
150int __init btrfs_prelim_ref_init(void)
151{
152	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
153					sizeof(struct prelim_ref),
154					0,
155					SLAB_MEM_SPREAD,
156					NULL);
157	if (!btrfs_prelim_ref_cache)
158		return -ENOMEM;
159	return 0;
160}
161
162void __cold btrfs_prelim_ref_exit(void)
163{
164	kmem_cache_destroy(btrfs_prelim_ref_cache);
165}
166
167static void free_pref(struct prelim_ref *ref)
168{
169	kmem_cache_free(btrfs_prelim_ref_cache, ref);
170}
171
172/*
173 * Return 0 when both refs are for the same block (and can be merged).
174 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
175 * indicates a 'higher' block.
176 */
177static int prelim_ref_compare(struct prelim_ref *ref1,
178			      struct prelim_ref *ref2)
179{
180	if (ref1->level < ref2->level)
181		return -1;
182	if (ref1->level > ref2->level)
183		return 1;
184	if (ref1->root_id < ref2->root_id)
185		return -1;
186	if (ref1->root_id > ref2->root_id)
187		return 1;
188	if (ref1->key_for_search.type < ref2->key_for_search.type)
189		return -1;
190	if (ref1->key_for_search.type > ref2->key_for_search.type)
191		return 1;
192	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
193		return -1;
194	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
195		return 1;
196	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
197		return -1;
198	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
199		return 1;
200	if (ref1->parent < ref2->parent)
201		return -1;
202	if (ref1->parent > ref2->parent)
203		return 1;
204
205	return 0;
206}
207
208static void update_share_count(struct share_check *sc, int oldcount,
209			       int newcount)
210{
211	if ((!sc) || (oldcount == 0 && newcount < 1))
212		return;
213
214	if (oldcount > 0 && newcount < 1)
215		sc->share_count--;
216	else if (oldcount < 1 && newcount > 0)
217		sc->share_count++;
218}
219
220/*
221 * Add @newref to the @root rbtree, merging identical refs.
222 *
223 * Callers should assume that newref has been freed after calling.
224 */
225static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
226			      struct preftree *preftree,
227			      struct prelim_ref *newref,
228			      struct share_check *sc)
229{
230	struct rb_root_cached *root;
231	struct rb_node **p;
232	struct rb_node *parent = NULL;
233	struct prelim_ref *ref;
234	int result;
235	bool leftmost = true;
236
237	root = &preftree->root;
238	p = &root->rb_root.rb_node;
239
240	while (*p) {
241		parent = *p;
242		ref = rb_entry(parent, struct prelim_ref, rbnode);
243		result = prelim_ref_compare(ref, newref);
244		if (result < 0) {
245			p = &(*p)->rb_left;
246		} else if (result > 0) {
247			p = &(*p)->rb_right;
248			leftmost = false;
249		} else {
250			/* Identical refs, merge them and free @newref */
251			struct extent_inode_elem *eie = ref->inode_list;
252
253			while (eie && eie->next)
254				eie = eie->next;
255
256			if (!eie)
257				ref->inode_list = newref->inode_list;
258			else
259				eie->next = newref->inode_list;
260			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
261						     preftree->count);
262			/*
263			 * A delayed ref can have newref->count < 0.
264			 * The ref->count is updated to follow any
265			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
266			 */
267			update_share_count(sc, ref->count,
268					   ref->count + newref->count);
269			ref->count += newref->count;
270			free_pref(newref);
271			return;
272		}
273	}
274
275	update_share_count(sc, 0, newref->count);
276	preftree->count++;
277	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
278	rb_link_node(&newref->rbnode, parent, p);
279	rb_insert_color_cached(&newref->rbnode, root, leftmost);
280}
281
282/*
283 * Release the entire tree.  We don't care about internal consistency so
284 * just free everything and then reset the tree root.
285 */
286static void prelim_release(struct preftree *preftree)
287{
288	struct prelim_ref *ref, *next_ref;
289
290	rbtree_postorder_for_each_entry_safe(ref, next_ref,
291					     &preftree->root.rb_root, rbnode) {
292		free_inode_elem_list(ref->inode_list);
293		free_pref(ref);
294	}
295
296	preftree->root = RB_ROOT_CACHED;
297	preftree->count = 0;
298}
299
300/*
301 * the rules for all callers of this function are:
302 * - obtaining the parent is the goal
303 * - if you add a key, you must know that it is a correct key
304 * - if you cannot add the parent or a correct key, then we will look into the
305 *   block later to set a correct key
306 *
307 * delayed refs
308 * ============
309 *        backref type | shared | indirect | shared | indirect
310 * information         |   tree |     tree |   data |     data
311 * --------------------+--------+----------+--------+----------
312 *      parent logical |    y   |     -    |    -   |     -
313 *      key to resolve |    -   |     y    |    y   |     y
314 *  tree block logical |    -   |     -    |    -   |     -
315 *  root for resolving |    y   |     y    |    y   |     y
316 *
317 * - column 1:       we've the parent -> done
318 * - column 2, 3, 4: we use the key to find the parent
319 *
320 * on disk refs (inline or keyed)
321 * ==============================
322 *        backref type | shared | indirect | shared | indirect
323 * information         |   tree |     tree |   data |     data
324 * --------------------+--------+----------+--------+----------
325 *      parent logical |    y   |     -    |    y   |     -
326 *      key to resolve |    -   |     -    |    -   |     y
327 *  tree block logical |    y   |     y    |    y   |     y
328 *  root for resolving |    -   |     y    |    y   |     y
329 *
330 * - column 1, 3: we've the parent -> done
331 * - column 2:    we take the first key from the block to find the parent
332 *                (see add_missing_keys)
333 * - column 4:    we use the key to find the parent
334 *
335 * additional information that's available but not required to find the parent
336 * block might help in merging entries to gain some speed.
337 */
338static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
339			  struct preftree *preftree, u64 root_id,
340			  const struct btrfs_key *key, int level, u64 parent,
341			  u64 wanted_disk_byte, int count,
342			  struct share_check *sc, gfp_t gfp_mask)
343{
344	struct prelim_ref *ref;
345
346	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
347		return 0;
348
349	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
350	if (!ref)
351		return -ENOMEM;
352
353	ref->root_id = root_id;
354	if (key)
355		ref->key_for_search = *key;
356	else
357		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
358
359	ref->inode_list = NULL;
360	ref->level = level;
361	ref->count = count;
362	ref->parent = parent;
363	ref->wanted_disk_byte = wanted_disk_byte;
364	prelim_ref_insert(fs_info, preftree, ref, sc);
365	return extent_is_shared(sc);
366}
367
368/* direct refs use root == 0, key == NULL */
369static int add_direct_ref(const struct btrfs_fs_info *fs_info,
370			  struct preftrees *preftrees, int level, u64 parent,
371			  u64 wanted_disk_byte, int count,
372			  struct share_check *sc, gfp_t gfp_mask)
373{
374	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
375			      parent, wanted_disk_byte, count, sc, gfp_mask);
376}
377
378/* indirect refs use parent == 0 */
379static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
380			    struct preftrees *preftrees, u64 root_id,
381			    const struct btrfs_key *key, int level,
382			    u64 wanted_disk_byte, int count,
383			    struct share_check *sc, gfp_t gfp_mask)
384{
385	struct preftree *tree = &preftrees->indirect;
386
387	if (!key)
388		tree = &preftrees->indirect_missing_keys;
389	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
390			      wanted_disk_byte, count, sc, gfp_mask);
391}
392
393static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
394{
395	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
396	struct rb_node *parent = NULL;
397	struct prelim_ref *ref = NULL;
398	struct prelim_ref target = {};
399	int result;
400
401	target.parent = bytenr;
402
403	while (*p) {
404		parent = *p;
405		ref = rb_entry(parent, struct prelim_ref, rbnode);
406		result = prelim_ref_compare(ref, &target);
407
408		if (result < 0)
409			p = &(*p)->rb_left;
410		else if (result > 0)
411			p = &(*p)->rb_right;
412		else
413			return 1;
414	}
415	return 0;
416}
417
418static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
419			   struct ulist *parents,
420			   struct preftrees *preftrees, struct prelim_ref *ref,
421			   int level, u64 time_seq, const u64 *extent_item_pos,
422			   bool ignore_offset)
423{
424	int ret = 0;
425	int slot;
426	struct extent_buffer *eb;
427	struct btrfs_key key;
428	struct btrfs_key *key_for_search = &ref->key_for_search;
429	struct btrfs_file_extent_item *fi;
430	struct extent_inode_elem *eie = NULL, *old = NULL;
431	u64 disk_byte;
432	u64 wanted_disk_byte = ref->wanted_disk_byte;
433	u64 count = 0;
434	u64 data_offset;
435	u8 type;
436
437	if (level != 0) {
438		eb = path->nodes[level];
439		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
440		if (ret < 0)
441			return ret;
442		return 0;
443	}
444
445	/*
446	 * 1. We normally enter this function with the path already pointing to
447	 *    the first item to check. But sometimes, we may enter it with
448	 *    slot == nritems.
449	 * 2. We are searching for normal backref but bytenr of this leaf
450	 *    matches shared data backref
451	 * 3. The leaf owner is not equal to the root we are searching
452	 *
453	 * For these cases, go to the next leaf before we continue.
454	 */
455	eb = path->nodes[0];
456	if (path->slots[0] >= btrfs_header_nritems(eb) ||
457	    is_shared_data_backref(preftrees, eb->start) ||
458	    ref->root_id != btrfs_header_owner(eb)) {
459		if (time_seq == SEQ_LAST)
460			ret = btrfs_next_leaf(root, path);
461		else
462			ret = btrfs_next_old_leaf(root, path, time_seq);
463	}
464
465	while (!ret && count < ref->count) {
466		eb = path->nodes[0];
467		slot = path->slots[0];
468
469		btrfs_item_key_to_cpu(eb, &key, slot);
470
471		if (key.objectid != key_for_search->objectid ||
472		    key.type != BTRFS_EXTENT_DATA_KEY)
473			break;
474
475		/*
476		 * We are searching for normal backref but bytenr of this leaf
477		 * matches shared data backref, OR
478		 * the leaf owner is not equal to the root we are searching for
479		 */
480		if (slot == 0 &&
481		    (is_shared_data_backref(preftrees, eb->start) ||
482		     ref->root_id != btrfs_header_owner(eb))) {
483			if (time_seq == SEQ_LAST)
484				ret = btrfs_next_leaf(root, path);
485			else
486				ret = btrfs_next_old_leaf(root, path, time_seq);
487			continue;
488		}
489		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
490		type = btrfs_file_extent_type(eb, fi);
491		if (type == BTRFS_FILE_EXTENT_INLINE)
492			goto next;
493		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
494		data_offset = btrfs_file_extent_offset(eb, fi);
495
496		if (disk_byte == wanted_disk_byte) {
497			eie = NULL;
498			old = NULL;
499			if (ref->key_for_search.offset == key.offset - data_offset)
500				count++;
501			else
502				goto next;
503			if (extent_item_pos) {
504				ret = check_extent_in_eb(&key, eb, fi,
505						*extent_item_pos,
506						&eie, ignore_offset);
507				if (ret < 0)
508					break;
509			}
510			if (ret > 0)
511				goto next;
512			ret = ulist_add_merge_ptr(parents, eb->start,
513						  eie, (void **)&old, GFP_NOFS);
514			if (ret < 0)
515				break;
516			if (!ret && extent_item_pos) {
517				while (old->next)
518					old = old->next;
519				old->next = eie;
520			}
521			eie = NULL;
522		}
523next:
524		if (time_seq == SEQ_LAST)
525			ret = btrfs_next_item(root, path);
526		else
527			ret = btrfs_next_old_item(root, path, time_seq);
528	}
529
530	if (ret > 0)
531		ret = 0;
532	else if (ret < 0)
533		free_inode_elem_list(eie);
534	return ret;
535}
536
537/*
538 * resolve an indirect backref in the form (root_id, key, level)
539 * to a logical address
540 */
541static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
542				struct btrfs_path *path, u64 time_seq,
543				struct preftrees *preftrees,
544				struct prelim_ref *ref, struct ulist *parents,
545				const u64 *extent_item_pos, bool ignore_offset)
546{
547	struct btrfs_root *root;
548	struct extent_buffer *eb;
549	int ret = 0;
550	int root_level;
551	int level = ref->level;
552	struct btrfs_key search_key = ref->key_for_search;
553
554	/*
555	 * If we're search_commit_root we could possibly be holding locks on
556	 * other tree nodes.  This happens when qgroups does backref walks when
557	 * adding new delayed refs.  To deal with this we need to look in cache
558	 * for the root, and if we don't find it then we need to search the
559	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
560	 * here.
