1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6#include <linux/mm.h> 7#include <linux/rbtree.h> 8#include <trace/events/btrfs.h> 9#include "ctree.h" 10#include "disk-io.h" 11#include "backref.h" 12#include "ulist.h" 13#include "transaction.h" 14#include "delayed-ref.h" 15#include "locking.h" 16#include "misc.h" 17 18/* Just an arbitrary number so we can be sure this happened */ 19#define BACKREF_FOUND_SHARED 6 20 21struct extent_inode_elem { 22 u64 inum; 23 u64 offset; 24 struct extent_inode_elem *next; 25}; 26 27static int check_extent_in_eb(const struct btrfs_key *key, 28 const struct extent_buffer *eb, 29 const struct btrfs_file_extent_item *fi, 30 u64 extent_item_pos, 31 struct extent_inode_elem **eie, 32 bool ignore_offset) 33{ 34 u64 offset = 0; 35 struct extent_inode_elem *e; 36 37 if (!ignore_offset && 38 !btrfs_file_extent_compression(eb, fi) && 39 !btrfs_file_extent_encryption(eb, fi) && 40 !btrfs_file_extent_other_encoding(eb, fi)) { 41 u64 data_offset; 42 u64 data_len; 43 44 data_offset = btrfs_file_extent_offset(eb, fi); 45 data_len = btrfs_file_extent_num_bytes(eb, fi); 46 47 if (extent_item_pos < data_offset || 48 extent_item_pos >= data_offset + data_len) 49 return 1; 50 offset = extent_item_pos - data_offset; 51 } 52 53 e = kmalloc(sizeof(*e), GFP_NOFS); 54 if (!e) 55 return -ENOMEM; 56 57 e->next = *eie; 58 e->inum = key->objectid; 59 e->offset = key->offset + offset; 60 *eie = e; 61 62 return 0; 63} 64 65static void free_inode_elem_list(struct extent_inode_elem *eie) 66{ 67 struct extent_inode_elem *eie_next; 68 69 for (; eie; eie = eie_next) { 70 eie_next = eie->next; 71 kfree(eie); 72 } 73} 74 75static int find_extent_in_eb(const struct extent_buffer *eb, 76 u64 wanted_disk_byte, u64 extent_item_pos, 77 struct extent_inode_elem **eie, 78 bool ignore_offset) 79{ 80 u64 disk_byte; 81 struct btrfs_key key; 82 struct btrfs_file_extent_item *fi; 83 int slot; 84 int nritems; 85 int extent_type; 86 int ret; 87 88 /* 89 * from the shared data ref, we only have the leaf but we need 90 * the key. thus, we must look into all items and see that we 91 * find one (some) with a reference to our extent item. 92 */ 93 nritems = btrfs_header_nritems(eb); 94 for (slot = 0; slot < nritems; ++slot) { 95 btrfs_item_key_to_cpu(eb, &key, slot); 96 if (key.type != BTRFS_EXTENT_DATA_KEY) 97 continue; 98 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 99 extent_type = btrfs_file_extent_type(eb, fi); 100 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 101 continue; 102 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 103 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 104 if (disk_byte != wanted_disk_byte) 105 continue; 106 107 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 108 if (ret < 0) 109 return ret; 110 } 111 112 return 0; 113} 114 115struct preftree { 116 struct rb_root_cached root; 117 unsigned int count; 118}; 119 120#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 121 122struct preftrees { 123 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 124 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 125 struct preftree indirect_missing_keys; 126}; 127 128/* 129 * Checks for a shared extent during backref search. 130 * 131 * The share_count tracks prelim_refs (direct and indirect) having a 132 * ref->count >0: 133 * - incremented when a ref->count transitions to >0 134 * - decremented when a ref->count transitions to <1 135 */ 136struct share_check { 137 u64 root_objectid; 138 u64 inum; 139 int share_count; 140 bool have_delayed_delete_refs; 141}; 142 143static inline int extent_is_shared(struct share_check *sc) 144{ 145 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 146} 147 148static struct kmem_cache *btrfs_prelim_ref_cache; 149 150int __init btrfs_prelim_ref_init(void) 151{ 152 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 153 sizeof(struct prelim_ref), 154 0, 155 SLAB_MEM_SPREAD, 156 NULL); 157 if (!btrfs_prelim_ref_cache) 158 return -ENOMEM; 159 return 0; 160} 161 162void __cold btrfs_prelim_ref_exit(void) 163{ 164 kmem_cache_destroy(btrfs_prelim_ref_cache); 165} 166 167static void free_pref(struct prelim_ref *ref) 168{ 169 kmem_cache_free(btrfs_prelim_ref_cache, ref); 170} 171 172/* 173 * Return 0 when both refs are for the same block (and can be merged). 174 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 175 * indicates a 'higher' block. 176 */ 177static int prelim_ref_compare(struct prelim_ref *ref1, 178 struct prelim_ref *ref2) 179{ 180 if (ref1->level < ref2->level) 181 return -1; 182 if (ref1->level > ref2->level) 183 return 1; 184 if (ref1->root_id < ref2->root_id) 185 return -1; 186 if (ref1->root_id > ref2->root_id) 187 return 1; 188 if (ref1->key_for_search.type < ref2->key_for_search.type) 189 return -1; 190 if (ref1->key_for_search.type > ref2->key_for_search.type) 191 return 1; 192 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 193 return -1; 194 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 195 return 1; 196 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 197 return -1; 198 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 199 return 1; 200 if (ref1->parent < ref2->parent) 201 return -1; 202 if (ref1->parent > ref2->parent) 203 return 1; 204 205 return 0; 206} 207 208static void update_share_count(struct share_check *sc, int oldcount, 209 int newcount) 210{ 211 if ((!sc) || (oldcount == 0 && newcount < 1)) 212 return; 213 214 if (oldcount > 0 && newcount < 1) 215 sc->share_count--; 216 else if (oldcount < 1 && newcount > 0) 217 sc->share_count++; 218} 219 220/* 221 * Add @newref to the @root rbtree, merging identical refs. 222 * 223 * Callers should assume that newref has been freed after calling. 224 */ 225static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 226 struct preftree *preftree, 227 struct prelim_ref *newref, 228 struct share_check *sc) 229{ 230 struct rb_root_cached *root; 231 struct rb_node **p; 232 struct rb_node *parent = NULL; 233 struct prelim_ref *ref; 234 int result; 235 bool leftmost = true; 236 237 root = &preftree->root; 238 p = &root->rb_root.rb_node; 239 240 while (*p) { 241 parent = *p; 242 ref = rb_entry(parent, struct prelim_ref, rbnode); 243 result = prelim_ref_compare(ref, newref); 244 if (result < 0) { 245 p = &(*p)->rb_left; 246 } else if (result > 0) { 247 p = &(*p)->rb_right; 248 leftmost = false; 249 } else { 250 /* Identical refs, merge them and free @newref */ 251 struct extent_inode_elem *eie = ref->inode_list; 252 253 while (eie && eie->next) 254 eie = eie->next; 255 256 if (!eie) 257 ref->inode_list = newref->inode_list; 258 else 259 eie->next = newref->inode_list; 260 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 261 preftree->count); 262 /* 263 * A delayed ref can have newref->count < 0. 264 * The ref->count is updated to follow any 265 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 266 */ 267 update_share_count(sc, ref->count, 268 ref->count + newref->count); 269 ref->count += newref->count; 270 free_pref(newref); 271 return; 272 } 273 } 274 275 update_share_count(sc, 0, newref->count); 276 preftree->count++; 277 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 278 rb_link_node(&newref->rbnode, parent, p); 279 rb_insert_color_cached(&newref->rbnode, root, leftmost); 280} 281 282/* 283 * Release the entire tree. We don't care about internal consistency so 284 * just free everything and then reset the tree root. 285 */ 286static void prelim_release(struct preftree *preftree) 287{ 288 struct prelim_ref *ref, *next_ref; 289 290 rbtree_postorder_for_each_entry_safe(ref, next_ref, 291 &preftree->root.rb_root, rbnode) { 292 free_inode_elem_list(ref->inode_list); 293 free_pref(ref); 294 } 295 296 preftree->root = RB_ROOT_CACHED; 297 preftree->count = 0; 298} 299 300/* 301 * the rules for all callers of this function are: 302 * - obtaining the parent is the goal 303 * - if you add a key, you must know that it is a correct key 304 * - if you cannot add the parent or a correct key, then we will look into the 305 * block later to set a correct key 306 * 307 * delayed refs 308 * ============ 309 * backref type | shared | indirect | shared | indirect 310 * information | tree | tree | data | data 311 * --------------------+--------+----------+--------+---------- 312 * parent logical | y | - | - | - 313 * key to resolve | - | y | y | y 314 * tree block logical | - | - | - | - 315 * root for resolving | y | y | y | y 316 * 317 * - column 1: we've the parent -> done 318 * - column 2, 3, 4: we use the key to find the parent 319 * 320 * on disk refs (inline or keyed) 321 * ============================== 322 * backref type | shared | indirect | shared | indirect 323 * information | tree | tree | data | data 324 * --------------------+--------+----------+--------+---------- 325 * parent logical | y | - | y | - 326 * key to resolve | - | - | - | y 327 * tree block logical | y | y | y | y 328 * root for resolving | - | y | y | y 329 * 330 * - column 1, 3: we've the parent -> done 331 * - column 2: we take the first key from the block to find the parent 332 * (see add_missing_keys) 333 * - column 4: we use the key to find the parent 334 * 335 * additional information that's available but not required to find the parent 336 * block might help in merging entries to gain some speed. 337 */ 338static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 339 struct preftree *preftree, u64 root_id, 340 const struct btrfs_key *key, int level, u64 parent, 341 u64 wanted_disk_byte, int count, 342 struct share_check *sc, gfp_t gfp_mask) 343{ 344 struct prelim_ref *ref; 345 346 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 347 return 0; 348 349 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 350 if (!ref) 351 return -ENOMEM; 352 353 ref->root_id = root_id; 354 if (key) 355 ref->key_for_search = *key; 356 else 357 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 358 359 ref->inode_list = NULL; 360 ref->level = level; 361 ref->count = count; 362 ref->parent = parent; 363 ref->wanted_disk_byte = wanted_disk_byte; 364 prelim_ref_insert(fs_info, preftree, ref, sc); 365 return extent_is_shared(sc); 366} 367 368/* direct refs use root == 0, key == NULL */ 369static int add_direct_ref(const struct btrfs_fs_info *fs_info, 370 struct preftrees *preftrees, int level, u64 parent, 371 u64 wanted_disk_byte, int count, 372 struct share_check *sc, gfp_t gfp_mask) 373{ 374 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 375 parent, wanted_disk_byte, count, sc, gfp_mask); 376} 377 378/* indirect refs use parent == 0 */ 379static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 380 struct preftrees *preftrees, u64 root_id, 381 const struct btrfs_key *key, int level, 382 u64 wanted_disk_byte, int count, 383 struct share_check *sc, gfp_t gfp_mask) 384{ 385 struct preftree *tree = &preftrees->indirect; 386 387 if (!key) 388 tree = &preftrees->indirect_missing_keys; 389 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 390 wanted_disk_byte, count, sc, gfp_mask); 391} 392 393static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 394{ 395 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 396 struct rb_node *parent = NULL; 397 struct prelim_ref *ref = NULL; 398 struct prelim_ref target = {}; 399 int result; 400 401 target.parent = bytenr; 402 403 while (*p) { 404 parent = *p; 405 ref = rb_entry(parent, struct prelim_ref, rbnode); 406 result = prelim_ref_compare(ref, &target); 407 408 if (result < 0) 409 p = &(*p)->rb_left; 410 else if (result > 0) 411 p = &(*p)->rb_right; 412 else 413 return 1; 414 } 415 return 0; 416} 417 418static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 419 struct ulist *parents, 420 struct preftrees *preftrees, struct prelim_ref *ref, 421 int level, u64 time_seq, const u64 *extent_item_pos, 422 bool ignore_offset) 423{ 424 int ret = 0; 425 int slot; 426 struct extent_buffer *eb; 427 struct btrfs_key key; 428 struct btrfs_key *key_for_search = &ref->key_for_search; 429 struct btrfs_file_extent_item *fi; 430 struct extent_inode_elem *eie = NULL, *old = NULL; 431 u64 disk_byte; 432 u64 wanted_disk_byte = ref->wanted_disk_byte; 433 u64 count = 0; 434 u64 data_offset; 435 u8 type; 436 437 if (level != 0) { 438 eb = path->nodes[level]; 439 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 440 if (ret < 0) 441 return ret; 442 return 0; 443 } 444 445 /* 446 * 1. We normally enter this function with the path already pointing to 447 * the first item to check. But sometimes, we may enter it with 448 * slot == nritems. 