561	 */
562	if (path->search_commit_root)
563		root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
564	else
565		root = btrfs_get_fs_root(fs_info, ref->root_id, false);
566	if (IS_ERR(root)) {
567		ret = PTR_ERR(root);
568		goto out_free;
569	}
570
571	if (!path->search_commit_root &&
572	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
573		ret = -ENOENT;
574		goto out;
575	}
576
577	if (btrfs_is_testing(fs_info)) {
578		ret = -ENOENT;
579		goto out;
580	}
581
582	if (path->search_commit_root)
583		root_level = btrfs_header_level(root->commit_root);
584	else if (time_seq == SEQ_LAST)
585		root_level = btrfs_header_level(root->node);
586	else
587		root_level = btrfs_old_root_level(root, time_seq);
588
589	if (root_level + 1 == level)
590		goto out;
591
592	/*
593	 * We can often find data backrefs with an offset that is too large
594	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
595	 * subtracting a file's offset with the data offset of its
596	 * corresponding extent data item. This can happen for example in the
597	 * clone ioctl.
598	 *
599	 * So if we detect such case we set the search key's offset to zero to
600	 * make sure we will find the matching file extent item at
601	 * add_all_parents(), otherwise we will miss it because the offset
602	 * taken form the backref is much larger then the offset of the file
603	 * extent item. This can make us scan a very large number of file
604	 * extent items, but at least it will not make us miss any.
605	 *
606	 * This is an ugly workaround for a behaviour that should have never
607	 * existed, but it does and a fix for the clone ioctl would touch a lot
608	 * of places, cause backwards incompatibility and would not fix the
609	 * problem for extents cloned with older kernels.
610	 */
611	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
612	    search_key.offset >= LLONG_MAX)
613		search_key.offset = 0;
614	path->lowest_level = level;
615	if (time_seq == SEQ_LAST)
616		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
617	else
618		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
619
620	btrfs_debug(fs_info,
621		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
622		 ref->root_id, level, ref->count, ret,
623		 ref->key_for_search.objectid, ref->key_for_search.type,
624		 ref->key_for_search.offset);
625	if (ret < 0)
626		goto out;
627
628	eb = path->nodes[level];
629	while (!eb) {
630		if (WARN_ON(!level)) {
631			ret = 1;
632			goto out;
633		}
634		level--;
635		eb = path->nodes[level];
636	}
637
638	ret = add_all_parents(root, path, parents, preftrees, ref, level,
639			      time_seq, extent_item_pos, ignore_offset);
640out:
641	btrfs_put_root(root);
642out_free:
643	path->lowest_level = 0;
644	btrfs_release_path(path);
645	return ret;
646}
647
648static struct extent_inode_elem *
649unode_aux_to_inode_list(struct ulist_node *node)
650{
651	if (!node)
652		return NULL;
653	return (struct extent_inode_elem *)(uintptr_t)node->aux;
654}
655
656static void free_leaf_list(struct ulist *ulist)
657{
658	struct ulist_node *node;
659	struct ulist_iterator uiter;
660
661	ULIST_ITER_INIT(&uiter);
662	while ((node = ulist_next(ulist, &uiter)))
663		free_inode_elem_list(unode_aux_to_inode_list(node));
664
665	ulist_free(ulist);
666}
667
668/*
669 * We maintain three separate rbtrees: one for direct refs, one for
670 * indirect refs which have a key, and one for indirect refs which do not
671 * have a key. Each tree does merge on insertion.
672 *
673 * Once all of the references are located, we iterate over the tree of
674 * indirect refs with missing keys. An appropriate key is located and
675 * the ref is moved onto the tree for indirect refs. After all missing
676 * keys are thus located, we iterate over the indirect ref tree, resolve
677 * each reference, and then insert the resolved reference onto the
678 * direct tree (merging there too).
679 *
680 * New backrefs (i.e., for parent nodes) are added to the appropriate
681 * rbtree as they are encountered. The new backrefs are subsequently
682 * resolved as above.
683 */
684static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
685				 struct btrfs_path *path, u64 time_seq,
686				 struct preftrees *preftrees,
687				 const u64 *extent_item_pos,
688				 struct share_check *sc, bool ignore_offset)
689{
690	int err;
691	int ret = 0;
692	struct ulist *parents;
693	struct ulist_node *node;
694	struct ulist_iterator uiter;
695	struct rb_node *rnode;
696
697	parents = ulist_alloc(GFP_NOFS);
698	if (!parents)
699		return -ENOMEM;
700
701	/*
702	 * We could trade memory usage for performance here by iterating
703	 * the tree, allocating new refs for each insertion, and then
704	 * freeing the entire indirect tree when we're done.  In some test
705	 * cases, the tree can grow quite large (~200k objects).
706	 */
707	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
708		struct prelim_ref *ref;
709
710		ref = rb_entry(rnode, struct prelim_ref, rbnode);
711		if (WARN(ref->parent,
712			 "BUG: direct ref found in indirect tree")) {
713			ret = -EINVAL;
714			goto out;
715		}
716
717		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
718		preftrees->indirect.count--;
719
720		if (ref->count == 0) {
721			free_pref(ref);
722			continue;
723		}
724
725		if (sc && sc->root_objectid &&
726		    ref->root_id != sc->root_objectid) {
727			free_pref(ref);
728			ret = BACKREF_FOUND_SHARED;
729			goto out;
730		}
731		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
732					   ref, parents, extent_item_pos,
733					   ignore_offset);
734		/*
735		 * we can only tolerate ENOENT,otherwise,we should catch error
736		 * and return directly.
737		 */
738		if (err == -ENOENT) {
739			prelim_ref_insert(fs_info, &preftrees->direct, ref,
740					  NULL);
741			continue;
742		} else if (err) {
743			free_pref(ref);
744			ret = err;
745			goto out;
746		}
747
748		/* we put the first parent into the ref at hand */
749		ULIST_ITER_INIT(&uiter);
750		node = ulist_next(parents, &uiter);
751		ref->parent = node ? node->val : 0;
752		ref->inode_list = unode_aux_to_inode_list(node);
753
754		/* Add a prelim_ref(s) for any other parent(s). */
755		while ((node = ulist_next(parents, &uiter))) {
756			struct prelim_ref *new_ref;
757
758			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
759						   GFP_NOFS);
760			if (!new_ref) {
761				free_pref(ref);
762				ret = -ENOMEM;
763				goto out;
764			}
765			memcpy(new_ref, ref, sizeof(*ref));
766			new_ref->parent = node->val;
767			new_ref->inode_list = unode_aux_to_inode_list(node);
768			prelim_ref_insert(fs_info, &preftrees->direct,
769					  new_ref, NULL);
770		}
771
772		/*
773		 * Now it's a direct ref, put it in the direct tree. We must
774		 * do this last because the ref could be merged/freed here.
775		 */
776		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
777
778		ulist_reinit(parents);
779		cond_resched();
780	}
781out:
782	/*
783	 * We may have inode lists attached to refs in the parents ulist, so we
784	 * must free them before freeing the ulist and its refs.
785	 */
786	free_leaf_list(parents);
787	return ret;
788}
789
790/*
791 * read tree blocks and add keys where required.
792 */
793static int add_missing_keys(struct btrfs_fs_info *fs_info,
794			    struct preftrees *preftrees, bool lock)
795{
796	struct prelim_ref *ref;
797	struct extent_buffer *eb;
798	struct preftree *tree = &preftrees->indirect_missing_keys;
799	struct rb_node *node;
800
801	while ((node = rb_first_cached(&tree->root))) {
802		ref = rb_entry(node, struct prelim_ref, rbnode);
803		rb_erase_cached(node, &tree->root);
804
805		BUG_ON(ref->parent);	/* should not be a direct ref */
806		BUG_ON(ref->key_for_search.type);
807		BUG_ON(!ref->wanted_disk_byte);
808
809		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
810				     ref->level - 1, NULL);
811		if (IS_ERR(eb)) {
812			free_pref(ref);
813			return PTR_ERR(eb);
814		} else if (!extent_buffer_uptodate(eb)) {
815			free_pref(ref);
816			free_extent_buffer(eb);
817			return -EIO;
818		}
819		if (lock)
820			btrfs_tree_read_lock(eb);
821		if (btrfs_header_level(eb) == 0)
822			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
823		else
824			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
825		if (lock)
826			btrfs_tree_read_unlock(eb);
827		free_extent_buffer(eb);
828		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
829		cond_resched();
830	}
831	return 0;
832}
833
834/*
835 * add all currently queued delayed refs from this head whose seq nr is
836 * smaller or equal that seq to the list
837 */
838static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
839			    struct btrfs_delayed_ref_head *head, u64 seq,
840			    struct preftrees *preftrees, struct share_check *sc)
841{
842	struct btrfs_delayed_ref_node *node;
843	struct btrfs_key key;
844	struct rb_node *n;
845	int count;
846	int ret = 0;
847
848	spin_lock(&head->lock);
849	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
850		node = rb_entry(n, struct btrfs_delayed_ref_node,
851				ref_node);
852		if (node->seq > seq)
853			continue;
854
855		switch (node->action) {
856		case BTRFS_ADD_DELAYED_EXTENT:
857		case BTRFS_UPDATE_DELAYED_HEAD:
858			WARN_ON(1);
859			continue;
860		case BTRFS_ADD_DELAYED_REF:
861			count = node->ref_mod;
862			break;
863		case BTRFS_DROP_DELAYED_REF:
864			count = node->ref_mod * -1;
865			break;
866		default:
867			BUG();
868		}
869		switch (node->type) {
870		case BTRFS_TREE_BLOCK_REF_KEY: {
871			/* NORMAL INDIRECT METADATA backref */
872			struct btrfs_delayed_tree_ref *ref;
873			struct btrfs_key *key_ptr = NULL;
874
875			if (head->extent_op && head->extent_op->update_key) {
876				btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
877				key_ptr = &key;
878			}
879
880			ref = btrfs_delayed_node_to_tree_ref(node);
881			ret = add_indirect_ref(fs_info, preftrees, ref->root,
882					       key_ptr, ref->level + 1,
883					       node->bytenr, count, sc,
884					       GFP_ATOMIC);
885			break;
886		}
887		case BTRFS_SHARED_BLOCK_REF_KEY: {
888			/* SHARED DIRECT METADATA backref */
889			struct btrfs_delayed_tree_ref *ref;
890
891			ref = btrfs_delayed_node_to_tree_ref(node);
892
893			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
894					     ref->parent, node->bytenr, count,
895					     sc, GFP_ATOMIC);
896			break;
897		}
898		case BTRFS_EXTENT_DATA_REF_KEY: {
899			/* NORMAL INDIRECT DATA backref */
900			struct btrfs_delayed_data_ref *ref;
901			ref = btrfs_delayed_node_to_data_ref(node);
902
903			key.objectid = ref->objectid;
904			key.type = BTRFS_EXTENT_DATA_KEY;
905			key.offset = ref->offset;
906
907			/*
908			 * If we have a share check context and a reference for
909			 * another inode, we can't exit immediately. This is
910			 * because even if this is a BTRFS_ADD_DELAYED_REF
911			 * reference we may find next a BTRFS_DROP_DELAYED_REF
912			 * which cancels out this ADD reference.