449 * 2. We are searching for normal backref but bytenr of this leaf 450 * matches shared data backref 451 * 3. The leaf owner is not equal to the root we are searching 452 * 453 * For these cases, go to the next leaf before we continue. 454 */ 455 eb = path->nodes[0]; 456 if (path->slots[0] >= btrfs_header_nritems(eb) || 457 is_shared_data_backref(preftrees, eb->start) || 458 ref->root_id != btrfs_header_owner(eb)) { 459 if (time_seq == SEQ_LAST) 460 ret = btrfs_next_leaf(root, path); 461 else 462 ret = btrfs_next_old_leaf(root, path, time_seq); 463 } 464 465 while (!ret && count < ref->count) { 466 eb = path->nodes[0]; 467 slot = path->slots[0]; 468 469 btrfs_item_key_to_cpu(eb, &key, slot); 470 471 if (key.objectid != key_for_search->objectid || 472 key.type != BTRFS_EXTENT_DATA_KEY) 473 break; 474 475 /* 476 * We are searching for normal backref but bytenr of this leaf 477 * matches shared data backref, OR 478 * the leaf owner is not equal to the root we are searching for 479 */ 480 if (slot == 0 && 481 (is_shared_data_backref(preftrees, eb->start) || 482 ref->root_id != btrfs_header_owner(eb))) { 483 if (time_seq == SEQ_LAST) 484 ret = btrfs_next_leaf(root, path); 485 else 486 ret = btrfs_next_old_leaf(root, path, time_seq); 487 continue; 488 } 489 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 490 type = btrfs_file_extent_type(eb, fi); 491 if (type == BTRFS_FILE_EXTENT_INLINE) 492 goto next; 493 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 494 data_offset = btrfs_file_extent_offset(eb, fi); 495 496 if (disk_byte == wanted_disk_byte) { 497 eie = NULL; 498 old = NULL; 499 if (ref->key_for_search.offset == key.offset - data_offset) 500 count++; 501 else 502 goto next; 503 if (extent_item_pos) { 504 ret = check_extent_in_eb(&key, eb, fi, 505 *extent_item_pos, 506 &eie, ignore_offset); 507 if (ret < 0) 508 break; 509 } 510 if (ret > 0) 511 goto next; 512 ret = ulist_add_merge_ptr(parents, eb->start, 513 eie, (void **)&old, GFP_NOFS); 514 if (ret < 0) 515 break; 516 if (!ret && extent_item_pos) { 517 while (old->next) 518 old = old->next; 519 old->next = eie; 520 } 521 eie = NULL; 522 } 523next: 524 if (time_seq == SEQ_LAST) 525 ret = btrfs_next_item(root, path); 526 else 527 ret = btrfs_next_old_item(root, path, time_seq); 528 } 529 530 if (ret > 0) 531 ret = 0; 532 else if (ret < 0) 533 free_inode_elem_list(eie); 534 return ret; 535} 536 537/* 538 * resolve an indirect backref in the form (root_id, key, level) 539 * to a logical address 540 */ 541static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 542 struct btrfs_path *path, u64 time_seq, 543 struct preftrees *preftrees, 544 struct prelim_ref *ref, struct ulist *parents, 545 const u64 *extent_item_pos, bool ignore_offset) 546{ 547 struct btrfs_root *root; 548 struct extent_buffer *eb; 549 int ret = 0; 550 int root_level; 551 int level = ref->level; 552 struct btrfs_key search_key = ref->key_for_search; 553 554 /* 555 * If we're search_commit_root we could possibly be holding locks on 556 * other tree nodes. This happens when qgroups does backref walks when 557 * adding new delayed refs. To deal with this we need to look in cache 558 * for the root, and if we don't find it then we need to search the 559 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 560 * here. 561 */ 562 if (path->search_commit_root) 563 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id); 564 else 565 root = btrfs_get_fs_root(fs_info, ref->root_id, false); 566 if (IS_ERR(root)) { 567 ret = PTR_ERR(root); 568 goto out_free; 569 } 570 571 if (!path->search_commit_root && 572 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 573 ret = -ENOENT; 574 goto out; 575 } 576 577 if (btrfs_is_testing(fs_info)) { 578 ret = -ENOENT; 579 goto out; 580 } 581 582 if (path->search_commit_root) 583 root_level = btrfs_header_level(root->commit_root); 584 else if (time_seq == SEQ_LAST) 585 root_level = btrfs_header_level(root->node); 586 else 587 root_level = btrfs_old_root_level(root, time_seq); 588 589 if (root_level + 1 == level) 590 goto out; 591 592 /* 593 * We can often find data backrefs with an offset that is too large 594 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 595 * subtracting a file's offset with the data offset of its 596 * corresponding extent data item. This can happen for example in the 597 * clone ioctl. 598 * 599 * So if we detect such case we set the search key's offset to zero to 600 * make sure we will find the matching file extent item at 601 * add_all_parents(), otherwise we will miss it because the offset 602 * taken form the backref is much larger then the offset of the file 603 * extent item. This can make us scan a very large number of file 604 * extent items, but at least it will not make us miss any. 605 * 606 * This is an ugly workaround for a behaviour that should have never 607 * existed, but it does and a fix for the clone ioctl would touch a lot 608 * of places, cause backwards incompatibility and would not fix the 609 * problem for extents cloned with older kernels. 610 */ 611 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 612 search_key.offset >= LLONG_MAX) 613 search_key.offset = 0; 614 path->lowest_level = level; 615 if (time_seq == SEQ_LAST) 616 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 617 else 618 ret = btrfs_search_old_slot(root, &search_key, path, time_seq); 619 620 btrfs_debug(fs_info, 621 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 622 ref->root_id, level, ref->count, ret, 623 ref->key_for_search.objectid, ref->key_for_search.type, 624 ref->key_for_search.offset); 625 if (ret < 0) 626 goto out; 627 628 eb = path->nodes[level]; 629 while (!eb) { 630 if (WARN_ON(!level)) { 631 ret = 1; 632 goto out; 633 } 634 level--; 635 eb = path->nodes[level]; 636 } 637 638 ret = add_all_parents(root, path, parents, preftrees, ref, level, 639 time_seq, extent_item_pos, ignore_offset); 640out: 641 btrfs_put_root(root); 642out_free: 643 path->lowest_level = 0; 644 btrfs_release_path(path); 645 return ret; 646} 647 648static struct extent_inode_elem * 649unode_aux_to_inode_list(struct ulist_node *node) 650{ 651 if (!node) 652 return NULL; 653 return (struct extent_inode_elem *)(uintptr_t)node->aux; 654} 655 656static void free_leaf_list(struct ulist *ulist) 657{ 658 struct ulist_node *node; 659 struct ulist_iterator uiter; 660 661 ULIST_ITER_INIT(&uiter); 662 while ((node = ulist_next(ulist, &uiter))) 663 free_inode_elem_list(unode_aux_to_inode_list(node)); 664 665 ulist_free(ulist); 666} 667 668/* 669 * We maintain three separate rbtrees: one for direct refs, one for 670 * indirect refs which have a key, and one for indirect refs which do not 671 * have a key. Each tree does merge on insertion. 672 * 673 * Once all of the references are located, we iterate over the tree of 674 * indirect refs with missing keys. An appropriate key is located and 675 * the ref is moved onto the tree for indirect refs. After all missing 676 * keys are thus located, we iterate over the indirect ref tree, resolve 677 * each reference, and then insert the resolved reference onto the 678 * direct tree (merging there too). 679 * 680 * New backrefs (i.e., for parent nodes) are added to the appropriate 681 * rbtree as they are encountered. The new backrefs are subsequently 682 * resolved as above. 683 */ 684static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 685 struct btrfs_path *path, u64 time_seq, 686 struct preftrees *preftrees, 687 const u64 *extent_item_pos, 688 struct share_check *sc, bool ignore_offset) 689{ 690 int err; 691 int ret = 0; 692 struct ulist *parents; 693 struct ulist_node *node; 694 struct ulist_iterator uiter; 695 struct rb_node *rnode; 696 697 parents = ulist_alloc(GFP_NOFS); 698 if (!parents) 699 return -ENOMEM; 700 701 /* 702 * We could trade memory usage for performance here by iterating 703 * the tree, allocating new refs for each insertion, and then 704 * freeing the entire indirect tree when we're done. In some test 705 * cases, the tree can grow quite large (~200k objects). 706 */ 707 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 708 struct prelim_ref *ref; 709 710 ref = rb_entry(rnode, struct prelim_ref, rbnode); 711 if (WARN(ref->parent, 712 "BUG: direct ref found in indirect tree")) { 713 ret = -EINVAL; 714 goto out; 715 } 716 717 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 718 preftrees->indirect.count--; 719 720 if (ref->count == 0) { 721 free_pref(ref); 722 continue; 723 } 724 725 if (sc && sc->root_objectid && 726 ref->root_id != sc->root_objectid) { 727 free_pref(ref); 728 ret = BACKREF_FOUND_SHARED; 729 goto out; 730 } 731 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees, 732 ref, parents, extent_item_pos, 733 ignore_offset); 734 /* 735 * we can only tolerate ENOENT,otherwise,we should catch error 736 * and return directly. 737 */ 738 if (err == -ENOENT) { 739 prelim_ref_insert(fs_info, &preftrees->direct, ref, 740 NULL); 741 continue; 742 } else if (err) { 743 free_pref(ref); 744 ret = err; 745 goto out; 746 } 747 748 /* we put the first parent into the ref at hand */ 749 ULIST_ITER_INIT(&uiter); 750 node = ulist_next(parents, &uiter); 751 ref->parent = node ? node->val : 0; 752 ref->inode_list = unode_aux_to_inode_list(node); 753 754 /* Add a prelim_ref(s) for any other parent(s). */ 755 while ((node = ulist_next(parents, &uiter))) { 756 struct prelim_ref *new_ref; 757 758 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 759 GFP_NOFS); 760 if (!new_ref) { 761 free_pref(ref); 762 ret = -ENOMEM; 763 goto out; 764 } 765 memcpy(new_ref, ref, sizeof(*ref)); 766 new_ref->parent = node->val; 767 new_ref->inode_list = unode_aux_to_inode_list(node); 768 prelim_ref_insert(fs_info, &preftrees->direct, 769 new_ref, NULL); 770 } 771 772 /* 773 * Now it's a direct ref, put it in the direct tree. We must 774 * do this last because the ref could be merged/freed here. 775 */ 776 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 777 778 ulist_reinit(parents); 779 cond_resched(); 780 } 781out: 782 /* 783 * We may have inode lists attached to refs in the parents ulist, so we 784 * must free them before freeing the ulist and its refs. 785 */ 786 free_leaf_list(parents); 787 return ret; 788} 789 790/* 791 * read tree blocks and add keys where required. 792 */ 793static int add_missing_keys(struct btrfs_fs_info *fs_info, 794 struct preftrees *preftrees, bool lock) 795{ 796 struct prelim_ref *ref; 797 struct extent_buffer *eb; 798 struct preftree *tree = &preftrees->indirect_missing_keys; 799 struct rb_node *node; 800 801 while ((node = rb_first_cached(&tree->root))) { 802 ref = rb_entry(node, struct prelim_ref, rbnode); 803 rb_erase_cached(node, &tree->root); 804 805 BUG_ON(ref->parent); /* should not be a direct ref */ 806 BUG_ON(ref->key_for_search.type); 807 BUG_ON(!ref->wanted_disk_byte); 808 809 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0, 810 ref->level - 1, NULL); 811 if (IS_ERR(eb)) { 812 free_pref(ref); 813 return PTR_ERR(eb); 814 } else if (!extent_buffer_uptodate(eb)) { 815 free_pref(ref); 816 free_extent_buffer(eb); 817 return -EIO; 818 } 819 if (lock) 820 btrfs_tree_read_lock(eb); 821 if (btrfs_header_level(eb) == 0) 822 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 823 else 824 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 825 if (lock) 826 btrfs_tree_read_unlock(eb); 827 free_extent_buffer(eb); 828 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 829 cond_resched(); 830 } 831 return 0; 832} 833 834/* 835 * add all currently queued delayed refs from this head whose seq nr is 836 * smaller or equal that seq to the list 837 */ 838static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 839 struct btrfs_delayed_ref_head *head, u64 seq, 840 struct preftrees *preftrees, struct share_check *sc) 841{ 842 struct btrfs_delayed_ref_node *node; 843 struct btrfs_key key; 844 struct rb_node *n; 845 int count; 846 int ret = 0; 847 848 spin_lock(&head->lock); 849 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 850 node = rb_entry(n, struct btrfs_delayed_ref_node, 851 ref_node); 852 if (node->seq > seq) 853 continue; 854 855 switch (node->action) { 856 case BTRFS_ADD_DELAYED_EXTENT: 857 case BTRFS_UPDATE_DELAYED_HEAD: 858 WARN_ON(1); 859 continue; 860 case BTRFS_ADD_DELAYED_REF: 861 count = node->ref_mod; 862 break; 863 case BTRFS_DROP_DELAYED_REF: 864 count = node->ref_mod * -1; 865 break; 866 default: 867 BUG(); 868 } 869 switch (node->type) { 870 case BTRFS_TREE_BLOCK_REF_KEY: { 871 /* NORMAL INDIRECT METADATA backref */ 872 struct btrfs_delayed_tree_ref *ref; 873 struct btrfs_key *key_ptr = NULL; 874 875 if (head->extent_op && head->extent_op->update_key) { 876 btrfs_disk_key_to_cpu(&key, &head->extent_op->key); 877 key_ptr = &key; 878 } 879 880 ref = btrfs_delayed_node_to_tree_ref(node); 881 ret = add_indirect_ref(fs_info, preftrees, ref->root, 882 key_ptr, ref->level + 1, 883 node->bytenr, count, sc, 884 GFP_ATOMIC); 885 break; 886 } 887 case BTRFS_SHARED_BLOCK_REF_KEY: { 888 /* SHARED DIRECT METADATA backref */ 889 struct btrfs_delayed_tree_ref *ref; 890 891 ref = btrfs_delayed_node_to_tree_ref(node); 892 893 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 894 ref->parent, node->bytenr, count, 895 sc, GFP_ATOMIC); 896 break; 897 } 898 case BTRFS_EXTENT_DATA_REF_KEY: { 899 /* NORMAL INDIRECT DATA backref */ 900 struct btrfs_delayed_data_ref *ref; 901 ref = btrfs_delayed_node_to_data_ref(node); 902 903 key.objectid = ref->objectid; 904 key.type = BTRFS_EXTENT_DATA_KEY; 905 key.offset = ref->offset; 906 907 /* 908 * If we have a share check context and a reference for 909 * another inode, we can't exit immediately. This is 910 * because even if this is a BTRFS_ADD_DELAYED_REF 911 * reference we may find next a BTRFS_DROP_DELAYED_REF 912 * which cancels out this ADD reference. 913 * 914 * If this is a DROP reference and there was no previous 915 * ADD reference, then we need to signal that when we 916 * process references from the extent tree (through 917 * add_inline_refs() and add_keyed_refs()), we should 918 * not exit early if we find a reference for another 919 * inode, because one of the delayed DROP references 920 * may cancel that reference in the extent tree. 921 */ 922 if (sc && count < 0) 923 sc->have_delayed_delete_refs = true; 924 925 ret = add_indirect_ref(fs_info, preftrees, ref->root, 926 &key, 0, node->bytenr, count, sc, 927 GFP_ATOMIC); 928 break; 929 } 930 case BTRFS_SHARED_DATA_REF_KEY: { 931 /* SHARED DIRECT FULL backref */ 932 struct btrfs_delayed_data_ref *ref; 933 934 ref = btrfs_delayed_node_to_data_ref(node); 935 936 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 937 node->bytenr, count, sc, 938 GFP_ATOMIC); 939 break; 940 } 941 default: 942 WARN_ON(1); 943 } 944 /* 945 * We must ignore BACKREF_FOUND_SHARED until all delayed 946 * refs have been checked. 947 */ 948 if (ret && (ret != BACKREF_FOUND_SHARED)) 949 break; 950 } 951 if (!ret) 952 ret = extent_is_shared(sc); 953 954 spin_unlock(&head->lock); 955 return ret; 956} 957 958/* 959 * add all inline backrefs for bytenr to the list 960 * 961 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 962 */ 963static int add_inline_refs(const struct btrfs_fs_info *fs_info, 964 struct btrfs_path *path, u64 bytenr, 965 int *info_level, struct preftrees *preftrees, 966 struct share_check *sc) 967{ 968 int ret = 0; 969 int slot; 970 struct extent_buffer *leaf; 971 struct btrfs_key key; 972 struct btrfs_key found_key; 973 unsigned long ptr; 974 unsigned long end; 975 struct btrfs_extent_item *ei; 976 u64 flags; 977 u64 item_size; 978 979 /* 980 * enumerate all inline refs 981 */ 982 leaf = path->nodes[0]; 983 slot = path->slots[0]; 984 985 item_size = btrfs_item_size_nr(leaf, slot); 986 BUG_ON(item_size < sizeof(*ei)); 987 988 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 989 flags = btrfs_extent_flags(leaf, ei); 990 btrfs_item_key_to_cpu(leaf, &found_key, slot); 991 992 ptr = (unsigned long)(ei + 1); 993 end = (unsigned long)ei + item_size; 994 995 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 996 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 997 struct btrfs_tree_block_info *info; 998 999 info = (struct btrfs_tree_block_info *)ptr; 1000 *info_level = btrfs_tree_block_level(leaf, info); 1001 ptr += sizeof(struct btrfs_tree_block_info); 1002 BUG_ON(ptr > end); 1003 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 1004 *info_level = found_key.offset; 1005 } else { 1006 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1007 } 1008 1009 while (ptr < end) { 1010 struct btrfs_extent_inline_ref *iref; 1011 u64 offset; 1012 int type; 1013 1014 iref = (struct btrfs_extent_inline_ref *)ptr; 1015 type = btrfs_get_extent_inline_ref_type(leaf, iref, 1016 BTRFS_REF_TYPE_ANY); 1017 if (type == BTRFS_REF_TYPE_INVALID) 1018 return -EUCLEAN; 1019 1020 offset = btrfs_extent_inline_ref_offset(leaf, iref); 1021 1022 switch (type) { 1023 case BTRFS_SHARED_BLOCK_REF_KEY: 1024 ret = add_direct_ref(fs_info, preftrees, 1025 *info_level + 1, offset, 1026 bytenr, 1, NULL, GFP_NOFS); 1027 break; 1028 case BTRFS_SHARED_DATA_REF_KEY: { 1029 struct btrfs_shared_data_ref *sdref; 1030 int count; 1031 1032 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1033 count = btrfs_shared_data_ref_count(leaf, sdref); 1034 1035 ret = add_direct_ref(fs_info, preftrees, 0, offset, 1036 bytenr, count, sc, GFP_NOFS); 1037 break; 1038 } 1039 case BTRFS_TREE_BLOCK_REF_KEY: 1040 ret = add_indirect_ref(fs_info, preftrees, offset, 1041 NULL, *info_level + 1, 1042 bytenr, 1, NULL, GFP_NOFS); 1043 break; 1044 case BTRFS_EXTENT_DATA_REF_KEY: { 1045 struct btrfs_extent_data_ref *dref; 1046 int count; 1047 u64 root; 1048 1049 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1050 count = btrfs_extent_data_ref_count(leaf, dref); 1051 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1052 dref); 1053 key.type = BTRFS_EXTENT_DATA_KEY; 1054 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1055 1056 if (sc && sc->inum && key.objectid != sc->inum && 1057 !sc->have_delayed_delete_refs) { 1058 ret = BACKREF_FOUND_SHARED; 1059 break; 1060 } 1061 1062 root = btrfs_extent_data_ref_root(leaf, dref); 1063 1064 ret = add_indirect_ref(fs_info, preftrees, root, 1065 &key, 0, bytenr, count, 1066 sc, GFP_NOFS); 1067 1068 break; 1069 } 1070 default: 1071 WARN_ON(1); 1072 } 1073 if (ret) 1074 return ret; 1075 ptr += btrfs_extent_inline_ref_size(type); 1076 } 1077 1078 return 0; 1079} 1080 1081/* 1082 * add all non-inline backrefs for bytenr to the list 1083 * 1084 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1085 */ 1086static int add_keyed_refs(struct btrfs_fs_info *fs_info, 1087 struct btrfs_path *path, u64 bytenr, 1088 int info_level, struct preftrees *preftrees, 1089 struct share_check *sc) 1090{ 1091 struct btrfs_root *extent_root = fs_info->extent_root; 1092 int ret; 1093 int slot; 1094 struct extent_buffer *leaf; 1095 struct btrfs_key key; 1096 1097 while (1) { 1098 ret = btrfs_next_item(extent_root, path); 1099 if (ret < 0) 1100 break; 1101 if (ret) { 1102 ret = 0; 1103 break; 1104 } 1105 1106 slot = path->slots[0]; 1107 leaf = path->nodes[0]; 1108 btrfs_item_key_to_cpu(leaf, &key, slot); 1109 1110 if (key.objectid != bytenr) 1111 break; 1112 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1113 continue; 1114 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1115 break; 1116 1117 switch (key.type) { 1118 case BTRFS_SHARED_BLOCK_REF_KEY: 1119 /* SHARED DIRECT METADATA backref */ 1120 ret = add_direct_ref(fs_info, preftrees, 1121 info_level + 1, key.offset, 1122 bytenr, 1, NULL, GFP_NOFS); 1123 break; 1124 case BTRFS_SHARED_DATA_REF_KEY: { 1125 /* SHARED DIRECT FULL backref */ 1126 struct btrfs_shared_data_ref *sdref; 1127 int count; 1128 1129 sdref = btrfs_item_ptr(leaf, slot, 1130 struct btrfs_shared_data_ref); 1131 count = btrfs_shared_data_ref_count(leaf, sdref); 1132 ret = add_direct_ref(fs_info, preftrees, 0, 1133 key.offset, bytenr, count, 1134 sc, GFP_NOFS); 1135 break; 1136 } 1137 case BTRFS_TREE_BLOCK_REF_KEY: 1138 /* NORMAL INDIRECT METADATA backref */ 1139 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1140 NULL, info_level + 1, bytenr, 1141 1, NULL, GFP_NOFS); 1142 break; 1143 case BTRFS_EXTENT_DATA_REF_KEY: { 1144 /* NORMAL INDIRECT DATA backref */ 1145 struct btrfs_extent_data_ref *dref; 1146 int count; 1147 u64 root; 1148 1149 dref = btrfs_item_ptr(leaf, slot, 1150 struct btrfs_extent_data_ref); 1151 count = btrfs_extent_data_ref_count(leaf, dref); 1152 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1153 dref); 1154 key.type = BTRFS_EXTENT_DATA_KEY; 1155 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1156 1157 if (sc && sc->inum && key.objectid != sc->inum && 1158 !sc->have_delayed_delete_refs) { 1159 ret = BACKREF_FOUND_SHARED; 1160 break; 1161 } 1162 1163 root = btrfs_extent_data_ref_root(leaf, dref); 1164 ret = add_indirect_ref(fs_info, preftrees, root, 1165 &key, 0, bytenr, count, 1166 sc, GFP_NOFS); 1167 break; 1168 } 1169 default: 1170 WARN_ON(1); 1171 } 1172 if (ret) 1173 return ret; 1174 1175 } 1176 1177 return ret; 1178} 1179 1180/* 1181 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1182 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1183 * indirect refs to their parent bytenr. 1184 * When roots are found, they're added to the roots list 1185 * 1186 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave 1187 * much like trans == NULL case, the difference only lies in it will not 1188 * commit root. 1189 * The special case is for qgroup to search roots in commit_transaction(). 1190 * 1191 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1192 * shared extent is detected. 1193 * 1194 * Otherwise this returns 0 for success and <0 for an error. 1195 * 1196 * If ignore_offset is set to false, only extent refs whose offsets match 1197 * extent_item_pos are returned. If true, every extent ref is returned 1198 * and extent_item_pos is ignored. 