913			 *
914			 * If this is a DROP reference and there was no previous
915			 * ADD reference, then we need to signal that when we
916			 * process references from the extent tree (through
917			 * add_inline_refs() and add_keyed_refs()), we should
918			 * not exit early if we find a reference for another
919			 * inode, because one of the delayed DROP references
920			 * may cancel that reference in the extent tree.
921			 */
922			if (sc && count < 0)
923				sc->have_delayed_delete_refs = true;
924
925			ret = add_indirect_ref(fs_info, preftrees, ref->root,
926					       &key, 0, node->bytenr, count, sc,
927					       GFP_ATOMIC);
928			break;
929		}
930		case BTRFS_SHARED_DATA_REF_KEY: {
931			/* SHARED DIRECT FULL backref */
932			struct btrfs_delayed_data_ref *ref;
933
934			ref = btrfs_delayed_node_to_data_ref(node);
935
936			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
937					     node->bytenr, count, sc,
938					     GFP_ATOMIC);
939			break;
940		}
941		default:
942			WARN_ON(1);
943		}
944		/*
945		 * We must ignore BACKREF_FOUND_SHARED until all delayed
946		 * refs have been checked.
947		 */
948		if (ret && (ret != BACKREF_FOUND_SHARED))
949			break;
950	}
951	if (!ret)
952		ret = extent_is_shared(sc);
953
954	spin_unlock(&head->lock);
955	return ret;
956}
957
958/*
959 * add all inline backrefs for bytenr to the list
960 *
961 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
962 */
963static int add_inline_refs(const struct btrfs_fs_info *fs_info,
964			   struct btrfs_path *path, u64 bytenr,
965			   int *info_level, struct preftrees *preftrees,
966			   struct share_check *sc)
967{
968	int ret = 0;
969	int slot;
970	struct extent_buffer *leaf;
971	struct btrfs_key key;
972	struct btrfs_key found_key;
973	unsigned long ptr;
974	unsigned long end;
975	struct btrfs_extent_item *ei;
976	u64 flags;
977	u64 item_size;
978
979	/*
980	 * enumerate all inline refs
981	 */
982	leaf = path->nodes[0];
983	slot = path->slots[0];
984
985	item_size = btrfs_item_size_nr(leaf, slot);
986	BUG_ON(item_size < sizeof(*ei));
987
988	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
989	flags = btrfs_extent_flags(leaf, ei);
990	btrfs_item_key_to_cpu(leaf, &found_key, slot);
991
992	ptr = (unsigned long)(ei + 1);
993	end = (unsigned long)ei + item_size;
994
995	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
996	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
997		struct btrfs_tree_block_info *info;
998
999		info = (struct btrfs_tree_block_info *)ptr;
1000		*info_level = btrfs_tree_block_level(leaf, info);
1001		ptr += sizeof(struct btrfs_tree_block_info);
1002		BUG_ON(ptr > end);
1003	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1004		*info_level = found_key.offset;
1005	} else {
1006		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1007	}
1008
1009	while (ptr < end) {
1010		struct btrfs_extent_inline_ref *iref;
1011		u64 offset;
1012		int type;
1013
1014		iref = (struct btrfs_extent_inline_ref *)ptr;
1015		type = btrfs_get_extent_inline_ref_type(leaf, iref,
1016							BTRFS_REF_TYPE_ANY);
1017		if (type == BTRFS_REF_TYPE_INVALID)
1018			return -EUCLEAN;
1019
1020		offset = btrfs_extent_inline_ref_offset(leaf, iref);
1021
1022		switch (type) {
1023		case BTRFS_SHARED_BLOCK_REF_KEY:
1024			ret = add_direct_ref(fs_info, preftrees,
1025					     *info_level + 1, offset,
1026					     bytenr, 1, NULL, GFP_NOFS);
1027			break;
1028		case BTRFS_SHARED_DATA_REF_KEY: {
1029			struct btrfs_shared_data_ref *sdref;
1030			int count;
1031
1032			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1033			count = btrfs_shared_data_ref_count(leaf, sdref);
1034
1035			ret = add_direct_ref(fs_info, preftrees, 0, offset,
1036					     bytenr, count, sc, GFP_NOFS);
1037			break;
1038		}
1039		case BTRFS_TREE_BLOCK_REF_KEY:
1040			ret = add_indirect_ref(fs_info, preftrees, offset,
1041					       NULL, *info_level + 1,
1042					       bytenr, 1, NULL, GFP_NOFS);
1043			break;
1044		case BTRFS_EXTENT_DATA_REF_KEY: {
1045			struct btrfs_extent_data_ref *dref;
1046			int count;
1047			u64 root;
1048
1049			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1050			count = btrfs_extent_data_ref_count(leaf, dref);
1051			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1052								      dref);
1053			key.type = BTRFS_EXTENT_DATA_KEY;
1054			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1055
1056			if (sc && sc->inum && key.objectid != sc->inum &&
1057			    !sc->have_delayed_delete_refs) {
1058				ret = BACKREF_FOUND_SHARED;
1059				break;
1060			}
1061
1062			root = btrfs_extent_data_ref_root(leaf, dref);
1063
1064			ret = add_indirect_ref(fs_info, preftrees, root,
1065					       &key, 0, bytenr, count,
1066					       sc, GFP_NOFS);
1067
1068			break;
1069		}
1070		default:
1071			WARN_ON(1);
1072		}
1073		if (ret)
1074			return ret;
1075		ptr += btrfs_extent_inline_ref_size(type);
1076	}
1077
1078	return 0;
1079}
1080
1081/*
1082 * add all non-inline backrefs for bytenr to the list
1083 *
1084 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1085 */
1086static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1087			  struct btrfs_path *path, u64 bytenr,
1088			  int info_level, struct preftrees *preftrees,
1089			  struct share_check *sc)
1090{
1091	struct btrfs_root *extent_root = fs_info->extent_root;
1092	int ret;
1093	int slot;
1094	struct extent_buffer *leaf;
1095	struct btrfs_key key;
1096
1097	while (1) {
1098		ret = btrfs_next_item(extent_root, path);
1099		if (ret < 0)
1100			break;
1101		if (ret) {
1102			ret = 0;
1103			break;
1104		}
1105
1106		slot = path->slots[0];
1107		leaf = path->nodes[0];
1108		btrfs_item_key_to_cpu(leaf, &key, slot);
1109
1110		if (key.objectid != bytenr)
1111			break;
1112		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1113			continue;
1114		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1115			break;
1116
1117		switch (key.type) {
1118		case BTRFS_SHARED_BLOCK_REF_KEY:
1119			/* SHARED DIRECT METADATA backref */
1120			ret = add_direct_ref(fs_info, preftrees,
1121					     info_level + 1, key.offset,
1122					     bytenr, 1, NULL, GFP_NOFS);
1123			break;
1124		case BTRFS_SHARED_DATA_REF_KEY: {
1125			/* SHARED DIRECT FULL backref */
1126			struct btrfs_shared_data_ref *sdref;
1127			int count;
1128
1129			sdref = btrfs_item_ptr(leaf, slot,
1130					      struct btrfs_shared_data_ref);
1131			count = btrfs_shared_data_ref_count(leaf, sdref);
1132			ret = add_direct_ref(fs_info, preftrees, 0,
1133					     key.offset, bytenr, count,
1134					     sc, GFP_NOFS);
1135			break;
1136		}
1137		case BTRFS_TREE_BLOCK_REF_KEY:
1138			/* NORMAL INDIRECT METADATA backref */
1139			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1140					       NULL, info_level + 1, bytenr,
1141					       1, NULL, GFP_NOFS);
1142			break;
1143		case BTRFS_EXTENT_DATA_REF_KEY: {
1144			/* NORMAL INDIRECT DATA backref */
1145			struct btrfs_extent_data_ref *dref;
1146			int count;
1147			u64 root;
1148
1149			dref = btrfs_item_ptr(leaf, slot,
1150					      struct btrfs_extent_data_ref);
1151			count = btrfs_extent_data_ref_count(leaf, dref);
1152			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1153								      dref);
1154			key.type = BTRFS_EXTENT_DATA_KEY;
1155			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1156
1157			if (sc && sc->inum && key.objectid != sc->inum &&
1158			    !sc->have_delayed_delete_refs) {
1159				ret = BACKREF_FOUND_SHARED;
1160				break;
1161			}
1162
1163			root = btrfs_extent_data_ref_root(leaf, dref);
1164			ret = add_indirect_ref(fs_info, preftrees, root,
1165					       &key, 0, bytenr, count,
1166					       sc, GFP_NOFS);
1167			break;
1168		}
1169		default:
1170			WARN_ON(1);
1171		}
1172		if (ret)
1173			return ret;
1174
1175	}
1176
1177	return ret;
1178}
1179
1180/*
1181 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1182 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1183 * indirect refs to their parent bytenr.
1184 * When roots are found, they're added to the roots list
1185 *
1186 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1187 * much like trans == NULL case, the difference only lies in it will not
1188 * commit root.
1189 * The special case is for qgroup to search roots in commit_transaction().
1190 *
1191 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1192 * shared extent is detected.
1193 *
1194 * Otherwise this returns 0 for success and <0 for an error.
1195 *
1196 * If ignore_offset is set to false, only extent refs whose offsets match
1197 * extent_item_pos are returned.  If true, every extent ref is returned
1198 * and extent_item_pos is ignored.
1199 *
1200 * FIXME some caching might speed things up
1201 */
1202static int find_parent_nodes(struct btrfs_trans_handle *trans,
1203			     struct btrfs_fs_info *fs_info, u64 bytenr,
1204			     u64 time_seq, struct ulist *refs,
1205			     struct ulist *roots, const u64 *extent_item_pos,
1206			     struct share_check *sc, bool ignore_offset)
1207{
1208	struct btrfs_key key;
1209	struct btrfs_path *path;
1210	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1211	struct btrfs_delayed_ref_head *head;
1212	int info_level = 0;
1213	int ret;
1214	struct prelim_ref *ref;
1215	struct rb_node *node;
1216	struct extent_inode_elem *eie = NULL;
1217	struct preftrees preftrees = {
1218		.direct = PREFTREE_INIT,
1219		.indirect = PREFTREE_INIT,
1220		.indirect_missing_keys = PREFTREE_INIT
1221	};
1222
1223	key.objectid = bytenr;
1224	key.offset = (u64)-1;
1225	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1226		key.type = BTRFS_METADATA_ITEM_KEY;
1227	else
1228		key.type = BTRFS_EXTENT_ITEM_KEY;
1229
1230	path = btrfs_alloc_path();
1231	if (!path)
1232		return -ENOMEM;
1233	if (!trans) {
1234		path->search_commit_root = 1;
1235		path->skip_locking = 1;
1236	}
1237
1238	if (time_seq == SEQ_LAST)
1239		path->skip_locking = 1;
1240
1241	/*
1242	 * grab both a lock on the path and a lock on the delayed ref head.