1199 * 1200 * FIXME some caching might speed things up 1201 */ 1202static int find_parent_nodes(struct btrfs_trans_handle *trans, 1203 struct btrfs_fs_info *fs_info, u64 bytenr, 1204 u64 time_seq, struct ulist *refs, 1205 struct ulist *roots, const u64 *extent_item_pos, 1206 struct share_check *sc, bool ignore_offset) 1207{ 1208 struct btrfs_key key; 1209 struct btrfs_path *path; 1210 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1211 struct btrfs_delayed_ref_head *head; 1212 int info_level = 0; 1213 int ret; 1214 struct prelim_ref *ref; 1215 struct rb_node *node; 1216 struct extent_inode_elem *eie = NULL; 1217 struct preftrees preftrees = { 1218 .direct = PREFTREE_INIT, 1219 .indirect = PREFTREE_INIT, 1220 .indirect_missing_keys = PREFTREE_INIT 1221 }; 1222 1223 key.objectid = bytenr; 1224 key.offset = (u64)-1; 1225 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1226 key.type = BTRFS_METADATA_ITEM_KEY; 1227 else 1228 key.type = BTRFS_EXTENT_ITEM_KEY; 1229 1230 path = btrfs_alloc_path(); 1231 if (!path) 1232 return -ENOMEM; 1233 if (!trans) { 1234 path->search_commit_root = 1; 1235 path->skip_locking = 1; 1236 } 1237 1238 if (time_seq == SEQ_LAST) 1239 path->skip_locking = 1; 1240 1241 /* 1242 * grab both a lock on the path and a lock on the delayed ref head. 1243 * We need both to get a consistent picture of how the refs look 1244 * at a specified point in time 1245 */ 1246again: 1247 head = NULL; 1248 1249 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 1250 if (ret < 0) 1251 goto out; 1252 if (ret == 0) { 1253 /* This shouldn't happen, indicates a bug or fs corruption. */ 1254 ASSERT(ret != 0); 1255 ret = -EUCLEAN; 1256 goto out; 1257 } 1258 1259#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1260 if (trans && likely(trans->type != __TRANS_DUMMY) && 1261 time_seq != SEQ_LAST) { 1262#else 1263 if (trans && time_seq != SEQ_LAST) { 1264#endif 1265 /* 1266 * look if there are updates for this ref queued and lock the 1267 * head 1268 */ 1269 delayed_refs = &trans->transaction->delayed_refs; 1270 spin_lock(&delayed_refs->lock); 1271 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1272 if (head) { 1273 if (!mutex_trylock(&head->mutex)) { 1274 refcount_inc(&head->refs); 1275 spin_unlock(&delayed_refs->lock); 1276 1277 btrfs_release_path(path); 1278 1279 /* 1280 * Mutex was contended, block until it's 1281 * released and try again 1282 */ 1283 mutex_lock(&head->mutex); 1284 mutex_unlock(&head->mutex); 1285 btrfs_put_delayed_ref_head(head); 1286 goto again; 1287 } 1288 spin_unlock(&delayed_refs->lock); 1289 ret = add_delayed_refs(fs_info, head, time_seq, 1290 &preftrees, sc); 1291 mutex_unlock(&head->mutex); 1292 if (ret) 1293 goto out; 1294 } else { 1295 spin_unlock(&delayed_refs->lock); 1296 } 1297 } 1298 1299 if (path->slots[0]) { 1300 struct extent_buffer *leaf; 1301 int slot; 1302 1303 path->slots[0]--; 1304 leaf = path->nodes[0]; 1305 slot = path->slots[0]; 1306 btrfs_item_key_to_cpu(leaf, &key, slot); 1307 if (key.objectid == bytenr && 1308 (key.type == BTRFS_EXTENT_ITEM_KEY || 1309 key.type == BTRFS_METADATA_ITEM_KEY)) { 1310 ret = add_inline_refs(fs_info, path, bytenr, 1311 &info_level, &preftrees, sc); 1312 if (ret) 1313 goto out; 1314 ret = add_keyed_refs(fs_info, path, bytenr, info_level, 1315 &preftrees, sc); 1316 if (ret) 1317 goto out; 1318 } 1319 } 1320 1321 btrfs_release_path(path); 1322 1323 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0); 1324 if (ret) 1325 goto out; 1326 1327 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1328 1329 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1330 extent_item_pos, sc, ignore_offset); 1331 if (ret) 1332 goto out; 1333 1334 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1335 1336 /* 1337 * This walks the tree of merged and resolved refs. Tree blocks are 1338 * read in as needed. Unique entries are added to the ulist, and 1339 * the list of found roots is updated. 1340 * 1341 * We release the entire tree in one go before returning. 1342 */ 1343 node = rb_first_cached(&preftrees.direct.root); 1344 while (node) { 1345 ref = rb_entry(node, struct prelim_ref, rbnode); 1346 node = rb_next(&ref->rbnode); 1347 /* 1348 * ref->count < 0 can happen here if there are delayed 1349 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1350 * prelim_ref_insert() relies on this when merging 1351 * identical refs to keep the overall count correct. 1352 * prelim_ref_insert() will merge only those refs 1353 * which compare identically. Any refs having 1354 * e.g. different offsets would not be merged, 1355 * and would retain their original ref->count < 0. 1356 */ 1357 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1358 if (sc && sc->root_objectid && 1359 ref->root_id != sc->root_objectid) { 1360 ret = BACKREF_FOUND_SHARED; 1361 goto out; 1362 } 1363 1364 /* no parent == root of tree */ 1365 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1366 if (ret < 0) 1367 goto out; 1368 } 1369 if (ref->count && ref->parent) { 1370 if (extent_item_pos && !ref->inode_list && 1371 ref->level == 0) { 1372 struct extent_buffer *eb; 1373 1374 eb = read_tree_block(fs_info, ref->parent, 0, 1375 ref->level, NULL); 1376 if (IS_ERR(eb)) { 1377 ret = PTR_ERR(eb); 1378 goto out; 1379 } else if (!extent_buffer_uptodate(eb)) { 1380 free_extent_buffer(eb); 1381 ret = -EIO; 1382 goto out; 1383 } 1384 1385 if (!path->skip_locking) { 1386 btrfs_tree_read_lock(eb); 1387 btrfs_set_lock_blocking_read(eb); 1388 } 1389 ret = find_extent_in_eb(eb, bytenr, 1390 *extent_item_pos, &eie, ignore_offset); 1391 if (!path->skip_locking) 1392 btrfs_tree_read_unlock_blocking(eb); 1393 free_extent_buffer(eb); 1394 if (ret < 0) 1395 goto out; 1396 ref->inode_list = eie; 1397 /* 1398 * We transferred the list ownership to the ref, 1399 * so set to NULL to avoid a double free in case 1400 * an error happens after this. 1401 */ 1402 eie = NULL; 1403 } 1404 ret = ulist_add_merge_ptr(refs, ref->parent, 1405 ref->inode_list, 1406 (void **)&eie, GFP_NOFS); 1407 if (ret < 0) 1408 goto out; 1409 if (!ret && extent_item_pos) { 1410 /* 1411 * We've recorded that parent, so we must extend 1412 * its inode list here. 1413 * 1414 * However if there was corruption we may not 1415 * have found an eie, return an error in this 1416 * case. 1417 */ 1418 ASSERT(eie); 1419 if (!eie) { 1420 ret = -EUCLEAN; 1421 goto out; 1422 } 1423 while (eie->next) 1424 eie = eie->next; 1425 eie->next = ref->inode_list; 1426 } 1427 eie = NULL; 1428 /* 1429 * We have transferred the inode list ownership from 1430 * this ref to the ref we added to the 'refs' ulist. 1431 * So set this ref's inode list to NULL to avoid 1432 * use-after-free when our caller uses it or double 1433 * frees in case an error happens before we return. 1434 */ 1435 ref->inode_list = NULL; 1436 } 1437 cond_resched(); 1438 } 1439 1440out: 1441 btrfs_free_path(path); 1442 1443 prelim_release(&preftrees.direct); 1444 prelim_release(&preftrees.indirect); 1445 prelim_release(&preftrees.indirect_missing_keys); 1446 1447 if (ret < 0) 1448 free_inode_elem_list(eie); 1449 return ret; 1450} 1451 1452/* 1453 * Finds all leafs with a reference to the specified combination of bytenr and 1454 * offset. key_list_head will point to a list of corresponding keys (caller must 1455 * free each list element). The leafs will be stored in the leafs ulist, which 1456 * must be freed with ulist_free. 1457 * 1458 * returns 0 on success, <0 on error 1459 */ 1460int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1461 struct btrfs_fs_info *fs_info, u64 bytenr, 1462 u64 time_seq, struct ulist **leafs, 1463 const u64 *extent_item_pos, bool ignore_offset) 1464{ 1465 int ret; 1466 1467 *leafs = ulist_alloc(GFP_NOFS); 1468 if (!*leafs) 1469 return -ENOMEM; 1470 1471 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1472 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1473 if (ret < 0 && ret != -ENOENT) { 1474 free_leaf_list(*leafs); 1475 return ret; 1476 } 1477 1478 return 0; 1479} 1480 1481/* 1482 * walk all backrefs for a given extent to find all roots that reference this 1483 * extent. Walking a backref means finding all extents that reference this 1484 * extent and in turn walk the backrefs of those, too. Naturally this is a 1485 * recursive process, but here it is implemented in an iterative fashion: We 1486 * find all referencing extents for the extent in question and put them on a 1487 * list. In turn, we find all referencing extents for those, further appending 1488 * to the list. The way we iterate the list allows adding more elements after 1489 * the current while iterating. The process stops when we reach the end of the 1490 * list. Found roots are added to the roots list. 1491 * 1492 * returns 0 on success, < 0 on error. 1493 */ 1494static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1495 struct btrfs_fs_info *fs_info, u64 bytenr, 1496 u64 time_seq, struct ulist **roots, 1497 bool ignore_offset) 1498{ 1499 struct ulist *tmp; 1500 struct ulist_node *node = NULL; 1501 struct ulist_iterator uiter; 1502 int ret; 1503 1504 tmp = ulist_alloc(GFP_NOFS); 1505 if (!tmp) 1506 return -ENOMEM; 1507 *roots = ulist_alloc(GFP_NOFS); 1508 if (!*roots) { 1509 ulist_free(tmp); 1510 return -ENOMEM; 1511 } 1512 1513 ULIST_ITER_INIT(&uiter); 1514 while (1) { 1515 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1516 tmp, *roots, NULL, NULL, ignore_offset); 1517 if (ret < 0 && ret != -ENOENT) { 1518 ulist_free(tmp); 1519 ulist_free(*roots); 1520 *roots = NULL; 1521 return ret; 1522 } 1523 node = ulist_next(tmp, &uiter); 1524 if (!node) 1525 break; 1526 bytenr = node->val; 1527 cond_resched(); 1528 } 1529 1530 ulist_free(tmp); 1531 return 0; 1532} 1533 1534int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1535 struct btrfs_fs_info *fs_info, u64 bytenr, 1536 u64 time_seq, struct ulist **roots, 1537 bool ignore_offset) 1538{ 1539 int ret; 1540 1541 if (!trans) 1542 down_read(&fs_info->commit_root_sem); 1543 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1544 time_seq, roots, ignore_offset); 1545 if (!trans) 1546 up_read(&fs_info->commit_root_sem); 1547 return ret; 1548} 1549 1550/** 1551 * btrfs_check_shared - tell us whether an extent is shared 1552 * 1553 * btrfs_check_shared uses the backref walking code but will short 1554 * circuit as soon as it finds a root or inode that doesn't match the 1555 * one passed in. This provides a significant performance benefit for 1556 * callers (such as fiemap) which want to know whether the extent is 1557 * shared but do not need a ref count. 1558 * 1559 * This attempts to attach to the running transaction in order to account for 1560 * delayed refs, but continues on even when no running transaction exists. 1561 * 1562 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1563 */ 1564int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr, 1565 struct ulist *roots, struct ulist *tmp) 1566{ 1567 struct btrfs_fs_info *fs_info = root->fs_info; 1568 struct btrfs_trans_handle *trans; 1569 struct ulist_iterator uiter; 1570 struct ulist_node *node; 1571 struct seq_list elem = SEQ_LIST_INIT(elem); 1572 int ret = 0; 1573 struct share_check shared = { 1574 .root_objectid = root->root_key.objectid, 1575 .inum = inum, 1576 .share_count = 0, 1577 .have_delayed_delete_refs = false, 1578 }; 1579 1580 ulist_init(roots); 1581 ulist_init(tmp); 1582 1583 trans = btrfs_join_transaction_nostart(root); 1584 if (IS_ERR(trans)) { 1585 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1586 ret = PTR_ERR(trans); 1587 goto out; 1588 } 1589 trans = NULL; 1590 down_read(&fs_info->commit_root_sem); 1591 } else { 1592 btrfs_get_tree_mod_seq(fs_info, &elem); 1593 } 1594 1595 ULIST_ITER_INIT(&uiter); 1596 while (1) { 1597 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1598 roots, NULL, &shared, false); 1599 if (ret == BACKREF_FOUND_SHARED) { 1600 /* this is the only condition under which we return 1 */ 1601 ret = 1; 1602 break; 1603 } 1604 if (ret < 0 && ret != -ENOENT) 1605 break; 1606 ret = 0; 1607 node = ulist_next(tmp, &uiter); 1608 if (!node) 1609 break; 1610 bytenr = node->val; 1611 shared.share_count = 0; 1612 shared.have_delayed_delete_refs = false; 1613 cond_resched(); 1614 } 1615 1616 if (trans) { 1617 btrfs_put_tree_mod_seq(fs_info, &elem); 1618 btrfs_end_transaction(trans); 1619 } else { 1620 up_read(&fs_info->commit_root_sem); 1621 } 1622out: 1623 ulist_release(roots); 1624 ulist_release(tmp); 1625 return ret; 1626} 1627 1628int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1629 u64 start_off, struct btrfs_path *path, 1630 struct btrfs_inode_extref **ret_extref, 1631 u64 *found_off) 1632{ 1633 int ret, slot; 1634 struct btrfs_key key; 1635 struct btrfs_key found_key; 1636 struct btrfs_inode_extref *extref; 1637 const struct extent_buffer *leaf; 1638 unsigned long ptr; 1639 1640 key.objectid = inode_objectid; 1641 key.type = BTRFS_INODE_EXTREF_KEY; 1642 key.offset = start_off; 1643 1644 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1645 if (ret < 0) 1646 return ret; 1647 1648 while (1) { 1649 leaf = path->nodes[0]; 1650 slot = path->slots[0]; 1651 if (slot >= btrfs_header_nritems(leaf)) { 1652 /* 1653 * If the item at offset is not found, 1654 * btrfs_search_slot will point us to the slot 1655 * where it should be inserted. In our case 1656 * that will be the slot directly before the 1657 * next INODE_REF_KEY_V2 item. In the case 1658 * that we're pointing to the last slot in a 1659 * leaf, we must move one leaf over. 1660 */ 1661 ret = btrfs_next_leaf(root, path); 1662 if (ret) { 1663 if (ret >= 1) 1664 ret = -ENOENT; 1665 break; 1666 } 1667 continue; 1668 } 1669 1670 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1671 1672 /* 1673 * Check that we're still looking at an extended ref key for 1674 * this particular objectid. If we have different 1675 * objectid or type then there are no more to be found 1676 * in the tree and we can exit. 1677 */ 1678 ret = -ENOENT; 1679 if (found_key.objectid != inode_objectid) 1680 break; 1681 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1682 break; 1683 1684 ret = 0; 1685 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1686 extref = (struct btrfs_inode_extref *)ptr; 1687 *ret_extref = extref; 1688 if (found_off) 1689 *found_off = found_key.offset; 1690 break; 1691 } 1692 1693 return ret; 1694} 1695 1696/* 1697 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1698 * Elements of the path are separated by '/' and the path is guaranteed to be 1699 * 0-terminated. the path is only given within the current file system. 1700 * Therefore, it never starts with a '/'. the caller is responsible to provide 1701 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1702 * the start point of the resulting string is returned. this pointer is within 1703 * dest, normally. 1704 * in case the path buffer would overflow, the pointer is decremented further 1705 * as if output was written to the buffer, though no more output is actually 1706 * generated. that way, the caller can determine how much space would be 1707 * required for the path to fit into the buffer. in that case, the returned 1708 * value will be smaller than dest. callers must check this! 1709 */ 1710char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1711 u32 name_len, unsigned long name_off, 1712 struct extent_buffer *eb_in, u64 parent, 1713 char *dest, u32 size) 1714{ 1715 int slot; 1716 u64 next_inum; 1717 int ret; 1718 s64 bytes_left = ((s64)size) - 1; 1719 struct extent_buffer *eb = eb_in; 1720 struct btrfs_key found_key; 1721 int leave_spinning = path->leave_spinning; 1722 struct btrfs_inode_ref *iref; 1723 1724 if (bytes_left >= 0) 1725 dest[bytes_left] = '\0'; 1726 1727 path->leave_spinning = 1; 1728 while (1) { 1729 bytes_left -= name_len; 1730 if (bytes_left >= 0) 1731 read_extent_buffer(eb, dest + bytes_left, 1732 name_off, name_len); 1733 if (eb != eb_in) { 1734 if (!path->skip_locking) 1735 btrfs_tree_read_unlock_blocking(eb); 1736 free_extent_buffer(eb); 1737 } 1738 ret = btrfs_find_item(fs_root, path, parent, 0, 1739 BTRFS_INODE_REF_KEY, &found_key); 1740 if (ret > 0) 1741 ret = -ENOENT; 1742 if (ret) 1743 break; 1744 1745 next_inum = found_key.offset; 1746 1747 /* regular exit ahead */ 1748 if (parent == next_inum) 1749 break; 1750 1751 slot = path->slots[0]; 1752 eb = path->nodes[0]; 1753 /* make sure we can use eb after releasing the path */ 1754 if (eb != eb_in) { 1755 if (!path->skip_locking) 1756 btrfs_set_lock_blocking_read(eb); 1757 path->nodes[0] = NULL; 1758 path->locks[0] = 0; 1759 } 1760 btrfs_release_path(path); 1761 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1762 1763 name_len = btrfs_inode_ref_name_len(eb, iref); 1764 name_off = (unsigned long)(iref + 1); 1765 1766 parent = next_inum; 1767 --bytes_left; 1768 if (bytes_left >= 0) 1769 dest[bytes_left] = '/'; 1770 } 1771 1772 btrfs_release_path(path); 1773 path->leave_spinning = leave_spinning; 1774 1775 if (ret) 1776 return ERR_PTR(ret); 1777 1778 return dest + bytes_left; 1779} 1780 1781/* 1782 * this makes the path point to (logical EXTENT_ITEM *) 1783 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1784 * tree blocks and <0 on error. 1785 */ 1786int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1787 struct btrfs_path *path, struct btrfs_key *found_key, 1788 u64 *flags_ret) 1789{ 1790 int ret; 1791 u64 flags; 1792 u64 size = 0; 1793 u32 item_size; 1794 const struct extent_buffer *eb; 1795 struct btrfs_extent_item *ei; 1796 struct btrfs_key key; 1797 1798 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1799 key.type = BTRFS_METADATA_ITEM_KEY; 1800 else 1801 key.type = BTRFS_EXTENT_ITEM_KEY; 1802 key.objectid = logical; 1803 key.offset = (u64)-1; 1804 1805 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1806 if (ret < 0) 1807 return ret; 1808 1809 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1810 if (ret) { 1811 if (ret > 0) 1812 ret = -ENOENT; 1813 return ret; 1814 } 1815 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1816 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1817 size = fs_info->nodesize; 1818 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1819 size = found_key->offset; 1820 1821 if (found_key->objectid > logical || 1822 found_key->objectid + size <= logical) { 1823 btrfs_debug(fs_info, 1824 "logical %llu is not within any extent", logical); 1825 return -ENOENT; 1826 } 1827 1828 eb = path->nodes[0]; 1829 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1830 BUG_ON(item_size < sizeof(*ei)); 1831 1832 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1833 flags = btrfs_extent_flags(eb, ei); 1834 1835 btrfs_debug(fs_info, 1836 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1837 logical, logical - found_key->objectid, found_key->objectid, 1838 found_key->offset, flags, item_size); 1839 1840 WARN_ON(!flags_ret); 1841 if (flags_ret) { 1842 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1843 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1844 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1845 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1846 else 1847 BUG(); 1848 return 0; 1849 } 1850 1851 return -EIO; 1852} 1853 1854/* 1855 * helper function to iterate extent inline refs. ptr must point to a 0 value 1856 * for the first call and may be modified. it is used to track state. 1857 * if more refs exist, 0 is returned and the next call to 1858 * get_extent_inline_ref must pass the modified ptr parameter to get the 1859 * next ref. after the last ref was processed, 1 is returned. 1860 * returns <0 on error 1861 */ 1862static int get_extent_inline_ref(unsigned long *ptr, 1863 const struct extent_buffer *eb, 1864 const struct btrfs_key *key, 1865 const struct btrfs_extent_item *ei, 1866 u32 item_size, 1867 struct btrfs_extent_inline_ref **out_eiref, 1868 int *out_type) 1869{ 1870 unsigned long end; 1871 u64 flags; 1872 struct btrfs_tree_block_info *info; 1873 1874 if (!*ptr) { 1875 /* first call */ 1876 flags = btrfs_extent_flags(eb, ei); 1877 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1878 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1879 /* a skinny metadata extent */ 1880 *out_eiref = 1881 (struct btrfs_extent_inline_ref *)(ei + 1); 1882 } else { 1883 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1884 info = (struct btrfs_tree_block_info *)(ei + 1); 1885 *out_eiref = 1886 (struct btrfs_extent_inline_ref *)(info + 1); 1887 } 1888 } else { 1889 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1890 } 1891 *ptr = (unsigned long)*out_eiref; 1892 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1893 return -ENOENT; 1894 } 1895 1896 end = (unsigned long)ei + item_size; 1897 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1898 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1899 BTRFS_REF_TYPE_ANY); 1900 if (*out_type == BTRFS_REF_TYPE_INVALID) 1901 return -EUCLEAN; 1902 1903 *ptr += btrfs_extent_inline_ref_size(*out_type); 1904 WARN_ON(*ptr > end); 1905 if (*ptr == end) 1906 return 1; /* last */ 1907 1908 return 0; 1909} 1910 1911/* 1912 * reads the tree block backref for an extent. tree level and root are returned 1913 * through out_level and out_root. ptr must point to a 0 value for the first 1914 * call and may be modified (see get_extent_inline_ref comment). 1915 * returns 0 if data was provided, 1 if there was no more data to provide or 1916 * <0 on error. 1917 */ 1918int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1919 struct btrfs_key *key, struct btrfs_extent_item *ei, 1920 u32 item_size, u64 *out_root, u8 *out_level) 1921{ 1922 int ret; 1923 int type; 1924 struct btrfs_extent_inline_ref *eiref; 1925 1926 if (*ptr == (unsigned long)-1) 1927 return 1; 1928 1929 while (1) { 1930 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1931 &eiref, &type); 1932 if (ret < 0) 1933 return ret; 1934 1935 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1936 type == BTRFS_SHARED_BLOCK_REF_KEY) 1937 break; 1938 1939 if (ret == 1) 1940 return 1; 1941 } 1942 1943 /* we can treat both ref types equally here */ 1944 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1945 1946 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1947 struct btrfs_tree_block_info *info; 1948 1949 info = (struct btrfs_tree_block_info *)(ei + 1); 1950 *out_level = btrfs_tree_block_level(eb, info); 1951 } else { 1952 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1953 *out_level = (u8)key->offset; 1954 } 1955 1956 if (ret == 1) 1957 *ptr = (unsigned long)-1; 1958 1959 return 0; 1960} 1961 1962static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1963 struct extent_inode_elem *inode_list, 1964 u64 root, u64 extent_item_objectid, 1965 iterate_extent_inodes_t *iterate, void *ctx) 1966{ 1967 struct extent_inode_elem *eie; 1968 int ret = 0; 1969 1970 for (eie = inode_list; eie; eie = eie->next) { 1971 btrfs_debug(fs_info, 1972 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1973 extent_item_objectid, eie->inum, 1974 eie->offset, root); 1975 ret = iterate(eie->inum, eie->offset, root, ctx); 1976 if (ret) { 1977 btrfs_debug(fs_info, 1978 "stopping iteration for %llu due to ret=%d", 1979 extent_item_objectid, ret); 1980 break; 1981 } 1982 } 1983 1984 return ret; 1985} 1986 1987/* 1988 * calls iterate() for every inode that references the extent identified by 1989 * the given parameters. 1990 * when the iterator function returns a non-zero value, iteration stops. 