1243	 * We need both to get a consistent picture of how the refs look
1244	 * at a specified point in time
1245	 */
1246again:
1247	head = NULL;
1248
1249	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1250	if (ret < 0)
1251		goto out;
1252	if (ret == 0) {
1253		/* This shouldn't happen, indicates a bug or fs corruption. */
1254		ASSERT(ret != 0);
1255		ret = -EUCLEAN;
1256		goto out;
1257	}
1258
1259#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1260	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1261	    time_seq != SEQ_LAST) {
1262#else
1263	if (trans && time_seq != SEQ_LAST) {
1264#endif
1265		/*
1266		 * look if there are updates for this ref queued and lock the
1267		 * head
1268		 */
1269		delayed_refs = &trans->transaction->delayed_refs;
1270		spin_lock(&delayed_refs->lock);
1271		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1272		if (head) {
1273			if (!mutex_trylock(&head->mutex)) {
1274				refcount_inc(&head->refs);
1275				spin_unlock(&delayed_refs->lock);
1276
1277				btrfs_release_path(path);
1278
1279				/*
1280				 * Mutex was contended, block until it's
1281				 * released and try again
1282				 */
1283				mutex_lock(&head->mutex);
1284				mutex_unlock(&head->mutex);
1285				btrfs_put_delayed_ref_head(head);
1286				goto again;
1287			}
1288			spin_unlock(&delayed_refs->lock);
1289			ret = add_delayed_refs(fs_info, head, time_seq,
1290					       &preftrees, sc);
1291			mutex_unlock(&head->mutex);
1292			if (ret)
1293				goto out;
1294		} else {
1295			spin_unlock(&delayed_refs->lock);
1296		}
1297	}
1298
1299	if (path->slots[0]) {
1300		struct extent_buffer *leaf;
1301		int slot;
1302
1303		path->slots[0]--;
1304		leaf = path->nodes[0];
1305		slot = path->slots[0];
1306		btrfs_item_key_to_cpu(leaf, &key, slot);
1307		if (key.objectid == bytenr &&
1308		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1309		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1310			ret = add_inline_refs(fs_info, path, bytenr,
1311					      &info_level, &preftrees, sc);
1312			if (ret)
1313				goto out;
1314			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1315					     &preftrees, sc);
1316			if (ret)
1317				goto out;
1318		}
1319	}
1320
1321	btrfs_release_path(path);
1322
1323	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1324	if (ret)
1325		goto out;
1326
1327	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1328
1329	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1330				    extent_item_pos, sc, ignore_offset);
1331	if (ret)
1332		goto out;
1333
1334	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1335
1336	/*
1337	 * This walks the tree of merged and resolved refs. Tree blocks are
1338	 * read in as needed. Unique entries are added to the ulist, and
1339	 * the list of found roots is updated.
1340	 *
1341	 * We release the entire tree in one go before returning.
1342	 */
1343	node = rb_first_cached(&preftrees.direct.root);
1344	while (node) {
1345		ref = rb_entry(node, struct prelim_ref, rbnode);
1346		node = rb_next(&ref->rbnode);
1347		/*
1348		 * ref->count < 0 can happen here if there are delayed
1349		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1350		 * prelim_ref_insert() relies on this when merging
1351		 * identical refs to keep the overall count correct.
1352		 * prelim_ref_insert() will merge only those refs
1353		 * which compare identically.  Any refs having
1354		 * e.g. different offsets would not be merged,
1355		 * and would retain their original ref->count < 0.
1356		 */
1357		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1358			if (sc && sc->root_objectid &&
1359			    ref->root_id != sc->root_objectid) {
1360				ret = BACKREF_FOUND_SHARED;
1361				goto out;
1362			}
1363
1364			/* no parent == root of tree */
1365			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1366			if (ret < 0)
1367				goto out;
1368		}
1369		if (ref->count && ref->parent) {
1370			if (extent_item_pos && !ref->inode_list &&
1371			    ref->level == 0) {
1372				struct extent_buffer *eb;
1373
1374				eb = read_tree_block(fs_info, ref->parent, 0,
1375						     ref->level, NULL);
1376				if (IS_ERR(eb)) {
1377					ret = PTR_ERR(eb);
1378					goto out;
1379				} else if (!extent_buffer_uptodate(eb)) {
1380					free_extent_buffer(eb);
1381					ret = -EIO;
1382					goto out;
1383				}
1384
1385				if (!path->skip_locking) {
1386					btrfs_tree_read_lock(eb);
1387					btrfs_set_lock_blocking_read(eb);
1388				}
1389				ret = find_extent_in_eb(eb, bytenr,
1390							*extent_item_pos, &eie, ignore_offset);
1391				if (!path->skip_locking)
1392					btrfs_tree_read_unlock_blocking(eb);
1393				free_extent_buffer(eb);
1394				if (ret < 0)
1395					goto out;
1396				ref->inode_list = eie;
1397				/*
1398				 * We transferred the list ownership to the ref,
1399				 * so set to NULL to avoid a double free in case
1400				 * an error happens after this.
1401				 */
1402				eie = NULL;
1403			}
1404			ret = ulist_add_merge_ptr(refs, ref->parent,
1405						  ref->inode_list,
1406						  (void **)&eie, GFP_NOFS);
1407			if (ret < 0)
1408				goto out;
1409			if (!ret && extent_item_pos) {
1410				/*
1411				 * We've recorded that parent, so we must extend
1412				 * its inode list here.
1413				 *
1414				 * However if there was corruption we may not
1415				 * have found an eie, return an error in this
1416				 * case.
1417				 */
1418				ASSERT(eie);
1419				if (!eie) {
1420					ret = -EUCLEAN;
1421					goto out;
1422				}
1423				while (eie->next)
1424					eie = eie->next;
1425				eie->next = ref->inode_list;
1426			}
1427			eie = NULL;
1428			/*
1429			 * We have transferred the inode list ownership from
1430			 * this ref to the ref we added to the 'refs' ulist.
1431			 * So set this ref's inode list to NULL to avoid
1432			 * use-after-free when our caller uses it or double
1433			 * frees in case an error happens before we return.
1434			 */
1435			ref->inode_list = NULL;
1436		}
1437		cond_resched();
1438	}
1439
1440out:
1441	btrfs_free_path(path);
1442
1443	prelim_release(&preftrees.direct);
1444	prelim_release(&preftrees.indirect);
1445	prelim_release(&preftrees.indirect_missing_keys);
1446
1447	if (ret < 0)
1448		free_inode_elem_list(eie);
1449	return ret;
1450}
1451
1452/*
1453 * Finds all leafs with a reference to the specified combination of bytenr and
1454 * offset. key_list_head will point to a list of corresponding keys (caller must
1455 * free each list element). The leafs will be stored in the leafs ulist, which
1456 * must be freed with ulist_free.
1457 *
1458 * returns 0 on success, <0 on error
1459 */
1460int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1461			 struct btrfs_fs_info *fs_info, u64 bytenr,
1462			 u64 time_seq, struct ulist **leafs,
1463			 const u64 *extent_item_pos, bool ignore_offset)
1464{
1465	int ret;
1466
1467	*leafs = ulist_alloc(GFP_NOFS);
1468	if (!*leafs)
1469		return -ENOMEM;
1470
1471	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1472				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1473	if (ret < 0 && ret != -ENOENT) {
1474		free_leaf_list(*leafs);
1475		return ret;
1476	}
1477
1478	return 0;
1479}
1480
1481/*
1482 * walk all backrefs for a given extent to find all roots that reference this
1483 * extent. Walking a backref means finding all extents that reference this
1484 * extent and in turn walk the backrefs of those, too. Naturally this is a
1485 * recursive process, but here it is implemented in an iterative fashion: We
1486 * find all referencing extents for the extent in question and put them on a
1487 * list. In turn, we find all referencing extents for those, further appending
1488 * to the list. The way we iterate the list allows adding more elements after
1489 * the current while iterating. The process stops when we reach the end of the
1490 * list. Found roots are added to the roots list.
1491 *
1492 * returns 0 on success, < 0 on error.
1493 */
1494static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1495				     struct btrfs_fs_info *fs_info, u64 bytenr,
1496				     u64 time_seq, struct ulist **roots,
1497				     bool ignore_offset)
1498{
1499	struct ulist *tmp;
1500	struct ulist_node *node = NULL;
1501	struct ulist_iterator uiter;
1502	int ret;
1503
1504	tmp = ulist_alloc(GFP_NOFS);
1505	if (!tmp)
1506		return -ENOMEM;
1507	*roots = ulist_alloc(GFP_NOFS);
1508	if (!*roots) {
1509		ulist_free(tmp);
1510		return -ENOMEM;
1511	}
1512
1513	ULIST_ITER_INIT(&uiter);
1514	while (1) {
1515		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1516					tmp, *roots, NULL, NULL, ignore_offset);
1517		if (ret < 0 && ret != -ENOENT) {
1518			ulist_free(tmp);
1519			ulist_free(*roots);
1520			*roots = NULL;
1521			return ret;
1522		}
1523		node = ulist_next(tmp, &uiter);
1524		if (!node)
1525			break;
1526		bytenr = node->val;
1527		cond_resched();
1528	}
1529
1530	ulist_free(tmp);
1531	return 0;
1532}
1533
1534int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1535			 struct btrfs_fs_info *fs_info, u64 bytenr,
1536			 u64 time_seq, struct ulist **roots,
1537			 bool ignore_offset)
1538{
1539	int ret;
1540
1541	if (!trans)
1542		down_read(&fs_info->commit_root_sem);
1543	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1544					time_seq, roots, ignore_offset);
1545	if (!trans)
1546		up_read(&fs_info->commit_root_sem);
1547	return ret;
1548}
1549
1550/**
1551 * btrfs_check_shared - tell us whether an extent is shared
1552 *
1553 * btrfs_check_shared uses the backref walking code but will short
1554 * circuit as soon as it finds a root or inode that doesn't match the
1555 * one passed in. This provides a significant performance benefit for
1556 * callers (such as fiemap) which want to know whether the extent is
1557 * shared but do not need a ref count.
1558 *
1559 * This attempts to attach to the running transaction in order to account for
1560 * delayed refs, but continues on even when no running transaction exists.
1561 *
1562 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1563 */
1564int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1565		struct ulist *roots, struct ulist *tmp)
1566{
1567	struct btrfs_fs_info *fs_info = root->fs_info;
1568	struct btrfs_trans_handle *trans;
1569	struct ulist_iterator uiter;
1570	struct ulist_node *node;
1571	struct seq_list elem = SEQ_LIST_INIT(elem);
1572	int ret = 0;
1573	struct share_check shared = {
1574		.root_objectid = root->root_key.objectid,
1575		.inum = inum,
1576		.share_count = 0,
1577		.have_delayed_delete_refs = false,
1578	};
1579
1580	ulist_init(roots);
1581	ulist_init(tmp);
1582
1583	trans = btrfs_join_transaction_nostart(root);
1584	if (IS_ERR(trans)) {
1585		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1586			ret = PTR_ERR(trans);
1587			goto out;
1588		}
1589		trans = NULL;
1590		down_read(&fs_info->commit_root_sem);
1591	} else {
1592		btrfs_get_tree_mod_seq(fs_info, &elem);
1593	}
1594
1595	ULIST_ITER_INIT(&uiter);
1596	while (1) {
1597		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1598					roots, NULL, &shared, false);
1599		if (ret == BACKREF_FOUND_SHARED) {
1600			/* this is the only condition under which we return 1 */
1601			ret = 1;
1602			break;
1603		}
1604		if (ret < 0 && ret != -ENOENT)
1605			break;
1606		ret = 0;
1607		node = ulist_next(tmp, &uiter);
1608		if (!node)
1609			break;
1610		bytenr = node->val;
1611		shared.share_count = 0;
1612		shared.have_delayed_delete_refs = false;
1613		cond_resched();
1614	}
1615
1616	if (trans) {
1617		btrfs_put_tree_mod_seq(fs_info, &elem);
1618		btrfs_end_transaction(trans);
1619	} else {
1620		up_read(&fs_info->commit_root_sem);
1621	}
1622out:
1623	ulist_release(roots);
1624	ulist_release(tmp);
1625	return ret;
1626}
1627
1628int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1629			  u64 start_off, struct btrfs_path *path,
1630			  struct btrfs_inode_extref **ret_extref,
1631			  u64 *found_off)
1632{
1633	int ret, slot;
1634	struct btrfs_key key;
1635	struct btrfs_key found_key;
1636	struct btrfs_inode_extref *extref;
1637	const struct extent_buffer *leaf;
1638	unsigned long ptr;
1639
1640	key.objectid = inode_objectid;
1641	key.type = BTRFS_INODE_EXTREF_KEY;
1642	key.offset = start_off;
1643
1644	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1645	if (ret < 0)
1646		return ret;
1647
1648	while (1) {
1649		leaf = path->nodes[0];
1650		slot = path->slots[0];
1651		if (slot >= btrfs_header_nritems(leaf)) {
1652			/*
1653			 * If the item at offset is not found,
1654			 * btrfs_search_slot will point us to the slot
1655			 * where it should be inserted. In our case
1656			 * that will be the slot directly before the
1657			 * next INODE_REF_KEY_V2 item. In the case
1658			 * that we're pointing to the last slot in a
1659			 * leaf, we must move one leaf over.