1991 */ 1992int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1993 u64 extent_item_objectid, u64 extent_item_pos, 1994 int search_commit_root, 1995 iterate_extent_inodes_t *iterate, void *ctx, 1996 bool ignore_offset) 1997{ 1998 int ret; 1999 struct btrfs_trans_handle *trans = NULL; 2000 struct ulist *refs = NULL; 2001 struct ulist *roots = NULL; 2002 struct ulist_node *ref_node = NULL; 2003 struct ulist_node *root_node = NULL; 2004 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 2005 struct ulist_iterator ref_uiter; 2006 struct ulist_iterator root_uiter; 2007 2008 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 2009 extent_item_objectid); 2010 2011 if (!search_commit_root) { 2012 trans = btrfs_attach_transaction(fs_info->extent_root); 2013 if (IS_ERR(trans)) { 2014 if (PTR_ERR(trans) != -ENOENT && 2015 PTR_ERR(trans) != -EROFS) 2016 return PTR_ERR(trans); 2017 trans = NULL; 2018 } 2019 } 2020 2021 if (trans) 2022 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 2023 else 2024 down_read(&fs_info->commit_root_sem); 2025 2026 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 2027 tree_mod_seq_elem.seq, &refs, 2028 &extent_item_pos, ignore_offset); 2029 if (ret) 2030 goto out; 2031 2032 ULIST_ITER_INIT(&ref_uiter); 2033 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2034 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 2035 tree_mod_seq_elem.seq, &roots, 2036 ignore_offset); 2037 if (ret) 2038 break; 2039 ULIST_ITER_INIT(&root_uiter); 2040 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 2041 btrfs_debug(fs_info, 2042 "root %llu references leaf %llu, data list %#llx", 2043 root_node->val, ref_node->val, 2044 ref_node->aux); 2045 ret = iterate_leaf_refs(fs_info, 2046 (struct extent_inode_elem *) 2047 (uintptr_t)ref_node->aux, 2048 root_node->val, 2049 extent_item_objectid, 2050 iterate, ctx); 2051 } 2052 ulist_free(roots); 2053 } 2054 2055 free_leaf_list(refs); 2056out: 2057 if (trans) { 2058 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 2059 btrfs_end_transaction(trans); 2060 } else { 2061 up_read(&fs_info->commit_root_sem); 2062 } 2063 2064 return ret; 2065} 2066 2067static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 2068{ 2069 struct btrfs_data_container *inodes = ctx; 2070 const size_t c = 3 * sizeof(u64); 2071 2072 if (inodes->bytes_left >= c) { 2073 inodes->bytes_left -= c; 2074 inodes->val[inodes->elem_cnt] = inum; 2075 inodes->val[inodes->elem_cnt + 1] = offset; 2076 inodes->val[inodes->elem_cnt + 2] = root; 2077 inodes->elem_cnt += 3; 2078 } else { 2079 inodes->bytes_missing += c - inodes->bytes_left; 2080 inodes->bytes_left = 0; 2081 inodes->elem_missed += 3; 2082 } 2083 2084 return 0; 2085} 2086 2087int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2088 struct btrfs_path *path, 2089 void *ctx, bool ignore_offset) 2090{ 2091 int ret; 2092 u64 extent_item_pos; 2093 u64 flags = 0; 2094 struct btrfs_key found_key; 2095 int search_commit_root = path->search_commit_root; 2096 2097 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2098 btrfs_release_path(path); 2099 if (ret < 0) 2100 return ret; 2101 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2102 return -EINVAL; 2103 2104 extent_item_pos = logical - found_key.objectid; 2105 ret = iterate_extent_inodes(fs_info, found_key.objectid, 2106 extent_item_pos, search_commit_root, 2107 build_ino_list, ctx, ignore_offset); 2108 2109 return ret; 2110} 2111 2112typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 2113 struct extent_buffer *eb, void *ctx); 2114 2115static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 2116 struct btrfs_path *path, 2117 iterate_irefs_t *iterate, void *ctx) 2118{ 2119 int ret = 0; 2120 int slot; 2121 u32 cur; 2122 u32 len; 2123 u32 name_len; 2124 u64 parent = 0; 2125 int found = 0; 2126 struct extent_buffer *eb; 2127 struct btrfs_item *item; 2128 struct btrfs_inode_ref *iref; 2129 struct btrfs_key found_key; 2130 2131 while (!ret) { 2132 ret = btrfs_find_item(fs_root, path, inum, 2133 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2134 &found_key); 2135 2136 if (ret < 0) 2137 break; 2138 if (ret) { 2139 ret = found ? 0 : -ENOENT; 2140 break; 2141 } 2142 ++found; 2143 2144 parent = found_key.offset; 2145 slot = path->slots[0]; 2146 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2147 if (!eb) { 2148 ret = -ENOMEM; 2149 break; 2150 } 2151 btrfs_release_path(path); 2152 2153 item = btrfs_item_nr(slot); 2154 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2155 2156 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 2157 name_len = btrfs_inode_ref_name_len(eb, iref); 2158 /* path must be released before calling iterate()! */ 2159 btrfs_debug(fs_root->fs_info, 2160 "following ref at offset %u for inode %llu in tree %llu", 2161 cur, found_key.objectid, 2162 fs_root->root_key.objectid); 2163 ret = iterate(parent, name_len, 2164 (unsigned long)(iref + 1), eb, ctx); 2165 if (ret) 2166 break; 2167 len = sizeof(*iref) + name_len; 2168 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2169 } 2170 free_extent_buffer(eb); 2171 } 2172 2173 btrfs_release_path(path); 2174 2175 return ret; 2176} 2177 2178static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2179 struct btrfs_path *path, 2180 iterate_irefs_t *iterate, void *ctx) 2181{ 2182 int ret; 2183 int slot; 2184 u64 offset = 0; 2185 u64 parent; 2186 int found = 0; 2187 struct extent_buffer *eb; 2188 struct btrfs_inode_extref *extref; 2189 u32 item_size; 2190 u32 cur_offset; 2191 unsigned long ptr; 2192 2193 while (1) { 2194 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2195 &offset); 2196 if (ret < 0) 2197 break; 2198 if (ret) { 2199 ret = found ? 0 : -ENOENT; 2200 break; 2201 } 2202 ++found; 2203 2204 slot = path->slots[0]; 2205 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2206 if (!eb) { 2207 ret = -ENOMEM; 2208 break; 2209 } 2210 btrfs_release_path(path); 2211 2212 item_size = btrfs_item_size_nr(eb, slot); 2213 ptr = btrfs_item_ptr_offset(eb, slot); 2214 cur_offset = 0; 2215 2216 while (cur_offset < item_size) { 2217 u32 name_len; 2218 2219 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2220 parent = btrfs_inode_extref_parent(eb, extref); 2221 name_len = btrfs_inode_extref_name_len(eb, extref); 2222 ret = iterate(parent, name_len, 2223 (unsigned long)&extref->name, eb, ctx); 2224 if (ret) 2225 break; 2226 2227 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2228 cur_offset += sizeof(*extref); 2229 } 2230 free_extent_buffer(eb); 2231 2232 offset++; 2233 } 2234 2235 btrfs_release_path(path); 2236 2237 return ret; 2238} 2239 2240static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2241 struct btrfs_path *path, iterate_irefs_t *iterate, 2242 void *ctx) 2243{ 2244 int ret; 2245 int found_refs = 0; 2246 2247 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2248 if (!ret) 2249 ++found_refs; 2250 else if (ret != -ENOENT) 2251 return ret; 2252 2253 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2254 if (ret == -ENOENT && found_refs) 2255 return 0; 2256 2257 return ret; 2258} 2259 2260/* 2261 * returns 0 if the path could be dumped (probably truncated) 2262 * returns <0 in case of an error 2263 */ 2264static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2265 struct extent_buffer *eb, void *ctx) 2266{ 2267 struct inode_fs_paths *ipath = ctx; 2268 char *fspath; 2269 char *fspath_min; 2270 int i = ipath->fspath->elem_cnt; 2271 const int s_ptr = sizeof(char *); 2272 u32 bytes_left; 2273 2274 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2275 ipath->fspath->bytes_left - s_ptr : 0; 2276 2277 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2278 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2279 name_off, eb, inum, fspath_min, bytes_left); 2280 if (IS_ERR(fspath)) 2281 return PTR_ERR(fspath); 2282 2283 if (fspath > fspath_min) { 2284 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2285 ++ipath->fspath->elem_cnt; 2286 ipath->fspath->bytes_left = fspath - fspath_min; 2287 } else { 2288 ++ipath->fspath->elem_missed; 2289 ipath->fspath->bytes_missing += fspath_min - fspath; 2290 ipath->fspath->bytes_left = 0; 2291 } 2292 2293 return 0; 2294} 2295 2296/* 2297 * this dumps all file system paths to the inode into the ipath struct, provided 2298 * is has been created large enough. each path is zero-terminated and accessed 2299 * from ipath->fspath->val[i]. 2300 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2301 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2302 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2303 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2304 * have been needed to return all paths. 2305 */ 2306int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2307{ 2308 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2309 inode_to_path, ipath); 2310} 2311 2312struct btrfs_data_container *init_data_container(u32 total_bytes) 2313{ 2314 struct btrfs_data_container *data; 2315 size_t alloc_bytes; 2316 2317 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2318 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2319 if (!data) 2320 return ERR_PTR(-ENOMEM); 2321 2322 if (total_bytes >= sizeof(*data)) { 2323 data->bytes_left = total_bytes - sizeof(*data); 2324 data->bytes_missing = 0; 2325 } else { 2326 data->bytes_missing = sizeof(*data) - total_bytes; 2327 data->bytes_left = 0; 2328 } 2329 2330 data->elem_cnt = 0; 2331 data->elem_missed = 0; 2332 2333 return data; 2334} 2335 2336/* 2337 * allocates space to return multiple file system paths for an inode. 2338 * total_bytes to allocate are passed, note that space usable for actual path 2339 * information will be total_bytes - sizeof(struct inode_fs_paths). 2340 * the returned pointer must be freed with free_ipath() in the end. 2341 */ 2342struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2343 struct btrfs_path *path) 2344{ 2345 struct inode_fs_paths *ifp; 2346 struct btrfs_data_container *fspath; 2347 2348 fspath = init_data_container(total_bytes); 2349 if (IS_ERR(fspath)) 2350 return ERR_CAST(fspath); 2351 2352 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2353 if (!ifp) { 2354 kvfree(fspath); 2355 return ERR_PTR(-ENOMEM); 2356 } 2357 2358 ifp->btrfs_path = path; 2359 ifp->fspath = fspath; 2360 ifp->fs_root = fs_root; 2361 2362 return ifp; 2363} 2364 2365void free_ipath(struct inode_fs_paths *ipath) 2366{ 2367 if (!ipath) 2368 return; 2369 kvfree(ipath->fspath); 2370 kfree(ipath); 2371} 2372 2373struct btrfs_backref_iter *btrfs_backref_iter_alloc( 2374 struct btrfs_fs_info *fs_info, gfp_t gfp_flag) 2375{ 2376 struct btrfs_backref_iter *ret; 2377 2378 ret = kzalloc(sizeof(*ret), gfp_flag); 2379 if (!ret) 2380 return NULL; 2381 2382 ret->path = btrfs_alloc_path(); 2383 if (!ret->path) { 2384 kfree(ret); 2385 return NULL; 2386 } 2387 2388 /* Current backref iterator only supports iteration in commit root */ 2389 ret->path->search_commit_root = 1; 2390 ret->path->skip_locking = 1; 2391 ret->fs_info = fs_info; 2392 2393 return ret; 2394} 2395 2396int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2397{ 2398 struct btrfs_fs_info *fs_info = iter->fs_info; 2399 struct btrfs_path *path = iter->path; 2400 struct btrfs_extent_item *ei; 2401 struct btrfs_key key; 2402 int ret; 2403 2404 key.objectid = bytenr; 2405 key.type = BTRFS_METADATA_ITEM_KEY; 2406 key.offset = (u64)-1; 2407 iter->bytenr = bytenr; 2408 2409 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 2410 if (ret < 0) 2411 return ret; 2412 if (ret == 0) { 2413 ret = -EUCLEAN; 2414 goto release; 2415 } 2416 if (path->slots[0] == 0) { 2417 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2418 ret = -EUCLEAN; 2419 goto release; 2420 } 2421 path->slots[0]--; 2422 2423 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2424 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2425 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2426 ret = -ENOENT; 2427 goto release; 2428 } 2429 memcpy(&iter->cur_key, &key, sizeof(key)); 2430 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2431 path->slots[0]); 2432 iter->end_ptr = (u32)(iter->item_ptr + 2433 btrfs_item_size_nr(path->nodes[0], path->slots[0])); 2434 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2435 struct btrfs_extent_item); 2436 2437 /* 2438 * Only support iteration on tree backref yet. 2439 * 2440 * This is an extra precaution for non skinny-metadata, where 2441 * EXTENT_ITEM is also used for tree blocks, that we can only use 2442 * extent flags to determine if it's a tree block. 2443 */ 2444 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2445 ret = -ENOTSUPP; 2446 goto release; 2447 } 2448 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2449 2450 /* If there is no inline backref, go search for keyed backref */ 2451 if (iter->cur_ptr >= iter->end_ptr) { 2452 ret = btrfs_next_item(fs_info->extent_root, path); 2453 2454 /* No inline nor keyed ref */ 2455 if (ret > 0) { 2456 ret = -ENOENT; 2457 goto release; 2458 } 2459 if (ret < 0) 2460 goto release; 2461 2462 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2463 path->slots[0]); 2464 if (iter->cur_key.objectid != bytenr || 2465 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2466 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2467 ret = -ENOENT; 2468 goto release; 2469 } 2470 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2471 path->slots[0]); 2472 iter->item_ptr = iter->cur_ptr; 2473 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr( 2474 path->nodes[0], path->slots[0])); 2475 } 2476 2477 return 0; 2478release: 2479 btrfs_backref_iter_release(iter); 2480 return ret; 2481} 2482 2483/* 2484 * Go to the next backref item of current bytenr, can be either inlined or 2485 * keyed. 2486 * 2487 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2488 * 2489 * Return 0 if we get next backref without problem. 2490 * Return >0 if there is no extra backref for this bytenr. 2491 * Return <0 if there is something wrong happened. 2492 */ 2493int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2494{ 2495 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2496 struct btrfs_path *path = iter->path; 2497 struct btrfs_extent_inline_ref *iref; 2498 int ret; 2499 u32 size; 2500 2501 if (btrfs_backref_iter_is_inline_ref(iter)) { 2502 /* We're still inside the inline refs */ 2503 ASSERT(iter->cur_ptr < iter->end_ptr); 2504 2505 if (btrfs_backref_has_tree_block_info(iter)) { 2506 /* First tree block info */ 2507 size = sizeof(struct btrfs_tree_block_info); 2508 } else { 2509 /* Use inline ref type to determine the size */ 2510 int type; 2511 2512 iref = (struct btrfs_extent_inline_ref *) 2513 ((unsigned long)iter->cur_ptr); 2514 type = btrfs_extent_inline_ref_type(eb, iref); 2515 2516 size = btrfs_extent_inline_ref_size(type); 2517 } 2518 iter->cur_ptr += size; 2519 if (iter->cur_ptr < iter->end_ptr) 2520 return 0; 2521 2522 /* All inline items iterated, fall through */ 2523 } 2524 2525 /* We're at keyed items, there is no inline item, go to the next one */ 2526 ret = btrfs_next_item(iter->fs_info->extent_root, iter->path); 2527 if (ret) 2528 return ret; 2529 2530 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2531 if (iter->cur_key.objectid != iter->bytenr || 2532 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2533 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2534 return 1; 2535 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2536 path->slots[0]); 2537 iter->cur_ptr = iter->item_ptr; 2538 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0], 2539 path->slots[0]); 2540 return 0; 2541} 2542 2543void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 2544 struct btrfs_backref_cache *cache, int is_reloc) 2545{ 2546 int i; 2547 2548 cache->rb_root = RB_ROOT; 2549 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2550 INIT_LIST_HEAD(&cache->pending[i]); 2551 INIT_LIST_HEAD(&cache->changed); 2552 INIT_LIST_HEAD(&cache->detached); 2553 INIT_LIST_HEAD(&cache->leaves); 2554 INIT_LIST_HEAD(&cache->pending_edge); 2555 INIT_LIST_HEAD(&cache->useless_node); 2556 cache->fs_info = fs_info; 2557 cache->is_reloc = is_reloc; 2558} 2559 2560struct btrfs_backref_node *btrfs_backref_alloc_node( 2561 struct btrfs_backref_cache *cache, u64 bytenr, int level) 2562{ 2563 struct btrfs_backref_node *node; 2564 2565 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 2566 node = kzalloc(sizeof(*node), GFP_NOFS); 2567 if (!node) 2568 return node; 2569 2570 INIT_LIST_HEAD(&node->list); 2571 INIT_LIST_HEAD(&node->upper); 2572 INIT_LIST_HEAD(&node->lower); 2573 RB_CLEAR_NODE(&node->rb_node); 2574 cache->nr_nodes++; 2575 node->level = level; 2576 node->bytenr = bytenr; 2577 2578 return node; 2579} 2580 2581struct btrfs_backref_edge *btrfs_backref_alloc_edge( 2582 struct btrfs_backref_cache *cache) 2583{ 2584 struct btrfs_backref_edge *edge; 2585 2586 edge = kzalloc(sizeof(*edge), GFP_NOFS); 2587 if (edge) 2588 cache->nr_edges++; 2589 return edge; 2590} 2591 2592/* 2593 * Drop the backref node from cache, also cleaning up all its 2594 * upper edges and any uncached nodes in the path. 2595 * 2596 * This cleanup happens bottom up, thus the node should either 2597 * be the lowest node in the cache or a detached node. 2598 */ 2599void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 2600 struct btrfs_backref_node *node) 2601{ 2602 struct btrfs_backref_node *upper; 2603 struct btrfs_backref_edge *edge; 2604 2605 if (!node) 2606 return; 2607 2608 BUG_ON(!node->lowest && !node->detached); 2609 while (!list_empty(&node->upper)) { 2610 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 2611 list[LOWER]); 2612 upper = edge->node[UPPER]; 2613 list_del(&edge->list[LOWER]); 2614 list_del(&edge->list[UPPER]); 2615 btrfs_backref_free_edge(cache, edge); 2616 2617 /* 2618 * Add the node to leaf node list if no other child block 2619 * cached. 2620 */ 2621 if (list_empty(&upper->lower)) { 2622 list_add_tail(&upper->lower, &cache->leaves); 2623 upper->lowest = 1; 2624 } 2625 } 2626 2627 btrfs_backref_drop_node(cache, node); 2628} 2629 2630/* 2631 * Release all nodes/edges from current cache 2632 */ 2633void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 2634{ 2635 struct btrfs_backref_node *node; 2636 int i; 2637 2638 while (!list_empty(&cache->detached)) { 2639 node = list_entry(cache->detached.next, 2640 struct btrfs_backref_node, list); 2641 btrfs_backref_cleanup_node(cache, node); 2642 } 2643 2644 while (!list_empty(&cache->leaves)) { 2645 node = list_entry(cache->leaves.next, 2646 struct btrfs_backref_node, lower); 2647 btrfs_backref_cleanup_node(cache, node); 2648 } 2649 2650 cache->last_trans = 0; 2651 2652 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2653 ASSERT(list_empty(&cache->pending[i])); 2654 ASSERT(list_empty(&cache->pending_edge)); 2655 ASSERT(list_empty(&cache->useless_node)); 2656 ASSERT(list_empty(&cache->changed)); 2657 ASSERT(list_empty(&cache->detached)); 2658 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 2659 ASSERT(!cache->nr_nodes); 2660 ASSERT(!cache->nr_edges); 2661} 2662 2663/* 2664 * Handle direct tree backref 2665 * 2666 * Direct tree backref means, the backref item shows its parent bytenr 2667 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 2668 * 2669 * @ref_key: The converted backref key. 2670 * For keyed backref, it's the item key. 2671 * For inlined backref, objectid is the bytenr, 2672 * type is btrfs_inline_ref_type, offset is 2673 * btrfs_inline_ref_offset. 2674 */ 2675static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 2676 struct btrfs_key *ref_key, 2677 struct btrfs_backref_node *cur) 2678{ 2679 struct btrfs_backref_edge *edge; 2680 struct btrfs_backref_node *upper; 2681 struct rb_node *rb_node; 2682 2683 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 2684 2685 /* Only reloc root uses backref pointing to itself */ 2686 if (ref_key->objectid == ref_key->offset) { 2687 struct btrfs_root *root; 2688 2689 cur->is_reloc_root = 1; 2690 /* Only reloc backref cache cares about a specific root */ 2691 if (cache->is_reloc) { 2692 root = find_reloc_root(cache->fs_info, cur->bytenr); 2693 if (!root) 2694 return -ENOENT; 2695 cur->root = root; 2696 } else { 2697 /* 2698 * For generic purpose backref cache, reloc root node 2699 * is useless. 2700 */ 2701 list_add(&cur->list, &cache->useless_node); 2702 } 2703 return 0; 2704 } 2705 2706 edge = btrfs_backref_alloc_edge(cache); 2707 if (!edge) 2708 return -ENOMEM; 2709 2710 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 2711 if (!rb_node) { 2712 /* Parent node not yet cached */ 2713 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 2714 cur->level + 1); 2715 if (!upper) { 2716 btrfs_backref_free_edge(cache, edge); 2717 return -ENOMEM; 2718 } 2719 2720 /* 2721 * Backrefs for the upper level block isn't cached, add the 2722 * block to pending list 2723 */ 2724 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2725 } else { 2726 /* Parent node already cached */ 2727 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 2728 ASSERT(upper->checked); 2729 INIT_LIST_HEAD(&edge->list[UPPER]); 2730 } 2731 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 2732 return 0; 2733} 2734 2735/* 2736 * Handle indirect tree backref 2737 * 2738 * Indirect tree backref means, we only know which tree the node belongs to. 2739 * We still need to do a tree search to find out the parents. This is for 2740 * TREE_BLOCK_REF backref (keyed or inlined). 2741 * 2742 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 2743 * @tree_key: The first key of this tree block. 2744 * @path: A clean (released) path, to avoid allocating path everytime 2745 * the function get called. 2746 */ 2747static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, 2748 struct btrfs_path *path, 2749 struct btrfs_key *ref_key, 2750 struct btrfs_key *tree_key, 2751 struct btrfs_backref_node *cur) 2752{ 2753 struct btrfs_fs_info *fs_info = cache->fs_info; 2754 struct btrfs_backref_node *upper; 2755 struct btrfs_backref_node *lower; 2756 struct btrfs_backref_edge *edge; 2757 struct extent_buffer *eb; 2758 struct btrfs_root *root; 2759 struct rb_node *rb_node; 2760 int level; 2761 bool need_check = true; 2762 int ret; 2763 2764 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 2765 if (IS_ERR(root)) 2766 return PTR_ERR(root); 2767 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2768 cur->cowonly = 1; 2769 2770 if (btrfs_root_level(&root->root_item) == cur->level) { 2771 /* Tree root */ 2772 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 2773 /* 2774 * For reloc backref cache, we may ignore reloc root. But for 2775 * general purpose backref cache, we can't rely on 2776 * btrfs_should_ignore_reloc_root() as it may conflict with 2777 * current running relocation and lead to missing root. 2778 * 2779 * For general purpose backref cache, reloc root detection is 2780 * completely relying on direct backref (key->offset is parent 2781 * bytenr), thus only do such check for reloc cache. 