1660			 */
1661			ret = btrfs_next_leaf(root, path);
1662			if (ret) {
1663				if (ret >= 1)
1664					ret = -ENOENT;
1665				break;
1666			}
1667			continue;
1668		}
1669
1670		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1671
1672		/*
1673		 * Check that we're still looking at an extended ref key for
1674		 * this particular objectid. If we have different
1675		 * objectid or type then there are no more to be found
1676		 * in the tree and we can exit.
1677		 */
1678		ret = -ENOENT;
1679		if (found_key.objectid != inode_objectid)
1680			break;
1681		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1682			break;
1683
1684		ret = 0;
1685		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1686		extref = (struct btrfs_inode_extref *)ptr;
1687		*ret_extref = extref;
1688		if (found_off)
1689			*found_off = found_key.offset;
1690		break;
1691	}
1692
1693	return ret;
1694}
1695
1696/*
1697 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1698 * Elements of the path are separated by '/' and the path is guaranteed to be
1699 * 0-terminated. the path is only given within the current file system.
1700 * Therefore, it never starts with a '/'. the caller is responsible to provide
1701 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1702 * the start point of the resulting string is returned. this pointer is within
1703 * dest, normally.
1704 * in case the path buffer would overflow, the pointer is decremented further
1705 * as if output was written to the buffer, though no more output is actually
1706 * generated. that way, the caller can determine how much space would be
1707 * required for the path to fit into the buffer. in that case, the returned
1708 * value will be smaller than dest. callers must check this!
1709 */
1710char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1711			u32 name_len, unsigned long name_off,
1712			struct extent_buffer *eb_in, u64 parent,
1713			char *dest, u32 size)
1714{
1715	int slot;
1716	u64 next_inum;
1717	int ret;
1718	s64 bytes_left = ((s64)size) - 1;
1719	struct extent_buffer *eb = eb_in;
1720	struct btrfs_key found_key;
1721	int leave_spinning = path->leave_spinning;
1722	struct btrfs_inode_ref *iref;
1723
1724	if (bytes_left >= 0)
1725		dest[bytes_left] = '\0';
1726
1727	path->leave_spinning = 1;
1728	while (1) {
1729		bytes_left -= name_len;
1730		if (bytes_left >= 0)
1731			read_extent_buffer(eb, dest + bytes_left,
1732					   name_off, name_len);
1733		if (eb != eb_in) {
1734			if (!path->skip_locking)
1735				btrfs_tree_read_unlock_blocking(eb);
1736			free_extent_buffer(eb);
1737		}
1738		ret = btrfs_find_item(fs_root, path, parent, 0,
1739				BTRFS_INODE_REF_KEY, &found_key);
1740		if (ret > 0)
1741			ret = -ENOENT;
1742		if (ret)
1743			break;
1744
1745		next_inum = found_key.offset;
1746
1747		/* regular exit ahead */
1748		if (parent == next_inum)
1749			break;
1750
1751		slot = path->slots[0];
1752		eb = path->nodes[0];
1753		/* make sure we can use eb after releasing the path */
1754		if (eb != eb_in) {
1755			if (!path->skip_locking)
1756				btrfs_set_lock_blocking_read(eb);
1757			path->nodes[0] = NULL;
1758			path->locks[0] = 0;
1759		}
1760		btrfs_release_path(path);
1761		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1762
1763		name_len = btrfs_inode_ref_name_len(eb, iref);
1764		name_off = (unsigned long)(iref + 1);
1765
1766		parent = next_inum;
1767		--bytes_left;
1768		if (bytes_left >= 0)
1769			dest[bytes_left] = '/';
1770	}
1771
1772	btrfs_release_path(path);
1773	path->leave_spinning = leave_spinning;
1774
1775	if (ret)
1776		return ERR_PTR(ret);
1777
1778	return dest + bytes_left;
1779}
1780
1781/*
1782 * this makes the path point to (logical EXTENT_ITEM *)
1783 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1784 * tree blocks and <0 on error.
1785 */
1786int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1787			struct btrfs_path *path, struct btrfs_key *found_key,
1788			u64 *flags_ret)
1789{
1790	int ret;
1791	u64 flags;
1792	u64 size = 0;
1793	u32 item_size;
1794	const struct extent_buffer *eb;
1795	struct btrfs_extent_item *ei;
1796	struct btrfs_key key;
1797
1798	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1799		key.type = BTRFS_METADATA_ITEM_KEY;
1800	else
1801		key.type = BTRFS_EXTENT_ITEM_KEY;
1802	key.objectid = logical;
1803	key.offset = (u64)-1;
1804
1805	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1806	if (ret < 0)
1807		return ret;
1808
1809	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1810	if (ret) {
1811		if (ret > 0)
1812			ret = -ENOENT;
1813		return ret;
1814	}
1815	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1816	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1817		size = fs_info->nodesize;
1818	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1819		size = found_key->offset;
1820
1821	if (found_key->objectid > logical ||
1822	    found_key->objectid + size <= logical) {
1823		btrfs_debug(fs_info,
1824			"logical %llu is not within any extent", logical);
1825		return -ENOENT;
1826	}
1827
1828	eb = path->nodes[0];
1829	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1830	BUG_ON(item_size < sizeof(*ei));
1831
1832	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1833	flags = btrfs_extent_flags(eb, ei);
1834
1835	btrfs_debug(fs_info,
1836		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1837		 logical, logical - found_key->objectid, found_key->objectid,
1838		 found_key->offset, flags, item_size);
1839
1840	WARN_ON(!flags_ret);
1841	if (flags_ret) {
1842		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1843			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1844		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1845			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1846		else
1847			BUG();
1848		return 0;
1849	}
1850
1851	return -EIO;
1852}
1853
1854/*
1855 * helper function to iterate extent inline refs. ptr must point to a 0 value
1856 * for the first call and may be modified. it is used to track state.
1857 * if more refs exist, 0 is returned and the next call to
1858 * get_extent_inline_ref must pass the modified ptr parameter to get the
1859 * next ref. after the last ref was processed, 1 is returned.
1860 * returns <0 on error
1861 */
1862static int get_extent_inline_ref(unsigned long *ptr,
1863				 const struct extent_buffer *eb,
1864				 const struct btrfs_key *key,
1865				 const struct btrfs_extent_item *ei,
1866				 u32 item_size,
1867				 struct btrfs_extent_inline_ref **out_eiref,
1868				 int *out_type)
1869{
1870	unsigned long end;
1871	u64 flags;
1872	struct btrfs_tree_block_info *info;
1873
1874	if (!*ptr) {
1875		/* first call */
1876		flags = btrfs_extent_flags(eb, ei);
1877		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1878			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1879				/* a skinny metadata extent */
1880				*out_eiref =
1881				     (struct btrfs_extent_inline_ref *)(ei + 1);
1882			} else {
1883				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1884				info = (struct btrfs_tree_block_info *)(ei + 1);
1885				*out_eiref =
1886				   (struct btrfs_extent_inline_ref *)(info + 1);
1887			}
1888		} else {
1889			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1890		}
1891		*ptr = (unsigned long)*out_eiref;
1892		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1893			return -ENOENT;
1894	}
1895
1896	end = (unsigned long)ei + item_size;
1897	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1898	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1899						     BTRFS_REF_TYPE_ANY);
1900	if (*out_type == BTRFS_REF_TYPE_INVALID)
1901		return -EUCLEAN;
1902
1903	*ptr += btrfs_extent_inline_ref_size(*out_type);
1904	WARN_ON(*ptr > end);
1905	if (*ptr == end)
1906		return 1; /* last */
1907
1908	return 0;
1909}
1910
1911/*
1912 * reads the tree block backref for an extent. tree level and root are returned
1913 * through out_level and out_root. ptr must point to a 0 value for the first
1914 * call and may be modified (see get_extent_inline_ref comment).
1915 * returns 0 if data was provided, 1 if there was no more data to provide or
1916 * <0 on error.
1917 */
1918int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1919			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1920			    u32 item_size, u64 *out_root, u8 *out_level)
1921{
1922	int ret;
1923	int type;
1924	struct btrfs_extent_inline_ref *eiref;
1925
1926	if (*ptr == (unsigned long)-1)
1927		return 1;
1928
1929	while (1) {
1930		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1931					      &eiref, &type);
1932		if (ret < 0)
1933			return ret;
1934
1935		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1936		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1937			break;
1938
1939		if (ret == 1)
1940			return 1;
1941	}
1942
1943	/* we can treat both ref types equally here */
1944	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1945
1946	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1947		struct btrfs_tree_block_info *info;
1948
1949		info = (struct btrfs_tree_block_info *)(ei + 1);
1950		*out_level = btrfs_tree_block_level(eb, info);
1951	} else {
1952		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1953		*out_level = (u8)key->offset;
1954	}
1955
1956	if (ret == 1)
1957		*ptr = (unsigned long)-1;
1958
1959	return 0;
1960}
1961
1962static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1963			     struct extent_inode_elem *inode_list,
1964			     u64 root, u64 extent_item_objectid,
1965			     iterate_extent_inodes_t *iterate, void *ctx)
1966{
1967	struct extent_inode_elem *eie;
1968	int ret = 0;
1969
1970	for (eie = inode_list; eie; eie = eie->next) {
1971		btrfs_debug(fs_info,
1972			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1973			    extent_item_objectid, eie->inum,
1974			    eie->offset, root);
1975		ret = iterate(eie->inum, eie->offset, root, ctx);
1976		if (ret) {
1977			btrfs_debug(fs_info,
1978				    "stopping iteration for %llu due to ret=%d",
1979				    extent_item_objectid, ret);
1980			break;
1981		}
1982	}
1983
1984	return ret;
1985}
1986
1987/*
1988 * calls iterate() for every inode that references the extent identified by
1989 * the given parameters.
1990 * when the iterator function returns a non-zero value, iteration stops.
1991 */
1992int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1993				u64 extent_item_objectid, u64 extent_item_pos,
1994				int search_commit_root,
1995				iterate_extent_inodes_t *iterate, void *ctx,
1996				bool ignore_offset)
1997{
1998	int ret;
1999	struct btrfs_trans_handle *trans = NULL;
2000	struct ulist *refs = NULL;
2001	struct ulist *roots = NULL;
2002	struct ulist_node *ref_node = NULL;
2003	struct ulist_node *root_node = NULL;
2004	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
2005	struct ulist_iterator ref_uiter;
2006	struct ulist_iterator root_uiter;
2007
2008	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
2009			extent_item_objectid);
2010
2011	if (!search_commit_root) {
2012		trans = btrfs_attach_transaction(fs_info->extent_root);
2013		if (IS_ERR(trans)) {
2014			if (PTR_ERR(trans) != -ENOENT &&
2015			    PTR_ERR(trans) != -EROFS)
2016				return PTR_ERR(trans);
2017			trans = NULL;
2018		}
2019	}
2020
2021	if (trans)
2022		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2023	else
2024		down_read(&fs_info->commit_root_sem);
2025
2026	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
2027				   tree_mod_seq_elem.seq, &refs,
2028				   &extent_item_pos, ignore_offset);
2029	if (ret)
2030		goto out;
2031
2032	ULIST_ITER_INIT(&ref_uiter);
2033	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2034		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
2035						tree_mod_seq_elem.seq, &roots,
2036						ignore_offset);
2037		if (ret)
2038			break;
2039		ULIST_ITER_INIT(&root_uiter);
2040		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2041			btrfs_debug(fs_info,
2042				    "root %llu references leaf %llu, data list %#llx",
2043				    root_node->val, ref_node->val,
2044				    ref_node->aux);
2045			ret = iterate_leaf_refs(fs_info,
2046						(struct extent_inode_elem *)
2047						(uintptr_t)ref_node->aux,
2048						root_node->val,
2049						extent_item_objectid,
2050						iterate, ctx);
2051		}
2052		ulist_free(roots);
2053	}
2054
2055	free_leaf_list(refs);
2056out:
2057	if (trans) {
2058		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2059		btrfs_end_transaction(trans);
2060	} else {
2061		up_read(&fs_info->commit_root_sem);
2062	}
2063
2064	return ret;
2065}
2066
2067static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
2068{
2069	struct btrfs_data_container *inodes = ctx;
2070	const size_t c = 3 * sizeof(u64);
2071
2072	if (inodes->bytes_left >= c) {
2073		inodes->bytes_left -= c;
2074		inodes->val[inodes->elem_cnt] = inum;
2075		inodes->val[inodes->elem_cnt + 1] = offset;
2076		inodes->val[inodes->elem_cnt + 2] = root;
2077		inodes->elem_cnt += 3;
2078	} else {
2079		inodes->bytes_missing += c - inodes->bytes_left;
2080		inodes->bytes_left = 0;
2081		inodes->elem_missed += 3;
2082	}
2083
2084	return 0;
2085}
2086
2087int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2088				struct btrfs_path *path,
2089				void *ctx, bool ignore_offset)
2090{
2091	int ret;
2092	u64 extent_item_pos;
2093	u64 flags = 0;
2094	struct btrfs_key found_key;
2095	int search_commit_root = path->search_commit_root;
2096
2097	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2098	btrfs_release_path(path);
2099	if (ret < 0)
2100		return ret;
2101	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2102		return -EINVAL;
2103
2104	extent_item_pos = logical - found_key.objectid;
2105	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2106					extent_item_pos, search_commit_root,
2107					build_ino_list, ctx, ignore_offset);
2108
2109	return ret;
2110}
2111
2112typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2113			      struct extent_buffer *eb, void *ctx);
2114
2115static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2116			      struct btrfs_path *path,
2117			      iterate_irefs_t *iterate, void *ctx)
2118{
2119	int ret = 0;
2120	int slot;
2121	u32 cur;
2122	u32 len;
2123	u32 name_len;
2124	u64 parent = 0;
2125	int found = 0;
2126	struct extent_buffer *eb;
2127	struct btrfs_item *item;
2128	struct btrfs_inode_ref *iref;
2129	struct btrfs_key found_key;
2130
2131	while (!ret) {
2132		ret = btrfs_find_item(fs_root, path, inum,
2133				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2134				&found_key);
2135
2136		if (ret < 0)
2137			break;
2138		if (ret) {
2139			ret = found ? 0 : -ENOENT;
2140			break;
2141		}
2142		++found;
2143
2144		parent = found_key.offset;
2145		slot = path->slots[0];
2146		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2147		if (!eb) {
2148			ret = -ENOMEM;
2149			break;
2150		}
2151		btrfs_release_path(path);
2152
2153		item = btrfs_item_nr(slot);
2154		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2155
2156		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2157			name_len = btrfs_inode_ref_name_len(eb, iref);
2158			/* path must be released before calling iterate()! */
2159			btrfs_debug(fs_root->fs_info,
2160				"following ref at offset %u for inode %llu in tree %llu",
2161				cur, found_key.objectid,
2162				fs_root->root_key.objectid);
2163			ret = iterate(parent, name_len,
2164				      (unsigned long)(iref + 1), eb, ctx);
2165			if (ret)
2166				break;
2167			len = sizeof(*iref) + name_len;
2168			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2169		}
2170		free_extent_buffer(eb);
2171	}
2172
2173	btrfs_release_path(path);
2174
2175	return ret;
2176}
2177
2178static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2179				 struct btrfs_path *path,
2180				 iterate_irefs_t *iterate, void *ctx)
2181{
2182	int ret;
2183	int slot;
2184	u64 offset = 0;
2185	u64 parent;
2186	int found = 0;
2187	struct extent_buffer *eb;
2188	struct btrfs_inode_extref *extref;
2189	u32 item_size;
2190	u32 cur_offset;
2191	unsigned long ptr;
2192
2193	while (1) {
2194		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2195					    &offset);
2196		if (ret < 0)
2197			break;
2198		if (ret) {
2199			ret = found ? 0 : -ENOENT;
2200			break;
2201		}
2202		++found;
2203
2204		slot = path->slots[0];
2205		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2206		if (!eb) {
2207			ret = -ENOMEM;
2208			break;
2209		}
2210		btrfs_release_path(path);
2211
2212		item_size = btrfs_item_size_nr(eb, slot);
2213		ptr = btrfs_item_ptr_offset(eb, slot);
2214		cur_offset = 0;
2215
2216		while (cur_offset < item_size) {
2217			u32 name_len;
2218
2219			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2220			parent = btrfs_inode_extref_parent(eb, extref);
2221			name_len = btrfs_inode_extref_name_len(eb, extref);
2222			ret = iterate(parent, name_len,
2223				      (unsigned long)&extref->name, eb, ctx);
2224			if (ret)
2225				break;
2226
2227			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2228			cur_offset += sizeof(*extref);
2229		}
2230		free_extent_buffer(eb);
2231
2232		offset++;
2233	}
2234
2235	btrfs_release_path(path);
2236
2237	return ret;
2238}
2239
2240static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2241			 struct btrfs_path *path, iterate_irefs_t *iterate,
2242			 void *ctx)
2243{
2244	int ret;
2245	int found_refs = 0;
2246
2247	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2248	if (!ret)
2249		++found_refs;
2250	else if (ret != -ENOENT)
2251		return ret;
2252
2253	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2254	if (ret == -ENOENT && found_refs)
2255		return 0;
2256
2257	return ret;
2258}
2259
2260/*
2261 * returns 0 if the path could be dumped (probably truncated)
2262 * returns <0 in case of an error
2263 */
2264static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2265			 struct extent_buffer *eb, void *ctx)
2266{
2267	struct inode_fs_paths *ipath = ctx;
2268	char *fspath;
2269	char *fspath_min;
2270	int i = ipath->fspath->elem_cnt;
2271	const int s_ptr = sizeof(char *);
2272	u32 bytes_left;
2273
2274	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2275					ipath->fspath->bytes_left - s_ptr : 0;
2276
2277	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2278	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2279				   name_off, eb, inum, fspath_min, bytes_left);
2280	if (IS_ERR(fspath))
2281		return PTR_ERR(fspath);
2282
2283	if (fspath > fspath_min) {
2284		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2285		++ipath->fspath->elem_cnt;
2286		ipath->fspath->bytes_left = fspath - fspath_min;
2287	} else {
2288		++ipath->fspath->elem_missed;
2289		ipath->fspath->bytes_missing += fspath_min - fspath;
2290		ipath->fspath->bytes_left = 0;
2291	}
2292
2293	return 0;
2294}
2295
2296/*
2297 * this dumps all file system paths to the inode into the ipath struct, provided
2298 * is has been created large enough. each path is zero-terminated and accessed
2299 * from ipath->fspath->val[i].
2300 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2301 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2302 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2303 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2304 * have been needed to return all paths.
2305 */
2306int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2307{
2308	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2309			     inode_to_path, ipath);
2310}
2311
2312struct btrfs_data_container *init_data_container(u32 total_bytes)
2313{
2314	struct btrfs_data_container *data;
2315	size_t alloc_bytes;
2316
2317	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2318	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2319	if (!data)
2320		return ERR_PTR(-ENOMEM);
2321
2322	if (total_bytes >= sizeof(*data)) {
2323		data->bytes_left = total_bytes - sizeof(*data);
2324		data->bytes_missing = 0;
2325	} else {
2326		data->bytes_missing = sizeof(*data) - total_bytes;
2327		data->bytes_left = 0;
2328	}
2329
2330	data->elem_cnt = 0;
2331	data->elem_missed = 0;
2332
2333	return data;
2334}
2335
2336/*
2337 * allocates space to return multiple file system paths for an inode.
2338 * total_bytes to allocate are passed, note that space usable for actual path
2339 * information will be total_bytes - sizeof(struct inode_fs_paths).
2340 * the returned pointer must be freed with free_ipath() in the end.
2341 */
2342struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2343					struct btrfs_path *path)
2344{
2345	struct inode_fs_paths *ifp;
2346	struct btrfs_data_container *fspath;
2347
2348	fspath = init_data_container(total_bytes);
2349	if (IS_ERR(fspath))
2350		return ERR_CAST(fspath);
2351
2352	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2353	if (!ifp) {
2354		kvfree(fspath);
2355		return ERR_PTR(-ENOMEM);
2356	}
2357
2358	ifp->btrfs_path = path;
2359	ifp->fspath = fspath;
2360	ifp->fs_root = fs_root;
2361
2362	return ifp;
2363}
2364
2365void free_ipath(struct inode_fs_paths *ipath)
2366{
2367	if (!ipath)
2368		return;
2369	kvfree(ipath->fspath);
2370	kfree(ipath);
2371}
2372
2373struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2374		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2375{
2376	struct btrfs_backref_iter *ret;
2377
2378	ret = kzalloc(sizeof(*ret), gfp_flag);
2379	if (!ret)
2380		return NULL;
2381
2382	ret->path = btrfs_alloc_path();
2383	if (!ret->path) {
2384		kfree(ret);
2385		return NULL;
2386	}
2387
2388	/* Current backref iterator only supports iteration in commit root */
2389	ret->path->search_commit_root = 1;
2390	ret->path->skip_locking = 1;
2391	ret->fs_info = fs_info;
2392
2393	return ret;
2394}
2395
2396int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2397{
2398	struct btrfs_fs_info *fs_info = iter->fs_info;
2399	struct btrfs_path *path = iter->path;
2400	struct btrfs_extent_item *ei;
2401	struct btrfs_key key;
2402	int ret;
2403
2404	key.objectid = bytenr;
2405	key.type = BTRFS_METADATA_ITEM_KEY;
2406	key.offset = (u64)-1;
2407	iter->bytenr = bytenr;
2408
2409	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2410	if (ret < 0)
2411		return ret;
2412	if (ret == 0) {
2413		ret = -EUCLEAN;
2414		goto release;
2415	}
2416	if (path->slots[0] == 0) {
2417		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2418		ret = -EUCLEAN;
2419		goto release;
2420	}
2421	path->slots[0]--;
2422
2423	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2424	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2425	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2426		ret = -ENOENT;
2427		goto release;
2428	}
2429	memcpy(&iter->cur_key, &key, sizeof(key));
2430	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2431						    path->slots[0]);
2432	iter->end_ptr = (u32)(iter->item_ptr +
2433			btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2434	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2435			    struct btrfs_extent_item);
2436
2437	/*
2438	 * Only support iteration on tree backref yet.
2439	 *
2440	 * This is an extra precaution for non skinny-metadata, where
2441	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2442	 * extent flags to determine if it's a tree block.