2782 */ 2783 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 2784 btrfs_put_root(root); 2785 list_add(&cur->list, &cache->useless_node); 2786 } else { 2787 cur->root = root; 2788 } 2789 return 0; 2790 } 2791 2792 level = cur->level + 1; 2793 2794 /* Search the tree to find parent blocks referring to the block */ 2795 path->search_commit_root = 1; 2796 path->skip_locking = 1; 2797 path->lowest_level = level; 2798 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 2799 path->lowest_level = 0; 2800 if (ret < 0) { 2801 btrfs_put_root(root); 2802 return ret; 2803 } 2804 if (ret > 0 && path->slots[level] > 0) 2805 path->slots[level]--; 2806 2807 eb = path->nodes[level]; 2808 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 2809 btrfs_err(fs_info, 2810"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 2811 cur->bytenr, level - 1, root->root_key.objectid, 2812 tree_key->objectid, tree_key->type, tree_key->offset); 2813 btrfs_put_root(root); 2814 ret = -ENOENT; 2815 goto out; 2816 } 2817 lower = cur; 2818 2819 /* Add all nodes and edges in the path */ 2820 for (; level < BTRFS_MAX_LEVEL; level++) { 2821 if (!path->nodes[level]) { 2822 ASSERT(btrfs_root_bytenr(&root->root_item) == 2823 lower->bytenr); 2824 /* Same as previous should_ignore_reloc_root() call */ 2825 if (btrfs_should_ignore_reloc_root(root) && 2826 cache->is_reloc) { 2827 btrfs_put_root(root); 2828 list_add(&lower->list, &cache->useless_node); 2829 } else { 2830 lower->root = root; 2831 } 2832 break; 2833 } 2834 2835 edge = btrfs_backref_alloc_edge(cache); 2836 if (!edge) { 2837 btrfs_put_root(root); 2838 ret = -ENOMEM; 2839 goto out; 2840 } 2841 2842 eb = path->nodes[level]; 2843 rb_node = rb_simple_search(&cache->rb_root, eb->start); 2844 if (!rb_node) { 2845 upper = btrfs_backref_alloc_node(cache, eb->start, 2846 lower->level + 1); 2847 if (!upper) { 2848 btrfs_put_root(root); 2849 btrfs_backref_free_edge(cache, edge); 2850 ret = -ENOMEM; 2851 goto out; 2852 } 2853 upper->owner = btrfs_header_owner(eb); 2854 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2855 upper->cowonly = 1; 2856 2857 /* 2858 * If we know the block isn't shared we can avoid 2859 * checking its backrefs. 2860 */ 2861 if (btrfs_block_can_be_shared(root, eb)) 2862 upper->checked = 0; 2863 else 2864 upper->checked = 1; 2865 2866 /* 2867 * Add the block to pending list if we need to check its 2868 * backrefs, we only do this once while walking up a 2869 * tree as we will catch anything else later on. 2870 */ 2871 if (!upper->checked && need_check) { 2872 need_check = false; 2873 list_add_tail(&edge->list[UPPER], 2874 &cache->pending_edge); 2875 } else { 2876 if (upper->checked) 2877 need_check = true; 2878 INIT_LIST_HEAD(&edge->list[UPPER]); 2879 } 2880 } else { 2881 upper = rb_entry(rb_node, struct btrfs_backref_node, 2882 rb_node); 2883 ASSERT(upper->checked); 2884 INIT_LIST_HEAD(&edge->list[UPPER]); 2885 if (!upper->owner) 2886 upper->owner = btrfs_header_owner(eb); 2887 } 2888 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 2889 2890 if (rb_node) { 2891 btrfs_put_root(root); 2892 break; 2893 } 2894 lower = upper; 2895 upper = NULL; 2896 } 2897out: 2898 btrfs_release_path(path); 2899 return ret; 2900} 2901 2902/* 2903 * Add backref node @cur into @cache. 2904 * 2905 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 2906 * links aren't yet bi-directional. Needs to finish such links. 2907 * Use btrfs_backref_finish_upper_links() to finish such linkage. 2908 * 2909 * @path: Released path for indirect tree backref lookup 2910 * @iter: Released backref iter for extent tree search 2911 * @node_key: The first key of the tree block 2912 */ 2913int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, 2914 struct btrfs_path *path, 2915 struct btrfs_backref_iter *iter, 2916 struct btrfs_key *node_key, 2917 struct btrfs_backref_node *cur) 2918{ 2919 struct btrfs_fs_info *fs_info = cache->fs_info; 2920 struct btrfs_backref_edge *edge; 2921 struct btrfs_backref_node *exist; 2922 int ret; 2923 2924 ret = btrfs_backref_iter_start(iter, cur->bytenr); 2925 if (ret < 0) 2926 return ret; 2927 /* 2928 * We skip the first btrfs_tree_block_info, as we don't use the key 2929 * stored in it, but fetch it from the tree block 2930 */ 2931 if (btrfs_backref_has_tree_block_info(iter)) { 2932 ret = btrfs_backref_iter_next(iter); 2933 if (ret < 0) 2934 goto out; 2935 /* No extra backref? This means the tree block is corrupted */ 2936 if (ret > 0) { 2937 ret = -EUCLEAN; 2938 goto out; 2939 } 2940 } 2941 WARN_ON(cur->checked); 2942 if (!list_empty(&cur->upper)) { 2943 /* 2944 * The backref was added previously when processing backref of 2945 * type BTRFS_TREE_BLOCK_REF_KEY 2946 */ 2947 ASSERT(list_is_singular(&cur->upper)); 2948 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 2949 list[LOWER]); 2950 ASSERT(list_empty(&edge->list[UPPER])); 2951 exist = edge->node[UPPER]; 2952 /* 2953 * Add the upper level block to pending list if we need check 2954 * its backrefs 2955 */ 2956 if (!exist->checked) 2957 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2958 } else { 2959 exist = NULL; 2960 } 2961 2962 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 2963 struct extent_buffer *eb; 2964 struct btrfs_key key; 2965 int type; 2966 2967 cond_resched(); 2968 eb = btrfs_backref_get_eb(iter); 2969 2970 key.objectid = iter->bytenr; 2971 if (btrfs_backref_iter_is_inline_ref(iter)) { 2972 struct btrfs_extent_inline_ref *iref; 2973 2974 /* Update key for inline backref */ 2975 iref = (struct btrfs_extent_inline_ref *) 2976 ((unsigned long)iter->cur_ptr); 2977 type = btrfs_get_extent_inline_ref_type(eb, iref, 2978 BTRFS_REF_TYPE_BLOCK); 2979 if (type == BTRFS_REF_TYPE_INVALID) { 2980 ret = -EUCLEAN; 2981 goto out; 2982 } 2983 key.type = type; 2984 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 2985 } else { 2986 key.type = iter->cur_key.type; 2987 key.offset = iter->cur_key.offset; 2988 } 2989 2990 /* 2991 * Parent node found and matches current inline ref, no need to 2992 * rebuild this node for this inline ref 2993 */ 2994 if (exist && 2995 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 2996 exist->owner == key.offset) || 2997 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 2998 exist->bytenr == key.offset))) { 2999 exist = NULL; 3000 continue; 3001 } 3002 3003 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 3004 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 3005 ret = handle_direct_tree_backref(cache, &key, cur); 3006 if (ret < 0) 3007 goto out; 3008 continue; 3009 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 3010 ret = -EINVAL; 3011 btrfs_print_v0_err(fs_info); 3012 btrfs_handle_fs_error(fs_info, ret, NULL); 3013 goto out; 3014 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 3015 continue; 3016 } 3017 3018 /* 3019 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 3020 * means the root objectid. We need to search the tree to get 3021 * its parent bytenr. 3022 */ 3023 ret = handle_indirect_tree_backref(cache, path, &key, node_key, 3024 cur); 3025 if (ret < 0) 3026 goto out; 3027 } 3028 ret = 0; 3029 cur->checked = 1; 3030 WARN_ON(exist); 3031out: 3032 btrfs_backref_iter_release(iter); 3033 return ret; 3034} 3035 3036/* 3037 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 3038 */ 3039int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 3040 struct btrfs_backref_node *start) 3041{ 3042 struct list_head *useless_node = &cache->useless_node; 3043 struct btrfs_backref_edge *edge; 3044 struct rb_node *rb_node; 3045 LIST_HEAD(pending_edge); 3046 3047 ASSERT(start->checked); 3048 3049 /* Insert this node to cache if it's not COW-only */ 3050 if (!start->cowonly) { 3051 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 3052 &start->rb_node); 3053 if (rb_node) 3054 btrfs_backref_panic(cache->fs_info, start->bytenr, 3055 -EEXIST); 3056 list_add_tail(&start->lower, &cache->leaves); 3057 } 3058 3059 /* 3060 * Use breadth first search to iterate all related edges. 3061 * 3062 * The starting points are all the edges of this node 3063 */ 3064 list_for_each_entry(edge, &start->upper, list[LOWER]) 3065 list_add_tail(&edge->list[UPPER], &pending_edge); 3066 3067 while (!list_empty(&pending_edge)) { 3068 struct btrfs_backref_node *upper; 3069 struct btrfs_backref_node *lower; 3070 3071 edge = list_first_entry(&pending_edge, 3072 struct btrfs_backref_edge, list[UPPER]); 3073 list_del_init(&edge->list[UPPER]); 3074 upper = edge->node[UPPER]; 3075 lower = edge->node[LOWER]; 3076 3077 /* Parent is detached, no need to keep any edges */ 3078 if (upper->detached) { 3079 list_del(&edge->list[LOWER]); 3080 btrfs_backref_free_edge(cache, edge); 3081 3082 /* Lower node is orphan, queue for cleanup */ 3083 if (list_empty(&lower->upper)) 3084 list_add(&lower->list, useless_node); 3085 continue; 3086 } 3087 3088 /* 3089 * All new nodes added in current build_backref_tree() haven't 3090 * been linked to the cache rb tree. 3091 * So if we have upper->rb_node populated, this means a cache 3092 * hit. We only need to link the edge, as @upper and all its 3093 * parents have already been linked. 3094 */ 3095 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3096 if (upper->lowest) { 3097 list_del_init(&upper->lower); 3098 upper->lowest = 0; 3099 } 3100 3101 list_add_tail(&edge->list[UPPER], &upper->lower); 3102 continue; 3103 } 3104 3105 /* Sanity check, we shouldn't have any unchecked nodes */ 3106 if (!upper->checked) { 3107 ASSERT(0); 3108 return -EUCLEAN; 3109 } 3110 3111 /* Sanity check, COW-only node has non-COW-only parent */ 3112 if (start->cowonly != upper->cowonly) { 3113 ASSERT(0); 3114 return -EUCLEAN; 3115 } 3116 3117 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3118 if (!upper->cowonly) { 3119 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3120 &upper->rb_node); 3121 if (rb_node) { 3122 btrfs_backref_panic(cache->fs_info, 3123 upper->bytenr, -EEXIST); 3124 return -EUCLEAN; 3125 } 3126 } 3127 3128 list_add_tail(&edge->list[UPPER], &upper->lower); 3129 3130 /* 3131 * Also queue all the parent edges of this uncached node 3132 * to finish the upper linkage 3133 */ 3134 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3135 list_add_tail(&edge->list[UPPER], &pending_edge); 3136 } 3137 return 0; 3138} 3139 3140void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3141 struct btrfs_backref_node *node) 3142{ 3143 struct btrfs_backref_node *lower; 3144 struct btrfs_backref_node *upper; 3145 struct btrfs_backref_edge *edge; 3146 3147 while (!list_empty(&cache->useless_node)) { 3148 lower = list_first_entry(&cache->useless_node, 3149 struct btrfs_backref_node, list); 3150 list_del_init(&lower->list); 3151 } 3152 while (!list_empty(&cache->pending_edge)) { 3153 edge = list_first_entry(&cache->pending_edge, 3154 struct btrfs_backref_edge, list[UPPER]); 3155 list_del(&edge->list[UPPER]); 3156 list_del(&edge->list[LOWER]); 3157 lower = edge->node[LOWER]; 3158 upper = edge->node[UPPER]; 3159 btrfs_backref_free_edge(cache, edge); 3160 3161 /* 3162 * Lower is no longer linked to any upper backref nodes and 3163 * isn't in the cache, we can free it ourselves. 3164 */ 3165 if (list_empty(&lower->upper) && 3166 RB_EMPTY_NODE(&lower->rb_node)) 3167 list_add(&lower->list, &cache->useless_node); 3168 3169 if (!RB_EMPTY_NODE(&upper->rb_node)) 3170 continue; 3171 3172 /* Add this guy's upper edges to the list to process */ 3173 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3174 list_add_tail(&edge->list[UPPER], 3175 &cache->pending_edge); 3176 if (list_empty(&upper->upper)) 3177 list_add(&upper->list, &cache->useless_node); 3178 } 3179 3180 while (!list_empty(&cache->useless_node)) { 3181 lower = list_first_entry(&cache->useless_node, 3182 struct btrfs_backref_node, list); 3183 list_del_init(&lower->list); 3184 if (lower == node) 3185 node = NULL; 3186 btrfs_backref_drop_node(cache, lower); 3187 } 3188 3189 btrfs_backref_cleanup_node(cache, node); 3190 ASSERT(list_empty(&cache->useless_node) && 3191 list_empty(&cache->pending_edge)); 3192} 3193