2443	 */
2444	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2445		ret = -ENOTSUPP;
2446		goto release;
2447	}
2448	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2449
2450	/* If there is no inline backref, go search for keyed backref */
2451	if (iter->cur_ptr >= iter->end_ptr) {
2452		ret = btrfs_next_item(fs_info->extent_root, path);
2453
2454		/* No inline nor keyed ref */
2455		if (ret > 0) {
2456			ret = -ENOENT;
2457			goto release;
2458		}
2459		if (ret < 0)
2460			goto release;
2461
2462		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2463				path->slots[0]);
2464		if (iter->cur_key.objectid != bytenr ||
2465		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2466		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2467			ret = -ENOENT;
2468			goto release;
2469		}
2470		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2471							   path->slots[0]);
2472		iter->item_ptr = iter->cur_ptr;
2473		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2474				      path->nodes[0], path->slots[0]));
2475	}
2476
2477	return 0;
2478release:
2479	btrfs_backref_iter_release(iter);
2480	return ret;
2481}
2482
2483/*
2484 * Go to the next backref item of current bytenr, can be either inlined or
2485 * keyed.
2486 *
2487 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2488 *
2489 * Return 0 if we get next backref without problem.
2490 * Return >0 if there is no extra backref for this bytenr.
2491 * Return <0 if there is something wrong happened.
2492 */
2493int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2494{
2495	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2496	struct btrfs_path *path = iter->path;
2497	struct btrfs_extent_inline_ref *iref;
2498	int ret;
2499	u32 size;
2500
2501	if (btrfs_backref_iter_is_inline_ref(iter)) {
2502		/* We're still inside the inline refs */
2503		ASSERT(iter->cur_ptr < iter->end_ptr);
2504
2505		if (btrfs_backref_has_tree_block_info(iter)) {
2506			/* First tree block info */
2507			size = sizeof(struct btrfs_tree_block_info);
2508		} else {
2509			/* Use inline ref type to determine the size */
2510			int type;
2511
2512			iref = (struct btrfs_extent_inline_ref *)
2513				((unsigned long)iter->cur_ptr);
2514			type = btrfs_extent_inline_ref_type(eb, iref);
2515
2516			size = btrfs_extent_inline_ref_size(type);
2517		}
2518		iter->cur_ptr += size;
2519		if (iter->cur_ptr < iter->end_ptr)
2520			return 0;
2521
2522		/* All inline items iterated, fall through */
2523	}
2524
2525	/* We're at keyed items, there is no inline item, go to the next one */
2526	ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2527	if (ret)
2528		return ret;
2529
2530	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2531	if (iter->cur_key.objectid != iter->bytenr ||
2532	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2533	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2534		return 1;
2535	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2536					path->slots[0]);
2537	iter->cur_ptr = iter->item_ptr;
2538	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2539						path->slots[0]);
2540	return 0;
2541}
2542
2543void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2544			      struct btrfs_backref_cache *cache, int is_reloc)
2545{
2546	int i;
2547
2548	cache->rb_root = RB_ROOT;
2549	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2550		INIT_LIST_HEAD(&cache->pending[i]);
2551	INIT_LIST_HEAD(&cache->changed);
2552	INIT_LIST_HEAD(&cache->detached);
2553	INIT_LIST_HEAD(&cache->leaves);
2554	INIT_LIST_HEAD(&cache->pending_edge);
2555	INIT_LIST_HEAD(&cache->useless_node);
2556	cache->fs_info = fs_info;
2557	cache->is_reloc = is_reloc;
2558}
2559
2560struct btrfs_backref_node *btrfs_backref_alloc_node(
2561		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2562{
2563	struct btrfs_backref_node *node;
2564
2565	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2566	node = kzalloc(sizeof(*node), GFP_NOFS);
2567	if (!node)
2568		return node;
2569
2570	INIT_LIST_HEAD(&node->list);
2571	INIT_LIST_HEAD(&node->upper);
2572	INIT_LIST_HEAD(&node->lower);
2573	RB_CLEAR_NODE(&node->rb_node);
2574	cache->nr_nodes++;
2575	node->level = level;
2576	node->bytenr = bytenr;
2577
2578	return node;
2579}
2580
2581struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2582		struct btrfs_backref_cache *cache)
2583{
2584	struct btrfs_backref_edge *edge;
2585
2586	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2587	if (edge)
2588		cache->nr_edges++;
2589	return edge;
2590}
2591
2592/*
2593 * Drop the backref node from cache, also cleaning up all its
2594 * upper edges and any uncached nodes in the path.
2595 *
2596 * This cleanup happens bottom up, thus the node should either
2597 * be the lowest node in the cache or a detached node.
2598 */
2599void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2600				struct btrfs_backref_node *node)
2601{
2602	struct btrfs_backref_node *upper;
2603	struct btrfs_backref_edge *edge;
2604
2605	if (!node)
2606		return;
2607
2608	BUG_ON(!node->lowest && !node->detached);
2609	while (!list_empty(&node->upper)) {
2610		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2611				  list[LOWER]);
2612		upper = edge->node[UPPER];
2613		list_del(&edge->list[LOWER]);
2614		list_del(&edge->list[UPPER]);
2615		btrfs_backref_free_edge(cache, edge);
2616
2617		/*
2618		 * Add the node to leaf node list if no other child block
2619		 * cached.
2620		 */
2621		if (list_empty(&upper->lower)) {
2622			list_add_tail(&upper->lower, &cache->leaves);
2623			upper->lowest = 1;
2624		}
2625	}
2626
2627	btrfs_backref_drop_node(cache, node);
2628}
2629
2630/*
2631 * Release all nodes/edges from current cache
2632 */
2633void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2634{
2635	struct btrfs_backref_node *node;
2636	int i;
2637
2638	while (!list_empty(&cache->detached)) {
2639		node = list_entry(cache->detached.next,
2640				  struct btrfs_backref_node, list);
2641		btrfs_backref_cleanup_node(cache, node);
2642	}
2643
2644	while (!list_empty(&cache->leaves)) {
2645		node = list_entry(cache->leaves.next,
2646				  struct btrfs_backref_node, lower);
2647		btrfs_backref_cleanup_node(cache, node);
2648	}
2649
2650	cache->last_trans = 0;
2651
2652	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2653		ASSERT(list_empty(&cache->pending[i]));
2654	ASSERT(list_empty(&cache->pending_edge));
2655	ASSERT(list_empty(&cache->useless_node));
2656	ASSERT(list_empty(&cache->changed));
2657	ASSERT(list_empty(&cache->detached));
2658	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2659	ASSERT(!cache->nr_nodes);
2660	ASSERT(!cache->nr_edges);
2661}
2662
2663/*
2664 * Handle direct tree backref
2665 *
2666 * Direct tree backref means, the backref item shows its parent bytenr
2667 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2668 *
2669 * @ref_key:	The converted backref key.
2670 *		For keyed backref, it's the item key.
2671 *		For inlined backref, objectid is the bytenr,
2672 *		type is btrfs_inline_ref_type, offset is
2673 *		btrfs_inline_ref_offset.
2674 */
2675static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2676				      struct btrfs_key *ref_key,
2677				      struct btrfs_backref_node *cur)
2678{
2679	struct btrfs_backref_edge *edge;
2680	struct btrfs_backref_node *upper;
2681	struct rb_node *rb_node;
2682
2683	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2684
2685	/* Only reloc root uses backref pointing to itself */
2686	if (ref_key->objectid == ref_key->offset) {
2687		struct btrfs_root *root;
2688
2689		cur->is_reloc_root = 1;
2690		/* Only reloc backref cache cares about a specific root */
2691		if (cache->is_reloc) {
2692			root = find_reloc_root(cache->fs_info, cur->bytenr);
2693			if (!root)
2694				return -ENOENT;
2695			cur->root = root;
2696		} else {
2697			/*
2698			 * For generic purpose backref cache, reloc root node
2699			 * is useless.
2700			 */
2701			list_add(&cur->list, &cache->useless_node);
2702		}
2703		return 0;
2704	}
2705
2706	edge = btrfs_backref_alloc_edge(cache);
2707	if (!edge)
2708		return -ENOMEM;
2709
2710	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2711	if (!rb_node) {
2712		/* Parent node not yet cached */
2713		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2714					   cur->level + 1);
2715		if (!upper) {
2716			btrfs_backref_free_edge(cache, edge);
2717			return -ENOMEM;
2718		}
2719
2720		/*
2721		 *  Backrefs for the upper level block isn't cached, add the
2722		 *  block to pending list
2723		 */
2724		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2725	} else {
2726		/* Parent node already cached */
2727		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2728		ASSERT(upper->checked);
2729		INIT_LIST_HEAD(&edge->list[UPPER]);
2730	}
2731	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2732	return 0;
2733}
2734
2735/*
2736 * Handle indirect tree backref
2737 *
2738 * Indirect tree backref means, we only know which tree the node belongs to.
2739 * We still need to do a tree search to find out the parents. This is for
2740 * TREE_BLOCK_REF backref (keyed or inlined).
2741 *
2742 * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
2743 * @tree_key:	The first key of this tree block.
2744 * @path:	A clean (released) path, to avoid allocating path everytime
2745 *		the function get called.
2746 */
2747static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2748					struct btrfs_path *path,
2749					struct btrfs_key *ref_key,
2750					struct btrfs_key *tree_key,
2751					struct btrfs_backref_node *cur)
2752{
2753	struct btrfs_fs_info *fs_info = cache->fs_info;
2754	struct btrfs_backref_node *upper;
2755	struct btrfs_backref_node *lower;
2756	struct btrfs_backref_edge *edge;
2757	struct extent_buffer *eb;
2758	struct btrfs_root *root;
2759	struct rb_node *rb_node;
2760	int level;
2761	bool need_check = true;
2762	int ret;
2763
2764	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2765	if (IS_ERR(root))
2766		return PTR_ERR(root);
2767	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2768		cur->cowonly = 1;
2769
2770	if (btrfs_root_level(&root->root_item) == cur->level) {
2771		/* Tree root */
2772		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2773		/*
2774		 * For reloc backref cache, we may ignore reloc root.  But for
2775		 * general purpose backref cache, we can't rely on
2776		 * btrfs_should_ignore_reloc_root() as it may conflict with
2777		 * current running relocation and lead to missing root.
2778		 *
2779		 * For general purpose backref cache, reloc root detection is
2780		 * completely relying on direct backref (key->offset is parent
2781		 * bytenr), thus only do such check for reloc cache.
2782		 */
2783		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2784			btrfs_put_root(root);
2785			list_add(&cur->list, &cache->useless_node);
2786		} else {
2787			cur->root = root;
2788		}
2789		return 0;
2790	}
2791
2792	level = cur->level + 1;
2793
2794	/* Search the tree to find parent blocks referring to the block */
2795	path->search_commit_root = 1;
2796	path->skip_locking = 1;
2797	path->lowest_level = level;
2798	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2799	path->lowest_level = 0;
2800	if (ret < 0) {
2801		btrfs_put_root(root);
2802		return ret;
2803	}
2804	if (ret > 0 && path->slots[level] > 0)
2805		path->slots[level]--;
2806
2807	eb = path->nodes[level];
2808	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2809		btrfs_err(fs_info,
2810"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2811			  cur->bytenr, level - 1, root->root_key.objectid,
2812			  tree_key->objectid, tree_key->type, tree_key->offset);
2813		btrfs_put_root(root);
2814		ret = -ENOENT;
2815		goto out;
2816	}
2817	lower = cur;
2818
2819	/* Add all nodes and edges in the path */
2820	for (; level < BTRFS_MAX_LEVEL; level++) {
2821		if (!path->nodes[level]) {
2822			ASSERT(btrfs_root_bytenr(&root->root_item) ==
2823			       lower->bytenr);
2824			/* Same as previous should_ignore_reloc_root() call */
2825			if (btrfs_should_ignore_reloc_root(root) &&
2826			    cache->is_reloc) {
2827				btrfs_put_root(root);
2828				list_add(&lower->list, &cache->useless_node);
2829			} else {
2830				lower->root = root;
2831			}
2832			break;
2833		}
2834
2835		edge = btrfs_backref_alloc_edge(cache);
2836		if (!edge) {
2837			btrfs_put_root(root);
2838			ret = -ENOMEM;
2839			goto out;
2840		}
2841
2842		eb = path->nodes[level];
2843		rb_node = rb_simple_search(&cache->rb_root, eb->start);
2844		if (!rb_node) {
2845			upper = btrfs_backref_alloc_node(cache, eb->start,
2846							 lower->level + 1);
2847			if (!upper) {
2848				btrfs_put_root(root);
2849				btrfs_backref_free_edge(cache, edge);
2850				ret = -ENOMEM;
2851				goto out;
2852			}
2853			upper->owner = btrfs_header_owner(eb);
2854			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2855				upper->cowonly = 1;
2856
2857			/*
2858			 * If we know the block isn't shared we can avoid
2859			 * checking its backrefs.
2860			 */
2861			if (btrfs_block_can_be_shared(root, eb))
2862				upper->checked = 0;
2863			else
2864				upper->checked = 1;
2865
2866			/*
2867			 * Add the block to pending list if we need to check its
2868			 * backrefs, we only do this once while walking up a
2869			 * tree as we will catch anything else later on.
2870			 */
2871			if (!upper->checked && need_check) {
2872				need_check = false;
2873				list_add_tail(&edge->list[UPPER],
2874					      &cache->pending_edge);
2875			} else {
2876				if (upper->checked)
2877					need_check = true;
2878				INIT_LIST_HEAD(&edge->list[UPPER]);
2879			}
2880		} else {
2881			upper = rb_entry(rb_node, struct btrfs_backref_node,
2882					 rb_node);
2883			ASSERT(upper->checked);
2884			INIT_LIST_HEAD(&edge->list[UPPER]);
2885			if (!upper->owner)
2886				upper->owner = btrfs_header_owner(eb);
2887		}
2888		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2889
2890		if (rb_node) {
2891			btrfs_put_root(root);
2892			break;
2893		}
2894		lower = upper;
2895		upper = NULL;
2896	}
2897out:
2898	btrfs_release_path(path);
2899	return ret;
2900}
2901
2902/*
2903 * Add backref node @cur into @cache.
2904 *
2905 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2906 *	 links aren't yet bi-directional. Needs to finish such links.
2907 *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
2908 *
2909 * @path:	Released path for indirect tree backref lookup
2910 * @iter:	Released backref iter for extent tree search
2911 * @node_key:	The first key of the tree block
2912 */
2913int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2914				struct btrfs_path *path,
2915				struct btrfs_backref_iter *iter,
2916				struct btrfs_key *node_key,
2917				struct btrfs_backref_node *cur)
2918{
2919	struct btrfs_fs_info *fs_info = cache->fs_info;
2920	struct btrfs_backref_edge *edge;
2921	struct btrfs_backref_node *exist;
2922	int ret;
2923
2924	ret = btrfs_backref_iter_start(iter, cur->bytenr);
2925	if (ret < 0)
2926		return ret;
2927	/*
2928	 * We skip the first btrfs_tree_block_info, as we don't use the key
2929	 * stored in it, but fetch it from the tree block
2930	 */
2931	if (btrfs_backref_has_tree_block_info(iter)) {
2932		ret = btrfs_backref_iter_next(iter);
2933		if (ret < 0)
2934			goto out;
2935		/* No extra backref? This means the tree block is corrupted */
2936		if (ret > 0) {
2937			ret = -EUCLEAN;
2938			goto out;
2939		}
2940	}
2941	WARN_ON(cur->checked);
2942	if (!list_empty(&cur->upper)) {
2943		/*
2944		 * The backref was added previously when processing backref of
2945		 * type BTRFS_TREE_BLOCK_REF_KEY
2946		 */
2947		ASSERT(list_is_singular(&cur->upper));
2948		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2949				  list[LOWER]);
2950		ASSERT(list_empty(&edge->list[UPPER]));
2951		exist = edge->node[UPPER];
2952		/*
2953		 * Add the upper level block to pending list if we need check
2954		 * its backrefs
2955		 */
2956		if (!exist->checked)
2957			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2958	} else {
2959		exist = NULL;
2960	}
2961
2962	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2963		struct extent_buffer *eb;
2964		struct btrfs_key key;
2965		int type;
2966
2967		cond_resched();
2968		eb = btrfs_backref_get_eb(iter);
2969
2970		key.objectid = iter->bytenr;
2971		if (btrfs_backref_iter_is_inline_ref(iter)) {
2972			struct btrfs_extent_inline_ref *iref;
2973
2974			/* Update key for inline backref */
2975			iref = (struct btrfs_extent_inline_ref *)
2976				((unsigned long)iter->cur_ptr);
2977			type = btrfs_get_extent_inline_ref_type(eb, iref,
2978							BTRFS_REF_TYPE_BLOCK);
2979			if (type == BTRFS_REF_TYPE_INVALID) {
2980				ret = -EUCLEAN;
2981				goto out;
2982			}
2983			key.type = type;
2984			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2985		} else {
2986			key.type = iter->cur_key.type;
2987			key.offset = iter->cur_key.offset;
2988		}
2989
2990		/*
2991		 * Parent node found and matches current inline ref, no need to
2992		 * rebuild this node for this inline ref
2993		 */
2994		if (exist &&
2995		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2996		      exist->owner == key.offset) ||
2997		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2998		      exist->bytenr == key.offset))) {
2999			exist = NULL;
3000			continue;
3001		}
3002
3003		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3004		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3005			ret = handle_direct_tree_backref(cache, &key, cur);
3006			if (ret < 0)
3007				goto out;
3008			continue;
3009		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3010			ret = -EINVAL;
3011			btrfs_print_v0_err(fs_info);
3012			btrfs_handle_fs_error(fs_info, ret, NULL);
3013			goto out;
3014		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
3015			continue;
3016		}
3017
3018		/*
3019		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
3020		 * means the root objectid. We need to search the tree to get
3021		 * its parent bytenr.
3022		 */
3023		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
3024						   cur);
3025		if (ret < 0)
3026			goto out;
3027	}
3028	ret = 0;
3029	cur->checked = 1;
3030	WARN_ON(exist);
3031out:
3032	btrfs_backref_iter_release(iter);
3033	return ret;
3034}
3035
3036/*
3037 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3038 */
3039int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3040				     struct btrfs_backref_node *start)
3041{
3042	struct list_head *useless_node = &cache->useless_node;
3043	struct btrfs_backref_edge *edge;
3044	struct rb_node *rb_node;
3045	LIST_HEAD(pending_edge);
3046
3047	ASSERT(start->checked);
3048
3049	/* Insert this node to cache if it's not COW-only */
3050	if (!start->cowonly) {
3051		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3052					   &start->rb_node);
3053		if (rb_node)
3054			btrfs_backref_panic(cache->fs_info, start->bytenr,
3055					    -EEXIST);
3056		list_add_tail(&start->lower, &cache->leaves);
3057	}
3058
3059	/*
3060	 * Use breadth first search to iterate all related edges.
3061	 *
3062	 * The starting points are all the edges of this node
3063	 */
3064	list_for_each_entry(edge, &start->upper, list[LOWER])
3065		list_add_tail(&edge->list[UPPER], &pending_edge);
3066
3067	while (!list_empty(&pending_edge)) {
3068		struct btrfs_backref_node *upper;
3069		struct btrfs_backref_node *lower;
3070
3071		edge = list_first_entry(&pending_edge,
3072				struct btrfs_backref_edge, list[UPPER]);
3073		list_del_init(&edge->list[UPPER]);
3074		upper = edge->node[UPPER];
3075		lower = edge->node[LOWER];
3076
3077		/* Parent is detached, no need to keep any edges */
3078		if (upper->detached) {
3079			list_del(&edge->list[LOWER]);
3080			btrfs_backref_free_edge(cache, edge);
3081
3082			/* Lower node is orphan, queue for cleanup */
3083			if (list_empty(&lower->upper))
3084				list_add(&lower->list, useless_node);
3085			continue;
3086		}
3087
3088		/*
3089		 * All new nodes added in current build_backref_tree() haven't
3090		 * been linked to the cache rb tree.
3091		 * So if we have upper->rb_node populated, this means a cache
3092		 * hit. We only need to link the edge, as @upper and all its
3093		 * parents have already been linked.
3094		 */
3095		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3096			if (upper->lowest) {
3097				list_del_init(&upper->lower);
3098				upper->lowest = 0;
3099			}
3100
3101			list_add_tail(&edge->list[UPPER], &upper->lower);
3102			continue;
3103		}
3104
3105		/* Sanity check, we shouldn't have any unchecked nodes */
3106		if (!upper->checked) {
3107			ASSERT(0);
3108			return -EUCLEAN;
3109		}
3110
3111		/* Sanity check, COW-only node has non-COW-only parent */
3112		if (start->cowonly != upper->cowonly) {
3113			ASSERT(0);
3114			return -EUCLEAN;
3115		}
3116
3117		/* Only cache non-COW-only (subvolume trees) tree blocks */
3118		if (!upper->cowonly) {
3119			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3120						   &upper->rb_node);
3121			if (rb_node) {
3122				btrfs_backref_panic(cache->fs_info,
3123						upper->bytenr, -EEXIST);
3124				return -EUCLEAN;
3125			}
3126		}
3127
3128		list_add_tail(&edge->list[UPPER], &upper->lower);
3129
3130		/*
3131		 * Also queue all the parent edges of this uncached node
3132		 * to finish the upper linkage
3133		 */
3134		list_for_each_entry(edge, &upper->upper, list[LOWER])
3135			list_add_tail(&edge->list[UPPER], &pending_edge);
3136	}
3137	return 0;
3138}
3139
3140void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3141				 struct btrfs_backref_node *node)
3142{
3143	struct btrfs_backref_node *lower;
3144	struct btrfs_backref_node *upper;
3145	struct btrfs_backref_edge *edge;
3146
3147	while (!list_empty(&cache->useless_node)) {
3148		lower = list_first_entry(&cache->useless_node,
3149				   struct btrfs_backref_node, list);
3150		list_del_init(&lower->list);
3151	}
3152	while (!list_empty(&cache->pending_edge)) {
3153		edge = list_first_entry(&cache->pending_edge,
3154				struct btrfs_backref_edge, list[UPPER]);
3155		list_del(&edge->list[UPPER]);
3156		list_del(&edge->list[LOWER]);
3157		lower = edge->node[LOWER];
3158		upper = edge->node[UPPER];
3159		btrfs_backref_free_edge(cache, edge);
3160
3161		/*
3162		 * Lower is no longer linked to any upper backref nodes and
3163		 * isn't in the cache, we can free it ourselves.
3164		 */
3165		if (list_empty(&lower->upper) &&
3166		    RB_EMPTY_NODE(&lower->rb_node))
3167			list_add(&lower->list, &cache->useless_node);
3168
3169		if (!RB_EMPTY_NODE(&upper->rb_node))
3170			continue;
3171
3172		/* Add this guy's upper edges to the list to process */
3173		list_for_each_entry(edge, &upper->upper, list[LOWER])
3174			list_add_tail(&edge->list[UPPER],
3175				      &cache->pending_edge);
3176		if (list_empty(&upper->upper))
3177			list_add(&upper->list, &cache->useless_node);
3178	}
3179
3180	while (!list_empty(&cache->useless_node)) {
3181		lower = list_first_entry(&cache->useless_node,
3182				   struct btrfs_backref_node, list);
3183		list_del_init(&lower->list);
3184		if (lower == node)
3185			node = NULL;
3186		btrfs_backref_drop_node(cache, lower);
3187	}
3188
3189	btrfs_backref_cleanup_node(cache, node);
3190	ASSERT(list_empty(&cache->useless_node) &&
3191	       list_empty(&cache->pending_edge));
3192}
3193